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A Karen

Los ríos no llevan agua,
el sol las fuentes secó…

¡Yo sé donde hay una fuente
que no ha de secar el sol!
La fuente que no se agota

es mi propio corazón…

—V. Ruiz Aguilera (1862)
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Variables acotadas, ch7Files 
Dieta, ch2Files
Diet, ch2Files
método M, ch3Files 
Reddy Mikks, ch2Files 
Análisis de sensibilidad, ch3Files
TOYCO, ch3Files
Modelos de red

CPM (Método de la ruta crítica), ch6Files
Flujo máximo, ch6Files 
PERT (Técnica de evaluación y revisión de programas), ch6Files
Ruta más corta, ch6Files 
Modelos de colas (Poisson), ch18Files
Modelo de transporte, ch5Files
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Lo nuevo en 
esta edición

Esta novena edición contiene, de manera más concisa que las anteriores, tanto el texto
como el software de apoyo, con el fin de que el lector se enfoque de lleno en la puesta
en ejecución algorítmica y práctica de las técnicas de investigación de operaciones.

• La nueva sección 3.7 constituye un amplio encuadre (sin necesidad de utilizar ma-
temáticas) de cómo los diferentes algoritmos de PL, programación lineal (simplex,
simplex dual, simplex revisado y de punto interior) se ponen en ejecución en códi-
gos comerciales (por ejemplo CPLEX y XPRESS) para incrementar la velocidad
de cómputo y precisión necesarias para resolver problemas muy grandes.

• El nuevo capítulo 10 se ocupa de la heurística y la metaheurística diseñadas para
obtener buenas soluciones aproximadas a problemas de programación entera y
combinatoria. La necesidad de la heurística y la metaheurística es un reconoci-
miento del hecho de que el desempeño de los algoritmos exactos ha sido menos
satisfactorio desde el punto de vista computacional.

• El nuevo capítulo 11 está dedicado al importante problema del agente viajero.
Incluye varias aplicaciones y el desarrollo de algoritmos de solución heurísticos y
exactos.

• Todos los algoritmos de los nuevos capítulos 10 y 11 se codificaron en Excel para
permitir una conveniente experimentación interactiva con los modelos.

• Todos los modelos AMPL se movieron al apéndice C* para complementar las
reglas sintácticas de AMPL presentadas en el apéndice. Los modelos aparecen
oportunamente en el libro con sus respectivas referencias.

• A lo largo del libro se agregaron numerosos problemas nuevos.
• Se actualizó el software TORA.
• Con el fin de mantener una cantidad razonable de páginas impresas, hemos

pasado al sitio web* parte del material, entre el que se incluye el apéndice AMPL.
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* Todo el material incluido en el sitio web se encuentra en idioma inglés.
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CAPÍTULO 1

Qué es la investigación de operaciones

1.1 INTRODUCCIÓN

Las primeras actividades formales de investigación de operaciones (IO) se iniciaron en
Inglaterra durante la Segunda Guerra Mundial, cuando un equipo de científicos empezó
a tomar decisiones con respecto a la mejor utilización del material bélico. Al término
de la guerra, las ideas formuladas en operaciones militares se adaptaron para mejorar
la eficiencia y productividad en el sector civil.

Este capítulo presenta la terminología básica de la IO, que comprende el mode-
lado matemático, soluciones factibles, optimización y cálculos iterativos. Hace hincapié
en que la definición correcta del problema es la fase más importante (y más difícil) de
practicar la IO.También se recalca que si bien el modelado matemático es la piedra an-
gular de la IO, en la decisión final se deben tomar en cuenta factores incuantificables,
como el comportamiento humano, por ejemplo. El libro presenta varias aplicaciones
que utilizan ejemplos resueltos y problemas específicos.*

1.2 MODELOS DE INVESTIGACIÓN DE OPERACIONES

Imagine que tiene un compromiso de negocios que requiere 5 semanas de traslado
continuo entre Fayetteville (FYV) y Denver (DEN). Sale de Fayetteville los lunes y re-
gresa los miércoles. Un boleto regular de viaje redondo cuesta $400, pero se ofrece
20% de descuento si el viaje redondo comprende un fin de semana. Un boleto sencillo
en cualquier dirección cuesta 75% del precio regular. ¿Cómo debe comprar los boletos
para reducir el costo del traslado durante las 5 semanas?

*En el sitio web de este libro encontrará el capítulo 26 (en inglés), el cual está dedicado por completo a la
presentación del análisis de casos totalmente desarrollados.



2 Capítulo 1 Qué es la investigación de operaciones

Podemos considerar la situación como un problema de toma de decisiones, cuya
solución requiere responder tres preguntas:

1. ¿Cuáles son las alternativas de decisión? 
2. ¿Conforme a qué restricciones se toma la decisión?
3. ¿Cuál es el criterio objetivo apropiado para evaluar las alternativas? 

Se consideran tres alternativas razonables:

1. Comprar cinco boletos normales FYV-DEN-FYV para salir el lunes y regresar el
miércoles de la misma semana.

2. Comprar un boleto FYV-DEN, cuatro DEN-FYV-DEN que abarquen fines de
semana, y uno DEN-FYV.

3. Comprar un boleto FYV-DEN-FYV para el lunes de la primera semana y el
miércoles de la última semana, y cuatro DEN-FYV-DEN para los viajes restan-
tes. Todos los boletos en esta alternativa cubren por lo menos un fin de semana.

La restricción en estas opciones es que pueda salir de FYV el lunes y regresar el miér-
coles de la misma semana.

Un criterio objetivo obvio para evaluar la alternativa propuesta es el precio de los
boletos. La alternativa que dé el costo mínimo será la mejor. Específicamente, tenemos:

Costo de la alternativa 1 5 5 3 400 5 $2000

Costo de la alternativa 2 5 .75 3 400 1 4 3 (.8 3 400) 1 .75 3 400 5 $1880

Costo de la alternativa 3 5 5 3 (.8 3 400) 5 $1600

La alternativa 3 es la mejor porque es la más económica.
Aunque el ejemplo anterior ilustra los tres componentes principales de un mode-

lo de IO, los cuales son: alternativas, criterio objetivo y restricciones, las situaciones di-
fieren por los detalles de la construcción de cada componente y la solución del modelo
resultante. Para ilustrar este punto, considere la formación de un rectángulo de área
máxima con un trozo de alambre de L pulgadas de longitud. ¿Cuál será el mejor ancho
y altura del rectángulo? 

En contraste con el ejemplo de los boletos, el número de alternativas en este
ejemplo no es finito; es decir, el ancho y la altura del rectángulo pueden asumir una
cantidad infinita de valores porque son variables continuas. Para formalizar esta obser-
vación, las alternativas del problema se identifican definiendo el ancho y la altura
como variables algebraicas 

w 5 ancho del rectángulo en pulgadas,
h 5 altura del rectángulo en pulgadas.

Con base en estas definiciones, las restricciones de la situación pueden expresarse ver-
balmente como

1. Ancho del rectángulo 1 altura del rectángulo 5 la mitad de la longitud del alambre.
2. El ancho y la altura no pueden ser negativos.
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Estas restricciones se traducen de manera algebraica como sigue 

1. 2(w 1 h) 5 L
2. w Ú 0, h Ú 0 

Ahora el único componente restante es el objetivo del problema; es decir, maxi-
mizar el área del rectángulo. Si z se define como el área del rectángulo, el modelo com-
pleto es

Maximizar z 5 wh

sujeto a

2(w 1 h) 5 L

w, h Ú 0

Utilizando cálculo diferencial, la mejor solución de este modelo es la cual
requiere la construcción de una forma cuadrada.

Con los datos de los dos ejemplos anteriores, el modelo general de IO se organi-
za en el siguiente formato general:

w = h =  L4  ,

Maximizar o minimizar Función objetivo

sujeto a

Restricciones

Una solución del modelo es factible si satisface todas las restricciones; es óptima
si, además de ser factible, produce el mejor valor (máximo o mínimo) de la función ob-
jetivo. En el ejemplo de los boletos, el problema considera tres alternativas factibles, y
la tercera es la que produce la solución óptima. En el problema del rectángulo, una al-
ternativa factible debe satisfacer la condición donde w y h son variables
no negativas. Esta definición conduce a una infinidad de soluciones factibles y, a dife-
rencia del problema de los boletos, el cual utiliza una sencilla comparación de precios,
la solución óptima se determina aplicando cálculo diferencial.

Aunque los modelos de IO están diseñados para “optimizar” un criterio objetivo
específico sujeto a un conjunto de restricciones, la calidad de la solución resultante de-
pende de la exactitud con que el modelo representa el sistema real. Considere, por
ejemplo, el modelo de los boletos. Si no se identifican todas las alternativas dominantes
para comprar los boletos, entonces la solución resultante es óptima sólo en relación
con las opciones representadas en el modelo. Específicamente, si se omite la alternati-
va 3 en el modelo, entonces la solución “optima” requeriría que se compraran los bole-
tos en $1880, la cual es una solución subóptima. La conclusión es que “la” solución óp-
tima de un modelo es mejor sólo para ese modelo. Si el modelo es una representación
razonablemente buena del sistema real, entonces su solución también es óptima para
la situación real.

w + h =  L2  ,
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CONJUNTO DE PROBLEMAS 1.2A1

1. En el ejemplo de los boletos, identifique una cuarta alternativa factible.
2. En el problema del rectángulo, identifique dos soluciones factibles, e indique cuál es la mejor.
3. Determine la solución óptima del problema del rectángulo (Sugerencia: Aplique la

restricción para expresar la función objetivo respecto de una variable, luego utilice
cálculo diferencial).

4. Amy, Jim, John y Kelly están en la ribera de un río y desean cruzar a la ribera opuesta en
una canoa, la cual sólo puede llevar dos personas a la vez. Como Amy es la más atlética,
puede cruzar el río remando en 1 minuto. Jim, John y Kelly lo harían en 2, 5 y 10 minutos,
respectivamente. Si dos personas están en la canoa, la persona más lenta determina el
tiempo de cruce. El objetivo es que las cuatro personas estén en la ribera opuesta en 
el menor tiempo posible.
(a) Identifique por los menos dos planes factibles para cruzar el río (recuerde que la

canoa es el único medio de transporte y que no puede viajar vacía).
(b) Defina el criterio para evaluar las alternativas.
*(c) ¿Cuál es el menor tiempo para llevar a las cuatro personas al otro lado del río?

*5. En un juego de béisbol, Jim es el lanzador y Joe es el bateador. Suponga que Jim puede
lanzar una bola rápida o una curva al azar. Si Joe predice correctamente una curva,
puede mantener un promedio de bateo de .500; de otra manera, si Jim lanza una curva y
Joe está preparado para una bola rápida, su promedio de bateo se mantiene por debajo
de .200. Por otra parte, si Joe predice correctamente una bola rápida, mantiene un
promedio de bateo de .300, de lo contrario su promedio es de sólo .100.
(a) Defina las alternativas para este caso.
(b) Determine la función objetivo para el problema, y describa en qué difiere de la 

optimización común (maximización o minimización) de un criterio.
6. Durante la construcción de una casa, se deben recortar seis viguetas de 24 pies cada 

una a la longitud correcta de 23 pies. La operación de recortar una vigueta implica la
siguiente secuencia:

1 Un asterisco antes del número señala problemas cuya solución aparece en el Apéndice B.

Operación Tiempo (segundos) 

1. Colocar la vigueta en caballetes de aserrar 15
2. Medir la longitud correcta (23 pies) 5
3. Marcar la línea de corte para la sierra circular 5
4. Recortar la vigueta a la longitud correcta 20
5. Apilar las viguetas recortadas en un área designada 20

Intervienen tres personas: Dos deben realizar al mismo tiempo las operaciones 1, 2 y 5, y
un cortador se ocupa de las operaciones 3 y 4. Hay dos pares de caballetes de aserrar
donde se colocan las viguetas sin recortar, y cada par puede manejar tres viguetas.
Sugiera un buen plan para recortar las seis viguetas.

7. Se construye una pirámide (bidimensional) en cuatro capas. La capa inferior se compone 
de los puntos (equidistantes) 1, 2, 3 y 4; la siguiente incluye los puntos 5, 6 y 7; la tercera
comprende los puntos 8 y 9, y la superior el punto 10. Lo que se quiere es invertir la
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pirámide (que la capa inferior incluya un punto y la superior cuatro) cambiando de lugar
los puntos.
(a) Identifique dos soluciones factibles.
(b) Determine el número mínimo de movimientos necesarios para invertir la pirámide.2

8. Cuenta con cuatro cadenas y cada una consta de tres eslabones sólidos. Tiene que hacer
un brazalete conectando las cuatro cadenas; romper un eslabón cuesta 2 centavos, y
volverlo a soldar 3 centavos.
(a) Identifique dos soluciones factibles y evalúelas.
(b) Determine el costo mínimo para hacer el brazalete.

9. Los cuadros de una tabla rectangular de 11 filas y 9 columnas están numerados en
secuencia del 1 al 99 con una recompensa monetaria oculta de entre 0 y 20 dólares,
asignada a cada cuadro. El juego consiste en que un jugador elige un cuadrado
seleccionando cualquier número de dos dígitos y luego restando al número seleccionado
la suma de sus dos dígitos. El jugador recibe entonces la recompensa asignada al cuadro
seleccionado. Sin importar cuántas veces se repita el juego, ¿qué valores monetarios
deben asignarse a los 99 cuadros para minimizar la recompensa de los jugadores? Para
hacer el juego interesante, asignar $0 a todos los cuadros no es una opción.

1.3 SOLUCIÓN DEL MODELO DE IO

En la investigación de operaciones no se cuenta con una técnica general única para re-
solver todos los modelos que puedan surgir en la práctica. En su lugar, el tipo y comple-
jidad del modelo matemático determina la naturaleza del método de solución. Por ejem-
plo, en la sección 1.2 la solución del problema de los boletos requiere una clasificación
simple de las alternativas, basada en el precio de la compra total, mientras que la solución
del problema del rectángulo utiliza cálculo diferencial para determinar el área máxima.

La técnica de IO más importante es la programación lineal. Está diseñada para
modelos con funciones objetivo y restricciones lineales. Otras técnicas incluyen la pro-
gramación entera (en la cual las variables asumen valores enteros), la programación
dinámica (en la cual el modelo original puede descomponerse en subproblemas más pe-
queños y manejables), la programación de red (en la cual el problema puede modelarse
como una red), y la programación no lineal (en la cual las funciones del modelo son no
lineales). Éstas son sólo algunas de las muchas herramientas de IO con que se cuenta.

Una peculiaridad de la mayoría de las técnicas de IO es que por lo general las so-
luciones no se obtienen en formas cerradas (como si fueran fórmulas), sino que más
bien se determinan mediante algoritmos. Un algoritmo proporciona reglas fijas de
cálculo que se aplican en forma repetitiva al problema, y cada repetición (llamada ite-
ración) acerca la solución a lo óptimo. Como los cálculos asociados con cada iteración
suelen ser tediosos y voluminosos, es recomendable que estos algoritmos se ejecuten
con la computadora.

Algunos modelos matemáticos pueden ser tan complejos que es imposible resol-
verlos con cualquiera de los algoritmos de optimización disponibles. En esos casos quizá
sea necesario abandonar la búsqueda de la solución óptima y simplemente buscar una
buena solución aplicando la heurística, y la metaheurística, o bien reglas empíricas.

2 Los problemas 7 y 8 se tomaron y compendiaron de Bruce Goldstein, Cognitive Psychology: Mind,
Research, and Everyday Experience, Wadsworth Publishing, 2005.
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1.4 MODELOS DE COLAS Y SIMULACIÓN

Las colas y la simulación estudian las líneas de espera. No son técnicas de optimiza-
ción; más bien determinan medidas de desempeño de las líneas de espera, como tiem-
po de espera promedio en la cola, tiempo de espera promedio para el servicio, y el uso
de las instalaciones de servicio.

Los modelos de colas utilizan modelos probabilísticos y estocásticos para analizar
líneas de espera, y la simulación estima las medidas de desempeño al imitar el compor-
tamiento del sistema real. De cierto modo, la simulación tiene ventajas para observar un
sistema real, ya que la diferencia principal entre las colas y la simulación es que los mo-
delos de colas son puramente matemáticos y, en consecuencia, están sujetos a hipótesis
específicas que limitan el alcance de su aplicación. La simulación, por otra parte, es fle-
xible y puede utilizarse para analizar prácticamente cualquier situación de colas.

El uso de la simulación no está exento de inconvenientes. El proceso de desarrollar
modelos de simulación es costoso, tanto en tiempo como en recursos; además la ejecu-
ción de los modelos de simulación suele ser lenta, aun con la computadora más rápida.

1.5 EL ARTE DEL MODELADO

Los modelos desarrollados en la sección 1.1 son representaciones exactas de situaciones
reales. Esto es raro en la IO, ya que la mayoría de las aplicaciones suelen implicar
diversos grados de aproximación. La figura 1.1 ilustra los niveles de abstracción que
caracterizan el desarrollo de un modelo de IO.Abstraemos de la situación real el mundo
real supuesto al concentrarnos en las variables dominantes que controlan el compor-
tamiento del sistema real. El modelo expresa de una manera razonable las funciones
matemáticas que representan el comportamiento del mundo real supuesto.

Para ilustrar los niveles de abstracción en el modelado, considere la Tyko
Manufacturing Company, donde se producen varios recipientes de plástico. Cuando se
emite una orden de producción al departamento de producción, las materias primas
necesarias se toman de las existencias de la compañía o se adquieren con proveedores

FIGURA 1.1

Niveles de abstracción en el desarrollo de un modelo

Modelo

Mundo real

Mundo real supuesto
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externos. Una vez que se completa un lote de producción, el departamento de ventas
se encarga de distribuir el producto a los clientes.

Una pregunta lógica al analizar la situación de Tyko es la determinación del ta-
maño de un lote de producción. ¿Cómo puede un modelo representar esta situación? 

Al examinar todo el sistema se ve que algunas variables pueden incidir directa-
mente en el nivel de producción, incluida la siguiente lista (parcial) clasificada por de-
partamentos.

1. Departamento de producción: Capacidad de producción expresada en función de
las horas de mano de obra y máquina disponibles, inventario en proceso y normas
de control de calidad.

2. Departamento de materiales: Existencias disponibles de materias primas, progra-
mas de entrega de proveedores externos y limitaciones de almacenamiento.

3. Departamento de ventas: Pronóstico de ventas, capacidad de las instalaciones de
distribución, eficacia de las campañas publicitarias y el efecto de la competencia.

Cada una de estas variables afecta el nivel de producción en Tyko. Sin embargo, es real-
mente difícil establecer relaciones funcionales explícitas entre ellas y el nivel de pro-
ducción.

Un primer nivel de abstracción requiere definir los límites del mundo real su-
puesto. Reflexionando un poco, podemos aproximar el sistema real por medio de dos
parámetros dominantes:

1. Tasa de producción.
2. Tasa de consumo.

La determinación de la tasa de producción implica variables como la capacidad de pro-
ducción, las normas de control de calidad y la disponibilidad de las materias primas.
Los datos de ventas determinan la tasa de consumo. En esencia, la simplificación a par-
tir del mundo real al mundo real supuesto se logra “concentrando” varios parámetros
del mundo real en un único parámetro del mundo real supuesto.

Ahora es más fácil abstraer un modelo desde el mundo real supuesto. Con las tasas
de producción y consumo se pueden establecer medidas de exceso o escasez de inventa-
rio. Entonces el modelo abstraído puede construirse para equilibrar los costos conflictivos
de exceso y escasez de inventario; es decir, para minimizar el costo total del inventario.

1.6 MÁS QUE SÓLO MATEMÁTICAS 

Debido a la naturaleza matemática de los modelos de IO, tendemos a pensar que un
estudio de investigación de operaciones siempre está enraizado en el análisis matemá-
tico. Aunque el modelado matemático es fundamental en la IO, primero se deben ex-
plorar métodos más sencillos. En algunos casos se puede obtener una solución de “sen-
tido común” mediante observaciones sencillas. En realidad, como invariablemente el
elemento humano afecta la mayoría de los problemas de decisión, un estudio de la psi-
cología de las personas puede ser clave para resolver el problema. A continuación se
presentan tres ejemplos que respaldan este argumento.
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1. Al atender quejas sobre la lentitud de los elevadores en un gran edificio de ofi-
cinas, el equipo de IO percibió la situación en principio como un problema de línea de
espera que podría requerir el uso del análisis matemático o la simulación de colas. Des-
pués de estudiar el comportamiento de las personas que se quejaron, el psicólogo del
equipo sugirió que se instalaran espejos de cuerpo completo a la entrada de los eleva-
dores. Como por milagro, las quejas desaparecieron, ya que las personas se mantenían
ocupadas observándose a sí mismas y a las demás mientras esperaban el elevador.

2. En un estudio de los mostradores de documentación en un gran aeropuerto
inglés, un equipo de consultores estadounidenses y canadienses utilizó la teoría de
colas para investigar y analizar la situación. Una parte de la solución recomendaba uti-
lizar letreros bien colocados que urgieran a los pasajeros cuya salida era en 20 minutos
a que avanzaran al inicio de la cola y solicitaran el servicio de inmediato. La solución
no tuvo éxito porque los pasajeros, en su mayoría británicos, estaban “condicionados a
un comportamiento muy estricto en las colas” y, por consiguiente, se rehusaban a ade-
lantarse a otros que esperaban en la cola.

3. En una fundidora de acero en India, primero se producen lingotes a partir del
mineral de hierro, los cuales se utilizan después en la fabricación de varillas y vigas de
acero. El gerente notó una gran demora entre la producción de los lingotes y su trans-
ferencia a la siguiente fase de fabricación (donde se elaboraban los productos finales).
Idealmente, para reducir el costo de recalentamiento la fabricación debía comenzar en
cuanto los lingotes salieran del horno. Al principio el problema se percibió como una
situación de equilibrio de la línea de producción, el cual podría resolverse reduciendo
la producción de lingotes o incrementando la capacidad del proceso de fabricación. El
equipo de IO utilizó tablas sencillas para registrar la producción de los hornos durante
los tres turnos del día. Se descubrió que aun cuando el tercer turno comenzaba a las
11:00 P.M., la mayoría de los lingotes se producían entre las 2:00 y las 7:00 A.M. Una in-
vestigación más a fondo reveló que los operadores del turno preferían descansar más
al principio del turno y luego compensar durante la madrugada la producción perdida.
El problema se resolvió “nivelando” la producción de los lingotes a lo largo del turno.

De estos ejemplos se pueden sacar tres conclusiones:

1. Antes de aventurarse en un complicado modelado matemático, el equipo de
IO debe explorar la posibilidad de utilizar ideas “agresivas” para resolver la situación.
La solución del problema de los elevadores con la instalación de espejos se basó en la
psicología humana más que en el modelado matemático. También es más sencilla y
menos costosa que cualquier recomendación que un modelo matemático pudiera
haber producido. Quizás esta sea la razón de que los equipos de investigación de ope-
raciones suelan recurrir a los conocimientos de personas “externas” que se desem-
peñan en campos no matemáticos (el psicológico en el caso del problema de los eleva-
dores). Este punto fue aceptado y ejecutado por el primer equipo de IO en Inglaterra
durante la Segunda Guerra Mundial.

2. Las soluciones se originan en las personas y no en la tecnología. Cualquier so-
lución que no tome en cuenta el comportamiento humano probablemente falle. Aun
cuando la solución matemática del problema del aeropuerto británico pudo haber sido
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razonable, el hecho de que el equipo consultor no se percatara de las diferencias cultu-
rales entre los Estados Unidos e Inglaterra (los estadounidenses y los canadienses tien-
den a ser menos formales) dio por resultado una recomendación que no se podía
poner en práctica.

3. Un estudio de IO no debe iniciar con el prejuicio de utilizar una herramienta
matemática específica antes de que se justifique su uso. Por ejemplo, como la progra-
mación lineal es una técnica exitosa, existe la tendencia de utilizarla para modelar
“cualquier” situación. Esa forma de proceder suele conducir a un modelo matemático
del todo alejado de la situación real. Por lo tanto, es imperativo que se analicen prime-
ro los datos disponibles aplicando las técnicas más simples siempre que sea posible
(por ejemplo, promedios, gráficas e histogramas), para determinar el origen del proble-
ma. Una vez que se define el problema, puede decidirse cuál será la herramienta más
apropiada para la solución.3 En el problema de la fundidora de acero, todo lo que se
necesitaba para aclarar la situación de la producción de lingotes era la elaboración de
tablas sencillas.

1.7 FASES DE UN ESTUDIO DE IO

Los estudios de investigación de operaciones se basan en la labor de equipo, donde los
analistas de IO y el cliente trabajan codo con codo. Los conocimientos de modelado de
los analistas de IO se deben complementar con la experiencia y cooperación del clien-
te para quien realizan el estudio.

Como herramienta de toma de decisiones, la IO es tanto una ciencia como un
arte. Es una ciencia por las técnicas matemáticas que incorpora, y un arte porque el
éxito de las fases que conducen a la solución del modelo matemático depende en gran
medida de la creatividad y experiencia del equipo de IO. Willemain (1994) manifiesta
que “una práctica [de IO] eficaz requiere más que competencia analítica. También re-
quiere, entre otros atributos, juicio técnico (es decir, cuándo y cómo utilizar una técni-
ca dada), así como habilidades de comunicación y supervivencia organizacional”.

Es difícil prescribir cursos de acción específicos (semejantes a los que indica la
teoría precisa de la mayoría de los modelos matemáticos) para estos factores intangi-
bles. Sin embargo, podemos ofrecer lineamientos generales para la implementación de
la IO en la práctica.

Para implementar la IO en la práctica, las fases principales son:

1. Definición del problema.
2. Construcción del modelo.
3. Solución del modelo.
4. Validación del modelo.
5. Implementación de la solución.

3 Decidir sobre un modelo matemático específico antes de justificar su uso es como “poner la carreta ade-
lante del caballo”, y me recuerda la historia de un viajero aéreo frecuente, paranoico en cuanto a la po-
sibilidad de una bomba terrorista a bordo del avión. Calculó la probabilidad de que semejante desgracia
pudiera ocurrir, y aunque resultó muy pequeña no bastó para calmar su angustia. Desde entonces, siempre
llevaba una bomba en su portafolio porque, según sus cálculos, ¡la probabilidad de que hubiera dos bom-
bas a bordo era prácticamente cero!
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La fase 3, que se ocupa de la solución del modelo, es la mejor definida y por lo general la
más fácil de implementar en un estudio de IO,porque maneja principalmente modelos ma-
temáticos precisos. La implementación de las fases restantes es más un arte que una teoría.

La definición del problema implica definir el alcance del problema investigado.
Esta función debe ser realizada por todo el equipo de IO. El objetivo es identificar tres
elementos principales del problema de decisión: (1) descripción de las alternativas de
decisión; (2) determinación del objetivo del estudio, y (3) especificación de las limita-
ciones bajo las cuales funciona el sistema modelado.

La construcción del modelo implica un intento de transformar la definición del pro-
blema en relaciones matemáticas. Si el modelo resultante se ajusta a uno de los modelos
matemáticos estándar, como la programación lineal, se suele obtener una solución utili-
zando los algoritmos disponibles. Por otra parte, si las relaciones matemáticas son dema-
siado complejas como para permitir la determinación de una solución analítica, el equipo
de IO puede optar por simplificar el modelo y utilizar un método heurístico, o bien consi-
derar la simulación, si es lo apropiado. En algunos casos, una simulación matemática
puede combinarse con modelos heurísticos para resolver el problema de decisión, como
lo demuestran los análisis de casos del capítulo 26, que se encuentra en el sitio web.

La solución del modelo es por mucho la más sencilla de todas las fases de IO por-
que implica el uso de algoritmos de optimización bien definidos. Un aspecto importan-
te de la fase de solución del modelo es el análisis de sensibilidad. Tiene que ver con la
obtención de información adicional sobre el comportamiento de la solución óptima
cuando el modelo experimenta algunos cambios de parámetros. El análisis de sensibi-
lidad es particularmente necesario cuando no se pueden estimar con precisión los
parámetros del modelo. En estos casos es importante estudiar el comportamiento de la
solución óptima en el entorno de los parámetros estimados.

La validez del modelo comprueba si el modelo propuesto hace en realidad lo que
dice que hace, es decir, ¿predice adecuadamente el comportamiento del sistema que se
estudia? Al principio, el equipo de IO debe estar convencido de que el resultado del mo-
delo no contenga “sorpresas”. En otras palabras, ¿tiene sentido la solución? ¿Los resul-
tados sin intuitivamente aceptables? Del lado formal, un método común de comprobar
la validez de un modelo es comparar su resultado con resultados históricos. El modelo es
válido si, en condiciones de datos de entrada iguales, reproduce de forma razonable el
desempeño pasado. Sin embargo, no suele haber seguridad de que el desempeño futuro
continuará copiando el comportamiento pasado. Además, como el modelo se basa en el
examen cuidadoso de datos pasados, la comparación propuesta casi siempre es favora-
ble. Si el modelo propuesto representara un sistema nuevo (inexistente), no habría datos
históricos disponibles. En esos casos podemos utilizar la simulación como una herra-
mienta independiente para comprobar el resultado del modelo matemático.

La implementación de la solución de un modelo validado implica la transforma-
ción de los resultados en instrucciones de operación comprensibles que se emitirán a
las personas que administrarán el sistema recomendado. La responsabilidad de esta
tarea recae principalmente en el equipo de IO.

1.8 ACERCA DE ESTE LIBRO

Morris (1967) afirma que “la enseñanza de los modelos no es lo mismo que la en-
señanza del modelado”. Tuve en cuenta esta importante aseveración durante la prepa-
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ración de la novena edición, e hice todo el esfuerzo posible por presentar el arte del
modelado en la IO con la inclusión de modelos realistas en el libro. Dada la importan-
cia de los cálculos en la IO, el libro analiza la forma en que los algoritmos teóricos se
acomodan en los códigos de computadoras comerciales (vea la sección 3.7). También
presenta herramientas extensivas para realizar los cálculos, que van desde TORA
orientado al aspecto tutorial, hasta los paquetes comerciales Excel, Excel Solver y
AMPL.

La investigación de operaciones es tanto un arte como una ciencia; el arte de
describir y modelar el problema, y la ciencia de resolver el modelo utilizando algorit-
mos matemáticos precisos. Un primer curso en la materia debe permitir al estudiante
apreciar la importancia de ambas áreas. Esto proporcionará a los usuarios de IO la
clase de confianza que normalmente no se obtendría si la capacitación se enfocara sólo
en el aspecto artístico de la IO, con el pretexto que las computadoras pueden liberar al
usuario de la necesidad de entender por qué funcionan los algoritmos de solución.

Las habilidades de modelado y cálculo pueden mejorarse por el estudio de los
casos prácticos editados. Para ayudarle en este sentido, el capítulo 26 en el sitio web
incluye 15 casos totalmente desarrollados y analizados que comprenden la mayor
parte de los modelos de IO que se presentan en este libro. También se incluyen 50
casos basados en aplicaciones de la vida real en el apéndice E en el sitio web. Se dispo-
ne de más estudios de casos en periódicos y publicaciones. En particular, Interfaces
(publicado por INFORMS) es una rica fuente de diversas aplicaciones de IO.
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2.1 MODELO DE PL CON DOS VARIABLES

En esta sección analizaremos la solución gráfica de una programación lineal (PL) con
dos variables. Aun cuando en la práctica difícilmente ocurren problemas de dos varia-
bles, el tratamiento proporciona fundamentos concretos para el desarrollo del algorit-
mo simplex general que se presenta en el capítulo 3.

Ejemplo 2.1-1 (La compañía Reddy Mikks)

Reddy Mikks produce pinturas para interiores y exteriores con dos materias primas, M1 y M2.
La tabla siguiente proporciona los datos básicos del problema.

Toneladas de materia prima por tonelada de Disponibilidad 
diaria máxima

(toneladas)Pintura para exteriores Pintura para interiores

Materia prima, M1 6 4 24
Materia prima, M2 1 2 6

Utilidad por tonelada ($1000) 5 4

Aplicación de la vida real. Frontier Airlines adquiere combustible de una
manera económica

La carga de combustible de un avión puede hacerse en cualquiera de las escalas a lo
largo de una ruta de vuelo. El precio del combustible varía entre escalas y se pueden ob-
tener ahorros potenciales cargando más combustible en un lugar más económico para
usarlo en tramos de vuelo subsecuentes. La desventaja es que el peso adicional del com-
bustible cargado hará que se consuma más gasolina. La programación lineal (PL) y la
heurística se utilizan para determinar la cantidad óptima de carga de combustible que
equilibre el costo del consumo excesivo frente a  los ahorros en el costo del combustible.
El estudio, realizado en 1981, arrojó ahorros netos de aproximadamente $350,000 al
año. El caso 1 en el capítulo 26 en el sitio web, proporciona los detalles del estudio. Es
interesante que ahora, con el reciente aumento del costo del combustible, muchas ae-
rolíneas estén utilizando software para adquirir combustible con base en la PL.

CAPÍTULO 2

Modelado con programación lineal
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Una encuesta de mercado indica que la demanda diaria de pintura para interiores no puede
exceder la de pintura para exteriores en más de una tonelada. Asimismo, que la demanda diaria
máxima de pintura para interiores es de dos toneladas.

Reddy Mikks se propone determinar la (mejor) combinación óptima de pinturas para inte-
riores y exteriores que maximice la utilidad diaria total.

Todos los modelos de IO, incluido el de PL, constan de tres componentes básicos.

1. Las variables de decisión que pretendemos determinar.

2. El objetivo (la meta) que necesitamos optimizar (maximizar o minimizar).

3. Las restricciones que la solución debe satisfacer.

La definición correcta de las variables de decisión es un primer paso esencial en el desarrollo del
modelo. Una vez hecha, la tarea de construir la función objetivo y las restricciones es más directa.

Para el problema de Reddy Mikks necesitamos determinar las cantidades diarias que se
deben producir de pinturas para exteriores e interiores. Así, las variables del modelo se definen
como sigue:

x1 � Toneladas producidas diariamente de pintura para exteriores

x2 � Toneladas producidas diariamente de pintura para interiores

La meta de Reddy Mikks es maximizar (es decir, incrementar lo más posible) la utilidad
diaria de ambas pinturas. Los dos componentes de la utilidad diaria total se expresan en función
de las variables x1 y x2 como sigue:

Utilidad de la pintura para exteriores � 5x1 (en miles de dólares)

Utilidad de la pintura para interiores � 4x2 (en miles de dólares)

Si z representa la utilidad diaria total (en miles de dólares), el objetivo (o meta) de Reddy Mikks
se expresa como sigue

Maximizar z � 5x1 � 4x2

A continuación definimos las restricciones que limitan el consumo de las materias primas y
la demanda del producto. Las restricciones en las materias primas se expresan verbalmente como

El consumo diario de la materia prima M1 es de 6 toneladas por tonelada de pintura para exte-
riores, y de 4 toneladas por tonelada de pintura para interiores. Por lo tanto

Consumo de materia prima M1 por ambas pinturas � 6x1 � 4x2 toneladas/día

Asimismo,

Consumo de materia prima M2 por ambas pinturas � 1x1 � 2x2 toneladas/día

Las disponibilidades diarias de las materias primas M1 y M2 son de 24 y 6 toneladas, respectiva-
mente. Así pues, las restricciones en las materias primas son 

6x1 � 4x2 # 24 (Materia prima M1) 

x1 � 2x2 # 6 (Materia prima M2) 

aConsumo de una materia
prima por ambas pinturas

b … aDisponibilidad máxima
de materia prima

b
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La primera restricción en la demanda del producto estipula que la producción diaria de pin-
tura para interiores no debe exceder a la de pintura para exteriores en más de 1 tonelada, lo cual
se traduce en 

x2 � x1 # 1 (Límite del mercado)

La segunda restricción limita la demanda diaria de pintura para interiores a 2 toneladas, es decir,

x2 # 2 (Límite de la demanda) 

Una restricción implícita (o “sobreentendida”) requiere que todas las variables, x1 y x2, asu-
man sólo valores positivos o cero. Las restricciones, expresadas como x1 $ 0 y x2 $ 0 se conocen
como restricciones de no negatividad.

El modelo completo de Reddy Mikks es 

Maximizar z � 5x1 � 4x2

sujeto a 

(1)
(2)
(3)
(4)
(5)

Todos los valores de x1 y x2 que satisfacen las cinco restricciones constituyen una solución fac-
tible. De lo contrario la solución es no factible. Por ejemplo, la solución x1 � 3 toneladas por día y
x2 � 1 tonelada por día es una solución factible porque no viola ninguna de las cinco restricciones.
Este resultado se confirma sustituyendo (x1 � 3, x2 � 1) en el lado izquierdo de cada restricción.
En la restricción (1) tenemos 6x1 � 4x2 � 6 � 3 � 4 � 1 � 22, la cual es menor que el lado derecho
de la restricción (� 24). Las restricciones 2 a 5 se comprueban de la misma manera (¡hágalo!). Por
otra parte, la solución x1 � 4 y x2 = 1, es no factible porque no satisface por lo menos una restric-
ción, por ejemplo la restricción (1): 6 � 4 � 4 �1 � 28, la cual es mayor que el lado derecho (� 24).

La meta del problema es determinar la solución óptima, es decir la mejor solución factible
que maximice la utilidad total z. Primero utilizamos el método gráfico (sección 2.2) para demos-
trar que el problema de Reddy Mikks tiene una cantidad infinita de soluciones factibles, una pro-
piedad compartida por todas las PL no triviales. Esto significa que el problema no puede ser re-
suelto por enumeración. En vez de eso, necesitamos un algoritmo que determine la solución
óptima en una cantidad finita de pasos. El método gráfico en la sección 2.2, y su generalización al-
gebraica en el capítulo 3, explican los detalles del algoritmo deseado.

Comentarios. El objetivo y la función de restricción en todas las PL deben ser lineales.
Adicionalmente, todos los parámetros (coeficientes de las funciones objetivo y de restricción)
del modelo se conocen con certeza.

CONJUNTO DE PROBLEMAS 2.1A

1. Para el modelo de Reddy Mikks, defina las siguientes restricciones y expréselas con un
lado izquierdo lineal y un lado derecho constante:
*(a) La demanda diaria de pintura para interiores supera la de pintura para exteriores

por al menos una tonelada.
(b) El consumo diario de materia prima M2 en toneladas es cuando mucho de 6 y por

lo menos de 3.

x1, x2 Ú    0
x2 …    2

- x1 + x2 …    1
x1 + 2x2 …     6

6x1 + 4x2 … 24
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*(c) La demanda de pintura para interiores no puede ser menor que la demanda de pin-
tura para exteriores.

(d) La cantidad mínima de pintura que debe producirse tanto para interiores como
para exteriores es de 3 toneladas.

*(e) La proporción de pintura para interiores respecto de la producción total de pintura
para interiores y exteriores no debe exceder de 5.

2. Determine la mejor solución factible entre las siguientes soluciones (factibles y no facti-
bles) del modelo de Reddy Mikks:
(a) , .
(b) , .
(c) , .
(d) , .
(e) , .

*3. Para la solución factible x1 � 2, x2 � 2 del modelo de Reddy Mikks, determine las canti-
dades no usadas de las materias primas M1 y M2.

4. Suponga que Reddy Mikks vende su pintura para exteriores a un solo mayorista con un
descuento. La utilidad por tonelada es de $5000 si el contratista compra no más de 2 to-
neladas diarias, y de $4500 en los demás casos. Exprese matemáticamente la función 
objetivo. ¿Es lineal la función resultante?

2.2 SOLUCIÓN GRÁFICA DE LA PL1

La solución gráfica incluye dos pasos:

1. Determinar el espacio de soluciones factibles.
2. Determinar la solución óptima de entre todos los puntos localizados en el espa-

cio de soluciones.

A continuación se muestran dos ejemplos para mostrar cómo se manejan las fun-
ciones objetivo de maximización y minimización.

2.2.1 Solución de un modelo de maximización 

Ejemplo 2.2-1

Este ejemplo resuelve el modelo de Reddy Mikks del ejemplo 2.1-1.

Paso 1. Determinación del espacio de soluciones factibles.
Antes que nada, considere las restricciones de no negatividad x1 $ 0 y x2 $ 0. En la fi-
gura 2.1, el eje horizontal x1 y el eje vertical x2 representan las variables de pintura
para exteriores e interiores, respectivamente. Así pues, las restricciones de no negativi-
dad limitan las variables al primer cuadrante (sobre el eje x1 y a la derecha del eje x2).

x2 =  -1x1 =  2
x2 =  1x1 =  2
x2 =  1.5x1 =  3
x2 =  2x1 =  2
x2 =  4x1 =  1

1 La solución gráfica de una PL con dos variables, aunque difícilmente es útil en la práctica, proporciona
ideas que son cruciales para entender el método simplex algebraico general que se presenta en el capítulo 3.
El módulo gráfico interactivo TORA es en especial útil para experimentar con el método gráfico. La sección
2.3 presenta los paquetes comerciales Excel Solver y AMPL. Su uso se demuestra mediante diversas aplica-
ciones de PL prácticas en la sección 2.4.
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Para tener en cuenta las otras cuatro restricciones, primero sustituya cada desi-
gualdad con una ecuación, y luego trace la línea recta resultante localizando dos puntos
diferentes. Por ejemplo, después de sustituir 6x1 � 4x2 # 24 con la línea recta 6x1 � 4x2

� 24, se determinan dos puntos distintos haciendo x1 � 0 para obtener

y luego que x2 � 0 para obtener De este modo, la línea 6x1 � 4x2 � 24

que pasa por los puntos (0,6) y (4,0) es la línea (1) que se muestra en la figura 2.1.
A continuación consideramos el efecto de la desigualdad que divide el plano 

(x1, x2) en dos semiplanos, uno a cada lado de la línea trazada. Sólo una de estas dos
mitades satisface la desigualdad. Para determinar el lado correcto seleccionamos
(0,0) como punto de referencia. Si (0,0) satisface la desigualdad, entonces el lado en
que está es el semiplano factible; de lo contrario, es el otro lado. El uso del punto de
referencia (0,0) se ilustra con la restricción 6x1 � 4x2 # 24. Como 6 3 0 � 4 3 0 � 0
es menor que 24, el semiplano que representa la desigualdad (1) incluye el origen (lo
que se indica con la dirección de la flecha en la figura 2.1).

Conviene seleccionar (0,0) por computadora como punto de referencia porque
siempre da un valor de cero al lado izquierdo de la restricción. Sin embargo, si la
línea pasa por el origen, en ese caso debe usarse como punto de referencia cualquier
otro punto que no esté sobre la línea.

La aplicación del procedimiento de punto de referencia a todas las restricciones
del modelo produce las restricciones que se muestran en la figura 2.1 (¡compruébe-
lo!). El espacio de soluciones factibles es el área en el primer cuadrante que satisface
todas las restricciones al mismo tiempo. En la figura 2.1 todos los puntos en o sobre
el límite del área ABCDEF definen el espacio de soluciones factibles. Todos los pun-
tos fuera de esta área son no factibles.

x1 =  24
6  = 4.

x2 =  24
4  = 6

FIGURA 2.1

Espacio factible del modelo de Reddy Mikks
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1

16x1 � 4x2 � 24

Restricciones:

2x1 � 2x2 �   6
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6

6

5

4

3

2

1

0 1 2 3

D

Espacio
de soluciones

E

F

A B

C

4 5 6
x1

x2



18 Capítulo 2 Modelado con programación lineal

Momento de TORA.

El módulo de PL gráfico TORA controlado por menú es útil para reforzar su com-
prensión de cómo se grafican las restricciones de PL. Seleccione 
en el . Después de ingresar el modelo, en el menú 
seleccione . En la pantalla de resultados podrá interactuar con el
trazo de las restricciones, una a la vez, para ver cómo afecta cada restricción el espa-
cio de soluciones.

GraphicalQSolve
SOLVE/MODIFYMAIN menu

Linear Programming

Paso 2. Determinación de la solución óptima:
La cantidad de puntos de solución en el espacio factible ABCDEF de la figura 2.1 es
infinita. En consecuencia, se requiere un procedimiento sistemático para determinar
la solución óptima.

En primer lugar, la dirección en la cual se incrementa la función de utilidad z � 5x1
� 4x2 (recordemos que estamos maximizando z) se determina asignando valores cre-
cientes arbitrarios a z. Por ejemplo, la utilización de z � 10 y z � 15 (arbitrarios)
equivaldría a trazar las dos líneas 5x1 � 4x2 � 10 y 5x1 � 4x2 � 15, que identifican la
dirección en la cual se incrementa z, como se muestra en la figura 2.2. La solución
óptima ocurre en C, el punto en el espacio de soluciones más allá del cual cualquier
incremento adicional producirá la solución no factible.

Los valores de x1 y x2 asociados con el punto óptimo C se determinan resolvien-
do las ecuaciones asociadas con las líneas (1) y (2):

x1 + 2x2 = 6

6x1 + 4x2 = 24

FIGURA 2.2

Solución óptima del modelo de Reddy Mikks

1

2

3

2

1

0 1 2 3 4
x1

x2
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F

(Maximizar z � 5x1 � 4x2)

z in
cre

men-

tándose

z �
 10

z �
 15

z �
 21

x1 � 2x2 � 6

x1 � 3 toneladasÓptima:
x2 � 1.5 toneladas

z � $21,000

A B

C

6x1 � 4x2 � 24
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La solución es x1 � 3 y x2 � 1.5 con z � 5 3 3 � 4 3 1.5 � 21, que demanda una
combinación de producto diaria de 3 toneladas de pintura para exteriores, y 1.5 tone-
ladas de pintura para interiores. La utilidad diaria asociada es de $21,000.

Una característica importante de la solución de PL óptima es que siempre está
asociada con un punto de esquina del espacio de soluciones (donde, en dos dimensio-
nes, se intersecan dos líneas). Esto es cierto incluso si la función objetivo es paralela a
una restricción. Por ejemplo, si la función objetivo es z � 6x1 � 4x2, la cual es parale-
la a la restricción 1, siempre podemos decir que la solución óptima ocurre en el
punto de esquina B o C. En realidad, cualquier punto sobre el segmento de línea BC
será una solución óptima alternativa (vea también el ejemplo 3.5-2); sin embargo, la
observación importante en este caso es que los puntos de esquina B y C definen to-
talmente el segmento de línea BC.

Momento TORA.

Puede interactuar con TORA para ver que la solución óptima siempre está asociada
con un punto de esquina. En la pantalla de resultados puede hacer clic en

para modificar los coeficientes de la función objetivo y 
resolver de nuevo gráficamente el problema. Puede utilizar las siguientes funciones
objetivo para comprobar la idea propuesta.

(a)
(b)
(c)
(d)
(e)
(f)

La notable observación de que la solución óptima de PL siempre está asociada con un punto de
esquina indica que su búsqueda puede limitarse a una cantidad finita de puntos (y no a una infi-
nita). De hecho, en este pequeño ejemplo la solución óptima se determina tan sólo con enume-
rar todos los puntos de esquina, como se muestra en la tabla siguiente:

z = -x1 - x2

z = -2x1 + x2

z = -x1 + 2x2

z = x1 + 3x2

z = 5x1 + 4x2

z =  5x1 + x2

View/Modify Input Data

Punto de esquina ( , )x2x1 z

A (0, 0) 0
B (4, 0) 20
C (3, 1.5) 21 (ÓPTIMA)
D (2, 2) 18
E (1, 2) 13
F (0, 1) 4

A medida que aumenta la cantidad de restricciones y variables, los puntos de esquina tam-
bién lo hacen, y el procedimiento de enumeración propuesto se hace computacionalmente
impráctico. No obstante, la observación con respecto al rol de los puntos de esquina al identificar
la solución óptima es clave para el desarrollo del algoritmo algebraico general, llamado método
simplex, que se estudiará en el capítulo 3.
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CONJUNTO DE PROBLEMAS 2.2A

1. Determine el espacio factible para cada una de las siguientes restricciones independien-
tes, dado que x1, x2 $ 0.

*(a)
(b)
(c)
(d)

*(e)
2. Identifique la dirección de incremento de z en cada uno de los casos siguientes:

*(a)
(b)
(c)

*(d)
3. Determine el espacio de soluciones y la solución óptima del modelo de Reddy Mikks

para cada uno de los siguientes cambios independientes:
(a) La demanda diaria máxima de pintura para exteriores es de 2.5 toneladas.
(b) La demanda diaria de pintura para interiores es por lo menos de 2 toneladas.
(c) La demanda diaria de pintura para interiores es exactamente 1 tonelada mayor que

la de pintura para exteriores.
(d) La disponibilidad diaria de la materia prima M1 es por lo menos de 24 toneladas.
(e) La disponibilidad diaria de la materia prima M1 es por lo menos de 24 toneladas, y

la demanda diaria de pintura para interiores es mayor que la de pintura para exte-
riores en por lo menos 1 tonelada.

4. Una compañía que funciona 10 horas al día fabrica dos productos en tres procesos se-
cuenciales. La siguiente tabla resume los datos del problema:

Maximizar z = -3x1 + x2

Maximizar z = -x1 + 2x2

Maximizar z = -5x1 - 6x2

Maximizar z = x1 - x2

- x1 + x2 Ú 0
x1 - x2 … 0
2x1 - 3x2 … 12
x1 - 2x2 Ú 5
- 3x1 + x2 Ú 6

Minutos por unidad 
Utilidad

Producto Proceso 1 Proceso 2 Proceso 3 unitaria 

1 10 6 8 $2
2 5 20 10 $3

Determine la combinación óptima de los dos productos.
*5. Una compañía fabrica dos productos, A y B. El volumen de ventas de A es por lo menos

80% de las ventas totales de A y B. Sin embargo, la compañía no puede vender más de
100 unidades de A por día. Ambos productos utilizan una materia prima, cuya disponibi-
lidad diaria máxima es de 240 lb. Las tasas de consumo de la materia prima son de 2 lb
por unidad de A y de 4 lb por unidad de B. Las utilidades de A y B son de $20 y $50, res-
pectivamente. Determine la combinación óptima de productos para la compañía.

6. Alumco fabrica láminas y varillas de aluminio. La capacidad de producción máxima se
estima en 800 láminas o 600 varillas por día. La demanda diaria es de 550 láminas y 580
varillas. La utilidad por tonelada es de $40 por lámina y de $35 por varilla. Determine la
combinación de producción diaria óptima.

*7. Una persona desea invertir $5000 durante el próximo año en dos tipos de inversión. La
inversión A reditúa 5% y la inversión B 8%. La investigación de mercado recomienda
una asignación de por lo menos 25% en A y cuando mucho 50% en B. Además, la inver-
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sión A debe ser por lo menos de la mitad de la inversión B. ¿Cómo deben asignarse los
fondos a las dos inversiones?

8. La división de educación continua del Colegio Comunitario Ozark ofrece un total de 30 cur-
sos cada semestre. Los cursos ofrecidos suelen ser de dos tipos: prácticos y de humanidades.
Para satisfacer las demandas de la comunidad, se deben ofrecer por lo menos 10 cursos de
cada tipo cada semestre. La división estima que los ingresos por el ofrecimiento de cursos
prácticos y humanistas son aproximadamente de $1500 y $1000 por curso, respectivamente.
(a) Idee una oferta de cursos óptima para el colegio.
(b) Demuestre que el costo por curso adicional es de $1500, el cual es igual al ingreso

por curso práctico. ¿Qué significa este resultado en función de la oferta de cursos
adicionales?

9. ChemLabs utiliza las materias primas I y II para producir dos soluciones de limpieza
doméstica, A y B. Las disponibilidades diarias de las materias primas I y II son de 150 y
145 unidades, respectivamente. Una unidad de solución A consume .5 unidades de la ma-
teria prima I, y 0.6 unidades de la materia prima II, en tanto que una unidad de la solu-
ción B consume 0.5 unidades de la materia prima I, y .4 unidades de la materia prima II.
Las utilidades por unidad de las soluciones A y B son de $8 y $10, respectivamente. La
demanda diaria de la solución A es de entre 30 y 150 unidades, y la de la solución B va de
40 a 200 unidades. Determine las cantidades de producción óptimas de A y B.

10. La tienda de abarrotes Ma-and-Pa tiene un espacio de anaqueles limitado y debe utilizar-
lo con eficacia para incrementar las utilidades. Dos marcas de cereal, Grano y Wheatie,
compiten por un total de espacio de 60 pies2en anaqueles. Una caja de Grano ocupa 
.2 pies2, y una caja de Wheatie requiere .4 pies2. Las demandas diarias máximas de Grano
y Wheatie son de 200 y 120 cajas, respectivamente. Una caja de Grano reditúa una utili-
dad neta de $1.00 y la de una de Wheatie es de $1.35. Ma-and-Pa considera que como la
utilidad neta de Wheatie es 35% mayor que la de Grano, a Wheatie se le debe asignar
35% más espacio que a Grano, lo que equivale a asignar aproximadamente 57% a
Wheatie y 43% a Grano. ¿Usted qué piensa?

11. Jack es un estudiante novato en la Universidad de Ulern. Se da cuenta de que “sólo traba-
jo y nada de diversión me hacen ser un chico aburrido”. Jack desea distribuir su tiempo
disponible de aproximadamente 10 horas al día entre las tareas y la diversión. Estima que
divertirse es dos veces más entretenido que hacer tareas. Pero también desea estudiar por
lo menos el mismo tiempo que le quiere dedicar a la diversión. Sin embargo, Jack com-
prende que para cumplir con sus tareas no puede divertirse más de 4 horas al día. ¿Cómo
debe distribuir su tiempo para maximizar su placer tanto de trabajar como de divertirse?

12. Wild West produce dos tipos de sombreros tejanos. El sombrero tipo 1 requiere el doble
de mano de obra que el tipo 2. Si toda la mano de obra disponible se dedica sólo al tipo
2, la compañía puede producir un total de 400 sombreros tipo 2 al día. Los límites de
mercado respectivos para el tipo 1 y el tipo 2 son de 150 y 200 sombreros por día, respec-
tivamente. La utilidad es de $8 por sombrero tipo 1, y de $5 por sombrero tipo 2.
Determine la cantidad de sombreros de cada tipo que maximice la utilidad.

13. Show & Sell puede publicitar sus productos en la radio y la televisión locales. El presu-
puesto para publicidad se limita a $10,000 al mes. Cada minuto de publicidad en radio
cuesta $15 y cada minuto de comerciales en televisión $300. Show & Sell quiere anunciar-
se en radio por lo menos dos veces más que en televisión. Por el momento, no es práctico
utilizar más de 400 minutos de publicidad por radio al mes. Por experiencias pasadas, se
estima que la publicidad por televisión es 25 veces más efectiva que la de la radio.
Determine la asignación óptima del presupuesto a publicidad por radio y televisión.

*14. Wyoming Electric Coop posee una planta generadora de energía de turbina de vapor.
Como en Wyoming abundan los depósitos de carbón, la planta genera su vapor con
carbón. Esto, sin embargo, puede conducir a emisiones que no satisfagan las normas de 
la Agencia de Protección Ambiental (EPA, por sus siglas en inglés). Las normas de la
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Agencia de Protección Ambiental limitan la descarga de bióxido de azufre a 2000 partes
por millón por tonelada de carbón quemado, y la descarga de humo por las chimeneas de
la planta a 20 lb por hora. La Coop recibe dos tipos de carbón pulverizado, C1 y C2, para
usarlos en la planta de vapor. Los dos tipos se suelen mezclar antes de la combustión. Por
simplicidad, se supone que la cantidad de azufre contaminante descargado (en partes
por millón) es un promedio ponderado de la proporción de cada tipo utilizado en la
mezcla. Los siguientes datos se basan en el consumo de 1 tonelada por hora de cada uno
de los dos tipos de carbón.

Tipo de carbón
Descarga de azufre 
en partes por millón

Descarga de humo 
en lb por hora

Vapor generado 
en lb por hora

C1 1800 2.1 12,000
C2 2100 .9 9000

(a) Determine la proporción óptima para mezclar los dos tipos de carbón.
(b) Determine el efecto de rebajar el límite de descarga de humo en una libra sobre la

cantidad de vapor generado por hora.
15. Top Toys planea una nueva campaña de publicidad por radio y TV. Un comercial de

radio cuesta $300 y uno de TV $2000. Se asigna un presupuesto total de $20,000 a la cam-
paña. Sin embargo, para asegurarse de que cada medio tendrá por lo menos un comercial
de radio y uno de TV, lo máximo que puede asignarse a uno u otro medio no puede ser
mayor que el 80% del presupuesto total. Se estima que el primer comercial de radio lle-
gará a 5000 personas, y que cada comercial adicional llegará sólo a 2000 personas nuevas.
En el caso de la televisión, el primer anuncio llegará a 4500 personas y cada anuncio adi-
cional a 3000. ¿Cómo debe distribuirse la suma presupuestada entre la radio y la TV? 

16. Burroughs Garment Company fabrica camisas para caballero y blusas de dama para las
tiendas de descuento Wallmart, corporación que aceptará toda la producción surtida por
Burroughs. El proceso de producción incluye el corte, la costura y el empaque. Burroughs
emplea 25 trabajadores en el departamento de corte, 35 en el de costura, y 5 en empaque.
La fábrica trabaja un turno de 8 horas, 5 días a la semana. La siguiente tabla muestra los
requerimientos de tiempo y utilidades por unidad para las dos prendas:

Minutos por unidad 
Utilidad

Prenda Corte Costura Empaque unitaria ($)

Camisas 20 70 12 8
Blusas 60 60 4 12

Determine el programa de producción semanal óptimo para Burroughs.
17. Una compañía mueblera fabrica escritorios y sillas. El departamento de aserrado corta la

madera para ambos productos, la que luego se envía a los distintos departamentos de en-
samble. Los muebles ensamblados se envían para su acabado al departamento de pintu-
ra. La capacidad diaria del departamento de aserrado es de 200 sillas o de 80 escritorios.
El departamento de ensamble de sillas puede producir 120 sillas diarias, y el de ensamble
de escritorios produce 60 escritorios. La capacidad del departamento de pintura es de 150
sillas, o 110 escritorios. Dado que la utilidad por sillas es de $50 y la de un escritorio es de
$100, determine la combinación de producción óptima para la compañía.



2.2 Solución gráfica de la PL 23

*18. Una línea de ensamble compuesta de tres estaciones consecutivas produce dos modelos
de radio: HiFi-1 y HiFi-2. La siguiente tabla muestra los tiempos de ensamble de las tres
estaciones de trabajo.

El mantenimiento diario de las estaciones 1, 2 y 3 consume 10, 14 y 12%, respectivamen-
te, de los 480 minutos máximos disponibles por cada estación por día. Determine la com-
binación de productos óptima que minimizará el tiempo ocioso (o no utilizado) en las
tres estaciones de trabajo.

19. Experimento con TORA. Ingrese la siguiente PL en TORA, y seleccione el modo de solu-
ción gráfica para que aparezca la pantalla gráfica de PL.

Minimizar z � 3x1 � 8x2

sujeto a

A continuación, en una hoja de papel trace a escala los ejes x1 y x2 para el problema
(también puede hacer clic en la opción Print Graph, en la parte superior derecha de la
ventana para obtener una hoja a escala lista para usarse). Ahora, trace a mano una res-
tricción en la hoja preparada y luego haga clic en la ventana izquierda de la pantalla para
verificar su respuesta. Repita la misma operación para cada restricción, y termine el pro-
cedimiento con una gráfica de la función objetivo. El proceso sugerido se diseñó para que
usted ponga a prueba y refuerce su entendimiento de la solución gráfica de la PL me-
diante una retroalimentación inmediata de TORA.

20. Experimento con TORA. Considere el siguiente modelo de PL:

Maximizar z � 5x1 � 4x2

sujeto a

En PL se dice que una restricción es redundante si su eliminación del modelo no modifica
el espacio de soluciones factibles. Use el medio gráfico de TORA para identificar las res-

x1, x2 Ú    0
x2 …    2

- x1 + x2 …    1
x1 + 2x2 …    6
x1 + x2 …    5

6x1 + 3x2 … 22.5
6x1 + 4x2 … 24

x1, x2 Ú   0
x2 Ú   9
x1 … 10

3x1 - x2 Ú   0
x1 + 2x2 … 30

2x1 - 3x2 …    0
x1 + x2 Ú    8

Minutos por unidad 

Estación de trabajo HiFi-1 HiFi-2

1 6 4
2 5 5
3 4 6
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tricciones redundantes, luego demuestre que su eliminación (basta con no graficarlas) no
afecta al espacio de soluciones ni a la solución óptima

21. Experimento con TORA. En el modelo de Reddy Mikks, utilice TORA para demostrar
que la eliminación de las restricciones de la materia prima (restricciones 1 y 2) produciría
un espacio de soluciones ilimitado. ¿Qué se puede decir en este caso acerca de la solución
óptima del modelo? 

22. Experimento con TORA. En el modelo de Reddy Mikks, suponga que se agrega la si-
guiente restricción al problema.

Utilice TORA para demostrar que el modelo resultante tiene restricciones conflictivas
que no se pueden satisfacer al mismo tiempo, y que por consiguiente no tiene una solu-

ción factible.

2.2.2 Solución de un modelo de minimización 

Ejemplo 2.2-2 (Problema de la dieta)

Ozark Farms consume diariamente un mínimo de 800 lb de un alimento especial, el cual es una
mezcla de maíz y soya con las siguientes composiciones:

 x2 Ú 3

Las necesidades dietéticas del alimento especial son un mínimo de 30% de proteína y un má-
ximo de 5% de fibra. El objetivo es determinar la mezcla diaria de alimento a un costo mínimo.

Las variables de decisión del modelo son 

x1 � libras de maíz en la mezcla diaria 

x2 � libras de soya en la mezcla diaria

El objetivo es minimizar el costo diario total (en dólares) de la mezcla de alimento, es decir,

Minimizar z � .3x1 � .9x2

Las restricciones representan la cantidad diaria de la mezcla y las necesidades dietéticas. Ozark
Farms requiere un mínimo de 800 lb de alimento al día, es decir,

La cantidad de proteína contenida en x1 libras de maíz y en x2 libras de soya es (.09x1 � .6x2) lb.
Esta cantidad debe ser al menos igual al 30% de la mezcla de alimentos total (x1 � x2) lb, es decir,

Asimismo, la necesidad de fibra de 5% máximo se representa como sigue

.02x1 + .06x2 … .05(x1 + x2)

.09x1 + .6x2 Ú .3(x1 + x2)

x1 + x2 Ú 800

lb por lb de forraje

Forraje Proteína Fibra Costo ($/lb)

Maíz .09 02 .30
Soya .60 06 .90
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Las restricciones se simplifican cambiando los términos en x1 y x2 al lado izquierdo de cada
desigualdad, con sólo una constante del lado derecho. El modelo completo es

Minimizar z � .3x1 � .9x2

sujeto a

La figura 2.3 muestra la solución gráfica del modelo. La segunda y tercera restricciones
pasan por el origen. De este modo, a diferencia del modelo de Reddy Mikks del ejemplo 2.2-1, la
determinación de los semiplanos factibles de estas dos restricciones requiere que se utilice un
punto de referencia diferente de (0,0), por ejemplo, (100,0) o (0,100).

Solución:

El modelo minimiza el valor de la función objetivo al reducir z en la dirección que se muestra en
la figura 2.3. La solución óptima es la intersección de las dos líneas x1 � x2 � 800 y .21x1 � .3x2
� 0, y por consiguiente x1 � 470.6 lb y x2 � 329.4 lb. El costo mínimo de la mezcla de alimentos
es z � .3 3 470.6 � .9 3 329.4 � $437.64 por día.

 x1, x2 Ú 0

 .03x1 - .01x2 Ú 0

 .21x1 - .30x2 … 0

x1 + x2 Ú 800

FIGURA 2.3

Solución gráfica del modelo de la dieta 
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Comentarios. Nos podríamos preguntar por qué la restricción x1 � x2 $ 800 no puede ser
reemplazada con x1 � x2 � 800 porque no sería óptimo producir más que la cantidad mínima.
Aunque la solución del presente modelo satisfizo la ecuación, un modelo más complejo puede
imponer restricciones adicionales que requerirían mezclar más que la cantidad mínima.Aún más
importante, la desigualdad, por definición, es inclusiva del caso de igualdad, de modo que puede
elegirse la ecuación si la optimalidad lo requiere. La conclusión es que no debemos “prejuzgar”
la solución imponiendo la restricción de igualdad adicional.

CONJUNTO DE PROBLEMAS 2.2B

1. Identifique la dirección de reducción de z en cada uno de los siguientes casos:
*(a)
(b)
(c)

2. Para el modelo de la dieta, suponga que la disponibilidad diaria de maíz se limita a 450 lb.
Identifique el nuevo espacio de soluciones, y determine la nueva solución óptima.

3. Para el modelo de la dieta, ¿qué tipo de solución óptima daría el modelo si la mezcla de
alimentos no debiera exceder las 800 lb por día? ¿Tiene sentido la solución?

4. John debe trabajar cuando menos 20 horas a la semana para complementar sus ingresos al
mismo tiempo que asiste a la escuela.Tiene la oportunidad de trabajar en dos tiendas de me-
nudeo. En la tienda 1 puede trabajar entre 5 y 12 horas a la semana, y en la tienda 2 le permi-
ten trabajar entre 6 y 10 horas.Ambas tiendas pagan el mismo salario por hora. Para decidir
cuántas horas trabajar en cada tienda, John desea basar su decisión en la tensión del trabajo.
Basado en entrevistas con otros empleados, John estima que, en una escala del 1 al 10, los fac-
tores de tensión son 8 y 6 en las tiendas 1 y 2, respectivamente. Como la tensión aumenta
cada hora, supone que la tensión total en cada tienda al final de la semana es proporcional a
las horas que trabaja en las tiendas. ¿Cuántas horas debe trabajar John en cada tienda?

*5. OilCo está construyendo una refinería para producir cuatro productos: diesel, gasolina, lu-
bricantes y combustible para avión. La demanda mínima (en barriles por día) de cada uno
de esos productos es de 14,000, 30,000, 10,000 y 8000, respectivamente. Iraq y Dubai firma-
ron un contrato para enviar crudo a OilCo. Debido a las cuotas de producción especifica-
das por la OPEP (Organización de Países Exportadores de Petróleo), la nueva refinería
puede recibir por lo menos 40% de su crudo de Iraq y el resto de Dubai. OilCo pronostica
que la demanda y las cuotas de petróleo crudo no cambiarán durante los próximos 10 años.

Las especificaciones de los dos crudos conducen a mezclas de productos diferentes:
Un barril de crudo de Iraq rinde .2 barriles de diesel, .25 barriles de gasolina, 1 barril de
lubricante y .15 barriles de combustible para avión. Los rendimientos correspondientes
del crudo de Dubai son: .1, .6, 1.5 y .1, respectivamente. OilCo necesita determinar la ca-
pacidad mínima de la refinería (barriles por día).

6. Day Trader desea invertir una suma de dinero que genere un rendimiento anual mínimo
de $10,000. Están disponibles dos grupos de acciones: acciones de primera clase y accio-
nes de alta tecnología, con rendimientos anuales promedio de 10 y 25%, respectivamente.
Aunque las acciones de alta tecnología producen un mayor rendimiento, son más riesgo-
sas, y Trader quiere limitar la suma invertida en estas acciones a no más de 60% de la 
inversión total. ¿Cuál es la suma mínima que Trader debe invertir en cada grupo de 
acciones para alcanzar su objetivo de inversión?

7. *Un centro de reciclaje industrial utiliza dos chatarras de aluminio, A y B, para producir
una aleación especial. La chatarra A contiene 6% de aluminio, 3% de silicio, y 4% de car-
bón. La chatarra B contiene 3% de aluminio, 6% de silicio, y 3% de carbón. Los costos
por tonelada de las chatarras A y B son de $100 y $80, respectivamente. Las especificacio-
nes de la aleación especial requieren que (1) el contenido de aluminio debe ser mínimo

Minimiza z = - x1 - 2x2

Minimizar z = - 3x1 + x2

Minimizar z = 4x1 - 2x2
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de 3% y máximo de 6%; (2) el contenido de silicio debe ser de entre 3 y 5%, y (3) el con-
tenido de carbón debe ser de entre 3 y 7%. Determine la mezcla óptima de las 
chatarras que deben usarse para producir 1000 toneladas de la aleación.

8. Experimento con TORA. Considere el modelo de la dieta, y que la función objetivo sea
como sigue

Minimizar z � .8x1 � .8x2

Use TORA para demostrar que la solución óptima está asociada con dos puntos de esqui-
na distintos, y que ambos puntos dan por resultado el mismo valor objetivo. En este caso se
dice que el problema tiene óptimos alternativos. Explique las condiciones que conducen a
esta situación, y demuestre que, en realidad, el problema tiene una cantidad infinita de óp-
timos alternativos; proporcione luego una fórmula para determinar todas esas soluciones.

2.3 SOLUCIÓN CON COMPUTADORA, APLICANDO SOLVER Y AMPL

En la práctica, los modelos de PL suelen implicar miles de variables y restricciones, y la
computadora es el único medio viable para resolver problemas de PL. Esta sección
presenta dos sistemas de software comúnmente utilizados: Excel Solver y AMPL.
Solver es en particular atractivo para los usuarios de hojas de cálculo.AMPL es un len-
guaje de modelado algebraico que, como todos los lenguajes de programación de alto
grado, requiere más conocimientos. No obstante, AMPL, y lenguajes similares2, ofrece
una gran flexibilidad de modelado. Aunque la presentación en esta sección se concen-
tra en programaciones lineales, tanto AMPL como Solver pueden manejar problemas
enteros y no lineales, como se demostrará en capítulos posteriores.

2.3.1 Solución de PL con Excel Solver

En Excel Solver, la hoja de cálculo es el medio de entrada y salida para la PL. La figura 2.4
muestra la distribución de los datos para el modelo de Reddy Mikks (archivo
solverRM1.xls).La parte superior de la figura incluye cuatro tipos de información: (1) celdas
para ingresar datos (B5:C9 y F6:F9); (2) celdas que representan las variables y la función ob-
jetivo (B13:D13); (3) definiciones algebraicas de la función objetivo y el lado izquierdo de
las restricciones (celdas D5:D9), y (4) celdas que proporcionan nombres y símbolos explica-
tivos. Solver solamente requiere los primeros tres tipos. El cuarto tipo mejora la legibilidad
aunque no sirve para ningún otro propósito.El posicionamiento relativo de los cuatros tipos
de información en la hoja de cálculo (como se sugiere en la figura 2.4) es conveniente para
la referencia cruzada apropiada de las celdas en Solver, y se recomienda su uso.

¿Cómo se vincula Solver con los datos de la hoja de cálculo? En primer lugar, pro-
porcionamos definiciones “algebraicas” de la función objetivo y el lado izquierdo de las
restricciones mediante los datos de entrada (celdas B5:C9 y F6:F9), así como la función
objetivo y variables (celdas B13:D13). A continuación colocamos las fórmulas resultan-
tes de forma apropiada en las celdas D5:D9, como se muestra en la siguiente tabla:

2 Entre otros paquetes comerciales conocidos están AIMMS, GAMS, LINGO, MPL, OPL Studio, y Xpress
Mosel.

Expresión algebraica Fórmula en la hoja de cálculo Ingresada en la celda

Objetivo z 5x1 + 4x2 B5*$B$13 C5*$C$13+= D5
Restricción 1 6x1 + 4x2 B6*$B$13 C6*$C$13+= D6
Restricción 2  x1 + 2x2 B7*$B$13 C7*$C$13+= D7
Restricción 3 -x1 +  x2 B8*$B$13 C8*$C$13+= D8
Restricción 4 0x1 +  x2 B9*$B$13 C9*$C$13+= D9
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FIGURA 2.4

Definición del modelo de Reddy Mikks con Excel Solver (archivo solverRM1.xls) 

En realidad, sólo tiene que ingresar la fórmula en la celda D5 y luego copiarla en las
celdas D6:D9. Para hacerlo de manera correcta, es necesario utilizar la referencia fija
de las celdas que representan a x1 y x2 (es decir, $B$13 y $C$13, respectivamente).

Las fórmulas explícitas que se acaban de describir no son prácticas para PL grandes.
En su lugar, la fórmula en la celda D5 puede escribirse en forma compacta como sigue 

= SUMPRODUCT(B5:C5,$B$13:$C$13)
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La nueva fórmula puede copiarse entonces en las celdas D6:D9.
Ahora, todos los elementos del modelo de PL ya están listos para ejecutar el mo-

delo. Haga clic en el menú Solver de la barra de menús de la hoja de cálculo3 para ac-
ceder al cuadro de diálogo Solver Parameters (que se muestra en medio de la figura
2.4). A continuación, actualice el cuadro de diálogo como sigue:

Set Target Cell:
Equal To: Max
By Changing Cells:

Esta información le indica a Solver que las variables de PL (celdas $B$13 y $C$13) se
determinan al maximizar la función objetivo en la celda $D$5.

Para establecer las restricciones haga clic en el botón en el cuadro de diálo-
go para desplegar el cuadro Add Constraint (en la parte inferior de la figura 2.4) y
luego ingrese el tipo desigualdad en el lado izquierdo, y el lado derecho de las restric-
ciones como4

Para las restricciones de no negatividad haga clic en el botón una vez más e ingrese

$B$13:$C$13 7 = 0

Add

$D$6:$D$9 6 = $F$6:$F$9

Add

$B$13:$C$13
}

$D$5

Otra forma de ingresar las restricciones no negativas es hacer clic en la del
cuadro de diálogo Solver Parameters para acceder a Solver Options (vea la figura 2.5)
y luego active las casillasu✓ y u✓ .

Por lo general no es necesario cambiar los valores predeterminados restantes en
Solver Options. Sin embargo, la precisión predeterminada de .000001 puede ser dema-
siado “alta” para algunos problemas, y Solver puede devolver de forma incorrecta el

Assume Linear ModelAssume Non-Negative

Options

FIGURA 2.5

Cuadro de diálogo Solver 
Options (Opciones de Solver)

3 Quizá sea necesario verificar antes Solver como complemento de Excel.
4 En el cuadro de diálogo Add Constraint de la figura 2.4, las dos opciones adicionales int y bin, las cuales
significan integer y binary, se utilizan en programas enteros para limitar las variables a valores enteros y bi-
narios (vea el capítulo 9).
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mensaje “Solver could not find a feasible solution” (Solver no pudo determinar una so-
lución factible). En esos casos se tiene que especificar una precisión menor (es decir,
un valor mayor). Si el mensaje persiste, es posible que el problema sea no factible.

Los nombres de rango descriptivos de Excel pueden usarse para mejorar la legi-
bilidad. Se crea un rango resaltando las celdas deseadas y escribiendo el nombre en el
cuadro superior izquierdo de la hoja, pulsando luego la tecla Return. La figura 2.6
(archivo solverRM2.xls) proporciona los detalles con un resumen de los nombres de rango
utilizados en el modelo. Hay que cotejar el modelo contra el archivo solverRM1.xls
para ver cómo se utilizan los rangos en las fórmulas.

Para resolver el problema haga clic en el botón del cuadro de diálogo Solver
Parameters. De este modo el estado de la solución aparece en el nuevo cuadro de diálogo
Solver Results. Si la elaboración del modelo es correcta, el valor óptimo de z aparecerá en
la celda D5 y los valores de x1 y x2 aparecerán en las celdas B13 y C13, respectivamente.
Por conveniencia, la celda D13 exhibe el valor óptimo de z al ingresar la fórmula � D5 en
la celda D13, y en celdas contiguas aparece la solución óptima completa.

Si un problema no tiene una solución factible, Solver mostrará el mensaje explí-
cito “Solver could not find a feasible solution” (Solver no pudo determinar una solu-
ción factible). Si el valor objetivo óptimo es ilimitado (no finito), Solver emitirá un
mensaje un tanto ambiguo “The Set Cell values do not converge” (Los valores de la
celda no convergen). En cualquier caso, el mensaje indica que hay algo erróneo en
la formulación del modelo, como se verá en la sección 3.5.

Solve

FIGURA 2.6

Uso de nombres de rango en Excel Solver (archivo solverRM2.xls)
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El cuadro de diálogo Solver Results brinda la oportunidad de solicitar más deta-
lles sobre la solución, por ejemplo, los reportes de análisis de sensibilidad. En la sección
3.6.4 analizaremos estos resultados adicionales.

La solución del modelo de Reddy Mikks con Solver es directa. Otros modelos
pueden requerir un “poco de inventiva” antes de poder establecerlos. Una clase de mo-
delos de PL que caen en esta categoría tiene que ver con la optimización de redes,
como se verá en el capítulo 6.

CONJUNTO DE PROBLEMAS 2.3A

1. Modifique el modelo de Reddy Mikks de la figura 2.4 para tener en cuenta un tercer tipo
de pintura denominado “marina”. Los requerimientos por tonelada de las materias pri-
mas 1 y 2 son .5 y .75 toneladas, respectivamente. La demanda diaria de la nueva pintura
oscila entre .5 toneladas y 1.5 toneladas. La utilidad por tonelada es de $3.5 (miles).

2. Desarrolle el modelo Excel Solver para los siguientes problemas:
(a) El modelo de la dieta del ejemplo 2.2-2 
(b) Problema 16, conjunto 2.2a
(c) Problema 5, conjunto 2.2b

2.3.2 Solución de PL con AMPL5

Esta sección proporciona una breve introducción a AMPL. El material en el apéndice
C en el sitio web detalla la sintaxis de AMPL. Se hará referencia a la presentación en
esta sección y con otras presentaciones de AMPL en el libro. Los dos ejemplos que
aquí se presentan se refieren a los fundamentos de AMPL.

Problema de Reddy Mikks. Modelo rudimentario. AMPL cuenta con herramientas
para modelar una PL en un formato manuscrito rudimentario. La figura 2.7 muestra un
código autoexplicativo para el modelo de Reddy Mikks (archivo amplRM1.txt). Todas
las palabras clave reservadas aparecen en negritas. Los demás nombres los genera el
usuario. La función objetivo y cada una de las restricciones pueden tener nombres
distintos (generados por el usuario) seguidos de punto y coma. Cada instrucción se
cierra con punto y coma.

El formato manuscrito es adecuado para los problemas, en el sentido de que se
requiere un nuevo código siempre que se cambian los datos de entrada. Para proble-
mas prácticos (con estructura compleja y muchas variables y restricciones), el formato
manuscrito, en el mejor de los casos, es tedioso. AMPL elimina esta dificultad aplican-
do un código que divide el problema en dos componentes: (1) Un modelo algebraico
general para una clase específica de problemas aplicable a cualquier cantidad de varia-
bles y restricciones, y (2) datos para controlar el modelo algebraico. La implementa-
ción de estos dos puntos se aborda en la siguiente sección por medio del problema de
Reddy Mikks.

5 Por conveniencia, la versión de AMPL para el estudiante se encuentra en el sitio web. Las actualizaciones
posteriores se pueden descargar de www.ampl.com. AMPL utiliza comandos en línea y no opera en el am-
biente de Windows.
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Problema de Reddy Mikks. Modelo algebraico. La figura 2.8 muestra las instrucciones
del modelo (archivo ampl1RM2.txt). El archivo debe ser estrictamente texto (ASCII).
El símbolo # designa el inicio de los comentarios explicativos. Los comentarios pueden
aparecer en renglones distintos o después del punto y coma al final de una instrucción.
El lenguaje es sensible a las mayúsculas o minúsculas, y todas sus palabras clave, con
algunas excepciones, se escriben en minúsculas. (La sección C.2 en el sitio web
proporciona más detalles).

FIGURA 2.7

maximize z: 5*x1+4*x2;
subject to

c1: 6*x1+4*x2<=24;
c2: x1+2*x2<=6;
c3: -x1+x2<=1;
c4: x2<=2;

solve;
display z,x1,x2;

Modelo AMPL rudimentario para
el problema de Reddy Mikks
(archivo amplRM1.txt)

FIGURA 2.8

#------------------------------------------modelo algebraico
param m;
param n;
param c{1..n};
param b{1..m};
param a{1..m,1..n};

var x{1..n}>=0;

maximize z: sum{j in 1..n}c[j]*x[j];
subject to restr{i in 1..m}:

sum{j in 1..n}a[i,j]*x[j]<=b[i];
#--------------------------------especificar datos del modelo
data;
param n:=2;
param m:=4;
param c:=1 5 2 4;
param b:=1 24  2 6  3 1  4 2;
param a: 1 2 :=

1 6 4 
2 1 2
3 -1 1
4 0 1;

#----------------------------------------resolver el problema
solve;
display z, x;

Modelo AMPL del problema de Reddy Mikks mediante datos de entrada puestos en el código fuente
(archivo ampl1RM2.txt)
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El modelo algebraico en AMPL visualiza el problema de PL general con n varia-
bles y m restricciones en el siguiente formato genérico:

Así se dan a la función objetivo y a la restricción i los nombres (especificados por usua-
rio) z y restri.

El modelo se inicia con las instrucciones param que declaran a m, n, c, b y aij
como parámetros (o constantes) cuyos valores específicos se dan en la sección de datos
de entrada del modelo.Traduce cj( j � 1, 2,…, n) como c{1..n}; bi(i � 1, 2,…, m) como
b{1..m}, y aij(i � 1, 2,…, m, j � 1, 2,…, n) como a{1..m, 1..n}.A continuación, las va-
riables xj( j � 1, 2,…,n), junto con la restricción de no negatividad, las define la instruc-
ción var

var x{1..n}>=0;

Una variable se considera no restringida si elimina .50 de su definición. La notación en
{} representa el conjunto de subíndices dentro del cual se definen un param o una var.

El modelo se desarrolla de la siguiente manera, en función de los parámetros y
las variables. La función objetivo y las restricciones tienen nombres distintos seguidos
por dos puntos (:). La instrucción objetivo es una traducción directa de maximizar

:

maximize z: sum{j in 1..n}c[j]*x[j];

A la restricción i se le da el nombre raíz restr con un índice dentro del conjunto
{1..m}:

restr{i in 1..m}:sum{j in 1..n}a[i,j]*x[j]<=b[i];

La instrucción es una traducción directa de restria
n

j= 1
aijxj … bi.

z = a
n

j= 1
cjxj

xj Ú 0,  j = 1, 2, . . ., n

sujeto a restri: a
n

j= 1
aijxj … bi, i = 1, 2, . . ., m

Maximizar z: a
n

j= 1
cj xj

Ahora el modelo algebraico puede utilizarse con cualquier conjunto de datos
aplicables que se puedan ingresar después de la instrucción data;. Para el modelo de
Reddy Mikks, los datos indican a AMPL que el problema tiene 2 variables (param
n:52;) y 4 restricciones (param m:54;). Se debe utilizar el operador compuesto : 5, y
la instrucción debe iniciar con la palabra clave param. Para los parámetros de un solo
subíndice, c y b, cada elemento está representado por su índice seguido de su valor y se-
parados al menos por un espacio en blanco. Así, c1 � 5 y c2 � 4 se ingresan como 

param c:= 1 5 2 4;

Los datos para la instrucción param b se ingresan del mismo modo.
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Para el parámetro con subíndice doble aij, el conjunto de datos se lee como una ma-
triz bidimensional con sus filas que designan a i y sus columnas que designan a j. El
renglón superior define al subíndice j, y el subíndice i se ingresa al inicio de cada fila como

param a: 1 2 :=
1 6 4
2 1 2
3 -1 1
4 0 1;

El conjunto de datos debe terminar con punto y coma. Observe la ubicación obligato-
ria del separador : y el operador compuesto :� después de param a.

Ahora el modelo y sus datos ya están listos. El comando solve; invoca el algorit-
mo de solución y el comando display z, x; proporciona la solución.

Para ejecutar el modelo, primero invoque AMPL (haga clic en el comando
ampl.exe del directorio de AMPL). En el indicador ampl: ingrese el siguiente coman-
do model, luego pulse la tecla Return:

model amplRM2.txt;

El resultado del sistema aparecerá entonces en la pantalla como sigue:

MINOS 5.5: Optimal solution found.
2 iterations, objective = 21

z = 21
x[*]:=

1 = 3
2 = 1.5

Los cuatro renglones inferiores son el resultado de ejecutar display z,x;. En realidad,
AMPL dispone de capacidades de formateo que mejoran la legibilidad de los resulta-
dos de salida (vea la sección C.5.2 en el sitio web).

AMPL permite separar el modelo algebraico y los datos en dos archivos inde-
pendientes. Este arreglo es más conveniente porque sólo el archivo de datos se tiene
que cambiar una vez que se ha desarrollado el modelo. Para los detalles, vea el final de
la sección C.2.

AMPL ofrece una amplia variedad de capacidades de programación. Por ejem-
plo, los datos de entrada y salida pueden asegurarse para que no sean enviados a archi-
vos, hojas de cálculo y bases de datos externos, y el modelo puede ejecutarse de forma
activa para una amplia variedad de opciones. Los detalles se dan en el apéndice C, en
el sitio web.

CONJUNTO DE PROBLEMAS 2.3B

1. En el modelo de Reddy Mikks, suponga que se produce un tercer tipo de pintura, llama-
da “marina”. Los requerimientos por tonelada de las materias primas M1 y M2 son .5 y
.75 toneladas, respectivamente. La demanda diaria de la nueva pintura oscila entre .5 to-
neladas y 1.5 toneladas, y la utilidad por tonelada es de $3.5 (mil). Modifique el modelo
de Excel Solver aplicando solver RM2.xls y el modelo AMPL amplRM2.txt para tener en
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cuenta la nueva situación y determinar la solución óptima. Compare el esfuerzo adicional
asociado con cada modificación.

2. Desarrolle modelos AMPL para los siguientes problemas:
(a) El problema de la dieta del ejemplo 2.2-2 y determine la solución óptima.
(b) Problema 16, conjunto 2.2a 
(c) Problema 5, conjunto 2.2b 

2.4 APLICACIONES DE PROGRAMACIÓN LINEAL

Esta sección presenta modelos realistas de PL en los cuales la definición de las varia-
bles y la construcción de la función objetivo, así como las restricciones, no son tan directas
como en el caso del modelo de dos variables. Las áreas cubiertas por estas aplicaciones
incluyen lo siguiente:

1. Inversión.
2. Planificación de la producción y control de inventarios.
3. Planificación de la mano de obra.
4. Planificación de desarrollo urbano.
5. Refinación y mezcla de petróleo.

Cada modelo se detalla, y se interpreta su solución óptima.

2.4.1 Inversión 

Multitud de oportunidades de inversión están disponibles para los inversionistas de
hoy. Ejemplos de problemas de inversión son la asignación de presupuestos de capital
para proyectos, estrategia de inversión en bonos, selección de cartera de acciones, y
establecimiento de una política de préstamos bancarios. En muchas de estas situacio-
nes, la PL puede usarse para seleccionar la combinación óptima de oportunidades que
maximizarán el rendimiento, al mismo tiempo que se satisfacen los requerimientos es-
tablecidos por el inversionista y el mercado.

Ejemplo 2.4-1 (Modelo de préstamo bancario)

Bank One está desarrollando una política de préstamos que implica un máximo de $12 millones.
La tabla siguiente muestra los datos pertinentes en relación con los préstamos disponibles.

Tipo de préstamo Tasa de interés % de deudas impagables

Personal .140 .10
Automóvil .130 .07
Casa .120 .03
Agrícola .125 .05
Comercial .100 .02

Las deudas impagables son irrecuperables y no producen ingresos por intereses.
La competencia con otras instituciones financieras dicta la asignación de 40% mínimo de

los fondos para préstamos agrícolas y comerciales. Para ayudar a la industria de la construcción
de viviendas en la región, los préstamos para casa deben ser por lo menos 50% de los préstamos
personales, para automóvil, y para casa. El banco limita la proporción total de las deudas impa-
gables en todos los préstamos a un máximo de 4%.
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Modelo matemático: La situación se refiere a determinar el monto del préstamo en cada cate-
goría, lo que conduce a las siguientes definiciones de las variables:

x1 � préstamos personales (en millones de dólares) 

x2 � préstamos para automóvil

x3 � préstamos para casa

x4 � préstamos agrícolas

x5 � préstamos comerciales

El objetivo del Bank One es maximizar el rendimiento neto, la diferencia entre el ingreso por
intereses y la pérdida por deudas impagables. El ingreso por intereses se acumula sobre los prés-
tamos al corriente. Por ejemplo, cuando se pierde 10% de préstamos personales por deuda im-
pagable, el banco recibirá intereses sobre 90% del préstamo; es decir, recibirá un interés de 14%
sobre 9x1 del préstamo original x1. El razonamiento es válido para los cuatro tipos restantes de
préstamos. Por lo tanto,

También tenemos

La función objetivo combina el ingreso por intereses y la deuda impagable como sigue

Maximizar z � Interés total – Deuda impagable

El problema tiene cinco restricciones:

1. Los fondos totales no deben exceder de $12 (millones):

2. Los préstamos agrícolas y comerciales deben ser iguales a por lo menos el 40% de todos
los préstamos:

o bien 

3. Los préstamos para casa deben ser iguales a por lo menos 50% de los préstamos persona-
les, para automóvil y para casa:

o bien 

.5x1 + .5x2 - .5x3 … 0

x3 Ú .5(x1 + x2 + x3)

.4x1 + .4x2 + .4x3 - .6x4 - .6x5 … 0

x4 + x5 Ú .4(x1 + x2 + x3 + x4 + x5)

x1 + x2 + x3 + x4 + x5 … 12

= .026x1 + .0509x2 + .0864x3 + .06875x4 + .078x5

- (.1x1 + .07x2 + .03x3 + .05x4 + .02x5)

 = (.126x1 + .1209x2 + .1164x3 + .11875x4 + .098x5)

Deuda impagable = .1x1 + .07x2 + .03x3 + .05x4 + .02x5

 = .126x1 + .1209x2 + .1164x3 + .11875x4 + .098x5

 Interés total = .14(.9x1) + .13(.93x2) + .12(.97x3) + .125(.95x4) + .1(.98x5)
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4. Las deudas impagables no deben exceder  4% de todos los préstamos:

o bien

5. No negatividad:

Una sutil suposición en la formulación precedente es que todos los préstamos se emiten
aproximadamente al mismo tiempo. Nos permite pasar por alto las diferencias en el valor del
tiempo de los fondos asignados a los diferentes préstamos.

Solución:

La solución óptima se calcula utilizando AMPL (archivo amplEx2.4-1.txt):

Comentarios.

1. Quizá se pregunte por qué no definimos el lado derecho de la segunda restricción como
.4 3 12 en lugar de .4(x1 � x2 � x3 � x4 � x5). A fin de cuentas, parece razonable que el
banco quiera prestar los $12 (millones). La respuesta es que el uso dado en la formulación
no desaprueba esta posibilidad, pero hay dos razones más por las que no debería utilizar
.4 3 12: (1) Si otras restricciones en el modelo son tales que no puedan usarse todos los $12
(millones) (por ejemplo, el banco puede limitar los diferentes préstamos), entonces la opción
.4 3 12 podría conducir a una solución incorrecta o no factible. (2) Si desea experimentar
con el efecto de cambiar los fondos disponibles (por ejemplo, de $12 a $13 millones) en la
solución óptima, es posible que olvide cambiar .4 3 12 a .4 3 13, en cuyo caso la solución no
será correcta. Un razonamiento parecido aplica al lado izquierdo de la cuarta restricción.

2. La solución óptima requiere que se asignen los $12 millones: $7.2 millones a préstamos
para casa, y $4.8 millones a préstamos comerciales. Las categorías restantes no reciben
nada. El rendimiento de la inversión es 

z = .99648, x1 = 0, x2 = 0, x3 = 7.2, x4 = 0, x5 = 4.8

x1 Ú 0, x2 Ú 0, x3 Ú 0, x4 Ú 0, x5 Ú 0

.06x1 + .03x2 - .01x3 + .01x4 - .02x5 … 0

.1x1 + .07x2 + .03x3 + .05x4 + .02x5 … .04(x1 + x2 + x3 + x4 + x5)

Esto muestra que la tasa de rendimiento anual combinada es de 8.034%, la cual es menor
que la mejor tasa de interés neta (de 8.64% para préstamos para casa), y nos pregunta-
mos por qué el modelo no aprovecha esta oportunidad. La respuesta es que la estipula-
ción de que los préstamos agrícolas y comerciales deben ser iguales a por lo menos 40%
de todos los préstamos (restricción 2) hace que la solución asigne $4.8 millones a présta-
mos comerciales a la tasa neta más baja de 7.8%, de ahí la reducción de la tasa de interés
total a De hecho, si eliminamos la restricción 2, la so-
lución óptima asignará todos los fondos a préstamos para casa a la tasa más alta de
8.64% (¡inténtelo utilizando el modelo AMPL!).

CONJUNTO DE PROBLEMAS 2.4A

1. Fox Enterprises está considerando seis posibles proyectos de construcción durante los
próximos 4 años. Fox puede emprender cualquiera de los proyectos en parte o en su tota-
lidad. La ejecución parcial de un proyecto prorrateará proporcionalmente tanto el rendi-

100 A .0864 * 7.2 + .078 * 4.8
12  B = 8.034%.

Tasa de rendimiento =   
z

12
 =  

.99648
12

 = .08034
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miento como los desembolsos de efectivo. Los rendimientos (valor presente) y los de-
sembolsos de efectivo para los proyectos se dan en la siguiente tabla.

(a) Formule el problema como un programa lineal, y determine la combinación óptima
de proyectos que maximice el rendimiento total utilizando AMPL, Solver o TORA.
Pase por alto el valor en el tiempo del dinero.

(b) Suponga que si se emprende una parte del proyecto 2, entonces debe emprenderse
por lo menos una parte igual del proyecto 6. Modifique la formulación del modelo y
determine la nueva solución óptima.

(c) En el modelo original, suponga que los fondos no utilizados al final de un año se utilizan
en el año siguiente. Halle la nueva solución óptima, y determine qué tanto cada año “le
pide prestado” al año anterior. Por sencillez, pase por alto el valor del dinero en el tiempo.

(d) Suponga en el modelo original que los fondos anuales disponibles para cualquier
año se pueden exceder, si fuera necesario, pidiendo prestado a otras actividades fi-
nancieras dentro de la compañía. Ignorando el valor del dinero en el tiempo, refor-
mule el modelo de PL y determine la solución óptima. ¿Requeriría la nueva solución
que se pida prestado en cualquier año? De ser así, ¿cuál es la tasa de rendimiento
sobre el dinero pedido en préstamo? 

*2. El inversionista Doe dispone de $10,000 para invertirlos en cuatro proyectos. La tabla si-
guiente presenta el flujo de efectivo para las cuatro inversiones.

Desembolso de efectivo ($1000)
Rendimiento

Proyecto Año 1 Año 2 Año 3 Año 4 ($1000)

1 10.5 14.4 2.2 2.4 32.40
2 8.3 12.6 9.5 3.1 35.80
3 10.2 14.2 5.6 4.2 17.75
4 7.2 10.5 7.5 5.0 14.80
5 12.3 10.1 8.3 6.3 18.20
6 9.2 7.8 6.9 5.1 12.35

Fondos disponibles ($1000) 60.0 70.0 35.0 20.0

Flujo de efectivo ($1000) al inicio del 

Proyecto Año 1 Año 2 Año 3 Año 4 Año 5

1 -1.00 0.50 0.30 1.80 1.20
2 -1.00 0.60 0.20 1.50 1.30
3 0.00 -1.00 0.80 1.90 0.80
4 -1.00 0.40 0.60 1.80 0.95

La información que aparece en la tabla puede interpretarse como sigue: Para el proyecto
1, $1.00 invertido al inicio del año 1 redituará $.50 al inicio del año 2; $.30 al inicio del año
3; $1.80 al inicio del año 4, y $1.20 al inicio de año 5. Las entradas restantes pueden inter-
pretarse de la misma manera. La entrada 0.00 indica que no se están realizando transac-
ciones. Doe tiene opción adicional de invertir en una cuenta bancaria que gana 6.5%
anual. Todos los fondos acumulados al final del año 1 pueden volverse a invertir en el año
siguiente. Formule el problema como un programa lineal para determinar la asignación
óptima de fondos a oportunidades de inversión. Resuelva el modelo con Solver de AMPL.
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3. HiRise Construction puede licitar por la adjudicación de dos proyectos de 1 año. La siguien-
te tabla da el flujo de efectivo trimestral (en millones de dólares) para los dos proyectos.

Flujo de efectivo (en millones de dólares) el

Proyecto 1 de enero 1 de abril 1 de julio 1 de octubre 31 de diciembre

I -1.0 -3.1 –1.5 1.8 5.0
II -3.0 -2.5 1.5 1.8 2.8

HiRise dispone de fondos en efectivo que ascienden a $1 millón a principios de cada tri-
mestre, y puede pedir prestado un máximo de $1 millón a una tasa de interés anual nomi-
nal de 10%. Cualquier dinero pedido a préstamo debe ser devuelto al final de cada tri-
mestre. El efecto excedente puede ganar un interés trimestral a una tasa anual nominal
de 8%. La acumulación neta al final de cada trimestre se invierte en el siguiente.
(a) Suponga que a HiRise se le permite una participación parcial o completa en los dos

proyectos. Determine el nivel de participación que maximizará el efectivo neto acu-
mulado el 31 de diciembre. Resuelva el modelo con Solver de AMPL.

(b) ¿Es posible pedir prestado dinero en cualquier trimestre y al mismo tiempo termi-
nar con fondos excedentes? Explique.

4. En anticipación a los fuertes gastos académicos, Joe y Jill iniciaron un programa de inver-
sión anual en el octavo cumpleaños de su hijo, el cual terminará hasta que cumpla die-
ciocho años. Planean invertir las siguientes cantidades al principio de cada año:

Año 1 2 3 4 5 6 7 8 9 10

Cantidad ($) 2000 2000 2500 2500 3000 3500 3500 4000 4000 5000

Para evitar sorpresas desagradables, quieren invertir el dinero sin riesgo en las siguientes
opciones: Ahorros asegurados con rendimiento anual de 7.5%, bonos del gobierno a seis
años que rinden 7.9% y cuyo precio de mercado actual es de 98% de su valor nominal,
además de bonos municipales a 9 años que rinden 8.5% y cuyo precio de mercado actual
es de 1.02 de su valor nominal. ¿Cómo deberá invertirse el dinero? 

*5. Un ejecutivo empresarial tiene la opción de invertir en dos planes. El plan A garantiza
que cada dólar invertido ganará $.70 al año, y el plan B garantiza que cada dólar inverti-
do ganará $2 después de 2 años. En el plan A, las inversiones pueden hacerse anualmen-
te, y en el plan B sólo se permiten durante periodos que sean múltiplos de 2 años. ¿Cómo
debe invertir el ejecutivo $100,000 para maximizar las ganancias al final de 3 años?
Resuelva el modelo utilizando Solver de AMPL.

6. Un apostador participa en un juego que requiere dividir entre cuatro opciones el dinero
apostado. El juego tiene tres resultados. La tabla siguiente presenta la ganancia o pérdida
correspondiente por dólar para las diferentes opciones del juego.

Rendimiento por dólar depositado en la opción

Resultado 1 2 3 4

1 -3 4 -7 15
2 5 -3 9 4
3 3 -9 10 -8
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El apostador tiene un total de $500, los cuales puede apostar sólo una vez. El resultado
exacto del juego no se conoce a priori. Debido a esta incertidumbre, la estrategia del apos-
tador es maximizar la ganancia mínima producida por los tres resultados. ¿Cómo deberá
el apostador asignar los $500 entre las cuatro opciones? Resuelva el modelo con Solver de
AMPL. (Sugerencia: La ganancia neta del apostador puede ser positiva, cero o negativa).

7. Lewis (1996). Las facturas en una casa se reciben mensualmente (por ejemplo, servicios e
hipoteca de la casa), trimestralmente (pagos de impuestos estimados), semestralmente
(como los seguros), o anualmente (renovaciones y pagos vencidos de suscripciones). La
siguiente tabla da las facturas mensuales durante el próximo año.

Para solventar estos gastos, la familia aparta $1000 cada mes, cantidad que es el promedio
del total dividido entre 12 meses. Si el dinero se deposita en una cuenta de ahorros con-
vencional, puede ganar un interés anual de 4%, siempre que permanezca en la cuenta
por lo menos 1 mes. El banco también ofrece certificados de depósito a 3 y 6 meses que
pueden ganar el 5.5% y 7% de interés anual, respectivamente. Desarrolle un programa
de inversión de 12 meses que maximizará la ganancia total de la familia durante el año.
Establezca cualesquier suposiciones o requerimientos necesarios para llegar a una solu-
ción factible. Resuelva el modelo con Solver de AMPL.

2.4.2 Planificación de la producción y control de inventario

Abundan las aplicaciones de PL para planificar la producción y para controlar inven-
tarios. Esta sección presenta tres ejemplos. El primero tiene que ver con la programa-
ción de la producción para satisfacer una demanda de un periodo único. El segundo se
refiere al uso del inventario en un sistema de producción de múltiples periodos para
satisfacer la demanda futura, y el tercero tiene que ver con el uso del inventario, y la
contratación y despido de personal para “nivelar” la producción durante un horizonte
de planificación de múltiples periodos.

Ejemplo 2.4-2 (Modelo de producción de un periodo único)

En preparación para la temporada invernal, una compañía fabricante de ropa está manufactu-
rando abrigos de piel con capucha y chamarras con relleno de plumas de ganso, pantalones con
aislamiento y guantes. Todos los productos se elaboran en cuatro departamentos diferentes:
corte, aislamiento, costura y empaque. La compañía recibió pedidos en firme de sus productos.
El contrato estipula una penalización por los artículos no surtidos. Elabore un plan de produc-
ción óptimo para la compañía, con base en los siguientes datos:

Mes Ene. Feb. Mar. Abr. May. Jun. Jul. Ago. Sep. Oct. Nov. Dic. Total

$ 800 1200 400 700 600 900 1500 1000 900 1100 1300 1600 12000

Tiempo por unidades (h)

Departamento Chamarras Relleno de plumas Pantalones Guantes Capacidad (h)

Corte .30 .30 .25 .15 1000
Aislamiento .25 .35 .30 .10 1000
Costura .45 .50 .40 .22 1000
Empaque .15 .15 .1 .05 1000
Demanda 800 750 600 500
Utilidad unitaria $30 $40 $20 $10
Penalización por unidad $15 $20 $10 $8
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Modelo matemático: Las variables del problema son

x1 � cantidad de chamarras con capucha 

x2 � cantidad de chamarras con relleno de plumas 

x3 � cantidad de pantalones 

x4 � cantidad de pares de guantes

Se penaliza a la compañía si no cumple la demanda. El objetivo es entonces maximizar la utili-
dad neta, definida como

Utilidad neta � Utilidad total 2 Penalización total 

La utilidad total es 30x1 �40x2 � 20x3 � 10x4. Para calcular la penalización total, las restriccio-
nes de la demanda pueden escribirse como sigue

La nueva variable sj representa la escasez en la demanda del producto j, y la penalización total se
calcula como 15s1 � 20s2 � 10s3 � 8s4. El modelo completo se escribe entonces como sigue 

sujeto a 

Solución:

La solución óptima (obtenida utilizando el archivo amplEx2.4.txt) es z � $64,625, x1 � 800, x2 �

750; x3 � 387.5, x4 � 500, s1 � s2 � s4 � 0, s3 � 212.5. La solución satisface toda la demanda de
ambos tipos de chamarra y los guantes. Una merma de 213 (redondeada desde 212.5) pantalones
representará un costo de penalización de 213 3 $10 5 $2130.

Ejemplo 2.4-3 (Modelo de producción en inventario durante periodos múltiples)

Acme Manufacturing Company firmó un contrato para entregar 100, 250, 190, 140, 220 y 110
ventanas para casa durante los siguientes seis meses. El costo de producción (mano de obra, ma-
terial y servicios) por ventana varía por periodo y se estima que será de $50, $45, $55, $52 y $50
durante los próximos seis meses. Para aprovechar las fluctuaciones del costo de fabricación,
Acme puede producir más ventanas de las necesarias en un mes dado y conservar las unidades
adicionales para entregarlas en meses posteriores. Esto supondrá un costo de almacenamiento a

xj Ú 0, sj Ú 0, j = 1, 2, 3, 4

x1 + s1 = 800, x2 + s2 = 750, x3 + s3 = 600, x4 + s4 = 500

.15x1 + .15x2 + .10x3 + .05x4 … 1000

.45x1 + .50x2 + .40x3 + .22x4 … 1000

.25x1 + .35x2 + .30x3 + .10x4 … 1000

.30x1 + .30x2 + .25x3 + .15x4 … 1000

Maximizar z = 30x1 + 40x2 + 20x3 + 10x4 - (15s1 + 20s2 + 10s3 + 8s4)

 xj Ú 0, sj Ú 0, j = 1, 2, 3, 4

x1 + s1 = 800,  x2 + s2 = 750,  x3 + s3 = 600,  x4 + s4 = 500, 
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razón de $8 por ventana por mes, estimado en el inventario de fin de mes. Desarrolle un progra-
ma lineal para determinar el programa de producción óptimo.

Modelo matemático: Las variables del problema incluyen la cantidad de producción mensual y
el inventario de fin de mes. Para que i � 1, 2,…, 6, sean

xi � Cantidad de unidades producidas en el mes i

Ii � Unidades que quedan en el inventario de fin de mes i

Las relaciones entre estas variables y la demanda mensual durante el horizonte de 6 meses apa-
recen representadas esquemáticamente en la figura 2.9. El sistema se inicia vacío (I0 � 0).

El objetivo es minimizar el costo total de producción y del inventario de fin de mes.

Costo de producción total � 50x1 � 45x2 � 55x3 � 48x4 � 52x5 � 50x6

Costo total del inventario (almacenamiento) � 8(I1 � I2 � I3 � I4 � I5 � I6)

Por consiguiente, la función objetivo es 

Las restricciones del problema se determinan directamente a partir de la representación
que aparece en la figura 2.9. Para cada periodo tenemos la siguiente ecuación de balance:

Inventario inicial � Cantidad de producción 2 Inventario final � Demanda

La cual se traduce matemáticamente para los meses individuales como

Observe que el inventario inicial, I0, es cero.Además, en cualquier solución óptima, el inventario
final I6 será cero porque no es costeable incurrir en costos de almacenamiento adicionales inne-
cesarios.

xi, i = 1, 2, . . . , 6, Ii Ú 0, i = 1, 2, . . . , 5

 I5 + x6 = 110 (Mes 6)

 I4 + x5 - I5 = 220 (Mes 5)

 I3 + x4 - I4 = 140 (Mes 4)

 I2 + x3 - I3 = 190 (Mes 3)

 I1 + x2 - I2 = 250 (Mes 2)

 x1 - I1 = 100 (Mes 1)

+  81I1 + I2 + I3 + I4 + I5 + I62Minimizar z = 50x1 + 45x2 + 55x3 + 48x4 + 52x5 + 50x6

FIGURA 2.9

Representación esquemática del sistema de producción e inventario
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Solución:

La solución óptima (obtenida utilizando el archivo amplEx2.4-3.txt) se resume en la figura 2.10.
Muestra que la demanda de cada mes se satisface desde la misma producción del mes excepto en
el mes 2 donde la cantidad producida (� 440 unidades) cubre la demanda de los meses 2 y 3. El
costo total asociado es z � $49,980.

Ejemplo 2.4-4 (Modelo de nivelación de la producción para múltiples periodos)

Una compañía está planeando fabricar un producto para marzo, abril, mayo y junio del próximo
año. Las cantidades demandadas son 520, 720, 520 y 620 unidades, respectivamente. La compañía
tiene una fuerza de trabajo permanente de 10 empleados pero puede satisfacer las necesidades
de producción fluctuantes contratando y despidiendo trabajadores temporales. Los costos adi-
cionales de contratar y despedir un trabajador temporal en cualquier mes son de $200 y $400,
respectivamente. Un trabajador de planta produce 12 unidades por mes; y uno temporal, que no
tiene la misma experiencia, produce 10. La compañía puede producir más de lo necesario en
cualquier mes y guardar el excedente para el mes subsiguiente a un costo de retención de $50
por unidad por mes. Desarrolle una política óptima de contratación y despido durante el hori-
zonte de planificación de 4 meses.

Modelo matemático: Este modelo es semejante al del ejemplo 2.4-3 en el sentido de que cada
mes tiene su producción, demanda e inventario final. La única excepción es el manejo de una
fuerza de trabajo permanente comparada con una fuerza de trabajo temporal.

El trabajo realizado por los trabajadores permanentes se toma en cuenta restando las uni-
dades que producen de la demanda mensual respectiva. La demanda restante se satisface enton-
ces contratando y despidiendo trabajadores temporales. Por lo tanto

Demanda restante para marzo � 520 – 12 3 10 � 400 unidades 

Demanda restante para abril � 720 – 12 3 10 � 600 unidades 

Demanda restante para mayo � 520 – 12 3 10 � 400 unidades 

Demanda restante para junio � 620 – 12 3 10 � 500 unidades

Las variables del modelo para el mes i se definen como sigue

xi � Cantidad neta de trabajadores temporales al inicio del mes i después de cualquier
contratación o despido

Si � Cantidad de trabajadores temporales contratados o despedidos al inicio del mes i

Ii � Unidades del inventario final para el mes i

FIGURA 2.10

Solución óptima del problema de producción e inventario
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Por definición, xi e Ii son no negativas, en tanto que Si es irrestricta en cuanto a signo porque es
igual a la cantidad de trabajadores contratados o despedidos en el mes i. Éste es el primer caso
en este capítulo del uso de una variable irrestricta. Como se verá en breve, se requiere una susti-
tución especial para permitir la contratación y despido en el modelo.

En este modelo, el desarrollo de la función objetivo requiere construir primero las restric-
ciones. La cantidad de unidades producidas en el mes i por xi trabajadores temporales es 10xi.
Así pues, tenemos las siguientes restricciones del inventario:

Para contratación y despido, la fuerza de trabajo temporal se inicia con x1 trabajadores a princi-
pios de marzo. A principios de abril x1 se ajustará (hacia arriba o hacia abajo) con S2 trabajado-
res temporales para generar x2. La misma idea se aplica a x3 y x4, lo que conduce a las siguientes
ecuaciones de restricciones 

A continuación desarrollamos la función objetivo. La meta es minimizar el costo del inven-
tario más el costo de contratación y despido. Como en el ejemplo 2.4-3.

Costo de retención de inventario � 50(I1 � I2 � I3)

El modelado del costo de contratación y despido es un poco complicado. Dado que los costos de
contratar y despedir a un trabajador temporal son de $200 y $400, respectivamente, tenemos 

Si la variable Si es positiva, la contratación ocurre en el mes i. Si es negativa, entonces ocurre el
despido. Esta valoración “cualitativa” se traduce matemáticamente aplicando la sustitución

Ahora la variable irrestricta Si es la diferencia entre las dos variables no negativas S2
i y S1

i.
Podemos pensar en S2

i como la cantidad de trabajadores temporales contratados, y en S1
i como la

de despedidos. Por ejemplo, si S2
i 5 5 y S1

i 5 0, entonces Si � 5 � 0 � � 5, lo que representa
contratación. Si S2

i 5 0 y 1i 5 7, entonces Si � 0 � 7 � �7, lo que representa despido. En el pri-
mer caso, el costo de contratación correspondiente es y en el segun-
do caso el costo de despido correspondiente es .400Si

+ = 400 * 7 = $2800
 200Si

- = 200 * 5 = $1000,

Si = Si
- - Si

+,  donde  Si
-, Si

+ Ú 0

P
Costo de

contratación
y despido Q  =  200   P

Cantidad de trabajadores
temporales contratados al

principio de cada mes Q  +  400   P
Cantidad de trabajadores
temporales despedidos al

principio de cada mes Q

x1, x2, x3, x4 Ú 0

S1, S2, S3, S4 Irrestrictas en cuanto a signo

x4 = x3 + S4

x3 = x2 + S3

x2 = x1 + S2

x1 = S1

x1, x2, x3, x4 Ú 0, I1, I2, I3 Ú 0

 I3 + 10x4 = 500  (Junio)

 I2 + 10x3 = 400 + I3  (Mayo)

 I1 + 10x2 = 600 + I2  (Abril)

 10x1 = 400 + I1  (Marzo)
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La sustitución es la base para el desarrollo del costo de contratación y despi-
do. Primero tenemos que responder una posible pregunta: ¿Qué pasa si tanto y como son
positivos? La respuesta es que esto no puede suceder porque implica tanto contratación como
despido en el mismo mes. De manera interesante, la teoría de la PL (capítulo 7) nos dice que y

no pueden ser positivos al mismo tiempo, un resultado matemático confirmado por intuición.
Ahora podemos escribir el costo total de contratación y despido como

El modelo completo es

sujeto a

Solución:

La solución óptima (obtenida utilizando el archivo amplEx2.4-4.txt) es , ,x1 = 50z = $19,500

I1, I2, I3 Ú 0

x1, x2, x3, x4 Ú 0

S1
-, S1

+, S2
-, S2

+, S3
-, S3

+, S4
-, S4

+ Ú 0

 x4 = x3 + S4
- - S4

+

 x3 = x2 + S3
- - S3

+

 x2 = x1 + S2
- - S2

+

 x1 = S1
-

 - S1
+

 I3 + 10x4 = 500

 I2 + 10x3 = 400 + I3

 I1 + 10x2 = 600 + I2

 10x1 = 400 + I1

+ 400(S1
+ + S2

+ + S3
+ + S4

+)

Minimizar z =  50(I1 + I2 + I3 + I4) + 200(S1
- + S2

- + S3
- + S4

-)

 Costo de despido =  400(S1
+ + S2

+ + S3
+ + S4

+)

 Costo de contratación = 200(S1
- + S2

- + S3
- + S4

-)

Si
+

Si
-

Si
+Si

-
Si = Si

- - Si
+

, . Todas las demás variables son
cero. La solución requiere contratar 50 trabajadores temporales en marzo , y conser-
var la fuerza de trabajo permanente hasta mayo, cuando se despida a 5 trabajadores temporales

. No se recomienda ninguna otra contratación o despido hasta finales de junio cuando,
presuntamente, todos los trabajadores temporales serán despedidos. Esta solución requiere que
se conserven 100 unidades de inventario hasta mayo, y 50 unidades hasta junio.

CONJUNTO DE PROBLEMAS 2.4B 

1. AutoMate contrató a ToolCo para que abastezca sus tiendas de descuento automotrices
con llaves inglesas y cinceles. La demanda semanal de AutoMate consiste en por lo
menos 1500 llaves inglesas y 1200 cinceles. ToolCo no puede fabricar todas las unidades
solicitadas con su capacidad actual de un turno y debe utilizar tiempo extra y posible-
mente subcontratar a otras fábricas de herramientas. El resultado es un incremento del

(S3
+ = 5)

(S1
- = 50)

I3 = 50I1 = 100,S1
- = 50, S3

+ = 5,x4 = 45,x3 = 45,x2 = 50
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costo de producción por unidad, como se muestra en la siguiente tabla. La demanda del
mercado limita la proporción entre cinceles y llaves inglesas a por lo menos 2:1.

Herramienta Tipo de producción
Intervalo de producción

semanal (unidades)
Costo

unitario ($)

Llaves inglesas Regular 0–550 2.00
Tiempo extra 551–800 2.80
Subcontratación 801– q 3.00

Cinceles Regular 0–620 2.10
Tiempo extra 621–900 3.20
Subcontratación 901– q 4.20

(a) Formule el problema como un programa lineal, y determine el programa de produc-
ción óptimo para cada herramienta.

(b) Explique por qué la validez del modelo depende del hecho de que el costo de pro-
ducción unitario sea una función creciente de la cantidad producida.

(c) Resuelva el modelo aplicando AMPL, Solver o TORA.
2. En tres máquinas se procesan cuatro productos en secuencia. La siguiente tabla propor-

ciona los datos pertinentes del problema:

Tiempo de fabricación por unidad (h)

Máquina Costo por h ($) Producto 1 Producto 2 Producto 3 Producto 4 Capacidad (h)

1 10 2 3 4 2 500
2 5 3 2 1 2 380
3 4 7 3 2 1 450

Precio de venta
unitario ($) 75 70 55 45

Formule el problema como un modelo de PL, y determine la solución óptima con AMPL,
Solver o TORA.

*3. Un fabricante produce tres modelos, I, II y III, de un producto determinado con las mate-
rias primas A y B. La siguiente tabla proporciona los datos del problema:

Requerimientos por unidad

Materia prima I II III Disponibilidad

A 2 3 5 4000
B 4 2 7 6000

Demanda mínima 200 200 150
Precio por unidad ($) 30 20 50

Las horas de trabajo por unidad del modelo I son dos veces las del II y tres veces las del
III. Toda la fuerza de trabajo de la fábrica puede producir el equivalente a 1500 unidades
del modelo 1. Los requerimientos del mercado especifican las proporciones 3:2:5 para la
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producción de los tres modelos respectivos. Formule el problema como un programa li-
neal, y halle la solución óptima con AMPL, Solver o TORA.

4. La demanda de helado durante los tres meses de verano (junio, julio y agosto) en All-
Flavor Parlor se estima en 500, 600 y 400 cartones de 20 galones, respectivamente. Dos
mayoristas, 1 y 2, le surten helado a All-Flavors. Aunque los sabores de los dos proveedo-
res son diferentes, son intercambiables. El máximo de cartones que cada proveedor
puede surtir es de 400 por mes. Además, el precio de los dos proveedores cambia de un
mes al siguiente, según la tabla:

Para aprovechar la fluctuación del precio, All-Flavor puede comprar más de lo que nece-
sita en un mes y guardar el excedente para satisfacer la demanda en un mes posterior. El
costo de refrigerar un cartón de helado es de $5 por mes. En la presente situación es rea-
lista suponer que el costo de refrigeración está en función de la cantidad de cartones pro-
medio disponibles durante el mes. Desarrolle un modelo para determinar el programa
óptimo de compra de helado a los dos proveedores, y determine la solución óptima con
TORA, Solver o AMPL.

5. La demanda de un artículo durante los siguientes cuatro trimestres es de 300, 400 y 250
unidades, respectivamente. El precio por unidad es de $20 en el primer trimestre y se 
incrementa $2 cada trimestre en lo sucesivo. El proveedor no puede surtir más de 400
unidades en cualquier trimestre. Aunque podemos aprovechar los bajos precios en los
primeros trimestres, se incurre en un costo de almacenamiento de $3.50 por unidad de
trimestre. Además, el máximo de unidades que puede conservar de un trimestre al si-
guiente no puede exceder de 100. Desarrolle un modelo de PL para determinar el pro-
grama de compra óptimo del artículo para satisfacer la demanda y determine la solución
óptima con AMPL, Solver o TORA.

6. Se contrató a una compañía para que manufacturara dos productos, A y B, durante los
meses de junio, julio y agosto. La capacidad de producción total (expresada en horas)
varía mensualmente. La siguiente tabla proporciona los datos básicos de la situación:

Junio Julio Agosto

Demanda de A (unidades) 500 5000 750
Demanda de B (unidades) 1000 1200 1200
Capacidad (h) 3000 3500 3000

Las tasas de producción por hora son .75 y 1 para los productos A y B, respectivamente. Se
debe satisfacer toda la demanda; sin embargo, la de un mes posterior se puede satisfacer
con la producción de uno anterior. Para cualquiera de los productos A y B guardados de un
mes al siguiente, los costos de retención son de $.90 y $.75 por unidad, respectivamente. Los
costos de producción unitarios de los dos productos, A y B, son de $30 y $28, respectiva-
mente. Desarrolle un modelo de PL para determinar el programa de producción óptimo
para los dos productos y determine la solución óptima con AMPL, Solver o TORA.

Precio por cartón en el mes de

Junio Julio Agosto

Proveedor 1 $100 $110 $120
Proveedor 2 $115 $108 $125
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*7. El proceso de fabricación de un producto consta de dos operaciones sucesivas, I y II. La si-
guiente tabla proporciona los datos pertinentes durante los meses de junio, julio y agosto.

Desarrolle un modelo de PL para determinar el programa de producción óptimo y el uso re-
comendado de tiempo extra, si lo hay. Resuelva el problema con AMPL, Solver o TORA.

2.4.3 Planificación de la mano de obra

Las fluctuaciones de la fuerza de trabajo para satisfacer la demanda variable con el tiempo pue-
den lograrse mediante el proceso de contratación y despido, como se demostró en el ejemplo
2.4-4. Hay situaciones en las que el efecto de las fluctuaciones de la demanda puede ser “absor-
bido” ajustando las horas de inicio y terminación de un turno de trabajo. Por ejemplo, en lugar de
seguir las horas de inicio de los tres turnos de 8 horas tradicionales a las 8:00 A.M., 3:00 P.M. y
11:00 P.M., podemos utilizar turnos de 8 horas con traslapes en los que la hora de inicio de cada
uno se establece en respuesta al aumento o reducción de la demanda.

La idea de redefinir el inicio de un turno para absorber la fluctuación de la demanda tam-
bién puede extenderse a otros ambientes de operación. El ejemplo 2.4-5 hace referencia a la de-
terminación de la cantidad mínima de autobuses que se requieren para satisfacer las necesidades
de transporte durante las horas pico y normales.

Junio Julio Agosto

Demanda del producto terminado (unidades) 500 450 600
Capacidad de la operación I (h) 800 700 550
Capacidad de la operación II (h) 1000 850 700

Producir una unidad del producto implica .6 horas en la operación I, más .8 horas en la
operación II. Se permite la sobreproducción o el producto terminado en parte (en la ope-
ración I), o el producto terminado (en la operación II) en cualquier mes para su uso en
un mes posterior. Los siguientes costos de retención correspondientes son de $.20 y $.40
por unidad por mes. El costo de producción varía por operación y por mes. Para la opera-
ción 1, el costo de producción unitario es de $10, $12 y $11 en junio, julio y agosto, respec-
tivamente. Para la operación 2, el costo correspondiente de producción unitario es de
$15, $18 y $16. Desarrolle un modelo de PL para determinar el programa de producción
óptimo para las dos operaciones en el horizonte de 3 meses, y determine la solución ópti-
ma con AMPL, Solver o TORA.

8. En dos máquinas se fabrican dos productos en secuencia. El tiempo disponible en cada
máquina es de 8 horas por día y puede incrementarse hasta 4 horas de tiempo extra, si es
necesario, a un costo adicional de $100 por hora. La siguiente tabla proporciona la tasa
de producción en las dos máquinas, así como el precio por unidad de los dos productos.

Tasa de producción (unidades/h)

Producto 1 Producto 2

Máquina 1 5 5
Máquina 2 8 4
Precio por unidad ($) 110 118
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Ejemplo 2.4-5 (Modelo de horarios de autobuses)

La ciudad de Progreso estudia la factibilidad de utilizar un sistema de autobuses de transporta-
ción masiva para reducir el tráfico urbano. El estudio busca la cantidad mínima de autobuses que
satisfaga las necesidades de transporte. Después de reunir la información necesaria, el ingeniero
de tránsito observó que la cantidad mínima de autobuses que se requería fluctuaba según la hora
del día, y dicha cantidad se podía representar de forma aproximada por valores constantes du-
rante intervalos de 4 horas sucesivos. La figura 2.11 resume los hallazgos del ingeniero. Para rea-
lizar el mantenimiento diario requerido, cada autobús puede operar sólo 8 horas continuas al día.

Aplicación de la vida real. Planificación del personal de ventas por teléfono 
en Qantas Airways

La línea aérea australiana Qantas opera sus oficinas de reservaciones principales de
7:00 a 22:00, con turnos de 6 horas que comienzan a diferentes horas del día. Qantas
utilizó la PL (con el análisis de colas integrado) para proveer de personal a su oficina
principal de ventas por teléfono de manera eficiente y proporcionar al mismo tiempo
un servicio conveniente a sus clientes. El estudio, realizado a finales de la década de
1970, permitió ahorros anuales de más de 200,000 dólares australianos por año. El es-
tudio se detalla en el caso 15, capítulo 26, en el sitio Web.

FIGURA 2.11

Cantidad de autobuses en función de la hora del día
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Modelo matemático: Las variables del modelo son la cantidad de autobuses necesarios en cada
turno, y las restricciones tienen que ver con la satisfacción de la demanda. El objetivo es minimi-
zar la cantidad de autobuses en operación.
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Espacios de tiempo Cantidad de autobuses en operación

12:01 A.M. a 4:00 A.M. x1 + x6

4:01 A.M. a 8:00 A.M. x1 + x2

8:01 A.M. a 12:00 del día x2 + x3

12:01 P.M. a 4:00 P.M. x3 + x4

4:01 P.M. a 8:00 P.M. x4 + x5

8:01 A.M. a 12:00 A.M. x5 + x6

La definición expresada de las variables es un tanto “imprecisa”. Sabemos que cada autobús
circulará durante 8 horas consecutivas, pero no sabemos cuándo debe iniciar un turno. Si segui-
mos un horario normal de tres turnos (8:01 A.M. a 4:00 P.M, 4:01 P.M. a 12:00 medianoche, y 12:01
A.M. a 8:00 A.M.) y suponemos que x1, x2 y x3 son las cantidades de autobuses que inician en el
primero, segundo y tercer turnos, en la figura 2.11 podemos ver que x1 $ 10, x2 $ 12 y x3 $ 8. La
cantidad mínima correspondiente de autobuses diarios es x1 � x2 � x3 � 10 � 12 � 8 � 30.

La solución dada es aceptable sólo si los turnos deben coincidir con el horario de tres turnos
normal. Sin embargo, una ventaja podría ser que el proceso de optimización eligiera la “mejor”
hora de inicio de un turno. Una forma razonable de hacerlo es permitir que se inicie un turno
cada 4 horas. La parte inferior de la figura ilustra esta idea con turnos de 8 horas traslapados que
se inician a las 12:01 A.M., 4:00 A.M, 8:01 A.M., 12:01 P.M. y 8:01 P.M. Así pues, las variables se defi-
nen como

x1 � cantidad de autobuses que comienzan a las 12:01 A.M.

x2 � cantidad de autobuses que comienzan a las 4:01 A.M.

x3 � cantidad de autobuses que comienzan a las 8:01 A.M.

x4 � cantidad de autobuses que comienzan a las 12:01 P.M.

x5 � cantidad de autobuses que comienzan a las 4:01 P.M.

x6 � cantidad de autobuses que comienzan a las 8:01 P.M.

En la figura 2.11 podemos ver que debido al traslape de los turnos, la cantidad de autobuses du-
rante los periodos sucesivos de 4 horas se calcula como sigue:

El modelo completo se escribe entonces como sigue

sujeto a

 xj Ú 0, j =  1, 2, . . . , 6

x5 + x6 Ú  4    (8:01 p.m.-12:00 p.m.)

x4 + x5 Ú  12   (4:01 p.m.-8:00 p.m.)

x3 + x4 + Ú 7   (12:01 p.m.-4:00 p.m.)

x2 + x3 + Ú  10   (8:01 a.m.-12:00 del día)

x1 + x2 Ú 8   (4:01 a.m.-8:00 a.m.)

x1 + x6 Ú   4   (12:01 a.m.-4:00 a.m.)

Minimizar z = x1 + x2 + x3 + x4 + x5 + x6
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Solución:

La solución óptima (obtenida utilizando el archivo amplEx2.4-5.xls, solverEx2.4-5.xls, o
toraEx2.4-5.txt) requiere programar 26 autobuses (comparados con 30 cuando se utilizan los tres
turnos tradicionales). El horario requiere x1 � 4 autobuses que empiecen a las 12:01 A.M., x2 � 10
a las 4:01 A.M., x4 � 8 a las 12:01 P.M. y x5 � 4 a las 4:01 P.M. (Nota: El archivo solverEx2.4-5.xls da
la solución óptima alternativa x1 � 2, x2 � 6, x3 � 4, x4 � 6, x5 � 6, y x6 � 2, con z � 26.) 

CONJUNTO DE PROBLEMAS 2.4C

*1. En el ejemplo de los horarios de autobuses suponga que éstos pueden operar turnos de 8
o de 12 horas. Si un autobús opera durante 12 horas, al conductor se le pagan horas extra
a 150% del salario por hora regular. ¿Recomienda utilizar turnos de 12 horas? Resuelva
el nuevo modelo utilizando AMPL, Solver o TORA.

2. Un hospital emplea voluntarios para atender la recepción entre las 8:00 A.M. y las 10:00
P.M. Cada voluntario trabaja tres horas consecutivas, excepto los que entran a las 8:00
P.M., que sólo trabajan 2 horas. Una aproximación a la necesidad mínima de voluntarios
es por medio de una función escalonada en intervalos de dos horas, los cuales se inician a
las 8:00 A.M. como 4, 6, 8, 6, 4, 6 y 8. Como la mayoría de los voluntarios son pensionados,
están dispuestos a ofrecer sus servicios a cualquier hora del día (8:00 A.M. a 10:00 P.M.).
Sin embargo, como la mayoría de las instituciones caritativas compiten por sus servicios,
la cantidad requerida debe mantenerse lo más baja posible. Determine un programa ópti-
mo (utilice AMPL, Solver o TORA) de la hora de inicio de los voluntarios.

3. En el problema 2, suponga que ningún voluntario iniciará al mediodía o a una hora en
que se impliquen el almuerzo y la comida. Desarrolle la PL, y determine el horario ópti-
mo utilizando AMPL, Solver o TORA.

4. En una compañía camionera de cargas pequeñas, los andenes de la terminal incluyen tra-
bajadores eventuales contratados temporalmente para que se encarguen de las cargas
pico. En el andén de Omaha, Nebraska, la demanda mínima de trabajadores eventuales
durante los 7 días de la semana (a partir del lunes) es de 20, 14, 10, 15, 18, 10 y 12 trabaja-
dores. Cada trabajador es contratado para que labore 5 días consecutivos. Desarrolle el
modelo de PL y determine una práctica de contratación semanal óptima de trabajadores
eventuales para la compañía utilizando AMPL, Solver o TORA.

*5. La mayoría de los departamentos académicos de las universidades contratan estudiantes
para que realicen encargos de oficina. La necesidad de ese servicio fluctúa durante las
horas hábiles (8:00 A.M. a 5:00 P.M.). En un departamento, la cantidad mínima de estu-
diantes requeridos es de 2 entre las 8:00 A.M. y las 10:00 A.M.; 3 entre las 10:01 A.M. y las
11:00 A.M.; 4 entre las 11:01 A.M. y la 1:00 P.M., y 3 entre la 1:01 P.M. y las 5:00 P.M. A cada
estudiante se le asignan 3 horas consecutivas (excepto a los que inician a las 3:01 P.M. que
trabajan 2 horas, y a los que inician a las 4:01 que trabajan 1 hora). Debido al horario fle-
xible de los estudiantes, por lo común pueden iniciar a cualquier hora durante el día de
trabajo, excepto a la hora del almuerzo (12:00 del día). Desarrolle el modelo de PL y de-
termine un horario que especifique la hora del día y la cantidad de estudiantes que se re-
portan al trabajo. Use AMPL, Solver o TORA para determinar la solución.

6. Una gran tienda de departamentos opera 7 días a la semana. El gerente estima que la
cantidad mínima de vendedores requeridos para proporcionar un servicio ágil es de 12 el
lunes, 18 el martes, 20 el miércoles, 28 el jueves, 32 el viernes, y 40 para el sábado y el do-
mingo. Cada vendedor trabaja 5 días a la semana, con los dos días de descanso escalona-
dos a lo largo de la semana. Por ejemplo, si 10 personas inician el lunes, 2 pueden tomar
su día de descanso el martes o el miércoles; 5 el miércoles y jueves, y 3 el sábado y domin-
go. ¿Cuántos vendedores se deben contratar, y cómo se distribuirán sus días de descanso?
Use AMPL, Solver o TORA para determinar la solución.
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2.4.4 Planificación de desarrollo urbano6

La planificación urbana implica atender tres áreas generales: (1) construcción de nue-
vos desarrollos de vivienda; (2) remodelación de viviendas deterioradas y áreas recrea-
tivas, y (3) planificación de edificios públicos (escuelas y aeropuertos). Las restriccio-
nes asociadas con estos proyectos son tanto económicas (terreno, construcción y
financiamiento) como sociales (escuelas, parques y nivel de ingreso). Los objetivos en
la planificación urbana varían. En los nuevos desarrollos de vivienda, la utilidad suele
ser el motivo para emprender el proyecto. En las dos categorías restantes los objetivos
implican consideraciones sociales, políticas, económicas y culturales. De hecho, en
un caso divulgado en 2004, el alcalde de una ciudad en Ohio deseaba demoler un
área vieja de la ciudad para construir departamentos de lujo. El motivo era incremen-
tar la recaudación de impuestos para aliviar la escasez de presupuesto. El ejemplo de
esta sección se diseñó con base en el caso de Ohio.

Ejemplo 2.4-6 (Modelo de renovación urbana)

La ciudad de Erstville enfrenta un grave recorte de presupuesto. Buscando una solución a largo
plazo para mejorar la base tributaria, el consejo de la ciudad propone la demolición de un área
de viviendas dentro de la ciudad, y su reemplazo con un moderno desarrollo.

El proyecto implica dos fases: (1) demolición de casas populares para obtener el terreno
para el nuevo desarrollo, y (2) construcción del nuevo desarrollo.A continuación, un resumen de
la situación.

1. Se pueden demoler 300 casas populares. Cada casa ocupa un lote de .25 acres. El costo de
demoler una casa es de $2000.

2. Los tamaños de los lotes para construir casas unifamiliares, dobles, triples y cuádruples,
son de .18, .28, .4 y .5 acres, respectivamente. Las calles, los espacios abiertos y el área
para la instalación de servicios, ocupan 15% del área disponible.

3. En el nuevo desarrollo, las unidades triples y cuádruples ocupan por lo menos 25% del
total. Las unidades sencillas deben ser al menos 20% de todas las unidades, y las unida-
des dobles deben ocupar un mínimo de 10%.

4. El impuesto por unidad aplicado a las unidades sencillas, dobles, triples y cuádruples es
de $1000, $1900, $2700 y $3400, respectivamente.

5. El costo de construcción por unidad de las casas sencillas, dobles, triples y cuádruples es de
$50,000, $70,000, $130,000 y $160,000, respectivamente. El financiamiento a través de un
banco local está limitado a $15 millones.

¿Cuántas unidades de cada tipo se deben construir para maximizar la recaudación de impuestos?

Modelo matemático: Además de determinar cuántas unidades se construirán de cada tipo de
vivienda, también necesitamos decidir cuántas casas se deben demoler para crear el espacio para
el nuevo desarrollo. Por lo tanto, las variables del problema se definen como sigue:

x1 � Cantidad de casas unifamiliares

x2 � Cantidad de casas dobles 

6Esta sección está basada en Laidlaw (1972) 
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x3 � Cantidad de casas triples 

x4 � Cantidad de casas cuádruples

x5 � Cantidad de casas viejas a demoler 

El objetivo es maximizar la recaudación total de impuestos de los cuatro tipos de casas, es decir,

La primera restricción del problema es la disponibilidad del terreno.

A partir de los datos del problema, tenemos

Acres necesarios para casas nuevas � .18x1 � .28x2 � .4x3 � .5x4

Para determinar la cantidad de acres disponibles, cada casa demolida ocupa un lote de .25 acres,
es decir .25x5 acres. Considerando 15% para espacios abiertos, calles y áreas para servicios, la
cantidad neta de acres disponibles es de .85(.25x5) � .2125x5. La restricción resultante es

o bien

La cantidad de casas demolidas no puede ser superior a 300, lo cual se expresa como

A continuación agregamos las restricciones que limitan la cantidad de casas de cada tipo

(Cantidad de casas unifamiliares) $ (20% de todas las casas)

(Cantidad de casas dobles) $ (10% de todas las casas)

(Cantidad de casas triples y cuádruples) $ (25% de todas las casas)

Estas restricciones se expresan matemáticamente como sigue 

La única restricción restante se refiere a que el costo de demolición y construcción se mantenga
dentro del presupuesto permisible, es decir,

(Costo de construcción y demolición) # (Presupuesto disponible)

Expresando todos los costos en miles de dólares, tenemos 

(50x1 + 70x2 + 130x3 + 160x4) + 2x5 … 15000

x3 + x4 Ú .25(x1 + x2 + x3 + x4)

x2 Ú .1(x1 + x2 + x3 + x4)

x1 Ú .2(x1 + x2 + x3 + x4)

x5 … 300

.18x1 + .28x2 + .4x3 + .5x4 - .2125x5 … 0

.18x1 + .28x2 + .4x3 + .5x4 … .2125x5

a Acres utilizados para la
construcción de casas nuevas

b  …  a Área en acres
neta disponible

b
Maximizar z = 1000x1 +  1900x2 +  2700x3 +  3400x4
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El modelo completo se escribe entonces como sigue

sujeto a

Solución:

La solución óptima (obtenida utilizando el archivo amplEX2.4-6.txt o solverEx2.4-6.xls) es:

Recaudación total de impuestos � $343,965
Cantidad de casas unifamiliares � x1 � 35.83 M 36 casas 
Cantidad de casas dobles � x2 � 98.53 M 99 casas 
Cantidad de casas triples � x3 � 44.79 M 45 casas
Cantidad de casas cuádruples � x4 � 0 unidades
Cantidad de casas demolidas � x5 � 244.49 M 245 casas

Comentarios. La programación lineal no garantiza una solución entera de manera automática,
y ésta es la razón de redondear los valores continuos al entero más próximo. La solución redon-
deada requiere que se construyan 180 (� 36 � 99 � 45) casas y que se demuelan 245 casas vie-
jas, lo cual representa $345,600 en impuestos.Tenga en cuenta, sin embargo, que quizá la solución
redondeada no sea factible. De hecho, la solución redondeada actual viola la restricción del pre-
supuesto por $70,000 (¡compruébelo!). No obstante, la solución entera óptima verdadera (con
los algoritmos que se presentan en el capítulo 9) es x1 � 36, x2 � 98, x3 � 45, x4 � 0, y x5 � 245
con z � $343.700. Observe con cuidado que la solución redondeada produce un mejor valor ob-
jetivo, lo que parece contradictorio. La razón es que la solución redondeada requiere que se pro-
duzca una casa doble adicional, lo cual es factible sólo si al presupuesto se le aumentan $70,000.

CONJUNTO DE PROBLEMAS 2.4D

1. Una inmobiliaria está desarrollando un área para renta de viviendas y locales comercia-
les. El área de viviendas se compone de departamentos-estudio, casas dúplex y unifami-
liares. Se estima que la demanda máxima por parte de los arrendatarios potenciales es de
500 departamentos-estudio, 300 casas dúplex y 250 casas unifamiliares, pero la cantidad
de casas dúplex debe ser igual como mínimo al 50% de la cantidad de departamentos-es-
tudio y casas unifamiliares. El espacio para locales comerciales es proporcional a la canti-
dad de casas en una relación de por lo menos 10 pies2, 15 pies2 y 18 pies2 para departa-
mentos-estudio, casas dúplex y casas unifamiliares, respectivamente. Sin embargo, la
disponibilidad del terreno limita el espacio para locales comerciales a no más de 10,000
pies2. La renta mensual se estima en $600, $750 y $1200 para departamentos-estudio,
casas dúplex y casas unifamiliares, en ese orden. La renta de los locales comerciales es de
$100/pie2. Desarrolle un modelo de PL para determinar el área óptima para locales co-
merciales y la cantidad de casas, y determine la solución con AMPL, Solver o TORA.

2. El concejo de la ciudad de Fayetteville está en el proceso de aprobar la construcción de
un nuevo centro de convenciones de 200,000 pies2. Se han propuesto dos sitios, y ambos

x1, x2, x3, x4, x5 Ú 0

 50x1 + 70x2 + 130x3 + 160x4 + 2x5 … 15000

 .25x1 + .25x2 - .75x3 - .75x4 … 0

 .1x1 - .9x2 + .1x3 + .1x4 … 0

 - .8x1 + .2x2 + .2x3 + .2x4 … 0

x5 … 300

 .18x1 + .28x2 + .4x3 + .5x4 - .2125x5 … 0

Maximizar z = 1000x1 +  1900x2 +  2700x3 +  3400x4
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requieren ejercer la ley de “dominio inminente”, o de expropiación, para adquirir la pro-
piedad. La siguiente tabla presenta los datos de las propiedades propuestas (contiguas)
en ambos sitios, junto con el costo de adquisición.

Sitio 1 Sitio 2

Propiedad Área (1000 pies2) Costo ($1000) Área (1000 pies2) Costo ($1000)

1 20 1000 80 2800
2 50 2100 60 1900
3 50 2350 50 2800
4 30 1850 70 2500
5 60 2950

Se permite la adquisición parcial de la propiedad. Se debe adquirir 75% como mínimo de
la propiedad 4 si se selecciona el sitio 1, y por lo menos 50% de la propiedad 3 si se selec-
ciona el sitio 2. Aunque la propiedad del sitio 1 es más cara (por pie2), el costo de cons-
trucción es menor que en el sitio 2 porque la infraestructura está en mejores condiciones.
El costo de construcción es de $25 millones en el sitio 1, y de $27 millones en el sitio 2.
¿Cuál sitio debe seleccionarse y qué propiedades deben adquirirse? Halle la solución uti-
lizando AMPL, Solver o TORA.

*3. Una ciudad emprenderá cuatro proyectos de renovación de vivienda urbana durante los
próximos 5 años. Cada proyecto tiene distinto año de inicio y duración diferente. La si-
guiente tabla muestra los datos básicos de la situación:

Año 1 Año 2 Año 3 Año 4 Año 5
Costo

(millones de $)
Ingreso anual
(millones $)

Proyecto 1 Inicio Terminación 5.0 .05
Proyecto 2 Inicio Terminación 8.0 .07
Proyecto 3 Inicio Terminación 15.0 .15
Proyecto 4 Inicio Terminación 1.2 .02
Presupuesto

(millones $) 3.0 6.0 7.0 7.0 7.0

Los proyectos 1 y 4 deben terminarse del todo dentro de su tiempo estipulado. Los otros
dos proyectos pueden terminarse parcialmente de ser necesario, siempre y cuando no 
excedan su presupuesto. Sin embargo, cada proyecto debe quedar por lo menos con un
avance de 25%. Al final de cada año, los inquilinos ocupan de inmediato la sección termi-
nada de un proyecto, y así se obtiene una cantidad proporcional de ingreso. Por ejemplo, si
en el año 1 se completa 40% del proyecto y 60% en el año 3, el ingreso asociado para el
horizonte de planeación a 5 años es de .4 3 $50,000 (en el año 2) � .4 3 $50,000 (en el
año 3) � (.4 � .6) 3 $50,000 (en el año 4) � (.4 � .6) 3 $50,000 (en el año 5) � ( 4 3 .4 �
2 3 .6) 3 $50,000. Desarrolle un modelo de PL para determinar el desarrollo de los pro-
yectos que maximice el ingreso total durante la planeación a 5 años, y determine la solu-
ción con AMPL, Solver o TORA. Por sencillez, omita el valor del dinero en el tiempo.

4. La ciudad de Fayetteville va a iniciar un proyecto de renovación urbano que incluirá
casas para personas de bajos y medianos ingresos, departamentos de lujo y viviendas po-
pulares. El proyecto también incluye una escuela primaria pública y locales comerciales.
El tamaño de la escuela primaria (cantidad de salones de clase) es proporcional a la can-
tidad de alumnos, y el espacio para locales comerciales es proporcional a la cantidad de
viviendas. La tabla siguiente proporciona los datos pertinentes de la situación:
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La nueva escuela puede ocupar un espacio máximo de 2 acres con salones para un máxi-
mo de 25 alumnos por salón. El costo anual de operación por salón de clase es de
$10,000. El proyecto se ubicará en un lote baldío de 50 acres propiedad de la ciudad.
Adicionalmente, el proyecto puede utilizar una propiedad adyacente ocupada por 200
casas en ruinas que se demolerán, cada una de las cuales ocupa .25 acres. El costo de
comprar y demoler una de estas casas es de $7000. El espacio abierto, las calles y lotes de
estacionamiento consumen 15% del terreno total disponible.

Desarrolle un programa lineal para determinar el plan óptimo para el proyecto, y
encuentre la solución utilizando AMPL, Solver o TORA.

5. Realco posee 800 acres de terreno rústico en un lago escénico en el corazón de las
Montañas Ozark. Anteriormente, a los desarrollos nuevos alrededor del lago se les im-
ponían pocas regulaciones, o ninguna. Ahora en las orillas del lago hay muchas casas de
descanso, y fosas sépticas de las que la mayoría están instaladas de manera inadecuada. Al
paso de los años, el escurrimiento de las fosas sépticas contaminó gravemente el agua.
Para detener la degradación del lago, las autoridades del condado aprobaron reglamentos
estrictos aplicables a todos los futuros desarrollos. (1) Sólo se pueden construir casas uni-
familiares, dobles y triples, donde un mínimo de 50% del total de casas deben ser casas
unifamiliares. (2) Para limitar la cantidad de fosas sépticas, se requieren tamaños de lotes
mínimos de 2, 3 y 4 acres para las casas unifamiliares, dobles y triples, respectivamente. (3)
Deben establecerse áreas recreativas de 1 acre a razón de una por cada 200 familias. (4)
Para preservar la ecología del lago, no se puede extraer agua subterránea para las casas o
jardines. El presidente de Realco está estudiando la posibilidad de desarrollar una propie-
dad de 800 acres. El nuevo desarrollo incluirá casas unifamiliares, dobles y triples. Se esti-
ma que 15% del área en acres se asignará a calles y áreas para servicios. Realco estima las
ganancias producidas por las diferentes unidades de vivienda como sigue:

El costo de conectar el servicio del agua es proporcional a la cantidad de unidades cons-
truidas. Sin embargo, el condado cobra un mínimo de $100,000 para el proyecto.
Adicionalmente, la expansión del sistema de agua por encima de su capacidad actual está
limitada a 200,000 galones por día durante los periodos pico. Los siguientes datos resu-
men el costo de conexión del agua y el consumo, considerando una familia de tamaño

Bajos
ingresos

Medianos
ingresos

Altos
ingresos

Viviendas
populares

Salones
de clase

Locales
comerciales

Cantidad mínima de unidades 100 125 75 300 0
Cantidad máxima de unidades 200 190 260 600 25
Tamaño de lote por unidad (acres) .05 .07 .03 .025 .045 .1
Cantidad promedio de alumnos por unidad 1.3 1.2 .5 1.4
Demanda de espacio para locales 

comerciales por unidad (acres) .023 .034 .046 .023 .034

Ingreso anual por unidad ($) 7000 12,000 20,000 5000 — 15,000

Unidad de viviendas Unifamiliares Dobles Triples

Ganancia neta por unidad ($) 10,000 12,000 15,000

Unidad de viviendas Unifamiliares Dobles Triples De recreación

Costo de conexión del agua por unidad ($) 1000 1200 1400 800
Consumo de agua por unidad (gal./día) 400 600 840 450
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promedio: Desarrolle un modelo de PL para determinar el plan óptimo para Realco y
determine la solución con AMPL, Solver o TORA.

6. Considere el modelo de Realco del problema 5. Suponga que se pueden adquirir 100
acres más por $450,000, los cuales incrementarán el área total a 900 acres. ¿Es rentable
para Realco este negocio?

2.4.5 Mezcla y refinación

Varias aplicaciones de PL tienen que ver con la mezcla de diferentes materiales para
fabricar productos que satisfagan ciertas especificaciones, al mismo tiempo que se mi-
nimiza el costo y se maximiza la utilidad. Los materiales pueden ser minerales metáli-
cos, chatarras, productos químicos o petróleos crudos, y los productos pueden ser lin-
gotes de metal, pinturas o gasolina de varios grados. Esta sección presenta un modelo
(simplificado) de refinación de petróleo. El proceso se inicia con la refinación de petró-
leo crudo para crear reservas y luego mezclarlas para producir gasolina. La gasolina
debe satisfacer ciertas especificaciones de calidad (como el octanaje). Además, los lí-
mites de las capacidades de refinación y la demanda afectan directamente el nivel de
producción de los diferentes grados de gasolina. Un objetivo del modelo es determinar
la mezcla óptima de producción de gasolina que maximice una función de utilidad ade-
cuada. En algunos casos la meta es minimizar una función de costo.

Ejemplo 2.4-7 (Refinación de petróleo crudo y mezcla de gasolinas)

La compañía Shale Oil, localizada en la isla de Aruba, produce diariamente 1,500,000 barriles de
petróleo crudo. Los productos finales de la refinería incluyen tres tipos de gasolina sin plomo
con diferentes octanajes (ON, por sus siglas en inglés): gasolina regular con ON � 87; premium con
ON � 89, y súper con ON � 92. El proceso de refinación comprende tres etapas: (1) una torre de
destilación que produce una carga de alimentación (ON � 82) a razón de .2 barriles por barril
de petróleo crudo; (2) una unidad de desintegración que produce gasolina cruda (ON � 98) uti-
lizando una parte de la carga de alimentación producida por la torre de destilación a razón de 5
barriles por barril por carga de alimentación, y (3) una unidad mezcladora que mezcla la gasoli-
na cruda proveniente de la unidad de desintegración y la carga de destilación proveniente de la
torre de destilación. La compañía estima que la utilidad neta por barril de los tres tipos de gaso-
lina deberá ser de $6.70, $7.20 y $8.10, respectivamente. La capacidad de la unidad de desinte-
gración es de 200,000 barriles de carga al día. La demanda de gasolinas regular, premium y súper
es de 50,000, 30,000 y 40,000 barriles, respectivamente, por día. Desarrolle un modelo para deter-
minar el programa de producción óptimo para la refinería.

Modelo matemático: La figura 2.12 resume los elementos del modelo. Las variables pueden
definirse en función de dos corrientes de entrada a la unidad de desintegración (carga de ali-
mentación y gasolina desintegrada) y los tres productos finales. Sea

xij � cantidad de barriles al día a producir con materia prima obtenida del proceso i utilizada
para mezclar el producto final j, i � 1, 2; j � 1, 2, 3 

Aplicando esta definición, tenemos

Producción diaria de gasolina regular � x11 � x21 barriles/día

Producción diaria de gasolina premium � x12 � x22 barriles/día

Producción diaria de gasolina súper � x13 � x23 barriles/día 



58 Capítulo 2 Modelado con programación lineal

El objetivo del modelo es maximizar la utilidad total producida por la venta de los tres gra-
dos de gasolina. De acuerdo con las definiciones dadas antes, obtenemos 

Las restricciones del problema se desarrollan como sigue:

1. El suministro diario de petróleo crudo no debe exceder de 1,500,000 barriles/día:

2. La capacidad de entrada a la unidad de desintegración no debe exceder 200,000
barriles/día:

3. La demanda diaria de gasolina regular no debe exceder de 50,000 barriles:

x11 + x21 … 50,000

2(x21 + x22 + x23) … 200,000

5(x11 + x12 + x13) + 10(x21 + x22 + x23) … 1,500,000

Maximizar z = 6.70(x11 + x21) + 7.20(x12 + x22) + 8.10(x13 + x23)

 a Petróleo crudo diario
procesado en la refinería

b = 51x11 + x12 + x132 + 101x21 + x22 + x232barriles/día

aCarga de alimentación diaria
a la unidad de desintegración

b = 2(x21 + x22 + x23) barriles/día

a Alimentación diaria de la unidad
de desintegración a la mezcladora

b = x21 + x22 + x23 barriles/día

aCarga de alimentación
diaria a la mezcladora

b = x11 + x12 + x13 barriles/día

= (x11 + x21) + (x12 + x22) + (x13 + x23) barriles/día

+ aProducción diaria
de gasolina súper

b
 a Producción diaria de

la unidad mezcladora
b = aProducción diaria de

gasolina regular
b + aProducción diaria de

gasolina premium
b

FIGURA 2.12

Flujo del producto en el problema de la refinería

Destilación

5:1

Crudo

ON � 82
Carga de 
alimen-
tación

Unidad
de

desinte-
gración 

Mezcla-
dora

x21 � x22 � x23

x11 � x12 � x13 x11 � x21, ON � 87

x12 � x22, ON � 89

x13 � x23, ON � 92

ON � 82

ON � 98

2:1

1:1
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4. La demanda diaria de gasolina premium no debe exceder de 30,000 barriles:

5. La demanda diaria de gasolina súper no debe exceder de 40,000 barriles:

6. El octanaje (ON) de la gasolina regular debe ser por lo menos de 87.

La cantidad de octanos de una gasolina es el promedio ponderado del número de octanos
de las corrientes de entrada utilizadas en el proceso de mezcla, y se calcula como sigue:

5

Por lo tanto, la restricción del octanaje para la gasolina regular es

La restricción se expresa linealmente como 

7. El octanaje de la gasolina premium es mínimo de 89:

el cual se expresa linealmente como 

8. El octanaje de la gasolina súper es mínimo de 92:

o bien

De este modo, el modelo completo se resume como 

sujeto a

 2(x21 + x22 + x23) … 200,000

 5(x11 + x12 + x13) + 10(x21 + x22 + x23) … 1,500,000

Maximizar z = 6.70(x11 + x21) + 7.20(x12 + x22) + 8.10(x13 + x23)

82x13 + 98x23 Ú 92(x13 + x23)

82x13 + 98x23

x13 + x23
 Ú 92

82x12 + 98x22 Ú 89(x12 + x22)

82x12 + 98x22

x12 + x22
 Ú 89

82x11 + 98x21 Ú 87(x11 + x21)

82x11 + 98x21

x11 + x21
 Ú 87

 =
82x11 + 98x21

x11 + x21

Octanaje Carga de Octanaje en la Unidad de
de la carga 3 alimentación 1 unidad de 3 desintegración

de alimentación barriles/día desintegración barriles/día

Total de barriles por día de gasolina regular

Octanaje
promedio

de la
±

gasolina regular

≤

x13 + x23 … 40,000

x12 + x22 … 30,000
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Las tres últimas restricciones pueden simplificarse para producir un lado derecho constante.

Solución:

La solución óptima (obtenida utilizando los archivos toraEx2.4-7.txt o amplEx2.4.7.txt) es z � 875,000,
x11 � 34,375, x21 � 15,625, x12 � 16,875, x22 � 13,125, x13 � 15,000, x23 � 25,000. Esto se traduce a

Utilidad diaria � $875,000
Cantidad diaria de gasolina regular � x11 � x21 � 34,375 � 13,125 � 30,000 barriles/día
Cantidad diaria de gasolina premium � x12 � x22 � 16,875 � 13,125 � 30,000 barriles/día
Cantidad diaria de gasolina súper � x13 � x23 � 15,000 � 25,000 � 40,000 barriles/día

La solución muestra que la producción de gasolina regular está 20,000 barriles/día lejos de
satisfacer la demanda máxima. La demanda de los productos restantes sí se satisface.

CONJUNTO DE PROBLEMAS 2.4E

1. Hi-V produce tres tipos de jugos enlatados, A, B y C, utilizando fresas, uvas y manzanas
frescas. El abasto diario se limita a 200 toneladas de fresas, 100 toneladas de uvas y 150 to-
neladas de manzanas. El costo por tonelada de fresas, uvas y manzanas es de $200, $100 y
$90, respectivamente. Cada tonelada rinde 1500 lb de jugo de fresa, 1200 lb de jugo de uva,
y 1000 lb de jugo de manzana. La bebida A es una mezcla de 1:1 de jugo de fresa y jugo de
manzana. La bebida B es una mezcla de 1:1:2 de jugo de fresa, jugo de uva y jugo de man-
zana. La bebida C es una mezcla de 2:3 de jugo de uva y jugo de manzana. Todas las bebi-
das se envasan en latas de 16 oz. (1 lb). El precio por lata es de $1.15, $1.25 y $1.20 de las
bebidas A, B y C. Desarrolle un modelo de PL para determinar la mezcla de producción
óptima de las tres bebidas, y halle la solución utilizando AMPL, Solver o TORA.

*2. Una ferretería vende bolsas de tornillos, pernos, tuercas y rondanas. Los tornillos vienen
en cajas de 100 lb y cuestan $110 cada caja; los pernos vienen en cajas de 100 lb y cuestan
$150 cada una; las tuercas vienen en cajas de 80 lb y cada una cuesta $70, y las rondanas
vienen en cajas de 30 lb y su costo es de $20 cada caja. La bolsa debe pesar por lo menos
1 lb e incluir, en peso, por lo menos 10% de tornillos y 25% de pernos; no más de 15% de
tuercas y cuando mucho 10% de rondanas. Para balancear la bolsa, la cantidad de pernos
no puede exceder a la de tuercas o la de rondanas. El peso de un perno es 10 veces el de
una tuerca, y 50 veces el de una rondana. Desarrolle un modelo de PL para determinar la
combinación óptima de la bolsa, y halle la solución utilizando AMPL, Solver o TORA.

3. All-Natural Coop fabrica tres cereales, A, B y C, a partir de cuatro ingredientes: copos de
avena, pasas, coco rayado y almendras fileteadas. Las disponibilidades diarias de los in-
gredientes son 5 toneladas, 2 toneladas, 1 tonelada y 1 tonelada, respectivamente. Los
costos correspondientes por tonelada son $100, $120, $110 y $200. El cereal A es una
mezcla de 50:5:2 de avena, pasas y almendras. El cereal B es una mezcla de 60:2:3 de
avena, coco y almendras. El cereal C es una mezcla de 60:3:4:2 de avena, pasas, coco y al-
mendras. Los cereales se producen en tamaños jumbo de 5 lb. All-Natural vende los ce-

x11, x12, x13, x21, x22, x23 Ú 0

 82x13 + 98x23 Ú 92(x13 + x23)

 82x12 + 98x22 Ú 89(x12 + x22)

 82x11 + 98x21 Ú 87(x11 + x21)

 x13 + x23 … 40,000

 x12 + x22 … 30,000

 x11 + x21 … 50,000
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reales A, B y C a $2, $2.50 y $3.00 por caja, respectivamente. La demanda diaria mínima
de los cereales A, B y C es de 500, 600 y 500 cajas, respectivamente. Desarrolle un modelo
de PL para determinar la mezcla de producción óptima de los cereales, así como las can-
tidades asociadas de ingredientes, y halle la solución utilizando AMPL, Solver o TORA.

4. Una refinería fabrica dos tipos de combustible para avión, F1 y F2, mezclando cuatro tipos de
gasolina, A, B, C y D. El combustible F1 incluye las gasolinas A, B, C y D en la proporción
1:1:2:4, y el combustible F2 incluye la proporción 2:2:1:3. Los límites de abasto de A, B, C y D
son 1000, 1200, 900 y 1500 barriles/día, respectivamente. Los costos por barril de las gasolinas
A, B, C y D son $120, $90, $100 y $150, respectivamente. Las combustibles F1 y F2 se venden
a $200 y $250 por barril, respectivamente. La demanda mínima de F1 y F2 es de 200 y 400 ba-
rriles/día, respectivamente. Desarrolle un modelo de PL para determinar la mezcla de pro-
ducción óptima de F1 y F2, y halle la solución utilizando AMPL, Solver o TORA.

*5. Una compañía petrolera destila dos tipos de petróleo crudo, A y B, para producir gasoli-
na regular y premium, y combustible para gasavión. La disponibilidad diaria de petróleo
crudo y la demanda mínima de los productos finales están limitadas. Si la producción no
es suficiente para satisfacer la demanda, proveedores externos surten la cantidad faltante
con una penalización. La producción excedente no se vende de inmediato y se incurre en
un costo de almacenamiento. La siguiente tabla proporciona los datos de la situación:

Fracción de rendimiento por barril

Crudo Regular Premium Gasavión Precio/barril ($)) Barriles/día

Crudo A .20 .1 .25 30 2500
Crudo B .25 .3 .10 40 3000
Demanda (barriles/día) 500 700 400
Ingresos ($/barril) 50 70 120
Costo de almacenamiento de la

producción excedente ($/barril) 2 3 4
Penalización por la demanda

no satisfecha ($/barril) 10 15 20

Desarrolle un modelo de PL para determinar la mezcla de productos óptima para la refi-
nería, y halle la solución utilizando AMPL, Solver o TORA.

6. En la situación de la refinería del problema 5, suponga que de la unidad de destilación
resultan los productos intermedios nafta y aceite ligero. Un barril de crudo A produce .35
barriles de nafta y .6 barriles de aceite ligero, y un barril de crudo B produce .45 barriles
de nafta y .5 barriles de aceite ligero. La nafta y el aceite ligero se mezclan para producir
los tres productos de gasolina finales: Un barril de gasolina regular tiene una proporción
de mezcla de 2:1 (nafta a aceite ligero); un barril de gasolina premium tiene una rela-
ción de mezcla de 1:1, y un barril de combustible para avión tiene una proporción de
mezcla de 1:2. Desarrolle un modelo de PL para determinar la mezcla de producción 
óptima y halle la solución utilizando AMPL, Solver o TORA.

7. Hawaii Sugar Company produce azúcar morena, azúcar procesada (blanca), azúcar glas,
y melazas a partir del jarabe de caña de azúcar. La compañía compra 4000 toneladas de
jarabe semanalmente y la contratan para que suministre cada semana un mínimo de 25
toneladas de cada tipo de azúcar. El proceso de producción se inicia con la fabricación de
azúcar morena y melaza a partir del jarabe. Una tonelada de jarabe produce .3 toneladas
de azúcar morena y .1 tonelada de melaza. El azúcar blanca resulta de procesar el azúcar
morena. Se requiere una tonelada de azúcar morena para producir .8 toneladas de azúcar
blanca. El azúcar glas se produce a partir del azúcar blanca mediante un proceso de mo-
lienda especial cuya eficiencia de conversión es de 95% (una tonelada de azúcar blanca
produce .95 toneladas de azúcar glas). Las utilidades por tonelada de azúcar morena,
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azúcar blanca y melaza son $150, $200, $230 y $35, respectivamente. Formule el problema
como un programa lineal, y determine el programa de producción semanal utilizando
AMPL, Solver o TORA.

8. La refinería Shale Oil mezcla dos tipos de petróleo, A y B, para producir dos gasolinas de
alto octanaje, I y II. Los petróleos A y B se producen a las razones máximas de 450 y 700
barriles/hora, respectivamente. Los octanajes correspondientes son 98 y 89, y las presio-
nes de vapor son de 10 y 8 lb/pulg2. La gasolina I y la gasolina II deben tener octanajes de
por lo menos 91 y 93, respectivamente. La presión de vapor asociada con ambos produc-
tos no deberá exceder las 12 lb/pulg2. Las utilidades por barril de las gasolinas I y II son
de $7 y $10, respectivamente. Desarrolle un modelo de PL para determinar la tasa de
producción óptima de las gasolinas I y II y sus proporciones de mezcla de los petróleos A
y B. Determine la solución con AMPL, Solver o TORA (Sugerencia: La presión de vapor,
al igual que el octanaje, es el promedio ponderado de las presiones de vapor de los petró-
leos mezclados.)

9. Una fundidora de acero, aluminio y hierro colado produce dos tipos de lingotes de metal,
I y II, con límites específicos en el contenido de aluminio, grafito y silicio. En el proceso
de fundición pueden usarse briquetas de aluminio y silicio para satisfacer las especifica-
ciones deseadas. Las siguientes tablas establecen las especificaciones del problema:

Desarrolle un modelo de PL para determinar la mezcla óptima que la fundidora debe
fundir, y determine la solución con AMPL, Solver o TORA.

10. Se fabrican dos aleaciones, A y B, con cuatro metales I, II, III y IV de acuerdo con las si-
guientes especificaciones:

Contenido (%)

Elemento de entrada Aluminio Grafito Silicio Costo/tonelada ($) Disponibles (toneladas/día)

Chatarra de acero 10 5 4 100 1000
Chatarra de alumnio 95 1 2 150 500
Chatarra de hierro colado 0 15 8 75 2500
Briqueta de aluminio 100 0 0 900 Cualquier cantidad
Briqueta de silicio 0 0 100 380 Cualquier cantidad

Lingote I Lingote II

Ingrediente Mínimo (%) Máximo (%) Mínimo (%) Máximo (%)

Aluminio 8.1 10.8 6.2 8.9
Grafito 1.5 3.0 4.1 q
Silicio 2.5 q 2.8 4.1

Demanda (toneladas/día) 130 250

Aleación Especificaciones Precio de venta ($)

A Máximo 80% de I 200
Máximo 30% de II
Mínimo 50% de IV

B Entre 40 y 60% de II 300
Mínimo 30% de III
Máximo 70% de IV
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Los cuatro metales se extraen de tres minerales de acuerdo con los siguientes datos:

Desarrolle un modelo de PL para determinar cuánto debe producirse de cada tipo, y determi-
ne la solución utilizando AMPL, Solver o TORA. (Sugerencia: Sean xkj las toneladas de mi-
neral i asignadas a la aleación k, y defina wk como las toneladas de aleación k producidas).

2.4.6 Aplicaciones de PL adicionales 

Las secciones anteriores demostraron aplicaciones de PL representativas en cinco
áreas. El conjunto de problemas 2.4F en esta sección proporciona áreas de aplicación
adicionales, que van desde agrícolas hasta militares.

CONJUNTO DE PROBLEMAS 2.4F

1. Asignación de espacios de anaquel. Una tienda de abarrotes debe decidir el espacio de
anaquel que se asignará a cada uno de los cinco tipos de cereales para el desayuno. La
demanda diaria máxima es de 100, 85, 140, 80 y 90 cajas, respectivamente. El espacio de
anaquel en pulgadas cuadradas para las cajas es de 16, 24, 18, 22 y 20. El espacio de ana-
quel total disponible es de 5000 pulg2. La utilidad por unidad es de $1.10, $1.30, $1.08,
$1.25 y $1.20. Determine la asignación de espacio óptimo para los cinco cereales.

2. Votación. En cierto condado del estado de Arkansas, en la boleta se presentan cuatro op-
ciones a elegir: Construir nuevas carreteras, incrementar el control de armas, aumentar
subsidios a granjas y elevar el impuesto a la gasolina. El condado comprende 100,000 vo-
tantes urbanos, 250,000 votantes suburbanos, y 50,000 votantes rurales, todos con varia-
bles de apoyo y oposición a los temas de elección. Por ejemplo, los votantes rurales se
oponen al control de armas y al impuesto a la gasolina, sin embargo están a favor de la
construcción de carreteras y de los subsidios a granjas. El condado está planeando una
campaña publicitaria de TV con un presupuesto de $100,000 a un costo de $1500 por
anuncio. La siguiente tabla resume el impacto de un solo anuncio en función de la canti-
dad de votos a favor y en contra de las diferentes opciones en la boleta.

Constituyentes (%)

Mineral
Cantidad máxima

(toneladas) I II III IV Otros

Precio/
tonelada ($)

1 1000 20 10 30 30 10 30
2 2000 10 20 30 30 10 40
3 3000 5 5 70 20 0 50

Cantidad esperada de votos a favor (1)
y votos en contra (2) por anuncio

Tema Urbanos Suburbanos Rurales

Nuevas carreteras 30,000- 60,000+ 30,000+
Control de armas 80,000+ 30,000+ 45,000-
Control de smog 40,000+ 10,000+ 0
Impuesto a la gasolina 90,000+ 0 25,000-

Una opción será ganadora si acumula el 51% de los votos. ¿Qué opción será aprobada
por los votantes, y cuántos anuncios deben asignarse?
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3. Balanceo de una línea de ensamble. Un producto se ensambla a partir de tres piezas dife-
rentes. Dos departamentos fabrican las piezas a diferentes ritmos de producción, como se
indica en la siguiente tabla:

Determine la cantidad máxima de unidades de ensamble final que pueden producirse a
la semana. (Sugerencia: Unidades mínimas de ensamble {unidades de la pieza 1, unidades
de la pieza 2, y unidades de la pieza 3}. Maximizar z � mín {x1, x2} es equivalente a máx z
sujeta a z # x1 y z # x2.)

4. Control de contaminación. Se pulverizan y mezclan tres tipos de carbón, C1, C2 y C3 para
producir 50 toneladas por hora necesarias para accionar una planta generadora de elec-
tricidad. La combustión del carbón emite óxido de azufre (en partes por millón) la cual
debe satisfacer las especificaciones de EPA (por sus siglas en inglés) de un máximo de
2000 partes por millón. La siguiente tabla resume los datos de la situación.

Capacidad
Ritmo de producción (unidades/h)

Departamento (h/sem) Pieza 1 Pieza 2 Pieza 3

1 100 8 5 10
2 80 6 12 4

Determine la mezcla óptima de los carbones.
*5. Control de semáforos, Stark y Nichols (1972). El tránsito automotriz de tres carreteras,

H1, H2 y H3, debe detenerse y esperar una luz verde antes de salir de una carretera de
cuota. Las cuotas son de $3, $4 y $5 para los autos que salen de H1, H2 y H3, respectiva-
mente. Las proporciones de flujo de H1, H2 y H3 son de 500, 600 y 400 autos por hora. El
ciclo de los semáforos no debe exceder de 2.2 minutos, y la luz verde en cualquier carre-
tera debe permanecer encendida por lo menos durante 25 segundos. La luz amarilla per-
manece encendida durante 10 segundos. La caseta de cobro puede atender un máximo de
510 automóviles por hora. Suponiendo que los automóviles no se mueven con la luz ama-
rilla, determine el intervalo óptimo para la luz verde en las tres carreteras que maximi-
zará el ingreso de la caseta de cobro por ciclo de tránsito.

6. Ajuste de una línea recta a datos empíricos (Regresión). En una clase de mecanografía de
10 semanas para principiantes, la velocidad promedio por estudiante (en palabras por mi-
nuto) en función de la cantidad de semanas de clase se da en la siguiente tabla:

Determine los coeficientes a y b en la relación de línea recta, , que mejor 
se ajuste a los datos proporcionados. (Sugerencia: Minimice la suma del valor absoluto
de las desviaciones entre la teórica y la y empírica. Min|w| equivale a min z sujeta a 
z $ w y z $ � w, z $ 0. Por otra parte, min |w| equivale a min (z1

� z2) sujeta a w � z1

� z2 con z+, z2 $ 0.)
7. Nivelación del terreno para una carretera nueva, Stark y Nichols (1972). El Departamento

de Carreteras de Arkansas está planeando una nueva carretera de 10 millas por un terre-
no accidentado como se muestra en el perfil que se muestra en la figura 2.13. El ancho

yN

yN = ax + b

C1 C2 C3

Azufre (partes por millón) 2500 1500 1600
Capacidad del pulverizador (ton/h) 30 30 30
Costo por tonelada $30 $35 $33

Semana, x 1 2 3 4 5 6 7 8 9 10
Palabras por minuto, y 5 9 15 19 21 24 26 30 31 35
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del terreno de construcción es aproximadamente de 50 yardas. Para simplificar la situa-
ción, el perfil del terreno se puede reemplazar por una función escalonada, como se
muestra en la figura. Utilizando maquinaria pesada, la tierra removida del terreno alto se
transporta para rellenar áreas bajas. También hay dos fosos de mina, I y II, ubicados en
los extremos del tramo de 10 millas, de donde se puede extraer más tierra si es necesario.
El foso I tiene una capacidad de 20,000 yardas cúbicas, y la del foso II es de 15,000 yardas
cúbicas. Los costos de extracción de tierra de los fosos I y II, respectivamente, son de
$1.50 y $1.90 por yarda cúbica. El costo de transportación por yarda cúbica por milla es
de $.15, y el costo de utilizar la maquinaria pesada para cargar los camiones es de $.20
por yarda cúbica. Esto significa que transportar una yarda cúbica 1 milla desde el foso I
costará un total de (1.5 � .20) � 1 3 .15 � $1.85 y transportar una yarda cúbica 1 milla
desde una colina hasta el área de relleno costará .20 � 1 3 .15 � $.35. Desarrolle un plan
de costo mínimo para nivelar el tramo de 10 millas.

8. Planificación militar, Shepard and Associates (1988). El ejército rojo (R) está tratando de
invadir el territorio defendido por el ejército azul (B), el cual tiene tres líneas de defensa
y 200 unidades de combate regulares, y además puede echar mano de una reserva de 200
unidades. El ejército rojo planea atacar en dos frentes, el norte y el sur, y el ejército azul
estableció tres líneas de defensa este-oeste, I, II y III. El propósito de las líneas de defen-
sa 1 y 2 es demorar el ataque del ejército rojo por lo menos 4 días en cada línea para ma-
ximizar la duración total de la batalla. El tiempo de avance del ejército rojo se calcula
mediante la siguiente fórmula empírica:

Las constantes a y b son una función de la línea de defensa y el frente norte/sur,
como lo muestra la siguiente tabla:

Duración de la batalla en días = a + b a Unidades azules
Unidades rojas

b

�20 

�10 

0 

�100 

�20 

1 3 5 7 8 9

10

Milla

FIGURA 2.13

Perfil del terreno para el problema 7

a b

I II III I II III

Frente norte .5 .75 .55 8.8 7.9 10.2
Frente sur 1.1 1.3 1.5 10.5 8.1 9.2
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Las unidades de reserva del ejército azul pueden usarse sólo en las líneas de defensa II y
III. La asignación de unidades por parte del ejército rojo a las tres líneas de defensa se da
en la siguiente tabla:

¿Cómo deberá asignar sus recursos el ejército azul entre las tres líneas de defensa
y los frentes norte y sur?

9. Gestión de calidad del agua, Stark and Nicholes (1972). Cuatro ciudades descargan aguas
residuales en la misma corriente de agua. La ciudad 1 está corriente arriba, la ciudad 2 co-
rriente abajo; luego la ciudad 3, y finalmente la ciudad 4. Medidas a lo largo de la corriente
de agua, las ciudades están aproximadamente a 15 millas una de otra. Una medida de la
cantidad de contaminantes en las aguas residuales es la demanda de oxígeno bioquímico
(BOD, por sus siglas en inglés), lo cual es el peso del oxígeno requerido para estabilizar
los constituyentes de desecho en el agua. Una BOD más alta indica una peor calidad del
agua. La Agencia de Protección Ambiental (EPA, por sus siglas en inglés) establece una
carga de BOD permisible máxima, expresada en lb de BOD por galón. La eliminación de
contaminantes del agua residual se realiza en dos formas: (1) actividad de descomposición
natural estimulada por el oxígeno en el aire, y (2) plantas de tratamiento en los puntos de
descarga antes de que los desechos lleguen a la corriente de agua. El objetivo es determi-
nar la eficiencia más económica de cada una de las cuatro plantas que reducirán la BOD a
niveles aceptables. La eficiencia máxima posible de la planta es de 99%.

Para demostrar los cálculos implicados en el proceso, considere las siguientes defi-
niciones para la planta 1:

Q1 � Velocidad de flujo de la corriente (gal/h) en el tramo de 15 millas que con-
duce a la ciudad 2 

p1 � Tasa de descarga de BOD (en lb/h)

x1 � eficiencia de la planta 1 (# .99) 

b1 � carga de BOD máxima permisible en el tramo 1-2 (en lb de BOD/gal) 

Para satisfacer el requerimiento de carga de BOD en el tramo 1-2, debemos tener

Del mismo modo, la restricción de carga de BOD en el tramo 2-3 se escribe como 

o bien

El coeficiente r12 (<1) representa la fracción de desechos eliminada en el tramo 1-2 por
descomposición. Para el tramo 2-3, la restricción es

(1 - r23)[(1 - r12)p1(1 - x1) + p2(1 - x2)] + p3(1 - x3) … b3Q3

(1 - r12)p1(1 - x1) + p2(1 - x2) … b2Q2

11 - r122aTasa de descarga de BOD
en el tramo 1-2

b + aTasa de descarga de BOD
en el tramo 2-3

b … b2Q2

p1(1 - x1) … b1Q1

Cantidad de unidades de ataque del ejército rojo

Línea de defensa 1 Línea de defensa 2 Línea de defensa 3

Frente norte 30 60 20
Frente sur 30 40 20
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Determine la eficiencia más económica para las cuatro plantas aplicando los si-
guientes datos (la fracción de BOD eliminada por descomposición es de 6% en los cua-
tro tramos):

Tramo 1–2 
(i = 1)

Tramo 2–3 
(i = 2)

Tramo 2–3 
(i = 3)

Tramo 3–4 
(i = 4)

(gal/h)Qi 215,000 220,000 200,000 210,000
(lb/h)pi 500 3000 6000 1000
(lb de BOD/gal)bi .00085 .0009 .0008 .0008

Costo del tratamiento
($/lb de BOD eliminada) .20 .25 .15 .18

10. Estructura de carga, Stark and Nicholes (1972). La grúa elevada que se muestra en la figu-
ra 2.14 con dos yugos elevadores, se utiliza para transportar concreto mezclado a un te-
rreno para colar barreras de concreto. La cubeta de concreto cuelga a la mitad del yugo.
Los rieles que sostienen los extremos de la grúa pueden soportar un máximo de 25 kips
cada uno, y cada cable del yugo tienen una capacidad de 20 kips. Determine la capacidad
de carga máxima, W1 y W2. (Sugerencia: En equilibrio, la suma de los momentos con res-
pecto a cualquier punto de la viga o el yugo es cero.)

11. Asignación de aviones a rutas. Considere el problema de asignar aviones a cuatro rutas,
de acuerdo con los siguientes datos:

FIGURA 2.14

Grúa elevada con dos yugos (problema 11)

Viga de la grúa

W1 W2

2 pies 6 pies 12 pies 2 pies8 pies

Yugo 1 Yugo 2

Capacidad Capacidad
Cantidad de viajes diarios en la ruta

Tipo de avión (pasajeros) de aviones 1 2 3 4

1 50 5 3 2 2 1
2 30 8 4 3 3 2
3 20 10 5 5 4 2

Cantidad diaria
de clientes 1000 2000 900 1200
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Los costos asociados, incluidas las penalizaciones por la pérdida de clientes debido
a la no disponibilidad de espacio, son

Determine la asignación óptima de aviones a las rutas, así como la cantidad asocia-
da de viajes.
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Costo de operación ($) por viaje en la ruta

Tipo de avión 1 2 3 4

1 1000 1100 1200 1500
2 800 900 1000 1000
3 600 800 800 900
Penalización ($) por

pasajero perdido 40 50 45 70
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Aplicación de la vida real-Optimización de la producción de válvulas cardiacas

Las válvulas cardiacas biológicas de diferentes tamaños son bioprótesis fabricadas a
partir de corazones porcinos para implantación en humanos. Por el lado del suministro,
los corazones porcinos no pueden “producirse” en tamaños específicos. Por otra parte,
el tamaño exacto de una válvula fabricada no puede determinarse hasta que se proce-
sa el componente biológico del corazón del cerdo. En consecuencia, puede haber más
existencias de algunos tamaños y menos de otros. Se desarrolló un modelo de PL para
reducir la cantidad de los tamaños de los que hay más existencias e incrementar la can-
tidad de los tamaños cuyas existencias son menores. (Los detalles de este estudio se
presentan en el caso 2 del capítulo 26, en inglés, del sitio web).

3.1 MODELO DE PL EN FORMA DE ECUACIÓN

El desarrollo de los cálculos con el método simplex se facilita si se imponen dos reque-
rimientos a las restricciones de programación lineal.

1. Todas las restricciones son ecuaciones con lado derecho no negativo.
2. Todas las variabzzles son no negativas1

Conversión de las desigualdades en ecuaciones con lado derecho no negativo. En un
modelo de PL económico, el lado derecho representa la disponibilidad de un recurso, y
el izquierdo el uso del recurso por todas las actividades del modelo (variables). La
cantidad excedente del lado derecho respecto de izquierdo da entonces la cantidad no
utilizada del recurso.

CAPÍTULO 3

Método simplex y análisis
de sensibilidad

1 Todos los paquetes comerciales (y TORA) aceptan directamente las restricciones de desigualdad, el lado
derecho no negativo y las variables irrestrictas. Cualquier condición previa de las restricciones y las variables
se realiza internamente en el software antes de que el método simplex resuelva el problema.
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Para convertir una desigualdad (#) en ecuación se agrega una variable de holgura
al lado izquierdo de la restricción. Por ejemplo, la restricción M1 del modelo de Reddy
Mikks (ejemplo 2.1-1) se convierte en ecuación como sigue

La variable no negativa s1 es la holgura (o cantidad no utilizada) del recurso M1.
A continuación, una restricción ($) establece un límite inferior en las actividades

económicas de la programación lineal, así que la cantidad en la cual el lado izquierdo
excede el límite mínimo representa un superávit. Así pues, la conversión de ($) a (5)
se logra restando una variable de superávit no negativa del lado izquierdo de la desi-
gualdad. Por ejemplo, en el modelo de la dieta (ejemplo 2.2-2), la variable de exceso S1
($ 0) convierte la restricción de la mezcla de alimentos ($) en la ecuación.

El único requerimiento que falta es que el lado derecho de la ecuación resultan-
te sea no negativo. Si el lado derecho resulta negativo, el requerimiento se satisface
multiplicando ambos lados de la ecuación por 21.

CONJUNTO DE PROBLEMAS 3.1A

*1. En el modelo de Reddy Mikks (ejemplo 2.2-1), considere la solución factible x1 5 3 tone-
ladas y x2 5 1 tonelada. Determine el valor de las holguras asociadas para las materias
primas M1 y M2.

2. En el modelo de la dieta (ejemplo 2.2-2), determine  el superávit de alimento compuesto
de 500 lb de maíz y 600 lb de soya.

3. Considere la siguiente desigualdad

Demuestre que multiplicar ambos lados de la desigualdad por 21 y luego convertir la de-
sigualdad resultante en ecuación es lo mismo que convertirla primero en ecuación y
luego multiplicar ambos lados por 21.

*4. Dos productos diferentes, P1 y P2 pueden ser fabricados por una o dos máquinas diferen-
tes, M1 y M2. El tiempo de procesamiento de cualquier producto en cualquier máquina
es el mismo. La capacidad diaria de la máquina M1 es de 200 unidades (de P1 o de P2, o
una combinación de ambos), y la capacidad diaria de la máquina M2 es de 250 unidades.
El supervisor del taller desea balancear el programa de producción de las dos máquinas
de modo que la cantidad de unidades producidas en una máquina no sea mayor a 5 uni-
dades de la cantidad producida en la otra. La utilidad por unidad de P1 es de $10 y la de
P2 es de $15. Plantee el problema como una PL en forma de ecuación.

5. Muestre cómo puede presentarse la siguiente función objetivo en forma de ecuación:

(Sugerencia: |a| # b equivale a a # b y a $ 2b.) 

6. Demuestre que las m ecuaciones 

a
n

j= 1
 aijxj = bi,  i = 1, 2, . . . , m

 x1, x2, x3 Ú 0
 Minimizar z =  máx E |x1 - x2 + 3x3|,  | -x1 + 3x2 - x3|F

10x1 - 3x2 Ú -5

x1 + x2 - S1 = 800, S1 Ú 0

6x1 + 4x2 + s1 = 24,  s1 Ú 0



3.1 Modelo de PL en forma de ecuación 71

equivalen a las siguientes m 1 1 desigualdades:

Manejo de variables irrestrictas. El uso de una variable irrestricta en un modelo de PL
se demuestra en el modelo de nivelación de producción durante múltiples periodos del
ejemplo 2.4-4, donde la variable irrestricta Si representa la cantidad de trabajadores con-
tratados o despedidos en el periodo i. En el mismo ejemplo, explicamos que la variable
irrestricta puede ser reemplazada por dos variables no negativas mediante la sustitución

En este caso, representa la cantidad de trabajadores contratados y la de trabaja-
dores despedidos. Como se explicó en el ejemplo 2.4-4, es imposible (tanto intuitiva
como matemáticamente) que asuman valores positivos al mismo tiempo.

CONJUNTO DE PROBLEMAS 3.1B

1. El restaurante de comida rápida McBurger vende hamburguesas cuarto de libra y ham-
burguesas con queso. Una hamburguesa cuatro de libra se prepara con un cuatro de libra
de carne y una hamburguesa con queso se prepara con sólo .2 lb de carne. El restaurante
inicia el día con 200 lb de carne pero puede pedir más a un costo adicional de 25 centavos
por libra para cubrir el costo de entrega. Toda la carne que sobra al final del día se dona a
instituciones de caridad. Las utilidades de McBurger son de 20 centavos por hamburgue-
sa cuarto de libra y de 15 centavos por hamburguesa con queso. McBurger no espera ven-
der más de 900 hamburguesa en cualquier día. ¿Cuántas hamburguesas de cada tipo debe
planear McBurger para el día? Resuelva el problema utilizando TORA, Solver o AMPL.

2. En un centro de maquinado se fabrican dos productos. Los tiempos de producción por
unidad de los productos 1 y 2 son de 10 y 12 minutos, respectivamente, El tiempo de má-
quina regular total es de 2500 minutos por día. En cualquier día, el fabricante puede pro-
ducir entre 150 y 200 unidades del producto 1, pero no más de 45 unidades del producto
2. Se puede utilizar tiempo extra para satisfacer la demanda a un costo adicional de $.50
por minuto. Suponiendo que las utilidades unitarias de los productos 1 y 2 son de $6.00 y
$7.50, respectivamente, formule el problema como un modelo de PL, luego resuélvalo
con TORA, Solver o AMPLS para determinar el nivel de producción óptimo de cada
producto así como también cualquier tiempo extra necesario en el centro.

*3. JoShop fabrica tres productos cuyas utilidades unitarias son de $2, $5 y $3, respectiva-
mente. La compañía presupuestó 80 horas de mano de obra y 65 horas de tiempo de má-
quina para la producción de los tres productos. Los requerimientos de mano de obra por
unidad de los productos 1, 2 y 3 son de 2, 1 y 2 horas, respectivamente. Los requerimien-
tos de tiempo de máquina por unidad son 1, 1 y 2 horas. JoShop considera las horas de
mano de obra y máquina presupuestadas como metas que pueden ser sobrepasadas, si es
necesario, pero a un costo adicional de $15 por hora de mano de obra y $10 por hora de
máquina. Formule el problema como una PL  y determine su solución óptima aplicando
TORA, Solver o AMPL.

4. En una PL en la cual hay algunas variables irrestrictas, una transformación del tipo
duplicará la cantidad correspondiente de variables no negativas.xj = xj

- - xj
+, xj

-,xj
+ Ú 0

Si
- y Si

+

Si
+Si

-

Si = Si
- - Si

+, Si
- Ú 0, Si

+ Ú 0

a  
n

j= 1
£am
i= 1
aij≥ xj Ú a

m

i= 1
bi

a
n

j= 1
aijxj … bi,  i = 1, 2, . . . , m
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En su lugar, podemos reemplazar k variables irrestrictas con exactamente k 1 1 variables
no negativas por medio de la sustitución . Use TORA, Solver o
AMPL para demostrar que los dos métodos dan la misma solución de la siguiente PL:

sujeto a 

3.2 TRANSICIÓN DE LA SOLUCIÓN GRÁFICA A LA ALGEBRAICA

El desarrollo del método simplex algebraico está basado en ideas transmitidas por la
solución gráfica que se muestra en la sección 2.2. La figura 3.1 compara los dos méto-
dos. En el método gráfico el espacio de soluciones es la intersección de los semiplanos
que representan las restricciones, y en el método simplex, el espacio de soluciones está
representado por m ecuaciones lineales simultáneas y n variables no negativas.
Podemos visualizar que el espacio de soluciones gráficas tiene una infinidad de puntos
de solución, pero ¿cómo sacar una conclusión parecida a partir de la representación
algebraica del espacio de soluciones? La respuesta es que, en todas las PL no triviales,
la cantidad de ecuaciones m siempre es menor que la de variables n, por lo que se ob-
tiene una cantidad infinita de soluciones (siempre que las ecuaciones sean consisten-

x1 Ú 0,  x2,  x3  irrestricta

 2x1 + 3x2 + 2x3 = 12

 4x1 - x2 - 5x3 = 10

Maximizar z = -2x1 + 3x2 - 2x3

xj = xj
œ - w,  xj

œ, w Ú 0

FIGURA 3.1

Transición de la solución gráfica a la solución algebraica 

Método gráfico Método algebraico

Grafique todas las restricciones, incluidas 
las de no negatividad

El espacio de soluciones consta de una 
infinidad de puntos factibles

Identifique los puntos de esquina factibles 
del espacio de soluciones

Una cantidad finita de puntos de esquina 
da los candidatos para la solución óptima

Use la función objetivo para determinar 
el punto de esquina óptimo de entre todos 
los candidatos

Represente el espacio de soluciones por m 
ecuaciones en n variables y limite todas las 
variables a valores no negativos, m < n

El sistema tiene infinidad de soluciones factibles

Determine las soluciones básicas factibles 
de las ecuaciones

Una cantidad finita de soluciones factibles 
básicas da las candidatas para la solución óptima

Use la función objetivo para determinar la 
solución factible básica óptima de entre todas 
las candidatas
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tes).2 Por ejemplo, la ecuación x 1 y 5 1 tiene m 5 1 y n 5 2 y produce una infinitud de
soluciones porque cualquier punto sobre la línea recta x 1 y 5 1 es una solución.

En el espacio de soluciones algebraicas (definido por m 3 n ecuaciones, m , n),
las soluciones básicas corresponden a los puntos de esquina en el espacio de soluciones
gráficas. Se determinan igualando n 2 m variables a cero y resolviendo las m ecuacio-
nes para las m variables restantes, siempre que la solución resultante es única. Esto sig-
nifica que la cantidad máxima de puntos de esquina es

Como con los puntos de esquina, las soluciones factibles básicas definen por completo
a las candidatas para la solución óptima en el espacio de soluciones algebraicas.

Ejemplo 3.2-1

Considere la siguiente PL con dos variables 

sujeto a

La figura 3.2 proporciona el espacio de soluciones gráficas para el problema.
Algebraicamente, el espacio de soluciones de la PL está representado por las siguientes m

5 2 ecuaciones y n 5 4 variables:

Las soluciones básicas se determinan estableciendo las n 2 m 5 4 2 2 5 2 variables iguales a
cero y resolviendo las m 5 2 variables restantes. Por ejemplo, si establecemos x1 5 0 y x2 5 0, las
ecuaciones proporcionan la solución básica única

Esta solución corresponde al punto A en la figura 3.2 (convénzase de que s1 5 4 y s2 5 5 en el
punto A). Puede determinarse otro punto con s1 5 0 y s2 5 0 y resolviendo luego las dos ecua-
ciones resultantes 

La solución básica asociada es (x1 5 1, x2 5 2), o el punto C en la figura 3.2.

 x1 + 2x2 = 5

 2x1 +  x2 = 4

s1 = 4, s2 = 5

x1, x2, s1, s2 Ú 0

x1 + 2x2 + s2 = 5

2x1 + x2 + s1 = 4

x1, x2 Ú 0

x1 + 2x2 … 5

2x1 + x2 … 4

Maximizar z = 2x1 + 3x2

Cm
n =  

n!
m!(n - m)!

2 Si la cantidad de ecuaciones m es igual a la de variables n (y las ecuaciones son consistentes), el sistema
tiene exactamente una solución. Si m es mayor que n, entonces al menos las ecuaciones m 2 n deben ser re-
dundantes.
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Probablemente se pregunte cuáles variables n 2 m deben igualarse a cero en busca de un
punto de esquina específico. Sin el beneficio del espacio de soluciones gráficas (el cual está dis-
ponible a lo sumo sólo con tres variables), no podemos especificar las (n 2 m) variables cero
asociadas con un punto de esquina dado. Pero eso no nos impide enumerar todos los puntos de
esquina del espacio de soluciones. Simplemente considere todas las combinaciones en las que
n 2 m variables son iguales a cero y resuelva las ecuaciones resultantes. Una vez hecho, la solu-
ción óptima es la solución básica factible (punto de esquina) con el mejor valor objetivo.

En el ejemplo presente tenemos puntos de esquina. Si examinamos la figura
3.2, podemos ver los cuatro puntos de esquina A, B, C y D. Así que, ¿dónde están los dos restan-
tes? De hecho, los puntos E y F también son puntos de esquina; pero son no factibles, y, por con-
siguiente, no son candidatos para la solución óptima.

Para completar la transición de la solución gráfica a la algebraica, las n 2 m variables cero
se conocen como variables no básicas. Las m variables restantes se llaman variables básicas, y su
solución (obtenida resolviendo las m ecuaciones) se conoce como solución básica. La siguiente
tabla muestra todas las soluciones básicas y no básicas de este ejemplo.

C2
4 = 4!

2!2! = 6

Variables no
básicas (cero) Variables básicas Solución básica

Punto de esquina
asociado ¿Factible?

Valor
objetivo, z

(x1, x2) (s1, s2) (4, 5) A Sí 0
(x1,  s1) (x2, s2) ( )4, - 3 F No —
(x1,  s2) (x2, s1) (2.5, 1.5) B Sí 7.5
(x2, s1) (x1, s2) (2, 3) D Sí 4
(x2, s2) (x1, s1) ( )5, - 6 E No —
(s1, s2) (x1, x2) (1, 2) C Sí 8 

(óptimo)

FIGURA 3.2

Espacio de soluciones de PL del ejemplo 3.2-1

0

1

1 2 3 4 5

2

3

4

A D

C

E

B

F

x2

x1

s2  � 0

s
1  �

 0

Óptimo (x1 � 1, x2 � 2)
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Comentarios. En la ilustración anterior podemos ver que a medida que el tamaño del pro-
blema se incrementa, enumerar todos los puntos de esquina se vuelve una tarea prohibitiva. Por
ejemplo, para que m 5 10 y n 5 20, es necesario resolver conjuntos de 10 3 10
ecuaciones, una tarea abrumadora, sobre todo cuando nos damos cuenta de que una PL de
(10 3 20) es muy pequeña (las PL reales pueden incluir miles de variables y restricciones). El
método simplex atenúa esta carga computacional en forma dramática al investigar sólo un sub-
conjunto de todas las posibles soluciones factibles básicas (puntos de esquina). Esto es lo que
hace el algoritmo simplex.

CONJUNTO DE PROBLEMAS 3.2A 

1. Considere la siguiente PL:

sujeto a

(a) Exprese el problema en forma de ecuación.

(b) Determine todas las funciones básicas del problema, y clasifíquelas como factibles y
no factibles.

*(c) Use la sustitución directa en la función objetivo para determinar la solución factible
básica óptima.

(d) Compruebe gráficamente que la solución obtenida en (c) es la solución de PL ópti-
ma, y de ese modo se concluye que la solución óptima puede determinarse algebrai-
camente considerando sólo las soluciones factibles básicas.

*(e) Demuestre cómo se representan las soluciones básicas no factibles en el espacio de
soluciones gráficas.

2. Determine la solución óptima de cada una de las siguientes PL enumerando todas las so-
luciones básicas.
(a)

sujeto a

(b)
sujeto a

x1, x2,  x3, x4 Ú  0

 x1 + 2x2 + x3 + 2x4 = 4

 x1 + 2x2 - 3x3 + x4 = 4

Minimizar z = x1 + 2x2 - 3x3 - 2x4

x1, x2,  x3, x4 Ú  0

 - x1 + 2x2 + 3x3 + 4x4 … 1

 x1 + 4x2 - 2x3 + 8x4 … 2

Maximizar z = 2x1 - 4x2 + 5x3 - 6x4

x1, x2 Ú 0

 3x1 + 2x2 … 6

 x1 + 3x2 … 6

Maximizar z = 2x1 + 3x2

C10
20 = 184,756
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*3. Demuestre algebraicamente que todas las soluciones básicas de la siguiente PL son no
factibles.

sujeto a 

4. Considere la siguiente programación lineal:

sujeto a 

La conversión a la forma de ecuación implica utilizar la sustitución
Demuestre que una solución básica no puede incluir a x2

2 ni a x1
2 al mismo tiempo.

5. Considere la siguiente programación lineal:

sujeto a 

x2 no acotada

(a) Determine todas las soluciones factibles básicas del problema.

(b) Use la sustitución directa en la función objetivo para determinar la mejor solución
básica.

(c) Resuelva el problema gráficamente, y verifique si la solución obtenida en (c) es la
óptima.

3.3 MÉTODO SIMPLEX

En lugar de enumerar todas las soluciones básicas (puntos de esquina) del problema
de PL (como se hizo en la sección 3.2), el método simplex investiga sólo “algunas” de
estas soluciones. La sección 3.3.1 describe la naturaleza iterativa del método, y la sec-
ción 3.3.2 proporciona los detalles computacionales del algoritmo simplex.

x2 Ú  0

 -x1 + x2 … 4

x1 + x2 … 2

Maximizar z = x1 + 3x2

x2 = x2
- - x2

+.

x2 irrestricta

x1,  x3 Ú  0

x1 +  x2 + 4x3 = 10

-6x1 + 7x2 - 9x3 Ú 4

Maximizar z = 2x1 + 3x2 + 5x3

x1,  x2 Ú 0

 2x1 +  x2 … 16

 x1 + 2x2 … 6

Maximizar z = x1 + x2
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3.3.1 Naturaleza iterativa del método simplex

La figura 3.3 muestra el espacio de soluciones de la programación lineal del ejemplo 3.2-1.
Por lo común, el método simplex se inicia en el origen (punto A), donde x1 5 0, x2 5 0,
y el valor objetivo, z, es cero. La pregunta lógica es si un incremento en x1 y/o x2
(o ambas) no básicas por encima de sus valores actuales de cero puede mejorar (incre-
mentar) el valor de z. Podemos responder esta pregunta investigando la función objetivo:

Un incremento de x1 o x2 (o ambas) sobre sus valores actuales de cero mejorará el
valor de z. El diseño del método simplex no permite el incremento simultáneo de
las variables. En cambio, incrementa una a la vez. La variable que va a aumentar es la
que tenga mayor grado de mejora en z. En el ejemplo presente, el grado de mejora del
valor de z es de 2 unidades para x1 y de 3 para x2. Por lo tanto elegimos x2 para que
crezca (la variable con el mayor grado de mejora entre todas las variables no básicas).
La figura 3.3 muestra que el valor de x2 debe incrementarse hasta que se llegue al
punto de esquina B (recordemos que no llegar al punto de esquina B no es una opción
porque un candidato para el óptimo debe ser un punto de esquina). En el punto B, el
método simplex incrementará el valor de x1 para llegar al punto de esquina mejorado
C, el cual es el óptimo.

Maximizar z = 2x1 + 3x2

FIGURA 3.3

Proceso iterativo del método simplex
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Óptimo (x1 � 1, x2 � 2)
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La trayectoria del algoritmo simplex se define como ASBSC. Cada punto de es-
quina a lo largo de la trayectoria está asociado con una iteración. Es importante hacer
notar que el método simplex se mueve a lo largo de los bordes del espacio de soluciones,
lo cual significa que el método no puede cruzarlo, es decir, irse directamente de A a C.

CONJUNTO DE PROBLEMAS 3.3A

1. En la figura 3.3, suponga que la función objetivo se cambia a

Identifique la trayectoria del método simplex y las variables básicas y no básicas que la
definen.

2. Considere la solución gráfica del modelo de Reddy Mikks dado en la figura 2.2.
Identifique la trayectoria del método simplex y las variables no básicas que la definen.

*3. Considere el espacio de soluciones PL tridimensional que se muestra en la figura 3.4,
cuyos puntos extremos factibles son A, B,…, y J.
(a) ¿Cuáles de los siguientes pares de puntos de esquina no pueden representar itera-

ciones simplex sucesivas: (A, B), (B, D), (E, H) y (A, I)? Explique la razón.
(b) Suponga que las iteraciones simplex se inician en A y que el óptimo ocurre en H.

Indique si alguna de las siguientes trayectorias son no legítimas para el algoritmo
simplex, y explique la razón.
(i) ASBSGSH

(ii) ASESISH 

(iii) ASCSESBSASDSGSH

4. Para el espacio de soluciones en la figura 3.4 todas las restricciones son del tipo #, y
todas las variables x1, x2 y x3 son no negativas. Suponga que s1, s2, s3 y s4 ($ 0) son las hol-
guras asociadas con las restricciones representadas por los planos CEIJF, BEIHG,
DFJHG e IJH, respectivamente. Identifique las variables básicas y no básicas asociadas
con cada punto de esquina factible del espacio de soluciones.

Maximizar z = 8x1 + 4x2

FIGURA 3.4

Espacio de soluciones del problema 3,
conjunto 3.2b

F
J
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A

A: (0, 0, 0)
B: (1, 0, 0)
C: (0, 1, 0)
D: (0, 0, 1)
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H

G
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x1

x2

x3
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5. Para cada una de las funciones objetivo dadas y el espacio de soluciones de la figura 3.4,
seleccione la variable no básica que conduce al siguiente punto de esquina simplex, y de-
termine la mejora asociada de z.

*(a)
(b)
(c)
(d)

3.3.2 Detalles de cálculo del algoritmo simplex

En esta sección se explican los detalles de cálculo de una iteración simplex por medio
de un ejemplo numérico.

Ejemplo 3.3-1

Considere el modelo de Reddy Mikks (ejemplo 2.1-1) expresado en forma de ecuación:

sujeto a

6x1 1 4x2 1 s1 5 24 (materia prima M1)

x1 1 2x2 1 s2 5 6 (materia prima M2)

2 x1 1 x2 1 s3 5 1 (Límite del mercado)

x2 1s4 5 2 (Límite de la demanda)

Las variables s1, s2, s3 y s4 son las holguras asociadas con las restricciones respectivas.
A continuación escribimos la ecuación objetivo como

De esta manera, la tabla inicial simplex se representa como sigue:

z - 5x1 - 4x2 = 0

 x1, x2, s1, s2, s3, s4 Ú 0

Maximizar z = 5x1 + 4x2 + 0s1 + 0s2 + 0s3 + 0s4

Maximizar z = x1 + x2 + x3

Maximizar z =  -2x1 + 7x2 + 2x3

Maximizar z =  5x1 + 2x2 + 4x3

Maximizar z =  x1 - 2x2 + 3x3

Básica z x1 x2 s1 s2 s3 s4 Solución

z 1 -5 -4 0 0 0 0 0 Fila z

s1 0 6 4 1 0 0 0 24 Fila s1
s2 0 1 2 0 1 0 0 6 Fila s2
s3 0 -1 1 0 0 1 0 1 Fila s3
s4 0 0 1 0 0 0 1 2 Fila s4

El diseño de la tabla simplex provee automáticamente la solución en la iteración inicial. La
solución se inicia en el origen (x1, x2) 5 (0,0), por lo que (x1, x2) se definen como las variables no
básicas y (s1, s2, s3, s4) como las variables básicas. La variable objetivo z y las variables básicas
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aparecen en la columna de la extrema izquierda (Básica). Los lados derechos de las ecuaciones
del modelo dan sus valores, como se muestra en la columna de la extrema derecha (Solución) de
la tabla; es decir, z 5 0, s1 5 24, s2 5 6, s3 5 1, s4 5 2. El resultado puede verse igualando las va-
riables no básicas (x1, x2) a cero en todas las ecuaciones y también observando la configuración
de matriz identidad especial de los coeficientes de las variables básicas (todos los elementos en
las diagonales son 1, y todos los elementos fuera de las diagonales son 0).

¿Es óptima la solución inicial? La función objetivo z 5 5x1 1 4x2 muestra que la solución
puede mejorarse si se incrementa el valor de la variable x1 o de la x2 no básica por encima de cero.
Siguiendo el argumento de la sección 3.3.1, x1 tiene que incrementarse porque tiene el coeficien-
te objetivo más positivo. De forma equivalente, en la tabla simplex donde la función objetivo
aparece como z 2 5x1 2 4x2 5 0, la variable seleccionada es la variable no básica con el coefi-
ciente más negativo en la ecuación objetivo. Esta regla define la llamada condición de optimali-
dad simplex. En la terminología del algoritmo simplex, x1 se conoce como la variable de entrada
porque ingresa la solución básica.

Si x1 es la variable de entrada, una de las variables básicas actuales debe salir; es decir, se
vuelve no básica a un nivel cero (recordemos que la cantidad de variables no básicas debe ser
siempre n 2 m). La mecánica para determinar la variable de salida implica calcular las relacio-
nes del lado derecho de las ecuaciones (columna Solución) con los coeficientes de restricción es-
trictamente positivos (imposibilitando así al cero) bajo la variable de entrada, x1, como se muestra
en la siguiente tabla:

Básica
x1

entrante Solución Relación (o intersección)

s1 6 24 x1 =  24
6  = 4 ; mínimo

s2 1 6 x1 =  61 = 6

s3 -1 1 (denominador negativo, ignorar)x1 =  1
- 1 = -1

s4 0 2 (denominador cero, ignorar)x1 =  20 = q

Conclusión: x1 entra (en el nivel 4) y x2 sale (en el nivel cero)

¿Cómo determinan las relaciones calculadas la variable de salida y el valor de la variable de
entrada? La figura 3.5 muestra que las relaciones calculadas son en realidad las intersecciones
de las líneas de restricción con el eje x1 (variable de entrada). Podemos ver que el valor de x1
debe incrementarse hasta la intersección no negativa mínima con el eje x1 (5 4) para alcanzar el
punto de esquina B. Cualquier incremento más allá de B no es factible. En el punto B, la varia-
ble básica actual s1 asociada con la restricción 1 asume un valor de cero y se transforma en la va-

riable de salida. La regla asociada con las relaciones calculadas se conoce como condición de fac-
tibilidad simplex porque garantiza la factibilidad de la nueva solución.

El nuevo punto de solución B se determina “intercambiando” la variable de entrada x1 y la
variable de salida s1 en la tabla simplex para obtener

Variables no básicas (cero) en B: (s1, x2)

Variables básicas en B: (x1, s2, s3, s4)

El proceso de intercambio se basa en las operaciones de filas de Gauss-Jordan. Identifica la co-
lumna de la variable de entrada como columna pivote y la fila de la variable de salida como fila pi-
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FIGURA 3.5

Interpretación gráfica de las relaciones del método simplex en el modelo de Reddy Mikks 
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16x1 � 4x2 � s1 � 24
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Entra
T

Básica z x1 x2 s1 s2 s3 s4 Solución

z 1 -5 -4 0 0 0 0 0

Sale ; s1 0 6 4 1 0 0 0 24 Fila pivote
s2 0 1 2 0 1 0 0 6
s3 0 -1 1 0 0 1 0 1
s4 0 0 1 0 0 0 1 2

Columna
pivote

Los cálculos de Gauss-Jordan necesarios para obtener la nueva solución básica son de dos
tipos.

1. Fila pivote

a. Reemplace la variable de salida en la columna Básica con la variable de entrada.
b. Nueva fila pivote 5 Fila pivote actual 4 Elemento pivote

vote. La intersección de la columna pivote y la fila pivote se conoce como elemento pivote. La si-
guiente tabla es un replanteamiento de la tabla inicial con sus filas y columnas pivote resaltadas.
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2. Todas las demás filas, incluyendo z 

Nueva fila 5 (Fila actual) 2 (Coeficiente de la
columna pivote) 3 (Nueva fila pivote) 

Estos cálculos se aplican a la tabla anterior como sigue:

1. Reemplace s1 en la columna Básica con x1:

Nueva fila x1 5 Fila s1 actual 4 6 

2. Nueva fila z 5 Fila z actual 2 (25) 3 Nueva fila x1

3. Nueva fila s2 5 Fila s2 actual 2 (1) 3 Nueva fila x1

4. Nueva fila s3 5 Fila s3 actual 2 (21) 3 Nueva fila x1

5. Nueva fila s4 5 Fila s4 actual 2 (0) 3 Nueva fila x1

La nueva solución básica es (x1, s2, s3, s4), y la nueva tabla es

 = (0  0  1  0  0   0  1  2)

 = (0  0  1  0  0   0  1  2) - (0)(0  1   23   16   0  0  0  4)

 = (0  0   53   16   0  1  0  5)

 = (0  -1  1  0  0  1  0  1) - (-1) * (0  1   23   16   0  0  0  4)

 = (0  0   43  -1
6   1  0  0  2)

 = (0  1  2  0  1  0  0  6) - (1) * (0  1   23   16   0  0  0  4)

 = (1 0 -2
3   56  0  0  0  20)

 = (1 -5 -4  0  0  0  0  0) - (-5) * (0  1 23   16  0  0  0  4)

 = (0  1   23   16   0  0  0  4)

 =  16 (0  6  4  1  0  0  0  24)

T

Básica z x1 x2 s1 s2 s3 s4 Solución

z 1 0 -2
3

5
6 0 0 0 20

x1 0 1 2
3

1
6

0 0 0 4

; s2 0 0 4
3 -1

6
1 0 0 2

s3 0 0 5
3

1
6

0 1 0 5

s4 0 0 1 0 0 0 1 2

Observe que la estructura de la nueva tabla es similar a la de la tabla inicial, en el sentido de
que los coeficientes de las restricciones de la variable básica forman una matriz de identidad. Por
consiguiente, cuando igualamos las nuevas variables no básicas x2 y s1 a cero, la columna
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Solución de forma automática da la nueva solución (x1 5 4, s2 5 2, s3 5 5, s4 5 2).3 Este “acon-
dicionamiento” de la tabla es el resultado de la aplicación de las operaciones de filas de Gauss-
Jordan. El nuevo valor objetivo es z 5 20, el cual es consistente con 

Nueva z 5 Anterior z 1 Nuevo valor de x1 3 su coeficiente objetivo

Por otra parte, z 5 4 3 valor de x1 1 0 3 valor de s2 1 0 3 valor de s3 1 0 3 valor de x4 5 4 3 5
1 0 3 2 1 0 3 5 1 0 3 2 5 20.

En la última tabla, la condición de optimalidad muestra que x2 es la variable de entrada. La
condición de factibilidad produce la siguiente información:

 = 0 +  4 *  5 = 20

Básica
Entrante
x2 Solución Relación

x1
2
3 4 x2 = 4 ,  23 = 6

s2
4
3 2 x2 = 2 ,  43 = 1.5 (mínima)

s3
5
3 5 x2 = 5 ,  53 = 3

s4 1 2 x2 = 2 , 1 = 2

Por lo tanto, s2 sale de la solución básica, y el nuevo valor de x2 es 1.5. El incremento correspon-
diente en z es el cual da la nueva z 5 20 1 1 5 21.

Si reemplazamos s2 en la columna Básica con la x2 de entrada, se aplican las siguientes ope-
raciones de filas de Gauss-Jordan:

1. Nueva fila pivote x2 5 Fila s2 actual 4
2. Nueva fila z 5 Fila z actual 2 3 Nueva fila x2

3. Nueva fila x1 5 Fila x1 actual 2( ) 3 Nueva fila x2

4. Nueva fila s3 5 Fila s3 actual 2( ) 3 Nueva fila x2

5. Nueva fila s4 5 Fila s4 actual 2 (1) 3 Nueva fila x2

Estos cálculos producen la siguiente tabla:

5
3

2
3

(- 2
3)

4
3

2
3 x2 =  23 * 1.5 = 1,

3 A lo largo de mi experiencia académica, he notado que si bien los estudiantes son capaces de realizar los te-
diosos cálculos del método simplex, al final algunos no pueden decir cuál es la solución. Para ayudar a ven-
cer esta dificultad potencial, se hace un esfuerzo por “leer” la solución de la PL por la tabla.

Básica z x1 x2 s1 s2 s3 s4 Solución

z 1 0 0 3
4

1
2 0 0 21

x1 0 1 0 1
4 -1

2 0 0 3

x2 0 0 1 -1
8

3
4 0 0 3

2

s3 0 0 0 3
8 -5

4 1 0 5
2

s4 0 0 0 1
8 -3

4 0 1 1
2
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Según la condición de optimalidad, ninguno de los coeficientes de la fila z son negativos. De ahí
que la última tabla sea óptima.

La solución óptima puede leerse en la tabla simplex de la siguiente manera. Los valores óp-
timos de las variables en la columna Basic aparecen en la columna Solución del lado derecho y
se interpretan como sigue:

La solución también da el estado de los recursos. Un recurso se designa como escaso si la
variable de holgura asociada es cero, es decir, las actividades (variables) del modelo consumie-
ron el recurso por completo. De lo contrario, si la holgura es positiva, entonces el recurso es
abundante. La siguiente tabla clasifica las restricciones del modelo:

Variable de decisión Valor óptimo Recomendación 

x1 3 Producir 3 toneladas diarias de pintura para exteriores 
x2

3
2 Producir 1.5 toneladas diarias de pintura para interiores

z 21 La utilidad diaria es de $21,000

Recurso Valor de holgura Estado

Materia prima, M1 s1 = 0 Escaso
Materia prima, M2 s2 = 0 Escaso
Límite del mercado s3 = 5

2 Abundante

Límite de la demanda s4 = 1
2 Abundante

Comentarios. La tabla simplex ofrece mucha información adicional que incluye lo siguiente:

1. Análisis de sensibilidad, el cual determina las condiciones que mantendrán la solución ac-
tual sin cambios.

2. Análisis postóptimo, el cual determina la nueva solución óptima cuando cambian los datos
del modelo.

La sección 3.6 se ocupa del análisis de sensibilidad. El análisis postóptimo se trata en el capítulo 4.

Momento de TORA.

Los cálculos de Gauss-Jordan son tediosos, voluminosos y, sobre todo, aburridos. No obstante,
esto no tiene importancia porque en la práctica la computadora realiza estos cálculos. Lo impor-
tante es que entienda cómo funciona el método simplex. La opción interactiva guiada para el
usuario de TORA (con retroalimentación instantánea), puede ser de ayuda porque le permite
especificar el curso de los cálculos simplex (es decir, determinar las variables de entrada y de sa-
lida) sin el agobio de los cálculos de Gauss-Jordan. Para utilizar TORA con el problema de
Reddy Mikks, ingrese el modelo y luego, en el menú seleccione los coman-
dos . (La selección All-Slack indica que la so-
lución básica inicial se compone de sólo variables de holgura. Las opciones restantes se pre-
sentarán en las secciones 3.4, 4.3, y 7.4-2). A continuación, haga clic en el botón

. Puede generar una o todas las iteraciones haciendo clic en las opciones
o bien . Si opta por generar las iteraciones de una en una, puede es-All IterationsNext Iteration

Go To Output Screen

All-SlackQIterationsQAlgebraicQSolve
SOLVE/MODIFY
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pecificar de manera interactiva las variables de entrada y de salida haciendo clic en los encabe-
zados de sus columnas y filas respectivas. Si sus selecciones son correctas, la columna se torna de
color verde y la fila de color rojo. De lo contrario, aparece un mensaje de error.

3.3.3 Resumen del método simplex 

Hasta ahora nos hemos ocupado del caso de maximización. En problemas de minimi-
zación, la condición de optimalidad requiere seleccionar la variable de entrada como la
variable no básica con el coeficiente objetivo más positivo en la ecuación objetivo,
la regla exacta opuesta del caso de maximización. Esto obedece a que máx z equivale
a mín (2z). En cuanto a la condición de factibilidad para seleccionar la variable de sa-
lida, la regla no cambia.

Condición de optimalidad. La variable de entrada en un problema de maximización
(minimización) es la variable no básica con el coeficiente más negativo (positivo) en la
fila z. Los vínculos se rompen arbitrariamente. El óptimo se alcanza en la iteración en
la cual los coeficientes en la fila z son no negativos (no positivos).

Condición de factibilidad. Tanto en problemas de maximización como de minimiza-
ción, la variable de salida es la variable básica asociada con la relación mínima no negati-
va con el denominador estrictamente positivo. Los vínculos se rompen arbitrariamente.

Operaciones de filas de Gauss-Jordan

1. Fila pivote 

a. Reemplace la variable de entrada en la columna Básica con la variable de en-
trada.

b. Nueva fila pivote 5 Fila pivote actual 4 Elemento pivote

2. Todas las demás filas, incluida la z
Nueva fila 5 (Fila actual) 2 (Su coeficiente en la columna pivote)
3 (Nueva fila pivote).

Los pasos del método simplex son 

Paso 0. Determine la solución factible básica inicial.
Paso 1. Seleccione una variable de entrada utilizando la condición de optimalidad.

Deténgase si no hay variable de entrada; la última condición es óptima. De
otro modo, prosiga con el paso 2.

Paso 2. Seleccione una variable de salida utilizando la condición de factibilidad.
Paso 3. Aplique los cálculos de Gauss-Jordan para determinar la nueva solución 

básica. Vaya al paso 1.

CONJUNTO DE PROBLEMAS 3.3B

1. Este problema está diseñado para reforzar su comprensión de la condición de factibili-
dad simplex. En la primera tabla del ejemplo 3.3-1 utilizamos la prueba de relación míni-
ma (no negativa) para determinar la variable de salida. La condición garantiza la factibi-
lidad (todos los nuevos valores de las variables básicas permanecen no negativos según lo
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estipulado por la definición de la PL). Para demostrar este punto, haga que s2, en lugar de
s1, salga de la solución básica, y realice los cálculos de Gauss-Jordan. En la tabla simplex
resultante, s1 es no factible (5 212).

2. Considere el siguiente conjunto de restricciones:

Resuelva el problema para cada una de las siguientes funciones objetivo.

(a) Maximizar 

(b) Maximizar 

(c) Maximizar 

(d) Minimizar 

*3. Considere el siguiente sistema de ecuaciones:

Sean x5, x6,…, y x8 una solución factible básica inicial dada. Suponga que x1 se vuelve bá-
sica. ¿Cuáles de las variables básicas dadas deben volverse no básicas al nivel cero para
garantizar que todas las variables permanezcan no negativas, y cuál es el valor de x1 en la
nueva solución? Repita este procedimiento para x2, x3 y x4.

4. Considere la siguiente PL:

sujeto a

(a) Resuelva el problema por inspección (no utilice la operaciones de filas de Gauss-
Jordan), y justifique la respuesta en función de las soluciones básicas del método
simplex.

(b) Repita (a) suponiendo que la función objetivo requiere minimizar z 5 x1.

5. Resuelva el siguiente problema por inspección, y justifique el método de solución en fun-
ción de las soluciones básicas del método simplex.

x1, x2, x3, x4 Ú 0

 3x1                             + x4 = 3

 6x1                 + x3              = 8

 5x1 + x2                                = 4

Maximizar z = x1

x1, x2, . . . , x8 Ú 0

-x1                   + x3 - 2x4                             + x8 = 0

 2x1 + 3x2 - 2x3 + 3x4                   + x7  = 3

 5x1 - 2x2                 + 6x4         + x6  = 8

   x1 + 2x2 - 3x3 + 5x4 + x5  = 4

z = 5x1 - 4x2 + 6x3 - 8x4.

z =  3x1 - x2 + 3x3 + 4x4.

z =  8x1 + 6x2 + 3x3 - 2x4.

z =  2x1 + x2 - 3x3 + 5x4.

x1,  x2,  x3,  x4 Ú  0

 4x1 - 2x2 + x3 - x4 … 10

 2x1 - x2 + x3 + 2x4 … 8

 x1 + 2x2 + 2x3 + 4x4 … 40
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sujeto a

(Sugerencia: Una solución básica se compone de sólo una variable.)
6. La siguiente tabla representa una iteración simplex específica. Todas las variables son no

negativas. La tabla no es óptima en cuanto a maximización o minimización. Por lo tanto,
cuando una variable no básica entra en la solución, puede o incrementar o reducir z, o
bien dejarla como estaba, según los parámetros de la variable no básica de entrada.

x1, x2, x3, x4, x5 Ú 0

x1 + 3x2 + 5x3 + 6x4 + 3x5 … 90

Maximizar z = 5x1 - 6x2 + 3x3 - 5x4 + 12x5

Básica X1 x2 x3 x4 x5 x6 x7 x8 Solución

z 0 -5 0 4 -1 -10 0 0 620

x8 0 3 0 -2 -3 -1 5 1 12
x3 0 1 1 3 1 0 3 0 6
x1 1 -1 0 0 6 -4 0 0 0

(a) Clasifique las variables como básicas y no básicas, y proporcione los valores actuales
de todas las variables.

*(b) Suponiendo que el problema fuera del tipo de maximización, identifique las varia-
bles no básicas que tienen el potencial de mejorar el valor de z. Si cada una de esas
variables entra en la solución básica, determine la variable de salida asociada, si la
hay, y el cambio asociado de z. No utilice operaciones de filas de Gauss-Jordan.

(c) Repita (b) suponiendo que el problema fuera del tipo de minimización.
(d) ¿Cuál variable o variables no cambiarán el valor de z al seleccionarlas para que en-

tren en la solución?
7. Considere el espacio de soluciones bidimensional que se muestra en la figura 3.6.

(a) Suponga que la función objetivo es

Si las iteraciones simplex se inician en el punto A, identifique la trayectoria que con-
duce al punto E óptimo.

Maximizar z = 3x1 + 6x2

FIGURA 3.6
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problema 7, conjunto 3.3b
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(b) Determine la variable de entrada, las relaciones correspondientes de la condición de
factibilidad, y el cambio del valor de z, suponiendo que la iteración inicial ocurre en
el punto A y que la función objetivo la da 

(c) Repita (b), suponiendo que la función objetivo fuera 

8. Considere la siguiente PL:

sujeto a

(a) Resuelva el problema mediante el método simplex, donde la variable de entrada es
la variable no básica con el coeficiente más negativo en la fila z.

(b) Resuelva el problema mediante el algoritmo simplex, seleccionando siempre la variable
de entrada como la variable no básica con el coeficiente menos negativo en la fila z.

(c) Compare la cantidad de iteraciones en (a) y (b). ¿Conduce la selección de la variable
de entrada como las variables no básica con el coeficiente más negativo en la fila z a
un menor número de iteraciones? ¿Qué conclusión puede hacerse con respecto a la
condición de optimalidad?

(d) Suponga que el sentido de optimización se cambia a minimización al multiplicar z
por 21. ¿Cómo afecta este cambio a las iteraciones de simplex?

*9. En el ejemplo 3.3-1, muestre cómo puede determinarse el segundo mejor valor óptimo
de z desde la tabla óptima.

10. ¿Puede ampliar el procedimiento del problema 9 para determinar el tercer mejor valor
óptimo de z? 

11. Gutchi Company fabrica bolsos de mano, bolsos para rasuradora y mochilas. La elabora-
ción incluye piel y materiales sintéticos, y la piel es la materia prima escasa. El proceso de
producción requiere dos tipos de mano de obra calificada: costura y acabado. La siguien-
te tabla da la disponibilidad de los recursos, su consumo por los tres productos y las utili-
dades por unidad.

x1,  x2 Ú 0

 x1  … 3

 -x1 +  x2 … 1

 40x1 + 31x2 … 124

Maximizar z = 16x1 + 15x2

Maximizar z = x1 + 4x2

Maximizar z = 4x1 + x2

Requerimientos de recursos por unidad 

Recurso
Bolsos

de mano
Bolsos para
rasuradora Mochilas Disponibilidad diaria

Piel (pies2) 2 1 3 42 pies2

Costura (h) 2 1 2 40 h
Acabado (h) 1 .5 1 45 h

Precio de venta ($) 24 22 45
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(a) Formule el problema como un programa lineal, y halle la solución óptima (utilice
TORA, Excel, Solver o AMPL).

(b) A partir de la solución óptima, determine el estado de cada recurso.
12. Experimento con TORA. Considere la siguiente programación lineal:

sujeto a 

(a) Aplique la opción de iteraciones de TORA para determinar la tabla óptima.
(b) Seleccione cualquier variable no básica para que “entre” en la solución básica, y haga

clic en la opción para producir la iteración asociada. ¿Cómo se compara
el nuevo valor objetivo con el óptimo en (a)? La idea es demostrar que la tabla en (a)
es óptima porque ninguna de las variables no básicas puede mejorar el valor objetivo.

13. Experimento con TORA. En el problema 12, utilice TORA para determinar la siguiente
mejor solución óptima.

3.4 SOLUCIÓN ARTIFICIAL INICIAL

Como se demostró en el ejemplo 3.3-1, las PL en las que todas las restricciones son (#)
con lados derechos no negativos ofrecen una conveniente solución factible básica ini-
cial con todas las holguras. Los modelos que implican restricciones (5) o ($) no lo
hacen.

El procedimiento para iniciar PLs de “mal comportamiento” con restricciones
(5) y ($) es utilizar variables artificiales que desempeñan el papel de holguras en la
primera iteración, y que luego se desechan en una iteración posterior. Aquí se presen-
tan dos métodos estrechamente relacionados: el método M, y el método de dos fases.

3.4.1 Método M4

El método M se inicia con la PL en forma de ecuación (sección 3.1). Si la ecuación i no
tiene una holgura (o una variable que pueda desempeñar el papel de una), se agrega
una variable artificial, Ri, para formar una solución inicial parecida a la solución básica
de total holgura. Sin embargo, las variables artificiales no forman parte del problema
original, y se requiere un “artificio” de modelado para igualarlas a cero en el momento
en que se alcance la iteración óptima (suponiendo que el problema tenga una solución
factible). La meta deseada se logra penalizando estas variables en la función objetivo
utilizando la siguiente regla:

Next Iteration

x1, x2, x3, x4 Ú 0

 -x1   + x3 + 2x4 … 0

 2x1 + 3x2 - 2x3 + 3x4 … 3

 5x1 - 2x2 + 6x4 … 8

 x1 + 2x2 - 3x3 + 5x4 … 4

Maximizar z = x1 + x2 + 3x3 + 2x4

4 El método M, una de las técnicas de PL más antiguas, nunca se utiliza en códigos comerciales debido a su
inherente error de redondeo. En su lugar se prefiere el método de dos fases (sección 3.4.2). Sin embargo, el
uso de penalizaciones, como lo anticipa el método M, es un importante concepto en muchas instancias de
modelado de OR.
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Ejemplo 3.4-1

sujeto a 

Si utilizamos x3 como variable de superávit en la segunda restricción y x4 como variable de
holgura en la tercera restricción, el problema en forma de ecuación es

sujeto a

La tercera ecuación tiene su variable de holgura, x4, pero la primera y segunda ecuaciones
no. Por lo tanto, agregamos las variables artificiales R1 y R2 en las primeras dos ecuaciones y las
penalizamos en la función objetivo con MR1 1 MR2 (porque estamos minimizando). La PL re-
sultante se da como

sujeto a

La solución básica inicial es (R1, R2, x4) 5 (3, 6, 4)
Desde un punto de vista de cálculo, la solución del problema con la computadora requiere

que reemplace M con un valor numérico (suficientemente grande). No obstante, en todos los li-
bros de texto, incluidas las siete ediciones de este libro, M se maneja algebraicamente en la tabla
simplex. El resultado es una dificultad agregada innecesaria la cual puede evitarse sustituyendo

x1, x2, x3, x4, R1, R2 Ú 0

  x1 + 2x2        + x4  = 4

4x1 + 3x2 - x3                 + R2 = 6

3x1 +   x2                 + R1  = 3

Minimizar z = 4x1 + x2 + MR1 + MR2

x1, x2, x3, x4 Ú 0

  x1 + 2x2       + x4 = 4

4x1 + 3x2 - x3  = 6

3x1 +   x2  = 3

Minimizar z = 4x1 + x2

x1, x2 Ú 0

 x1 + 2x2 … 4

 4x1 + 3x2 Ú 6

 3x1 + x2 = 3

Minimizar z = 4x1 + x2

Regla de penalización para variables artificiales 

Dado M, un valor positivo suficientemente grande (matemáticamente (M S q), el
coeficiente objetivo de una variable artificial representa una penalización apropiada si:

Coeficiente objetivo de la variable artificial = e -M,  en problemas de maximización
 M,  en problemas de minimización
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un valor numérico apropiado en lugar de M (lo que de cualquier modo tenemos que hacer cuan-
do usamos la computadora). Nos apartamos de la larga tradición de manejar M algebraicamen-
te y utilizar una sustitución numérica en su lugar. La intención es, desde luego, simplificar la pre-
sentación sin perder la esencia.

¿Qué valor de M debemos utilizar? La respuesta depende de los datos de la programación
original. Recordemos que la penalización M debe ser lo bastante grande con respecto a los coefi-
cientes objetivos originales para forzar a las variables originales a ser cero en la solución óptima.
Al mismo tiempo, como las computadoras son la herramienta principal para resolver PLs, no es
conveniente que M sea innecesariamente grande ya que ello nos puede conducir a un grave
error de redondeo. En este ejemplo, los coeficientes objetivo de x1 y x2 son 4 y 1, respectivamen-
te, y parece razonable establecer M 5 100.5

Utilizando M 5 100, la tabla simplex de inicio se da como sigue (por comodidad, la colum-
na z se elimina porque no cambia en todas las iteraciones):

Básica x1 x2 x3 R1 R2 x4 Solución

z -4 -1 0 -100 -100 0 0

R1 3 1 0 1 0 0 3
R2 4 3 -1 0 1 0 6
x4 1 2 0 0 0 1 4

5 Técnicamente, el método M no necesita sustituir M numéricamente. En su lugar, el coeficiente en la fila ob-
jetivo i-ésimo en una tabla simplex se reduce a calcular las constantes a1 y b1 en la expresión algebraica aiM
1 bi. La comparación de las dos expresiones algebraicas se basará entonces en condiciones que implican sólo
las constantes ai y bi. La razón por la que no se utiliza en la práctica es la potencialmente tremenda carga de
cómputo asociada con el cálculo (y comparación) de las constantes ai y bi.

Antes de proseguir con los cálculos del método simplex, la fila z debe hacerse consistente
con el resto de la tabla. El lado derecho de la fila z en la tabla en este momento muestra z 5 0.
Sin embargo, dada la solución no básica x1 5 x2 5 x3 5 0, la solución básica actual es R1 5 3, R2
5 6 y x4 5 4, la cual da z 5 100 3 3 1 100 3 6 1 4 3 0 5 900. Esta inconsistencia se deriva del
hecho de que los coeficientes de R1 y R2 no son cero (2100, 2100) en la fila z (compare con la
solución de inicio de total holgura en el ejemplo 3.3-1, donde los coeficientes en la fila z de las
holguras son cero).

Para eliminar la inconsistencia, tenemos que sustituir R1 y R2 en la fila z por medio de la si-
guiente operación de filas:

Nueva fila z 5 Anterior fila z 1 (100 3 fila R1 3 fila R2)

(Convénzase de que esta operación es la misma que sustituir R1 5 3 2 3x1 2 x2 y R2 5 6 2 4x1
2 3x2 1 x3 en la fila z.)

Por tanto, la tabla modificada (¡compruébelo!) es:

Básica x1 x2 x3 R1 R2 x4 Solución

z 696 399 -100 0 0 0 900

R1 3 1 0 1 0 0 3

R2 4 3 -1 0 1 0 6

x4 1 2 0 0 0 1 4
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El resultado es que R1 y R2 ahora se sustituyen (tienen coeficientes cero) en la fila z con z 5

900, como se deseaba.
La última tabla está lista para la aplicación de las condiciones de optimalidad y factibilidad

de simplex, tal como se explicó en la sección 3.3.2. Dado que la función objetivo se minimiza, la
variable x1 que tiene el coeficiente más positivo en la fila z (5696) entra en la solución. La rela-
ción mínima de la condición de factibilidad especifica a R1 como la variable de salida (¡com-
pruébelo!).

Una vez que se han determinado las variables de entrada y de salida, la nueva tabla se
calcula utilizando las conocidas operaciones de Gauss-Jordan.

Básica x1 x2 x3 R1 R2 x4 Solución

z 0 167 -100 -232 0 0 204

x1 1 1
3 0 1

3 0 0 1

R2 0 5
3 -1 -4

3 1 0 2

x4 0 5
3 0 -1

3 0 1 3

La última tabla muestra que x1 y R2 son las variables de entrada y de salida, respectivamen-
te. Continuando con los cálculos simplex, se requieren dos iteraciones más para alcanzar el ópti-
mo (¡compruébelo con TORA!).

Observe que las variables artificiales R1 y R2 se salen de la solución básica (es decir, se
hacen iguales a cero) en la primera y segunda iteraciones, un resultado que es consistente con el
concepto de penalizarlas en la función objetivo.

Comentarios. El uso de la penalización M no forzará la variable artificial a cero en la itera-
ción simplex final si la PL no tiene una solución factible (es decir, las restricciones no pueden
satisfacerse al mismo tiempo). En este caso, la iteración simplex final incluirá al menos una varia-
ble artificial con un valor positivo. En la sección 3.5.4 se explica esta situación.

CONJUNTO DE PROBLEMAS 3.4A

1. Complete las iteraciones simplex del ejemplo 3.4-1 con cálculos manuales y obtenga la
solución óptima.

2. Experimento con TORA. Genere las iteraciones simplex del ejemplo 3.4-1 utilizando el
módulo (archivo toraEx3.4-1.txt). Compare el efecto
de utilizar en la solución. ¿Qué conclusión se puede sacar
de este experimento? 

3. En el ejemplo 3.4-1, identifique la tabla de inicio en cada uno de los siguientes casos (in-
dependientes) y desarrolle la fila z asociada después de sustituir todas las variables artifi-
ciales:

*(a) La tercera restricción es x1 1 2x2 $ 4.

*(b) La segunda restricción es 4x1 1 3x2 # 6.

(c) La segunda restricción es 4x1 1 3x2 5 6.

(d) La función objetivo es maximizar z 5 4x1 1 x2.

M = 1, M = 10, y M = 1000
Método M de TORAQIterations

x1 =  25 , x2 =  95 , z =  17
5
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4. Considere el siguiente conjunto de restricciones:

En cada uno de los siguientes problemas, desarrolle la fila z después de sustituir las varia-
bles artificiales:
(a) Maximizar z 5 5x1 1 6x2 sujeto a (1), (3) y (4).
(b) Maximizar z 5 2x1 1 7x2 sujeto a (1), (2) (4) y (5).
(c) Minimizar z 5 3x1 1 6x2 sujeto a (3), (4) y (5).
(d) Minimizar z 5 4x1 1 6x2 sujeto a (1), (2) y (5).
(e) Minimizar z 5 3x1 1 2x2 sujeto a (1) y (5).

5. Considere el siguiente conjunto de restricciones:

Resuelva el problema con cada una de las siguientes funciones objetivo:
(a) Maximizar
(b) Minimizar 
(c) Maximizar
(d) Minimizar

*6. Considere el problema 

sujeto a

Resuelva el problema con x1 y x4 como las variables básicas de inicio y sin utilizar varia-

bles artificiales. (Sugerencia: x3 y x4 desempeñan el papel de variables holgura. La diferen-
cia principal es que tienen coeficientes objetivo no cero.)

7. Resuelva el siguiente problema con x3 y x4 como variables factibles básicas de inicio.
Como en el problema 6, no utilice variables artificiales.

Minimizar z = 3x1 + 2x2 + 3x3

x1,  x2,  x3,  x4 Ú 0

 x1 +  4x2 +             x4 = 8 

 x1 +  x2 + x3             = 4

Maximizar z = 2x1 + 4x2 + 4x3 - 3x4

z = 4x1 - 8x2 + 3x3.
z = x1 + 2x2 + x3.
z = 2x1 + 3x2 - 5x3.
z = 2x1 + 3x2 - 5x3.

x1, x2, x3 Ú 0

2x1 - 5x2 + x3 Ú 10

x1 +  x2 + x3 =  7

x1, x2 Ú 0

4x1 + 8x2 Ú 5      (5)

6x1 + 7x2 … 3      (4)

x1 + 2x2 … 5       (3)

4x1 + 5x2 Ú 10    (2)

-2x1 + 3x2 = 3      (1)
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sujeto a

8. Considere el problema

sujeto a

La variable x3 desempeña el papel de una holgura. Por lo tanto, no se requiere ninguna
variable artificial en la primera restricción. En la segunda restricción, se requiere una va-
riable artificial R. Resuelva el problema con x3 y R como variables de inicio.

9. Demuestre que el método M llegará a la conclusión de que el siguiente problema no
tiene una solución factible.

sujeto a

3.4.2 Método de dos fases

En el método M, el uso de la penalización, M, puede conducir a un error de redondeo.
El método de dos fases elimina el uso de la constante M. Como su nombre lo indica, el
método resuelve la PL en dos fases; en la fase I se trata de encontrar la solución factible
básica inicial y, si se halla una, se invoca la fase II para resolver el problema original.

x1, x2 Ú 0

2x1 +  x2 … 2

3x1 + 2x2 Ú 6

Maximizar z = 2x1 + 5x2

x1, x2, x3 Ú 0

 2x1 -  x2  = 4

 x1 + 2x2 + x3 = 3

Maximizar z = x1 + 5x2 + 3x3

x1,  x2,  x3,  x4 Ú 0

2x1 + x2 + x4 Ú  10 

x1 + 4x2 + x3 Ú  7 

Resumen del método de dos fases

Fase I. Ponga el problema en forma de ecuación y agregue las variables artificia-
les necesarias a las restricciones (exactamente como en el método M),
para tener la certeza de una solución básica. A continuación, determine
una solución básica de la ecuación resultante que siempre minimice la
suma de las variables artificiales, independientemente de si la PL es de
maximización o minimización. Si el valor mínimo de la suma es positivo, el
problema de PL no tiene una solución factible. De lo contrario, si el valor
mínimo es cero, prosiga con la fase II.

Fase II. Use la solución factible de la fase I como una solución factible básica ini-
cial para el problema original.



3.4 Solución artificial inicial 95

Ejemplo 3.4-2

Utilizamos el mismo problema del ejemplo 3.4-1.

Fase I

sujeto a

La tabla asociada es 

x1,  x2, x3, x4, R1, R2 Ú 0

 x1 + 2x2 + x4 = 4

 4x1 + 3x2 - x3 + R2  = 6

 3x1 +  x2 + R1  = 3

Minimizar r = R1 + R2

Básica x1 x2 x3 R1 R2 x4 Solución

r 0 0 0 -1 -1 0 0

R1 3 1 0 1 0 0 3
R2 4 3 -1 0 1 0 6
x4 1 2 0 0 0 1 4

Como en el método M, R1 y R2 se sustituyen en la fila r mediante las siguientes operaciones
de filas:

Nueva fila r 5 Anterior fila r 1 (1 3 fila R1 3 fila R2)

La nueva fila r se utiliza para resolver la fase I del problema, la cual da por resultado la si-
guiente tabla óptima (compruébelo con la opción ): de TORA:Two fase MethodQIterations

Básica x1 x2 x3 R1 R2 x4 Solución

r 0 0 0 -1 -1 0 0

x1 1 0 1
5

3
5 -1

5 0 3
5

x2 0 1 -3
5 -4

5
3
5 0 6

5

x4 0 0 1 1 -1 1 1

Como el mínimo r 5 0, la fase I produce la solución factible básica , y .
En este punto, las variables artificiales ya completaron su misión, y podemos eliminar sus co-
lumnas de la tabla y continuar con la fase II.

Fase II

Después de eliminar las columnas artificiales, escribimos el problema original como

Minimizar z = 4x1 + x2

x4 = 1x2 = 6
5x1 = 3

5
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sujeto a

En esencia, la fase I ha transformado las ecuaciones de restricciones originales de tal forma que
proporciona una solución factible básica inicial para el problema, si es que existe una. La tabla
asociada con la fase II del problema es por consiguiente

x1, x2, x3, x4 Ú 0

x3 + x4 = 1

 x2 -  35 x3  =  65

 x1 +  15 x3  =  35

Básica x1 x2 x3 x4 Solución

z -4 -1 0 0 0

x1 1 0
1
5 0

3
5

x2 0 1 -3
5 0 6

5

x4 0 0 1 1 1

Una vez más, como las variables básicas x1 y x2 tienen coeficientes diferentes a cero en la fila
z, deben ser sustituidas, mediante las siguientes operaciones.

Nueva fila z 5 Anterior fila z 1 (4 3 fila x1 1 1 3 fila x2)

La tabla inicial de la fase II es por consiguiente

Básica x1 x2 x3 x4 Solución

z 0 0
1
5 0

18
5

x1 1 0
1
5 0

3
5

x2 0 1 -3
5 0 6

5

x4 0 0 1 1 1

Como estamos minimizando, x3 debe entrar en la solución. La aplicación del método simplex
producirá el óptimo en una iteración (compruébelo con TORA).

Comentarios. La eliminación de las variables artificiales y sus columnas al final de la fase I
sólo puede ocurrir cuando todas son no básicas (como lo ilustra el ejemplo 3.4-2). Si una o más
variables son básicas (al nivel cero) al final de la fase I, entonces su eliminación requiere los
siguientes pasos adicionales:

Paso 1. Seleccione una variable artificial cero que salga de la solución básica y designe su fila
como fila pivote. La variable de entrada puede ser cualquier variable no básica (y no ar-
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tificial) con un coeficiente diferente de cero (positivo o negativo) en la fila pivote.
Realice la iteración simplex asociada.

Paso 2. Elimine la columna de la variable artificial (que acaba de salir) de la tabla. Si ya se eli-
minaron todas las variables artificiales, continúe con la fase II. De lo contrario, regrese
al paso 1.

La lógica detrás del paso I es que la factibilidad de las variables básicas restantes no se
verá afectada cuando una variable artificial cero se vuelva no básica independientemente de si el
elemento pivote es positivo o negativo. Los problemas 5 y 6, conjunto 3.4b ilustran esta situa-
ción. El problema 7 da un detalle adicional sobre los cálculos de la fase I.

CONJUNTO DE PROBLEMAS 3.4B

*1. En la fase I, si la PL es del tipo de maximización, explique por qué no maximiza la suma
de las variables artificiales en la fase I.

2. Para cada uno de los casos del problema 4, conjunto 3.4a, escriba la función objetivo co-
rrespondiente en la fase I.

3. Resuelva el problema 5, conjunto 3.4a, por el método de dos fases.
4. Escriba la fase I para el siguiente problema, y luego resuélvalo (con TORA por comodi-

dad) para demostrar que el problema no tiene una solución factible.

sujeto a

5. Considere el siguiente problema:

sujeto a

(a) Demuestre que la fase I terminará con una variable artificial básica en el nivel cero
(puede utilizar TORA por comodidad).

(b) Elimine la variable artificial cero antes de iniciar la fase II; luego realice las 
iteraciones.

6. Considere el siguiente problema:

Maximizar z = 3x1 + 2x2 + 3x3

x1, x2, x3 Ú 0

3x1 + 4x2 + 2x3 Ú 8

2x1 +  x2 + x3 … 2

Maximizar z = 2x1 + 2x2 + 4x3

x1, x2 Ú 0

2x1 + x2 … 2

3x1 + 2x2 Ú 6

Maximizar z = 2x1 + 5x2
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sujeto a

(a) Demuestre que la fase I termina con dos variables artificiales cero en la solución bá-
sica (use TORA por comodidad).

(b) Demuestre que cuando se aplica el procedimiento del problema 5(b) al final de la
fase I, sólo una de las dos variables artificiales cero puede hacerse no básica.

(c) Demuestre que la restricción original asociada con la variable artificial cero que no
puede hacerse básica en (b) debe ser redundante; por consiguiente, su fila y colum-
nas pueden eliminarse al inicio de la fase II.

*7. Considere la siguiente PL:

sujeto a

La tabla simplex óptima al final de la fase I es 

x1, x2, x3 Ú 0

3x1 + 4x2 + 2x3 Ú 8

2x1 + x2 + x3 … 2

Maximizar z = 3x1 + 2x2 + 3x3

x1, x2, x3 Ú 0

3x1 + 4x2 + 2x3 = 8

x1 + 3x2 +  x3 = 6

2x1 + x2 +  x3 = 2

Explique por qué las variables no básicas x1, x3, x4 y x5 nunca pueden asumir valores
positivos al final de la fase II. Por consiguiente, concluimos que sus columnas pueden eli-
minarse antes de que iniciemos la fase II. En esencia, la eliminación de estas variables re-
duce las ecuaciones de restricción del problema a x2 5 2, lo que indica que es necesario
realizar la fase II en este problema.

8. Considere el modelo de PL

sujeto a

Demuestre cómo pueden modificarse las desigualdades para un conjunto de ecuaciones
que requiere el uso de sólo una variable artificial (en lugar de dos).

x1, x2, x3 Ú 0

2x1 + 5x2 - 4x3 … 4

-x1 + 3x2 + 5x3 Ú 8

5x1 - 6x2 + 2x3 Ú 5

Minimizar z = 2x1 - 4x2 + 3x3

Básica x1 x2 x3 x4 x5 R Solución

r -5 0 -2 -1 -4 0 0

x2 2 1 1 0 1 0 2
R -5 0 -2 -1 -4 1 0
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3.5 CASOS ESPECIALES EN EL MÉTODO SIMPLEX

Esta sección considera cuatro casos especiales que surgen al aplicar el método simplex.

1. Degeneración
2. Óptimos alternativos
3. Soluciones no acotadas
4. Soluciones no existentes (o no factibles)

Para concluir esta sección se presenta una explicación teórica de tales situaciones,
e incluso se interpreta el significado de estos casos especiales tomando como tema un
problema de la vida real.

3.5.1 Degeneración

Al aplicar la condición de factibilidad del método simplex, se puede presentar un em-
pate por la relación mínima, el cual puede romperse arbitrariamente. Cuando esto su-
cede, al menos una variable básica será cero en la siguiente iteración, y se dice que la
nueva solución está degenerada.

La degeneración puede hacer que las iteraciones simplex ocurran de forma inde-
finida en ciclos, y que el algoritmo nunca se termine. La condición también revela que
el modelo tiene por lo menos una restricción redundante (vea también el comentario 2
después de este ejemplo).

El siguiente ejemplo explica los impactos prácticos y teóricos de la degeneración.

Ejemplo 3.5-1 (Solución óptima degenerada)

sujeto a

Utilizando las variables de holgura x3 y x4, las tablas de solución son 
En la iteración 0, x3 y x4 empatan como la variable de salida, lo que provoca degeneración en

la iteración 1 porque la variable x4 asume un valor cero. El óptimo se alcanza en una iteración más..

x1, x2 Ú 0

x1 + 2x2 … 4

x1 + 4x2 … 8

Maximizar z = 3x1 + 9x2

Iteración Básica x1 x2 x3 x4 Solución

0 z -3 -9 0 0 0

x2 entra x3 1 4 1 0 8

x3 sale x4 1 2 0 1 4

1 z -3
4 0 9

4 0 18

x1 entra x2
1
4 1 1

4 0 2

x4 sale x4
1
2 0 -1

2 1 0

2

(óptimo)

z 0 0 3
2

3
2 18

x2 0 1 1
2 -1

2 2

x1 1 0 -1 2 0
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FIGURA 3.7

Degeneración de la programa-
ción lineal en el ejemplo 3.5-1

x1

x2

Solución
degenerada

óptima

x1 � 4x2 � 8 (redundante)
x1  � 2x2  �

 4

z � 3x1  � 9x2

Comentarios.

1. ¿Cuál es la implicación práctica de la degeneración? Al examinar la solución gráfica en la
figura 3.7 se ve que pasan tres líneas por el punto óptimo (x1 5 0, x2 5 2). Como éste es un
problema bidimensional, el punto está sobredeterminado, y una de las restricciones es re-
dundante.6 En la práctica, el simple conocimiento de que algunos recursos son superfluos
puede ser valioso durante la fase de implementación de la solución. La información tam-
bién permite descubrir irregularidades en la construcción del modelo. Por desgracia, no
existen técnicas de cómputo eficientes para identificar restricciones redundantes directa-
mente desde la tabla.

2. Desde el punto de vista teórico, la degeneración puede provocar ciclado. En las iteracio-
nes simplex 1 y 2, el valor objetivo no mejora (z 5 180), y por lo tanto es posible que el mé-
todo simplex entre en una secuencia repetitiva de iteraciones que nunca mejoran el valor
objetivo ni satisfacen la condición de optimalidad (vea el problema 4, conjunto 3.5a).Aun-
que haya métodos para eliminar el ciclado, éstos reducen drásticamente los cálculos.7

3. Aun cuando  quizá un modelo de PL no se inicie con restricciones redundantes (en el sen-
tido directo que se muestra en la figura 3.7), el error de redondeo provocado por la compu-
tadora en realidad puede crear condiciones parecidas a la degeneración durante el curso
del proceso de solución de una PL de la vida real. En esos casos las iteraciones se “de-
tendrán” en un punto de solución, como si imitaran un ciclado. Los códigos comerciales tra-
tan de aligerar el problema al perturbar periódicamente los valores de las variables básicas
(para más detalles sobre cómo se desarrollan los códigos comerciales vea la sección 3.7).

CONJUNTO DE PROBLEMAS 3.5A

*1. Considere el espacio de soluciones gráficas que se muestra en la figura 3.8. Suponga que
las iteraciones simplex se inician en A y que la solución óptima ocurre en D. Además, su-
ponga que la función objetivo se define de modo que en A, x1 ingresa primero la solución.
(a) Identifique (en la gráfica) los puntos de esquina que definen la trayectoria del méto-

do simplex hacia el punto óptimo.
(b) Determine el número máximo posible de iteraciones simplex necesarias para alcan-

zar la solución óptima, suponiendo que no hay ciclado.

6 Por lo general la redundancia implica que las restricciones pueden eliminarse sin afectar el espacio de solu-
ciones factible. Un ejemplo a veces citado es x 1 y # 1, x $ 1, y $ 0, donde la eliminación de cualquier res-
tricción cambiará el espacio factible desde un punto único a una región. Basta decir que esta condición es
cierta sólo si el espacio de soluciones se compone de un solo punto factible, una ocurrencia sumamente im-
probable en PL grandes (en la vida real).
7 Vea Bland R., “New Finite Pivoting for the Simplex Method”, Mathematics of Operations Research, vol. 2,
núm., 2, págs. 103-107, 1977.
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FIGURA 3.8

Espacio de soluciones del problema 1, conjunto 3.5a

D

C

x1
BA

x2

2. Considere la siguiente PL:

sujeto a

(a) Demuestre que las iteraciones simplex asociadas son temporalmente degeneradas
(puede utilizar TORA por comodidad).

(b) Verifique el resultado resolviendo el problema con el módulo gráfico de TORA.
3. Experimento con TORA. Considere la PL en el problema 2.

(a) Use TORA para generar las iteraciones simplex. ¿Cuántas iteraciones se requieren
para alcanzar el óptimo?

(b) Intercambie las restricciones (1) y (3) y vuelva a resolver el problema con TORA.
¿Cuántas iteraciones se requieren para resolverlo?

(c) Explique por qué los números de iteraciones en (a) y (b) son diferentes.
4. Experimento con TORA. Considere la siguiente PL (escrita por E.M. Beale para demos-

trar el ciclado):

sujeto a

x1, x2, x3, x4 Ú 0

x3 … 1

1
2x1 - 12x2 - 1

2x3 + 3x4 … 0

1
4x1 - 8x2 - x3 + 9x4 … 0

Maximizar z =  34x1 - 20x2 +  12 x3 - 6x4

x1, x2 Ú 0

4x1 + x2 … 8

4x1 + 3x2 … 12

4x1 - x2 … 8

Maximizar z = 3x1 + 2x2
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En el menú de TORA, seleccione las opciones
. A continuación, “recorra” las iteraciones simplex sucesivas

por medio del comando (no utilice , porque entonces el mé-
todo simplex entrará en un proceso de ciclado durante un tiempo indefinido). Notará
que la solución factible básica inicial con todas las holguras en la iteración 0 reaparecerá
de forma idéntica en la iteración 6. Este ejemplo ilustra la ocurrencia de ciclado en las
iteraciones simplex y la posibilidad de que el algoritmo nunca converja hacia la solución
óptima. (Lo interesante en este ejemplo es que si todos los coeficientes en esta PL se
convierten en enteros, el ciclado no ocurre. ¡Haga la prueba!).

3.5.2 Óptimos alternativos

Un problema de PL puede tener una cantidad infinita de óptimos alternativos cuando
la función objetivo es paralela a una restricción obligatoria no redundante (es decir,
una restricción que se satisface como una ecuación en la solución óptima). El siguiente
ejemplo demuestra la importancia práctica de tales soluciones.

Ejemplo 3.5-2 (Cantidad infinita de soluciones)

sujeto a

La figura 3.9 demuestra cómo pueden surgir óptimos alternativos en el modelo de PL cuan-
do la función objetivo es paralela a una restricción obligatoria. Cualquier punto sobre el seg-
mento de línea BC representa un óptimo alternativo con el mismo valor objetivo z 5 10.

x1, x2 Ú 0

x1 + x2 … 4

x1 + 2x2 … 5

Maximizar z = 2x1 + 4x2

All iterationsNext iteration
All-slackQIterationsQ

AlgebraicQSolveSOLVE/MODIFY

FIGURA 3.9

Óptimos alternativos de PL en el 
ejemplo 3.5-2

x1

x2

Soluciones básicas óptimas 
B

A D

C

z � 2x
1  � 4x

2

x
1  �

 x
2 �

 4

x
1  � 2x

2 � 5
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Iteración Básica x1 x2 x3 x4 Solución

0 z -2 -4 0 0 0

entrax2 x3 1 2 1 0 5
salex3 x4 1 1 0 1 4

1 (óptimo) z 0 0 2 0 10

entrax1 x2
1
2 1

1
2 0

5
2

salex4 x4
1
2 0 -1

2 1
3
2

2 z 0 0 2 0 10

(óptimo alternativo) x2 0 1 1 -1 1

x1 1 0 -1 2 3

La iteración 1 proporciona la solución óptima y z 5 10 (punto B en la figu-
ra 3.9). La existencia de un óptimo alternativo puede detectarse en la tabla óptima examinando
los coeficientes de las variables no básicas de la ecuación z. El coeficiente cero de la x1 no básica
indica que x1 puede hacerse básica, modificando los valores de las variables básicas sin cambiar
el valor de z. La iteración 2 hace justo eso, aplicando x1 y x4 como las variables de entrada y de
salida, respectivamente. El nuevo punto de solución ocurre en C (x1 5 3, x2 5 1, z 5 10).La op-
ción “Iterations” de TORA permite determinar un óptimo alternativo.) 

El método simplex determina sólo puntos de esquina óptimos; es decir, los puntos B y C
en el presente ejemplo. Podemos determinar de manera matemática todos los puntos (x1, x2)
sobre el segmento de línea BC como un promedio ponderado no negativo de los puntos

C(x1 5 3, x2 5 1), de lo que se concluye 

Comentarios. En la práctica, los óptimos alternativos son útiles porque podemos elegir de
entre muchas soluciones sin que se deteriore del valor objetivo. Digamos que en este ejemplo la
solución en B muestra que la actividad 2 sólo está en un nivel positivo; en cambio, en C ambas
actividades están en un nivel positivo. Si el ejemplo representa una situación de combinación de
productos, puede ser ventajoso comercializar dos productos en lugar de uno.

CONJUNTO DE PROBLEMAS 3.5B

*1. Para la siguiente PL, identifique tres soluciones básicas óptimas alternativas que com-
prendan estas tres soluciones básicas 

Maximizar z = x1 + 2x2 + 3x3

xN 1 = a102 + 11 - a2132 = 3 - 3a
xN 2 = a A52 B + 11 - a2112 = 1 + 3

2 a
r , 0 … a … 1

B (x1 = 0, x2 = 5
2)

x1 = 0, x2 =  52 

Las iteraciones del modelo se dan en la siguiente tabla.
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sujeto a

Nota: Aun cuando el problema tiene más de tres soluciones óptimas básicas alternativas,
sólo necesita identificar tres de ellas. Puede utilizar TORA por comodidad.

2. Resuelva la siguiente PL:

sujeto a

A partir de la tabla óptima, demuestre que no todos los óptimos alternativos son puntos
de esquina (es decir, no básicos). Provea una demostración gráfica bidimensional del 
tipo de espacio de soluciones y de función objetivo que producirá este resultado. (Puede
utilizar TORA por comodidad.) 

3. Para la siguiente PL demuestre que la solución óptima está degenerada y que las solucio-
nes alternativas no son puntos de esquina (puede utilizar TORA por comodidad).

sujeto a

3.5.3 Solución no acotada

En algunos modelos de programación lineal, el espacio de soluciones es no acotado en
por lo menos una variable, es decir que las variables pueden incrementarse de forma
indefinida sin violar ninguna de las restricciones. En este caso el valor objetivo asocia-
do también puede ser no acotado.

Un espacio de soluciones no acotado casi siempre indica que el modelo está mal
construido. La irregularidad más probable en tales modelos es que no se han tomado
en cuenta algunas restricciones clave. Otra posibilidad es que las estimaciones de los
coeficientes de las restricciones quizá no sean precisas.

x1, x2, x3 Ú 0

7x1 + 3x2 - 5x3 … 20

x1 + x2 - x3 … 2

x1 + 2x2 … 5

Maximizar z = 3x1 + x2

x1, x2, x3 Ú 0

2x1 - x2 + 3x3 … 40

x1 - x2 + 5x3 … 10

Maximizar z = 2x1 - x2 + 3x3

x1, x2, x3 Ú 0

x1 … 1

x1 + x2 … 5

x1 + 2x2 + 3x3 … 10
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Ejemplo 3.5-3 (Valor objetivo no acotado)

sujeto a

Iteración de inicio

x1, x2 Ú 0

2x1 … 40

x1 - x2 … 10

Maximizar  z = 2x1 + x2

En la tabla de inicio, tanto x1 como x2 tienen coeficientes negativos en la ecuación z, lo que
significa que al incrementarse sus valores también lo hará el valor objetivo. Aunque x1 debe ser
la variable de entrada (tiene el coeficiente z más negativo), observamos que todos los coeficien-
tes de restricción bajo x2 son # 0; lo que significa que x2 puede incrementarse indefinidamente
sin violar ninguna de las restricciones (compare con la interpretación gráfica de la relación míni-
ma en la figura 3.5). El resultado es que z puede incrementarse indefinidamente. La figura 3.10
muestra el espacio de soluciones no acotado y también que x2 y z pueden incrementarse indefi-
nidamente.

Básica x1 x2 x3 x4 Solución

z -2 -1 0 0 0

x3 1 -1 1 0 10
x4 2 0 0 1 40

FIGURA 3.10

Solución no acotada de PL en el ejemplo 3.5-3
x1

x2

Espacio de
soluciones no

acotadas

Valor
objetivo

no acotado

z �
 2x

1  �
 x

2

x 1
 �

 x 2 
�

 10

2x1 � 40



106 Capítulo 3 Método simplex y análisis de sensibilidad

Comentarios. Si se hubiera seleccionado x1 como la variable de entrada en la iteración de
inicio (conforme a la condición de optimalidad), a fin de cuentas, una iteración posterior habría
producido una variable de entrada con las mismas propiedades que x2. Vea el problema 1,
conjunto 3.5c.

CONJUNTO DE PROBLEMAS 3.5C

1. Experimento con TORA. Resuelva el ejemplo 3.5-3 aplicando la opción de TORA
y demuestre que aunque la solución se inicia con x1 como variable de entrada (conforme
a la condición de optimalidad), el algoritmo simplex finalmente apuntará hacia una solu-
ción no acotada.

*2. Considere la PL:

sujeto a

(a) Inspeccionando las restricciones, determine la dirección (x1, x2 o x3) en que el espa-
cio de soluciones sea no acotado.

(b) Sin más cálculos, ¿qué puede concluir con respecto al valor objetivo óptimo?
3. En algunos modelos de PL mal construidos, el espacio de soluciones puede ser no acota-

do aun cuando el problema pueda tener un valor objetivo acotado. Semejante ocurrencia
apunta hacia posibles irregularidades en la construcción del modelo. En problemas gran-
des, puede ser difícil detectar la situación de “acotación” por inspección. Idee un procedi-
miento analítico para determinar si el espacio de soluciones es no acotado.

3.5.4 Solución no factible

Los modelos PL con restricciones inconsistentes no tienen una solución factible. Esta
situación no ocurre si todas las restricciones son del tipo # con lados derechos no ne-
gativos porque las holguras proporcionan una solución factible obvia. Para otros tipos
de restricciones, se utilizan variables artificiales penalizadas para iniciar la solución. Si
al menos una variable artificial es positiva en la iteración óptima, entonces la PL no
tiene una solución factible. Desde el punto de vista práctico, un espacio no factible
apunta hacia la posibilidad de que el modelo se formuló de manera incorrecta.

Ejemplo 3.5-4 (Espacio de soluciones no factibles) 

Considere la siguiente PL:

Maximizar z = 3x1 + 2x2

x1, x2, x3 Ú 0

x1 - x2 + 4x3 … 20

x1 + x3 … 10

3x1 - 3x2 + 5x3 … 50

Maximizar z = 20x1 + 10x2 + x3

Iterations
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sujeto a

Aplicando la penalización M 5 100 para la variable artificial R, la siguiente tabla proporciona la
iteración simplex del modelo.

x1, x2 Ú 0

3x1 + 4x2 Ú 12

2x1 + x2 … 2

La iteración óptima 1 muestra que la variable artificial R es positiva (5 4), es decir que la
PL es no factible. La figura 3.11 ilustra el espacio de soluciones no factibles. Al permitir que
la variable artificial sea positiva, el método simplex de hecho ha invertido la dirección de la de-
sigualdad de 3x1 1 4x2 $ 12 a 3x1 1 4x2 # 12 (¿puede explicar cómo?). El resultado es lo que po-
demos llamar una solución seudo óptima.

CONJUNTO DE PROBLEMAS 3.5D

1. *Toolco produce tres tipos de herramientas, T1, T2 y T3. Las herramientas utilizan dos
materias primas, M1 y M2, según los datos que aparecen en la siguiente tabla:

FIGURA 3.11

Solución no factible del ejemplo 3.5-4
x1

x2

Solución
seudo óptima

0

z �
 3x

1  �
 2x

2

3x
1 � 4x

2 �
 12

2x
1 �

 x
2 �

 2
Iteración Básica x1 x2 x4 x3 R Solución

0 z -303 -402 100 0 0 -1200
entrax2 x3 2 1 0 1 0 2
salex3 R 3 4 -1 0 1 12

1 z 501 0 100 402 0 -396
(seudo óptima) x2 2 1 0 1 0 2

R -5 0 -1 -4 1 4

Cantidad de unidades de materias primas por herramienta

Materia prima T1 T2 T3

M1 3 5 6
M2 5 3 4



108 Capítulo 3 Método simplex y análisis de sensibilidad

Las cantidades diarias de materias primas M1 y M2 son 1000 unidades y 1200 unidades, res-
pectivamente. La investigación del mercado muestra que la demanda diaria de las tres he-
rramientas debe ser por lo menos de 500 unidades. ¿Puede satisfacer la demanda el depar-
tamento de fabricación? Si no, ¿cuál es la máxima cantidad que Toolco puede producir?

2. Experimento con TORA. Considere el modelo de programación lineal 

sujeto a

Active la opción para mostrar que la solución óptima incluye
una variable básica artificial, pero en el nivel cero. ¿Tiene el problema una solución ópti-
ma factible? 

3.6 ANÁLISIS DE SENSIBILIDAD

En PL, los parámetros (datos de entrada) del modelo pueden cambiar dentro de ciertos
límites sin que cambie la solución óptima. Esto se conoce como análisis de sensibilidad
y será el tema de esta sección. Más adelante, en el capítulo 4 estudiaremos el análisis
post óptimo, el cual tiene que ver con la determinación de la nueva solución óptima
cuando se cambian ciertos datos de entrada.

La presentación explica las ideas básicas del análisis de sensibilidad por medio de
la solución gráfica, y después se extienden al problema general de PL con base en los
resultados que aparecen en la tabla simplex.

3.6.1 Análisis de sensibilidad gráfica

Esta sección demuestra la idea general del análisis de sensibilidad. Se considerarán dos
casos:

1. La sensibilidad de la solución óptima a los cambios de la disponibilidad de los re-
cursos (lado derecho de las restricciones).

2. La sensibilidad de la solución óptima a los cambios en la utilidad unitaria o el
costo unitario (coeficientes de la función objetivo).

Utilizaremos ejemplos individuales para explicar los dos casos.

Ejemplo 3.6-1 (Cambios en el lado derecho)

JOBCO fabrica dos productos en dos máquinas. Una unidad del producto 1 requiere 2 horas en
la máquina 1, y 1 hora en la máquina 2. Una unidad del producto 2 requiere 1 hora en la máqui-
na 1, y 3 horas en la máquina 2. Los ingresos por unidad de los productos 1 y 2 son de $30 y $20,
respectivamente. El tiempo de procesamiento diario total disponible en cada máquina es de
8 horas.

M-MethodQIterations

x1,  x2,  x3 Ú 0

3x1 + 4x2 + 2x3 Ú 8

2x1 +  x2 + x3 … 2

Maximizar z = 3x1 + 2x2 + 3x3
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Si x1 y x2 son las cantidades diarias de unidades de los productos 1 y 2, respectivamente, el
modelo de PL se da como 

sujeto a

La figura 3.12 ilustra el cambio de la solución óptima cuando se cambia la capacidad de la má-
quina 1. Si la capacidad diaria se incrementa de 8 a 9 horas, el nuevo óptimo se moverá al punto
G. La tasa de cambio en la z óptima a consecuencia del cambio de la capacidad de la máquina 1
de 8 a 9 horas se calcula como:§ Tasa de cambio del ingreso

a consecuencia del incremento
de la capacidad de la máquina 1
en 1 hora 1punto C a punto G2 ¥ =

zG - zC1Cambio de la capacidad2 =
142 - 128

9 - 8
= $14/h

x1, x2 Ú 0

x1 + 3x2 … 8    (Máquina 2)

2x1 + x2 … 8    (Máquina 1)

Maximizar z = 30x1 + 20x2

2

0 1

1

3

4

5

6

7

8

9

2 3 4 5 6

Máquina 2 : x1  � 3x2  � 8

M
áquina 1 : 2 x

1  �
 x

2  �
 9

M
áquina 1 : 2 x

1  �
 x

2  �
 8

Óptimo: x1 � 3.2, x2 � 1.6, z � 128

Óptimo: x1 � 3.8, x2 � 1.4, z � 142

7 8 9x1

x2

FDA

B

E

C G

FIGURA 3.12

Sensibilidad gráfica de la solución óptima a cambios en la disponibilidad de recursos 
(lado derecho de las restricciones)
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La tasa calculada proporciona un vínculo directo entre los datos de entrada al modelo (recursos)
y sus resultados (ingreso total). Se dice que un incremento unitario (reducción) en la capacidad
de la máquina 1 aumentará (reducirá) el ingreso en $14.00.

El nombre valor unitario de un recurso es una descripción apropiada de la tasa de cambio
de la función objetivo por cambio unitario de un recurso. No obstante, los primeros desarrollos de
la PL acuñaron el nombre abstracto de precio dual (o sombra), y ahora este nombre es un están-
dar en toda la literatura de PL y en paquetes de “software”. La presentación en este libro se ajus-
ta a este estándar.

En la figura 3.12 podemos ver que el precio dual de $14/h permanece válido para cambios
(incrementos o reducciones) en la capacidad de la máquina 1 que mueven su restricción parale-
la a sí misma a cualquier punto sobre el segmento de línea BF. Calculamos las capacidades de la
máquina 1 en los puntos B y F como sigue:

Capacidad mínima de la máquina 1 [en B 5 (0.267)] 5 2 3 0 1 1 3 2.67 5 2.67 h

Capacidad máxima de la máquina 1 [en F 5 (8,0)] 5 2 3 8 1 1 3 0 5 16 h

La conclusión es que el precio dual de $14/h permanece válido en el intervalo

2.67 h # Capacidad de la máquina 1 # 16 h

Los cambios fuera de este intervalo producen un precio dual diferente (valor por unidad).
Elaborando cálculos similares podemos verificar que el precio dual para la capacidad de la

máquina 2 es de $2.00/h, y que no cambia cuando su capacidad se mantiene dentro del segmen-
to de línea DE. Ahora,

Capacidad mínima de la máquina 2 [en D 5 (4,0)] 5 1 3 4 1 3 3 0 5 4 h

Capacidad máxima de la máquina 2 [en E 5 (8,0)] 5 1 3 0 1 3 3 8 5 24 h

Por lo tanto, el precio dual de $200/h para la máquina 2 no cambia dentro del intervalo 

4 h # Capacidad de la máquina 2 # 24 h

Los límites calculados para las máquinas 1 y 2 se conocen como intervalos de factibilidad. Todos
los paquetes de “software” proporcionan información sobre los precios duales y sus intervalos de
factibilidad. La sección 3.6.4 muestra cómo generan esta información AMPL, Solver y TORA.

Los precios duales permiten tomar decisiones económicas sobre el problema de PL, como
las siguientes preguntas lo demuestran:

Pregunta 1. Si JOBCO puede incrementar la capacidad de ambas máquinas, ¿cuál máquina
tendrá la prioridad?

Según los precios duales para las máquinas 1 y 2, cada hora adicional de la máquina 1 in-
crementa el ingreso en $14, en comparación con sólo $2 para la máquina 2. Por lo tanto, la má-
quina 1 debe tener la prioridad.

Pregunta 2. Se sugiere incrementar las capacidades de las máquinas 1 y 2 al costo adicional de
$10/h para cada máquina. ¿Es esto aconsejable?

Para la máquina 1, el ingreso neto adicional por hora es 14 2 10 5 $4, y para la máquina 2,
es $2 2 $10 5 2 $8. Por consiguiente, sólo la máquina 1 debe considerarse para el incremento de
capacidad.

Pregunta 3. Si la capacidad de la máquina 1 se incrementa de 8 a 13 horas, ¿cómo impactará
este incremento al ingreso óptimo?

El precio dual para la máquina 1 es $14 y es válido en el intervalo (2.67,16)h. El incremento
propuesto de 13 horas queda comprendido dentro del intervalo de factibilidad. Por consiguien-
te, el incremento del ingreso es $14(13 2 8) 5 $70, lo que significa que el ingreso total se incre-
mentará de $128 a $198 (5 $128 1 $70).
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Pregunta 4. Suponga que la capacidad de la máquina 1 se incrementa a 20 horas, ¿cómo afec-
tará este incremento al ingreso óptimo? 

El cambio propuesto queda fuera del intervalo de factibilidad (2.67,16)h. Por lo tanto, sólo
podemos hacer una conclusión inmediata con respecto a un incremento hasta de 16 horas. Más
allá de eso, se requieren más cálculos para hallar la respuesta (vea el capítulo 4). Recuerde que
quedar fuera del intervalo de factibilidad no significa que el problema no tenga solución,
sino que la información disponible no es suficiente para llegar a una conclusión completa.

Pregunta 5. ¿Cómo podemos determinar los nuevos valores óptimos de las variables asociadas
con el cambio de un recurso? 

Los valores óptimos de las variables cambiarán. Sin embargo, el procedimiento para deter-
minar estos valores requiere más cálculos, como se demostrará en la sección 3.6.2.

CONJUNTO DE PROBLEMAS 3.6A

1. Una compañía fabrica dos productos, A y B. Los ingresos unitarios son $2 y $3, respecti-
vamente. Las disponibilidades diarias de dos materias primas, M1 y M2, utilizadas en la
fabricación de los dos productos son de 8 y 18 unidades, respectivamente. Una unidad de
A utiliza 2 unidades de M1 y 2 unidades de M2, y una unidad de B utiliza 3 unidades 
de M1 y 6 unidades de M2.
(a) Determine los precios duales de M1 y M2 y sus intervalos de factibilidad.
(b) Suponga que pueden adquirirse 4 unidades más de M1 al costo de 30 centavos por

unidad. ¿Recomendaría la compra adicional? 
(c) ¿Cuánto es lo máximo que la compañía debe pagar por unidad de M2?
(d) Si la disponibilidad de M2 se incrementa en 5 unidades, determine el ingreso óptimo

asociado.
*2. Wild West produce dos tipos de sombreros texanos. Un sombrero tipo A requiere dos

veces la mano de obra que el tipo 2. Si toda la mano de obra disponible se dedica sólo al
tipo 2, la compañía puede producir un total de 400 sombreros tipo 2 al día. Los límites de
mercado respectivos para los dos tipos son 150 y 200 sombreros por día. El ingreso es 
de $8 por sombrero tipo 1 y de $5 por sombrero tipo 2.
(a) Use la solución gráfica para determinar la cantidad de sombreros de cada tipo que

maximice el ingreso.
(b) Determine el precio dual de la capacidad de producción (en función del sombrero

tipo 2) y el intervalo dentro del cual es aplicable.
(c) Si el límite de la demanda diaria del sombrero tipo 1 se reduce a 120, use el precio

dual para determinar el efecto correspondiente en el ingreso óptimo.
(d) ¿Cuál es el precio dual de la participación en el mercado del sombrero tipo 2? ¿Qué

tanto se puede incrementar la participación en el mercado al mismo tiempo que se
obtiene el valor calculado por unidad?

Ejemplo 3.6-2 (Cambios en los coeficientes objetivo) 

La figura 3.13 muestra el espacio de soluciones gráficas del problema de JOBCO presentado en
el ejemplo 3.6-1. El óptimo ocurre en el punto C (x1 5 3.2, x2 5 1.6, z 5 128). Los cambios
en unidades de ingresos (es decir, los coeficientes de la función objetivo) modificarán la pen-
diente de z. Sin embargo, como puede verse en la figura, la solución óptima en el punto C no
cambia en tanto la función objetivo quede entre las líneas BF y DE.
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FIGURA 3.13

Sensibilidad gráfica de la solución óptima a cambios en las unidades de ingreso (coeficientes de la función
objetivo)

Obj

Máquina 2 : x1  � 3x2  � 8

M
áquina 1 : 2 x

1  �
 x

2  �
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z �
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F
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Óptimo: x1 � 3.2, x2 � 1.6, z � 128
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2 3 4 5 6 7 8 9x1

x2
E

8 La condición de “relación” funciona correctamente en esta situación porque las pendientes para las dos lí-
neas que pasan por el punto óptimo C tienen el mismo signo. Otras situaciones son más complejas.

¿Cómo podemos determinar los intervalos para los coeficientes de la función objetivo que
mantendrán inalterable la función óptima en C? Primero, escribimos la función objetivo en el
formato general

Imagine ahora que la línea z está pivotada en C y que puede girar en el sentido de las manecillas
del reloj, así como en el sentido contrario. La solución óptima permanecerá en el punto C en
tanto z 5 c1x1 1 c2x2 quede entre las dos líneas x1 1 3x2 5 8, y 2x1 1 x2 5 8. Esto significa que
la relación puede variar entre y lo que resulta en el siguiente intervalo de optimalidad:8

1
3

 …
c1

c2
 …

2
1

  o  .333 …
c1

c2
 … 2

2
1,1

3
c1
c2

Maximizar z =  c1x1 +  c2x2
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Esta información proporciona respuestas inmediatas con respecto a la solución óptima como la
siguiente pregunta lo demuestra:

Pregunta 1. Suponga que los ingresos unitarios producidos para los productos 1 y 2 cambian a
$35 y $25, respectivamente. ¿Permanecerá igual el óptimo actual?

La nueva función objetivo es

La solución en C permanecerá óptima porque permanece dentro del intervalo de
optimalidad (.333,2). Cuando la relación queda afuera de este intervalo, se requieren más cálcu-
los para determinar el nuevo óptimo (vea el capítulo 4). Observe que aunque los valores de las
variables en el punto óptimo C no cambian, el valor óptimo de z cambia a 35 3 (3.2) 1 25 3
(1.6) 5 $152.

Pregunta 2. Suponga que el ingreso unitario del producto 2 se fija a su valor actual c2 5 $20.
¿Cuál es el intervalo de optimalidad asociado para el ingreso unitario del producto 1, c1, que
mantendrá el óptimo sin cambio? 

Sustituyendo c2 5 20 en la condición obtenemos 

Este intervalo asume implícitamente que c2 se mantiene fijo en $20.
Del mismo modo podemos determinar el intervalo de optimalidad para c2 si fijamos el valor

de c1 en $30. Por lo tanto,

Como en el caso del lado derecho, todos los paquetes de software proporcionan los intervalos de
optimalidad para cada uno de los coeficientes de la función objetivo. La sección 3.6.4 muestra
cómo AMPL, Solver y TORA generan estos resultados.

Comentarios. Aunque el material en esta sección se ocupó de dos variables, los resultados
sientan las bases para el desarrollo del análisis de sensibilidad para el problema general de PL en
las secciones 3.6.2 y 3.6.3.

CONJUNTO DE PROBLEMAS 3.6B

1. Considere el problema 1, conjunto 3.6a.

(a) Determine la condición de optimalidad para que mantendrá el óptimo sin cambio.

(b) Determine los intervalos de optimalidad para cA y cB, suponiendo que el otro coefi-
ciente se mantiene constante en su valor actual.

(c) Si los ingresos unitarios cA y cB cambian al mismo tiempo a $5 y $4, respectivamente,
determine la nueva solución óptima.

(d) Si los cambios en (c) se hacen uno a la vez, ¿qué se puede decir sobre la solución
óptima?

2. En el modelo de Reddy Mikks del ejemplo 2.2-1:

(a) Determine el intervalo para la relación del ingreso unitario de la pintura para exte-
riores con el ingreso unitario de la pintura para interiores.

cA
cB

 (c2 … 30 * 3 y c2 Ú  30
2  ) o 15 … c2 … 90

1
3 * 20 … c1 … 2 * 20 o  6.67 … c1 … 40

1
3 … c1

c2 … 2,

c1
c2 = 35

25 = 1.4

Maximizar z =  35x1 +  25x2
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(b) Si el ingreso por tonelada de pintura para exteriores permanece constante en $5000
por tonelada, determine el ingreso unitario máximo de la pintura para interiores que
mantendrá la solución óptima presente sin cambios.

(c) Si por razones de comercialización el ingreso unitario de pintura para interiores
debe reducirse a $3000, ¿cambiará la combinación de producción óptima actual?

*3. En el problema 2, conjunto 3.6a:
(a) Determine el intervalo de optimalidad para la relación de los ingresos unitarios de

los dos tipos de sombreros que mantendrá el óptimo actual sin cambiar.
(b) Con la información en (b), ¿cambiará la solución óptima si el ingreso por unidad es

el mismo para ambos tipos?

3.6.2 Análisis de sensibilidad algebraica. Cambios en el lado derecho

En la sección 3.6.1, utilizamos la solución gráfica para determinar el precio dual (valor
unitario de un recurso) y sus intervalos de factibilidad. Esta sección amplía el análisis
al modelo de PL general. Se utilizará un ejemplo numérico (el modelo de TOYCO)
para facilitar la presentación.

Ejemplo 3.6-3 (Modelo de TOYCO)

TOYCO utiliza tres operaciones para armar tres tipos de juguetes: trenes, camiones y carros. Los
tiempos diarios disponibles para las tres operaciones son 430, 460 y 420 minutos, respectivamen-
te, y los ingresos por unidad de tren, camión y auto de juguete son de $3, $2 y $5, respectiva-
mente. Los tiempos de ensamble por tren en las tres operaciones son de 1, 3 y 1 minutos, res-
pectivamente. Los tiempos correspondientes por tren y por auto son (2,0,4) y (1,2,0) minutos (un
tiempo cero indica que la operación no se utiliza).

Sean x1, x2 y x3 las cantidades diarias de unidades ensambladas de trenes, camiones y autos,
respectivamente, el modelo de PL asociado se da como:

sujeto a

Utilizando x4, x5 y x6 como las variables de holgura para las restricciones de las operaciones 1, 2
y 3, respectivamente, la tabla óptima es

x1, x2, x3 Ú 0

x1 + 4x2 … 420 (Operación 3)

3x1 + 2x3 … 460 (Operación 2)

x1 + 2x2 + x3 … 430 (Operación 1)

Maximizar z = 3x1 + 2x2 + 5x3

Básica x1 x2 x3 x4 x5 x6 Solución

z 4 0 0 1 2 0 1350

x2 -1
4 1 0 1

2
-1

4 0 100

x3
3
2 0 1 0 1

2 0 230

x6 2 0 0 -2 1 1 20
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La solución recomienda fabricar 100 camiones y 230 autos pero no trenes. El ingreso aso-
ciado es $1350.

Determinación de precios duales e intervalos de factibilidad. Utilizaremos el modelo
de TOYCO para demostrar cómo se obtiene esta información con la tabla simplex
óptima. Reconociendo que los precios duales y sus intervalos de factibilidad tienen que
ver con los cambios del lado derecho de las restricciones, suponga que D1, D2 y D3 son
los cambios (positivos o negativos) realizados en el tiempo de fabricación diario
asignado de las operaciones 1, 2 y 3, respectivamente. El modelo de TOYCO original
puede cambiarse entonces a 

sujeto a

Para expresar la tabla simplex óptima del problema modificado en función de los cam-
bios D1, D2 y D3, primero volvemos a escribir la tabla de inicio con los nuevos lados de-
rechos, 430 1 D1, 460 1 D2 y 420 1 D3.

x1, x2, x3 Ú 0

x1 + 4x2 … 420 + D3        (Operación 3)

3x1 + 2x3 … 460 + D2        (Operación 2)

x1 + 2x2 + x3 … 430 + D1         (Operación 1)

Maximizar z = 3x1 + 2x2 + 5x3

Las dos áreas sombreadas son idénticas. Por consiguiente, si repetimos las mismas
iteraciones simplex (con las mismas operaciones de filas) como en el modelo original,
las columnas en las dos áreas resaltadas también serán idénticas en la tabla óptima, es
decir 

Solución

Básica x1 x2 x3 x4 x5 x6 RHS D1 D2 D3

z -3 -2 -5 0 0 0 0 0 0 0

x4 1 2 1 1 0 0 430 1 0 0
x5 3 0 2 0 1 0 460 0 1 0
x6 1 4 0 0 0 1 420 0 0 1

Solución

Básica x1 x2 x3 x4 x5 x6 RHS D1 D2 D3

z 4 0 0 1 2 0 1350 1 2 0

x2 -1
4 1 0 1

2 -1
4 0 100 1

2 -1
4 0

x3 3
2

0 1 0 1
2 0 230 0 1

2
0

x6 2 0 0 -2 1 1 20 -2 1 1
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La nueva tabla óptima da la siguiente solución óptima:

Ahora utilizamos esta solución para determinar los precios duales y los intervalos de
factibilidad.

Precios duales: El valor de la función objetivo puede escribirse como 

La ecuación muestra que 

1. Un cambio unitario en la capacidad de la operación 1 (D1 5 6 1 min) cambia a z
en $1.

2. Un cambio unitario en la capacidad de la operación 2 (D2 5 6 1 min) cambia a z
en $2.

3. Un cambio unitario en la capacidad de la operación 3 (D3 5 6 1 min) cambia a z
en $0.

Esto significa que, por definición, los precios duales correspondientes son de 1, 2 y 0
($/min) para las operaciones 1, 2 y 3, respectivamente.

Los coeficientes D1, D2 y D3 en la fila z óptima son exactamente los de las varia-
bles de holgura x4, x3 y x6. Esto significa que los precios duales son iguales a los coefi-
cientes de las variables de holgura en la fila z óptima. No existe ambigüedad en cuanto
a qué coeficiente corresponde a qué recurso porque cada variable de holgura está
identificada de forma única con una restricción.
Intervalo de factiblidad: La solución actual permanece factible si todas las variables bá-
sicas permaneces no negativas, es decir 

Los cambios simultáneos de D1, D2 y D3 que satisfacen estas desigualdades man-
tendrán la solución factible. La nueva solución óptima se determina sustituyendo los
valores de D1, D2 y D3.

Para ilustrar el uso de estas condiciones, suponga que el tiempo de fabricación
disponible para las operaciones 1, 2 y 3 son de 480, 440 y 400 minutos, respectivamente.
Entonces, D1 5 480 2 430 5 50, D2 5 440 2 460 5 220 y D3 5 400 2 420 5 220.
Sustituyendo en las condiciones de factibilidad, obtenemos

 x6 = 20 - 21502 + 1-202 + 1-102 = -110 6 0   1no factible2 x3 = 230 + 1
21-202 = 220 7 0  1factible2 x2 = 100 + 1
21502 - 1

41-202 = 130 7 0  1factible2

 x6 = 20 - 2D1 + D2 + D3 Ú 0

 x3 = 230 + 1
2 D2 Ú 0

 x2 = 100 + 1
2 D1 - 1

4 D2 Ú 0

z = 1350 + 1D1 + 2D2 + 0D3

 x6 = 20 - 2D1 + D2 + D3

x3 = 230 +  12 D2

 x2 = 100 +  12 D1 -  14 D2

z = 1350 + D1 + 2D2
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Los cálculos demuestran que x6 , 0, de ahí que la solución actual no permanezca facti-
ble. Se requerirán más cálculos para encontrar la nueva solución (vea el capítulo 4).

Como alternativa, si los cambios de los recursos son tales que D1 5 230, D2 5
2 12 y D3 5 10, entonces 

La nueva solución factible (óptima) es x1 5 88, x3 5 224, y x6 5 68 con z 5 3(0) 1 2(88)
1 5(224) 5 $1296. Observe que el valor objetivo óptimo también puede calcularse uti-
lizando los precios duales como z 5 1350 1 1(230) 1 2(212) 1 0(10) 5 $1296.

Las condiciones dadas pueden producir los intervalos de factibilidad individuales
asociados con cambiar los recursos uno a la vez (como se define en la sección 3.6.1).
Por ejemplo, un cambio del tiempo de la operación 1 sólo implica que D2 5 D3 5 0. Por
tanto, las condiciones simultáneas se reducen a 

Esto significa que el precio dual para la operación 1 es válido en el intervalo de factibi-
lidad 2200 # D1 # 10.

Podemos demostrar del mismo modo que los intervalos de factibilidad para las ope-
raciones 2 y 3 son 220 # D2 # 400 y 220 , D3 , q, respectivamente (¡compruébelo!).

Ahora podemos resumir los precios duales y sus intervalos de factibilidad para el
modelo de TOYCO como sigue:9

x2 = 100 + 1
2 D1 Ú 0Q D1 Ú -200

x3 = 230 7 0
x6 = 20 - 2D1 Ú 0Q D1 … 10

s Q -200 … D1 … 10

 x6 = 20 - 21-302 + 1-122 + 1102 = 78 7 0  1factible2 x3 = 230 + 1
21-122 = 224 7 0  1factible2 x2 = 100 + 1
21-302 - 1

41-122 = 88 7 0  1factible2

Cantidad de recurso (minutos)

Recurso Precio dual ($) Intervalo de factibilidad Mínima Actual Máxima

Operación 1 1 -200 … D1 … 10 230 430 440
Operación 2 2 -20 … D2 … 400 440 440 860
Operación 3 0 -20 … D3 6 q 400 420 q

9 Los paquetes de programación lineal disponibles suelen presentar esta información como resultados están-
dar. Prácticamente ninguno proporciona el caso de condiciones simultáneas, quizá porque su visualización es
muy pesada en el caso de PL grandes.

Es importante señalar que los precios duales permanecerán aplicables con cual-
quier cambio simultáneo que mantenga la solución factible, aun cuando los cambios
violen los intervalos individuales. Por ejemplo, los cambios D1 5 30, D2 5 212 y D3 5
100 mantendrán la solución factible aun cuando D1 5 30 viole el intervalo de factibili-
dad 2 200 # D1 # 10, como los siguientes cálculos lo demuestran:

 x6 = 20 - 21302 + 1-122 + 11002 = 48 7 0  1factible2 x3 = 230 + 1
21-122 = 224 7 0  1factible2 x2 = 100 + 1
21302 - 1

41-122 = 118 7 0  1factible2
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Esto significa que los precios duales permanecerán aplicables, y que podemos calcular
el nuevo valor objetivo óptimo con los precios duales como z 5 1350 1 1(30) 1 2(212)
1 0(100) 5 $1356.

CONJUNTO DE PROBLEMAS 3.6C10

1. En el modelo de TOYCO, suponga que los cambios D1, D2 y D3 se hacen al mismo tiem-
po en las tres operaciones.
(a) Si la disponibilidad de las operaciones 1, 2 y 3 se cambia a 438, 500 y 410 minutos,

respectivamente, aproveche las condiciones simultáneas para demostrar que la solu-
ción básica actual permanece factible, y determine el cambio del ingreso óptimo me-
diante los precios duales óptimos.

(b) Si la disponibilidad de las tres operaciones se cambia a 460, 440 y 380 minutos, res-
pectivamente, aproveche las condiciones simultáneas para demostrar que la solución
básica actual es no factible.

*2. Considere el modelo de TOYCO:
(a) Suponga que cualquier tiempo adicional para la operación 1 por encima de su capa-

cidad actual de 430 minutos por día deba hacerse con base en tiempo extra a $50 por
hora. El costo por hora incluye tanto la mano de obra como la operación de la má-
quina. ¿Es económicamente ventajoso utilizar tiempo extra con la operación 1?

(b) Suponga que el encargado de la operación 2 ha acordado trabajar 2 horas de tiempo
extra diarias a $45 por hora.Adicionalmente, el costo de la operación propiamente
dicha es de $10 por hora. ¿Cuál es el efecto neto de esta actividad en el ingreso diario? 

(c) ¿Es necesario el tiempo extra para la operación 3? 
(d) Suponga que la disponibilidad diaria de la operación 1 se incrementa a 440 minutos.

Cualquier tiempo extra por encima de la capacidad máxima actual costará $40 por
hora. Determine la nueva solución óptima, incluido el ingreso neto asociado.

(e) Suponga que la disponibilidad de la operación 2 se reduce en 15 minutos por día y
que el costo por hora de la operación durante el tiempo regular es de $30. ¿Es venta-
joso reducir la disponibilidad de la operación 2?

3. Una compañía fabrica tres productos, A, B y C. El volumen de ventas de A es como míni-
mo 50% de las ventas totales de los tres productos. Sin embargo, la compañía no puede
vender más de 75 unidades por día. Los tres productos utilizan una materia prima de la
cual la máxima disponibilidad diaria es de 240 lb. Las tasas de consumo de la materia
prima son de 2 lb por unidad de A, 4 lb por unidad de B, y 3 lb por unidad de C. Los pre-
cios unitarios de A, B y C son $20, $50 y $35, respectivamente.
(a) Determine la combinación óptima de productos para la compañía.
(b) Determine el precio dual de la materia prima y su intervalo permisible. Si la materia

prima disponible se incrementa en 120 lb, determine la solución óptima y el cambio
del ingreso total mediante el precio dual.

(c) Use el precio dual para determinar el efecto de cambiar la demanda máxima del
producto A en 6 10 unidades.

10 En este conjunto de problemas, quizá le convenga generar la tabla simplex óptima con TORA.
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4. Una compañía que opera 10 horas al día fabrica tres productos con tres procesos. La si-
guiente tabla resume los datos del producto.

(a) Determine la combinación de productos óptima.

(b) Use el precio dual para priorizar los tres procesos para una posible expansión.

(c) Si pueden asignarse más horas de producción, ¿cuál sería un costo justo por hora
adicional para cada proceso?

5. La división de educación continua del Colegio Comunitario de Ozark ofrece un total de
30 cursos cada semestre. Por lo común, los cursos ofrecidos son de dos tipos: prácticos,
como carpintería, procesamiento de palabras y mantenimiento automotriz; y humanis-
tas como historia, música y bellas artes. Para satisfacer las demandas de la comunidad,
cada semestre deben ofrecerse como mínimo 10 cursos de cada tipo. La división estima
que los ingresos producidos por el ofrecimiento de cursos prácticos y humanistas son
aproximadamente de $1500 y $1000 por curso, respectivamente.

(a) Idee un ofrecimiento de cursos óptimo para el colegio.

(b) Demuestre que el precio dual de un curso adicional es de $1500, el cual es el mismo
que el ingreso por curso práctico. ¿Qué significa este resultado en función de ofrecer
cursos adicionales?

(c) ¿Cuántos cursos más pueden ofrecerse al mismo tiempo de modo que se garantice
que cada uno contribuirá con $1500 al ingreso total?

(d) Determine el cambio en ingresos a consecuencia del aumento del requerimiento mí-
nimo de cursos humanistas en un curso.

*6. Show & Sell puede anunciar sus productos en la radio y la televisión (TV) locales, o en
periódicos. El presupuesto de publicidad está limitado a $10,000 mensuales. Cada minuto
de publicidad en radio cuesta $15 y cada minuto en TV cuesta $300. Un anuncio en el pe-
riódico cuesta $50. A Show & Sell le gusta anunciarse en radio al menos el doble de veces
que en TV. Mientras tanto, se recomienda el uso de al menos 5 anuncios en el periódico y
no más de 30 minutos de publicidad por radio al mes. La experiencia pasada muestra que
la publicidad en TV es 50 veces más efectiva que la publicidad en radio, y 10 veces más
efectiva que en periódicos.

(a) Determine la asignación óptima del presupuesto a los tres medios.

(b) ¿Son los límites impuestos a la publicidad por radio y periódicos económicamente
justificables?

(c) Si el presupuesto mensual se incrementa en 50%, ¿produciría esto un incremento
proporcional en la efectividad total de la publicidad? 

7. Burroughs Garment Company fabrica camisas para caballeros y blusas para damas para
Walmark Discount Stores, que aceptará toda la producción surtida por Burroughs. El
proceso de producción incluye corte, costura y empacado. Burroughs emplea 25 trabaja-
dores en el departamento de corte, 35 en el de costura y 5 en el empacado. La fábrica la-

Minutos por unidad

Producto Proceso 1 Proceso 2 Proceso 3 Precio unitario

1 10 6 8 $4.50
2 5 8 10 $5.00
3 6 9 12 $4.00
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bora un turno de 8 horas, 5 días a la semana. La siguiente tabla da los requerimientos de
tiempo y los precios por unidad de las dos prendas:

(a) Determine el programa de producción semanal óptimo para Burroughs.
(b) Determine el valor de 1 hora de corte, costura y empacado, en función del ingreso total.
(c) Si puede utilizarse tiempo extra en los departamentos de corte y costura, ¿cuál es la

tarifa por hora máxima que Burroughs debe pagar por el tiempo extra?
8. ChemLabs utiliza las materias primas I y II para producir dos soluciones de limpieza

doméstica, A y B. Las disponibilidades diarias de las materias primas I y II son de 150 y
145 unidades, respectivamente. Una unidad de la solución A consume .5 unidades de la
materia prima I y .6 unidades de la materia prima II, y una unidad de la solución B usa .5
unidades de la materia prima I y .4 unidades de la materia prima II. Los precios por uni-
dad de las soluciones A y B son de $8 y $10, respectivamente. La demanda diaria de la so-
lución A es de entre 30 y 150 unidades, y la de la solución B de entre 40 y 200 unidades.
(a) Determine las cantidades óptimas de A y B que ChemLabs debe producir.
(b) Use los precios duales para determinar qué límites de demanda de los productos A y

B se deben rebajar para mejorar la rentabilidad.
(c) Si pueden adquirirse más unidades de materia prima a $20 por unidad, ¿es esto

aconsejable? Explique.
(d) Se sugiere incrementar 25% la materia prima II para eliminar un cuello de botella

en la producción. ¿Es esto aconsejable? Explique.
9. Una línea de ensamble compuesta de tres estaciones de trabajo consecutivas produce dos

modelos de radio: DiGi-1 y DiGi-2. La siguiente tabla da los tiempos de ensamble para
las tres estaciones de trabajo.

Minutos por unidad 

Prenda Corte Costura Empacado Precio unitario ($)

Camisas 20 70 12 8.00
Blusas 60 60 4 12.00

El mantenimiento diario de las estaciones de trabajo 1, 2 y 3 consume 10, 14 y 12%, res-
pectivamente, de los 480 minutos máximos disponibles por estación cada día.
(a) La compañía desea determinar la combinación óptima de productos que minimizará

los tiempos ociosos (o no utilizados) en las tres estaciones de trabajo. Determine la uti-
lización óptima de las estaciones de trabajo. Sugerencia: Exprese la suma de los tiem-
pos ociosos (holguras) para las tres operaciones en función de las variables originales.

(b) Determine el valor de reducir el tiempo de mantenimiento diario de cada estación
en un punto porcentual.

Estación de trabajo

Minutos por unidad

DiGi-1 DiGi-2

1 6 4
2 5 4
3 4 6
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(c) Se propone que el tiempo de operación de las tres estaciones se incremente a 600
minutos por día a un costo adicional de $1.50 por minuto. ¿Puede mejorarse esta
propuesta? 

10. Gutchi Company fabrica bolsos de mano, bolsas para rasuradora y mochilas. La construc-
ción de los tres productos requiere piel y materiales sintéticos, dado que la piel es la ma-
teria prima limitante. El proceso de producción utiliza dos tipos de mano de obra califica-
da: costura y terminado. La siguiente tabla da la disponibilidad de los recursos, su uso por
los tres productos, y los precios por unidad.

Requerimientos de recursos por unidad

Recurso 
Bolso de

mano

Bolsa para

rasuradora Mochila Disponibilidad diaria 

Piel (pies2) 2 1 3 42
Costura (h) 2 1 2 40
Terminado (h) 1 .5 1 45

Precio ($) 24 22 45

Formule el problema como una programación lineal, y determine la solución óptima. A
continuación, indique si los siguientes cambios en los recursos mantendrán factible la so-
lución actual. En los casos donde la factibilidad se mantiene, determine la nueva solución
óptima (valores de las variables y la función objetivo).
(a) La piel disponible se incrementa a 45 pies2.
(b) La piel disponible se reduce en 1 pie2.
(c) Las horas de costura disponibles se cambian a 38.
(d) Las horas de costura disponibles se cambian a 46.
(e) Las horas de terminado disponibles se reducen a 15.
(f) Las horas de terminado disponibles se incrementan a 50.
(g) ¿Recomendaría contratar una costurera más a $15 la hora?

11. HiDec produce dos modelos de artefactos electrónicos que utilizan resistores, capacitores
y “chips”. La siguiente tabla resume los datos de la situación:

Recurso

Requerimiento de recursos unitarios

Modelo 1 (unidades) Modelo 2 (unidades) Disponibilidad máxima (unidades)

Resistores 2 3 1200
Capacitores 2 1 1000
Chips 0 4 800

Precio unitario ($) 3 4

Sean x1 y x2 las cantidades producidas de los modelos 1 y 2, respectivamente. A continua-
ción se dan el modelo y su tabla simplex óptima asociada.

Maximizar z = 3x1 + 4x2
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sujeto a

 x1, x2 Ú 0

 4x2 … 800  1Chips2 2x1 + x2 … 1000  1Capacitores2 2x1 + 3x2 … 1200  1Resistores2

*(a) Determine el estado de cada recurso.
*(b) En función del ingreso óptimo, determine los precios duales para resistores, capaci-

tores y chips.
(c) Determine los intervalos de factibilidad para los precios duales obtenidos en (b).
(d) Si la cantidad de resistores disponibles se incrementa a 1300 unidades, encuentre la

nueva solución óptima.
*(e) Si la cantidad de chips disponibles se reduce a 350 unidades, ¿podrá determinar la

nueva solución óptima directamente con la información dada? Explique.
(f) Si el intervalo de factibilidad calculado en (c) limita la disponibilidad de capacitores,

determine el intervalo correspondiente del ingreso óptimo y los intervalos corres-
pondientes de las cantidades de unidades de los modelos 1 y 2 que se producirán.

(g) Un nuevo contratista ofrece a HiDec más resistores a 40 centavos cada uno, pero
sólo si HiDec compra al menos 500 unidades. ¿Debe HiDec aceptar la oferta? 

12. Regla de la factibilidad de 100%. Puede usarse una regla simplificada basada en los cam-
bios individuales D1, D2,…, y Dm en el lado derecho de las restricciones para probar si los
cambios simultáneos mantendrán la factibilidad de la solución actual. Suponga que el
lado derecho bi de la restricción i se cambia a bi 1 Di paso a paso, y que pi # Di # qi es
el intervalo de factibilidad correspondiente obtenido utilizando el procedimiento de la
sección 3.6.2. Por definición tenemos pi # 0 (qi $ 0) porque representa la reducción 
(incremento) máxima permisible en bi. Luego definimos ri como igual a si Di es nega-
tivo, y si Di es positivo. Por definición, tenemos que 0 # ri # 1. La regla del 100% dice
por tanto que, dados los cambios, D1, D2,…, y Dm, una condición suficiente (pero no nece-
saria) para que la solución actual permanezca factible es que r1 1 r2 1 … 1 rm # 1. Si la
condición no se satisface, entonces la solución actual puede o no permanecer factible. La
regla no es aplicable si Di queda fuera del intervalo (pi,qi).

En realidad, la regla del 100% es demasiado débil como para que sea consistente-
mente útil. Aun en los casos en que la factibilidad puede confirmarse, seguimos teniendo
la necesidad de obtener la nueva solución utilizando las condiciones de factibilidad sim-
plex comunes. Además, los cálculos directos asociados con los cambios simultáneos dados
en la sección 3.6.2, son simples y manejables.

Para demostrar la debilidad de la regla, aplíquela a las partes (a) y (b) del problema
1 de este conjunto. La regla no confirma la factibilidad de la solución en (a) y no es válida
en (b) porque los cambios de Di quedan fuera del intervalo admisible. El problema 13
demuestra aún más este punto.

Di
qi

Di
pi

Básica x1 x2 s1 s2 s3 Solución

z 0 0
5
4

1
4 0 1750

x1 1 0 -1
4

3
4 0 450

s3 0 0 -2 2 1 400
x2 0 1 1

2 -1
2 0 100
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13. Considere el problema

sujeto a

(a) Demuestre que la solución básica óptima incluye tanto a x1 como a x2 y que los in-
tervalos de factibilidad considerados uno a la vez, son 23 # Di # 6 y 23 # D2 # 6.

(b) *Suponga que los dos recursos se incrementan al mismo tiempo en D . 0. Primero,
demuestre que la solución básica permanece factible con todos los incrementos D . 0.
Luego, demuestre que la regla del 100% confirmará la factibilidad sólo si el incre-
mento ocurre en el intervalo 0 , D # 3 unidades. De lo contrario, la regla falla en el
intervalo 3 , D 6 y no es válida para D . 6.

3.6.3 Análisis de sensibilidad algebraica. Función objetivo

En la sección 3.6.1 utilizamos el análisis de sensibilidad gráfica para determinar las
condiciones que mantendrán la optimalidad de la solución de una PL de dos variables.
En esta sección extendemos estas ideas al problema de programación lineal general.

Definición de costo reducido. Para facilitar la explicación del análisis de sensibili-
dad de la función objetivo, primero tenemos que definir los costos reducidos. En el
modelo de TOYCO (ejemplo 3.6-2), la ecuación z objetivo que aparece en la tabla
óptima puede escribirse como

La solución óptima no produce trenes de juguete (x1 5 0). La razón se pone de mani-
fiesto en la ecuación z, donde un incremento unitario en x1 (sobre su valor de cero ac-
tual) reduce a z en $4, es decir, z 5 1350 2 4 3 (1) 2 1 3 (0) 2 2 3 (0) 5 $1346.

Podemos considerar el coeficiente de x1 en la ecuación z (5 4) como un costo uni-
tario porque reduce el ingreso z. Pero ¿de dónde proviene este “costo”? Sabemos que el
ingreso por unidad de x1 es de $3 (según el modelo original). También sabemos que la
producción de trenes de juguete incurre en un costo porque consume recursos (tiempo
de operaciones). Por consiguiente, desde el punto de vista de la optimización, el “atrac-
tivo” de x1 depende del costo de los recursos consumidos con respecto al ingreso. Esta
relación define el llamado costo reducido y se formaliza en la literatura de PL como 

aCosto reducidob Costo de los recursos Ingreso
por unidad

= aconsumidos por unidadb - apor unidadb

z =  1350 -  4x1 -  x4 -  2x5

x1 + x2 Ú 0

x1 + 2x2 … 6

2x1 + x2 … 6

Maximizar z = x1 + x2

Para apreciar la importancia de esta definición, en el modelo original de TOYCO el in-
greso por unidad de camiones de juguete  (5 $2) es menor que el de trenes de juguete
(5 $3). No obstante la solución óptima recomienda producir camiones de juguete (x2
5 100 unidades) y nada de trenes (x1 5 0). La razón es que el costo de los recursos con-
sumidos por un camión de juguete (es decir, tiempo de operaciones) es menor que su
precio unitario; al contrario de lo que sucede en el caso de los trenes de juguete.
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Con la definición dada de costo reducido, podemos ver que una variable no ren-
table (como x1) puede hacerse rentable de dos maneras:

1. Incrementando el ingreso unitario.
2. Reduciendo el costo unitario de los recursos consumidos.

En la mayoría de las situaciones, las condiciones del mercado dictan el precio por uni-
dad y puede ser difícil incrementarlo a voluntad. Por otra parte, una opción más viable
es reducir el consumo de recursos porque el fabricante puede reducir el costo si hace
que el proceso de producción sea más eficiente.

Determinación de los intervalos de optimalidad. Ahora nos enfocamos en la
determinación de las condiciones que mantendrán una óptima solución. El desarrollo
se basa en la definición de costo reducido.

En el modelo de TOYCO, sean d1, d2 y d3 los cambios de los ingresos unitarios de
camiones, trenes y autos, respectivamente. La función objetivo se escribe entonces como 

Primero consideramos la situación general en la cual todos los coeficientes objetivo
cambian al mismo tiempo.

Con los cambios simultáneos, la fila z en la tabla de inicio aparece como:

Maximizar z = (3 + d1)x1 + (2 + d2)x2 + (5 + d3)x3

Básica x1 x2 x3 x4 x5 x6 Solución

z -3 - d1 -2 - d2 -5 - d3 0 0 0 0

Cuando generamos la tabla simplex con la misma secuencia de las variables de
entrada y salida utilizadas en el modelo original (antes de que se realicen los cambios
de di), la iteración óptima aparecerá como sigue (convénzase de que éste si es el caso
realizando las operaciones de filas simplex):

La nueva tabla óptima es igual a la tabla óptima original, excepto por los costos reduci-
dos (coeficientes de la ecuación z). Esto significa que los cambios en los coeficientes de
la función objetivo pueden afectar sólo la optimalidad del problema. (Compare con la
sección 3.6.2, donde los cambios del lado derecho sólo afectan a la factibilidad.)

Básica x1 x2 x3 x4 x5 x6 Solución

z 4 -  14 d2 +  32 d3 - d1 0 0 1 +  12 d2  2 -  14 d2 +  12 d3 0 1350 +  100d2 +  230d3

x2 -1
4 1 0 1

2 -1
4 0 100

x3
3
2 0 1 0 1

2 0 230

x6 -1
4

0 0 -2 1 1 20
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En realidad no tiene que realizar la operación de filas simplex para calcular los
nuevos costos reducidos. Un examen de la nueva fila z muestra que los coeficientes de
di se toman directamente de los coeficientes de las restricciones de la tabla óptima.
Una forma conveniente de calcular el nuevo costo reducido es agregar una nueva fila
superior y una nueva columna más a la izquierda de la tabla óptima, como lo muestran
las áreas sombreadas en la siguiente ilustración.

Las entradas en la fila superior son los cambios di asociados con la variable xj. En la co-
lumna a la extrema izquierda, el elemento superior es 1 en la fila z seguido del cambio
di de la variable básica xi. Tenga en cuenta que di 5 0 para la variable de holgura xi.

Para calcular el nuevo costo reducido para cualquier variable (o el valor de z),
multiplique los elementos de su columna por los elementos correspondientes que apa-
recen en la columna a la extrema izquierda, súmelos y reste el elemento en la fila supe-
rior de la suma. Por ejemplo, para x1, tenemos

La solución actual permanece óptima en tanto los costos reducidos (coeficientes
de la ecuación z) permanezcan no negativos (caso de maximización). Por lo tanto te-
nemos las siguientes condiciones de optimalidad simultáneas correspondientes a las x1,
x4 y x5 no básicas:

Recuerde que el costo reducido de una variable básica siempre es cero, como lo mues-
tra la tabla óptima modificada.

Para ilustrar el uso de estas condiciones, suponga que la función objetivo de
TOYCO cambia de z 5 3x1 1 2x2 1 5x3 a z 5 2x1 1 x2 1 6x3. Entonces, d1 5 2 2 3 5
2$1, d2 5 1 2 2 5 2$1 y d35 6 25 5 $1. La sustitución en las condiciones dadas pre-
senta el resultado 

(satisfecha)2 -  14 d2 +  12 d3 = 2 -  14 (-1) +  12 (1) = 2.75 7 0  

(satisfecha)1 +  12 d2 = 1 +  12 (-1) = .5 7 0 

4 -  14 d2 +  32 d3 - d1 = 4 -  14 (-1) +  32 (1) - (-1) = 6.75 7 0  (satisfecha)

 2 -  14 d2 +  12 d3 Ú 0

 1 +  12 d2 Ú 0

 4 - 1
4 d2 +  32 d3 - d1 Ú 0

 = 4 -  14 d2 +  32 d3 - d1

 Costo reducido de x1 =  [4 * 1 + (-1
4 ) * d2 +  32 * d3 + 2 * 0] - d1

d1 d2 d3 0 0 0

Básica x1 x2 x3 x4 x5 x6 Solución

1 z 4 0 0 1 2 0 1350
d2 x2 -1

4 1 0 1
2 -1

4 0 100

d3 x3 3
2 0 1 0 1

2 0 230
0 x6 2 0 0 -2 1 1 20



126 Capítulo 3 Método simplex y análisis de sensibilidad

Los resultados muestran que los cambios propuestos mantendrán la solución actual (x1
5 0, x2 5 100, x3 5 230) óptima (con un nuevo valor de z 5 1350 1 100d2 1 230d3 5

1350 1 100 3 2 1 1 230 31 5 $1480. Si cualquier condición no se satisface, debe de-
terminarse una nueva solución (vea el capítulo 4).

El tema anterior abordó el caso de maximización. La única diferencia en el caso
de minimización es que los costos reducidos (coeficientes de la ecuación z) deben ser
# 0 para mantener la optimalidad.

Los intervalos de optimalidad que tienen que ver con los cambios de di uno a la
vez pueden desarrollarse a partir de las condiciones de optimalidad simultáneas.11 Por
ejemplo, suponga que el coeficiente objetivo de x2 sólo cambia a 2 1 d2; es decir que d1
5 d3 5 0. Las condiciones de optimalidad simultáneas se reducen por lo tanto a

Del mismo modo, puede verificar que los cambios individuales (3 1 d3) y (5 1 d3) para
x1 y x3 dan los intervalos de optimalidad d1 , 4 y d3 $ 2 , respectivamente.

Las condiciones individuales dadas pueden traducirse a intervalos de ingresos
unitarios totales. Por ejemplo, para los camiones de juguete (variable x2), el ingreso
unitario total es 2 1 d2, y su intervalo de optimalidad 2 2 # d2 # 8 se traduce a

$0 # (ingreso unitario del camión de juguete) # $10

Se supone que los ingresos unitarios de los trenes y autos de juguete permanecen fijos
en $3 y $5, respectivamente.

Es importante observar que los cambios d1, d2 y d3 pueden estar dentro de sus in-
tervalos individuales permisibles sin satisfacer las condiciones simultáneas y viceversa.
Por ejemplo, considere z 5 6x1 1 8x2 1 3x3. En este caso d1 5 6 2 3 5 $3, d2 5 8 2 2
5 $6 y d3 5 3 2 5 5 2$2, los cuales quedan dentro de los intervalos individuales per-

8
3

4 - 1
4 d2 Ú 0Q d2 … 16

1 + 1
2 d2 Ú 0Q d2 Ú -2

2 - 1
4 d2 Ú 0Q d2 … 8

s Q -2 … d2 … 8

11 Los intervalos individuales son resultados estándar en todo software de PL. Por lo común, las condiciones
simultáneas no forman parte de los resultados, quizá porque son voluminosas para problemas grandes.

misibles (2q , d1 # 4, 2 2 d2 # 8, y 2 d3 , q). Sin embargo, las condiciones si-
multáneas correspondientes dan por resultado

(no satisfecha)2 -  14 d2 +  12 d3 = 2 -  14 (6) +  12 (-2) = - .5 6 0 

(satisfecha)1 +  12 d2 = 1 +  12 (6) = 4 7 0 

(no satisfecha)4 -  14 d2 +  32 d3 - d1 = 4 -  14 (6) +  32 (-2) - 3 = -3.5 6 0 

8
3
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CONJUNTO DE PROBLEMAS 3.6D12

1. En el modelo de TOYCO, determine si la solución actual cambiará en cada uno de los si-
guientes casos:
(i)
(ii)
(iii)

*2. La tienda de abarrotes B&K vende tres tipos de refrescos: las marcas Cola A1, Cola A2 y
la marca más barata genérica de Cola A3. El precio por lata de A1, A2 y A3 es 80, 70 y 60
centavos, respectivamente. En promedio, la tienda no vende más de 500 latas de todos los
refrescos de cola al día. Aunque A1 es una marca reconocida, los clientes tienden a com-
prar más A2 y A3 porque son más baratos. Se estima que como mínimo se venden 100
latas de A1 al día y que las ventas de A2 y A3 sobrepasan las de A1 por un margen de al
menos 4:2.
(a) Demuestre que la solución óptima no requiere vender la marca A3.
(b) ¿Qué tanto se debe incrementar el precio por lata de A3 para que B&K la venda?
(c) Para competir con otras tiendas, B&K decidió reducir el precio de los tres tipos de

refresco de cola en 5 centavos por lata. Calcule de nuevo los costos reducidos para
determinar si esta promoción cambiará la solución óptima actual.

3. Baba Furniture Company emplea cuatro carpinteros durante 10 días para ensamblar
mesas y sillas. Se requieren dos horas-hombre para ensamblar una mesa y 5 horas-hom-
bre para ensamblar una silla. Los clientes suelen comprar una mesa y de cuatro a seis si-
llas. Los precios son $135 por mesa y $50 por silla. La compañía opera un turno de ocho
horas al día.
(a) Determine la combinación de producción óptima para los 10 días.
(b) Si los precios unitarios presentes por mesa y silla se reducen en un 10%, aplique el aná-

lisis de sensibilidad para determinar si la solución óptima obtenida en (a) cambiará.
(c) Si los precios unitarios presentes por mesa y silla cambian a $120 y $25, ¿cambiará la

solución obtenida en (a)? 
4. El banco de Elkins va a asignar un máximo de $200,000 para préstamos personales y

para automóvil durante el siguiente mes. El banco cobra 14% por los préstamos persona-
les, y 12% por los préstamos para automóvil. Ambos tipos de préstamos se reembolsan al
final del periodo de 1 año. La experiencia muestra que aproximadamente 3% de los prés-
tamos personales y 2% de los préstamos para automóvil no se reembolsan. El banco
suele asignar a los préstamos para automóvil el doble de lo que asigna a los préstamos
personales.
(a) Determine la asignación óptima de fondos entre los dos préstamos, y la tasa neta de

rendimiento en todos los préstamos.
(b) Si los porcentajes de los préstamos personales y para automóvil se cambian a 4% y

3%, respectivamente, aplique el análisis de sensibilidad para determinar si la solu-
ción óptima en (a) cambiará.

*5. Electra produce cuatro tipos de motores eléctricos, cada uno en una línea de ensamble
distinta. Las capacidades respectivas de las líneas son 500, 500, 800 y 750 motores por día.
El motor tipo 1 utiliza 8 unidades de un determinado componente electrónico; el motor tipo
2 utiliza 5 unidades; el motor tipo 3 utiliza 4 unidades, y el motor tipo 4 utiliza 6 unidades.

z = 8x1 + 3x2 + 9x3

z = 3x1 + 6x2 + x3

z = 2x1 + x2 + 4x3

12 En este conjunto de problemas, le convendría generar la tabla simplex óptima con TORA.
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El proveedor del componente puede surtir 8000 piezas por día. Los precios de los tipos
de motor respectivos son $60, $40, $25 y $30.
(a) Determine la combinación óptima de producción diaria.
(b) El programa de producción actual satisface las necesidades de Electra. Sin embargo,

debido a la competencia, es posible que Electra tenga que reducir el precio del
motor tipo 2. ¿Cuál es la reducción máxima que puede efectuarse sin que cambie el
programa de producción actual? 

(c) Electra decidió reducir25% el precio de todos los tipos de motores. Aplique el análi-
sis de sensibilidad para determinar si la solución óptima no cambia.

(d) Actualmente el motor tipo 4 ya no se produce. ¿Qué tanto debe incrementarse su
precio para incluirlo en el programa de producción?

6. Popeye Canning firmó un contrato para recibir 60,000 lb diarias de tomates maduros a 7
centavos por libra, con los cual produce jugo de tomate enlatado, salsa de tomate y puré
de tomate. Los productos enlatados se empacan en cajas de 24 latas. Una lata de jugo uti-
liza 1 lb de tomates frescos, una lata de salsa utiliza lb, y una lata de puré utiliza lb. La
participación diaria del mercado de la compañía está limitada a 2000 cajas de jugo, 5000
cajas de salsa y 6000 cajas de puré. Los precios de mayoreo por caja de jugo, salsa y puré
son $21, $9 y $12, respectivamente. .
(a) Desarrolle un programa de producción diaria óptimo para Popeye.
(b) Si el precio por caja de jugo y puré permanece fijo al valor dado en el problema, aplique el

análisis de sensibilidad para determinar el intervalo de precio unitario que Popeye debe
cobrar por caja de salsa para mantener sin cambios la combinación de productos óptima.

7. Dean’s Furniture Company ensambla gabinetes de cocina regulares y de lujo utilizando
madera precortada. Los gabinetes regulares se pintan de blanco, y los de lujo se barnizan.
Un departamento realiza tanto el pintado como el barnizado. La capacidad diaria del de-
partamento de ensamble es de 200 gabinetes regulares y de 150 de lujo. El barnizado de
una unidad de lujo requiere el doble de tiempo que pintar uno regular. Si el departamen-
to de pintura/barnizado se dedica sólo a las unidades de lujo, puede completar 180 unida-
des diarias. La compañía estima que los ingresos por unidad de los gabinetes regulares y
de lujo son de $100 y $140, respectivamente.
(a) Formule el problema como un programa lineal y halle el programa de producción

óptimo por día.
(b) Suponga que la competencia dicta que el precio por unidad de cada gabinete regular

y de lujo se reduzca a $80. Aplique el análisis de sensibilidad para determinar si la
solución óptima en (a) permanece sin cambios.

8. Regla de optimalidad de 100%. También puede desarrollarse una regla similar a la regla
de factibilidad de 100% descrita en el problema 12, conjunto 3.6c, para probar el efecto
del cambio simultáneo de todas las cj a cj 1 dj, j 5 1, 2,…,n, en la optimalidad de la solu-
ción actual. Suponga que uj # dj # vj es el intervalo de optimalidad obtenido como resul-
tado del cambio de cada cj a cj 1 dj, uno a la vez, siguiendo el procedimiento descrito en
la sección 3.6.3. En este caso uj # 0 (vj $ 0), porque representa la reducción (incremento)
máxima permisible en cj que mantendrá óptima la solución actual. Para los casos en que
uj # dj # vj, defina rj igual a si dj es positivo y si dj es negativo. Por definición, 0 # rj

# 1. La regla de 100% dice que una condición suficiente (pero no necesaria) para que la
solución actual permanezca óptima es que r1 1 r2 1 … 1 rn # 1. Si la condición no se sa-
tisface, la solución actual puede o no permanecer óptima. La regla no aplica si dj queda
fuera de los intervalos especificados.

Demuestre que la regla de optimalidad de 100% es demasiado débil como para ser
consistentemente confiable como herramienta de toma de decisiones al aplicarla a los si-
guientes casos.
(a) Los incisos (ii) e (iii) del problema 1
(b) El inciso (b) del problema 7

dj
uj

dj
vj

3
4

1
2
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3.6.4 Análisis de sensibilidad con Tora, Solver, y AMPL 

Ahora contamos con todas las herramientas para descifrar los resultados proporcionados
por el software de PL, en particular con respecto al análisis de sensibilidad. Utilizaremos
el ejemplo de TOYCO para demostrar lo obtenido con TORA, Solver y AMPL.

El reporte de los resultados de PL obtenidos con TORA proporciona los datos
del análisis de sensibilidad de forma automática como se muestra en la figura 3.14
(archivo toraTOYCO.txt). Los resultados incluyen los costos reducidos y los precios
duales así como los intervalos de optimalidad y factibilidad permisibles.

La figura 3.15 muestra el modelo de TOYCO analizado con Solver (archivo
solverTOYCO.xls) y su reporte del análisis de sensibilidad. Después de hacer clic en la
opción Solve en el cuadro de diálogo Solver Parameters, puede solicitar el reporte del
análisis de sensibilidad en el nuevo cuadro de diálogo Solver Results. Luego haga clic
en la pestaña Sensitivity Report 1 para ver los resultados. El reporte es parecido al de
TORA, con tres excepciones: (1) El costo reducido tiene un signo opuesto. (2) Utiliza
el nombre shadow price (precio sombra) en lugar de dual price (precio dual). (3) Los
intervalos de optimalidad son para los cambios dj y Dj y no para los coeficientes obje-
tivos totales y los lados derechos de las restricciones. Las diferencias son mínimas, y la
interpretación de los resultados no cambia.

En AMPL, el reporte del análisis de sensibilidad se obtiene de inmediato. El
archivo amplTOYCO.txt proporciona el código necesario para determinar los resulta-
dos obtenidos con el análisis de sensibilidad. Requiere las instrucciones adicionales (el
reporte se envía al archivo a.out) siguientes:

option solver cplex;
option cplex_options ’sensitivity’;
solve;
#———————————————sensitivity analysis
display oper.down,oper.current,oper.up,oper.dual>a.out;
display x.down,x.current,x.up,x.rc>a.out;

FIGURA 3.14

***Sensitivity Analysis***

Variable CurrObjCoeff MinObjCoeff MaxObjCoeff Reduced Cost

x1: 3.00 -infinity 7.00 4.00

x2: 2.00 0.00 10.00 0.00

x3: 5.00 2.33 infinity 0.00

Constraint Curr RHS Min RHS Max RHS Dual Price

1(<): 430.00 230.00 440.00 1.00

2(<): 460.00 440.00 860.00 2.00

3(<): 420.00 400.00 infinity 0.00

Análisis de sensibilidad, realizado con TORA para el modelo de TOYCO
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Se requieren las instrucciones de  CPLEX option para obtener el reporte del
análisis de sensibilidad estándar. En el modelo de TOYCO, las variables y restricciones
con subíndices utilizan los nombres de raíz x y oper., respectivamente. Utilizando
estos nombres los sufijos alusivos .down, .current y .up en las instrucciones gene-
ran automáticamente el reporte del análisis de sensibilidad formateado que aparece en
la figura 3.16. Los sufijos .dual y .rc proporcionan el precio dual y el costo reducido.

FIGURA 3.15

Reporte del análisis de sensibilidad realizado con Excel Solver para el modelo de TOYCO

13 Antes de resolver los problemas en este conjunto, se espera que usted genere el reporte del análisis de sen-
sibilidad utilizando AMPL, Solver o TORA.

FIGURA 3.16

Reporte del análisis de sensibilidad
obtenido con AMPL para el 
modelo de TOYCO

: oper.down oper.current oper.up oper.dual :=
1 230 430 440 1
2 440 460 860 2
3 400 420 1e+20p 0

: x.down x.current x.up x.rc :=
1 -1e+20 3 7 -4
2 0 2 10 0
3 2.33333 5 1e+20 0

CONJUNTO DE PROBLEMAS 3.6E13

1. Considere el problema 1, conjunto 2.4a (capítulo 2). Use el precio dual para decidir si
vale la pena incrementar los fondos para el año 4.
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2. Considere el problema 2, conjunto 2.4a (capítulo 2).
(a) Use los precios duales para determinar el rendimiento total sobre la inversión.
(b) Si quisiera gastar $1000 en cosas placenteras al final del año 1, ¿cómo afectaría esto

a la suma acumulada al inicio del año 5?
3. Considere el problema 3, conjunto 2.4a (capítulo 2).

(a) Dé una interpretación económica de los precios duales del modelo.
(b) Demuestre cómo el precio dual asociado con el límite superior del dinero prestado

al principio del tercer trimestre puede derivarse a partir de los precios duales asocia-
dos con las ecuaciones de balance que representan el flujo de efectivo de entrada y
de salida en las cinco fechas designadas del año.

4. Considere el problema 4, conjunto 2.4a (capítulo 2). Use los precios duales para determi-
nar la tasa de rendimiento asociada con cada año.

*5. Considere el problema 5, conjunto 2.4a (capítulo 2). Use el precio dual para determinar
si vale la pena que el ejecutivo invierta más dinero en los planes.

6. Considere el problema 6, conjunto 2.4a (capítulo 2). Use el precio dual para decidir si es
aconsejable que el jugador apueste más dinero.

7. Considere el problema 1, conjunto 2.4b (capítulo 2). Relacione los precios duales con los
costos de producción unitarios del modelo.

8. Considere el problema 2, conjunto 2.4b (capítulo 2). Suponga que cualquier capacidad adi-
cional de las máquinas 1 y 2 puede obtenerse sólo si se utiliza tiempo extra. ¿Cuál es el costo
máximo por hora en que la compañía estaría dispuesta a incurrir para cualquier máquina?

*9. Considere el problema 3, conjunto 2.4b (capítulo 2).
(a) Suponga que el fabricante puede adquirir más unidades de la materia prima A a $12

por unidad. ¿Sería aconsejable hacer esto? 
(b) ¿Recomendaría que el fabricante adquiriera más unidades de la materia prima B a

$5 por unidad? 
10. Considere el problema 10, conjunto 2.4e (capítulo 2).

(a) ¿Cuál de las restricciones especificadas tiene un impacto adverso en la solución óptima?
(b) ¿Cuál es lo máximo que la compañía debe pagar por tonelada de cada mineral?

3.7 TEMAS DE CÁLCULO EN LA PROGRAMACIÓN LINEAL14

En este capítulo se han presentado los detalles del algoritmo simplex. Los capítulos si-
guientes presentan otros algoritmos: El simplex dual (capítulo 4); el simplex revisado
(capítulo 7), y el punto interior (capítulo 22 en el sitio web). ¿Por qué la variedad? La
razón es que cada algoritmo tiene características específicas que pueden ser benéficas
en el desarrollo de códigos de computadora robustos.

Un código de PL se considera robusto si satisface dos requerimientos:

1. Velocidad 
2. Precisión 

Ambos requerimientos presentan retos incluso para las computadoras más avanzadas.
Las razones se derivan de la naturaleza de los cálculos algorítmicos y las limitaciones
de la computadora. Para estar seguros, el formato de tabla simplex presentado en

14 Para esta sección se han tomado elementos de R. Bixby, “Solving Real-World Linear Programs: A Deca-
de and More of Progress”, Operations Research, vol. 50, núm. 1, págs. 3-15, 2002.
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este capítulo no es numéricamente estable, es decir que el error de redondeo cometido por la
computadora y la pérdida de dígitos presentan serios problemas de cálculo, en particular
cuando los coeficientes del modelo de PL difieren con mucho en magnitud.A pesar de estos
retos, de hecho los diferentes algoritmos de PL se han integrado de manera ingeniosa para
producir códigos altamente eficientes a fin de resolver PLs extremadamente grandes.

Esta sección explica la transición desde las presentaciones básicas en libros de
texto hasta los robustos códigos de PL actuales de última generación.Aborda los temas
que afectan la velocidad y la precisión y presenta remedios para aliviar los problemas.
También presenta un amplio marco de referencia de los roles de los diferentes algorit-
mos de programación lineal (simplex, simplex dual, simplex revisado y punto interior)
en el desarrollo de códigos de computadora numéricamente estables. La presentación
se mantiene, expresamente, libre de matemáticas y se concentra en los conceptos clave
que constituyen el fundamento de los códigos de programación lineal exitosos.

1. Regla (pivote) de la variable de entrada simplex. Una nueva iteración simplex
determina las variables de entrada y de salida mediante criterios de optimalidad y fac-
tibilidad. Una vez determinadas las dos variables, se utilizan operaciones de fila pivote
para generar la siguiente tabla simplex.

En realidad, el criterio de optimalidad presentado en la sección 3.3.2 es sólo uno
de los muchos que se han utilizado en el desarrollo de códigos de PL. La siguiente
tabla resume los tres criterios prominentes.

Regla de la variable de 
entrada Descripción 

Clásica (sección 3.3.2) La variable de entrada es la del costo reducido más favorable entre todas las
variables no básicas.

Mejora máxima La variable de entrada es la que produce la mejora total máxima del valor 
objetivo entre todas las variables no básicas.

Borde más inclinado15 La variable de entrada es la que da el costo reducido más favorable entre
todas las variables no básicas. El algoritmo se mueve a lo largo del borde más
inclinado que va del punto actual a un punto extremo vecino.

En cuanto a la regla clásica, la fila objetivo de la tabla simplex proporciona de in-
mediato los costos reducidos de todas las variables no básicas sin cálculos adicionales.
Por otra parte, la regla de la mejora máxima requiere una considerable cantidad de cálcu-
los adicionales para determinar primero el valor con el cual una variable no básica
entra en la solución y luego la mejora total resultante del valor objetivo. La idea de la
regla del borde más inclinado, aunque en el “espíritu” de la regla de la mejora máxima
(en el sentido de que toma en cuenta indirectamente el valor de la variable de entra-
da), requiere mucho menos cálculos.

15 Vea D. Goldfarb y J. Reid, “A Practicable Steepest Edge Simplex Algorithm”, Mathematical
Programming, vol. 12, núm. 1, págs. 361-377, 1977.
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El intercambio entre las tres reglas es que la regla clásica es la menos costosa
desde el punto de vista computacional pero, sin duda, requiere la máxima cantidad de
iteraciones para llegar al óptimo. Por otra parte, la regla de la mejora máxima es la más
costosa desde el punto de vista computacional pero, sin duda, implica la cantidad míni-
ma de iteraciones simplex. La regla del borde más inclinado parece ser el término
medio en función de la cantidad de cálculos adicionales y la cantidad de iteraciones
simplex. Es interesante observar que los resultados de prueba muestran que los bene-
ficios generados por los cálculos adicionales en la regla de la mejora máxima no pare-
cen mejores que los generados por la regla del borde más inclinado. Esto es lo que hace
que rara vez se implemente la regla de la mejora máxima en los códigos de PL.

Aunque la regla del borde más inclinado es la regla predeterminada más común
para la selección de la variable de entrada, los códigos de PL exitosos tienden a utilizar
una fijación de precios híbrida. Inicialmente, las iteraciones simplex utilizan (una varia-
ción de) la regla clásica. Conforme se incrementa la cantidad de iteraciones, se hace un
cambio a (una variación de) la regla del borde más inclinado. La extensa experiencia de
cálculo indica que esta estrategia reditúa en función del tiempo total de computadora
necesario para resolver una programación lineal.

2. Algoritmo primal vs. simplex dual. El capítulo 3 se concentró principalmente
en los detalles de lo que en ocasiones se conoce en la literatura como método simplex
primal. En el algoritmo primal, la solución básica inicial es factible, pero no óptima. Las
iteraciones sucesivas permanecen factibles a medida que avanzan hacia el óptimo. Se
desarrolló un algoritmo subsiguiente para PLs, llamado simplex dual, que se inicia
como no factible pero óptimo y  que se dirige hacia la factibilidad, al tiempo que man-
tiene la optimalidad. La iteración final ocurre cuando se restaura la factibilidad. Los
detalles del algoritmo dual se dan en el capítulo 4, sección 4.4.1.

En un inicio, el algoritmo dual se utilizó sobre todo en el análisis post óptimo de PL
(sección 4.5) y en la programación lineal entera, (capítulo 9), pero no como un algoritmo
independiente para resolver PLs. La razón principal es que su regla para seleccionar la
variable de salida era débil. Sin embargo, todo esto cambió cuando se adoptó la idea de
la regla del borde más inclinado primal para determinar la variable de salida en el algo-
ritmo simplex dual.16 En la actualidad, el simplex dual con la adaptación del borde más
inclinado ha demostrado que es dos veces más rápido que el simplex dual, y por el mo-
mento es el algoritmo simplex dominante en los códigos comerciales más importantes.

3. Simplex revisado vs. tabla simplex. Los cálculos simplex presentados al prin-
cipio de este capítulo (y también en el capítulo 4 para el simplex dual) generan la si-
guiente tabla simplex a partir de la inmediata anterior. El resultado es que las tablas no
son numéricamente estables por tres razones:

a. La mayoría de los modelos de PL son sumamente dispersos (es decir, con-
tienen un alto porcentaje de coeficientes cero en la iteración de inicio). Los
métodos numéricos disponibles pueden reducir la cantidad de cálculos lo-
cales al economizar (incluso eliminar) operaciones que implican coeficien-

16 Vea J. Forrest y D. Goldfarb, “Steepest-Edge Simplex Algorith for Linear Programming”, Mathematical
Programming, vol. 57, núm. 3, págs. 341-374, 1992.
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tes cero, lo que a su vez acelera sustancialmente los cálculos. Ésta es una
fuerte oportunidad perdida en cálculos con tablas, porque las tablas sucesivas
pronto se saturan de elementos no cero.

b. El error de redondeo y la pérdida de dígitos, inherentes en todas las compu-
tadoras,pueden propagarse con rapidez a medida que crece la cantidad de itera-
ciones, que llevaría a una grave pérdida de precisión, sobre todo en PL grandes.

c. Las operaciones de filas simplex realizan mas cálculos que los que se requieren
para generar la siguiente tabla (recuerde que todo lo que se necesita en una
iteración son las variables de entrada y de salida). Estos cálculos extra re-
presentan tiempo de computadora desperdiciado.

El algoritmo simplex revisado presentado en la sección 7.2 mejora con respecto a
estas desventajas.Aunque el método utiliza las reglas de pivoteo exactas como en el mé-
todo de tablas (tableau), la diferencia principal es que realiza los cálculos aplicando ál-
gebra matricial. En un modelo de m restricciones, cada solución de punto (de esquina)
extremo se calcula resolviendo el conjunto de m x m ecuaciones BXB 5 b para el vector
básico XB. La matriz básica B se determinar a partir de las columnas de restricciones
del modelo original, y b es el lado derecho original de las restricciones. En esencia, sólo
B cambia entre iteraciones. Esta propiedad única que permite controlar el error de re-
dondeo/pérdida de dígitos, aprovecha la dispersión del modelo original y acelera los
cálculos. En realidad, el análisis numérico en el álgebra matricial proporciona métodos
robustos y eficientes para resolver BXB 5 b factorizando B en matrices triangulares de
L inferior y U superior, de modo que B 5 LU. El método, con toda propiedad llamado
descomposición L-U, es particularmente adecuado para matrices dispersas.17

Por estas razones el formato de tabla nunca se utiliza en los códigos de PL más
destacados disponibles en la actualidad.

4. Algoritmo de barrera (punto interior) vs. algoritmo simplex. El algoritmo de
punto interior (vea la sección 22.3  en el sitio web) es totalmente diferente del algorit-
mo simplex en que cruza el espacio factible y poco a poco se mueve (en el límite) hacia
el óptimo. Computacionalmente, el algoritmo es polinomial en el tamaño del proble-
ma. Por otra parte, el algoritmo simplex es exponencial en el tamaño del problema (se
han construido ejemplos hipotéticos en los que el algoritmo simplex visita cada punto
de esquina del espacio de soluciones antes de alcanzar el óptimo).

El algoritmo de punto interior se introdujo en 1984 y, sorpresivamente, fue pa-
tentado por AT&T y vendido en una computadora especializada (aparentemente por
una exuberante cantidad) sin revelar sus detalles computacionales. Al fin, la comuni-
dad científica “se ocupó” y descubrió que el método de punto interior tenía raíces en
los primeros algoritmos de programación no lineal de la década de 1960 (vea por ejem-
plo el algoritmo SUMT en la sección 21.2.5). El resultado es el llamado método de ba-
rrera con algunas variaciones algorítmicas.

Para problemas en extremo grandes, el método de barrera ha demostrado ser
mucho más rápido que el algoritmo simplex dual. La desventaja es que el algoritmo de
barrera no produce soluciones de punto de esquina, una restricción que limita su apli-

17 Vea J. Bunch y J. Jopcroft, “Triangular Factorization and Inversion by Fast Matrix Multiplication”,
Mathematics of Computation, vol. 28, págs. 231-236, 1974. Vea también E. Hellerman y D. Rarick,
“Reinversion with the Preassigned Pivot Procedure”, Mathematical Programming, vol. 1, págs. 195-216, 1971.
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cación en el análisis postóptimo (capítulo 4) y también en la programación entera
(capítulo 9). Aunque se han desarrollado métodos para convertir una solución
de punto interior óptimo de barrera en una solución de punto de esquina, la carga de
computo asociada es enorme, lo que limita su uso en aplicaciones como programación
entera, donde la frecuente necesidad de localizar soluciones de punto de esquina es
fundamental para el algoritmo. No obstante, todos los códigos comerciales incluyen el
algoritmo de barrera como herramienta para resolver PL grandes.

5. Degeneración. Como se explicó en la sección 3.5.1, las soluciones básicas de-
generadas pueden generar ciclado, lo que haría que las iteraciones simplex se queda-
ran atascadas indefinidamente en un punto de esquina degenerado sin alcanzar su tér-
mino. En las primeras versiones del algoritmo simplex, la degeneración y el ciclado no
se incorporaron en la mayoría de los códigos porque se suponía que su ocurrencia en la
práctica era rara. A medida que se probaron instancias de problemas más difíciles y
más grandes (sobre todo en el área de la programación entera), el error de redondeo
producido por las computadoras dio lugar a un comportamiento de tipo ciclado y de-
generación que provocó que los cálculos “se quedaran atascados” en el mismo valor
objetivo. El problema se evadió interponiendo una perturbación aleatoria condicional
y cambiando los valores de las variables básicas.18

6. Acondicionamiento del modelo de entrada (solución previa). Todos los len-
guajes y solucionadores tratan de acondicionar los datos de entrada antes de resolver-
los. El objetivo es “simplificar” el modelo de dos maneras clave:19

a. Reduciendo el tamaño del modelo (filas y columnas) mediante la identifi-
cación y eliminación de las restricciones redundantes, y posiblemente fijan-
do y sustituyendo las variables.

b. Ponderando los coeficientes del modelo que sean de magnitud ampliamen-
te diferente para mitigar el efecto adverso de la pérdida de dígitos cuando
se manipulan números reales de magnitudes ampliamente diferentes.

La figura 3.17 resume las etapas de solución de un problema de PL. El modelo de
entrada puede ser alimentado por medio de un pre-solucionador a un solucionador, tal
como CPLEX o XPRESS. Como alternativa puede usarse un lenguaje cómodo de mo-
delado como AMPL, GAMS, MOSEL o MPL, para modelar algebraicamente la PL y
luego pre-solucionar de manera interna y transformar sus datos de entrada para ajus-
tarlos al formato del solucionador, el cual entonces produce los resultados de salida en
función de las variables y restricciones del modelo de PL original.

7. Avance de las computadoras. No es de sorprender que en el último cuarto del
siglo XX la velocidad de las computadoras se hubiera incrementado más de mil veces.

18Vea P. Harris, “Pivot Selection Methods of the debex LP Code”, Mathematical Programming, vol. 5, págs.
1-28, 1974.
19Vea L. Bearley, L. Mitra, y H. Williams, “Analysis of Mathematical Programming Problems Prior to
Applying Simplex Algorith”, Mathematical Programming, vol. 8, pp. 54–83, 1975.

Modelo de entrada Pre-solucionador Solucionador Resultados de salida

FIGURA 3.17

Componentes de una PL numérica



136 Capítulo 3 Método simplex y análisis de sensibilidad

En la actualidad, una computadora de escritorio es más potente y veloz que las anti-
guas supercomputadoras. Estos avances (junto con los avances algorítmicos antes cita-
dos) han hecho posible resolver enormes PL en cuestión de segundos en comparación
con días (¡sí, días!) en el pasado.
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4.1 DEFINICIÓN DEL PROBLEMA DUAL

El problema dual se define sistemáticamente a partir del modelo de PL primal (u ori-
ginal). Los dos problemas están estrechamente relacionados en el sentido de que la so-
lución óptima de uno proporciona automáticamente la solución óptima al otro.

En la mayoría de los tratamientos de PL, el dual se define para varias formas del pri-
mal según el sentido de la optimización (maximización o minimización), los tipos de res-
tricciones (#, $ o =), y el signo de las variables (no negativas o irrestrictas). Este capítulo
ofrece una definición única que abarca de manera automática todas las formas del primal.

Nuestra definición del problema dual requiere expresar el problema primal en la
forma de ecuación que se presentó en la sección 3.1 (todas las restricciones son ecua-
ciones con lado derecho no negativo, y todas las variables son no negativas). Este reque-
rimiento es consistente con el formato de la tabla inicial simplex. De ahí que cualesquier
resultados obtenidos a partir de la solución óptima primal se aplican directamente al
problema dual asociado.

Las ideas clave para construir el dual a partir del primal se resumen como sigue:

1. Asigne una variable dual por cada restricción primal.
2. Construya una restricción dual por cada variable primal.
3. Los coeficientes de restricción (columna) y el coeficiente objetivo de la variable

primal j-ésima definen respectivamente los lados izquierdo y derecho de la res-
tricción dual j-ésima.

4. Los coeficientes objetivo duales son iguales a los lados derechos de las ecuacio-
nes de restricción primales.

5. Las reglas que aparecen en la tabla 4.1 rigen el sentido de optimización, la direc-
ción de las desigualdades y los signos de las variables en el dual. Una forma fácil
de recordar el tipo de restricción en el dual (es decir, # o $) es que si el objetivo
dual es de minimización (es decir, apunta hacia abajo), entonces todas las restric-
ciones serán del tipo $ (es decir, apuntan hacia arriba). Lo opuesto aplica cuando
el objetivo dual es de maximización.
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TABLA 4.1 Reglas para construir el problema dual 

Objetivo del
Problema dual

problema primala Objetivo Tipo de restricción Signo de las variables

Maximización Minimización Ú irrestricta
Minimización Maximización … irrestricta

aTodas las restricciones primales son ecuaciones con lado derecho no negativo, y todas las variables
son no negativas.

Los siguientes ejemplos demuestran en la tabla 4.1 el uso de las reglas; incluso,
muestran que nuestra definición incorpora automáticamente todas las formas del primal.

Ejemplo 4.1-1

Problema dual 

sujeto a

Ejemplo 4.1-2

 
y1 + 0y2 Ú 0
y1, y2 irrestricta

f Q 1y1 Ú 0, y2 irrestricta2y1 + 3y2 Ú   4

2y1 -  y2 Ú 12

y1 + 2y2 Ú  5

Minimizar w = 10y1 + 8y2

Primal Primal en forma de ecuación Variables duales

Maximizar 
sujeto a

z = 5x1 + 12x2 + 4x3 Maximizar 
sujeto a

z = 5x1 + 12x2 + 4x3 + 0x4

x1, x2, x3 Ú 0
2x1 - 2x2 + 3x3 =    82
x1 + 2x2 + 2x3 … 10

x1, x2, x3, x4 Ú 0
2x1 - 2x2 + 3x3 + 0x4 = 82
x1 + 2x2 + 2x3 + 2x4 = 10

y2

y1

Primal Primal en forma de ecuación Variables duales

Minimizar 
sujeto a

z = 15x1 + 12x2 Minimizar 
sujeto a

z = 15x1 + 12x2 +  0x3 + 0x4

x1, x2 Ú 0
2x1 - 4x2 … 5
x1 + 2x2 Ú 3

x1, x2, x3, x4 Ú 0
2x1 - 4x2 + 0x3 + 2x4 = 5
x1 + 2x2 - 2x3 + 0x4 = 3

y2

y1
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Problema dual 

sujeto a

Ejemplo 4.1-3

-y1 … 0
y2 … 0

y1, y2 irrestricta
s Q 1y1 Ú 0, y2 … 02

2y1 - 4y2 … 12

y1 + 2y2 … 15

Maximizar w = 3y1 + 5y2

Problema dual 

sujeto a

La primera y segunda restricciones son reemplazadas por una ecuación. La regla general es que
una variable primal irrestricta siempre corresponde a una restricción dual de igualdad. A la in-
versa, una ecuación primal de igualdad produce una variable dual irrestricta, como lo demuestra
la primera restricción primal.

Resumen de las reglas para construir el dual. La tabla 4.2 resume las reglas del
primal-dual como suelen presentarse en la literatura. Un buen ejercicio es verificar que
las dos reglas que aparecen en la tabla 4.1 abarcan estas reglas explícitas.

 
-y2 Ú 0

y3 Ú 0
y1, y2, y3 irrestricta

s Q 1y1 irrestricta, y2 … 0, y3 Ú 02
2y1 + 5y2 + 7y3 Ú  6

 Q y1 - y2 + 4y3 = 5 
y1 - y2 + 4y3 Ú 5
y1 - y2 + 4y3 … 5

f 
y1 - y2 + 4y3 Ú 5

-y1 + y2 - 4y3 Ú -5
f Q

Minimizar z = 5y1 + 3y2 + 8y3

Primal Primal en forma de ecuación Variables duales

Maximizar
sujeto a

z = 5x1 + 6x2

Sustituir
Maximizar 
sujeto a

z = 5x1
- - 5x1

+ + 6x2

x1 = x1
- - x1

+

x1 irrestricta, x2 Ú 0
4x1 + 7x2 … 8
-x1 + 5x2 Ú 3
x1 + 2x2 = 5

x1
-, x1

+, x2, x3, x4 Ú 0
 4x1

- - 4x1
+ + 7x2 + x4   =   8

-x1
- + x1

+ + 5x2 - x3 = 3
x1

- - x1
+ + 2x2 = 5

y3

y2

y1
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Observe que los encabezados de columna que aparecen en la tabla no utilizan
el nombre primal y dual. Lo que importa en este caso es el sentido de optimización. Si el
primal es de maximización, entonces el dual es de minimización, y viceversa. Observe
también que no hay medidas específicas para incluir variables artificiales en el primal.
La razón es que las variables artificiales no cambiarían la definición del dual (vea el
problema 5, conjunto 4.1a).

CONJUNTO DE PROBLEMAS 4.1A

1. En el ejemplo 4.1-1, derive el problema dual asociado si el sentido de optimización en el
problema primal se cambia a minimización.

*2. En el ejemplo 4.1-2, derive el problema dual asociado dado que el problema primal se
incrementa con una tercera restricción, 3x1 1 x2 5 4.

3. En el ejemplo 4.1-3, demuestre que aunque el sentido de optimización en el primal se
cambie a minimización, una variable primal irrestricta siempre corresponde a una restric-
ción dual de igualdad.

4. Escriba el dual para cada uno de los siguientes problemas primales:
(a) Maximizar 

sujeto a

(b) Minimizar 
sujeto a

*(c)
sujeto a

x1, x2  irrestricta

 3x1 - x2 = 6

 2x1 + x2 = 5

Maximizar z = x1 + x2

x1, x2, x3 Ú 0

 3x1 + 4x2 + x3 Ú 5

 6x1 - 3x2 + x3 Ú 2

z = 6x1 + 3x2

 x1, x2 Ú     0

 2x1 + 3x2 …      5

        -x1 +   x2 … -2

z = -5x1 + 2x2

TABLA 4.2 Reglas para construir el problema dual 

Problema de maximización Problema de minimización 

Restricciones Variables
Ú 3 … 0
… 3 Ú 0
= 3 Restricciones

Variables irrestrictas
Ú 0 3 Ú
… 0 3 …

Irrestrictas 3 =
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*5. Considere el ejemplo 4.1-1. La aplicación del método simplex al primal requiere utilizar
una variable artificial en la segunda restricción del primal estándar para asegurar una so-
lución básica inicial. Demuestre que la presencia de una primal artificial en forma de
ecuación no afecta la definición del dual porque conduce a una restricción dual redun-
dante.

6. ¿Verdadero o falso?
(a) El dual del problema dual da por resultado el primal original.
(b) Si la restricción primal está originalmente en forma de ecuación, la variable dual co-

rrespondiente no necesariamente es irrestricta.
(c) Si la restricción primal es del tipo # la variable dual correspondiente será no negati-

va (no positiva) si la función objetivo primal es de maximización (minimización).
(d) Si la restricción primal es del tipo $ la variable dual correspondiente será no negati-

va (no positiva) si la función objetivo primal es de minimización (maximización).
(e) Una variable primal irrestricta producirá una restricción dual de igualdad.

4.2 RELACIONES PRIMAL-DUAL

Los cambios realizados en los datos de un modelo de PL pueden afectar la optimalidad
y/o factibilidad de la solución óptima actual. Esta sección presenta varias relaciones
primal-dual que pueden usarse para calcular de nuevo los elementos de la tabla sim-
plex óptima. Estas relaciones constituyen la base de la interpretación económica del
modelo de PL y del análisis postóptimo.

La sección se inicia con un breve repaso de las matrices, una herramienta muy
útil para realizar los cálculos de tabla simplex. Un repaso más detallado de las matrices
se da en el apéndice D en el sitio web.

4.2.1 Repaso de operaciones con matrices simples

La tabla simplex puede generarse por medio de tres operaciones de matrices elemen-
tales: (fila vector) 3 (matriz), (matriz) 3 (columna vector) y (escalar) 3 (matriz). Por
comodidad, estas operaciones se resumen. En primer lugar, presentamos algunas defi-
niciones de matriz:

1. Una matriz, A, de tamaño (m 3 n) es un conjunto rectangular de elementos con
m filas y n columnas.

2. Un vector fila, V, de tamaño m es una matriz (1 3 m).
3. Un vector columna, P, de tamaño n es una matriz (n 3 1).

Estas definiciones pueden representarse matemáticamente como

V = 1v1, v2, Á , vm2, A = § a11 a12
Á a1n

a21 a22
Á a2n

Á Á Á Á

am1 am2
Á amn

¥ , P = § p1

p2
Á

pn

¥
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1. (Vector fila 3 matriz, VA). La operación es válida sólo si el tamaño del vector fila
V y la cantidad de filas de A son iguales. Por ejemplo,

2. (Matriz 3 vector columna, AP). La operación es válida sólo si la cantidad de co-
lumnas de A y el tamaño del vector columna P son iguales. Por ejemplo,

a1 3 5
2 4 6

b £11
22
33
≥ = a1 * 11 + 3 * 22 + 5 * 33

2 * 11 + 4 * 22 + 6 * 33
b = a242

308
b

 = (242, 308)

 111, 22, 332£1 2
3 4
5 6

≥ = 11 * 11 + 3 * 22 + 5 * 33, 2 * 11 + 4 * 22 + 6 * 332

3. (Escalar 3 matriz, aA). Dada la cantidad  escalar a (o constante), la operación de
multiplicación aA da una matriz del mismo tamaño que la matriz A. Por ejemplo,
dado que a 5 10,

CONJUNTO DE PROBLEMAS 4.2A

1. Considere las siguientes matrices:

En cada uno de los siguientes casos, indique si la operación matricial dada es legítima; si
lo es, calcule el resultado.

*(a) AV1

(b) AP1

(c) AP2

(d) V1A
*(e) V2A
(f) P1P2

(g) V1P1

4.2.2 Diseño de la tabla simplex 

La tabla simplex del capítulo 3 es la base para la presentación en este capítulo. La figu-
ra 4.1 representa esquemáticamente las tablas simplex inicial y generales. En la tabla
inicial, los coeficientes de restricción bajo las variables iniciales forman una matriz
identidad (todos los elementos en la diagonal principal son 1, y todos los elementos

 V1 = (11,  22), V2 = (-1, -2, -3)

 A = £1 4
2 5
3 6

≥ , P1 = a1
2
b , P2 = £1

2
3
≥

1102a1 2 3
4 5 6

b = a10 20 30
40 50 60

b
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fuera de la diagonal son cero). Con esta disposición, las iteraciones siguientes de la
tabla simplex generadas por las operaciones de filas de Gauss-Jordan (vea el capítulo 3)
modifican los elementos de la matriz identidad para producir lo que se conoce como
matriz inversa. Como veremos en el resto de este capítulo, la matriz inversa es la clave
para calcular todos los elementos de la tabla simplex asociada.

CONJUNTO DE PROBLEMAS 4.2B

1. Considere la tabla óptima del ejemplo 3.3-1.
(a)* Identifique la matriz inversa óptima.
(b) Demuestre que el lado derecho es igual a la inversa multiplicada por el vector del

lado derecho original de las restricciones originales.
2. Repita el problema 1 para la última tabla del ejemplo 3.4-1.

4.2.3 Solución dual óptima

Las soluciones primal y dual están estrechamente relacionadas en el sentido de que la
solución óptima de uno u otro problema da la solución óptima al otro. Así pues, en un
modelo de PL en el que la cantidad de variables es considerablemente menor que la
de restricciones, pueden ahorrarse cálculos resolviendo el dual porque la cantidad de

FIGURA 4.1

Representación esquemática de las tablas simplex inicial y general

Fila z objetivo

Columnas de 
restricción

Fila z objetivo

Columnas de 
restricción

(Tabla inicial)

Matriz identidad

1      0      ...      0

0      1      ...      0

0
...

...
. . .

0      0      ...      1

�

�

�

�

Variables iniciales

Variables iniciales

Matriz inversa

(Iteración general)
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cálculos simplex depende en gran medida (aunque no totalmente) de la cantidad de
restricciones (vea el problema 2, conjunto 4.2c).

Esta sección proporciona dos métodos para determinar los valores duales.

Método 1.

Método 2.

Los elementos del vector fila deben aparecer en el mismo orden en que las variables
básicas aparecen en la columna Básica de la tabla simplex.

Ejemplo 4.2-1

Considere la siguiente PL:

Sujeto a

Para preparar el problema para su solución mediante el método simplex, agregamos una varia-
ble de holgura x4 en la primera restricción y una variable artificial R en la segunda. Por consi-
guiente, el primal resultante y los problemas duales asociados se definen como sigue:

 x1, x2, x3 Ú 0

2x1 -  x2 + 3x3 =    8

x1 + 2x2 +  x3 … 10

Maximizar z = 5x1 + 12x2 + 4x3

aValores óptimos de
las variables duales

b = £ Vector fila de los
coeficientes objetivo originales de las

variables básicas primales óptimas
≥ * aInversa primal

óptima
b

a Valor óptimo de
la variable dual yi

b = £Coeficiente z primal óptimo de la variable inicial xi
+

Coeficiente objetivo original de xi

≥

La tabla 4.3 proporciona la tabla primal óptima.
A continuación demostramos cómo se determinan los valores duales óptimos aplicando los

dos métodos descritos al inicio de esta sección.

Primal Dual

Maximizar 
sujeto a

z = 5x1 + 12x2 + 4x3 - MR Minimizar 
sujeto a

w = 10y1 + 8y2

x1, x2, x3, x4, R Ú 0
2x1 - x2 + 3x3 + + R =   82
x1 + 2x2 + x3 + x4 = 10

y2 Ú -M 1Q y2 irrestricta2y1 Ú 02
y1 + 3y2 Ú    42

2y1 - y2 Ú 12
y1 + 2y2 Ú     52
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TABLA 4.3 Tabla óptima del primal del ejemplo 4.2-1

Base x1 x2 x3 x4 R Solución 

z 0 0 3
5

29
5 -2

5 + M 54 4
5

x2 0 1 -1
5

2
5 -1

5
12
5

x1 1 0 7
5

1
5

2
5

26
5

Método 1. En la tabla 4.3, las variables primales iniciales x3 y R corresponden sólo a las variables
duales y1 y y2, respectivamente. Por lo tanto, determinamos la solución dual óptima como sigue:

Método 2. La matriz inversa óptima, resaltada en la tabla 4.3, bajo las variables iniciales x4 y
R, es 

El orden de las variables básicas primales óptimas en la columna Básica es x2 seguida por x1. Los
elementos de los coeficientes objetivo originales para las dos variables deben aparecer en el
mismo orden, es decir,

(Coeficientes objetivo originales) 5 (Coeficiente de x2, coeficiente de x1) 

5 (12,5)

Los valores duales óptimos son 

 = a29
5 , -2

5b
= 112, 52P2

5 -1
5

1
5

2
5Q

 1y1, y22 = aCoeficientes objetivo
originales de x2, x1

b * 1Inversa óptima2

Inversa óptima = £2
5 -1

5

1
5

2
5

≥

Variables básicas primales iniciales x4 R

Coeficientes de la ecuación z 29
5 -2

5 + M
Coeficiente objetivo original 0 -M
Variables duales y1 y2

Valores duales óptimos 29
5 + 0 = 29

5 -2
5 + M + 1-M2 = -2

5
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Valores objetivo primales-duales. Para cualquier par de soluciones primales y duales factibles

En el óptimo, la relación se mantiene como una ecuación estricta, lo que significa que los dos va-
lores objetivo son iguales. Observe que la relación no especifica cuál problema es primal y cuál
es dual. En este caso sólo el sentido de optimización (maximización o minimización) es impor-
tante.

El óptimo no puede ocurrir con z estrictamente menor que w (es decir, z , w) porque, no
importa qué tan cerca estén z y w, siempre hay la oportunidad de una mejora, lo que contradice
la optimalidad como lo demuestra la figura 4.2.

Ejemplo 4.2-2

En el ejemplo 4.2-1 (x1 5 0, x2 5 0, x3 5 ) y (y1 5 6, y2 5 0) son soluciones primales y duales fac-
tibles (arbitrarias). Los valores asociados de las funciones objetivo son 

 w = 10y1 + 8y2 = 10(6) + 8(0) = 60

 z = 5x1 + 12x2 + 4x3 = 5(0) + 12(0) + 4(8
3 ) = 10 2

3

8
3

a Valor objetivo en el
problema de maximización

b … a Valor objetivo en el
problema de minimización

b

FIGURA 4.2

Relación entre z máxima y wmínima

Óptimo

Minimizar wMaximizar z

Por lo tanto, z(5 10 ) en el problema de maximización (primal) es menor que w (5 60) en el
problema de minimización (dual). El valor óptimo de z (5 54 ) queda en el intervalo (10 , 60).

CONJUNTO DE PROBLEMAS 4.2C

1. Determine el valor óptimo de la función objetivo en el siguiente problema al inspeccio-
nar sólo el dual. (No resuelva el dual con el método simplex).

sujeto a

x1, x2, x3 Ú 0

5x1 - 7x2 + 3x3 Ú 50

Minimizar z = 10x1 + 4x2 + 5x3

2
3

4
5

2
3
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2. Resuelva el dual del siguiente problema, y en seguida halle su solución óptima a partir de
la solución del dual. ¿Ofrece ventajas computacionales la solución del dual sobre la solu-
ción directa del primal? 

sujeto a

*3. Considere la siguiente PL:

sujeto a

Dado que la variable artificial x4 y la variable de holgura x5 forman las variables básicas
iniciales y que M se estableció igual a cero al solucionar el problema, la tabla óptima se
da como:

x1, x2, x3 Ú 0

x1 - 5x2 - 6x3 … 40

x1 + 5x2 + 2x3 = 30

Maximizar z = 5x1 + 2x2 + 3x3

x1, x2, x3 Ú 0

 x2 - 10x3 Ú 20

12x1 + 10x2 Ú 90

2x1 +  4x2 - 15x3 Ú 10

5x1 +  5x2 +  5x3 Ú 35

7x1 +  6x2 -  9x3 Ú 30

    x1 +  x2 - x3 Ú 20

5x1 +  5x2 +  3x3 Ú 50

Minimizar z = 5x1 + 6x2 + 3x3

Básica x1 x2 x3 x4 x5 Solución

z 0 23 7 105 0 150

x1 1 5 2 1 0 30
x5 0 –10 –8 –1 1 10

Escriba el problema dual asociado y encuentre su solución óptima de las dos maneras.
4. Considere la siguiente PL:

sujeto a

x1, x2 Ú 0

x1 + 2x2 … 4

4x1 + 3x2 Ú 6

3x1 + x2 = 3

Minimizar z = 4x1 + x2
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La solución inicial se compone de las variables artificiales x4 y x5 para la primera y segun-
da restricciones y la variable de holgura x6 para la tercera restricción. Utilizando M 5 100
para las variables artificiales, la tabla óptima se da como sigue:

Escriba el problema dual asociado y determine su solución óptima de las dos maneras.
5. Considere la siguiente PL:

sujeto a

Aplicando x3 y x4 como variables iniciales, la tabla óptima se da como

x1, x2, x3, x4 Ú 0

 x1 + 4x2               + x4 = 8

 x1 +  x2 + x3  =  4

Maximizar z = 2x1 + 4x2 + 4x3 - 3x4

Escriba el problema dual asociado, y determine su solución óptima en dos maneras.
*6. Considere la siguiente PL:

sujeto a

La solución inicial se compone de la variable x3 en la primera restricción y una variable
artificial x4 en la segunda restricción con M 5 100. La tabla óptima se da como

x1, x2, x3 Ú  0

 2x1 - x2  = 4

x1 + 2x2 + x3 = 3

Maximizar z = x1 + 5x2 + 3x3

Básica x1 x2 x3 x4 Solución

z 2 0 0 3 16

x3 .75 0 1 –.25 2
x2 .25 1 0 .25 2

Básica x1 x2 x3 x4 Solución

z 0 2 0 99 5

x3 1 2.5 1 –.5 1
x1 0 –.5 0 .5 2

Básica x1 x2 x3 x4 x5 x6 Solución

z 0 0 0 -98.6 -100 - .2 3.4

x1 1 0 0 .4 0 –.2 .4
x2 0 1 0 .2 0 .6 1.8
x3 0 0 1 1 –1 1 1.0



4.2 Relaciones primal–dual 149

Escriba el problema dual asociado, y determine su solución óptima de las dos maneras.
7. Considere el siguiente conjunto de desigualdades:

Se puede determinar una solución factible incrementando la función objetivo trivial, ma-
ximizar z 5 x1 1 x2 y luego resolviendo el problema. Otra forma es resolver el dual, con
el cual puede determinarse una solución para el conjunto de desigualdades. Aplique
ambos métodos.

8. Estime un intervalo para el valor objetivo óptimo de las siguientes PL:
*(a)

sujeto a

(b) Maximizar 
sujeto a

(c) Maximizar 
sujeto a

(d) Maximizar 
sujeto a

9. En el problema 7(a), sean y1 y y2 las variables duales. Determine si los siguientes pares de
soluciones primales-duales son óptimos.
(a)*

(b)

(c) (x1 = 3,  x2 = 0;  y1 = 5,  y2 = 0)

(x1 = 4,  x2 = 1;  y1 = 1,  y2 = 0)

(x1 = 3,  x2 = 1;  y1 = 4,  y2 = 1)

x1, x2 Ú 0

3x1 + 4x2 … 12

2x1 +  x2 …  3

z = 3x1 + 2x2

x1, x2 Ú 0

2x1 … 40

x1 - x2 … 10

z = 2x1 + x2

x1, x2, x3 Ú 0

2x1 - x2         = 4

x1 + 2x2 + x3 = 3

z = x1 + 5x2 + 3x3

x1, x2 Ú 0

2x1 + 3x2 Ú 5

x1 -  x2 Ú 3

Minimizar z = 5x1 + 2x2

x2 Ú 0

x1 irrestricta

3x1 - 5x2 …      2

- 3x1 + 2x2 … -4

2x1 + 3x2 …  12
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4.2.4 Cálculos con la tabla simplex

Esta sección muestra cómo se puede generar cualquier iteración de la tabla simplex a
partir de los datos originales del problema, la inversa asociada con la iteración, y el pro-
blema dual. Con el diseño de la tabla simplex que se muestra en la figura 4.1, podemos
dividir los cálculos en dos tipos:

1. Columnas de restricción (lados izquierdo y derecho).
2. Fila z objetivo.

Fórmula 1: Cálculos con la columna de restricción. En cualquier iteración simplex,
una columna izquierda o derecha se calcula como sigue:

Fórmula 2: Cálculos con la fila z objetivo. En cualquier iteración simplex, el
coeficiente de xj en la ecuación objetivo (costo reducido) se calcula como sigue:

Ejemplo 4.2-3

Utilizamos la programación lineal del ejemplo 4.2-1 para ilustrar la aplicación de las fórmulas 1
y 2. A partir de la tabla óptima que aparece en la tabla 4.3, tenemos 

Puede utilizarse un cálculo similar para generar las columnas óptimas para x2, x3, x4, R, y el lado
derecho (¡compruébelo!).

A continuación demostramos cómo se realizan los cálculos de fila objetivo con la fórmula 2.
Los valores óptimos de las variables duales , se calcularon en el ejemplo 4.2-1.
Estos valores se utilizan en la fórmula 2 para calcular todos los coeficientes z, como se ilustra
aquí para x1 y R.

Pueden usarse cálculos similares para determinar los coeficientes z de x2, x3 y x4 (¡compruébelo!).

 Coeficiente z de R = y2 - (-M)     = -2
5 - (-M)          = -2

5 + M

 Coeficiente z de x1 = y1 + 2y2 - 5 = 29
5 + 2 * -2

5 - 5 =  0

1y1, y22 = A29
5 , -2

5 B
= £2

5 -1
5

1
5

2
5

≥ * a1
2
b = a0

1
b

 aColumna x1 en la
iteración óptima

b = a Inversa en la
iteración óptima

b * aColumna x1

en original
b

Inversa óptima = £2
5 -1

5

1
5

2
5

≥

aCoeficiente de la variable x1

en la ecuación z primal
b = a Lado izquierdo de la

restricción dual j-ésima
b - a Lado derecho de la

restricción dual j-ésima
b

aColumna de restricción
en iteración i

b = a Inversa en
la iteración i

b * a Columna de
restricción original

b
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CONJUNTO DE PROBLEMAS 4.2D

1. Genere la primera iteración simplex del ejemplo 4.2-1 (por comodidad puede utilizar la
opción con M 5 100), luego utilice las fórmulas 1 y 2 para ve-
rificar todos los elementos de la tabla resultante.

2. Considere el siguiente modelo de PL:

sujeto a

Compruebe la optimalidad y factibilidad de cada una de las siguientes soluciones básicas.

*(a)

(b)

(c)

(d)

3. Considere el siguiente modelo de PL:

sujeto a

Compruebe la optimalidad y factibilidad de las siguientes soluciones básicas.

(a)

(b) Variables básicas = 1x2, x3, x12, Inversa = £ 1
4 -1

8
1
8

3
2 -1

4 -3
4

-1 1
2

1
2

≥
Variables básicas = 1x4, x3, x62, Inversa = £1 -1

2 0

0 1
2 0

0 0 1

≥
x1, x2, x3, x4, x5, x6 Ú 0

x1 + 4x2  + x6 = 20

3x1 + 2x3  + x5  = 60

x1 + 2x2 + x3 + x4  = 30

Maximizar z = 3x1 + 2x2 + 5x3

Variables básicas = 1x1, x42, Inversa = a 1
2 0

-7
2 1

b
Variables básicas =  (x2, x1), Inversa =  a 7

45 - 2
45

- 2
45

7
45

b
Variables básicas = 1x2, x32, Inversa = a0 1

2

1  -7
2

b
Variables básicas =  (x2, x4),  Inversa = a    17  0

-2
7 1

b
x1, x2, x3, x4 Ú 0

 7x1 + 2x2 
       

+ x4 = 21

 2x1 + 7x2 + x3       
 = 21

Maximizar z = 4x1 + 14x2

M-methodQIterations
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(c)

*4. Considere el siguiente modelo de PL:

sujeto a

Calcule la tabla simplex completa asociada con la siguiente solución básica, y compruebe
optimalidad y factibilidad.

5. Considere el siguiente modelo de PL:

sujeto a

(a) Identifique la mejor solución de entre las siguientes soluciones factibles básicas:

(i)

(ii)

(iii)

(b) ¿Es óptima la solución obtenida en (a) para el modelo de PL?
6. Considere el siguiente modelo de PL:

Maximizar z = 5x1 + 2x2 + 3x3

Variables básicas = 1x2, x32, Inversa = P3
7 -1

7
1
7

2
7
Q

Variables básicas = 1x2, x12, Inversa = P
2
5 -1

5
1
5

2
5Q

Variables básicas = 1x4, x32, Inversa = P1 -1
3

0 1
3Q

x1, x2, x3, x4 Ú 0

2x1 - x2 + 3x3  =  2

x1 + 2x2 +  x3 + x4 = 10

Maximizar z = 5x1 + 12x2 + 4x3

Variables básicas = 1x1, x2, x52, Inversa = £ 3
5 -1

5 0

-4
5

3
5 0

1 -1 1

≥
x1, x2, x3, x4, x5 Ú 0

x1 + 2x2 + x5  = 3

4x1 + 3x2 - x4 = 6

3x1 +  x2 - x3  = 3

Minimizar z = 2x1 + x2

Variables básicas = 1x2, x3, x62, Inversa = £ 1
2 -1

4 0

0 1
2 0

-2 1 1

≥
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sujeto a

La siguiente tabla óptima corresponde a valores específicos de b1 y b2:

 x1, x2, x3 Ú 0

 x1 - 5x2 - 6x3 … b2

 x1 + 5x2 + 2x3 … b1

Básica x1 x2 x3 x4 x5 Solución

z 0 a 7 d e 150

x1 1 b 2 1 0 30
x5 0 c –8 –1 1 10

Determine lo siguiente:
(a) Los valores del lado derecho, b1 y b2.
(b) La solución dual óptima.
(c) Los elementos a, b, c, d y e.

*7. La siguiente es la tabla óptima para un modelo de PL de maximización con tres restric-
ciones (#) y todas las variables no negativas. Las variables x3, x4 y x5 son las holguras
asociadas con las tres restricciones. Determine el valor objetivo óptimo asociado de dos
maneras diferentes usando las funciones objetivo primal y dual.

Básica x1 x2 x3 x4 x5 Solución

z 0 0 0 3 2 ?

x3 0 0 1 1 –1 2
x2 0 1 0 1 0 6
x1 1 0 0 –1 1 2

8. Considere la siguiente PL:

sujeto a

Aproveche el problema dual para demostrar que la solución básica (x1, x2) no es óptima.
9. Demuestre que el método 1 de la sección 4.2.3 para determinar los valores duales ópti-

mos en realidad está basado en la fórmula 2 de la sección 4.2.4.

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD 

El problema de PL puede considerarse como un modelo de asignación de recursos que
busca maximizar los ingresos con recursos limitados. Considerando el problema desde
este punto de vista, el problema dual asociado ofrece interesantes interpretaciones
económicas del modelo de asignación de recursos.

x1, x2, x3, x4 Ú 0

 x1 + 4x2 + x4 = 8

 x1 + x2 + x3 =  4

Maximizar z = 2x1 + 4x2 + 4x3 - 3x4



154 Capítulo 4 Dualidad y análisis postóptimo

Para formalizar el planteamiento, considere la siguiente representación de los
problemas primal y dual:

Considerado como un modelo de asignación de recursos, el problema primal consta de
n actividades económicas y m recursos. El coeficiente cj en el primal representa el in-
greso por unidad de la actividad j. El recurso i con disponibilidad bi se consume a razón
de aij unidades por unidad de actividad j.

4.3.1 Interpretación económica de las variables duales

La sección 4.2.3 establece que para cualquiera de las dos soluciones factibles primal y
dual, los valores de las funciones objetivo, cuando son finitos, deben satisfacer la si-
guiente desigualdad:

En el óptimo, los dos valores objetivo son iguales, es decir, z 5 w.
En función del modelo de asignación de recursos, z representa $ ingresos, y bi repre-

senta unidades disponibles del recurso i. Por lo tanto, dimensionalmente, z 5 w implica

Esto quiere decir que la variable dual, yi, representa el valor por unidad del recurso i.
Como se expone en la sección 3.6, el nombre estándar precio dual (o precio som-

bra) del recurso i reemplaza el nombre (sugestivo) valor por unidad en toda la literatu-
ra de programación lineal y en los paquetes de software, de ahí que también se adoptó
el nombre estándar en este libro.

Utilizando el mismo análisis dimensional, podemos interpretar la desigualdad z ,w

(para cualquiera de las dos soluciones primal y dual) como 

Esta relación expresa que en tanto el ingreso total de todas las actividades sea menor
que el valor de los recursos, las soluciones primal y dual correspondientes no serán óp-
timas. La optimalidad se alcanza sólo cuando los recursos se han explotado por com-
pleto. Esto puede suceder sólo cuando la entrada (valor de los recursos) se iguala a la
salida (ingreso en dólares).

1Ingreso2 6 1Valor de los recursos2

$ ingresos = a
m

i= 1
biyi = a

m

i= 1
(unidades del recurso i) * ($  por unidad del recurso i)

z = a
n

j= 1
cjxj … a

m

i= 1
biyi = w

Primal Dual

Maximizar z = a
n

j = 1
cjxj Minimizar w = a

m

i= 1
bi yi

sujeto a sujeto a

xj Ú 0, j=1, 2, Á , n
a
n

j = 1
aijxj … bi, i = 1, 2, Á , m

yi Ú 0, i = 1, 2, Á , m
a
m

i = 1
aijyi Ú cj, j = 1, 2, Á , n



4.3 Interpretación económica de la dualidad 155

Ejemplo 4.3-1

El modelo de Reddy Mikks (ejemplo 2.1-1) y su dual se dan como sigue:

El modelo de Reddy Mikks se ocupa de la producción de dos tipos de pintura (para interiores y
exteriores) con dos materias primas M1 y M2 (recursos 1 y 2) y sujeto a los límites del mercado
y a la demanda por la tercera y cuarta restricciones. El modelo determina las cantidades (en to-
neladas por día) de pinturas para exteriores e interiores que maximizan el ingreso diario (expre-
sado en miles de dólares).

La solución dual óptima muestra que el precio dual (valor por unidad) de la materia prima
M1 (recurso 1) es y1 5 .75 (o $750 por tonelada) y que la materia prima M2 (recurso 2) es y2 5 .5
(o $500 por tonelada). Estos resultados se mantienen ciertos en intervalos de factibilidad especí-
ficos como se mostró en la sección 3.6. Para los recursos 3 y 4, que representan los límites del
mercado y de la demanda, ambos precios duales son cero, lo que indica que sus recursos asocia-
dos son abundantes (es decir, no son críticos al determinar el óptimo y, por consiguiente, su valor
por unidad, o precio dual, es cero).

CONJUNTO DE PROBLEMAS 4.3A

1. En el ejemplo 4.3-1, calcule el cambio del ingreso óptimo en cada uno de los siguientes
casos (utilice el resultado de TORA para obtener los intervalos de factibilidad):
(a) La restricción para la materia prima M1 (recurso 1) es 6x1 1 4x2 # 22.
(b) La restricción para la materia prima M2 (recurso 2) es x1 1 2x2 # 4.5.
(c) La condición del mercado representada por el recurso 4 es x2 # 10.

2.* NWAC Electronics fabrica cuatro tipos de cable sencillo para un contratista gubernamen-
tal. Cada cable debe pasar a través de cuatro operaciones consecutivas: corte, estañado,
encamisado e inspección. La siguiente tabla presenta los datos pertinentes de la situación.

Primal de Reddy Mikks Dual de Reddy Mikks

Maximizar z = 5x1 + 4x2 Minimizar w = 24y1 + 6y2 + y3 + 2y4

sujeto a sujeto a

(recurso 1, M1)
(recurso 2, M2)
(recurso 3, mercado)
(recurso 4, demanda)

x1, x2 Ú 0
x2 … 24

-x1 + x2 … 14
x1 + 2x2 … 64

6x1 + 4x2 … 24

y1, y2, y3, y4 Ú 0
4y1 + 2y2 + y3 + y4 Ú 4
6y1 + 2y2 - y3 + y4 Ú 5

Solución óptima: Solución óptima:
x1 = 3, x2 = 1.5, z = 21 y1 = .75, y2 = 0.5, y3 = y4 = 0, w = 21

Minutos por unidad

Cable Corte Estañado Encamisado Inspección Ingreso por unidad ($)

SC320 10.5 20.4 3.2 5.0 9.40
SC325 9.3 24.6 2.5 5.0 10.80
SC340 11.6 17.7 3.6 5.0 8.75
SC370 8.2 26.5 5.5 5.0 7.80

Capacidad diaria (minutos) 4800.0 9600.0 4700.0 4500.0



156 Capítulo 4 Dualidad y análisis postóptimo

El contratista garantiza un nivel de producción mínimo de 100 unidades de cada uno de
los cuatro cables.

(a) Formule el problema como un modelo de programación lineal, y determine el pro-
grama óptimo de producción.

(b) Basado en los precios duales, ¿recomienda incrementar las capacidades diarias de
cualquiera de las cuatro operaciones? Explique.

(c) ¿Representan los requerimientos mínimos de producción de los cuatro cables una
ventaja o una desventaja para NWAC Electronics? Dé una explicación con base en
los precios duales.

(d) ¿Se puede garantizar la contribución actual de cada unidad al ingreso por el precio
dual si incrementamos en 10% la capacidad del proceso de estañado?

3. BagCo produce chamarras  y bolsos de mano de piel. Una chamarra requiere 8 m2 de
piel, y un bolso de mano sólo 2 m2. Las necesidades de mano de obra para los dos pro-
ductos son de 12 y 15 horas, respectivamente. Los actuales suministros semanales de piel
y mano de obra están limitados a 1200 m2 y 1850 horas. La compañía vende las chama-
rras a $350 y los bolsos de mano a $120. El objetivo es determinar el programa de pro-
ducción que maximice el ingreso neto.

(a) Determine la solución óptima.

(b) BagCo planea aumentar la producción. ¿Cuál es el precio de compra máximo que la
compañía debe pagar por la piel adicional? ¿Y cuánto por la mano de obra extra? 

4.3.2 Interpretación económica de las restricciones duales

El significado económico de las restricciones duales puede lograrse utilizando la
fórmula 2 de la sección 4.2.4, la cual establece que en cualquier iteración primal,

Una vez más utilizamos el análisis dimensional para interpretar esta ecuación. El in-
greso por unidad, cj, de la actividad j está en dólares por unidad. De ahí que, por
consistencia, la cantidad también debe estar en dólares por unidad. A conti-

nuación, como cj representa ingreso, la cantidad con signo opuesto, debe re-
presentar costo. Por lo tanto tenemos

La conclusión es que la variable dual y1 representa lo que se conoce en la literatu-
ra de PL como costo imputado por unidad de recurso i, y podemos considerar que la
cantidad como el costo imputado de todos los recursos necesarios para
producir una unidad de la actividad j. Como se indica en la sección 3.6, la cantidad

(5 costo imputado de la actividad j – cj) se conoce como costo reducidoam

i= 1aijyi - cj

am

i= 1aijyi

$ costo = a
m

i= 1
aijyi = a

m

i= 1
a Consumo del recurso i

por unidad de la actividad j
b * aCosto por unidad

del recurso i
b

am

i= 1aijyi,
am

i= 1aijyi

= a
m

i= 1
aijyi - cj

 El coeficiente objetivo de xj = a Lado izquierdo de
la restricción dual j

b - a Lado derecho de
la restricción dual j

b



4.3 Interpretación económica de la dualidad 157

de la actividad j. La condición de optimalidad de maximización del método simplex
plantea que un incremento en el nivel de una actividad j no utilizada (no básica) puede
mejorar el ingreso sólo si su costo reducido es negativo. En función de la interpretación
precedente, esta condición establece que

De este modo, la condición de optimalidad de maximización dice que es económica-
mente ventajoso incrementar el nivel de una actividad si su ingreso unitario excede su
costo unitario imputado.

Ejemplo 4.3-2

TOYCO ensambla tres tipos de juguetes: trenes, camiones y autos, realizando tres operaciones.
Los tiempos de ensamble disponibles para las tres operaciones son 430, 460 y 420 minutos por
día, y los ingresos por tren, camión y auto de juguete son $3, $2 y $5, respectivamente. Los tiem-
pos de ensamble por tren para las tres operaciones son 1, 3 y 1 minuto, respectivamente. Los
tiempos correspondientes por camión y por auto son (2, 0, 4) y (1, 2, 0) minutos (un tiempo cero
indica que la operación no se utiliza).

Sean x1, x2 y x3 las cantidades diarias de unidades ensambladas de trenes, camiones y carros,
el modelo de programación lineal asociado y su dual se dan como sigue:

£ Costo imputado de
recursos consumidos por

una unidad de la actividad j
≥ 6 aIngreso por unidad

de la actividad j
b

La solución óptima pide que se produzcan 100 camiones y 230 autos, pero ningún tren.
Suponga que a TOYCO también le interesa producir trenes (x1). ¿Cómo se puede lograr

esto? Examinando el costo reducido de x1, un tren de juguete se vuelve económicamente atracti-
vo sólo si su costo unitario imputado es estrictamente menor que su ingreso unitario. TOYCO
puede lograr esto si incrementa el precio unitario. También puede reducir el costo imputado de
los recursos consumidos (5 y1 1 3y2 1 y3).

Una reducción en el costo unitario imputado conlleva a reducir los tiempos de ensamble
utilizados por un tren en las tres operaciones. Sean r1, r2 y r3 las relaciones de las reducciones en
las operaciones 1, 2 y 3, respectivamente. La meta es determinar los valores de r1, r2 y r3 de modo
que el nuevo costo imputado por tren sea menor que su ingreso unitario, es decir,

0 … r1 … 1, 0 … r2 … 1, 0 … r3 … 1

 1(1 - r1)y1 + 3(1 - r2)y2 + 1(1 - r3)y3 6 3

Primal de TOYCO Dual de TOYCO

Maximizar z = 3x1 + 2x2 + 5x3 Minimizar w = 430y1 + 460y2 + 420y3

sujeto a sujeto a
(Operación 1)
(Operación 2)
(Operación 3)

x1, x2, x3 Ú 0
x1 + 4x2 … 420

3x1 + 2x3 … 460
x1 + 2x2 + x3 … 430

y1, y2, y3 Ú 0
y1 + 2y2 Ú 5

2y1 + 4y3 Ú 2
y1 + 3y2 + y3 Ú 3

Solución óptima: Solución óptima:
x1 = 0, x2 = 100, x3 = 230, z = $1350 y1 = 1, y2 = 2, y3 = 0, w = $1350
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Para los valores duales óptimos, y1 5 1, y2 5 2, y3 5 0, esta desigualdad se reduce a

Todos los valores de r1 y r2 que cumplan con estas condiciones harán que los trenes sean renta-
bles. Observe, sin embargo, que quizás esta meta no sea alcanzable porque requiere grandes
reducciones en los tiempos de las operaciones 1 y 2 que no parecen ser prácticas. Por ejemplo,
incluso una reducción de 50% (es decir, r1 5 r2 5 .5) no satisface la condición dada. Entonces la
conclusión lógica es que TOYCO no debe producir trenes a menos que las reducciones del tiem-
po vayan acompañadas de un incremento en el ingreso unitario.

CONJUNTO DE PROBLEMAS 4.3B

1. En el ejemplo 4.3-2, suponga que para los trenes el tiempo por unidad de la operación 2
puede reducirse de 3 a cuando mucho 1.25 minutos. ¿Qué tanto debe reducirse el tiempo
por unidad de la operación 1 para que los trenes sean apenas rentables?

*2. En el ejemplo 4.3-2, suponga que TOYCO está estudiando la posibilidad de introducir un
cuarto juguete: camiones de bombero. El ensamble no utiliza la operación 1. Sus tiempos
de ensamble unitarios en las operaciones 2 y 3 son 1 y 3 minutos, respectivamente. El in-
greso por unidad es de $4. ¿Aconsejaría a TOYCO introducir el nuevo producto?

*3. JoShop utiliza tornos y taladros de banco para producir cuatro tipos de piezas para ma-
quinaria, PP1, PP2, PP3 y PP4. La siguiente tabla resume los datos pertinentes.

r1 + 6r2 7 4, 0 … r1 … 1,0 … r2 … 1

Tiempo de maquinado en minutos por unidad de 

Máquina PP1 PP2 PP3 PP4 Capacidad (min)

Tornos 2 5 3 4 5300
Taladros de banco 3 4 6 4 5300

Ingreso unitario ($) 3 6 5 4

Para las piezas que no se producen por la solución óptima actual, determine la tasa de
deterioro del ingreso óptimo por incremento unitario de cada uno de estos productos.

4. Considere la solución óptima de JoShop en el problema 3. La compañía estima que por
cada pieza que no se produce (conforme a la solución óptima), el tiempo de maquinado
puede reducirse 20% mediante mejoras del proceso. ¿Harían estas mejoras que las piezas
fueran rentables? De no ser así, ¿cuál es el porcentaje de reducción mínimo necesario
para lograr la rentabilidad?

4.4 ALGORITMOS SIMPLEX ADICIONALES

El capítulo 3 presenta el algoritmo simplex (primal) que se inicia siendo factible y con-
tinúa siéndolo hasta que se alcanza el óptimo. Esta sección presenta dos algoritmos, el
simplex dual que se inicia como no factible (pero mejor que óptimo) y así permanece
hasta que se restaura la factiblidad, y el simplex generalizado, que combina los méto-
dos simplex primal y dual, los cuales se inician sin ser ni óptimos ni factibles. En los tres
algoritmos se utiliza el análisis postóptimo de la sección 4.5.
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4.4.1 Algoritmo simplex dual

El método simplex dual se inicia con una solución mejor que óptima y una solución bá-
sica no factible. Las condiciones de optimalidad y factibilidad están diseñadas para
preservar la optimalidad de las soluciones básicas a medida que la solución se mueve
hacia la factibilidad.

Condición dual de factibilidad. La variable de salida, xr, es la variable básica que
tiene el valor más negativo (los empates se rompen de forma arbitraria). Si todas las
variables básicas son no negativas, el algoritmo se termina.1

Condición dual de optimalidad. Dado que xr es la variable de salida, sea el costo
reducido de la variable no básica xj, y arj el coeficiente de restricción en la fila xr y en la
columna xj de la tabla. La variable de entrada es la variable no básica con arj , 0 que
corresponde a 

(Los empates se rompen arbitrariamente). Si arj $ con todas las xj no básicas, el pro-
blema no tiene una solución factible.

Para iniciar la programación lineal óptima y no factible, se debe cumplir con dos
requisitos:

1. La función objetivo debe satisfacer la condición de optimalidad del método sim-
plex regular (capítulo 3).

2. Todas las restricciones deben ser del tipo (#).

Las desigualdades del tipo ($) se convierten en (#) al multiplicar ambos lados de
la desigualdad por 21. Si la PL incluye restricciones (5), la ecuación se puede reem-
plazar por dos desigualdades. Por ejemplo, x1 1 x2 5 1, equivale a x1 1 x2 # 1, x1 1 x2
$ 1, o x1 1 x2 # 1, 2x1 1 x2 # 21. La solución inicial es no factible si al menos uno de
los lados derechos de las desigualdades es negativo.

Ejemplo 4.4-1

sujeto a

 x1,  x2, x3 $ 0

 x1 +  x2 + x3 # 3

-  3x1 +  3x2 + x3 Ú 6

 3x1 +  x2 + x3 Ú 3

Minimizar z = 3x1 + 2x2 + x3

min
No básica xj

E ƒ
cj
arj ƒ , arj 6 0F

cqj

1Como se explicó en la sección 3.7, una condición de factibilidad diferente, conocida como el borde más
inclinado, ha mejorado tanto la eficiencia de cálculo del algoritmo simplex dual que ahora es el algoritmo
dominante (basado en simplex) para resolver PL en todos los códigos comerciales.
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En este ejemplo, las primeras dos desigualdades se multiplican por –1 para convertirlas en res-
tricciones (#). Por tanto, la tabla inicial se da como sigue:

La tabla es óptima porque todos los costos reducidos en la fila z son # 0
También es no factible porque al menos una de las va-

riables básicas es negativa (x4 5 23, x5 5 26, x6 5 3).
De acuerdo con la condición dual de factibilidad, x5(5 26) es la variable de salida. La siguien-

te tabla muestra cómo se utiliza la condición de optimalidad para determinar la variable de entrada.

cq2 = -2, cq3 = -1, cq4 = 0, cq5 = 0, cq6 = 0).
(cq1 = -3,

Básica x1 x2 x3 x4 x5 x6 Solución

z –3 –2 –1 0 0 0 0

x4 –3 –1 –1 1 0 0 –3
x5 3 –3 –1 0 1 0 –6
x6 1 1 1 0 0 1 3

j = 1 j = 2 j = 3

Variable no básica x1 x2 x3

Fila z (cqj) –3 –2 –1

Fila x5 a4j 3 –3 –1

Relación, ƒ cja5j
ƒ , a5j 6 0 — 2

3 1

Las relaciones muestran que x2 es la variable de entrada.
La siguiente tabla se obtiene al utilizar las conocidas operaciones de filas, las cuales dan

Básica x1 x2 x3 x4 x5 x6 Solución

z –5 0 -1
3 0 -2

3 0 4

x4 –4 0 -2
3 1 -1

3 0 –1

x2 –1 1 1
3 0 -1

3
0 2

x6 2 0 2
3 0 1

3 1 1

Relación 5
4 — 1

2 — 2 —

La tabla anterior muestra que x4 sale y x3 entra, lo que da por resultado la siguiente tabla, la
cual es tanto óptima como factible.

Básica x1 x2 x3 x4 x5 x6 Solución

z –3 0 0 -1
2 -1

2 0 9
2

x3 6 0 1 -3
2

1
2 0 3

2

x2 –3 1 0 1
2 -1

2 0 3
2

x6 –2 0 0 1 0 1 0
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Observe cómo funciona el simplex dual. En todas las iteraciones la optimalidad se mantiene
(todos los costos reducidos son # 0) ya que cada nueva iteración mueve la solución hacia la fac-
tibilidad. En la iteración 3, la factibilidad se restaura por primera vez, y el proceso finaliza con la
solución factible óptima dada como x1 5 0, x2 5 , x3 5 y z 5 .

Momento de TORA.

TORA incluye un módulo tutorial para el método simplex dual. A partir del menú
seleccione las opciones .

Recuerde que necesita convertir las restricciones (5) en desigualdades. No tiene que convertir
las restricciones ($) porque TORA lo hará internamente.

CONJUNTO DE PROBLEMAS 4.4A2

1. Considere el espacio de soluciones de la figura 4.3, donde se desea determinar el punto
extremo óptimo que utiliza el método simplex dual para minimizar z 5 2x1 1 x2. La solu-
ción óptima ocurre en el punto F 5 (0.5, 1.5) en la gráfica.
(a) ¿Puede el simplex dual iniciarse en el punto A?

*(b) Si el punto G da la solución básica inicial (no factible pero mejor que óptima) y el
punto F da el óptimo, ¿sería posible que las iteraciones del método simplex dual
sigan la trayectoria Explique.

(c) Si la solución básica inicial (no factible) empieza en el punto L, identifique una posi-
ble trayectoria del método simplex dual que conduzca al punto factible óptimo en el
punto F.

G: E: F?

Dual SimplexQIterationsQAlgebraicQSolveSOLVE/MODIFY

9
2

3
2

3
2

2Se le recomienda utilizar el modo tutorial de TORA cuando sea posible, para evitar los tediosos cálculos
simplex.

FIGURA 4.3

Espacio de soluciones para el problema 1, conjunto 4.4a
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H
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2. Genere las iteraciones simplex dual para los siguientes problemas (utilizando TORA por
comodidad), y trace la trayectoria del algoritmo en el espacio de soluciones gráficas.
(a)

sujeto a

(b)
sujeto a

(c)
sujeto a

(d)
sujeto a

3. Simplex dual con restricciones artificiales. Considere el siguiente problema:

sujeto a

La solución básica inicial compuesta de variables de exceso x4 y x5, y la variable de
holgura x6 es no factible porque x4 5 24 y x5 5 23. Sin embargo, el simplex dual no es
aplicable de forma directa, porque x1 y x3 no satisfacen la condición de optimalidad de
maximización. Demuestre que agregando la restricción artificial x1 1 x3 # M (donde 
M es lo bastante grande como para no eliminar cualesquier puntos factibles en el espacio
de soluciones original), y luego utilizando la nueva restricción como fila pivote, la selec-
ción de x1 como la variable de entrada (porque tiene el coeficiente objetivo más negati-
vo), producirá una fila totalmente óptima. A continuación, realice el método simplex dual
regular en el problema modificado.

x1, x2, x3 Ú  0

 4x1 + 6x2 + 3x3 … 8

 -x1 + 9x2 - x3 Ú 3

 2x1 + 3x2 - 5x3 Ú 4

Maximizar z = 2x1 - x2 + x3

x1, x2 Ú 0

 x1 + x2 = 2

 2x1 + x2 Ú 3

Minimizar z = 2x1 + 3x2

x1, x2 Ú 0

 3x1 - x2 Ú 2

 x1 + x2 = 1

Minimizar z = 4x1 + 2x2

x1, x2 Ú 0

 4x1 + x2 Ú 4

 x1 + x2 Ú 2

Minimizar z = 5x1 + 6x2

 x1, x2 Ú 0

 x1 + 2x2 Ú 10

 2x1 + 2x2 … 30

Minimizar z = 2x1 + 3x2
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4. Utilizando el procedimiento de restricción artificial presentado en el problema 3, resuel-
va los siguientes problemas mediante el método simplex dual. En cada caso, indique si la
solución resultante es factible, no factible, o no acotada.
(a)

sujeto a

(b)
sujeto a

*(c)
sujeto a

(d)
sujeto a

5. Resuelva la siguiente PL de tres maneras diferentes (use TORA por comodidad).
¿Cuál método parece ser el más eficiente computacionalmente?

sujeto a

x1, x2, x3, x4 Ú 0

 2x1 + 5x2 +  x3 +  x4 Ú     8

 x2 - 5x3 - 6x4 Ú 10

 5x1 + 6x2 - 3x3 + 4x4 Ú 12

Minimizar z = 6x1 + 7x2 + 3x3 + 5x4

x1, x2, x3 Ú 0

  3x1 +  x2 - 10x3 … 8

-x1 +  x2 -  x3 … 1

-x1 + 3x2 -  7x3 Ú 5

Maximizar z = 2x3

x1, x2 Ú 0

 2x1 - 5x2 Ú 1

 x1 - 3x2 … 1

 x1 - 4x2 Ú 5

Minimizar z = -x1 + x2

x1, x2 Ú 0

 2x1 - 2x2 Ú 3

 x1 +  x2 Ú 4

 x1 - x2 … 2

Maximizar z = x1 - 3x2

 x1, x2, x3 Ú   0

 2x1 -  x2 + 4x3 … 10

 -x1 +  x2 +  x3 …    4

 -x1 + 2x2 - 2x3 Ú    8

Maximizar z = 2x3
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4.4.2 Algoritmo simplex generalizado

El algoritmo simplex (primal) en el capítulo 3 se inicia factible pero no óptimo. El sim-
plex dual (sección 4.4-1) se inicia mejor que óptimo y no factible. ¿Y qué pasa si un mo-
delo de programación lineal se inicia no óptimo y no factible al mismo tiempo? Desde
luego, podemos utilizar variables y restricciones artificiales para asegurar una solución
inicial. Sin embargo, esto no es obligatorio porque la idea clave de los métodos simplex
primal y dual es que la solución factible óptima, cuando es finita, siempre ocurre en un
punto de esquina (o una solución básica). Esto indica que puede desarrollarse un nuevo
algoritmo simplex basado en el uso de uno tras otro de los métodos simplex dual y sim-
plex primal. Primero utilice el algoritmo dual para deshacerse de la no factibilidad (sin
preocuparse de la optimalidad). Una vez restaurada la factibilidad, puede usarse el
simplex primal para hallar el óptimo. Como alternativa podemos aplicar primero
el simplex primal para asegurar la optimalidad (sin preocuparnos de la factibilidad) y
luego utilizar el simplex dual para buscar la factibilidad.

Ejemplo 4.4-2

Considere el modelo de PL de maximización del problema 4(a), conjunto 4.4a. El modelo puede po-
nerse en el siguiente formato de tabla en el cual la solución básica de inicio (x4, x5, x6) es al mismo
tiempo no óptima (debido a la variables x3 no básica) y no factible (debido a la variable básica x4).

Básica x1 x2 x3 x4 x5 x6 Solución

z 0 0 –2 0 0 0 0

x4 1 –2 2 1 0 0 –8
x5 –1 1 1 0 1 0 4
x6 2 –1 4 0 0 1 10

Podemos resolver el problema sin el uso de variables o restricciones artificiales, teniendo asegu-
rada primero la factibilidad al aplicar el simplex dual y buscando luego la optimalidad si utiliza-
mos el simplex primal. El simplex dual selecciona a x4 como la variable de salida. La variable de
entrada puede ser cualquier variable no básica con un coeficiente de restricción negativo en la
fila x4. En este ejemplo, x2 tiene un coeficiente negativo en la fila x4 y se le selecciona como la va-
riable de entrada. Por tanto, la siguiente tabla se calcula como

Básica x1 x2 x3 x4 x5 x6 Solución

z 0 0 –2 0 0 0 0

x2 -1
2 1 –1 -1

2 0 0 4

x5 -1
2 0 2 1

2 1 0 0

x6
3
2 0 3 -1

2 0 1 14

La nueva solución ahora es factible pero no óptima y podemos utilizar el simplex primal
para determinar la solución óptima. Por lo común, si no hubiéramos restaurado la factibilidad en
la tabla anterior, repetiríamos el procedimiento como fuera necesario hasta que se satisficiera la
factibilidad o hasta que hubiera pruebas de que el problema no tiene una solución factible (lo
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cual sucede si una variable básica es negativa y todos sus coeficientes de restricciones son no ne-
gativos).

Comentarios. La esencia del ejemplo 4.4-2 es que el método simplex no es rígido. La literatura
abunda con variaciones del método simplex (por ejemplo, el método primal-dual, el método
simétrico, el método entrecruzado y el método multiplex) que dan la impresión de que cada pro-
cedimiento es diferente, cuando, en realidad, todos buscan una solución de punto de esquina, con
una tendencia hacia los cálculos automáticos y, quizás, eficiencia computacional.

CONJUNTO DE PROBLEMAS 4.4B

1. El modelo de PL del problema 4(c), conjunto 4.4a, no tiene solución factible. Demuestre
cómo detecta esta condición el procedimiento simplex generalizado.

2. El modelo de programación lineal del problema 4(d), conjunto 4.4a, no tiene solución
acotada. Demuestre cómo detecta esta condición el procedimiento simplex generalizado.

4.5 ANÁLISIS POSTÓPTIMO 

En la sección 3.6 nos ocupamos de la sensibilidad de la solución óptima al determinar
los intervalos de los diferentes parámetros de PL que mantendrían las variables básicas
óptimas sin cambiar. En esta sección nos ocuparemos de los cambios de los parámetros
del modelo y de la determinación de la nueva solución óptima. Considere, por ejemplo,
un caso en la industria avícola, donde comúnmente se utiliza un modelo de programación
lineal para determinar la mezcla de alimentos óptima por pollo (vea el ejemplo 2.2-2).
El consumo semanal por pollo varía de .26 lb (120 gramos) para un pollo de una sema-
na de edad hasta 2.1 lb (950 gramos) para un pollo de ocho semanas de edad. Además,
el costo de los ingredientes en la mezcla puede cambiar periódicamente. Estos cambios
requieren un nuevo cálculo periódico de la solución óptima. El análisis postóptimo de-
termina la nueva solución de una manera eficiente. Los nuevos cálculos tienen su raíz
en el uso de las relaciones duales y primales-duales dadas en la sección 4.2.

La siguiente tabla lista esos casos que pueden surgir en el análisis postóptimo y
las acciones necesarias para obtener la nueva solución (suponiendo que existe una):

Condiciones después de que cambian los parámetros Acción recomendada

La solución actual permanece óptima y factible. No es necesaria ninguna otra acción.
La solución actual se vuelve no factible. Use el simplex dual para recuperar factibilidad.
La solución actual se vuelve no óptima. Use el simplex primal para recuperar optimalidad.
La solución actual se vuelve no óptima y no

factible al mismo tiempo.
Use el método simplex generalizado para

recuperar optimalidad y factibilidad.

En esta sección se investigan los primeros tres casos. El cuarto caso, por ser una combi-
nación de los casos 2 y 3, se trata en el problema 6, conjunto 4.5a.



166 Capítulo 4 Dualidad y análisis postóptimo

La tabla óptima asociada para el primal se da como

Primal de TOYCO Dual de TOYCO

Maximizar z = 3x1 + 2x2 + 5x3 Minimizar z = 430y1 + 460y2 + 420y3

sujeto a sujeto a
(Operación 1)
(Operación 2)
(Operación 3)

x1, x2, x3 Ú 0
2x1 + 4x2 + 2x3 … 420
3x1 + 2x3 + 2x3 … 460
x1 + 2x2 + x3 … 430

y1, y2, y3 Ú 0
y1 + 2y2 Ú 5

2y1 + 4y3 Ú 2
y1 + 3y2 + y3 Ú 3

Solución óptima: Solución óptima:
x1 = 0, x2 = 100, x3 = 230, z = $1350 y1 = 1, y2 = 2, y3 = 0, w = $1350

Se utilizará el modelo de TOYCO del ejemplo 4.3-2 para explicar los diferentes
procedimientos. Recuerde que el problema tiene que ver con el ensamble de tres tipos
de juguetes: trenes, camiones y autos. En el ensamble intervienen tres operaciones. El
modelo y su dual se repiten aquí por comodidad.

Básica x1 x2 x3 x4 x5 x6 Solución

z 4 0 0 1 2 0 1350

x2 -1
4 1 0 1

2 -1
4 0 100

x3
3
2 0 1 0 1

2 0 230

x6 2 0 0 –2 1 1 20

4.5.1 Cambios que afectan la factibilidad

La factibilidad de la solución óptima actual se ve afectada sólo si cambia el lado de-
recho de las restricciones, o se agrega una nueva restricción al modelo. En ambos casos,
la no factibilidad ocurre cuando una o más de las variables básicas actuales se vuelven
negativas.

Cambios en el lado derecho. Este cambio requiere volver a calcular el lado derecho
de la tabla aplicando la fórmula 1 de la sección 4.2.4:

Recuerde que el lado derecho de la tabla muestra los valores de las variables básicas.

Ejemplo 4.5-1

Situación 1. Suponga que TOYCO incrementa la capacidad diaria de las operaciones 1, 2 y 3 a
600, 640 y 590 minutos, respectivamente. ¿Cómo afectaría este cambio al ingreso total? 

aNuevo lado derecho de
la tabla en la iteración i

b = a Inversa en
la iteración i

b * aNuevo lado derecho
de las restricciones

b
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Con estos incrementos, el único cambio que tendrá lugar en la tabla óptima es el lado
derecho de las restricciones (y el valor objetivo óptimo). Por tanto, la nueva solución básica se
calcula como sigue:

Así, las variables básicas actuales, x2, x3 y x4, permanecen factibles con los nuevos valores 140,
320 y 30 unidades, respectivamente. El ingreso óptimo asociado es $1880.

Situación 2. Aunque la nueva solución es atractiva desde el punto de vista del ingreso incre-
mentado,TOYCO reconoce que su nueva implementación puede llevarse tiempo. Otra propues-
ta desplaza la capacidad de la operación 3 (x6 5 20 minutos) a la capacidad de la operación 1.
¿Cómo impactaría este cambio la solución óptima?

Las capacidades de las tres operaciones cambian a 450, 460, y 400 minutos respectivamente.
La solución resultante es

La solución resultante es no factible porque x6 5 240, la cual requiere aplicar el método
simplex dual para recuperar la factibilidad. Primero, modificamos el lado derecho de la tabla
como se muestra por medio de la columna sombreada. Observe que el valor asociado es z 5 3
3 0 1 2 3 110 1 5 3 230 5 $1370.

£x2

x3

x6

≥ = £ 1
2 -1

4 0
0 1

2 0
-2 1 1

≥ £450
460
400
≥ = £ 110

230
-40
≥

£x2

x3

x6

≥ = £ 1
2 -1

4 0
0 1

2 0
-2 1 1

≥ £600
640
590
≥ = £140

320
30
≥

Según el dual simplex, x6 sale y x4 entra, lo que da la siguiente tabla factible óptima (por lo
común, el simplex dual puede requerir más de una iteración para recuperar la factibilidad).

Básica x1 x2 x3 x4 x5 x6 Solución

z 4 0 0 1 2 0 1370

x2 -1
4 1 0 1

2 -1
4 0 110

x3 3
2 0 1 0 1

2 0 230

x6 2 0 0 –2 1 1 –40

Básica x1 x2 x3 x4 x5 x6 Solución

z 5 0 0 0 5
2

1
2 1350

x2 1
4 1 0 0 0 1

4 100

x3 3
2 0 1 0 1

2 0 230

x4 –1 0 0 1 -1
2 -1

2
20

La solución óptima (en función de x1, x2 y x3) permanece igual que en el modelo original.
Esto quiere decir que el cambio propuesto de la asignación de la capacidad no es ventajoso, por-
que simplemente cambia la capacidad excedente de la operación 3 a una capacidad de superávit
en la operación 1. La conclusión entonces es que la operación 2 es el cuello de botella, y que
puede ser ventajoso cambiar el superávit a la operación 2 (vea el problema 1, conjunto 4.5a).
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CONJUNTO DE PROBLEMAS 4.5A

1. En el modelo de TOYCO que aparece al inicio de la sección 4.5, ¿sería más ventajoso
asignar la capacidad de superávit de 20 minutos de la operación 3 a la operación 2 en
lugar de la operación 1?

2. Suponga que TOYCO desea cambiar las capacidades de las tres operaciones a los si-
guientes casos:

(a) (b) (c) (d)

Utilice el análisis postóptimo para determinar la solución óptima en cada caso.
3. Considere el modelo de Reddy Mikks del ejemplo 2-1.1. Su tabla óptima se da en el

ejemplo 3.3-1. Si las disponibilidades diarias de las materias primas M1 y M2 se incre-
mentan a 28 y 8 toneladas, respectivamente, utilice el análisis postóptimo para determi-
nar la nueva solución óptima.

*4. Ozark Farm tiene 20,000 pollos que alimenta durante ocho semanas antes de enviarlos al
mercado. La alimentación semanal por pollo varía según el programa siguiente:

£450
700
350
≥£300

800
200
≥£500

400
600
≥£460

500
400
≥

Para que el pollo alcance el peso deseado en ocho semanas, los alimentos deben satisfa-
cer necesidades nutricionales específicas. Aunque una lista de alimentos es grande, por
simplicidad limitaremos el modelo a sólo tres ingredientes: piedra caliza (carbonato de
calcio), maíz y soya. Las necesidades nutricionales también se limitarán a tres tipos: cal-
cio, proteína y fibra. La siguiente tabla resume el contenido nutritivo de los ingredientes
seleccionados junto con sus costos.

La mezcla alimenticia debe contener al menos .8% pero no más de 1.2% de calcio, un mí-
nimo de 22% de proteína, y cuando mucho 5% de fibra cruda.

Resuelva la PL para la semana 1 y luego aplique el análisis postóptimo para desarro-
llar un programa óptimo para las 7 semanas restantes.

5. Demuestre que la regla de factibilidad de 100% del problema 12, conjunto 3.6c 
(capítulo 3) está basada en la condición 

6. Análisis postóptimo para casos que afectan tanto la optimalidad como la factibilidad.
Suponga que se dan los siguientes cambios simultáneos en el modelo de Reddy Mikks. El
ingreso por tonelada de pinturas para exteriores e interiores es de $1000 y $4000, respec-

aInversa
óptima

b a Vector del lado
derecho original

b Ú 0

Semana 1 2 3 4 5 6 7 8

lb/pollo .26 .48 .75 1.00 1.30 1.60 1.90 2.10

Contenido (lb) por libra de

Ingrediente Calcio Proteína Fibra $ por libra

Piedra caliza .380 .00 .00 .12
Maíz .001 .09 .02 .45
Soya .002 .50 .08 1.60
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tivamente, y las disponibilidades diarias máximas de las materias primas M1 y M2 son de
28 y 8 toneladas, respectivamente.
(a) Demuestre que los cambios propuestos darán la solución óptima actual tanto no 

óptima como no factible.
(b) Use el algoritmo simplex generalizado (sección 4.4-2) para determinar la nueva solu-

ción factible óptima.

Adición de una nueva restricción. Agregar una nueva restricción nunca puede
mejorar el valor objetivo óptimo actual. Si la nueva restricción es redundante, no
afectará la solución actual. Además, la solución actual no satisface la nueva restricción,
y debe determinarse una nueva solución mediante el método simplex dual.

Ejemplo 4.5-2

Situación 1. Suponga que TOYCO cambia el diseño de sus juguetes y que el cambio requerirá
agregar una cuarta operación de ensamble. La capacidad diaria de la nueva operación es de 500
minutos y los tiempos por unidad de los tres productos en esta operación son 3, 1 y 1 minutos,
respectivamente.

La nueva restricción para la operación 4 es

Esta restricción es redundante porque la satisface la solución óptima actual x1 5 0, x2 5 100, y x3
5 230. Por consiguiente, la solución óptima actual no cambia.

Situación 2. Suponga, en cambio, que los tiempos de TOYCO por unidad en la cuarta opera-
ción se cambian a 3, 3 y 1 minutos, respectivamente. Los datos restantes del modelo no cambian.

La nueva restricción para la operación 4 es

La solución óptima actual no satisface esta restricción, y se agrega a la tabla óptima actual como
sigue (x7 es una variable de holgura):

3x1 + 3x2 + x3 … 500

3x1 + x2 + x3 … 500

Básica x1 x2 x3 x4 x5 x6 x7 Solución

z 4 0 0 1 2 0 0 1350

x2 -1
4 1 0 1

2 -1
4 0 0 100

x3 3
2 0 1 0 1

2 0 0 230

x6 2 0 0 –2 1 1 0 20

x7 3 3 1 0 0 0 1 500

La tabla muestra que x7 5 500, lo cual es consistente con los valores de x2 y x3 en el resto de la
tabla. La razón es que las variables básicas x2 y x3 no se han sustituido en la nueva restricción.
Esta sustitución se logra realizando la siguiente operación:

Nueva fila x7 5 Anterior fila x7 – (3 3 (fila x2) 1 1 3 (fila x3))
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Esta operación es exactamente la misma que si se utilizara la sustitución

La nueva tabla es por consiguiente

 x3 =  230 - ( 32 x1 +  12 x5)

 x2 =  100 - (-  14 x1 +  12 x4 -  14 x5)

La aplicación del método simplex dual producirá la nueva solución óptima x1 5 0, x2 5 90, x3 5

230, y z 5 $1370 (¡compruébelo!). La solución muestra que agregar la operación 4 reduce los
ingresos de $1350 a $1330.

CONJUNTO DE PROBLEMAS 4.5B

1. En el modelo de TOYCO, suponga que las especificaciones de la cuarta operación son las
siguientes: La tasa de producción máxima basada en 480 minutos al día es de 120 unida-
des del producto 1, 480 unidades del producto 2, o 240 unidades del producto 3.
Determine la solución óptima, suponiendo que la capacidad diaria está limitada a

*(a) 570 minutos
(b) 548 minutos

2. Restricciones secundarias. En lugar de resolver un problema utilizando todas sus restric-
ciones, podemos empezar identificando las llamadas restricciones secundarias. Éstas son
las restricciones que sospechamos son menos restrictivas en función de la solución ópti-
ma. El modelo se resuelve utilizando las restricciones (primarias) restantes. Entonces 
podemos agregar las restricciones secundarias de una en una. Una restricción secundaria
se desecha si satisface la solución óptima disponible. El proceso se repite hasta que se tie-
nen en cuenta todas las restricciones secundarias.
Aplique el procedimiento propuesto a la siguiente PL:

sujeto a

x1, x2,  x3 Ú 0 

 x2 -  9x3 … 20

 12x1 + 6x2 … 90

 5x1 + 5x2 + 5x3 … 35

 7x1 + 6x2 - 9x3 … 30

x1 + x2 - x3 … 20

 5x1 + 5x2 + 3x3 … 50

Maximizar z = 5x1 + 6x2 + 3x2

Básica x1 x2 x3 x4 x5 x6 x7 Solución

z 4 0 0 1 2 0 0 1350

x2 -1
4 1 0 1

2 -1
4 0 0 100

x3
3
2 0 1 0 1

2 0 0 230
x6 2 0 0 -2 1 1 0 20
x7

9
4 0 0 -3

2
1
4 0 1 –30
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4.5.2 Cambios que afectan la optimalidad

Esta sección considera la realización de cambios de los coeficientes objetivos y la adi-
ción de una nueva actividad económica (variable).

Cambios en los coeficientes de la función objetivo. Estos cambios afectan sólo la
optimalidad de la solución y requieren que se calculen de nuevo los coeficientes de
la fila z (costos reducidos) de acuerdo con el siguiente procedimiento:

1. Calcule los valores duales aplicando el método 2, sección 4.2.3.
2. Sustituya los nuevos valores duales en la fórmula 2, sección 4.2.4, para determi-

nar los nuevos costos reducidos (coeficientes de la fila z).

Si la nueva fila z satisface la condición de optimalidad, la solución no cambia (sin em-
bargo, el valor objetivo óptimo puede cambiar). Si no la satisface, se utiliza el simplex
primal para recuperar la optimalidad.

Ejemplo 4.5-3

Situación 1. En el modelo de TOYCO, suponga que la compañía tiene una nueva política de fi-
jación de precios para enfrentar la competencia. Los ingresos unitarios son $2, $3 y $4 por los
trenes, camiones y autos de juguete, en ese orden.

La nueva función objetivo es

Así,

(Nuevos coeficientes objetivo de las variables básicas x2, x3 y x6) 5 (3, 4, 0)

Aplicando el método 2, sección 4.2.3, las nuevas variables duales se calculan como 

Los coeficientes de la fila z se determinan como la diferencia entre los lados izquierdo y derecho
de las restricciones duales (fórmula 2, sección 4.2.4). No es necesario calcular de nuevo los coefi-
cientes de fila objetivo de las variables básicas (x2, x3 y x6) porque siempre son cero, indepen-
dientemente de cualquier cambio realizado en los coeficientes objetivo (¡compruébelo!).

Observe que el lado derecho de la primera restricción dual es 2, el nuevo coeficiente en la fun-
ción objetivo modificada.

Los cálculos demuestran que la solución actual, x1 5 0 trenes, x2 5 100 camiones y x3 5 230
autos, permanece óptima. El nuevo ingreso correspondiente se calcula como 2 3 0 1 3 3 100 1
4 3 230 5 $1220. No se recomienda la nueva política de fijación de precios porque disminuye el
ingreso.

 Costo reducido de x5 = y2 - 0 = 5
4

 Costo reducido de x4 = y1 - 0 = 3
2

 Costo reducido de x1 = y1 + 3y2 + y3 - 2 = 3
2 + 3 A54 B + 0 - 2 = 13

4

1y1, y2, y32 = 13, 4, 02£ 1
2 -1

4 0
0 1

2 0
-2 1 1

≥ = A32, 54, 0 B

Maximizar z = 2x1 + 3x2 + 4x3
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Situación 2. Suponga ahora que la función objetivo de TOYCO se cambia a

¿Cambiará la solución óptima? 
Tenemos 

El nuevo costo reducido de x1 muestra que la solución actual no es óptima.
Para determinar la nueva solución, la fila z se cambia como se resalta en la siguiente tabla:

 Costo reducido de x5 =   y2 - 0 = 5
4

 Costo reducido de x4 =  y1 - 0 = 3
2

 Costo reducido de x1 =  y1 + 3y2 + y3 - 6 =  32 + 3(5
4) + 0 - 6 = -3

4

1y1, y2, y32 = 13, 4, 02£ 1
2 -1

4 0
0 1

2 0
-2 1 1

≥ = A32, 54, 0 B
Maximizar z = 6x1 + 3x2 + 4x3

Básica x1 x2 x3 x4 x5 x6 Solución

z -3
4 0 0 3

2
5
4 0 1220

x2 -1
4 1 0 1

2 -1
4 0 100

x3 3
2 0 1 0 1

2 0 230

x6 2 0 0 –2 1 1 20

Los elementos resaltados son los nuevos costos reducidos y el nuevo valor objetivo. Todos los
demás elementos son los mismos que aparecen en la tabla óptima original. La nueva solución
óptima se determina entonces si x1 entra y x6 sale, lo que da la solución x1 5 10, x2 5 102.5, x3 5

215 y z 5 $12270.50 (¡compruébelo!). Aunque la nueva solución recomienda la producción de
los tres juguetes, el ingreso óptimo es menor que cuando se fabricaban sólo dos juguetes.

CONJUNTO DE PROBLEMAS 4.5C

1. Investigue la optimalidad de la solución de TOYCO para cada una de las siguientes fun-
ciones objetivo. Donde sea necesario, aplique el análisis postóptimo para determinar el
nuevo óptimo (La tabla óptima de TOYCO aparece al inicio de la sección 4.5).
(a)
(b)
(c)

2. Investigue la optimalidad de la solución de Reddy Miks (ejemplo 4.3-1) para cada una de
las siguientes funciones objetivo. Si es necesario, aplique el análisis postóptimo para de-
terminar el nuevo óptimo. (La tabla óptima del modelo se da en el ejemplo 3.3-1).

*(a) z = 3x1 + 2x2

z = 8x1 + 3x2 + 9x3

z = 3x1 + 6x2 + x3

z =  2x1 +  x2 +  4x3
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(b)
(c) *

3. Demuestre que la regla de optimalidad de 100% (problema 8, conjunto 3.6d, capítulo 3)
se deriva de (costos reducidos) $ 0 para problemas de maximización y (costos reducidos)
# 0 para problemas de minimización.

Adición de una nueva actividad. Una nueva actividad supone agregar una nueva
variable al modelo. Por intuición, agregar una nueva actividad es deseable sólo si es
rentable. Esta condición puede verificarse aplicando la fórmula 2, sección 4.2.4, para
calcular el costo reducido de la nueva variable. La nueva actividad no es rentable si
satisface la condición de optimalidad. De lo contrario, la nueva actividad incrementará
el ingreso.

Ejemplo 4.5-4

TOYCO reconoce que en la actualidad los trenes de juguete no se están produciendo porque no
son rentables. La compañía desea reemplazarlos con un nuevo producto, un camión de bombe-
ros de juguete, que se ensamblará en las instalaciones existentes. TOYCO estima que el ingreso
por camión de bomberos de juguete será de $4 y que los tiempos de ensamble por unidad serán
de 1 minuto en cada una de las operaciones 1 y 2, y de 2 minutos en la operación 3.

Sea x7 el nuevo producto de camión de bomberos. Dado que (y1, y2, y3) 5 (1, 2, 0) son los va-
lores duales óptimos, tenemos 

El resultado muestra que es rentable incluir x7 en la solución básica óptima. Para obtener el
nuevo óptimo, primero calculamos su columna de restricción aplicando la fórmula 1, sección
4.2.4 como

De este modo, la tabla simplex actual debe modificarse como sigue:

Columna de restricciones x7 = £ 1
2 -1

4 0
0 1

2 0
-2 1 1

≥ £1
1
2
≥ = £ 1

4
1
2

1
≥

Costo reducido de x7 =  1y1 + 1y2 + 2y3 - 4 = 1 * 1 + 1 * 2 + 2 * 0 - 4 = -1

z = 2x1 + 5x2

z = 8x1 + 10x2

Básica x1 x2 x3 x7 x4 x5 x6 Solución

z 4 0 0 –1 1 2 0 1350

x2 - 1
4 1 0 1

4
1
2 -1

4 0 100
x3 3

2 0 1 1
2 0 1

2 0 230

x6 2 0 0 1 –2 1 1 20

El nuevo óptimo se determina si consideramos que x7 entra en la solución básica, en cuyo
caso x6 debe salir. La nueva solución es x1 5 0, x2 5 0, x3 5 125, x7 5 210, y z 5 $1465 (¡comprué-
belo!), lo cual mejora los ingresos en $115.
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CONJUNTO DE PROBLEMAS 4.5D

*1. En el modelo original de TOYCO, los trenes de juguete no forman parte de la combina-
ción óptima de productos. La compañía reconoce que la competencia del mercado no
permitirá elevar el precio unitario del juguete. En su lugar, la compañía desea concen-
trarse en mejorar la operación de ensamble. Esto implica reducir el tiempo de ensamble
por unidad en cada una de las tres operaciones en un porcentaje especificado, p%.
Determine el valor de p que hará que los trenes apenas sean rentables. (La tabla óptima
del modelo de TOYCO aparece al principio de la sección 4.5).

2. En el modelo de TOYCO, suponga que la compañía reduce los tiempos por unidad en las
operaciones 1, 2 y 3 para los trenes de juguete a partir de los niveles actuales de 1, 3 y 1
minutos a .5, 1 y .5 minutos, respectivamente. El ingreso por unidad permanece en $3.
Determine la nueva solución óptima.

3. En el modelo de TOYCO, suponga que un juguete (el camión de bomberos) requiere 3, 2
y 4 minutos, en ese orden, en las operaciones 1, 2 y 3. Determine la solución óptima cuan-
do el ingreso por unidad sea de

*(a) $5
(b) $10

4. En el modelo de Reddy Mikks, la compañía está considerando producir una marca más
económica de pintura para exteriores cuyos requerimientos de entrada por tonelada in-
cluyen .75 toneladas de cada una de las materias primas M1 y M2. Las condiciones del
mercado siguen dictando que el exceso de pintura exterior sobre la producción de ambos
tipos de pintura para exteriores se limite a una tonelada diaria. El ingreso por tonelada
de la nueva pintura para exteriores es de $3500. Determine la nueva solución óptima. (El
modelo se explica en el ejemplo 4.5-1, y su tabla óptima aparece en el ejemplo 3.3-1).
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CAPÍTULO 5

Modelo de transporte y sus variantes
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5.1 DEFINICIÓN DEL MODELO DE TRANSPORTE

La red que aparece en la figura 5.1 representa el problema. Hay m orígenes y n desti-
nos, cada uno representado por un nodo. Los arcos representan las rutas que unen los
orígenes con los destinos. El arco (i, j) que une el origen i con el destino j transporta
dos piezas de información: el costo de transporte por unidad, cij y la cantidad transpor-
tada, xij. La cantidad de la oferta en el origen i es ai y la cantidad de la demanda en el
destino j es bj. El objetivo del modelo es minimizar el costo de transporte total al
mismo tiempo que se satisfacen las restricciones de la oferta y la demanda.

Ejemplo 5.1-1

MG Auto cuenta con tres plantas en Los Ángeles, Detroit y Nueva Orleáns, y dos importantes
centros de distribución en Denver y Miami. Las capacidades trimestrales de las tres plantas son
1000, 1500 y 1200 automóviles, y las demandas de los dos centros de distribución durante el
mismo periodo son de 2300 y 1400 automóviles. La distancia en millas entre las plantas y los cen-
tros de distribución aparece en la tabla 5.1.

Aplicación de la vida real. Programación de citas en eventos comerciales
australianos

La Comisión de Turismo Australiana (ATC, por sus siglas en inglés) organiza eventos
comerciales alrededor del mundo para que sirvan de foro donde se puedan reunir los
vendedores australianos con los compradores internacionales de productos turísticos.
Durante estos eventos los vendedores se sitúan en cubículos y los compradores los vi-
sitan de acuerdo con citas programadas. Debido a la limitación de tiempo disponible
en cada evento y al hecho de que la cantidad de compradores y vendedores puede ser
muy grande, la ATC procura programar las citas entre vendedor y comprador con an-
ticipación para maximizar las preferencias. El modelo ha resultado muy satisfactorio
tanto para los compradores como para los vendedores. (El caso 3 del capítulo 26, en
inglés, del sitio web contiene los detalles del estudio).
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FIGURA 5.1

Representación del modelo de transporte con nodos y arcos
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TABLA 5.1 Gráfica de distancia en millas

Denver Miami

Los Ángeles 1000 2690
Detroit 1250 1350
Nueva Orleáns 1275 850

TABLA 5.2 Costo de transporte por automóvil

Denver (1) Miami (2)

Los Ángeles (1) $80 $215
Detroit (2) $100 $108
Nueva Orleáns (3) $102 $68

La compañía transportista cobra 8 centavos por milla por automóvil. En la tabla 5.2 se dan
los costos de transporte por automóvil en las diferentes rutas, redondeados al dólar más cercano.

El modelo de PL del problema es

sujeto a

Todas estas restricciones son ecuaciones porque la oferta total desde los tres orígenes (5 1000 1
1500 1 1200 5 3700 automóviles) es igual a la demanda total en los dos destinos (5 2300 1 1400
5 3700 automóviles).

xij Ú 0, i = 1, 2, 3,  j = 1, 2 

 x12  + x22  + x32 = 1400 (Miami)  

 x11 + x21 + x31 = 2300 (Denver) 

 + x31 + x32 = 1200 (Nueva Orléans)

 x21 + x22 = 1500 (Detroit)  

 x11 + x12 = 1000 (Los Ángeles) 

Minimizar z = 80x11 + 215x12 + 100x21 + 108x22 + 102x31 + 68x32
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TABLA 5.3 Modelo de transporte de MG

Denver Miami Oferta

Los Ángeles 80 215
1000

Detroit 100 108
1500

Nueva Orleáns 102 68
1200

Demanda 2300 1400

x32x31

x22x21

x12x11

FIGURA 5.2

Solución óptima del modelo de MG Auto
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La estructura especial del problema de transporte permite una representación compacta
del problema utilizando el formato tabla de transporte que aparece en la tabla 5.3. Este formato
permite modelar muchas situaciones que no tienen que ver con bienes de transporte, como se
demuestra con los ejemplos de la sección 5.2.

La solución óptima en la figura 5.2 (obtenida por TORA1) envía 1000 automóviles de Los
Ángeles a Denver (x11 5 1000), 1300 de Detroit a Denver (x21 5 1300), 200 de Detroit a Miami
(x22 5 200) y 1200 de Nueva Orleáns a Miami (x32 5 1000). El costo de transporte mínimo aso-
ciado se calcula como 1000 3 $80 1 1300 3 $100 1 200 3 $108 1 1200 3 $68 5 $313.200.

Balanceo del modelo de transporte. La representación de la tabla de transporte
asume que el modelo está balanceado, es decir, que la demanda total es igual a la oferta
total. Si el modelo está desbalanceado, podemos agregar un origen o un destino
ficticios para restaurar el balance.

Ejemplo 5.1-2

En el modelo de MG, suponga que la capacidad de la planta de Detroit es de 1300 automóviles
(en lugar de 1500). La oferta total (5 3500) es menor que la demanda total (5 3700), lo que sig-
nifica que no se satisfará una parte de la demanda en Denver y Miami.

Como la demanda excede la oferta, se agrega un origen (planta) ficticio con una capacidad
de 200 automóviles (5 3700 2 3500) para balancear el modelo de transporte. El costo de trans-
porte por unidad de la planta ficticia a los destinos es cero porque la planta no existe.

1Para utilizar TORA, en el comando seleccione la opción . En el menú
seleccione las opciones para obtener un resumen de la solución

óptima. En la sección 5.3.3 se da una descripción detallada de la solución iterativa del modelo de transporte.
Final solutionQSolveSOLVE/MODIFY

 Transportation ModelMain Menu
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La tabla 5.4 da el modelo balanceado junto con su solución óptima. La solución muestra
que la planta ficticia envía 200 automóviles a Miami, es decir que a Miami le faltarán 200 au-
tomóviles para satisfacer su demanda de 1400 automóviles.

Podemos estar seguros de que un destino específico no experimente escasez al asignar un
costo de transporte por unidad muy alto desde el origen ficticio a dicho destino. Por ejemplo, una
penalización de $1000 en la celda ficticia de Miami evitará que haya escasez en Miami. Desde
luego, no podemos utilizar este “artificio” con todos los destinos, porque debe haber escasez en
alguna parte.

El caso en que la oferta excede la demanda se puede demostrar asumiendo que la demanda
en Denver es de sólo 1900 automóviles. Entonces, tenemos que agregar un centro de distribución
ficticio para que “reciba” la oferta excedente. De nuevo, el costo de transporte por unidad al cen-
tro de distribución ficticio es cero, a menos que una fábrica “envíe todas sus existencias”. En este
caso, se asigna un costo alto de transporte por unidad de la fábrica designada al destino ficticio.

La tabla 5.5 da el nuevo modelo y su solución óptima (obtenida por TORA). La solución
muestra que la planta de Detroit tendrá un excedente de 400 automóviles.

TABLA 5.4 Modelo de MG con una planta ficticia 

Denver Miami Oferta

80 215
Los Ángeles

1000 1000
100 108

Detroit 
1300 1300

102 68
Nueva Orleáns

1200 1200
0 0

Planta ficticia
200 200

Demanda 2300 1400

TABLA 5.5 Modelo de MG con un destino ficticio

Denver Miami Ficticio

80 215 0

Los Ángeles
1000 1000

100 108 0
Detroit

900 200 400 1500
102 68 0

Nueva Orleáns
1200 1200

Demanda 1900 1400 400
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CONJUNTO DE PROBLEMAS 5.1A2

1. ¿Cierto o falso? 
(a) Para balancear un modelo de transporte, puede ser necesario agregar tanto un ori-

gen como un destino ficticios.
(b) Las cantidades enviadas a un destino ficticio representan un excedente en el origen

que hace el envío.
(c) Las cantidades enviadas por un origen ficticio representan faltantes en los destinos

que reciben el envío.
2. En cada uno de los siguientes casos, determine si debe agregarse un origen ficticio o un

destino ficticio para balancear el modelo.
(a) Oferta:

Demanda:
(b) Oferta:

Demanda:
3. En la tabla 5.4 del ejemplo 5.1-2, donde se agrega una planta ficticia, ¿qué significa la so-

lución cuando la planta ficticia “envía” 150 automóviles a Denver y 50 a Miami? 
*4. En la tabla 5.5 del ejemplo 5.1-2, donde se agrega un destino ficticio, suponga que la

planta de Detroit debe enviar toda su producción. ¿Cómo se puede implementar esta res-
tricción en el modelo? 

5. En el ejemplo 5.1-2, suponga que en el caso en que la demanda excede la oferta (tabla
5.4), se aplica una penalización a razón de $200 y $300 por cada automóvil no entregado
en Denver y Miami, respectivamente. Además, no se hacen envíos de Los Ángeles al cen-
tro de distribución de Miami. Elabore el modelo, y determine el programa de envíos ópti-
mo para el problema.

*6. Tres plantas de energía eléctrica de 25, 40 y 30 millones de kWh abastecen electricidad a
tres ciudades. Las demandas máximas en las tres ciudades se estiman en 30, 35 y 25 millo-
nes de kWh. El precio por millón de kWh en las tres ciudades se da en la tabla 5.6.

Durante el mes de agosto la demanda se incrementa 20% en cada una de las tres ciuda-
des, la cual puede satisfacerse adquiriendo electricidad de otra red a un precio más elevado
de $1000 por millón de kWh. La red no está enlazada a la ciudad 3. La compañía eléctrica
desea determinar el plan más económico para la distribución y compra de energía adicional.
(a) Formule el problema como un modelo de transporte.
(b) Determine un plan de distribución óptimo para la compañía eléctrica.
(c) Determine el costo de la energía adicional adquirida por cada una de las tres ciudades.

7. Resuelva el problema 6, suponiendo que se pierde 10% de la energía que se transmite a
través de la red.

8. Tres refinerías con capacidades diarias de 6, 5 y 8 millones de galones, respectivamente,
abastecen a su vez a tres áreas de distribución con demandas diarias de 4, 8 y 7 millones

b1 = 25,  b2 = 30,  b3 = 10
a1 = 30,  a2 = 44
b1 = 10,  b2 = 5,  b3 = 7,  b4 = 9

a1 = 10,  a2 = 5,  a3 = 4,  a4 = 6

2En este conjunto puede utilizar TORA para determinar la solución óptima. Los modelos del problema de
transporte obtenidos con AMPL y Solver se presentarán al final de la sección 5.3.2.

TABLA 5.6 Precio/millón de kWh para el problema 6

Ciudad

1 2 3

1 $600 $700 $400
Planta 2 $320 $300 $350

3 $500 $480 $450
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TABLA 5.7 Distancia en millas para el problema 8

Área de distribución

1 2 3

1 120 180 —
Refinería 2 300 100 80

3 200 250 120

de galones, respectivamente. La gasolina se transporta a las tres áreas de distribución a
través de una red de oleoductos. El costo de transporte es de 10 centavos por 1000 galo-
nes por milla de oleoducto. La tabla 5.7 presenta la distancia en millas entre las refinerías
y las áreas de distribución. La refinería 1 no está conectada al área de distribución 3.
(a) Construya el modelo de transporte asociado.
(b) Determine el programa de envíos óptimo en la red.

*9. En el problema 8, suponga que la capacidad de la refinería 3 es de sólo 6 millones de galo-
nes y que el área de distribución debe recibir toda su demanda. Adicionalmente, las canti-
dades faltantes en las áreas 2 y 3 incurrirán en una penalización de 5 centavos por galón.
(a) Formule el problema como un modelo de transporte.
(b) Determine el programa de envíos óptimo.

10. En el problema 8, suponga que la demanda diaria en el área 3 disminuye a 4 millones de
galones. La producción excedente en las refinerías 1 y 2 se envía a otras áreas de distribu-
ción por medio de camiones cisterna. El costo de transporte por 100 galones es de $1.50
desde la refinería 1 y de $2.20 desde la refinería 2. La refinería 3 puede enviar su produc-
ción excedente a otros procesos químicos dentro de la planta.
(a) Formule el problema como un modelo de transporte.
(b) Determine el programa de envíos óptimo.

11. Tres huertas abastecen a cuatro detallistas con cajas de naranjas. La demanda diaria de los
cuatro detallistas es de 150, 150, 400 y 100 cajas, respectivamente. Las ofertas en las tres
huertas dependen de la mano de obra regular disponible y se estiman en 150, 200 y 250
cajas diarias. Sin embargo, las huertas 1 y 2 indicaron que podrían abastecer más cajas, si
es necesario, recurriendo a mano de obra extra. La huerta 3 no ofrece esta opción. Los
costos de transporte por caja de las huertas a los detallistas se dan en la tabla 5.8.
(a) Formule el problema como un modelo de transporte.
(b) Resuelva el problema.
(c) ¿Cuántas cajas deben abastecer las huertas 1 y 2 si utilizan tiempo extra?

12. Tres centros de distribución envían automóviles a cinco concesionarios. El costo de envío
depende de la distancia en millas entre los orígenes y los destinos, y es independiente de
si el camión hace el viaje con cargas parciales o completas. La tabla 5.9 resume la distan-
cia en millas entre los centros de distribución y los concesionarios junto con las cifras de

TABLA 5.8 Costo de transporte/caja para el problema 11

Detallista

1 2 3 4

1 $1 $2 $3 $2
Huerta 2 $2 $4 $1 $2

3 $1 $3 $5 $3
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TABLA 5.9 Distancia en millas, y oferta y demanda para el problema 12

Concesionario
1 2 3 4 5 Oferta

1 100 150 200 140 35 400
Centro 2 50 70 60 65 80 200

3 40 90 100 150 130 150

Demanda 100 200 150 160 140

oferta y demanda mensuales dadas en número de automóviles. Una carga completa com-
prende 18 automóviles. El costo de transporte por milla de camión es de $25.
(a) Formule el modelo de transporte asociado.
(b) Determine el programa de envíos óptimo.

13. MG Auto, del ejemplo 5.1-1, produce cuatro modelos de automóviles: M1, M2, M3 y M4.
La planta de Detroit produce los modelos M1, M2 y M4. Los modelos M1 y M2 también
se producen en Nueva Orleáns. La planta de Los Ángeles fabrica los modelos M3 y M4.
Las capacidades de las plantas y las demandas en los centros de distribución aparecen 
en la tabla 5.10.

La distancia en millas es la misma que la de la gráfica del ejemplo 5.1-1, y la tarifa de
transporte se mantiene en 8 centavos por milla de camión para todos los modelos.
Además, es posible satisfacer un porcentaje de la demanda de algunos modelos con la
oferta de otros de acuerdo con las especificaciones de la tabla 5.11.
(a) Formule el modelo de transporte correspondiente.
(b) Determine el programa de envíos óptimo.

(Sugerencia: Agregue cuatro nuevos destinos correspondientes a las nuevas combi-
naciones [M1,M2], [M3,M4], [M1,M2] y [M2,M4]. Las demandas en los destinos nue-
vos se determinan a partir de los porcentajes dados).

TABLA 5.10 Capacidades y demandas para el problema 13 

ModeloO

Totales

Planta
Los Ángeles — — 700 300 1000
Detroit 500 600 — 400 1500
Nueva Orleáns 800 400 — — 1200

Centro de distribución
Denver 700 500 500 600 2300
Miami 600 500 200 100 1400

M4M3M2M1

TABLA 5.11 Modelos intercambiables para el problema 13 

Centro de distribución Porcentaje de la demanda Modelos intercambiables

Denver 10 ,
20 ,

Miami 10 ,
5 ,M4M2

M2M1
M4M3
M2M1
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5.2 MODELOS DE TRANSPORTE NO TRADICIONALES

La aplicación del modelo de transporte no se limita al transporte de artículos. Esta sec-
ción presenta dos aplicaciones no tradicionales en las áreas de control de producción e
inventarios y el servicio de afilado de herramientas.

Ejemplo 5.2-1 (Control de producción e inventarios) 

Boralis fabrica mochilas para ciclistas. La demanda de su producto durante el periodo pico de
marzo a junio de cada año es de 100, 200, 180 y 300 unidades, respectivamente. La compañía uti-
liza mano de obra de tiempo parcial para acomodarse a las fluctuaciones de la demanda. Se estima
que Boralis puede producir 50, 180, 280 y 270 unidades de marzo a junio. La demanda del mes en
curso se puede satisfacer de tres maneras.

1. La producción del mes en curso al costo de $40 por mochila.
2. La producción excedente de un mes anterior a un costo de retención adicional de $.50

por mochila.
3. La producción excedente en un mes posterior (pedido en espera) a un costo de penaliza-

ción adicional de $2.00 por mochila por mes.

Boralis desea determinar el programa de producción óptimo durante los cuatro meses.
La siguiente tabla resume los paralelismos entre los elementos del problema de producción

e inventario y el modelo de transporte:

El modelo de transporte resultante se da en la tabla 5.12.

TABLA 5.12 Modelo de transporte para el ejemplo 5.2-1 

1 2 3 4 Capacidad

1 $40.00 $40.50 $41.00 $41.50 50
2 $42.00 $40.00 $40.50 $41.00 180
3 $44.00 $42.00 $40.00 $40.50 280
4 $46.00 $44.00 $42.00 $40.00 270

Demanda 100 200 180 300

Transporte Producción-inventario

1. Origen i 1. Periodo de producción i
2. Destino j 2. Periodo de demanda j
3. Cantidad de abasto en el origen i 3. Capacidad de producción en el periodo i
4. Demanda en el destino j 4. Demanda en el periodo j
5. Costo de transporte por unidad

del origen i al destino j
5. Costo unitario (producción 1 retención 1

penalización) en el periodo i para el periodo j.
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FIGURA 5.3

Solución óptima del modelo de producción e inventario
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El costo de “transporte” por unidad del periodo i al periodo j se calcula como

Por ejemplo,

La solución óptima se resume en la figura 5.3. Las líneas de rayas indican pedidos en espe-
ra, las líneas punteadas indican producción para un periodo futuro, y las líneas continuas mues-
tran la producción en un periodo en curso. El costo total es de $31,455.

Ejemplo 5.2-2 (Afilado de herramientas)

Arkansas Pacific opera un aserradero que produce tablas de diferentes tipos de madera. Según
el tipo de madera que se esté aserrando, la demanda de hojas de sierra afiladas varía de un día a
otro de acuerdo con los siguientes datos de una semana (7 días):

 c41 = $40.00 + ($2.00 +  $2.00 +  $2.00) = $46.00

 c24 = $40.00 + ($.50 +  $.50) = $41.00

 c11 = $40.00

cij = c Costo de producción en i, i = j
Costo de producción en i + costo de retención de i a j, i 6 j
Costo de producción en i + penalización de i a j, i 7 j

El aserradero puede satisfacer la demanda diaria de cuatro maneras:

1. Hojas nuevas a $12 cada una.
2. Servicio de afilado nocturno a $6 por hoja.
3. Servicio de afilado en un día a $5 por hoja.
4. Servicio de afiliado en dos días a $3 por hoja.

La situación puede representarse como un modelo de transporte con ocho orígenes y siete
destinos. Los destinos representan los 7 días de la semana. Los orígenes del modelo se definen

Día Lun. Mar. Mié. Jue. Vie. Sáb. Dom.

Demanda (hojas de sierra) 24 12 14 20 18 14 22
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TABLA 5.13 Problema de afilado de herramientas, expresado como un modelo de transporte.

1 2 3 4 5 6 7 8
Lun. Mar. Mié. Jue. Vie. Sáb. Dom. Desecho 

$12 $12 $12 $12 $12 $12 $12 $0
1-Nuevas

24 12 88 124
$6 $5 $3 $3 $3 $3 $0

2-Lun.
14 10 24

$6 $5 $3 $3 $3 $0
3-Mar.

12 12
$6 $5 $3 $3 $0

4-Mié.
10 4 14

$6 $5 $3 $0
5-Jue.

2 18 20
$6 $5 $0

6-Vie.
14 4 18

$6 $0
7-Sáb.

0 14 14
$0

8-Dom.
22 22

24 12 14 20 18 14 22 124

MMMMMMM

MMMMMM

MMMMM

MMMM

MMM

MM

M

como sigue: El origen 1 corresponde a la compra de hojas nuevas que, en el caso extremo, pue-
den satisfacer la demanda de los siete días (5 24 1 12 1 14 1 20 1 18 1 14 1 22 5 124). Los orí-
genes 2 a 8 corresponden a los 7 días de la semana. La cantidad de oferta de cada uno de estos
orígenes es igual a la de hojas utilizadas al final del día asociado. Por ejemplo, el origen 2 (lunes)
tendrá una oferta de hojas utilizadas igual a la demanda del lunes. El “costo de transporte” por
unidad para el modelo es de $12, $6 o $3, según si la hoja es nueva o se afiló. La columna “de-
secho” es un destino ficticio para balancear el modelo. El modelo completo y su solución se dan
en la tabla 5.13.

La siguiente tabla resume la solución óptima a un costo total de $818 (archivo toraEx5.2-2.txt).

Cantidad de hojas afiladas (por día) 

Periodo Nuevas Nocturno 1-día 2-días Desecho

Lun. 24 (Lun.) 0 14 (Mié.) 10 (Jue.) 0
Mar. 12 (Jue.) 0 0 12 (Vie.) 0
Mié. 0 10 (Jue.) 4 (Vie.) 0 0
Jue. 0 2 (Vie.) 0 18 (Dom.) 0
Vie. 0 14 (Sáb.) 4 (Dom.) 0 0
Sáb. 0 0 0 14
Dom. 0 0 0 22
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Comentarios. El modelo que aparece en la tabla 5.13 supone sólo una semana de operaciones.
Para varias semanas el modelo debe ocuparse de la naturaleza rotatoria de los días de la semana,
en el sentido de que los días pueden actuar como orígenes para la demanda de la siguiente se-
mana. Una forma de manejar esta situación es asumir que la primera semana de operación se
inicia con todas las hojas de sierra nuevas para cada día. De ahí en adelante utilizamos un mo-
delo compuesto de exactamente 7 orígenes y 7 destinos que correspondan a los días de la sema-
na. El nuevo modelo será como el de la tabla 5.13, menos el origen “Nuevas” y el destino
“Deshecho”. Inclusive, sólo se bloquearán las celdas en las diagonales (costo unitario 5 M). Las
celdas restantes tendrán un costo unitario de $3.00, $5.00 o $6.00.

Intuitivamente, y sin resolver el nuevo modelo de transporte en absoluto, es obvio que el
servicio de afilado más barato (2 días) puede usarse para satisfacer toda la demanda a partir de
la semana 2. Esta conclusión intuitiva puede confirmarse resolviendo el nuevo modelo (archivo
toraEx5.2-2a.txt).

CONJUNTO DE PROBLEMAS 5.2A3

1. En el ejemplo 5.2-1, suponga que el costo de retención por unidad depende del periodo y
que es de 40, 30 y 70 centavos en los periodos 1, 2 y 3, respectivamente. La penalización
y los costos de producción son los que se dieron en el ejemplo. Determine la solución óp-
tima e interprete los resultados.

*2. En el ejemplo 5.2-2, suponga que el servicio de afilado es de 3 días a $1 por hoja el lunes
y el martes (días 1 y 2). Reformule el problema e interprete la solución óptima.

3. En el ejemplo 5.2-2, si no se utiliza una hoja el día que se afiló, se incurre en un costo de
retención de 50 centavos por día. Reformule el modelo e interprete la solución óptima.

4. JoShop desea asignar cuatro categorías diferentes de máquinas a cinco tipos de tareas. La
cantidad de máquinas disponibles en las cuatro categorías son 25, 30, 20 y 30. La cantidad
de operaciones en las cinco tareas son 20, 20, 30, 10 y 25. A la categoría de la máquina 4
no se le puede asignar la tarea de tipo 4. La tabla 5.14 proporciona el costo unitario (en
dólares) de asignar una categoría de máquina a un tipo de tarea. El objetivo del proble-
ma es determinar la cantidad óptima de máquinas en cada categoría que se ha de asignar
a cada tipo de tarea. Resuelva el problema e interprete la solución.

*5. La demanda de un artículo perecedero durante los próximos cuatro meses es de 400, 300,
420 y 380 toneladas, en ese orden. La capacidad de abasto para los mismos meses es 
de 500, 600, 200 y 300 toneladas. El precio de compra por tonelada varía cada mes y se

3En este conjunto puede utilizar TORA para determinar la solución óptima. Los modelos resueltos con
AMPL y Solver para el problema de transporte se presentarán al final de la sección 5.3.2.

TABLA 5.14 Costos unitarios para el problema 4

Tipo de tarea
1 2 3 4 5

1 10 2 3 15 9
2 5 10 15 2 4

Categoría de máquina 3 15 5 14 7 15
4 20 15 13 — 8
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TABLA 5.15 Ofertas por acre para el problema 8

Bosque
1 2 3

1 $520 $210 $570
2 — $510 $495

Licitador
3 $650 — $240
4 $180 $430 $710

estima en $100, $140, $120 y $150, respectivamente. Como el artículo es perecedero, el
abasto del mes en curso debe consumirse dentro de los 3 meses siguientes (a partir del
mes en curso). El costo de almacenamiento por tonelada es de $3 por mes. La naturaleza
del artículo no permite aceptar pedidos en espera. Resuelva el problema como un mode-
lo de transporte y determine el programa de entregas óptimo para el artículo durante los
próximos 4 meses.

6. La demanda de un pequeño motor especial durante los próximos cinco trimestres es de
200, 150, 300, 250 y 400 unidades, respectivamente. El fabricante que surte el motor tiene
capacidades de producción diferentes estimadas en 180, 230, 430, 300 y 300 para los cinco
trimestres. No se aceptan pedidos en espera, pero si es necesario, el fabricante puede uti-
lizar tiempo extra para satisfacer la demanda inmediata. La capacidad de tiempo extra en
cada periodo es la mitad de la capacidad regular. Los costos de producción por unidad en
los cincos periodos son de $100, $96, $116, $102 y $106, respectivamente. El costo de pro-
ducción con tiempo extra por motor es 50% más alto que el costo de producción regular.
Si ahora se produce un motor para su uso en periodos posteriores se incurre en un costo
de almacenamiento adicional de $4 por motor por periodo. Formule el problema como
un modelo de transporte. Determine la cantidad óptima de motores que se deben produ-
cir durante el tiempo regular y el tiempo extra de cada periodo.

7. Se realiza mantenimiento preventivo periódico en motores de avión, donde se debe
reemplazar un componente importante. La cantidad de aviones programados para tal
mantenimiento durante los siguientes seis meses se estima en 200, 180, 300, 198, 230 y
290, respectivamente. Todo el trabajo de mantenimiento se realiza durante el primer día
del mes, donde un componente usado se puede reemplazar por uno nuevo o uno repara-
do. La reparación de los componentes usados puede hacerse en un taller de reparación
local, donde estarán listos para usarse al principio del siguiente mes, o bien se envían a un
taller central de reparación, donde se espera una demora de 3 meses (incluido el mes en
que ocurre el mantenimiento). El costo de reparación en el taller local es de $120 por
componente, y en el taller central es de sólo $35 por componente. Un componente repa-
rado utilizado en un mes posterior incurrirá en un costo de almacenamiento adicional de
$1.50 por unidad por mes. Pueden adquirirse componentes nuevos a $200 cada uno en el
mes 1, con un incremento de 5% en el precio cada 2 meses. Formule el problema como
un modelo de transporte, y determine el programa óptimo para satisfacer la demanda del
componente durante los siguientes seis meses.

8. El Servicio de Parques Nacionales recibe cuatro ofertas para talar tres bosques de pinos
en Arkansas. Los tres bosques incluyen 10,000, 20,000 y 30,000 acres. Un solo licitador
puede ofrecer ofertas para a lo sumo 50% del total de acres disponible. Las ofertas por
acre en los tres bosques se dan en la tabla 5.15. El licitador 2 no desea hacer ofertas en el
bosque 1, y el licitador 3 no puede ofertar en el bosque 2.
(a) En la presente situación, tenemos que maximizar el ingreso por las ofertas totales

para el Servicio de Parques. Muestre cómo puede formularse el problema como un
modelo de transporte.

(b) Determine la superficie en acres que se asignará a cada uno de los cuatro licitadores.
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4El algoritmo de transporte especial se desarrolló cuando los cálculos manuales eran la norma y los atajos es-
taban garantizados. En la actualidad, los poderosos códigos de computadora pueden resolver modelos de
transporte de cualquier tamaño como una PL regular. De hecho, TORA maneja todos los cálculos necesa-
rios en segundo plano por medio del método simplex y utiliza el formato del modelo de transporte sólo
como “filtro”. No obstante, el algoritmo de transporte, aparte de su importancia histórica, da una idea de pri-
mera mano del uso de las relaciones primales-duales teóricas (que se presentaron en la sección 4.2) para al-
canzar un resultado final práctico, el de mejorar los cálculos manuales. El ejercicio es teóricamente intrigan-
te. Además, el formato de tabla de transporte especial facilita el modelado de varias situaciones que no
tienen que ver directamente con artículos que se transportan, como lo demuestra la sección 5.2.

5.3 ALGORITMO DE TRANSPORTE4

Los pasos básicos del algoritmo de transporte son exactamente iguales a los del méto-
do simplex (capítulo 3). Sin embargo, en lugar de utilizar la tabla simplex regular, apro-
vechamos la estructura especial del modelo de transporte para organizar los cálculos
en una forma más conveniente.

Paso 1. Determine una solución factible básica inicial y vaya al paso 2.
Paso 2. Use la condición de optimalidad del método simplex para determinar la va-

riable de entrada de entre todas las variables no básicas. Si se satisfacen las
condiciones de optimalidad, deténgase. De lo contrario, avance al paso 3.

Paso 3. Use la condición de factibilidad del método simplex para determinar la varia-
ble de entrada de entre todas las variables básicas actuales, y halle la nueva so-
lución básica. Regrese al paso 2.

Los detalles del algoritmo se explican en las secciones 5.3.1 y 5.3.2 por medio del si-
guiente ejemplo.

Ejemplo 5.3-1 (SunRay Transport)

SunRay Transport Company transporta granos de tres silos a cuatro molinos. La oferta (en
camiones cargados) y la demanda (también en camiones cargados) junto con los costos de trans-
porte por unidad por camión cargado en las diferentes rutas, se resumen en la Tabla 5.16. Los costos
de transporte por unidad, cij (que se muestran en la esquina de cada casilla) están en cientos de
dólares. El modelo busca el programa de envíos a un costo mínimo entre los silos y los molinos.

TABLA 5.16 Modelo de transporte de SunRay

Molino
1 2 3 4 Oferta

10 2 20 11
1

15

12 7 9 20
Silo 2

25

3 4 14 16 18

10

Demanda 5 15 15 15

x34x33x32x31

x24x23x22x21

x14x13x12x11
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5.3.1 Determinación de la solución de inicio

Un modelo de transporte general con m orígenes y n destinos tiene m 1 n ecuaciones de
restricción, una por cada origen y cada destino. Sin embargo, como el modelo de trans-
porte siempre está balanceado (suma de la oferta 5 suma de la demanda) una de las
ecuaciones es redundante, por lo que el modelo se reduce a m 1 n 2 1 ecuaciones in-
dependientes y m 1 n 2 1 variables básicas. En el ejemplo 5.3-1, la solución inicial
tiene 3 1 4 2 1 5 6 variables básicas.

La estructura especial del problema de transporte permite asegurar una solución
básica inicial no artificial siguiendo uno de los tres métodos:5

1. Método de la esquina noroeste
2. Método del costo mínimo
3. Método de aproximación de Vogel

El primer método es de naturaleza “mecánica”, y los dos restantes son heurísticos que
buscan una solución inicial de mejor calidad que dé un valor objetivo más pequeño.
Por lo general, el método heurístico Vogel es mejor que el heurístico de costo mínimo. Por
otra parte, el método de esquina noroeste implica la cantidad mínima de cálculos.

Método de la esquina noroeste. El método se inicia en la celda de la esquina noroeste
(ruta) de la tabla (variable x11).

Paso 1. Asigne lo más posible a la celda seleccionada, y ajuste las cantidades asocia-
das de oferta y demanda restando la cantidad asignada.

Paso 2. Tache la columna o fila con oferta o demanda cero para indicar que no se
hagan más asignaciones en esa fila o columna. Si una fila y una columna dan
cero al mismo tiempo, tache sólo una, y deje una oferta (demanda) cero en la
fila (columna) no tachada.

Paso 3. Si se deja sin tachar exactamente una fila o columna, deténgase. De lo contra-
rio, muévase a la celda a la derecha si acaba de tachar una columna, o abajo si
acaba de tachar una fila. Vaya al paso 1.

Ejemplo 5.3-2

La aplicación del procedimiento al modelo del ejemplo 5.3-1 da la solución básica inicial en la
tabla 5.17. Las flechas muestran el orden en que se generan las cantidades asignadas.

La solución básica inicial es

El costo asociado del programa es

.20 +  10 *  18 = $520z = 5 *  10 +  10 *  2 +  5 *  7 +  15 *  9 +  5 *  

x34 = 10

 x22 = 5, x23 = 15, x24 = 5

x11 = 5,  x12 = 10

5Los tres métodos se realizan en TORA. Vea el final de la sección 5.3.3.
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TABLA 5.17 Solución inicial obtenida con el método de la esquina noroeste

1 2 3 4 Oferta

10 2 20 11

1 5 10 15

12 7 9 20
2 5 15 5 25

4 14 16 18

3 10 10

Demanda 5 15 15 15

Método del costo mínimo. El método del costo mínimo determina una mejor
solución inicial al concentrarse en las rutas más económicas. Asigna lo más posible a la
celda con el costo unitario mínimo (los empates se rompen arbitrariamente). Luego se
tacha la fila o columna satisfecha y se ajustan las cantidades de oferta y demanda como
corresponda. Si una fila o una columna se satisfacen al mismo tiempo, sólo se tacha
una, igual que en el método de la esquina noroeste. A continuación, seleccione la celda
no tachada con el costo unitario mínimo y repita el proceso hasta que se deje sin tachar
exactamente una fila o columna.

Ejemplo 5.3-3
El método del costo mínimo se aplica al ejemplo 5.3-1.

1. La celda (1,2) tiene el costo unitario mínimo en la tabla (5 $2). Lo máximo que puede en-
viarse a través de (1,2) es x12 5 15 camiones cargados, con lo que se satisfacen tanto la fila
1 como la columna 2. Tachamos arbitrariamente la columna 2 y ajustamos a cero la oferta
en la figura 1.

2. La celda (3,1) tiene el costo unitario mínimo no tachado (5 $4).Asigne x31 5 5, y tache la co-
lumna 1 porque se satisface, y ajuste la demanda de la fila 3 a 10 2 5 5 5 camiones cargados.

3. Continuando de la misma manera, asignamos sucesivamente 15 camiones cargados a la
celda (2,3), 0 a la celda (1,4), 5 a la celda (3,4), y 10 a la celda (2,4) (¡compruébelo!).

La solución inicial resultante se resume en la tabla 5.18. Las flechas indican el orden en el
cual se hacen las asignaciones. La solución inicial (compuesta de 6 variables básicas) es

TABLA 5.18 Solución inicial de costo mínimo

1 2 3 4 Oferta

10 (inicio) 2 20 11

1 15 0 15

12 7 9 (final)  20

2 15 10 25

4 14 16 18

3 5 5 10

Demanda 5 15 15 15
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. El valor objetivo asociado es z 5 15 3 2
1 0 3 11 1 15 3 9 1 10 3 20 1 5 3 4 1 5 3 18 5 $475, el cual es mejor que la solución obteni-
da con el método de la esquina noroeste.

Método de aproximación de Vogel (MAV). Este método es una versión mejorada del
método del costo mínimo que por lo general, pero no siempre, produce mejores
soluciones iniciales.

Paso 1. Para cada fila (columna) determine una medida de penalización restando el
elemento de costo unitario mínimo en la fila (columna) del siguiente elemen-
to de costo mínimo en la misma fila (columna).

Paso 2. Identifique la fila o columna con la penalización máxima, que rompa los em-
pates arbitrariamente. Asigne lo más posible a la variable con el costo unita-
rio mínimo en la fila o columna seleccionada. Ajuste la oferta y la demanda,
y tache la fila o columna satisfecha. Si una fila y una columna se satisfacen al
mismo tiempo, sólo se tacha una de las dos, y a la fila restante (columna) se
le asigna una oferta (demanda) cero.

Paso 3. (a) Si exactamente una fila o columna con oferta o demanda cero perma-
nece sin tachar, deténgase.

(b) Si una fila (columna) con oferta (demanda) positiva permanece sin
tachar, determine las variables básicas en la fila (columna) mediante el
método del costo mínimo. Deténgase.

(c) Si todas las filas y columnas no tachadas tienen oferta y demanda cero
(restantes), determine las variables básicas cero por el método del costo
mínimo. Deténgase.

(d) De lo contrario, vaya al paso 1.

Ejemplo 5.3-4

El método de aproximación de Vogel se aplica al ejemplo 5.3-1. La tabla 5.19 calcula el primer
conjunto de penalizaciones.

Como la fila 3 tiene la penalización máxima (5 10) y la celda (3,1) tiene el costo unitario mí-
nimo en esa fila, se asigna la cantidad 5 a x31. Ahora la columna está satisfecha y se debe tachar.
Luego se vuelven a calcular nuevas penalizaciones como en la tabla 5.20.

x12 = 15, x14 = 0, x23 = 15, x24 = 10, x31 = 5, x34 = 5

TABLA 5.19 Penalizaciones en filas y columnas con el MAV

1 2 3 4 Penalización en las filas

10 2 20 11

1 15
12 7 9 20

2 25
4 14 16 18

3 5 10

5 15 15 15
Penalización 10 2 4 7 2 2
en las columnas = 7= 7= 5= 6

18 - 1116 - 9

 14 -  4 = 10

 9 -  7 =  2

 10 -  2 =  8
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TABLA 5.20 Primera asignación en el MAV (x31 5 5)

1 2 3 4 Penalización en las filas

10 2 20 11 9
1 15

12 7 9 20 2
2 25

4 14 16 18 2
3

5 10

Penalización 5 15 15 15
en las columnas — 5 7 7

La tabla 5.20 muestra que la fila 1 tiene la penalización máxima (5 9). Por consiguiente,
asignamos la cantidad máxima posible a la celda (1,2), la cual da x12 5 15 y al mismo tiempo sa-
tisface tanto a la fila 1 como a la columna 2. Tachamos arbitrariamente la columna 2 y ajustamos
a cero la oferta en la fila 1.

Continuando de la misma manera, la fila 2 producirá la penalización máxima (5 11), y asig-
namos x13 5 15, la cual tacha la columna 3 y deja 10 unidades en la fila 2. Sólo queda la columna
4, y tiene una oferta positiva de 15 unidades. Aplicando el método del costo mínimo a esa co-
lumna, asignamos sucesivamente x14 5 0, x34 5 5 y x14 5 10 (¡compruébelo!). El valor objetivo
asociado con esta solución es

Sucede que esta solución tiene el mismo valor objetivo que se obtuvo con el método del costo
mínimo.

20 + 5 * 4 + 5 * 18 = $475z = 15 * 2 + 0 * 11 + 15 * 9 + 10 *

*(a) (b) (c)

0 2 1 6 1 2 6 7 5 1 8 12
2 1 5 7 0 4 2 12 2 4 0 14
2 4 3 7 3 1 5 11 3 6 7 4

5 5 10 10 10 10 9 10 11

CONJUNTO DE PROBLEMAS 5.3A

1. Compare las soluciones iniciales obtenidas con los métodos de esquina noroeste, de costo
mínimo y de Vogel para cada uno de los siguientes modelos.

5.3.2 Cálculos iterativos del algoritmo de transporte

Después de determinar la solución inicial (siguiendo alguno de los métodos de la sec-
ción 5.3.1), utilizamos el siguiente algoritmo para determinar la solución óptima:

Paso 1. Utilice la condición de optimalidad inicial para determinar la variable de en-
trada. Si la condición de optimalidad se satisface, deténgase. De lo contrario,
continúe con el paso 2.

Paso 2. Determine la variable de salida utilizando la condición de factibilidad simplex.
Cambie la base, y regrese al paso 1.

Las condiciones de optimalidad y factibilidad no implican las conocidas opera-
ciones de filas utilizadas en el método simplex. En su lugar, la estructura especial del
modelo de transporte permite cálculos (manuales) más simples.
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Ejemplo 5.3-5

Resuelva el modelo de transporte del ejemplo 5.3-1, comenzando con la solución de la esquina
noroeste.

La tabla 5.21 presenta la solución inicial de la esquina noroeste tal como aparece en la tabla
5.17, ejemplo 5.3-2. La determinación de la variable de entrada de entre las variables no básicas
actuales (las que no forman parte de la solución básica inicial) se realiza calculando los coefi-
cientes no básicos en la fila z, por medio del método de multiplicadores (el cual, como se mues-
tra en la sección 5.3.3, tiene su raíz en la teoría de dualidad de la PL).

En el método de multiplicadores, asociamos los multiplicadores ui y vj con la fila i y la co-
lumna j de la tabla de transporte. Para cada variable básica actual xij, los multiplicadores se
muestran en la sección 5.3.3 para satisfacer las siguientes ecuaciones:

ui 1 vj 5 cij para cada xij básica

Como se muestra en la tabla 5.21, la solución inicial tiene 6 variables básicas, lo cual conduce a 6
ecuaciones con 7 incógnitas. Para resolver estas ecuaciones, el método de multiplicadores re-
quiere que cualquiera de ellos se iguale a cero. Arbitrariamente estableceremos u1 5 0, y luego
resolveremos las variables restantes como se muestra en la siguiente tabla:

Resumiendo, tenemos 

A continuación, utilizamos ui y vj para evaluar las variables no básicas calculando

ui 1 vj 2 cij para cada xij no básica

 v1 = 10,  v2 = 2,  v3 = 4,  v4 = 15

 u1 = 0,  u2 = 5,  u3 = 3

Variable básica Ecuación (u,v) Solución

x11 u1 + v1 = 10 Conjunto u1 = 0Q  v1 = 10
x12 u1 + v2 =    2 u1 = 0Q  v2 =    2
x22 u2 + v2 =    7 v2 = 2Q  u2 =    5
x23 u2 + v3 =    9 u2 = 5Q  v3 =    4
x24 u2 + v4 = 20 u2 = 5Q v4 = 15
x34 u3 + v4 = 18 v4 = 15Q u3 = 3

TABLA 5.21 Iteración inicial

1 2 3 4 Oferta

10 2 20 11
1

5 10 15
12 7 9 20

2
5 15 5 25

4 14 16 18
3

10 10

Demanda 5 15 15 15
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6El módulo tutorial de TORA está diseñado para demostrar que si se asigna un valor inicial cero a cualquier
u o v se produce la misma u + v – c para todas las variables no básicas.Vea el Momento de TORA después de
este ejemplo.

Variable no básica ui + vj - cij

x13 u1 + v3 - c13 = 0 + 4 - 20 = -16
x14 u1 + v4 - c14 = 0 + 15 - 11 = 4
x21 u2 + v1 - c21 = 5 + 10 - 12 = 3
x31 u3 + v1 - c31 = 3 + 10 - 4 = 9
x32 u3 + v2 - c32 = 3 + 2 - 14 = -9
x33 u3 + v3 - c33 = 3 + 4 - 16 = -9

Básica x11 x12 x13 x14 x21 x22 x23 x24

T
x31 x32 x33 x34

z 0 0 -16 4 3 0 0 0 9 -9 -9 0

TABLA 5.22 Cálculos en la iteración 1

Oferta

10 2 20 11
5 10 15

-16 4
12 7 9 20

5 15 5 25
3
4 14 16 18

10 10
9 -9 -9

Demanda 5 15 15 15

u3 = 3

u2 = 5

u1 =  0

v4 = 15v3 = 4v2 = 2v1 = 10

Los resultados de estas evaluaciones se muestran en la tabla siguiente:

La información precedente, junto con el hecho de que ui 1 vj 2 cij 5 0 para xij no básica, equi-
vale en realidad a calcular la fila z de la tabla simplex, como lo muestra el siguiente resumen:

Como el modelo de transporte minimiza el costo, la variable de entrada es la que tiene el
coeficiente más positivo en la fila z, es decir x31 es la variable de entrada.

Los cálculos anteriores se suelen hacer directamente en la tabla de transporte como se
muestra en la tabla 5.22, lo que implica que no es necesario escribir las ecuaciones (u, v) en
forma explícita. En su lugar, comenzamos con u1 5 0.6 Entonces podemos calcular los valores v
de todas las columnas que tienen variables básicas en la fila 1, es decir, v1 y v2. Luego calculamos
u2 basados en la ecuación (u,v) de la x22 básica. Ahora, dada u2, calculamos v3 y v4. Por último,
determinamos u3 aplicando la ecuación básica de x33. El paso siguiente es para evaluar las varia-
bles no básicas al calcular ui 1 vj 2 cij para cada xij no básica, como se muestra en la tabla 5.22,
en la casilla situada en la esquina sudeste de cada celda.

Con x31 identificada como la variable de entrada, tenemos que determinar la variable de sa-
lida. Recuerde que si x31 entra en la solución para volverse básica, una de las variables básicas
actuales debe salir como no básica (en el nivel cero).
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La selección de x31 como la variable de entrada significa que transportar por esta ruta redu-
ce el costo de transporte total. ¿Cuánto es lo máximo que podemos transportar a través de la
nueva ruta? Observe en la tabla 5.22 que si la ruta (3,1) transporta u unidades (es decir, x31 5 u),
entonces el valor máximo de u se determina con base en dos condiciones:

1. Los límites de la oferta y los requerimientos de la demanda permanecen satisfechos.
2. Los transportes a través de todas las rutas permanecen no negativos.

Estas dos condiciones determinan el valor máximo de u y la variable de salida como sigue:
Primero construimos un lazo cerrado (también conocido como circuito de u), que se inicia y
termina en la celda de la variable de entrada (3,1). El lazo se compone sólo de segmentos hori-
zontales y verticales conectados (no se permiten diagonales) cuyos elementos de esquina (exclu-
yendo la celda de la variable de entrada) cuyos elementos de esquina deben coincidir con una
variable básica actual.7 La tabla 5.23 muestra el lazo para x31. Existe exactamente un lazo para
una variable de entrada dada.

Luego asignamos la cantidad u a la celda de la variable de entrada (3,1). Para que los límites
de la oferta y la demanda permanezcan satisfechos, debemos alternar entre restar y sumar la
cantidad u en las esquinas sucesivas del lazo que se muestra en la tabla 5.23 (es indiferente si el
lazo se traza en el sentido de las manecillas del reloj o en el sentido contrario). Para u $ 0, los
nuevos valores de todas las variables permanecen no negativos si 

El valor máximo correspondiente de u es 5, el cual ocurre cuando tanto x11 como x22 alcanzan un
nivel cero. Ya sea que x11 o que x22 salgan de la solución, y seleccionamos arbitrariamente x11
como la variable de salida.

Los valores de las variables básicas en las esquinas del lazo cerrado se ajustan para aceptar
x31 5 5, como se muestra en la tabla 5.24. Como cada unidad transportada por la ruta (3,1) redu-
ce el costo de transporte en $9 (5 u3 1 v1 2 c31), el costo total asociado con el nuevo itinerario
es $9 3 5 5 $45 menos que el itinerario anterior. Así, el nuevo costo es $520 2 $45 5 $475.

Dada la nueva solución básica, repetimos el cálculo de los multiplicadores u y v, como se
muestra en la tabla 5.24. La variable de entrada es x14. El lazo cerrado muestra que x14 5 10 y
que x24 es la variable de salida.

 x34 = 10 - u Ú 0

 x22 =  5 - u Ú 0

 x11 =  5 - u Ú 0

TABLA 5.23 Determinación del lazo cerrado para x31

v1 = 10 v2 = 4 v3 = 15 v4 = 15 Oferta

10 2 20 11
u1 0 5 - � 10 + � 15

- + -16 4
12 7 9 20

u2 5 5 - � 15 5 + � 25
3 - +
4 14 16 18

u3 3 � 10 - � 10
+ 9 9 -9 -9 -

Demanda 5 15 15 15

=

=

=

7El módulo tutorial de TORA permite determinar, de forma interactiva, las celdas de esquina del lazo cerra-
do, con confirmación inmediata de la validez de sus selecciones. Vea el Momento de TORA en la pág. 196.
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TABLA 5.25 Cálculos en la iteración 3 (óptima)

Oferta

10 2 20 11
5 10 15

-13 -16
12 7 9 20

10 15 25

-10 -4
4 14 16 18

5 5 10

-5 -5
Demanda 5 15 15 15

u3 = 7

u2 = 5

u1 K 0

v4 = 11v3 = 4v2 = 2v1 = -3

Del silo Al molino Cantidad de camiones cargados

1 2 5
1 4 10
2 2 10
2 3 15
3 1 5
3 4 5

Costo óptimo 5 $435

La nueva solución, que se muestra en la tabla 5.25, cuesta $4 3 10 5 $40 menos que la ante-
rior, y así el nuevo costo es $475 2 $40 5 $435. Los nuevos valores de ui 1 vj 2 cij ahora son
negativos para todas las xij no básicas. Por lo tanto, la solución dada en la tabla 5.25 es óptima.

La siguiente tabla resume la solución óptima.

Modelo de transbordo. El modelo de transporte considera transportes directos entre
los orígenes y los destinos. Quizá éste no sea el caso en muchas situaciones donde
puede ser más barato transbordar a través de nodos intermedios antes de llegar al
destino final. Puede usarse un artificio de modelado basado en el uso de zonas

TABLA 5.24 Cálculos en la iteración 2

Oferta

10 2 20 11

15

4
12 7 9 20

15 25

4 14 16 18

5 5 10

Demanda 5 15 15 15

-9-9
u3 = 3

-+-6
10 - U0 + Uu2 = 5

+-16--9
U15 - Uu1 K 0

v4 = 15v3 = 4v2 = 2v1 = 1
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intermedias para convertir el modelo de transbordo en uno de transporte regular. La
idea de la conversión es teóricamente interesante, pero rara vez se pone en práctica
porque el modelo de transbordo (y, de hecho, el modelo de transporte mismo) es un
caso especial de un modelo de red capacitado de costo mínimo altamente eficiente que
se presenta en la sección 22.1 en el sitio web. No obstante, para que quede completo, el
modelo de transbordo se presenta como apéndice al final de la sección 22.1.

Momento de TORA.

En el comando , seleccione las opciones , y luego uno
de los tres métodos (esquina noroeste, costo mínimo, Vogel) para iniciar las iteraciones del mo-
delo de transporte. El módulo de iteraciones ofrece dos útiles funciones interactivas:

1. Puede establecer cualquier u o v igual a cero antes de generar la iteración 2 (el valor pre-
determinado es u1 5 0. Aunque los valores de ui y vj cambian, la evaluación de las celdas
no básicas (5 ui 1 vj 2 cij) no cambia.

2. Puede someter a prueba su comprensión de por qué selecciona el lazo cerrado, haciendo
clic (en cualquier orden) en las celdas de esquina que comprenden la ruta. Si su selección
es correcta, la celda cambiará de color (verde para la variable de entrada, roja para la va-
riable de salida, y gris si no corresponde).

Momento de Solver.

La figura 5.4 muestra la plantilla de Excel Solver para el ejemplo 5.3-1 (archivo solverEx5.3-
1.xls), junto con todas las fórmulas y la definición de los nombres de intervalos.

En la sección de entrada, los datos incluyen la matriz de costo unitario (celdas B4:E6), los
nombres de los orígenes (celdas A4:A6), nombres de los destinos (celdas B3:E3), oferta (celdas
F4:F6), y demanda (celdas B7:E7). En la sección de salida, las celdas B11:E13 proporcionan la
solución óptima en forma de matriz. La fórmula del costo total se encuentra en la celda A10.

Momento de AMPL.

Los archivos amplEx5.3-1a.txt y amplEx5.3-1b.txt proporcionan el modelo de AMPL para el
ejemplo 5.3-1. Los detalles del modelo se explican en la sección C.9 en el sitio web.

CONJUNTO DE PROBLEMAS 5.3B

1. Considere los modelos de transporte que aparecen en la tabla 5.26.
(a) Siga el método de la esquina noroeste para determinar la solución inicial.
(b) Desarrolle las iteraciones que conducen a la solución óptima.
(c) Experimento con TORA. Utilice el módulo de iteraciones de TORA para comparar

el efecto de utilizar la regla de la esquina noroeste, el método del costo mínimo y el
método de Vogel en la cantidad de iteraciones que conducen a la solución óptima.

(d) Experimento con Solver. Resuelva el problema modificando el archivo solverEx5.3-1.xls.
(e) Experimento con AMPL. Resuelva el problema modificando el archivo amplEx5.3-1b.txt.

IterationsQSolveSolve/Modify Menu
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FIGURA 5.4

Solución obtenida con Excel Solver del modelo de transporte del ejemplo 5.3-1 (Archivo solverEx5.3-1.xls)

TABLA 5.26 Modelos de transporte para el problema 1 

(i) (ii) (iii)

$0 $2 $1 6 $10 $4 $2 8 — $3 $5 4
$2 $1 $5 9 $2 $3 $4 5 $7 $4 $9 7
$2 $4 $3 5 $1 $2 $0 6 $1 $8 $6 19

5 5 10 7 6 6 5 6 19
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2. En el problema de transporte que se muestra en la tabla 5.27, la demanda total excede la
oferta total. Suponga que los costos de penalización por unidad de la demanda no satis-
fecha son $5, $3 y $2 para los destinos 1, 2 y 3, respectivamente. Aplique la solución ini-
cial de costo mínimo, y calcule las iteraciones que conducen a la solución óptima.

3. En el problema 2, suponga que no hay costos de penalización, pero que la demanda en el
destino 3 debe ser satisfecha por completo.
(a) Encuentre la solución óptima.
(b) Experimento con Solver. Resuelva el problema modificando el archivo solverEx5.3-1.xls.

(c) Experimento con AMPL. Resuelva el problema modificando el archivo amplEx5.3-1.xls.

4. En el problema de transporte desbalanceado de la tabla 5.28, si no se transporta una uni-
dad de un origen (a cualquiera de los destinos) se incurre en un costo de almacenamiento
a razón de $5, $4 y $3 por unidad para los orígenes 1, 2 y 3, respectivamente. Además,
toda la oferta del origen 2 se debe transportar en su totalidad para que haya espacio para
un nuevo producto. Aplique la solución inicial de Vogel, y determine todas las iteraciones
que conducen al programa de transporte óptimo.

*5. En un problema de transporte de 3 3 3, sea xij la cantidad transportada del origen i al
destino j, y cij el costo de transporte por unidad correspondiente. Las cantidades de la
oferta en los orígenes 1, 2 y 3, son 15, 30 y 85 unidades, respectivamente, y las demandas
en los destinos 1, 2 y 3 son 20, 30 y 80 unidades, respectivamente. Suponga que la solución
inicial de esquina noroeste es óptima y que los valores asociados de los multiplicadores
se dan como u1 5 22, u2 5 3, u3 5 5, v1 5 2, v2 5 5, y v3 5 10.
(a) Encuentre el costo óptimo asociado.
(b) Determine el valor mínimo de cij para cada variable no básica que mantendrá la op-

timalidad de la solución de la esquina noroeste.
6. El problema de transporte que se muestra en la tabla 5.29 da la solución básica degenera-

da indicada (es decir, al menos una de las variables básicas es cero). Suponga que los

TABLA 5.28 Datos para el problema 4

$1 $2 $1 20
$3 $4 $5 40
$2 $3 $3 30

30 20 20

TABLA 5.29 Datos para el problema 6

10 10
20 20 40

10 20 20

TABLA 5.27 Datos para el problema 2

$5 $1 $7 10
$6 $4 $6 80
$3 $2 $5 15

75 20 50
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TABLA 5.30 Datos para el problema 7

$1 $1 $2 5
$6 $5 $1 6

2 7 1

multiplicadores asociados con esta solución son u1 5 1, u2 5 21, v1 5 2, v2 5 2 y v3 5 5 y
que el costo unitario para todas as variables xij cero (básicas y no básicas) es

(a) Si la solución dada es óptima, determine el valor óptimo asociado de la función obje-
tivo.

(b) Determine el valor de u que garantizará la optimalidad de la solución dada.
(Sugerencia: Localice la variable básica cero.).

7. Considere el problema

sujeto a

Quizá parezca lógico suponer que la solución óptima requerirá que el primer (segun-
do) conjunto de desigualdades sea reemplazado con ecuaciones si .
El ejemplo contrario que aparece en la tabla 5.30 muestra que
esta suposición no es correcta.

Demuestre que la aplicación del procedimiento sugerido da la solución x11 5 2, x12
53, x22 54, y x23 5 2, con z 5 $27, la cual es peor que la solución factible x11 5 2, x12 5 7
y x23 5 6, con z 5 $15.

5.3.3 Explicación del método de los multiplicadores con el método simplex

La relación entre el método de los multiplicadores y el método simplex puede expli-
carse con base en las relaciones primal-dual (sección 4.2). Por la estructura especial de
la programación lineal que representa el modelo de transporte (vea el ejemplo 5.1-1
para una ilustración), el problema dual asociado se escribe como 

sujeto a

ui y vj irrestrictas

ui + vj … cij, para toda i y j

Maximizar z = a
m

i= 1
aiui + a

n

j= 1
bjvj

©ai Ú ©bj 1©ai … ©bj2
  xij Ú 0, todas las i  y j

 a
m

i= 1
xij Ú bj,  j = 1, 2, . . . , n

 a
n

j= 1
xij Ú ai,  i = 1, 2, . . . , m

Minimizar z = a
m

i= 1
a
n

j= 1
cij xij

cij = i + ju, -  q 6 u 6 q
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donde
ai 5 Oferta en el origen i
bj 5 Demanda en el destino j
cij 5 Costo de transporte por unidad del origen i al destino j
ui 5 Variable dual de la restricción asociada con el origen i
vj 5 Variable dual de la restricción asociada con el destino j

De acuerdo con la fórmula 2, sección 4.2.4, los coeficientes de la función objetivo
(costos reducidos) de la variable xij son iguales a la diferencia entre los lados izquierdo
y derecho de la restricción dual correspondiente; es decir, ui 1 vj 2 cij. Sin embargo, sa-
bemos que esta cantidad debe ser igual a cero para cada variable básica, lo que produ-
ce el siguiente resultado:

ui 1 vj 5 cij para cada variable básica xij

Hay m 1 n 2 1 ecuaciones como esas cuya solución (después de suponer un valor ar-
bitrario u1 5 0) dan por resultado los multiplicadores ui y uj. Una vez calculados estos
multiplicadores, la variable de entrada se determina a partir de todas las variables no
básicas como la que tiene el máximo valor positivo ui 1 vj 2 cij.

La asignación de un valor arbitrario a una de las variables duales (es decir, u1 5 0)
puede parecer inconsistente con la forma en que se calculan las variables duales si-
guiendo el método 2 de la sección 4.2.3. En otras palabras, para una solución básica
dada (y, por consiguiente, la inversa), los valores duales deben ser únicos. El problema
2, conjunto 5.3c, aborda este punto.

CONJUNTO DE PROBLEMAS 5.3C

1. Escriba el problema dual para la programación lineal del problema del transporte del
ejemplo 5.3-5 (tabla 5.21). Calcule el valor objetivo dual óptimo asociado utilizando los
valores duales óptimos dados en la tabla 5.25, y demuestre que es igual al costo óptimo
dado en el ejemplo.

2. En el modelo de transporte, una de las variables duales asume un valor arbitrario. Esto
quiere decir que para la misma solución básica, los valores de las variables duales asocia-
das no son únicos. El resultado parece contradecir la teoría de programación lineal,
donde los valores duales se determinan como el producto del vector de los coeficientes
objetivo de las variables básicas y la matriz básica inversa asociada (vea el método 2, sec-
ción 4.2.3). Demuestre que para el modelo de transporte, aunque la base inversa es única,
el vector de los coeficientes objetivo básicos no tiene que ser así. Específicamente, de-
muestre que si cij se cambia a cij 1 k para toda i y j, donde k sea una constante, entonces
los valores óptimos de xij no cambiarán. Por consiguiente, el uso de un valor arbitrario
para una variable dual es implícitamente equivalente a asumir que se agrega una cons-
tante específica k a todas las cij.

5.4 MODELO DE ASIGNACIÓN

El modelo de asignación clásico se ocupa de compaginar a los trabajadores (con diver-
sas habilidades) con los trabajos. Presumiblemente, la variación de la habilidad afecta
el costo de completar un trabajo. La meta es determinar la asignación de costo mínimo
de los trabajadores a los trabajos. El modelo de asignación general con n trabajadores
y n trabajos está representado en la tabla 5.31. El elemento cij representa el costo de
asignar el trabajador i al trabajo j (i,j 5 1, 2,…,n). No se pierde la generalidad al supo-
ner que la cantidad de trabajadores y la de los trabajos son iguales, porque siempre
podemos agregar trabajadores o trabajos ficticios para satisfacer esta suposición.
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TABLA 5.31 Modelo de asignación

Trabajos
1 2 . . .

1 . . . 1
2 . . . 1

Trabajador

. . . 1

1 1 . . . 1

cnncn2cn1N

oooooo

c2nc22c21

c1nc12c11

n

TABLA 5.32 Problema de asignación del señor Klyne 

Podar Pintar Lavar

John $15 $10 $9
Karen $9 $15 $10

Terri $10 $12 $8

El modelo de asignación es un caso especial del modelo de transporte, donde los
trabajadores representan los orígenes y los trabajos representan los destinos. La oferta
(demanda) en cada origen (destino) es igual a 1. El costo de “transportar” al trabajador
i al trabajo j es cij. De hecho, el modelo de asignación puede resolverse de forma direc-
ta como un modelo de transporte (o como una PL regular). Sin embargo, el hecho
de que la oferta y la demanda sean iguales a 1 conduce al desarrollo de un algoritmo de
solución simple llamado método húngaro. Aunque el nuevo método de solución pare-
ce totalmente ajeno al modelo de transporte, en realidad el algoritmo tiene su origen
en el método simplex, al igual que el modelo de transporte.

5.4.1 Método húngaro8

Utilizaremos dos ejemplos para presentar la mecánica del nuevo algoritmo. La si-
guiente sección proporciona una explicación del procedimiento basada en simplex.

Ejemplo 5.4-1

Los tres hijos de Joe Klyne, John, Karen y Terri, desean ganar algún dinero para sus gastos per-
sonales. El señor Klyne eligió tres tareas para sus hijos: podar el césped, pintar la puerta de la
cochera y lavar los automóviles de la familia. Para evitar la competencia anticipada entre los her-
manos, les pide que presenten licitaciones individuales (secretas) por lo que consideren un pago

8Como con el método de transporte, el método húngaro clásico (diseñado principalmente para cálculos ma-
nuales) es algo del pasado, y se presenta aquí por razones históricas. En la actualidad no se requiere ese tipo
de cálculos, ya que el problema puede resolverse mediante códigos de computadora de PL altamente efi-
cientes. Tal vez el beneficio de estudiar estas técnicas clásicas es que están basadas en una teoría compleja
que reduce los pasos de solución a reglas simples adecuadas para cálculos manuales.
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justo por cada una de las tres tareas. La tabla 5.32 resume las licitaciones recibidas. Los niños res-
petarán la decisión de su padre con respecto a la asignación de las tareas.

El problema de asignación se resolverá por el método húngaro.

Paso 1. Determine pi, el elemento de costo mínimo en la fila i de la matriz de costos original, y
réstelo de todos los elementos de la fila i, i 5 1, 2, 3.

Paso 2. Para la matriz creada en el paso 1, determine qj, el elemento de costo mínimo de la
columna j, y réstelo de todos los elementos de la columna j, j 5 1, 2, 3.

Paso 3. A partir de la matriz del paso 2, intente determinar una asignación factible entre
todas las entradas cero resultantes.
3a. Si puede hallarse esa asignación, es óptima.
3b. De lo contrario, se requieren más cálculos (como se explicará en el ejemplo 5.4-2).

La tabla 5.33 demuestra la aplicación de los dos pasos al problema actual.
Las celdas con entradas cero subrayadas en el paso 3 dan la solución óptima (factible): John

obtiene el trabajo de pintar, Karen el de podar el césped, y Terri obtiene el de lavar los automó-
viles de la familia. El costo total para el señor Klyne es 9 1 8 1 8 5 $27. Esta cantidad siempre
será igual (p1 1 p2 1 p3) 1 (q1 1 q2 1 q3) 5 (9 1 9 1 8) 1 (0 1 1 1 0) 5 $27. (Una justificación
de este resultado se da en la siguiente sección.)

Como se indica en el paso 3 del método húngaro, los ceros creados por los pasos
1 y 2 pueden no dar una solución factible de forma directa. En este caso, se necesitan
más pasos para determinar la asignación óptima (factible). El siguiente ejemplo de-
muestra esta situación.

Ejemplo 5.4-2

Suponga que la situación analizada en el ejemplo 5.4-1 se amplía a cuatro niños y cuatro tareas.
La tabla 5.34 resume los elementos de costo del problema.

Paso 3:

Podar Pintar Lavar

John 6 0 0
Karen 0 5 1

Terri 2 3 0

Paso 2:

Podar Pintar Lavar

John 6 1 0
Karen 0 6 1

Terri 2 4 0

Columna máx. q1 � 0 q2 � 1 q3 � 0

Paso 1:

Podar Pintar Lavar Fila mín.

John 15 10 9 p1 � 9
Karen 9 15 10 p2 � 9

Terri 10 12 8 p3 � 8

TABLA 5.33 Aplicación del método húngaro al problema de asignación del ejemplo 5.4-1

QQ
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TABLA 5.35 Matriz de asignaciones reducida 

Tarea
1 2 3 4

1 0 3 2 2
2 2 0 0 2

Niño
3 0 1 4 3
4 3 2 0 0

La aplicación de los pasos 1 y 2 a la matriz de la tabla 5.34 (con p1 5 1, p2 5 7, p3 5 4, p4 5

5, q1 5 0, q2 5 0, q3 5 3 y q4 5 0) da por resultado la matriz reducida de la tabla 5.35 (¡comprué-
belo!).

Las ubicaciones de las entradas cero no permiten asignar tareas únicas a todos los niños. Por
ejemplo, si asignamos al niño 1 la tarea 1, entonces se eliminará la columna 1, y el niño tres no
tendrá una entrada cero en las tres columnas restantes. Este obstáculo puede superarse agregan-
do el siguiente paso al procedimiento dado en el ejemplo 5.4-1:

Paso 3b. Si no pueden encontrarse asignaciones de elemento cero factibles,
(i) Trace el mínimo de líneas horizontales y verticales en la última matriz reducida

para cubrir todas las entradas cero.
(ii) Seleccione la entrada mínima no cubierta y réstela de cada entrada no cubierta,

y luego súmela a cada entrada en la intersección de dos líneas.
(iii) Si no puede determinar una asignación factible entre las entradas cero resultan-

tes, repita el paso 3a.

La aplicación del paso 3b a la última matriz produce las celdas sombreadas en la tabla 5.36.
La entrada mínima no sombreada (que se muestra subrayada) es igual a 1. Esta entrada se suma
a la celda de intersección y se resta de las celdas sombreadas restantes para producir la matriz de
la tabla 5.37, y la solución óptima indicada por los ceros subrayados.

TABLA 5.34 Modelo de asignación

Tarea
1 2 3 4

1 $1 $4 $6 $3
2 $9 $7 $10 $9

Niño
3 $4 $5 $11 $7
4 $8 $7 $8 $5

TABLA 5.36 Aplicación del paso 3b

Tarea
1 2 3 4

1 0 3 2 2
2 2 0 0 2

Niño 
3 0 1 4 3
4 3 2 0 0
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Momento de AMPL.

El archivo amplEx5.4-2.txt proporciona el modelo AMPL para el modelo de asignación. El mo-
delo es parecido al del modelo de transporte.

CONJUNTO DE PROBLEMAS 5.4A

1. Resuelva los modelos de asignación de la tabla 5.38.
(a) Resuélvalos por el método húngaro.
(b) Experimento con TORA. Exprese el problema como una PL y resuélvalo con TORA.
(c) Experimento con TORA. Utilice TORA para resolver el problema como un modelo

de transporte.
(d) Experimento con Solver. Modifique el archivo solverEx5.3-1.xls para resolver el problema.
(e) Experimento con AMPL. Modifique el archivo amplEx5.3b-1.txt para resolver el

problema.
2. JoShop necesita asignar 4 trabajos a 4 trabajadores. El costo de realizar un trabajo es una

función de las habilidades de los trabajadores. La tabla 5.39 resume el costo de las asigna-
ciones. El trabajador 1 no puede realizar el trabajo 3, y el trabajador 3 no puede realizar
el trabajo 4. Determine la asignación óptima siguiendo el método húngaro.

TABLA 5.37 Asignación óptima

Tarea
1 2 3 4

1 0 2 1 1
2 3 0 0 2

Niño 
3 0 0 3 2
4 4 2 0 0

TABLA 5.38 Datos del problema 1

(i) (ii)

$3 $8 $2 $10 $3 $3 $9 $2 $2 $7
$6 $5 $2 $7 $5 $6 $1 $5 $6 $6
$6 $4 $2 $7 $5 $9 $4 $7 $10 $3
$8 $4 $2 $3 $5 $2 $5 $4 $2 $1
$7 $8 $6 $7 $7 $9 $6 $2 $4 $6

TABLA 5.39 Datos del problema 2

Trabajo
1 2 3 4

1 $50 $50 — $20
2 $70 $40 $20 $30

Trabajador
3 $90 $30 $50 —
4 $70 $20 $60 $70
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3. En el modelo de JoShop del problema 2, suponga que se dispone de un (quinto) trabaja-
dor más para realizar las cuatro tareas a los costos respectivos de $60, $45, $30 y $80. ¿Es
económico reemplazar a uno de los cuatro trabajadores actuales con el nuevo? 

4. En el modelo del problema 2, suponga que JoShop acaba de recibir un quinto trabajo y
que los costos respectivos de realizarlo por los cuatro trabajadores actuales son $20, $10,
$20 y $80. ¿Debe tener la prioridad el nuevo trabajo sobre cualquiera de los cuatro traba-
jos que ya tiene JoShop? 

5. *Un ejecutivo de negocios debe hacer los cuatro viajes redondos que se muestran en la
tabla 5.40 entre la oficina principal en Dallas y una sucursal en Atlanta.

El precio del boleto de viaje redondo saliendo de Dallas es de $400. Se ofrece un
descuento de 25% si las fechas de llegada y partida de un boleto cubren una semana (sá-
bado y domingo). Si la estancia en Atlanta dura más de 21 días, el descuento se incremen-
ta a 30%. Un boleto de viaje sencillo entre Dallas y Atlanta (en cualquier dirección)
cuesta $250. ¿Cómo debe comprar los boletos el ejecutivo?

*6. La figura 5.5 muestra la distribución esquemática de un taller con sus centros de trabajo
existentes designados por los cuadrados 1, 2, 3 y 4. Se tienen que agregar cuatro nuevos

TABLA 5.40 Datos para el problema 5

Fecha de partida de Dallas Fecha de regreso a Dallas

Lunes, 3 de junio Viernes, 7 de junio
Lunes, 10 de junio Miércoles, 12 de junio
Lunes, 17 de junio Viernes, 21 de junio
Martes, 25 de junio Viernes, 28 de junio 

FIGURA 5.5

Distribución del taller para el problema 6, conjunto 5.4a

10 20 30 40 50 60 70 80

2

3

4

b

c

d

a

1

0

10

20

30

40

50

60

70



206 Capítulo 5 Modelo de transporte y sus variantes

centros de trabajo, I, II, III y IV, al taller en los lugares designados por los círculos a, b, c
y d. El objetivo es asignar los nuevos centros a los lugares propuestos para minimizar el
tráfico total de manejo de materiales entre los centros existentes y los propuestos. La
tabla 5.41 resume la frecuencia de los viajes entre los centros nuevos y los anteriores. El
equipo de manejo de materiales viaja a lo largo de los pasillos rectangulares que se cor-
tan en las ubicaciones de los centros. Por ejemplo, la distancia del viaje en un sentido (en
metros) entre el centro 1 y la ubicación b es 30 1 20 5 50 m.

7. En el Departamento de Ingeniería Industrial en la Universidad de Arkansas, INEG 4904
es un curso de diseño culminante pensado para que equipos de estudiantes apliquen el co-
nocimiento y las habilidades aprendidas en el programa de estudios de licenciatura a un
problema práctico. Los miembros de cada equipo seleccionan un director de proyecto,
identifican el alcance apropiado de su proyecto, redactan y presentan una propuesta, reali-
zan las tareas necesarias para satisfacer los objetivos del proyecto, y redactan y presentan
un informe final. El profesor del curso identifica proyectos potenciales y proporciona
hojas de información apropiadas a cada uno, incluyendo el contacto en la organización pa-
trocinadora, el resumen del proyecto y las habilidades potenciales necesarias para comple-
tar el proyecto. Se requiere que cada equipo de diseño presente un informe que justifique
la selección de los miembros y del director del equipo. El informe también proporciona
una clasificación de cada proyecto en orden de preferencia, incluida una justificación con
respecto a la compaginación apropiada de las habilidades del equipo con los objetivos del
proyecto. En un semestre específico se identificaron los siguientes proyectos: Boeing F-15,
Boeing F-18, Boeing Simulation, Cargil, Cobb-Vantress, ConAgra, Cooper, DaySpring (di-
seño), DaySpring (manejo de materiales), J.B. Hunt, Raytheon, Tyson South, Tyson East,
Wallmart y Yellow Transportation. Los proyectos de Boeing y Raytheon requieren que
todos los miembros del equipo sean ciudadanos estadounidenses. De los once equipos de
diseño disponibles en este semestre, cuatro no cumplen con este requisito.

Idee un procedimiento para asignar proyectos a equipos, y justifique los argumentos
que proponga para llegar a una conclusión.

5.4.2 Explicación del método húngaro con simplex

El problema de asignación en el cual se determinan n trabajadores a n trabajos puede
representarse como un modelo de PL como sigue: Sea cij el costo de asignar el trabaja-
dor i al trabajo j, y defina 

xij = b1, si el trabajador i  es asignado al trabajo j
0, de lo contrario

TABLA 5.41 Datos para el problema 6

Centro nuevo
I II III IV

1 10 2 4 3
Centro 2 7 1 9 5
existente 3 0 8 6 2

4 11 4 0 7
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Entonces el modelo de PL se da como

sujeto a

 a
n

i= 1
xij = 1, j = 1, 2, Á , n

 a
n

j= 1
xij = 1, i = 1, 2, Á , n

Minimizar z = a
n

i= 1
a
n

j= 1
cijxij

 xij =  0 o 1

La solución óptima del modelo de PL anterior no cambia si se agrega una constan-
te a o se resta de cualquier fila o columna de la matriz de costos (cij). Para probar este
punto, sean pi y qi las constantes restadas de la fila i y la columna j. Por lo tanto, el ele-
mento de costo cij cambia a 

Ahora

Como la nueva función objetivo difiere de la original por una constante, los valores óp-
timos de xij son los mismos en ambos casos. El desarrollo muestra que los pasos 1 y 2
del método húngaro, el cual pide restar pi de la fila i y luego restar qi de la columna j,
produce un modelo de asignación equivalente. A este respecto, si puede hallarse una
solución factible entre las entradas cero de la matriz de costos creada por los pasos 1 y
2, entonces debe ser óptima (porque el costo en la matriz modificada no puede ser
menor que cero).

Si las entradas cero creadas no pueden dar una solución factible (como el ejem-
plo 5.4-2 lo demuestra), entonces debe aplicarse el paso 2a (que tiene que ver con la
cobertura de las entradas cero). La validez de este procedimiento tiene de nuevo su
raíz en el método simplex de programación lineal y puede explicarse por la teoría de la
dualidad (capítulo 4) y el teorema de holgura complementaria (capítulo 7). No presen-
taremos aquí los detalles de la comprobación porque son un tanto complicados.
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La razón por la que (p1 1 p2 1…1 pn) 1 (q1 1 q2 1 … 1 qn) da por resultado el
valor objetivo óptimo es que representa la función objetivo dual de modelo de asigna-
ción. Este resultado puede verse mediante una comparación con la función objetivo
dual del modelo de transporte dado en la sección 5.3.3. [Para los detalles, vea Bazaraa
and Associates (2009)].
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6.1 ALCANCE Y DEFINICIÓN DE MODELOS DE REDES

Muchas situaciones de investigación de operaciones pueden modelarse y resolverse
como redes (nodos conectados por ramas); a continuación tenemos algunos ejemplos
de aplicación:

1. Diseño de una red de oleoductos para gas natural a una determinada distancia de
la costa para conectar los cabezales de los pozos en el Golfo de México a un
punto de distribución costero con el objetivo de minimizar el costo de construc-
ción de los oleoductos.

2. Determinación de la ruta más corta entre dos ciudades en una red existente de
carreteras.

3. Determinación de la capacidad máxima (en toneladas por año) de una red de
oleoductos para lodos de carbón que unen minas de carbón en Wyoming con
plantas eléctricas en Houston (los oleoductos para lodos transportan carbón al
bombear agua a través de tuberías especialmente diseñadas).

4. Determinación del cronograma (fechas de inicio y terminación) para las activida-
des de un proyecto de construcción.

5. Determinación del itinerario de flujo de costo mínimo desde campos petroleros
hasta refinerías a través de una red de oleoductos.

CAPÍTULO 6

Modelo de redes

Aplicación de la vida real. Ahorro de recursos federales para viáticos

Las oficinas del gobierno federal de Estados Unidos están localizadas en la mayoría de
las ciudades en los Estados Unidos, y se requiere que los empleados federales asistan a
conferencias de desarrollo y cursos de capacitación que se ofrecen por todo el país. La
ubicación de la ciudad donde se efectuarán las conferencias y eventos de capacitación
puede impactar los viáticos. El objetivo del estudio es determinar la ubicación óptima
de la ciudad anfitriona de una conferencia o evento de entrenamiento programado. Se
estima que para el año fiscal de 1997, el modelo desarrollado ahorró al menos
$400,000. El caso 4 del capítulo 26 en el sitio web proporciona los detalles.



210 Capítulo 6 Modelo de redes

FIGURA 6.1

Ejemplo de una red (N,A) 

1 3 5

2 4

La solución de estas situaciones se logra por medio de varios algoritmos de opti-
mización de redes. Este capítulo presenta cuatro de estos algoritmos.

1. Árbol de mínima expansión (situación 1)
2. Algoritmo de la ruta más corta (situación 2)
3. Algoritmo de flujo máximo (situación 3)
4. Algoritmo de la ruta crítica (CPM) (situación 4) 

Para la quinta situación, el algoritmo de red capacitada de costo mínimo se presenta en
la sección 22.1 en el sitio web.

Definiciones de red. Una red se compone de un conjunto de nodos unidos por arcos (o
ramas). La notación para describir una red es (N, A), donde N es el conjunto de nodos, y
A es el conjunto de arcos. Aguisa de ilustración, la red de la figura 6.1, se describe como

Asociado con cada red hay un flujo (por ejemplo, los productos de petróleo flu-
yen por un oleoducto y el tráfico de automóviles fluye por las carreteras). El flujo má-
ximo en una red puede ser finito o infinito, según la capacidad de sus arcos.

Se dice que un arco está dirigido u orientado si permite el flujo positivo sólo en
una dirección. Una red dirigida tiene todos los arcos dirigidos.

Una ruta es un conjunto de arcos que unen dos nodos distintos, y que pasan a
través de otros nodos en la red. Por ejemplo, en la figura 6.1 los arcos (1,2), (2,3), (3,4)
y (4,5) forman una ruta entre los nodos 1 y 5. Una ruta forma un ciclo o un bucle si co-
necta un nodo de vuelta a sí mismo a través de otros nodos. En la figura 6.1, los arcos
(2,3), (3,4) y (4,2) forman un ciclo.

Se dice que una red está conectada si cada dos nodos distintos están conectados
en al menos una ruta. La red en la figura 6.1 muestra este tipo de red. Un árbol es una
red conectada libre de ciclos compuesta de un subconjunto de todos los nodos, y un
árbol de expansión es un árbol que une todos los nodos de la red. La figura 6.2 propor-
ciona ejemplos de un árbol y un árbol de expansión de la red de la figura 6.1.

 A = {(1, 2),  (1, 3),  (2, 3),  (2, 5),  (3, 4),  (3, 5),  (4, 2),  (4, 5)}

 N = {1,  2,  3,  4,  5}

FIGURA 6.2

Ejemplos de un árbol y un árbol de expansión
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FIGURA 6.3

Puentes de Königsberg 

Ejemplo 6.1-1 (Puentes de Königsberg)
La ciudad prusiana de Königsberg (actualmente Kaliningrado en Rusia) fue fundada en 1254
en las riberas del río Pregel con siete puentes que conectan sus cuatro secciones (designadas A, B,
C, y D) como se muestra en la figura 6.3. Surgió una pregunta sobre si podría construirse un viaje
redondo para visitar las cuatro secciones de la ciudad, cruzando cada puente exactamente una
vez. Una sección podría ser visitada varias veces, si fuese necesario.

A mediados del siglo XVIII, el afamado matemático Leonhard Euler desarrolló un argu-
mento de “construcción de rutas” para demostrar que sí era posible construir semejante viaje.
Más tarde, a principios del siglo XIX, el mismo problema se resolvió presentando de nuevo la
situación como una red con nodos que representan las secciones y arcos (distintos) que repre-
sentan los puentes, como se muestra en la figura 6.4.

La representación en forma de red implica el hallazgo de una respuesta a la pregunta planteada.
El número de arcos incidentes en cada nodo es impar. Esto hace posible entrar y salir de todas las sec-
ciones utilizando puentes distintos. Por consiguiente, el viaje redondo deseado no puede construirse.1

1Solución general: Existe un recorrido que se inicia y termina en un nodo si el número de arcos incidentes en
cada nodo es par. Hay un viaje que se inicia en un nodo y termina en otro si el número de arcos incidentes
en estos dos nodos es impar. De lo contrario, no hay solución. Vea B. Hopkins y R. Wilson, “The Truth about
Königsberg”, College Math Journal, Vol. 35, núm. 3, págs. 198-207, 2004.

FIGURA 6.4

Representación en forma de red del problema de Königsberg
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FIGURA 6.5

Redes para el problema 1, conjunto 6.1a 
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CONJUNTO DE PROBLEMAS 6.1A

*1. Para cada red de la figura 6.5, determine (a) una ruta, (b) un ciclo, (c) un árbol, y (d) un
árbol de expansión.

2. Determine los conjuntos N y A para las redes de la figura 6.5.
3. Trace la red definida por 

4. En el ejemplo 6.1-1, especifique la cantidad mínima y las ubicaciones de los puentes adi-
cionales que se requieren para construir un viaje redondo. Construya la red resultante, y
determine los tramos del viaje.

*5. Considere ocho cuadrados iguales dispuestos en tres filas, con dos cuadrados en la prime-
ra fila, cuatro en la segunda, y dos en la tercera. Los cuadrados de cada fila están acomo-
dados simétricamente alrededor del eje vertical. Marque los cuadros con números distin-
tos del 1 al 8, de modo que dos cuadrados adyacentes verticales, horizontales o diagonales
no tengan números consecutivos. Use una representación de red para hallar una solución
de una forma sistemática.

6. Tres reclusos escoltados por dos guardias deben ser transportados por un bote desde tie-
rra firme hasta una isla penitenciaria para que cumplan sus sentencias. El bote no puede
transferir más de dos personas en ambas direcciones. Es seguro que los reclusos doble-
guen a los guardias si los superan en número en cualquier parte y en cualquier momento.
Desarrolle un modelo de red que diseñe los viajes del bote de modo que garantice el
traslado seguro de los reclusos.

6.2 ALGORITMO DEL ÁRBOL DE MÍNIMA EXPANSIÓN

Este árbol vincula los nodos de una red valiéndose de la longitud mínima total de las
ramas de conexión. Una aplicación común se presenta en la pavimentación de carrete-
ras que unen poblaciones, o de forma directa, o que pasan por otras poblaciones. La so-
lución del árbol de mínima expansión proporciona el diseño del sistema de carreteras.

Sea N = {1, 2,…,n} el conjunto de nodos de la red y defina
Ck = Conjunto de nodos que han estado conectados de manera perma-

nente en la iteración k
= Conjunto de nodos que se construirán permanentemente después de

la iteración k.
Ck

 A = {(1, 2),  (1, 5),  (2, 3),  (2, 4),  (3, 4), (3, 5),  (4, 3),  (4, 6),  (5, 2),  (5, 6)}

 N = {1,  2,  3,  4,  5,  6}
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Los siguientes pasos describen al algoritmo del árbol de mínima expansión:

Paso 0. Establezca y 
Paso 1. Inicie con cualquier nodo i en el conjunto no conectado y establezca

, lo que produce . Establezca .

Paso general k. Seleccione un nodo, j*, en el conjunto no conectado , que pro-
duzca el arco más corto a un nodo en el conjunto Ck-1 conectado. Vincule j*
permanentemente a Ck21 y elimínelo de para obtener
respectivamente. Deténgase si está vacío; de lo contrario, establezca k 5 k
+ 1 y repita el paso.

Ejemplo 6.2-1

Midwest TV Cable Company va a proporcionar servicio de cable a cinco desarrollos habitacio-
nales. La figura 6.6 ilustra las posibles conexiones de TV a las cinco áreas, con las millas de cable
anexadas a cada arco. El objetivo es determinar la red de cables más económica.

El algoritmo se inicia en el nodo 1 (en realidad, cualquier otro nodo puede ser un punto de
inicio), el cual da por resultado

Las iteraciones del algoritmo se resumen en la figura 6.7. Los arcos delgados proporcionan todos
los candidatos entre C y . Los arcos gruesos son los vínculos permanentes del conjunto conec-
tado C, y el arco de rayas es el nuevo vínculo (permanente) agregado en cada iteración. Por
ejemplo, en la iteración 1, la rama (1, 2) es el vínculo más corto (5 1 milla) entre todas las ramas
candidatas del nodo 1 a los nodos 2, 3, 4, 5 y 6 en el conjunto no conectado . De ahí que el
vínculo (1, 2) se hace permanente y j* 5 2, de lo cual resulta 

El árbol de mínima expansión que se muestra en la iteración 6 de la figura 6.7 da la solución. Las
millas de cable mínimas resultantes que se necesitan para proporcionar el servicio de cable de-
seado son 1 1 3 1 4 1 3 1 5 5 16 millas.

Comentarios. En teoría, un árbol de mínima expansión puede formularse y resolverse como un
programa lineal. Sin embargo, la PL no es una opción práctica porque deben agregarse numerosas
restricciones para excluir todos los ciclos y el resultado es una PL enorme, aun para redes pequeñas.

C2 = {1, 2}, C2 = {3, 4, 5, 6}

C1

C

C1 = {1} y  C1 = {2, 3, 4, 5, 6}

Ck

Ck y Ck,Ck- 1

Ck- 1

k = 2C1 = N - {i}C1 = {i}
C0

C0 = N.C0 = �

FIGURA 6.6

Conexiones de cable para Midwest TV Company
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Momento de TORA

Puede utilizar TORA para generar las iteraciones del árbol de mínima expansión. En la barra de
, seleccione las opciones . Luego, en el

menú seleccione las opciones . En
la pantalla de resultados seleccione , luego utilice las opciones o
bien para generar las iteraciones sucesivas. Puede reiniciar las iteraciones selec-
cionando un nuevo nodo de inicio . El archivo toraEx6.2-1.txt da los datos para el
ejemplo 6.2-1.

Starting Node
All iterations

Next iterationStarting node
Go to output screenQSolve problemSOLVE/MODIFY

Minimal spanning treeQNetwork modelsMain Menu

FIGURA 6.7

Iteraciones para determinar la solución para Midwest TV Company
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CONJUNTO DE PROBLEMAS 6.2A

1. Resuelva el ejemplo 6.2-1 iniciando en el nodo 5 (en lugar de en el nodo 1), y demuestre
que el algoritmo produce la misma solución.

2. Determine el árbol de mínima expansión de la red del ejemplo 6.2-1 conforme cada una
de las siguiente condiciones distintas:

*(a) Los nodos 5 y 6 están unidos por un cable de 2 millas.
(b) Los nodos 2 y 5 no pueden unirse.
(c) Los nodos 2 y 6 están unidos por un cable de 4 millas.
(d) El cable entre los nodos 1 y 2 es de 8 millas de largo.
(e) Los nodos 3 y 5 están unidos por un cable de 2 millas.
(f) El nodo 2 no puede unirse directamente a los nodos 3 y 5.

3. En el transporte intermodal, los camiones de remolque cargados se transportan entre ter-
minales ferroviarias sobre plataformas especiales. La figura 6.8 muestra la ubicación de
las principales terminales ferroviarias en los Estados Unidos y las vías de ferrocarril exis-
tentes. El objetivo es decidir qué vías deben ser “revitalizadas” para manejar el tráfico in-
termodal. En particular, la terminal de Los Ángeles (LA) debe vincularse directamente a
Chicago (CH) para acomodar el tráfico pesado esperado. Aparte de esa, todas las termi-
nales restantes pueden vincularse directa o indirectamente, de modo que la longitud total
(en millas) de las vías seleccionadas se minimice. Determine los segmentos de las vías fe-
rroviarias que deben incluirse en el programa de revitalización.

4. La figura 6.9 da la distancia en millas de los vínculos factibles que conectan nueve cabe-
zales de pozos de gas natural localizados a una cierta distancia de la costa con un punto
de distribución costero. Como el cabezal del pozo 1 es el más cercano a la costa, dispo-
ne de una suficiente capacidad de bombeo y almacenamiento para bombear la produc-
ción de los ocho pozos restantes al punto de distribución. Determine la red de oleoductos
mínima que vincule los cabezales de los pozos al punto de distribución.

*5. En la figura 6.9 del problema 4, suponga que los cabezales de los pozos pueden dividirse
en dos grupos según la presión del gas: un grupo de alta presión que incluye los pozos 2,
3, 4 y 6, y un grupo de baja presión que incluye los pozos, 5, 7, 8 y 9. Debido a la diferen-
cia de presión, no es posible vincular los pozos de los dos grupos. Al mismo tiempo,

FIGURA 6.8

Red para el problema 3, conjunto 6.2a
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FIGURA 6.9

Red para el problema 4, conjunto 6.2a
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ambos grupos deben conectarse al punto de distribución a través del pozo 1. Determine
la red de oleoductos mínima para esta situación.

6. Electro produce 15 piezas electrónicas en 10 máquinas. La compañía desea agrupar las
máquinas en celdas para minimizar las “disparidades” entre las piezas procesadas en
cada celda. Una medida de “disparidad”, dij, entre las piezas procesadas con las máquinas
i y j puede expresarse como 

donde nij es la cantidad de piezas compartidas entre las máquinas i y j, y mij es la canti-
dad de piezas procesadas o por la máquina i o por la máquina j únicamente.

La siguiente tabla asigna las piezas a las máquinas:

dij = 1 -  
nij

nij + mij

Máquina Piezas asignadas

1 1, 6
2 2, 3, 7, 8, 9, 12, 13, 15
3 3, 5, 10, 14
4 2, 7, 8, 11, 12, 13
5 3, 5, 10, 11, 14
6 1, 4, 5, 9, 10
7 2, 5, 7, 8, 9, 10
8 3, 4, 15
9 4, 10

10 3, 8, 10, 14, 15

(a) Exprese el problema como un modelo de red.
(b) Demuestre que la determinación de las celdas puede basarse en la solución del árbol

de mínima expansión.
(c) Para los datos dados en la tabla anterior, construya las soluciones de dos y tres celdas.
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6.3 PROBLEMA DE LA RUTA MÁS CORTA

Este problema determina la ruta más corta entre un origen y un destino en una red de
transporte. El mismo modelo puede representar otras situaciones, como se ilustra con
los siguientes ejemplos.

6.3.1 Ejemplos de aplicaciones de la ruta más corta

Ejemplo 6.3-1 (Reemplazo de equipo)

RentCar está desarrollando una política de reemplazo para su flotilla de automóviles en un ho-
rizonte de planeación de 4 años. Al inicio de cada año, un automóvil se reemplaza o se conserva
en operación durante un año más. Un automóvil debe estar en servio de 1 a 3 años. La siguiente
tabla proporciona el costo de reemplazo como una función del año en que se adquiere un au-
tomóvil y los años en operación.

Equipo adquirido
al inicio del año

Costo de reemplazo ($) para años dados en operación

1 2 3

1 4000 5400 9800
2 4300 6200 8700
3 4800 7100 —
4 4900 — —

El problema puede formularse como una red en la que los nodos 1 a 5 representan el inicio
de los años 1 a 5. Los arcos a partir del nodo 1 (año 1) pueden llegar a los nodos 2, 3 y 4 porque
un automóvil puede estar en operación de 1 a 3 años. Los arcos a partir de los demás nodos pue-
den interpretarse del mismo modo. La longitud de cada arco es igual al costo de reemplazo. La
solución del problema es equivalente a determinar la ruta más corta entre los nodos 1 y 5.

La figura 6.10 muestra la red resultante. Utilizando TORA,2 la ruta más corta es 1 S 3 S 5.
La solución indica que un automóvil adquirido al inicio del año 1 (nodo 1) debe reemplazarse
después de 2 años al inicio del año 3 (nodo 3). El automóvil de reemplazo se mantendrá enton-

2En la barra de menús , seleccione las opciones . En el menú
seleccione las opciones .Shortest routesQSolve problemSOLVE/MODIFY

Shortest routeQNetwork modelsMain

FIGURA 6.10

Problema de reemplazo de equipo como un modelo de la ruta más corta
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ces en servicio hasta finales del año 4. El costo total de esta política de reemplazo es de $12,500
(5 $5400 1 $7100).

Ejemplo 6.3-2 (Ruta más confiable)

I. Q. Smart va en auto diariamente al trabajo. Habiendo completado un curso de análisis de
redes, Smart es capaz de determinar la ruta más corta al trabajo. Por desgracia, la ruta seleccio-
nada está fuertemente patrullada por la policía, y con todas las multas pagadas por exceso de ve-
locidad, la ruta más corta puede no ser la mejor opción. Smart ha decidido por lo tanto elegir una
ruta que maximice la probabilidad de no ser detenido por la policía.

La red en la figura 6.11 muestra las posibles rutas de la casa al trabajo y la probabilidad aso-
ciada de no ser detenido en cada segmento. La probabilidad de no ser detenido en la ruta es el
producto de las probabilidades de sus segmentos. Por ejemplo, la probabilidad de no ser multa-
do en la ruta 1 S 3 S 5 S 7 es .9 3 .3 3 .25 5 .0675. El objetivo de Smart es seleccionar la ruta
que maximice la probabilidad de no ser multado.

El problema puede formularse como un modelo de la ruta más corta por medio de una
transformación logarítmica para convertir el producto de las probabilidades en la suma de los lo-
garitmos de las probabilidades, esto es, p1k 5 p1 3 p2 3 … 3 pk se transforma en log p1k 5 log
p1 1 log p2 1 … 1 log pk.

Las dos funciones p1k y log p1k son monótonas y decrecen en k, así pues, maximizar p1k es
equivalente a maximizar log p1k, lo que a su vez equivale a minimizar log p1k. Por lo tanto, al
reemplazar pj con log pj para todas las j en la red, el problema se convierte en la red de la ruta
más corta en la figura 6.12.

FIGURA 6.11

Modelo de red de la ruta más confiable 
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FIGURA 6.12

Representación de la ruta más confiable como un modelo de la ruta más corta
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Utilizando TORA, la ruta más corta en la figura 6.12 pasa por los nodos 1, 3, 5 y 7 con una
“longitud” correspondiente de 1.1707, o log p17 5 21.1707. Así, la probabilidad máxima de no
ser detenido es p17 5 1021.1707 5 .0675, ¡una noticia no muy alentadora para Smart!

Ejemplo 6.3-3 (Acertijo de las tres jarras)

Una jarra de 8 galones está llena de líquido. Dado que hay dos jarras vacías de 5 y 3 galones, di-
vida los 8 galones de líquido en dos partes iguales utilizando sólo las tres jarras. ¿Cuál es el míni-
mo de transferencias (decantaciones) necesarias para obtener este resultado?

Probablemente pueda resolver este acertijo mediante inspección. No obstante, el proceso de
solución puede ser sistematizado al representar la cuestión como un problema de la ruta más corta.

Se define un nodo mediante un subíndice triple que representa las cantidades de líquido en
las jarras de 8, 5 y 3 galones, respectivamente. Esto quiere decir que la red se inicia con el nodo
(8,0,0) y termina con la solución deseada (4,4,0). Se genera un nuevo nodo a partir del nodo ac-
tual decantando líquido de una jarra a otra.

La figura 6.13 muestra las diferentes rutas que llevan del nodo de inicio (8,0,0) al nodo final
(4,4,0). El arco entre dos nodos sucesivos representa una sola transferencia, y de ahí que pode-
mos suponer que tenemos una longitud de una unidad. El problema se reduce por lo tanto a deter-
minar la ruta más corta entre el nodo (8,0,0) y el nodo (4,4,0).

La solución óptima dada por la ruta de la figura 6.13 requiere 7 decantaciones.

CONJUNTO DE PROBLEMAS 6.3A

*1. Reconstruya el modelo de reemplazo de equipo del ejemplo 6.3-1 suponiendo que un au-
tomóvil debe mantenerse en servicio al menos durante 2 años con una vida de servicio
máxima de 4. El horizonte de planificación abarca desde el principio del año 1 hasta fina-
les del año 5. La siguiente tabla proporciona los datos necesarios.

FIGURA 6.13

Representación del acertijo de las tres jarras como un modelo de la ruta más corta
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2. La figura 6.14 muestra la red de comunicación entre dos estaciones, 1 y 7. La probabili-
dad de que un enlace en la red opere sin fallas se muestra en cada arco. Se envían mensa-
jes de la estación 1 a la estación 7, y el objetivo es determinar la ruta que maximice la
probabilidad de una transmisión exitosa. Formule la situación como un modelo de la ruta
más corta, y determine la solución óptima.

3. Planificación de la producción. DirectCo vende mercancía cuyas demandas a lo largo de
los próximos 4 meses son 100, 140, 210 y 180 unidades, respectivamente. La compañía
puede mantener existencias suficientes para satisfacer la demanda de cada mes, o bien
tener existencias de más para satisfacer la demanda de dos o más meses consecutivos. En
el último caso, se carga un costo de retención de $1.20 por cada unidad de más por mes.
Direct Co estima que los precios de compra unitarios durante los siguientes 4 meses
deben ser de $15, $12, $10 y $14, respectivamente. Se incurre en un costo de preparación
de $200 cada vez que se coloca un pedido de compra. La compañía desea desarrollar un
plan de compra que minimice los costos totales de colocar un pedido, comprar y retener
la mercancía en existencia. Formule el problema como un modelo de la ruta más corta, y
use TORA para determinar la solución óptima.

*4. Problema de Knapsack. Un ciclista utiliza una mochila de 5 pies3 y tiene que decidir
sobre los artículos más valiosos que hay que llevar en un viaje. Hay tres artículos a esco-
ger. Sus volúmenes son de 2, 3 y 4 pies3; el ciclista estima que sus valores asociados en
una escala del 0 al 100 son 30, 50 y 70, respectivamente. Exprese el problema como una
red de la ruta más larga, y determine la solución óptima. (Sugerencia: Un nodo en la red
puede definirse como [i,v], donde i es el número del artículo considerado para empacarse
y v es el volumen restante inmediatamente antes de decidir sobre i. Para resolverlo con

FIGURA 6.14

Red para el problema 2, conjunto 6.3a
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TORA, convierta el problema de ruta más larga en uno de ruta más corta, utilizando una
longitud de arco negativa.)

5. Un tostador eléctrico antiguo tiene dos puertas de gozne accionadas por resorte. Las dos
puertas se abren hacia afuera en direcciones opuestas lejos del elemento calefactor. Una
rebanada de pan se tuesta por un lado a la vez, al empujar una de las puertas para que se
abra y colocar la rebanada con la otra mano. Después de que se tuesta un lado, se le da
vuelta a la rebanada para tostar el otro lado. El objetivo es determinar la secuencia de
operaciones (colocar, tostar, dar vuelta y sacar) necesarias para tostar las tres rebanadas
de pan en el menor tiempo posible. Formule el problema como un modelo de ruta más
corta, aplicando los siguientes tiempos elementales de las diferentes operaciones:

Operación Tiempo (segundos)

Colocar una rebanada en cualquier lado del tostador 3
Tostar un lado 30
Darle vuelta a la rebanada que ya está en el tostador 1
Sacar la rebanada de cualquier lado del tostador 3

6.3.2 Algoritmos de la ruta más corta

Esta sección presenta dos algoritmos para resolver tanto redes cíclicas (es decir, que
contienen bucles) como redes acíclicas:

1. El algoritmo de Dijkstra para determinar las rutas más cortas entre el nodo ori-
gen y los demás nodos en la red.

2. El algoritmo de Floyd para determinar la ruta más corta entre dos nodos cuales-
quiera en la red.

En esencia, el algoritmo de Floyd incluye a Dijkstra.

Algoritmo de Dijkstra. Sea ui la distancia más corta del nodo origen 1 al nodo i, y
defina dij ($ 0) como la longitud del arco (i,j). El algoritmo define la etiqueta para un
nodo j que sigue inmediatamente como

La etiqueta para el nodo de inicio es [0, 2], que indica que el nodo no tiene predecesor.
Las etiquetas de nodo en el algoritmo de Dijkstra son de dos tipos: temporales y

permanentes. Una etiqueta temporal en un nodo se modifica si puede hallarse una ruta
más corta al nodo. De lo contrario, el estado temporal cambia a permanente.

Paso 0. Etiquete el nodo de origen (nodo 1) con la etiqueta permanente [0, 2].
Establezca i 5 1.

Paso general i:
(a) Calcule las etiquetas temporales [ui 1 dij, i] para cada nodo j con dij . 0,

siempre que j no esté etiquetado permanentemente. Si el nodo j ya tiene
una etiqueta temporal existente [uj, k] hasta otro nodo k y si ui + dij ,

uj, reemplace [uj, k] con [ui 1 dij, i].

[uj, i] = [ui + dij, i],  dij Ú 0
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(b) Si todos los nodos tienen etiquetas permanentes deténgase. De lo con-
trario, seleccione la etiqueta [ur, s] que tenga la distancia más corta 
(5 ur) entre todas las etiquetas temporales (rompa los empates arbitra-
riamente). Establezca i 5 r y repita el paso i.

Ejemplo 6.3-4

La red de la figura 6.15 da las rutas permisibles y sus longitudes en millas entre la ciudad 1 (nodo
1) y las otras cuatro ciudades (nodos 2 a 5). Determine las rutas más cortas entre la ciudad 1 y
cada una de las cuatro ciudades restantes.

Iteración 0. Asigne una etiqueta permanente [0, 2] al nodo 1.
Iteración 1. Se puede llegar a los nodos 2 y 3 desde el nodo 1 (el último etiquetado perma-

nentemente). Así, la lista de nodos etiquetados (temporales y permanentes) es

Nodo Etiqueta Estado

1 [0, —] Permanente

2 [0 + 100, 1] = [100, 1] Temporal 

3 [0 + 30, 1] = [30, 1] Temporal 

Nodo Etiqueta Estado

1 [0, —] Permanente

2 [100, 1] Temporal

3 [30, 1] Permanente

4 [30 + 10, 3] = [40, 3] Temporal

5 [30 + 60, 3] = [90, 3] Temporal

FIGURA 6.15

Ejemplo de red para el algoritmo de la ruta más corta de Dijkstra
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Para las dos etiquetas temporales [100,1] y [30,1], el nodo 3 da la distancia míni-
ma (u3 5 30). De este modo, el estado del nodo 3 cambia a permanente.

Iteración 2. Se puede llegar a los nodos 4 y 5 desde el nodo 3, y la lista de los nodos etique-
tados es

La etiqueta temporal [40,3] en el nodo 4 ahora es permanente (u4 5 40).



6.3 Problema de la ruta más corta 223

Iteración 3. Desde el nodo 4 se puede llegar a los nodos 2 y 5 Así, la lista de los nodos eti-
quetados se actualiza como

En el nodo 2, la nueva etiqueta [55,4] reemplaza a la etiqueta temporal [100,1]
de la iteración 1 porque proporciona una ruta más corta. Además, en la itera-
ción 3 el nodo 5 tiene dos etiquetas alternativas con la misma distancia (u5 5

90). La etiqueta temporal [55,4] en el nodo 2 ahora es permanente (u2 5 55).
Iteración 4. Sólo el nodo 3 permanentemente etiquetado puede ser alcanzado desde el nodo

2. Por consiguiente el nodo 3 no puede ser reetiquetado. La nueva lista de eti-
quetas permanece como estaba en la iteración 3 excepto que la etiqueta en el
nodo 2 ahora es permanente. Esto deja al nodo 5 como la única etiqueta tempo-
ral. Como el nodo 5 no conduce a otros nodos, su etiqueta se hace permanente, y
el proceso termina.

Los cálculos del algoritmo pueden realizarse directamente en la red, como lo demuestra la
figura 6.16.

La ruta más corta entre el nodo 1 y cualquier otro nodo en la red se determina partiendo del
nodo destino deseado y retrocediendo hasta el nodo de inicio utilizando la información en las
etiquetas permanentes. Por ejemplo, la siguiente secuencia determina la ruta más corta del nodo
1 al nodo 2:

Por lo tanto, la ruta deseada es 1 S 3 S 4 S 2 con una distancia total de 55 millas.

(2): [55, 4]: (4): [40, 3]: (3): [30, 1]: (1)

Nodo Etiqueta Estado

1 [0, —] Permanente

2 [40 + 15, 4] = [55, 4] Temporal

3 [30, 1] Permanente

4 [40, 3] Permanente

5 o[90, 3]

[40 + 50, 4] = [90, 4] Temporal
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FIGURA 6.16

Procedimiento de etiquetado en el algoritmo de Dijkstra
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Momento de TORA

Puede usarse TORA para generar las iteraciones de Dijkstra. En el menú se-
leccione las opciones . El archivo toraEx3-
4.txt proporciona los datos para el ejemplo 6.3-4.

CONJUNTO DE PROBLEMAS 6.3B

1. La red de la figura 6.17 presenta las distancias en millas entre pares de ciudades 1,2,…,8.
Use el algoritmo de Dijkstra para determinar la ruta más corta entre las siguientes ciudades:
(a) Ciudades 1 y 8
(b) Ciudades 1 y 6

*(c) Ciudades 4 y 8
(d) Ciudades 2 y 6 

2. Utilice el algoritmo de Dijkstra para hallar la ruta más corta entre el nodo 1 y cualquier
otro nodo en la red de la figura 6.18.

3. Utilice el algoritmo de Dijkstra para determinar la solución óptima de cada uno de los si-
guientes problemas:
(a) Problema 1, conjunto 6.3a.
(b) Problema 2, conjunto 6.3a.
(c) Problema 4, conjunto 6.3a.

Dijkstra’s algorithmQIterationsQSolve problem
SOLVE/MODIFY

FIGURA 6.17

Red para el problema 1, conjunto 6.3b
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FIGURA 6.18

Red para el problema 2, conjunto 6.3b
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Algoritmo de Floyd. Este algoritmo es más general que el Dijkstra porque determina
la distancia entre dos nodos cualesquiera en la red. El algoritmo representa una red de
n nodos como una matriz cuadrada con n filas y n columnas. La entrada (i,j) de la
matriz da la distancia dij del nodo i al nodo j, la cual es finita si i está vinculado
directamente a j, e infinita en caso contrario.

La idea del algoritmo de Floyd es simple. Dados tres nodos, i, j y k en la figura
6.19 con las distancias de conexión que se muestran en los tres arcos, es más corto lle-
gar de j a i pasando por k si 

En este caso es óptimo reemplazar la ruta directa de i S j con la ruta indirecta i S k S j.
Este intercambio de operación triple se aplica a la matriz de distancias por medio de
los siguientes pasos:

Paso 0. Defina la matriz de la distancia de inicio D0 y la matriz de secuencia de nodos S0
(todos los elementos en las diagonales están bloqueados). Establezca k 5 1.

dik + dkj 6 dij

FIGURA 6.19

Operación triple de Floyd
i

k

j

dkjdik

dij

1 2 Á j Á n

1 — d12 Á dij Á d1n

2 d21 — Á d2j Á d2n

o o o o o o o

D0 = I di1 di2 Á dij Á din

o o o o o o o

N Dn1 dn2 Á dnj Á -

1 2 Á j Á n

1 — 2 Á j Á n

2 1 — Á j Á n

S0 = o o o o o o o

i 1 2 Á j Á n

o o o o o o o

n 1 2 Á j Á —

Paso general k. Defina la fila k y la columna k como fila pivote y columna pivote.
Aplique la operación triple a cada elemento dij en Dk21, para todas las i y j. Si
la condición

dik + dkj 6 dij, (i Z k, j Z k, y i Z j)
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se satisface, realice los siguientes cambios:

a. Cree Dk reemplazando dij en Dk21 con dik 1 dkj.
b. Cree Sk reemplazando sij en Sk21 con k. Establezca k 5 k 1 1. Si k 5 n 1 1,

deténgase: de lo contrario repita el paso k.

El paso k del algoritmo puede explicarse representando Dk21 como se muestra
en la figura 6.20.Aquí, la fila k y la columna k definen la fila y columna pivote actuales. La
fila i representa cualquiera de las filas 1, 2,…, y k 2 1, y la fila p representa cualquiera
de las filas k 1 1, k 1 2,…, y n. Asimismo, la columna j representa cualquiera de las co-
lumnas 1, 2,…, y k 2 1, y la columna q representa cualquiera de las columnas k 1 1, k 1

2,…, y n. La operación triple puede aplicarse como sigue: Si la suma de los elementos
en la fila pivote y la columna (mostrados por cuadrados) es menor que el elemento de
intersección asociado (mostrado por un círculo), entonces es óptimo reemplazar la dis-
tancia de intersección por la suma de las distancias pivote.

Después de n pasos, podemos determinar la ruta más corta entre los nodos i y j a
partir de las matrices Dn y Sn aplicando las siguientes reglas:

1. dij, a partir de Dn, da la ruta más corta entre los nodos i y j.
2. A partir de Sn, determine el nodo intermedio k 5 sij que da en resultado la ruta

i S k S j. Si sik 5 k y skj 5 j, deténgase; todos los nodos intermedios de la ruta han
sido encontrados. De lo contrario, repita el procedimiento entre los nodos i y k
y entre los nodos k y j.

Ejemplo 6.3-5

Para la red de la figura 6.21, halle las rutas más cortas entre cada dos nodos. Las distancias (en
millas) se dan en los arcos. El arco (3,5) es direccional, es decir, no se permite el tráfico del nodo
5 al nodo 3. Todos los demás arcos permiten el tráfico en dos direcciones.

FIGURA 6.20

Implementación de la operación
triple en forma de matriz

dij diqdik

Columna
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Columna
q

Columna
pivote
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dpj dpqdpk

dkj

Fila i

Fila p

Fila pivote k dkq
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Iteración 0. Las matrices D0 y S0 dan la representación inicial de la red. D0 es simétrica, ex-
cepto que d53 5 q porque no se permite tráfico del nodo 5 al nodo 3.

D0 S0

1 2 3 4 5 1 2 3 4 5

1 — 3 10 q q 1 — 2 3 4 5
2 3 — q 5 q 2 1 — 3 4 5
3 10 q — 6 15 3 1 2 — 4 5
4 q 5 6 — 4 4 1 2 3 — 5
5 q q q 4 — 5 1 2 3 4 —

D1 S1

1 2 3 4 5 1 2 3 4 5

1 — 3 10 q q 1 — 2 3 4 5
2 3 — 13 5 q 2 1 — 1 4 5
3 10 13 — 6 15 3 1 1 — 4 5
4 q 5 6 — 4 4 1 2 3 — 5
5 q q q 4 — 5 1 2 3 4 —

Iteración 1. Establezca k 5 1. La fila y columna pivotes se muestran por la primera fila y la
primera columna ligeramente sombreadas en la matriz D0. Las celdas más oscu-
ras, d23 y d32, son las únicas que la operación triple puede mejorar. Por lo tanto,
D1 y S1 se obtienen desde D0 y S0 como sigue:

1. Reemplace d23 con d21 1 d13 5 3 1 10 5 13 y establezca s23 5 1.
2. Reemplace d32 con d31 1 d12 5 10 1 3 5 13 y establezca s32 5 1.

Estos cambios se muestran en negritas en las matrices D1 y S1.

FIGURA 6.21

Red para el ejemplo 6.3-5
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D2 S2

1 2 3 4 5 1 2 3 4 5

1 — 3 10 8 q 1 — 2 3 2 5
2 3 — 13 5 q 2 1 — 1 4 5
3 10 13 — 6 15 3 1 1 — 4 5
4 8 5 6 — 4 4 2 2 3 — 5
5 q q q 4 — 5 1 2 3 4 —

Iteración 2. Establezca k 5 2, como se muestra mediante la fila y columna ligeramente som-
breada en D1. La operación triple se aplica a las celdas más oscuras en D1 y S1.
Los cambios resultantes se muestran en negritas en D2 y S2.
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Iteración 4. Establezca k 5 4, como se muestra por la fila y columna sombreadas en D3. Las
nuevas matrices son D4 y S4.

Iteración 5. Establezca k 5 5, como se muestra mediante la fila y columna sombreadas en D4.
No son posibles más mejoras en esta iteración.

Las matrices finales D4 y S4 contienen toda la información necesaria para determinar la
ruta más corta entre dos nodos cualesquiera en la red. Por ejemplo, desde D4, la distancia más
corta del nodo 1 al nodo 5 es d15 5 12 millas. Para determinar la ruta asociada, recordemos que
un segmento (i,j) representa un vínculo directo sólo si sij 5 j. De lo contrario, i y j están vincula-

D4 S4

1 2 3 4 5 1 2 3 4 5

1 — 3 10 8 12 1 — 2 3 2 4
2 3 — 11 5 9 2 1 — 4 4 4
3 10 11 — 6 10 3 1 4 — 4 4
4 8 5 6 — 4 4 2 2 3 — 5
5 12 9 10 4 — 5 4 4 4 4 —

D3 S3

1 2 3 4 5 1 2 3 4 5

1 — 3 10 8 25 1 — 2 3 2 3
2 3 — 13 5 28 2 1 — 1 4 3
3 10 13 — 6 15 3 1 1 — 4 5
4 8 5 6 — 4 4 2 2 3 — 5
5 q q q 4 — 5 1 2 3 4 —

Iteración 3. Establezca k 5 3, como se muestra por la fila y columna sombreadas en D2. Las
nuevas matrices son D3 y S3.

dos por al menos otro nodo intermedio. Como s15 5 4 Z 5, la ruta inicialmente se da como 1 S 4
S 5. Ahora, como s14 5 2 p 4, el segmento (1,4) no es un vínculo directo, y 1 S 2 S 4 reemplaza
a 1 S 4, y la ruta 1 S 4 S 5 ahora se vuelve 1 S 2 S 4 S 5. Luego, como s12 5 2, s24 5 4, y s45
5 5, no se requieren más “disecciones”, y 1 S 2 S 4 S 5 define la ruta más corta.

Momento de TORA

Como en el algoritmo de Dijkstra, TORA puede usarse para generar las iteraciones de Floyd.
En el menú seleccione las opciones

. El archivo toraEx6.3-5.txt proporciona los datos para el ejemplo 6.3-5.

CONJUNTO DE PROBLEMAS 6.3C

1. En el ejemplo 6.3-5, use el algoritmo de Floyd para determinar las rutas más cortas entre
cada uno de los siguientes pares de nodos:

*(a) Del nodo 5 al nodo 1.
(b) Del nodo 3 al nodo 5.

Floyd’s algorithm
QIterationsQSolve problemSOLVE/MODIFY
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(c) Del nodo 5 al nodo 3.
(d) Del nodo 5 al nodo 2.

2. Aplique el algoritmo de Floyd a la red de la figura 6.22. Los arcos (7,6) y (6,4) son unidi-
reccionales, y todas las distancias están en millas. Determine la ruta más corta entre los
siguientes pares de nodos:
(a) Del nodo 1 al nodo 7.
(b) Del nodo 7 al nodo 1.
(c) Del nodo 6 al nodo 7.

3. La compañía de telefonía celular Tell-All da servicio a seis áreas geográficas. Las distan-
cias de satélite (en millas) entre las seis áreas se dan en la figura 6.23. Tell-All necesita
determinar las rutas más eficientes para enviar los mensajes que deban establecerse entre
cada dos áreas en la red.

*4. Seis niños, Joe, Kay, Jim, Bob, Rae y Kim juegan una variante del juego infantil de las es-
condidas. Sólo algunos de los niños conocen el escondite de un niño. Luego un niño hace
pareja con otro con el objetivo de encontrar el escondite del compañero. Esto puede lo-
grarse mediante una cadena de otros niños que finalmente permitirá descubrir el escon-
dite del niño designado. Por ejemplo, suponga que Joe tiene que encontrar a Kim y que
Joe sabe dónde está escondido Jim, quien a su vez sabe dónde está escondido Kim. Por lo
tanto, Joe puede encontrar a Kim si halla primero a Jim, quien a su vez conducirá a Joe al
escondite de Kim. La siguiente lista proporciona los paraderos de los niños:

Joe conoce los escondites de Bob y Kim.
Kay conoce los escondites de Bob, Jim y Rae.
Jim y Bob conocen sólo el escondite de Kay.
Rae conoce el escondite de Kim.
Kim conoce los escondites de Joe y Bob.

Idee un plan para que cada niño encuentre a todos los demás niños utilizando el número
mínimo de contactos. ¿Cuál es el número máximo de contactos?

FIGURA 6.22

Red para el problema 2, conjunto 6.3c
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FIGURA 6.23

Red para el problema 3, conjunto 6.3c 
2

4

6

300

300

400

600

200

200

100

700

700

500

5

1

3



230 Capítulo 6 Modelo de redes

6.3.3 Formulación de programación lineal del problema de la ruta más corta

Esta sección proporciona un modelo de PL para el problema de la ruta más corta. El
modelo es general en el sentido de que puede utilizarse para determinar la ruta más
corta entre dos nodos cualesquiera en la red. Al respecto, es equivalente al algoritmo
de Floyd.

Deseamos determinar la ruta más corta entre cualquiera de dos nodos s y t en
una red de n nodos. La PL asume que una unidad de flujo entra a la red por el nodo s y
que sale por el nodo t.

Defina

Por lo tanto, la función objetivo del programa lineal es

Las restricciones representan la ecuación de la conservación del flujo en cada nodo:

Flujo de entrada total 5 Flujo de salida total

Matemáticamente, esto se traduce así para el nodo j

Ejemplo 6.3-6

En la red del ejemplo 6.3-4, supongamos que deseamos determinar la ruta más corta del nodo 1
al nodo 2; es decir, s 5 1 y t 5 2. La figura 6.24 muestra cómo entra la unidad de flujo en el nodo
1 y sale en el nodo 2.

En la red podemos ver que la ecuación de la conservación del flujo da por resultado

Nodo 1: 1 = 
Nodo 2:
Nodo 3:
Nodo 4:
Nodo 5: x35 + x45 = 0

x34 = x42 + x45

x13 + x23 = x34 + x35

x12 + x42 = x23 + 1
x12 + x13

aEntrada externa
al nodo j

b + a
i

todos los arcos 
definidos 1i, j2

xij = aSalida externa
del nodo j

b + a
k

todos los arcos 
definidos 1j, k2

xjk

Minimizar z = a
todos los arcos 
definidos 1i, j2cijxij

 cij =  longitud del arco (i, j)

 = e1, si el arco 1i, j2 está en la ruta más corta
0, de lo contrario

 xij = cantidad de flujo en el arco (i, j)
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La PL completa se expresa como

FIGURA 6.24

Inserción de un flujo unitario para determinar la ruta más corta entre el nodo s 5 1 y el nodo t 5 2
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x12 x13 x23 x34 x35 x42 x45

Minimizar z = 100 30 20 10 60 15 50

Nodo 1 1 1 = 1
Nodo 2 -1 1 -1 = -1
Nodo 3 -1 -1 1 1 = 0
Nodo 4 -1 1 1 = 0
Nodo 5 -1 -1 = 0

Observe que la columna xij tiene exactamente un “1” en la fila i y un “21” en la fila j, una pro-
piedad típica de una PL de red.

La solución óptima (obtenida por TORA, archivo toraEx6.3-6.txt) es 

Esta solución ofrece la ruta más corta del nodo 1 al nodo 2 como 1 S 3 S 4 S 2, y la distancia
asociada es z 5 55 (millas).

Comentarios. En la PL dada, la restricción del nodo 5 indica que x15 5 x45 5 0. El tamaño de
la PL puede reducirse si se eliminan las columnas x35 y x45 (lo cual elimina automáticamente la
restricción del nodo 5).

CONJUNTO DE PROBLEMAS 6.3D

1. En el ejemplo 6.3-6, use programación lineal para determinar la ruta más corta entre los
siguientes pares de nodos:

*(a) Nodo 1 al nodo 5.
(b) Nodo 2 al nodo 5.

z = 55, x13 = 1, x34 = 1, x42 = 1
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FIGURA 6.25

Solución obtenida con Excel Solver de la ruta más corta entre los nodos 1 y 2 en el ejemplo 6.3-6 (archivo
solverEx6.3-6.xls) 

Momento de Solver 

La figura 6.25 proporciona la hoja de cálculo Excel Solver para encontrar la ruta más corta entre el
nodo N1 de inicio y el nodo N2 de terminación del ejemplo 6.3-6 (archivo solverEx6.3.xls). Los datos
de entrada del modelo son la matriz de distancias en las celdas B3:E6. El nodo N1 no tiene ninguna
columna porque no tiene arcos de entrada, y el nodo 5 no tiene ninguna fila porque no tiene arcos
de salida. Una celda en blanco representa un segmento de ruta no existente (es decir, un arco de lon-
gitud infinita). (En breve veremos cómo se reconoce la presencia de celdas en blanco en las fórmu-
las de la hoja de cálculo.) Los nodos N1 y N2 se designan como nodos de inicio y terminación ingre-
sando un 1 en F3 y B7, respectivamente. Estas designaciones pueden cambiarse como se desee. Por
ejemplo, para determinar la ruta más corta del nodo N2 al nodo N4, ingrese 1 en F4 y D7.

Como se explica en la PL del ejemplo 6.3-6, las restricciones del problema tienen la forma
general:

(Flujo de salida neto) 2 (Flujo de entrada neto) 5 0

Esta definición se adapta al diseño de la hoja de cálculo al incorporar el flujo unitario externo di-
rectamente al flujo de salida neto y al flujo de entrada neto de la ecuación, es decir,

En la hoja de cálculo, B3:E6 designa la matriz de distancias de entrada, B9:E12 designa las
celdas de solución, F3:F6 designa el flujo unitario de salida (externo), y B7:E7 designa el flujo
unitario de entrada (externo). Por lo tanto,

C £ flujo de arcos de
salida de Ni a todos

los demás nodos
≥ - £ flujo de

entrada externo
a Ni

≥ S - C £ flujo de arcos de
entrada a Ni de todos

los demás nodos
≥ - £ flujo de

salida externo
de Ni

≥ S
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La suposición de esta hoja de cálculo es que las celdas en blanco en la matriz de distancias
B3:E6 representan rutas bloqueadas. Podemos utilizar SUMIF en lugar de SUM, para tener en
cuenta de forma automática esta condición.3 Las dos instrucciones siguientes muestran cómo se
ingresan las fórmulas modificadas en la hoja de cálculo.

1. Ingrese = SUMIF(B3:E3,”>0”,B9:E9)-F3 en la celda F9 y cópielo en las celdas
F10:F12.

2. Ingrese = SUMIF(B3:B6,”>0”,B9:B12)-B7 en la celda B14 y cópiela en las celdas
C14:E14.

El resto de las fórmulas de la hoja de cálculo se ingresan como sigue:

1. Ingrese = OFFSET(A$14,0,ROW(A1)) en la celda G10 y cópiela en las celdas G11:G13
para transponer el flujo de entrada a la columna G.

2. Ingrese 0 en G9 y F13 para indicar que N1 no tiene arcos de entrada ni flujo unitario de
salida externo y que N5 no tiene arcos de salida o flujo de entrada unitario externo.

3. Ingrese = F9-G9 en la celda H9 y cópiela en las celdas H10:H13 para calcular el flujo neto.
4. Para la función objetivo, ingrese en la celda G14 =SUMPRODUCT(B3:E6,B9:E12) o,

de forma equivalente, =SUMPRODUCT(distance,solution).

La hoja de cálculo ya está lista para la aplicación de Solver en la figura 6.25. Las celdas B9:E12
representan la solución del modelo. Si la celda (Ni,Nj) 5 1, entonces el segmento (Ni,Nj) está en la
ruta más corta. La pantalla de resultados en la figura 6.25 da la solución (N1 2 N3 5 1, N3 2 N4 5 1
y N4 2 N2 5 1). La ruta óptima es 1 S 3 S 4 S 2, con una distancia total de 55 millas.4

Comentarios. En la mayoría de los libros de texto, los arcos explícitos (nodo i, nodo j, distancia)
definen la red como un modelo incómodo de manejar, sobre todo cuando la cantidad de arcos es
grande. Nuestro modelo está controlado por la matriz de distancias compacta (B3:E6) y sus flu-
jos externos (E3:E6) y B7:E7). Se puede argumentar, sin embargo, que nuestro modelo podría
manejar una cantidad mucho más grande de variables. Digamos que el ejemplo 6.3-6 tiene 7
arcos y por consiguiente 7 variables, en contraste con 4 3 4 5 16 variables en nuestra formu-
lación. Tenga en cuenta que si se utiliza SUMIF, las restricciones del flujo son exactamente las
mismas que en otras presentaciones. Esto quiere decir que las 9 variables adicionales aparecen
sólo en la función objetivo y con coeficientes cero (entradas en blanco en B3:B6). En conse-
cuencia, los pre-resolvedores en paquetes de software comerciales detectarán esta “peculiari-
dad” y de forma automática excluirán las variables adicionales de la función objetivo antes de
resolver el problema, con lo que producirán el mismo modelo como en otras presentaciones.

  Ecuación del nodo N5: [0 - 0] - [SUM(E9:E12) - E7] = 0

 Ecuación del nodo N4: [SUM(B12:E12) - F6] - [SUM(D9:D12) - D7] = 0

 Ecuación del nodo N3: [SUM(B11:E11) - F5] - [SUM(C9:C12) - C7] = 0

 Ecuación del nodo N2: [SUM(B10:E10) - F4] - [SUM(B9:B12) - B7] = 0

 Ecuación del nodo N1: [SUM(B9:E9) - F3] - [0 - 0] = 0

3La idea es que la hoja de cálculo trata una celda en blanco como un valor cero. Si sucede que un problema
tiene una distancia cero entre nodos, la distancia cero puede reemplazarse con un valor positivo muy pequeño.
4La solución del modelo presenta una curiosa ocurrencia. Si la restricción netFlow = 0 se reemplaza con
outFlow = inFlow en el cuadro de diálogo Solver Parameters, Solver no determina una solución factible,
incluso si se ajusta la precisión en el cuadro de diálogo Solver Option. (Para reproducir esta experiencia, las
celdas de solución B9:E12 deben ser cero o estar vacías.) Aún más curioso, si las restricciones se reemplazan
con inFlow = outFlow, se encuentra la solución óptima. No está claro por qué ocurre esta peculiaridad, pero
el problema puede estar relacionado con error de redondeo.
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Momento de AMPL

El archivo amplEx6.3-6a.txt proporciona el modelo para resolver el ejemplo 6.3-6. El modelo es
general en el sentido de que puede usarse para determinar la ruta más corta entre dos nodos
cualesquiera en un problema de cualquier tamaño. El modelo se explica en la sección C.9 en el
sitio web.

CONJUNTO DE PROBLEMAS 6.3E

1. Modifique el archivo solverEx6.3-6.xls para determinar la ruta más corta entre los si-
guientes pares de nodos:
(a) Nodo 1 a nodo 5.
(b) Nodo 4 a nodo 3.

2. Adapte el archivo amplEx6.3-6b.txt para el problema 2, conjunto 6.3a, para hallar la ruta
más corta entre el nodo 1 y el nodo 7. Los datos de entrada deben ser las probabilidades
puras. Use las funciones de programación para imprimir y visualizar en pantalla la ruta
de transmisión óptima y su probabilidad de éxito.

6.4 MODELO DE FLUJO MÁXIMO

Considere una red de oleoductos que transporta petróleo crudo desde pozos hasta re-
finerías. Se instalan estaciones intermedias de reforzamiento y bombeo a distancias
apropiadas para mover el crudo en la red. Cada segmento de tubería tiene una veloci-
dad de descarga finita (o capacidad) de flujo de crudo. Un segmento de tubería puede
ser unidireccional o bidireccional, según su diseño. La figura 6.26 muestra una red de oleo-
ductos típica. El objetivo es determinar la capacidad de flujo máxima de la red.

La solución del problema propuesto requiere agregar una sola fuente y un solo
sumidero o vertedero, utilizando arcos de capacidad infinita unidireccionales, como se
muestra mediante los arcos de rayas en la figura 6.26.

Para el arco (i,j), la notación proporciona las capacidades de flujo en las
dos direcciones i S j y j S i. Para eliminar la ambigüedad, colocamos a junto al
nodo i y a junto al nodo j, como se muestra en la figura 6.27.Cji

Cij

(Cij, Cji)

FIGURA 6.26

Red capacitada que conecta los pozos y las refinerías por medio de estaciones reforzadoras
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FIGURA 6.27

Flujos de arcos Cij de i S j y Cji de j S i
i j

Cij Cji

FIGURA 6.28

Ejemplos de cortes en redes de flujo
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6.4.1 Enumeración de cortes

Un corte define un conjunto de arcos cuya eliminación de la red interrumpe el flujo
entre los nodos fuente y sumidero. La capacidad de corte es igual a la suma de las ca-
pacidades de su conjunto de arcos. Entre todos los cortes posibles en la red, el corte con
la capacidad mínima es el cuello de botella que determina el flujo máximo en la red.

Ejemplo 6.4-1

Considere la red de la figura 6.28. Las capacidades bidireccionales se muestran en los arcos res-
pectivos por medio de la convención utilizada en la figura 6.27. Por ejemplo, el límite de flujo
para el arco (3,4) es de 10 unidades de 3 a 4, y de 5 unidades de 4 a 3.

La figura 6.28 ilustra tres cortes con las siguientes capacidades:

La única información de los tres cortes es que el flujo máximo en la red no puede exceder de
60 unidades. Para determinar el flujo máximo es necesario enumerar todos los cortes, una tarea
difícil para la red general. Por lo tanto, la necesidad de un algoritmo eficiente es imperativa.

CONJUNTO DE PROBLEMAS 6.4A

*1. Para la red de la figura 6.28, determine dos cortes más y encuentre sus capacidades.

Corte Arcos asociados Capacidad

1 (1, 2), (1, 3), (1, 4) 20 + 30 + 10 = 60
2 (1, 3), (1, 4), (2, 3), (2, 5) 30 + 10 + 40 + 30 = 110
3 (2, 5), (3, 5), (4, 5) 30 + 20 + 20 = 70
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6.4.2 Algoritmo de flujo máximo

Este algoritmo se basa en el hallazgo de rutas de avance con flujo positivo entre los
nodos fuente y sumidero. Cada ruta destina una parte de o todas las capacidades de sus
arcos al flujo total en la red.

Considere el arco (i, j) con las capacidades bidireccionales (de diseño) .
Como algunas partes de estas capacidades se destinan al flujo en el arco, los
residuos (capacidades no utilizadas, o flujo remanente) del arco se actualizan.
Utilizamos la notación (cij, cji) para representar los residuos.

(Cij, Cji)

Para un nodo j que recibe flujo del nodo i, anexamos la etiqueta [aj,i] donde aj es
el flujo del nodo i al nodo j.

Paso 1. Para todos los arcos, iguale la capacidad residual a la capacidad de diseño,
esto es ( . Sea a1 5 q, y etiquete el nodo fuente con [q, 2].
Designe i 5 1, y continúe con el paso 2.

Paso 2. Determine Si, el conjunto de nodos no etiquetados j al que se puede llegar
directamente desde i por medio de arcos con residuos positivos (es decir,
cij . 0 para todas las j H Si). Si Si Z [, continúe con el paso 3. De lo contrario,
una ruta parcial termina en el nodo i. Continúe con el paso 4.

Paso 3. Determine k H Si de modo que 

Designe ak 5 cik y etiquete el nodo k con [ak, i]. Si k 5 n, el nodo sumidero
ha sido etiquetado, y se ha encontrado una ruta de avance, continúe con el
paso 5. De lo contrario, designe i 5 k, y vaya al paso 2.

Paso 4. (Retroceso). Si i 5 1, no es posible avanzar; continúe con el paso 6. De lo
contrario, sea r el nodo (en la ruta parcial) que se etiquetó inmediatamente
antes del nodo actual i, y elimine i del conjunto de nodos adyacentes a r. De-
signe i 5 r, y regrese al paso 2.

Paso 5. (Determinación de los residuos). Defina los nodos de la ruta de avance 
p-ésima del nodo 1 al nodo n como Np 5 (1, k1, k2,…, n). Entonces el flujo
máximo a lo largo de la ruta se calcula como 

La capacidad residual de cada arco a lo largo de la ruta de avance se reduce
en fp en la dirección del flujo, y se incrementa en fp en la dirección inversa; es
decir, para los nodos i y j en la ruta, el flujo residual cambia del actual (cij, cji) a
(a) (cij 2 fp, cji 1 fp) si el flujo es de i a j
(b) (cij 1 fp, cn 1 fp) si el flujo es de j a i
Restaure los nodos que se eliminaron en el paso 4. Designe i 5 1, y regrese
al paso 2.

Paso 6. (Solución).
(a) Dado que se determinaron m rutas de avance, el flujo máximo en la red es

F = f1 + f2 + . . . + fm

fp =  mín{a1, ak1
, ak2

, Á , an}

cik = máx
jeSi

5cij6

cij, cji) = (Cij, Cji)
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FIGURA 6.29

Uso de los residuos para calcular el flujo máximo
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(b)

Ruta: 1    3     2     4,  f2 � 5

(b) Utilizando las capacidades de diseño (iniciales) y los residuos finales del
arco (i,j), , y , respectivamente, el flujo óptimo en el 

arco (i,j) se determina calculando . Si a . 0,
el flujo óptimo de i a j es a. Por otra parte, si b . 0, el flujo óptimo de j
a i es b. (Es imposible que a y b sean positivos al mismo tiempo.)

El proceso de retroceso del paso 4 se invoca cuando el algoritmo termina en un
nodo intermedio. El ajuste del flujo en el paso 5 puede explicarse mediante la red de
flujo simple de la figura 6.29. La red (a) proporciona la primera ruta de avance N1[1, 2,
3, 4] con su flujo máximo f1 5 5. Por lo tanto, los residuos de cada uno de los arcos (1, 2),
(2, 3) y (3, 4) cambian de (5, 0) a (0, 5), de acuerdo con el paso 5. La red (b) da ahora la
segunda ruta de avance N2 5 [1, 2, 3, 4] con f2 5 5. Después de hacer los ajustes del
flujo necesarios, obtenemos la red (c), donde ya no son posibles más rutas de avance.
Lo que sucedió en la transición de (b) a (c) no fue sino una cancelación del flujo pre-
viamente comprometido en la dirección 2 S 3, y en esencia ello permite el flujo sólo en
las rutas 1 S 2 S 4 y 1 S 3 S 4 (flujo máximo 55 1 5 5 10.). El algoritmo “recuerda”
que un flujo de 2 a 3 se comprometió previamente debido a un ajuste anterior de la ca-
pacidad en la dirección inversa (de acuerdo con el paso 5.)

Ejemplo 6.4-2

Determine el flujo máximo en la red del ejemplo 6.4-1 (figura 6.28). La figura 6.30 proporciona
un resumen gráfico de las iteraciones del algoritmo. Verá que es útil comparar la descripción de
las iteraciones con el resumen gráfico.

Iteración 1. Iguale los residuos iniciales (cij,cji) a las capacidades iniciales .

Paso 1. Establezca a1 5 q y etiquete el nodo 1 con [q, 2]. Establezca i 5 1.
Paso 2. .
Paso 3. k 5 3, porque c13 5 máx [c12, c13, c14] 5 máx [20, 30,10]. Establezca a3 5 c13 5 30 y

etiquete el nodo 3 con [30,1]. Establezca i 5 3 y repita el paso 2.
Paso 2. = (4, 5).S3

S1 = {2, 3, 4}  ( Z �)

(Cij, Cji)

(a, b) = (Cij - cij, Cji - cji)

(cij, cji)(Cij, Cji)
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FIGURA 6.30

Iteraciones del algoritmo de flujo máximo del ejemplo 6.4-2
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(Iteración 1) f1 5 20 (Iteración 2) f2 5 10

(Iteración 3) f3 5 10 (Iteración 4) f4 5 10

(Iteración 5) f5 5 10 (Iteración 6) No hay ruta de avance

Paso 3. k 5 5 y a5 5 c35 5 máx [10, 20] 5 20. Etiquete el nodo 5 con [20, 3]. Se logra el avan-
ce. Continúe con el paso 5.

Paso 5. La ruta de avance se determina a partir de las etiquetas iniciando en el nodo 5 y regresan-
do al nodo 1; es decir (5) S [20, 3] S (3) S [30, 1] S (1). De este modo, N1 5 [1, 3, 5] y f1
5 mín{a1, a3, a5} 5 {q, 30, 20} 5 20. Las capacidades residuales a lo largo de la ruta N1 son 

(c35, c53) = (20 - 20, 0 + 20) = 10, 202(c13,  c31) = (30 - 20, 0 + 20) = (10, 20)
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Iteración 2.

Paso 1. Establezca a1 5 q, y etiquete el nodo 1 con [q, 2]. Establezca i 5 1.
Paso 2. S1 5 {2, 3, 4}.
Paso 3. k 5 2 y a2 5 c12 5 máx {20,10,10}. Establezca i 5 2, y repita el paso 2.
Paso 2. S2 5 {3,5}.
Paso 3. k 5 3 y a3 5 c23 5 40. Etiquete el nodo 3 con [40,2]. Designe i 5 3 y repita el paso 2.
Paso 2. S3 5 {4} (observe que c35 5 0, de ahí que el nodo 5 no pueda incluirse en S3).
Paso 3. k 5 4 y a4 5 c34 5 10. Etiquete el nodo 4 con [10,3]. Establezca i 5 4, y repita el paso 2.
Paso 2. S4 5 {5} (observe que los nodos 1 y 3 ya están etiquetados, por lo tanto, no pueden

incluirse en S4).
Paso 3. k 5 5 y a5 5 c45 5 20. Etiquete el nodo 5 con [20,4]. Se logró una ruta de avance. Vaya

al paso 5.
Paso 5. N2 5 {1, 2, 3, 4, 5} y f2 5 mín {q, 20, 40,10,20} 5 10. Los residuos a lo largo de la ruta

de N2 son 

Iteración 3.

Paso 1. Establezca a1 5 q, y etiquete el nodo 1 con [q, 2]. Establezca i 5 1.
Paso 2. S1 5 {2, 3, 4}.
Paso 3. k 5 2 y a2 5 c12 5 máx {10,10,10}. (Aunque los empates se rompen arbitrariamente,

TORA siempre selecciona el nodo empatado con el índice menor. Utilizaremos esta
convención a lo largo del ejemplo.) Etiquete el nodo 2 con [10,1]. Haga i 5 2, y repita
el paso 2.

Paso 2. S2 5 {3,5}.
Paso 3. k 5 3 y a3 5 c23 5 30. Etiquete el nodo 3 con [30,2]. Establezca i 5 3, y repita el paso 2.
Paso 2. S3 5 [ (porque c34 5 c35 5 0). Vaya al paso 4 para retroceder 
Paso 4. Retroceso. La etiqueta [30,2] en el nodo 3 da el nodo inmediatamente anterior r 5 2.

Elimine el nodo 3 tachándolo para ya no considerarlo en esta iteración. Establezca 
i 5 r 5 2, y repita el paso 2.

Paso 2. S2 5 {5} (observe que el nodo 3 se eliminó en el paso de retroceso).
Paso 3. k 5 5 y a5 5 c25 5 30. Etiquete el nodo 5 con [30,2]. Se logró una ruta de avance. Vaya

al paso 5.
Paso 5. N2 5 {1, 2,5} y c5 5 mín {q,10,30} 5 10. Los residuos a lo largo de la ruta de N3 son 

Iteración 4.

Esta iteración da N4 5 {1,3,2,5} con f4 5 10 (¡compruébelo!).

 (c25,  c52) = (30 - 10, 0 + 10) = (20, 10)

 (c12,  c21) = (10 - 10, 10 + 10) = (0, 20)

 (c45, c54) = (20 - 10, 0 + 10) = (10, 10)

 (c34, c43) = (10 - 10, 5 + 10) = (0, 15)

 (c23, c32) = (40 - 10,  0 + 10) = (30, 10)

 (c12, c21) = (20 - 10,  0 + 10) = (10, 10)
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Iteración 5.

Esta iteración da por resultado N5 5 {1,4,5} con f5 5 10 (¡compruébelo!).

Iteración 6.

Todos los arcos que parten del nodo 1 tienen residuos cero. Por lo tanto, no son posibles más
rutas de avance. Procedemos al paso 6 para determinar la solución.

Paso 6. El flujo máximo en la red es F 5 f1 1 f2 1 … 1 f5 5 20 1 10 1 10 1 10 110 5 60 uni-
dades. El flujo en los arcos individuales se calcula restando los últimos residuos (cij, cji)
en la iteración 6 de las capacidades de diseño , como lo muestra la siguiente
tabla.

(Cij, Cji)

Momento de TORA

Podemos utilizar TORA para resolver el modelo de flujo máximo en un modo automático una
iteración a la vez. Seleccione el menú y la opción . Después
de especificar el formato de salida, vaya a la pantalla de resultados y seleccione la opción

o . El archivo toraEx6.4-2.txt contiene los datos para el ejemplo 6.4-2.

CONJUNTO DE PROBLEMAS 6.4B

*1. En el ejemplo 6.4-2.
(a) Determine las capacidades excedentes para todos los arcos.
(b) Determine la cantidad de flujo a través de los nodos 2, 3, y 4.
(c) ¿Puede incrementarse el flujo a través de la red si se aumentan las capacidades en

las direcciones 3 S 5 y 4 S 5?
2. Determine el flujo máximo y el flujo óptimo en cada arco para la red de la figura 6.31.
3. Tres refinerías envían un producto de gasolina a dos terminales de distribución a través

de una red de oleoductos. Cualquier demanda que no puede ser satisfecha por medio de

IterationsMaximum Flows

Solve ProblemSOLVE/MODIFY

Arco (Cij, Cji) - (cij, cji)6 Cantidad de flujo Dirección

(1, 2) (20, 0) - (0, 20)  = (20, -20) 20 1: 2
(1, 3) (30, 0) - (0, 30)  = (30, -30) 30 1: 3
(1, 4) (10, 0) - (0, 10)  = (10, -10) 10 1: 4
(2, 3) (40, 0) - (40, 0)  = (0, 0) 0 —
(2, 5) (30, 0) - (10, 20) = (20, -20) 20 2: 5
(3, 4) (10, 5) - (0, 15)  = (10, -10) 10 3: 4
(3, 5) (20, 0) - (0, 20)  = (20, -20) 20 3: 5
(4, 3) (5, 10) - (15, 0)  = (-10, 10) 0 —
(4, 5) (20, 0) - (0, 20)  = (20, -20) 20 4: 5
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FIGURA 6.31

Red para el problema 2, conjunto 6.4b
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FIGURA 6.32

Red para el problema 3, conjunto 6.4b 

2

10 

20 

1

15 

50
 

20 

3

4

7

8

5

20 

10 

30 
6

20

10 

30 

50

Estaciones de bombeoRefinerías Terminales

la red se adquiere de otras fuentes. Tres estaciones de bombeo le dan servicio a la red,
como se muestra en la figura 6.32. El producto fluye en la red en la dirección indicada
por las flechas. La capacidad de cada segmento de ducto (mostrada directamente en los
arcos) está en millones de barriles por día. Determine lo siguiente:
(a) La producción diaria en cada refinería que iguala la capacidad máxima de la red.
(b) La demanda diaria en cada terminal que iguala la capacidad máxima de la red.
(c) La capacidad diaria de cada bomba que iguala la capacidad máxima de la red.

4. Suponga que la capacidad diaria máxima de la bomba 6 en la red de la figura 6.33 está 
limitada a 50 millones de barriles por día. Remodele la red para incluir esta restricción.
Luego determine la capacidad máxima de la red.

5. Se transporta alimento para gallinas por medio de camiones desde tres silos hasta cuatro
granjas. Algunos de los silos no pueden mandar los envíos directamente a algunas de las
granjas. Las capacidades de las demás rutas están limitadas por la cantidad de camiones
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FIGURA 6.33

Solución obtenida con Excel Solver del modelo de flujo máximo del ejemplo 6.4-2 (archivo solverEx4.2.xls)

disponibles y el número de viajes realizados diariamente. La siguiente tabla muestra las
cantidades diarias de abasto en los silos y la demanda en las granjas (en miles de libras).
Las entradas en las celdas de la tabla especifican las capacidades diarias de las rutas aso-
ciadas.

(a) Determine el programa que satisface la demanda máxima.
(b) ¿Satisfará el programa propuesto toda la demanda de la granja? 

6. En el problema 5, suponga que se permite el transbordo entre los silos 1 y 2 y los silos 2 y 3.
Suponga además que se permite el transbordo entre las granjas 1 y 2, 2 y 3, y 3 y 4. La capaci-
dad diaria en dos direcciones máxima en las rutas de transbordo propuestas es de 50 (mil) lb.
¿Cuál es el efecto del transbordo en las demandas no satisfechas en las granjas?

*7. Un padre tiene cinco hijos (adolescentes) y cinco tareas domésticas que encomendarles.
La experiencia pasada ha demostrado que obligar a un hijo a que realice una tarea es
contraproducente. Con esto en mente, el padre les pide a sus hijos que enumeren sus pre-
ferencias entre las cinco tareas, como lo muestra la siguiente tabla:

Granja
1 2 3 4

1 30 5 0 40 20
Silo 2 0 0 5 90 20

3 100 40 30 40 200

200 10 60 20
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Hijo Tarea preferida

Rif 3, 4 o 5
Mai 1
Ben 1 o 2
Kim 1, 2 o 5
Ken 2

El objetivo del padre ahora es terminar la mayor parte posible de tareas, al tiempo
que respeta las preferencias de sus hijos.

8. Cuatro fábricas producen cuatro tipos de juguetes. La siguiente tabla da una lista de los
juguetes que cada fábrica puede producir.

Todos los juguetes requieren de alguna manera la misma mano de obra y material
por unidad. Las capacidades diarias de las cuatro fábricas son de 250, 180, 300 y 100 ju-
guetes, respectivamente. Las demandas diarias de los cuatro juguetes son 200, 150, 350 y
100 unidades, respectivamente. Determine los programas de producción de las fábricas
que más satisfarán las demandas de los cuatro juguetes.

9. El consejo académico en la Universidad de Arkansas está buscando representantes entre
seis estudiantes que estén afiliados a sociedades honoríficas. La representación ante el
consejo académico incluye tres áreas: matemáticas, arte e ingeniería. Cuando mucho dos
estudiantes de cada área pueden estar en el consejo. La siguiente tabla muestra la mem-
bresía de los seis estudiantes en las cuatro sociedades honoríficas:

Los estudiantes calificados en las áreas de matemáticas, arte e ingeniería se mues-
tran en la siguiente tabla:

Fábrica Combinación de producciones de juguetes

1 1, 2, 3
2 2, 3
3 1, 4
4 3, 4

Sociedad Estudiantes afiliados

1 1, 2, 3
2 1, 3, 5
3 3, 4, 5
4 1, 2, 4, 6

Área Estudiantes calificados

Matemáticas 1, 2, 4
Arte 3, 4
Ingeniería 4, 5, 6
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Un estudiante capacitado en más de un área debe ser asignado exclusivamente a
sólo un área. ¿Pueden estar representadas las cuatro sociedades honoríficas en el consejo?

10. Flujo máximo/mínimo en redes con límites inferiores. El algoritmo de flujo máximo dado en
esta sección asume que todos los arcos tienen límites inferiores de cero. En algunos modelos
los límites inferiores pueden ser estrictamente positivos, y podemos estar interesados en de-
terminar el flujo máximo o mínimo en la red (vea el caso 6-3 en el apéndice E). La presencia
del límite inferior plantea una dificultad porque puede que la red no tenga un flujo factible
en absoluto. El objetivo de este ejercicio es demostrar que cualquier modelo de flujo máxi-
mo o mínimo con límites inferiores positivos puede ser resuelto siguiendo dos pasos.
Paso 1. Determine una solución factible para la red con límites inferiores positivos.
Paso 2. Con la solución factible del paso 1, determine el flujo máximo o mínimo en la

red original.
(a) Demuestre que un arco (i,j) con flujo limitado por lij # xij uij puede estar represen-

tado de forma equivalente por un sumidero con demanda mínima lij en el nodo i y
una fuente con abasto lij en el nodo j con flujo limitado por 0 # uij – lij.

(b) Demuestre que hallar una solución factible para la red original equivale a deter-
minar el flujo máximo en la red después de (1) modificar los límites en xij a

(2) “concentrar” todas las fuentes resultantes en una súper fuente
con capacidades de arco salientes lij; (3) “concentrar” todos los sumideros resultantes
en un súper sumidero con capacidades de arco entrantes lij, y (4) conectar el nodo
terminal t al nodo fuente s en la red original mediante un arco de capacidad infinita
de retorno. Existe una solución factible si el flujo máximo en la nueva red es igual a
la suma de los límites inferiores en la red original. Aplique el procedimiento a la
siguiente red y encuentre una solución de flujo factible:

0 … xij
œ … uij - lij,

xij
œ

(c) Use la solución factible de la red en (b) junto con el algoritmo de flujo máximo para
determinar el flujo mínimo en la red original. (Sugerencia: Primero calcule la red
residuo dada la solución factible inicial. Luego determine el flujo máximo del nodo
final al nodo inicial. Esto equivale a determinar el flujo máximo que se debe cancelar
del nodo inicial al nodo final. Ahora, combinando las soluciones factible y de flujo
máximo se obtiene el flujo mínimo en la red original.)

(d) Use la solución factible de la red en (b) junto con el modelo de flujo máximo para
determinar el flujo máximo en la red original. (Sugerencia: Como en (c), inicie con la
red residuo. Luego aplique el algoritmo de avance a la red residuo resultante, exacta-
mente como en el modelo de flujo máximo regular.)

6.4.3 Formulación de programación lineal en el modo de flujo máximo 

Defina xij como la cantidad de flujo en el arco (i,j) con capacidad Cij. El objetivo es de-
terminar xij para toda i y j que maximice el flujo entre el nodo de inicio s y el nodo ter-
minal t sujeto a restricciones de flujo (flujo de entrada 5 flujo de salida) en todos
excepto en los nodos s y t.

Arco ( )i, j ( )lij, uij

(1, 2) (5, 20)
(1, 3) (0, 15)
(2, 3) (4, 10)
(2, 4) (3, 15)
(3, 4) (0, 20)
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Ejemplo 6.4-3

En el modelo de flujo máximo de la figura 6.30 (ejemplo 6.4-2), s 5 1 y t 5 5. La siguiente tabla
resume la PL asociada con dos funciones objetivo diferentes, pero equivalentes, según si maxi-
mizamos la salida del modo de inicio 1 (5 z1) o la entrada al nodo terminal 5 (5 z2).

x12 x13 x14 x23 x25 x34 x35 x43 x45

Maximizar z1 =
Maximizar z2 =

1 1 1
1 1 1

Nodo 2 1 - 1 - 1 = 0
Nodo 3 1 1 - 1 - 1 1 = 0
Nodo 4 1 1 - 1 - 1 = 0

Capacidad 20 30 10 40 30 10 20 5 20

La solución óptima utilizando una u otra función objetiva es

El flujo máximo asociado es z1 5 z2 5 60.

Momento de Solver

La figura 6.33 proporciona el modelo de flujo máximo del ejemplo 6.4-2 (archivo solverEx6.4-
2.xls). La idea general es parecida a la del modelo de la ruta más corta, que se detalla siguiendo
el ejemplo 6.3-6. Las diferencias principales incluyen las siguientes: (1) no hay ecuaciones de
flujo para el nodo inicial 1 y el nodo final 5, y (2) el objetivo es maximizar el flujo de salida total
en el nodo inicial 1 (F9) o, de forma equivalente, el flujo de entrada total en el nodo terminal 5
(G13). El archivo solverEx6.4-2 utiliza G13 como celda objetivo.Trate de ejecutar el modelo con
G13 reemplazando a F9.

Momento de AMPL 

El archivo amplEx6.4-2.txt proporciona el modelo para el problema de flujo máximo entre cual-
quiera de los dos nodos en la red del ejemplo 6.4-2. El modelo se aplica a cualquier cantidad de
nodos. La explicación del modelo se detalla en la sección C.9 en el sitio web.

CONJUNTO DE PROBLEMAS 6.4C

1. Modele cada uno de los siguientes problemas como un programa lineal, luego resuélvalo
utilizando Solver o AMPL.
(a) Problema 2, conjunto 6.4b.
(b) Problema 5, conjunto 6.4b.
(c) Problema 9, conjunto 6.4b.

x12 = 20, x13 = 30, x14 = 10, x25 = 20, x34 = 10, x35 = 20, x45 = 20
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FIGURA 6.34

Red para el problema 2, conjunto 6.4c
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FIGURA 6.35

Red para el problema 3, conjunto 6.4c
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2. Jim vive en Denver, Colorado, y le gustar pasar sus vacaciones anuales en el Parque
Nacional de Yellowstone en Wyoming. Por ser un amante de la naturaleza, Jim toma una
ruta escénica diferente cada año. Después de consultar los mapas apropiados, Jim repre-
sentó sus rutas preferidas entre Denver (D) y Yellowstone (Y) por medio de la red de la
figura 6.34. Los nodos 1 a 14 representan ciudades intermedias. Aunque la distancia de
manejo no es un factor, la estipulación de Jim es que las rutas seleccionadas entre D y Y
no incluyan ciudades comunes. Determine (por medio de AMPL o Solver) todas las rutas
distintas disponibles para Jim. (Sugerencia: Modifique el modelo de programación lineal
de flujo máximo para determinar el máximo de rutas únicas entre D y Y.)

3. (Guéret and Associates, 2002, sección 12.1) En la figura 6.35 se aparece un sistema de tele-
comunicación militar que conecta 9 sitios . Los sitios 4 y 7 deben continuar comunicándo-
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FIGURA 6.36

Fases para la planificación de un proyecto con CMP-PERT

Red Cronograma

Tiempo

Actividades
del proyecto

Cálculo
de red

se incluso si otros tres sitios son destruidos por acciones enemigas. ¿Satisface este requisi-
to la red de comunicaciones actual? Utilice AMPL y Solver para resolver el problema.

6.5 CPM Y PERT

El método de la ruta crítica (CPM, por sus siglas en inglés) y la técnica de evaluación y
revisión de programas (PERT, por sus siglas en inglés) son métodos basados en redes
diseñados para ayudar a planificar, programar y controlar proyectos. Un proyecto se
define como un conjunto de actividades interrelacionadas donde cada actividad consu-
me tiempo y recursos. El objetivo de CPM y PERT es idear herramientas analíticas
para programar las actividades. La figura 6.36 resume los pasos de las técnicas. Primero
definimos las actividades del proyecto, sus relaciones de precedencia y sus requeri-
mientos de tiempo. Luego se modelan las relaciones de precedencia entre las activida-
des como una red. El tercer paso implica cálculos específicos para desarrollar el crono-
grama. Durante la fase de ejecución real, es posible que la ejecución de las actividades
no discurra como se planeó, en el sentido de que algunas de las actividades pueden ser
despachadas o demoradas. Cuando esto sucede, el programa se actualiza para reflejar
las realidades en el terreno. Ésta es la razón por la que se incluye un bucle de retroali-
mentación en la figura 6.36.

Las dos técnicas, CPM y PERT, se desarrollaron de forma independiente.
Difieren en que CPM asume duraciones de actividad determinísticas y PERT supone
duraciones probabilísticas.

6.5.1 Representación en forma de red

Cada actividad está representada por un arco que apunta en la dirección del avance
del proyecto. Los nodos de la red establecen las relaciones de precedencia entre las di-
ferentes actividades. Se dispone de tres reglas para construir la red.

Regla 1. Cada actividad está representada por uno, y sólo un arco.
Regla 2. Cada actividad debe estar identificada por dos nodos terminales distintos.

La figura 6.37 muestra cómo puede usarse una actividad ficticia para representar
de forma única dos actividades concurrentes, A y B. Por definición, una actividad ficti-
cia (representada por líneas de rayas) no consume tiempo ni recursos. La inserción de
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una actividad ficticia en una de las cuatro maneras mostradas en la figura 6.37 mantie-
ne la concurrencia de A y B y proporciona nodos terminales únicos para las dos activi-
dades (para satisfacer la regla 2).

Regla 3. Para mantener las relaciones de precedencia correctas, hay que contestar las si-
guientes preguntas a medida que se agrega cada actividad a la red.
(a) ¿Qué actividades preceden inmediatamente a la actividad actual? 
(b) ¿Qué actividades siguen inmediatamente a la actividad actual? 
(c) ¿Qué actividades son concurrentes con la actividad actual?

Las respuestas a estas preguntas pueden requerir el uso de actividades ficticias
para garantizar la precedencia correcta entre las actividades. Por ejemplo, considere el
siguiente segmento de un proyecto:

1. La actividad C se inicia inmediatamente después de que las actividades A y B se
han completado.

2. La actividad E puede iniciarse después de que se complete la actividad B.

La parte (a) de la figura 6.38 muestra la representación incorrecta de la relación de
precedencia porque requiere que A y B se completen antes de que E pueda iniciarse.
En la parte (b), el uso de una actividad ficticia rectifica la situación.

FIGURA 6.38

Uso de una actividad ficticia 
para garantizar la relación de 
precedencia correcta 
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FIGURA 6.37

Uso de una actividad ficticia para representar de forma única actividades concurrentes
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FIGURA 6.39

Red del proyecto para el ejemplo 6.5-1
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Ejemplo 6.5-1

Un editor firmó un contrato con un autor para publicar un libro de texto. El autor somete a con-
sideración una copia impresa de un archivo de computadora del manuscrito. Las actividades
(simplificadas) asociadas con la producción del libro de texto se resumen en la siguiente tabla.

Actividad Predecesora(s) Duración (semanas)

A: Corrección del manuscrito, por parte del editor — 3
B: Preparación de páginas muestra — 2
C: Diseño de la portada del libro — 4
D: Preparación de las ilustraciones — 3
E: Aprobación del manuscrito editado y de

páginas muestra, por parte del autor
A, B 2

F: Formación del libro E 4
G: Revisión de las páginas formadas, por parte del autor F 2
H: Revisión de las ilustraciones por el autor D 1
I: Producción de las placas de impresión G, H 2
J: Producción y encuadernación del libro C, I 4

La figura 6.39 proporciona la red del proyecto. Una actividad ficticia (2,3) produce nodos
terminales únicos para las actividades concurrentes A y B. Conviene numerar los nodos en
orden ascendente en la dirección de avance del proyecto.

CONJUNTO DE PROBLEMAS 6.5A

1. Construya la red del proyecto compuesta de las actividades A a L, con las siguientes rela-
ciones de precedencia:
(a) A, B y C, las primeras actividades del proyecto, pueden ejecutarse de forma concu-

rrente.
(b) A y B preceden a D.
(c) B precede a E, F y H.
(d) F y C preceden a G.
(e) E y H preceden a I y J.
(f) C, D, F y J preceden a K.
(g) K precede a L.
(h) I, G y L son las actividades terminales del proyecto.
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2. Construya la red del proyecto compuesta de las actividades A a P que satisfaga las si-
guientes relaciones de precedencia:
(a) A, B y C, las primeras actividades del proyecto, pueden ejecutarse de forma concurrente.
(b) D, E y F vienen después de A.
(c) I y G vienen después de B y D.
(d) H viene después de C y G.
(e) K y L vienen después de I.
(f) J viene después de E y H.
(g) M y N vienen después de F, pero no pueden iniciarse hasta que E y H se completen.
(h) O viene después de M e I.
(i) P viene después de J, L y O.
(j) K, N y P son las actividades terminales del proyecto.

*3. Los cimientos de un edificio pueden completarse en cuatro secciones consecutivas. Las
actividades de cada sección incluyen (1) cavar; (2) colocar el acero, y (3) verter el concre-
to. El cavado de una sección no puede iniciarse hasta que se haya completado el de la
sección precedente. La misma restricción se aplica al vertido del concreto. Desarrolle la
red del proyecto.

4. En el problema 3, suponga que 10% del trabajo de plomería puede iniciarse al mismo
tiempo del cavado de la primera sección, pero antes de verter el concreto. Después de
que se completa cada una de las secciones de los cimientos, puede iniciarse un 5% adicio-
nal de la plomería, siempre que se termine el 5% precedente. La plomería restante puede
completarse al final del proyecto. Construya la red del proyecto.

5. Una encuesta de opinión implica diseñar e imprimir cuestionarios, contratar y capacitar
personal, seleccionar a los participantes, enviar por correo los cuestionarios, y analizar los
datos. Construya la red del proyecto, mencionando todos los supuestos.

6. Las actividades en la siguiente tabla describen la construcción de una casa nueva.
Construya la red del proyecto asociada.

Actividad Predecesora(s) Duración (días)

A: Limpiar el terreno — 1
B: Llevar los servicios al terreno — 2
C: Excavar A 1
D: Colar los cimientos C 2
E: Plomería externa B, C 6
F: Armar la estructura de la casa D 10
G: Instalar el cableado eléctrico F 3
H: Colocar el piso G 1
I: Colocar el techo F 1
J: Plomería interior E, H 5
K: Colocar tejas I 2
L: Recubrimiento aislante exterior F, J 1
M: Instalar ventanas y puertas externas F 2
N: Enladrillar L, M 4
O: Aislar muros y cielo raso G, J 2
P: Cubrir muros y cielo raso O 2
Q: Aislar techo I, P 1
R: Terminar interiores P 7
S: Terminar exteriores I, N 7
T: Jardinería S 3
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7. Una compañía está preparando un presupuesto para lanzar un nuevo producto. La 
siguiente tabla muestra las actividades asociadas y su duración. Construya la red del 
proyecto.

Actividad Predecesora(s) Duración (días)

A: Pronosticar volumen de ventas — 10
B: Estudiar el mercado competitivo — 7
C: Diseñar artículo e instalaciones A 5
D: Preparar el programa de producción C 3
E: Estimar el costo de la producción D 2
F: Fijar precio de venta B, E 1
G: Preparar presupuesto E, F 14

8. Las actividades implicadas en un servicio coral a la luz de las velas se dan en la siguiente
tabla. Construya la red del proyecto.

Actividad Predecesora(s) Duración (días)

A: Seleccionar la música — 2
B: Aprenderse la música A 14
C: Sacar copias y comprar libros A 14
D: Audiciones B, C 3
E: Ensayos D 70
F: Rentar candelabros D 14
G: Decorar los candelabros F 1
H: Instalar las decoraciones D 1
I: Pedir atuendos para el coro D 7
J: Verificar el sistema de sonido D 7
K: Seleccionar las pistas de música J 14
L: Instalar el sistema de sonido K 1
M: Ensayo final E, G, L 1
N: Reunión del coro H, L, M 1
O: Programa final I, N 1

9. La ampliación de una sección de una carretera requiere recolocar (“reconducir”) 1700
pies de una línea de transmisión primaria elevada de 13.8 kV. La siguiente tabla resume
las actividades del proyecto. Construya la red del proyecto asociada.

Actividad Predecesora(s) Duración (días)

A: Revisión del trabajo — 1
B: Avisar a los clientes del corte temporal de corriente A 1

2
C: Tiendas de requisición A 1
D: Explorar el trabajo A 1

2
E: Asegurar los postes y materiales C, D 3
F: Distribuir los postes E 3 12
G: Coordinar la ubicación de postes D 1

2

H: Clavar estacas G 1
2

I: Cavar agujeros H 3
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10. La siguiente tabla presenta las actividades para adquirir un automóvil nuevo. Construya
la red del proyecto.

6.5.2 Cálculos del método de la ruta crítica (CPM)

El resultado final en el CPM es un cronograma para el proyecto (vea la figura 6.36).
Para lograr este objetivo se realizan cálculos especiales para obtener la siguiente infor-
mación:

1. Duración total necesaria para completar el proyecto.
2. Clasificación de las actividades del proyecto como críticas o no críticas.

Una actividad es crítica si sus tiempos de inicio y terminación están predetermi-
nados (fijos). Una actividad es no crítica si puede ser programada en un espacio de
tiempo mayor que su duración, lo que permite tiempos de inicio y terminación flexi-
bles (dentro de los límites). Una demora en el tiempo de inicio de una actividad crítica
definitivamente retrasa la terminación del proyecto, en tanto que una demora en una
actividad no crítica quizá no afecte la fecha de terminación del proyecto.

Actividad Predecesora(s) Duración (días)

A: Realizar estudio de factibilidad — 3
B: Encontrar un comprador potencial para el automóvil actual A 14
C: Poner en lista los posibles modelos A 1
D: Entrevistarse con el mecánico C 3
E: Reunir publicidad del concesionario C 1
F: Compilar los datos pertinentes C 2
G: Completar los datos pertinentes D, E, F 1
H: Escoger tres modelos G 1
I: Realizar prueba de manejo de las tres opciones H 3
J: Conseguir garantía y datos de financiamiento H 2
K: Escoger un automóvil I, J 2
L: Elegir el concesionario K 2
M: Buscar el color y opciones deseadas L 4
N: Realizar prueba de manejo del modelo una vez más L 1
O: Comprar el automóvil nuevo B, M, N 3

Actividad Predecesora(s) Duración (días)

J: Colocar los postes F, I 4
K: Cubrir los conductores viejos F, I 1
L: Halar los conductores nuevos J, K 2
M: Instalar el material restante L 2
N: Deflexión de cable L 2
O: Podar árboles D 2

P: Reconectar la energía y conmutar líneas B, M, N, O
1

10

Q: Energizar y conmutar la nueva línea P 1
2

R: Limpiar Q 1
S: Retirar los conductores viejos Q 1
T: Retirar los postes viejos S 2
U: Regresar el material a las tiendas R, T 2
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Para realizar los cálculos necesarios, definimos un evento como un punto en el
tiempo en el cual se completan las actividades y se inician las subsiguientes. En función
de la red, un evento corresponde a un nodo. Sean

nj 5 Tiempo de ocurrencia más temprano del evento j
Dj 5 Tiempo de ocurrencia más tardío del evento j 

Dij 5 Duración de la actividad (i,j) 

Todos los tiempos de ocurrencia se miden a partir del inicio del proyecto. El lapso (nj, Dj)
define el periodo de tiempo durante el cual se programa la actividad (i,j) de duración Dij.
Si la actividad (i,j) es crítica, entonces Dij 5 Dj 2 nj. De lo contrario, Dij , Dj 2 ni para
la actividad no crítica (i,j).

Los cálculos de la ruta crítica implican dos pasos: El paso adelantado determina
los tiempos de ocurrencia más tempranos de los eventos y el paso retrasado calcula sus
tiempos de ocurrencia mas tardíos.

Paso adelantado (tiempos de ocurrencia más tempranos, n). Los cálculos se inician en
el nodo 1 y avanzan recursivamente hacia el nodo n.

Paso inicial. Establezca nj 5 0 para indicar que el proyecto se inicia en el tiempo 0.
Paso general j. Dado que los nodos p, q,… y v están vinculados directamente al nodo j

por las actividades entrantes (p,j), (q,j),…, y (v,j) y que los tiempos de ocu-
rrencia más temprano de los eventos (nodos) p, q,…, y v ya se calcularon, en-
tonces el tiempo más temprano de ocurrencia del evento j se calcula como

El paso adelantado se completa cuando se ha calculado nj en el nodo n. Por
definición, nj es la ruta más larga (duración) al nodo j.

Paso retrasado (tiempos de ocurrencia más tardíos, D). Los cálculos del paso retrasado
se inician en el nodo n y terminan en el nodo 1.

Paso inicial. Establezca Dn 5 nn para indicar que las ocurrencias más tardías del
último nodo son iguales a la duración del proyecto.

Paso general j. Dado que los nodos p, q,…, y v están vinculados directamente al
nodo j por las actividades salientes (j,p), (j,q),…, y (j,v) y que los tiempos de
ocurrencia más tardíos de los nodos p, q,…, y v ya se calcularon, el tiempo
de ocurrencia más tardío del nodo j se calcula como 

El paso retrasado termina con D1 5 0 en el nodo 1.

¢j =   mín  5¢p - Djp, ¢q - Djq, ..., ¢v - Djv6

nj =  máx 5np + Dpj,  nq + Dqj, . . . , nv + Dvj6
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Con base en los cálculos anteriores, una actividad (i,j) será crítica si satisface tres
condiciones.

1.
2.
3.

Las tres condiciones establecen que los tiempos de ocurrencia más tempranos y más
tardíos de los nodos finales i y j son iguales y que la duración Dji encaja “perfectamen-
te” en el espacio de tiempo especificado. Una condición que no satisface las tres condi-
ciones es no crítica.

Por definición, las actividades críticas de una red constituyen la ruta más larga
que abarca el proyecto desde el inicio hasta la terminación.

Ejemplo 6.5-2

Determine la ruta crítica para la red del proyecto que se muestra en la figura 6.40. Todas las du-
raciones están en días.

Paso adelantado

Nodo 1. Establezca
Nodo 2.
Nodo 3.
Nodo 4.
Nodo 5.
Nodo 6.

Los cálculos muestran que el proyecto puede completarse en 25 días.

 =  máx  58 + 11, 13 + 1, 13 +  126 = 25
 n6 = máx 5n 3 + D36, n 4 + D46, n 5 + D566 n5 = máx 5n 3 + D35, n 4 + D456 =  máx 58 + 2, 13 + 06 = 13
 n4 = n 2 +  D24 = 5 + 8 = 13
 n 3 = máx 5n1 + D13, n 2 + D236 = máx 50 + 6, 5 + 36 = 8
 n 2 =  n 1 + D12 = 0 + 5 = 5

n1 = 0

¢j -  ni = Dij

¢j =  nj

¢i =  ni

FIGURA 6.40

Cálculos de paso adelantado y paso retrasado para el proyecto del ejemplo 6.5-2
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Paso retrasado

Nodo 6. Establezca 
Nodo 5.
Nodo 4.
Nodo 3.
Nodo 2.

Nodo 1.

Los cálculos correctos siempre terminarán con D1 5 0. Los cálculos pueden hacerse direc-
tamente en la red como se muestra en la figura 6.40.

Aplicando las reglas para determinar las actividades críticas, la ruta crítica es 1 S 2 S 4 S
5 S 6, la cual, como se esperaba, abarca la res desde el inicio (nodo 1) hasta la terminación
(nodo 6). La suma de las duraciones de las actividades críticas [(1,2), (2,4), (4,5) y (5.6)] es igual
a la duración del proyecto (5 25 días). Observe que la actividad (4,6) satisface las dos primeras
condiciones para una actividad crítica (D4 5 n4 5 13) y (D6 5 n6 5 25) pero no la tercera (D6 2

n4) Z D46). De ahí que la actividad es no crítica.

CONJUNTO DE PROBLEMAS 6.5B

*1. Determine la ruta crítica para la red de proyecto de la figura 6.41.
2. Determine la ruta crítica para las redes de proyecto de la figura 6.42.
3. Determine la ruta crítica para el proyecto del problema 6, conjunto 6.5a.
4. Determine la ruta crítica para el proyecto del problema 8, conjunto 6.5a.
5. Determine la ruta crítica para el proyecto del problema 9, conjunto 6.5a.
6. Determine la ruta crítica para el proyecto del problema 10, conjunto 6.5a.

6.5.3 Construcción del cronograma

Esta sección muestra cómo puede usarse la información obtenida a partir de los cálcu-
los en la sección 6.5.2 para el desarrollo del cronograma. Reconocemos que para una

 ¢1 = mín 5¢3 - D13, ¢2 - D26 = mín511 - 6, 5 - 56 = 0
 ¢2 = mín 5¢4 - D24, ¢3 - D236 = mín 513 - 8, 11 - 36 = 5
 ¢3 = mín 5¢6 - D36, ¢5 - D356 = mín 525 - 11, 13 - 26 = 11
 ¢4 = mín 5¢6 - D46, ¢5 - D456 = mín 525 - 1, 13 - 06 = 13
 ¢5 = ¢6 - D56 = 25 - 12 = 13

¢6 = n 6 = 25

FIGURA 6.41

Red del proyecto para el problema 1, conjunto 6.5b
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actividad (i, j), ni representa el tiempo de inicio más temprano, y Dj representa el tiempo de
inicio más tardío. Por lo tanto, el intervalo (ni, Dj) define el espacio de tiempo (máximo)
durante el cual la actividad (i,j) puede programarse sin demorar todo el proyecto.

Construcción de un programa preliminar. El método para construir un programa
preliminar se ilustra con un ejemplo.

Ejemplo 6.5-3

Determine el cronograma para el proyecto del ejemplo 6.5-2 (figura 6.40).
Podemos obtener un cronograma preliminar para las diferentes actividades del proyecto

definiendo sus respectivos espacios de tiempo como se muestra en la figura 6.43.

1. Las actividades críticas (mostradas por las líneas sólidas) están escalonadas una justo des-
pués de la otra para garantizar que el proyecto se complete dentro de la duración especi-
ficada de 25 días.

2. Las actividades no críticas (mostradas por las líneas de rayas) tienen lapsos de tiempo per-
misibles mayores que sus respectivas duraciones, lo que permite una holgura (o “margen”)
al programarlas dentro de sus intervalos de tiempo asignados.

¿Cómo programamos las actividades no críticas dentro de sus respectivos espacios de tiem-
po? Normalmente, es preferible iniciar cada actividad no crítica lo más pronto posible. De esta
manera los periodos de holgura restantes pueden usarse para compensar las demoras inespera-
das en la actividad. Puede ser necesario, sin embargo, retrasar el inicio de una actividad no críti-
ca más allá de su tiempo de inicio más temprano. Por ejemplo, en la figura 6.43, suponga que
cada una de las actividades no críticas E y F requiere el uso de una excavadora y que sólo una
está disponible. Programar tanto E como F tan pronto como sea posible, requiere dos excavado-
ras entre los tiempos 8 y 10. Podemos eliminar el traslape iniciando E en el tiempo 8 y moviendo
el tiempo de inicio de F a alguna parte entre los tiempos 10 y 14.

Si todas las actividades no críticas pueden programarse lo más pronto posible, el programa
resultante siempre es factible. De lo contrario, pueden violarse algunas relaciones de preceden-
cia si las actividades no críticas se demoran más allá de su tiempo de inicio más temprano.

FIGURA 6.42

Redes del proyecto para el problema 2, conjunto 6.5

74

72
1

5

6

3

4

3

1

2

6

5

5 8

8

5 4
4

3
7

10

3

9

1

10

7
5

10

10

8

7

3

10

1
15

12

3
22

Proyecto (a) Proyecto (b)



6.5 CPM y PERT 257

Considere, por ejemplo, las actividades C y E en la figura 6.43. En la red de proyecto (figura
6.40), aunque C debe completarse antes que E, los espacios de tiempo de C y E en la figura 6.43
permiten programar C entre los tiempos 6 y 9, y E entre los tiempos 8 y 10, lo cual viola el requi-
sito de que C preceda a E. Por lo tanto, es evidente la necesidad de una “señal roja” que revele
de forma automática el conflicto en el programa. Tal información se obtiene calculando los flo-
tantes (también conocidos como holguras) para las actividades no críticas.

Determinación de los flotantes. Los flotantes son los tiempos de holgura disponibles dentro
del espacio asignado de la actividad no crítica. Los tipos más comunes son el flotante total y el
flotante libre.

La figura 6.44 da un resumen conveniente para calcular el flotante total (TFij) y
el flotante libre (FFij) para una actividad (i,j).

Por definición

Regla de la señalización roja. Para una actividad no crítica (i,j), si FFij , TFij,
entonces su inicio puede demorarse en cuando mucho FFij, con respecto a su tiempo de
inicio más temprano ni, sin provocar un conflicto en el programa. Cualquier demora
mayor que FFij (pero no mayor que TFij) debe acoplarse con una demora igual (con
respecto a nj) en el tiempo de inicio de todas las actividades que salen del nodo j.

FFij … TFij.

 FFij = n j - n i - Dij

 TFij = ¢j - n  i - Dij

FIGURA 6.43

Cronograma preliminar para el proyecto del ejemplo 6.5-2

A � 5

D � 8

H � 12

B � 6

No crítica

Crítica

C � 3

E � 2

5 10 15
Días

20 25

F � 11

G � 1
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La implicación de la regla es que, si FFij 5 TFij, puede programarse una actividad
no crítica (i,j) en cualquier parte del intervalo (ni, Dj) sin provocar conflictos en el pro-
grama. De lo contrario, si FFij , TFij, la actividad (i,j) recibe una señal roja por la posi-
bilidad de demorar el tiempo de inicio de las actividades que salen del nodo j.

Ejemplo 6.5-4

Calcule los flotantes para las actividades no críticas de la red del ejemplo 6.5-2, y exponga su uso
al finalizar un programa para el proyecto.

La siguiente tabla resume los cálculos de los flotantes total y libre. Para cálculos manuales,
conviene más realizar los cálculos directamente en la red siguiendo el procedimiento mostrado
en la figura 6.40.

FIGURA 6.44

Cálculo de los flotantes total y libre

i j

i j

j

Dij

TF ij
 � � j 

� � i 
� D ij

FFij � �j � �i � Dij

Actividad no crítica Duración Flotante total (TFij) Flotante libre (FFij)

B(1, 3) 6 11 - 0 - 6 = 5 8 - 0 - 6 = 2
C(2, 3) 3 11 - 5 - 3 = 3 8 - 5 - 3 = 0
E (3, 5) 2 13 - 8 - 2 = 3 13 - 8 - 2 = 3
F (3, 6) 11 25 - 8 - 11 = 6 25 - 8 - 11 = 6
G (4, 6) 1 25 - 13 - 1 = 11 25 - 13 - 1 = 11

Los cálculos ponen una señal roja en las actividades B y C porque su FF , TF. Las activi-
dades restantes (E,F y G) tienen FF 5 TF y por consiguiente pueden programarse en cualquier
parte entre sus tiempos de terminación más tempranos y más tardíos.

Para investigar la importancia de las actividades marcadas con una señal roja, considere la
actividad B con TF 5 5 días y FF 5 2 días. Esta actividad puede iniciarse en cualquier tiempo
entre 0 y 2 (su FF). Por otra parte, si B se inicia después del tiempo 2 hasta el tiempo 5 (su TF),
los tiempos de inicio de las actividades inmediatamente subsiguientes E y F deben moverse
hacia adelante con respecto a su tiempo de inicio más temprano (5 8) por al menos un periodo
de demora igual.
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En cuanto a la actividad C marcada con una señal roja, su FF cero significa que cualquier
demora al iniciar C después de su tiempo de inicio más temprano (5 5) debe acoplarse con al
menos una demora igual del tiempo de inicio de las actividades de su sucesor.

Momento de TORA

TORA incluye herramientas tutoriales útiles para cálculos de CPM y para construir el cronogra-
ma. Para utilizarlas seleccione las opciones
en el menú de la barra de menús. En la pantalla de resultados tiene la opción de seleccionar

para producir cálculos paso a paso del paso adelantado, el paso retrasado, y
los flotantes o la opción para construir y experimentar con el cronograma.

El archivo toraEx6.5-2 proporciona los datos para el ejemplo 6.5-2. Si elige generar los re-
sultados con la opción TORA lo guiará a través de los detalles de los cálculos de paso
adelantado y paso retrasado.

La figura 6.45 proporciona el programa producido por la opción CPM Bar Chart de TORA
para el proyecto del ejemplo 6.5-2. La gráfica de barras predeterminada programa de forma
automática todas las actividades no críticas tan pronto como es posible. Así puede estudiar el

Next Step

CPM Bar Chart
CPM Calculations

Main
CPM - Critical Path MethodQProject Planning

FIGURA 6.45

Resultados obtenidos con la opción “bar chart” de TORA para el ejemplo 6.5-2 (archivo toraEx6.5-2.txt)
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impacto de demorar el tiempo de inicio de una actividad no crítica por medio de listas desplega-
bles auto explicativas en el lado izquierdo de la pantalla. El impacto de demorar una actividad
no crítica se mostrará directamente en la gráfica de barras junto con una explicación. Por ejem-
plo, si demora el inicio de la actividad B en más de 2 unidades de tiempo, las actividades subsi-
guientes E y F se demorarán en una cantidad igual a la diferencia entre la demora y el flotante
libre de la actividad B. Específicamente, dado que el flotante libre de B es de 2 unidades de tiem-
po, si B se demora en 3 unidades de tiempo, entonces el inicio de E y F debe demorarse en al
menos 3 – 2 5 1 unidad de tiempo. Esta situación se demuestra en la figura 6.45.

Momento de AMPL

El archivo amplEx6.52.txt proporciona el modelo para la CPM. Los datos del ejemplo 6.5-2 con-
trolan el modelo. Este modelo de AMPL es una aplicación única porque no es un problema de
optimización. Los detalles del modelo se dan en el apéndice C.9 en el sitio web.

CONJUNTO DE PROBLEMAS 6.5C

1. Dada una actividad (i,j) con duración Dij y su tiempo de inicio más temprano ni, así
como su tiempo de terminación más tardío Dj, determine los tiempos de terminación más
temprano y de inicio más tardío de (i, j).

2. ¿Cuáles son los flotantes total y libre de una actividad crítica? Explique.
*3. Para cada una de las siguientes actividades, determine la demora máxima del tiempo de

inicio con respecto a su tiempo de inicio más temprano que permitirá que todas las acti-
vidades inmediatamente subsiguientes se programen en cualquier parte entre sus tiem-
pos más temprano y más tardío de terminación.
(a) , ,
(b) , ,
(c) , ,

4. En el ejemplo 6.5-4 utilice los flotantes para responder lo siguiente:
(a) Si la actividad B se inicia en el tiempo 1 y la actividad C se inicia en el tiempo 5, de-

termine los tiempos de inicio más tempranos para E y F.
(b) Si la actividad B se inicia en el tiempo 3, y la actividad C se inicia en el tiempo 7, de-

termine los tiempos de inicio más tempranos para E y F.
(c) ¿Cómo se impacta la programación de otras actividades si la actividad B se inicia en

el tiempo 6?
*5. En el proyecto del ejemplo 6.5-2 (figura 6.42), suponga que la duración de las actividades

B y F cambia de 11 días a 20 y 25 días, respectivamente.
(a) Determine la ruta crítica.
(b) Determine los flotantes total y libre para la red, e identifique las actividades marca-

das con una señal roja.
(c) Si la actividad A se inicia en el tiempo 5, determine los tiempos de inicio más tem-

pranos posibles para las actividades C, D, E y G.
(d) Si las actividades F, G y H requieren el mismo equipo, determine el mínimo de uni-

dades necesarias de este equipo.
6. Calcule los flotantes e identifique las actividades marcadas con una señal roja para los

proyectos (a) y (b) de la figura 6.44; luego desarrolle los cronogramas en las siguientes
condiciones:

D = 4FF = 0TF = 10
D = 4FF = 5TF = 10
D = 4FF = 10TF = 10
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Proyecto (a)

(i) La actividad (1,5) no puede iniciarse antes que el tiempo 14.
(ii) Las actividades (5,6) y (5,7) utilizan el mismo equipo, del cual sólo una unidad está

disponible.
(iii) Todas las demás actividades se inician lo más pronto posible.

Proyecto (b)

(i) La actividad (1,3) debe programarse a su tiempo de inicio más temprano al mismo
tiempo que se observa el requisito de que (1,2), (1,3) y (1,6) utilizan una pieza de
equipo especial, de la cual sólo hay una (1) unidad disponible.

(ii) Todas las demás actividades se inician lo más pronto posible.
7. (Programación de tareas en un taller). Tres tareas, J1, J2 y J3 se procesan en 3 máquinas,

M1, M2 y M3, de acuerdo con las siguientes secuencias (los tiempos de procesamiento se
muestran entre paréntesis):

J1: M3(3) – M1(4) – M2(6)
J2: M2(1) – M3(5) – M2(9)
J3: M3(8) – M2(8) – M1(7)

El orden en el cual se procesan las tareas en las diferentes máquinas está predetermina-
do como:

M1: J1 – J2 – J3
M2: J2 – J3 – J1
M3: J3 – J1 – J2

(a) Represente el problema como una red de CPM para la cual la ruta crítica determina
el espacio de trabajo de las tres tareas.

(b) Use los cálculos de ruta crítica para programar las tares (gráfica de Gantt) suponien-
do que cada operación se programa a su tiempo de inicio más temprano.

6.5.4 Formulación de programación lineal de CPM

El modelo CPM busca la ruta más larga entre los nodos de inicio y de terminación de
la red del proyecto. Por tanto, su formulación como una PL es semejante a la PL del
modelo de la ruta más corta (sección 6.3.3). La única diferencia es que la función obje-
tivo se maximiza en lugar de minimizarse.

Defina

xij 5 Cantidad de flujo de la actividad (i,j) para toda i y j definidas 

Dij 5Duración de la actividad (i,j) para toda i y j definidas

Por lo tanto, la función objetivo del programa lineal es 

Para cada nodo hay una restricción que representa la conservación del flujo:

Flujo de entrada total 5 Flujo de salida total 

Todas las variables, xij, son no negativas.

Maximizar z = a
todas las actividades 

definidas 1i, j2 Dijxij
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Ejemplo 6.5-5

A continuación se da la formulación de PL del proyecto del ejemplo 6.5-2 (figura 6,40). Observe
que los nodos 1 y 6 son los nodos de inicio y de terminación, respectivamente.

La solución óptima es

La solución define la ruta crítica como A S D S Ficticia S H, y la duración del proyecto es de
25 días, pero no proporciona los datos necesarios para construir la gráfica de CPM.

CONJUNTO DE PROBLEMAS 6.5D

1. Utilice PL para determinar la ruta crítica para la red del proyecto de la figura 6.43.
2. Utilice PL para determinar la ruta crítica para las redes de proyecto de la figura 6.44.

6.5.5 Redes PERT

PERT difiere de CPM en que asume tiempos de duración probabilísticos basados en
tres estimaciones:

1. Tiempo optimista, a, el cual ocurre cuando la ejecución transcurre extremada-
mente bien.

2. Tiempo más probable, m, el cual ocurre cuando la ejecución se realiza en condi-
ciones normales.

3. Tiempo pesimista, b, el cual ocurre cuando la ejecución transcurre extremada-
mente deficiente.

El tiempo más probable, m, queda en el intervalo (a, b).
Basado en las estimaciones, el tiempo de duración promedio, y varianza, v, se

aproximan como

Los cálculos de CPM dados en las secciones 6.5.2 y 6.5.3 pueden aplicarse directamen-
te, con reemplazando a la estimación única D.D,

 v = a  
b - a

6
 b2

 D =
a + 4m + b

6

D,

y todas las demás =  0x56(H) = 1,z = 25, x12 (A) = 1, x24 (D) = 1, x45 (ficticia) = 1, 

A B C D E F Ficticia G H

x12 x13 x23 x24 x35 x36 x45 x46 x56

Maximizar z 5 6 6 3 8 2 11 0 1 12

Nodo 1 - 1 - 1 = - 1
Nodo 2 1 - 1 - 1 = 0
Nodo 3 1 1 - 1 - 1 = 0
Nodo 4 1 - 1 - 1 = 0
Nodo 5 1 1 - 1 = 0
Nodo 6 1 1 1 = 1
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Dado que la variable aleatoria ej que representa el tiempo de ocurrencia más tem-
prano del nodo, la probabilidad de que j ocurrirá en un tiempo programado, Sj, puede es-
timarse como sigue: Suponga que todas las actividades en la red son estadísticamente
independientes, y calcule primero la media E{ej} y la varianza, var{ej}. Si sólo hay una ruta

Actividad i-j (a, m, b) Actividad i-j (a, m, b)

A 1–2 (3, 5, 7) E 3–5 (1, 2, 3)
B 1–3 (4, 6, 8) F 3–6 (9, 11, 13)
C 2–3 (1, 3, 5) G 4–6 (1, 1, 1)
D 2–4 (5, 8, 11) H 5–6 (10, 12, 14)

La media y la varianza vij de las diferentes actividades se presentan en la siguiente tabla.
Observe que una actividad ficticia con (a,m,b) tiene media y varianza cero.

Dij

Actividad i-j Dij vij Actividad i-j Dij vij

A 1–2 5 .444 E 3–5 2 .111
B 1–3 6 .444 F 3–6 11 .444
C 2–3 3 .444 G 4–6 1 .000
D 2–4 8 1.000 H 5–6 12 .444

del nodo de inicio al nodo j, entonces la media es la suma de las duraciones esperadas,
, de todas las actividades a lo largo de esta ruta y la varianza es la suma de las varian-

zas, v, de las mismas actividades. Si más de una ruta conduce al nodo j, entonces es nece-
sario determinar la distribución estadística de la duración de la ruta más larga, un pro-
blema un tanto difícil porque implica determinar la distribución del máximo de al menos
dos variables aleatorias. Una suposición simplificadora requiere seleccionar la ruta al
nodo j que tiene la duración promedio más larga. Si dos o más rutas tienen la misma
media, se selecciona la de la mayor varianza porque refleja la incertidumbre máxima y,
por consiguiente, conduce a una estimación más conservadora de las probabilidades.

Dadas la media y la varianza de la ruta al nodo j, E{ej} y var{ej}, la probabilidad de
que el nodo j ocurra en el tiempo Sj está representada de forma aproximada por la dis-
tribución normal estándar, z (vea la sección 14.4.4), es decir,

La justificación para el uso de la distribución normal es que ej es la suma de variables
aleatorias independientes. De acuerdo con el teorema del límite central (vea la sección
14.4.4), ej está distribuida normalmente de una manera aproximada.

Ejemplo 6.5-6

Considere el proyecto del ejemplo 6.5-2. Para no repetir los cálculos de ruta crítica, los valores
de a, m y b que aparecen en la tabla se seleccionan para obtener para toda i y j en el
ejemplo 6.5-2.

Dij = Dij

P{ej … Sj} = Pc ej - E{ej}2var{ej}
 …  

Sj - E{ej}2var{ej}
 s = P{z … Kj}

D
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La siguiente tabla presenta la ruta más larga del nodo 1 a los diferentes nodos, junto con su
media y desviación estándar asociadas.

Nodo j Ruta más larga Media de la ruta Desviación estándar de la ruta Sj Kj P{z … Kj}

2 1–2 5.00 0.67 5.00 0 .5000
3 1–2–3 8.00 0.94 11.00 3.19 .9993
4 1–2–4 13.00 1.20 12.00 -.83 .2033
5 1–2–4–5 13.00 1.20 14.00 .83 .7967
6 1–2–4–5–6 25.00 1.37 26.00 .73 .7673

Proyecto (a) Proyecto (b)

Actividad (a, m, b) Actividad (a, m, b) Actividad (a, m, b) Actividad (a, m, b)

1-2 (5, 6, 8) 3-6 (3, 4, 5) 1-2 (1, 3, 4) 3-7 (12, 13, 14)
1-4 (1, 3, 4) 4-6 (4, 8, 10) 1-3 (5, 7, 8) 4-5 (10, 12, 15)
1-5 (2, 4, 5) 4-7 (5, 6, 8) 1-4 (6, 7, 9) 4-7 (8, 10, 12)
2-3 (4, 5, 6) 5-6 (9, 10,15) 1-6 (1, 2, 3) 5-6 (7, 8, 11)
2-5 (7, 8, 10) 5-7 (4, 6, 8) 2-3 (3, 4, 5) 5-7 (2, 4, 8)
2-6 (8, 9, 13) 6-7 (3, 4, 5) 2-5 (7, 8, 9) 6-7 (5, 6, 7)
3-4 (5, 9, 19) 3-4 (10, 15, 20)

La siguiente tabla calcula la probabilidad de que cada nodo se realice en el tiempo Sj (espe-
cificado por el analista).

Nodo Ruta más larga basada en las duraciones medias Media de la ruta Desviación estándar de la ruta

2 1–2 5.00 0.67
3 1–2–3 8.00 0.94
4 1–2–4 13.00 1.20
5 1–2–4–5 13.00 1.20
6 1–2–4–5–6 25.00 1.37

Momento de TORA

TORA incluye un módulo para realizar cálculos PERT. Para utilizar este módulo, seleccione las
opciones en el
menú de la barra de menús. En la pantalla de resultados tiene la opción de seleccionar

para calcular la media y varianza de cada actividad, o la opción
para calcular la media y varianza de la ruta más larga a cada nodo en la red. El

archivo toraEx6.5-6.txt proporciona los datos para el ejemplo 6.5-6.

CONJUNTO DE PROBLEMAS 6.5E

1. Considere el problema 2, conjunto 6.5b. Las estimaciones (a, m, b) se enlistan a continua-
ción. Determine las probabilidades de que los diferentes nodos del proyecto se realicen
sin demora.

Calculations
PERT Activity Mean/Var

Main
PERT - Program Evaluation and Review TechniqueQProject Planning
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7.1 FUNDAMENTOS DEL MÉTODO SIMPLEX

En la programación lineal, el espacio de soluciones factibles forma un conjunto conve-
xo si el segmento de línea que une dos puntos factibles distintos también queda en el
conjunto. Un punto extremo del conjunto convexo es un punto factible que no puede
quedar sobre un segmento de línea que une dos puntos factibles distintos en el conjun-
to. En realidad, los puntos extremos son los mismos que los puntos de esquina, como se
utilizaron en los capítulos 2, 3 y 4.

La figura 7.1 ilustra dos conjuntos. El conjunto (a) es convexo (con seis puntos
extremos) y el conjunto (b) no lo es.

La solución de PL gráfica dada en la sección 2.2 demuestra que la solución ópti-
ma siempre está asociada con un punto factible extremo (de esquina) del espacio de
soluciones. Este resultado tiene sentido intuitivamente, porque todo punto factible en
el espacio de soluciones de PL puede determinarse como una función de sus puntos
extremos factibles. Por ejemplo, en el conjunto convexo (a) de la figura 7.1, una combi-

CAPÍTULO 7

Programación lineal avanzada

Aplicación de la vida real. Asignación de rutas marítimas óptimas y de personal
para reclutamiento naval en Tailandia

La armada tailandesa lleva a cabo reclutamientos cuatro veces al año. Un recluta se re-
porta a uno de 34 centros locales y luego es transportado por autobús a una de cuatro
bases navales filiales. Desde allí, los reclutas son transportados a la base naval principal
por barco. Las instalaciones portuarias en las bases filiales pueden restringir el tipo de
buque que puede atracar en cada base. Las bases filiales tienen capacidades limitadas
pero, en conjunto, las cuatro tienen suficiente capacidad para acomodar a todos los re-
clutas. Durante el verano de 1983, un total de 2929 reclutas fueron transportados desde
los centros de reclutamiento hasta las cuatro bases filiales y finalmente a la base prin-
cipal. El problema tiene que ver con la determinación del programa óptimo de trans-
porte de los reclutas, primero de los centros de reclutamiento a las bases filiales, y
luego de éstas a la base principal. El estudio utiliza una combinación de programación
lineal y entera. (Los detalles se dan en el caso 5, capítulo 26 en el sitio web).
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nación convexa de los puntos extremos X1, X2, X3, X4, X5 y X6, identifica cualquier
punto factible X como 

Esta observación muestra que un número finito de puntos extremos define por com-
pleto el número infinito de puntos en el espacio de soluciones. Este resultado es el
punto crucial del método simplex.

Ejemplo 7.1-1

Demuestre que el siguiente conjunto es convexo:

Sean y dos puntos distintos en C. Si C es convexo, entonces X 5

(x1,x2) 5 a1, X1 1 a2X2, a1 1 a2 51, a1 a2 $ 0, también deben estar en C. Para comprobar que
esto es cierto, tenemos que demostrar que el segmento de línea X satisface todas las restriccio-
nes de C; es decir,

Además, las condiciones de no negatividad se satisfacen porque a1 y a2 son no negativos.

CONJUNTO DE PROBLEMAS 7.1A

1. Compruebe que el conjunto Q 5 {x1,x2 ƒx1 1 x2 # 1, x1 $ 0, x2 $ 0 es convexo. ¿Es esen-
cial la condición de no negatividad para la comprobación?

*2. Demuestre que el conjunto Q 5 {x1,x2ƒx1 $ 1 o x2 $ 2} no es convexo.
3. Determine gráficamente los puntos extremos del siguiente conjunto convexo:

Demuestre que el espacio de soluciones factibles completo puede determinarse como
una combinación convexa de sus puntos extremos. Por consiguiente concluimos que cual-
quier espacio de soluciones convexo (limitado) queda totalmente definido una vez que se
conocen sus puntos extremos.

4. En el espacio de soluciones de la figura 7.2 (trazada a escala), exprese el punto interior
(3,1) como una combinación convexa de los puntos extremos A, B, C y D determinando
los pesos asociados con cada punto extremo.

Q = 5x1, x2 ƒx1 + x2 … 2, x1 Ú 0, x2 Ú 06

x1 = a1x1
œ + a2x1

fl … a1122 + a2122 = 2
x2 = a1x2

œ + a2x2
fl … a1132 + a2132 = 3

f Q x1 … 2, x2 … 3

X2 = {x1
fl, x2

fl }X1 = {x1
œ , x2

œ }

C = {(x1, x2)|x1 … 2, x2 … 3, x1 Ú 0, x2 Ú 0}

ai Ú  0, i = 1, 2, . . ., 6

a1 +  a2 +  a3 +  a4 +  a5 +  a6 = 1

X =  a1X1 +  a2X2 +  a3X3 +  a4X4 +  a5X5 +  a6X6

FIGURA 7.1

Ejemplos de un conjunto convexo y un
conjunto no convexo

X'
X' X"X"

(a) (b)
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7.1.1 Desde los puntos extremos hasta las soluciones básicas

Es conveniente expresar el problema general de PL en forma de ecuación (vea la sec-
ción 3.1) utilizando notación matricial.1 Defina X como un vector n que representa las
variables, A como una matriz (m 3 n) que representa los coeficientes de restricción, b
como un vector columna que representa el lado derecho, y C como un vector n que re-
presenta los coeficientes de la función objetivo. La PL se escribe entonces como

Maximizar o minimizar z 5 CX

sujeto a

Utilizando el formato del capítulo 3, los m elementos más a la derecha de X represen-
tan las variables básicas iniciales. De ahí que las m columnas más a la derecha de A
siempre forman una matriz de identidad I.

Una solución básica de AX 5 b se determina igualando las n – m variables a cero,
y luego resolviendo las m ecuaciones resultantes en las m incógnitas restantes, siempre
que la solución resultante sea única. Dada esta definición, la teoría de programación li-
neal establece el siguiente resultado entre la definición geométrica de los puntos ex-
tremos y la definición algebraica de las soluciones básicas:

Puntos extremos de {X | AX 5 b} 3 Soluciones básicas de AX 5 b 

La relación indica que las soluciones básicas de AX 5 b definen los puntos extremos
del espacio de soluciones de la PL, y viceversa. Por lo tanto, las soluciones básicas de
AX 5 b proporcionan toda la información necesaria para determinar la solución ópti-
ma del problema de la PL. Además, la restricción de no negatividad, X $$ 0, limita la
búsqueda del óptimo a sólo las soluciones básicas factibles.

 X Ú  0

 AX =  b

FIGURA 7.2

Espacio de soluciones para el 
problema 4, conjunto 7.1a 1

5

4

3

2

1

0

6

2

A

D

C

B
x1

x2

3

(3, 1)

4 5 6

1En el apéndice D, en el sitio web, se repasa el álgebra matricial.
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Para formalizar la definición de una solución básica, el sistema AX 5 b se escri-
be en forma vectorial como 

El vector Pj es la columna j-ésima de A. Un subconjunto de m vectores forma una
base, B, si, y sólo si, los m vectores seleccionados son linealmente independientes. En
este caso, la matriz B es no singular. Definiendo XB como un vector m de las variables
básicas, entonces 

Utilizando la inversa B21, la solución básica asociada es

Si B21b $ 0, entonces XB es factible. Las n 2 m variables restantes son no básicas en el
nivel cero.

El resultado anterior muestra que en un sistema de m ecuaciones y n incógnitas,
la cantidad máxima de soluciones básicas (factibles y no factibles) es .

Ejemplo 7.1-2

Determine todas las soluciones factibles y no factibles del siguiente sistema de ecuaciones.

La siguiente tabla resume los resultados. (La inversa de B se determina por uno de los mé-
todos de la sección D.2.7 en el sitio web).

a1 3 -1
2 -2 -2

b £x1

x2

x3

≥ = a4
2
b

(m
n ) =  n!

m!(n - m)!

XB = B -1b

BXB = b

a
n

j= 1
Pjxj = b

B BXB = b Solución Tipo

(P1, P2) a1 -3
2 -2

b ax1
x2
b = a4

2
b ax1

x2
b = a1

4 -3
8

1
4 -1

8

b a4
2
b = a7

4
3
4

b Factible

(P1, P3) (No es una base porque P1 y P3 son dependientes)
(P2, P3) a -3 -1

-2 -2
b ax2

x3
b = a4

2
b ax2

x3
b = a -

1
4 -1

8

-1
4 -3

8

b a4
2
b = a -

3
4

-7
4

b No factible

También podemos investigar el problema expresándolo en forma vectorial como sigue:

Los vectores bidimensionales P1, P2, P3 y b pueden representarse genéricamente como (a1, a2)T.
En la figura 7.3 aparecen gráficas de estos vectores en el plano (a1, a2). Por ejemplo, para b 5 (4,
2)T, a1 5 4 y a2 5 2.

a1
2
bx1 + a 3

-2
bx2 + a -1

-2
bx3 = a4

2
b
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Como se trata de dos ecuaciones (m 5 2), una base incluye exactamente dos vectores, selec-
cionados de entre P1, P2 y P3. Las matrices (P1,P2) y (P2,P3) forman bases porque sus vectores
asociados son independientes. Por otra parte, los vectores de la matriz (P1,P3) son dependientes,
y por consiguiente la matriz no es una base.

Algebraicamente, una matriz (cuadrada) forma una base si su determinante no es cero (vea
la sección D.2.5 en el sitio web). Los siguientes cálculos muestran que las combinaciones (P1,P2)
y (P2,P3) son bases, y que la combinación (P1,P3) no lo es.

CONJUNTO DE PROBLEMAS 7.1B

1. En los siguientes conjuntos de ecuaciones, (a) y (b) tienen soluciones únicas (básicas), (c)
tiene una cantidad infinita de soluciones, y (d) no tiene solución. Demuestre que estos resul-
tados pueden verificarse por medio de una representación vectorial gráfica. Con este ejerci-
cio, establezca las condiciones generales para la dependencia o independencia vectorial que
conduzcan a una solución única, a una infinidad de soluciones, o a ninguna solución.
(a) (b)

(c) (d)

2. Use vectores para determinar gráficamente el tipo de solución de cada uno de los con-
juntos de ecuaciones siguientes: solución única, una infinidad de soluciones, o ninguna so-

 -x1 + 2x2 = 1 x1 + 3x2 = 2
 2x1 - 4x2 = 2 2x1 + 6x2 = 4
 2x1 - x2 = 2 3x1 + x2 = 3
 2x1 + 3x2 = 1 x1 + 3x2 = 2

 det1P1, P32 = deta1 -1
2 -2

b = 11 * -22 - 1-1 * 22 = 0

 det1P2, P32 = deta 3 -1
-2 -2

b = 13 * -22 - 1-1 * -22 = -8 Z 0

 det1P1, P22 = deta1 3
2 -2

b = 11 * -22 - 12 * 32 = -8 Z 0

FIGURA 7.3

Representación vectorial del espacio de
soluciones de PL

3

a2

P2

P1

P3

b

a1

2

1

�1 1 2 3 4

�2

�1
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lución. Para los casos de soluciones únicas, indique a partir de la representación vectorial
(y sin resolver las ecuaciones algebraicamente) ya sea que los valores de x1 y x2 sean po-
sitivos, cero o negativos.

(a) *(b)

(c) *(d)

(e) *(f)

3. Considere el siguiente sistema de ecuaciones:

Determine si cualquiera de las siguientes combinaciones forma una base.

*(a)
(b)
(c)

*(d)
4. ¿Cierto o falso? 

(a) El sistema BX 5 b tiene una solución única si B es no singular.

(b) El sistema BX 5 b no tiene solución si B es singular y b es independiente de B.

(c) El sistema BX 5 b tiene una infinidad de soluciones si B es singular y b es depen-
diente.

7.1.2 Tabla simplex generalizada en forma matricial

Esta sección desarrolla la tabla simplex general en forma matricial. Esta representa-
ción es la base para desarrollos subsiguientes en el capítulo.

Considere la PL en forma de ecuación:

Maximizar z 5 CX, sujeto a AX 5 b, X $ 0

De forma equivalente, el problema puede escribirse como 

Suponga que B es una base factible del sistema AX 5 b, X $ 0, y sea XB el vector
correspondiente de variables básicas y CB su vector objetivo asociado. Dado que todas
las variables no básicas son cero, la solución se calcula entonces como 

(La inversión de matrices particionadas se da en la sección D.2.7 en el sitio web).

a z
XB
b = a1 -CB

0 B
b-1a0

b
b = a1 CBB-1

0 B-1 b a0
b
b = aCBB-1b

B-1b
b

a1 -C
0 A

b a z
X
b = a0

b
b

(P1, P2, P3, P4)

(P2, P3, P4)

(P1, P2, P4)

(P1, P2, P3)

£1
2
3
≥x1 + £0

2
1
≥x2 + £1

4
2
≥x3 + £2

0
0
≥x4 = £3

4
2
≥

a1 -2
0 0

b ax1

x2
b = a1

1
ba -2 4

1 -2
b ax1

x2
b = a2

1
b

a2 4
1 2

b ax1

x2
b = a6

3
ba2 4

1 3
b ax1

x2
b = a -2

-1
b

a2 -2
1 3

b ax1

x2
b = a1

3
ba5 4

1 -3
b ax1

x2
b = a1

1
b
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La tabla simplex completa en forma matricial puede derivarse a partir de la ecua-
ción original como 

Las manipulaciones de la matriz obtienen entonces las siguientes ecuaciones:

Dado el vector j-ésimo Pj de A, la columna de la tabla simplex asociada con la variable
xj puede escribirse como 

a1 CBB-1A - C
0 B-1A

b a z
X
b = aCBB-1b

B-1b
b

a1 CBB-1

0 B-1 b a1 -C
0 A

b a z
X
b = a1 CBB-1

0 B-1 b a0
b
b

Básica xj Solución

z CBB -1Pj  - cj CBB -1b

XB B-1Pj B-1b

De hecho, la tabla anterior es la misma que se utilizó en el capítulo 3 (vea el problema
5 del conjunto 7.1c). También incluye todas las relaciones primales-duales, desarrolla-
das en la sección 4.2.4. Una propiedad importante de esta tabla es que la inversa B21,
es el único elemento que cambia con una nueva iteración, lo que indica que toda la
tabla puede generarse a partir de los datos originales una vez que se conoce la inversa
B21. A este respecto, el error de redondeo computacional en cualquier tabla puede
controlarse al controlar la precisión de B21. Este resultado es una de las razones prin-
cipales para el desarrollo del método simplex revisado en la sección 7.2.

Ejemplo 7.1-3

Considere la siguiente PL:

sujeto a

Genere la tabla simplex asociada con la base B 5 (P1,P2).
Dada B 5 (P1,P2), entonces XB 5 (x1,x2)T y CB 5 (1,4). Por tanto,

Obtenemos entonces

XB = ax1

x2
b = B-1b = ¢1

5
1
5

3
5 -2

5

≤ a10
5
b = a3

4
b

B-1 = a2 1
3 -1

b-1

= ¢1
5

1
5

3
5 -2

5

≤
x1, x2, x3, x4 Ú 0

3x1 - x2 - 2x3 + 6x4 =  5

2x1 + x2 + 2x3 + 4x4 = 10

Maximizar z = x1 + 4x2 + 7x3 + 5x4



274 Capítulo 7 Programación lineal avanzada

Para calcular las columnas de restricción en el cuerpo de la tabla, tenemos 

Luego calculamos la fila objetivo como

Por último, calculamos el valor de la función objetivo como

Por lo tanto, la tabla completa puede resumirse como sigue.

z = CBB-1b = CBXB = 11, 42a3
4
b = 19

CB1B-11P1, P2, P2, P422 - C = 11, 42a1 0 0 2
0 1 2 0

b - 11, 4, 7, 52 = 10, 0, 1, -32
B-11P1, P2, P3, P42 = ¢1

5
1
5

3
5 -2

5

≤ a2 1 2 4
3 -1 -2 6

b = a1 0 0 2
0 1 2 0

b

Básica x1 x2 x3 x4 Solución

z 0 0 1 –3 19

x1 1 0 0 2 3
x2 0 1 2 0 4

CONJUNTO DE PROBLEMAS 7.1C

*1. En el ejemplo 7.1-3, considere B 5 (P3,P4). Demuestre que la solución básica correspon-
diente es factible, y luego genere la tabla simplex correspondiente.

2. Considere la siguiente PL:

sujeto a

Verifique si cada una de las siguientes matrices forma una base (factible o no factible):
(P1,P2), (P2,P3), (P3,P4).

3. En la siguiente PL, calcule la tabla simplex completa asociada con XB 5 (x1,x2,x5)T.

sujeto a

 x1, x2, x3, x4, x5 Ú 0

 x1 + 2x2 + x5 = 3

 4x1 + 3x2 - x4 = 6

 3x1 + x2 - x3 = 3

Minimizar z = 2x1 + x2

 x1, x2, x3, x4 Ú 0

 2x1 - 2x2 - x3  = 2

 x1 + 2x2 + x3 + x4 = 10

Maximizar  z = 5x1 + 12x2 + 4x3
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*4. La siguiente es una tabla de PL óptima:

Básica x1 x2 x3 x4 x5 Solución

z 0 0 0 3 2 ?

x3 0 0 1 1 –1 2
x2 0 1 0 1 0 6
x1 1 0 0 –1 1 2

Las variables x3, x4 y x5 son holguras en el problema original. Use manipulaciones de ma-
triz para reconstruir la PL original, y luego calcule el valor objetivo óptimo.

5. En la tabla simplex matriz, suponga que X 5 (XI,XII)
T, donde XII corresponde a una so-

lución básica inicial típica (compuesta de variables de holgura y/o artificiales) con B 5 1,
y sean C 5 (CI,CII) y A 5 (D,I) las particiones correspondientes de C y A, respectiva-
mente. Demuestre que la tabla simplex matriz se reduce a la misma forma utilizada en el
capítulo 3; es decir,

Básica XI XII Solución

z CBB -1D - CI CBB -1D -  CII CBB -1b

XB B -1D B -1 B -1b

7.2 MÉTODO SIMPLEX REVISADO

La sección 7.1.1 muestra que la solución óptima de un programa lineal siempre está asocia-
da con una solución básica (factible). El método simplex busca pasar de una base factible, B
a una base mejor (en realidad, no a una peor), Bsiguiente hasta que se alcance la base óptima.

Los pasos iterativos del método simplex revisado son exactamente los mismos
que en el método de la tabla simplex presentado en el capítulo 3. La diferencia princi-
pal es que los cálculos en el método revisado se basan en manipulaciones de matriz y
no en operaciones de filas. Como la tabla simplex completa puede calcularse a partir
de los datos originales y la inversa actual (vea la sección 7.1.2), controlando la precisión
del cálculo de B21 puede mitigarse el error de redondeo de máquina. En el método de
la tabla simplex del capítulo 3, cuando se genera una nueva tabla a partir de la inme-
diatamente precedente el error de redondeo se propaga.

7.2.1 Desarrollo de las condiciones de optimalidad y factibilidad

El problema de PL puede escribirse como

Dados el vector básico XB, su base B, y su vector objetivo CB, la tabla simplex general
desarrollada en la sección 7.1.2 muestra que cualquier iteración simplex puede repre-
sentarse mediante las siguientes ecuaciones:

(XB)i + a
n

j= 1
(B-1Pj)ixj = (B-1b)i

z + a
n

j= 1
(zj - cj)xj = CBB -1b

Maximizar o minimizar  z =  a
n

j= 1
cjxj  sujeto a a

n

j= 1
Pjxj = b,  xj Ú 0, j = 1,  2 , . . . , n
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El costo reducido de xj tal como se definió en la sección 4.3.2, se calcula como 

La notación (V)i representa el elemento i del vector V.

Condición de optimalidad. La ecuación z muestra que, en el caso de maximización, un
incremento de la variable xj no básica por encima de su valor cero actual puede
mejorar el valor de z (con respecto a su valor actual, CBB21b) sólo si zj – cj , 0. Para
minimización, la condición es zj 2 cj . 0. Por lo tanto, el vector de entrada se
selecciona como el vector no básico con la condición zj 2 cj más negativa (más
positiva) en caso de maximización (minimización).

Condición de factibilidad. Dado el vector de entrada Pj determinado por la condición
de optimalidad, las ecuaciones de restricción se reducen a 

(Recuerde que las n – 1 variables no básicas restantes son cero.) La idea es
(tratar de) incrementar xj por encima del nivel cero, reemplazando una de las
variables básicas actuales. El requisito de que todas las (XB) permanezcan no
negativas lo dicta el grado al cual se incrementa xj; es decir,

Si (B21Pj) . 0 con al menos una i, la condición de no negatividad (XB) $ 0
todas las i, establece el límite en el incremento máximo del valor de la variable
de entrada xj; a saber,

Suponga que (XB)k es la variable no básica que corresponde a la relación mí-
nima. Se desprende entonces que Pk debe ser el vector de salida, y su variable
asociada (básica) debe volverse no básica (en el nivel cero) en la siguiente ite-
ración simplex.

CONJUNTO DE PROBLEMAS 7.2A

*1. Considere la siguiente PL:

sujeto a

Los vectores P1, P2, P3 y P4 se muestran en la figura 7.4. Suponga que la base B de la ite-
ración actual se compone de P1 y P2.

x1, x2, x3, x4 Ú 0

P1x1 +  P2x2 +  P3x3 +  P4x4 = b

Maximizar z =  c1x1 + c2x2 + c3x3 + c4x4

xj = mín
i
e (B-1

 b)i
(B-1Pj)i

 ` (B-1Pj)i 7  0 f

(XB)i = (B-1 b)i - (B-1
 Pj)ixj Ú 0

(XB)i = (B-1 b)i - (B-1
 Pj)ixj

zj - c
j

= CBB-1Pj - cj
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(a) Si el vector P3 entra a la base, ¿cuál de los dos vectores básicos actuales debe salir
para que la solución básica resultante sea factible?

(b) ¿Puede el vector P4 formar parte de una base factible? 
*2. Compruebe que, en cualquier iteración simplex, zj 2 cj 5 0 para todas las variables bási-

cas asociadas.
3. Compruebe que si zj 2 cj . 0 (,0) para todas las variables no básicas xj de un problema

de PL de maximización (minimización), entonces la solución óptima es única. De lo con-
trario, si zj 2 cj es igual a cero para una xj no básica, entonces el problema tiene una solu-
ción óptima alternativa.

4. En una solución básica inicial con holguras en la base (totales), demuestre que al utilizar
la forma matricial de la tabla, en vez del procedimiento mecánico utilizado en la sección
3.3, en el cual la ecuación objetivo se establece como

se calcula automáticamente la condición zj 2 cj para todas las variables en la tabla de inicio.
5. Utilizando la forma matricial de la tabla simplex, demuestre que en una solución básica

inicial totalmente artificial, el procedimiento de la sección 3.4.1 que sustituye a las varia-
bles artificiales en la función objetivo (por medio de ecuaciones de restricción), en reali-
dad calcula la zj 2 cj para todas las variables en la tabla de inicio.

6. Considere una PL en la cual la variable xk no está restringida en cuanto a signo. Compruebe
que sustituyendo son no negativas, es imposible que las dos
variables se reemplacen en entre sí en una solución óptima alternativa.

*7. Dada la programación lineal en forma de ecuación con m ecuaciones y n incógnitas, deter-
mine el máximo de puntos extremos adyacentes a los que se puede llegar desde un punto
extremo no degenerado (todas las variables básicas son . 0) del espacio de soluciones.

8. Al aplicar la condición de factibilidad del método simplex, suponga que xr 5 0 es una va-
riable básica y que xj es la variable de entrada con (B21Pj)r Z 0. Demuestre que la solu-
ción básica resultante permanece factible aun cuando (B2Pj)r sea negativa.

9. En la implementación de la condición de factibilidad del método simplex, ¿especifica las
condiciones matemáticas para encontrar una solución degenerada (al menos una variable
básica 5 0) por primera vez? ¿Para seguir obteniendo una solución degenerada en la si-
guiente iteración? ¿Para eliminar la degeneración en la siguiente iteración?

*10. ¿Cuáles son las relaciones entre los puntos extremos y las soluciones básicas en las situa-
ciones de degeneración y no degeneración? ¿Cuál es el número máximo de iteraciones
que pueden realizarse en un punto extremo dado suponiendo que no hay ciclado?

*11. Considere la PL, maximizar z 5 CX sujeto a AX # b, X $ 0, donde b $ 0. Suponga que
el vector de entrada Pj es tal que por lo menos un elemento de B21Pj es positivo.

xk = xk
- - xk

+, donde xk
-

  y  xk
+

z - a
n

j= 1
cjxj = 0

FIGURA 7.4

Representación vectorial del problema 1,
conjunto 7.2a

P2

P1

P4

P3

b
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(a) Si Pj se reemplaza con aPj, donde a es un escalar positivo, y siempre que xj perma-
nezca como la variable de entrada, halle  la relación entre los valores de xj corres-
pondientes a Pj y aPj.

(b) Responda el inciso (a) si, además, b se reemplaza con b b donde b es un escalar positivo.
12. Considere la PL

Maximizar z =  CX sujeto a AX …  b, X Ú  0, donde b Ú  0

Después de obtener la solución óptima, se sugiere que una variable no básica xj puede ha-
cerse básica (rentable) reduciendo los requerimientos de recursos por unidad de xj a de
sus valores originales, a . 1. Como los requerimientos por unidad se reducen, se espera que
la utilidad por unidad de xj también se reducirá a de su valor original. ¿Harán estos cam-
bios que xj se transforme en una variable rentable? Explíquelo matemáticamente.

13. Considere la PL

Defina a XB como el vector básico actual con B como su base asociada y CB como su
vector de coeficientes objetivos. Demuestre que si CB se reemplaza con los nuevos coefi-
cientes de DB, los valores de zj 2 cj para el vector básico XB permanecerán iguales a
cero. ¿Cuál es la importancia de este resultado?

7.2.2 Algoritmo simplex revisado

Paso 0. Construya una solución factible básica de inicio, y sean B y CB su base asocia-
da y el vector de coeficientes objetivo, respectivamente.

Paso 1. Calcule la inversa B21 de la base B por medio de un método de inversión
apropiado.2

Paso 2. Para cada vector no básico Pj calcule

Si zj 2 cj $ 0 en maximización (# 0 en minimización) para todos los vecto-
res no básicos, deténgase; la solución óptima es XB 5 B21b, z 5 CBXB.

En caso contrario, determine el vector de entrada Pj que tiene el valor
zj 2 cj más negativo (positivo) en caso de maximización (minimización)
entre todos los vectores no básicos.

zj - cj = CB B -1Pj - cj

Maximizar z =  CX sujeto a (A, I) X =  b, X Ú  0

1
a

1
a

2En la mayoría de las presentaciones de PL, incluidas las primeras seis ediciones de este libro, el método de
forma de producto para invertir una base (vea la sección D.2.7 en el sitio web) se integra en el algoritmo sim-
plex revisado porque la forma de producto se presta fácilmente para los cálculos simplex revisados; es decir,
las bases sucesivas difieren en exactamente una columna. Este detalle se eliminó en esta presentación por-
que hace que el algoritmo parezca más complejo de lo que realmente es. Por otra parte, rara vez se utiliza la
forma de producto en el desarrollo de códigos de PL comerciales, porque no está diseñado para cálculos au-
tomáticos en los que los errores mecánicos de redondeo son un problema serio. En su lugar, se utiliza algún
método de análisis numérico avanzado, como el método de Descomposición de LU para calcular la inversa.
(Dicho sea de paso, la inversión de matrices con TORA se basa en la descomposición de LU.)

Paso 3. Calcule B21Pj. Si todos los elementos de B21Pj son negativos o cero, detén-
gase; la solución es no acotada. En caso contrario, use la prueba de relación
para determinar el vector de salida Pj.

Paso 4. Forme la siguiente base reemplazando el vector de salida Pi con el vector de en-
trada Pj en la base actual B. Diríjase al paso 1 para iniciar una nueva iteración.
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Ejemplo 7.2-1

El modelo de Reddy Mikks (sección 2.1) se resolvió con el algoritmo simplex revisado. El mismo
modelo se resolvió por el método de la tabla simplex en la sección 3.3.2. Una comparación mues-
tra que los dos métodos son iguales.

La forma de ecuación del modelo de Reddy Mikks puede expresarse en forma de matriz como

sujeto a

La notación C 5 (c1, c2,…, c6) representa los coeficientes de la función objetivo, y (P1, P2,…, P6)
representan los vectores columna de las ecuaciones de restricción. El lado derecho de las restric-
ciones es el vector b.

En los cálculos siguientes, daremos la fórmula algebraica para cada paso y su respuesta
numérica final, sin detallar los cálculos. Verá que es instructivo llenar los espacios vacíos en cada
paso.

Iteración 0

Por lo tanto,

Cálculos de optimalidad:

Por lo tanto, P1 es el vector de entrada.

Cálculos de factibilidad:

Por consiguiente,

y P3 se convierte en el vector de salida.

x1 = míne 24
6

, 
6
1

, - , - f = mín54, 6, - , -6 = 4

B0
-1P1 = (6, 1, -1, 0)T

XB0
= (x3, x4, x5, x6)

T = (24,  6, 1,  2)T

5zj - cj6j= 1, 2 = CB0
B0

-1(P1, P2) - (c1, c2) = (-5, - 4)

CB0
B0

-1 = (0, 0, 0, 0)

XB0
= B0

-1b = (24,  6,  1,  2)T,  z = CB0
XB0

= 0

B0 = (P3, P4, P5, P6) = I,  B0
-1 = I

XB0
= (x3, x4, x5, x6),  CB0

= (0, 0, 0, 0)

x1,  x2,  . . . ,  x6 Ú 0

§ 6 4 1 0 0 0
1 2 0 1 0 0

-1 1 0 0 1 0
0 1 0 0 0 1

¥ ¶x1

x2

x3

x4

x5

x6

∂ = §24
6
1
2

¥
maximizar z = (5, 4, 0, 0, 0, 0) (x1, x2, x3, x4, x5, x6)

T
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Los resultados anteriores se resumen en el conocido formato de tabla simplex, y en esencia
demuestran que los dos métodos son lo mismo.

Básica x1 x2 x3 x4 x5 x6 Solución

z –5 –4 0 0 0 0 0

x3 6 24
x4 1 6
x5 –1 1
x6 0 2

Iteración 1

Utilizando un método de inversión apropiado (vea la sección D.2.7 en el sitio web), entonces 

Por lo tanto,

Cálculos de optimalidad:

Así que, P2 es el vector de entrada.

Cálculos de factibilidad:

Por consiguiente,

El vector P4 sale de la base. (Verá que es útil resumir estos resultados en el formato de tabla sim-
plex como se hizo en la iteración 0.)

x2 =  mín c  
4
2
3

 , 
2
4
3

 , 
5
5
3

 , 
2
1

 s =  mín E6, 32 , 3, 2F =  32

B1
-1P2 = ( 23 , 43 , 53 ,1)T

XB1
= (x1, x4, x5, x6)

T = (4,  2,  5,  2)T

{zj - cj}j= 2, 3 = CB1
B1

-1(P2, P3) - (c2, c3) = (-  23 ,  56 )

CB1
B1

-1 = ( 56 , 0, 0, 0)

XB1
= B1

-1b = (4, 2, 5, 2)T, z = CB1
XB1

= 20

B1
-1 = § 1

6 0 0 0

-1
6 1 0 0
1
6 0 1 0

0 0 0 1

¥
 = § 6 0 0 0

1 1 0 0
-1 0 1 0

0 0 0 1

¥ B1 = (P1, P4, P5, P6)

 XB1
= (x1, x4, x5, x6),  CB1

= (5, 0, 0, 0)
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Iteración 2

De modo que,

Por tanto,

Cálculos de optimalidad:

En consecuencia, es óptimo, y los cálculos terminan.

Resumen de la solución óptima:

CONJUNTO DE PROBLEMAS 7.2B

1. En el ejemplo 7.2-1, resuma los datos de la iteración 1 en el formato de tabla de la sec-
ción 3.3.

2. Resuelva las siguientes programaciones lineales por medio del método simplex revisado.
(a)

sujeto a

*(b)
sujeto a

x1, x2, x3 Ú 0

4x1 -  
 
x2 +  3x3  …  8

4x1 +  
 
x2 + 12x3  … 8

4x1 + 3x2 +  
  8x3  … 12

Maximizar z = 2x1 +  x2 +  2x3

x1, x2, x3 Ú 0

x1 +  4x3 … 4

2x1 - x2 + 2x3 … 2

Maximizar z = 6x1 - 2x2 + 3x3

x1 = 3, x2 = 1.5, z = 21

XB2

Ezj - cjF j= 3,4 = CB2
B2

-1(P3, P4) - (c3, c4) = ( 34 , 12 )

CB2
B2

-1 = ( 34 , 12 , 0, 0)

XB2
= B2

-1b = (3, 32 , 52 , 12 )T, z = CB2
XB2

= 21

B2
-1 = • 1

4 -1
2 0 0

-1
8

3
4 0 0

3
8 -5

4 1 0
1
8 -3

4 0 1

μ
 = § 6 4 0 0

1 2 0 0
-1 1 1 0

0 1 0 1

¥B2 = (P1, P2, P5, P6)

XB2
= (x1, x2, x5, x6)

T,  CB2
= (5, 4, 0, 0)
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(c)
sujeto a

(d)
sujeto a

3. Resuelva la siguiente PL mediante el método simplex revisado dado el vector factible bá-
sico inicial .

sujeto a

4. Resuelva lo siguiente utilizando el método simplex revisado de dos fases:
(a) Problema 2(c).
(b) Problema 2(d).
(c) Problema 3 (ignore la dada de inicio).

5. Método simplex dual revisado. Los pasos de este método (utilizando manipulaciones de
matriz) se resumen como sigue:
Paso 0. Sea B0 5 I la base de inicio para la cual por lo menos uno de los elementos de

es negativo (no factible).
Paso 1. Calcule XB 5 B21b, los valores actuales de las variables básicas. Seleccione la va-

riable de salida xr como la que tiene el valor más negativo. Si todos los elementos
de XB son no negativos, deténgase; la solución actual es factible (y óptima).

Paso 2. (a) Calcule zj 2 cj 5 CBB21Pj 2 cj para todas las variables no básicas xj.
(b) Para todas las variables no básicas xj, calcule los coeficientes de restricción

(B21Pj)r asociados con la fila de la variable de salida xr.
(c) La variable de entrada está asociada con

Si todas las (B21Pj)r $ 0, hay una solución no factible.

u = mín
i

 e `  zj - cj

(B-1Pj)r
 ` , (B-1Pj)r 6  0 f

XB0

XB0

x1, x2, x3, x4, x5, x6 Ú 0

 x1 + x2 -  3x3 + x4 + x5  = 12

   x2 -
  
x3 + x4     + 3x6  = 8

   x2 -
  
x3     

+ x5 +
 
x6  = 6

Minimizar z = 7x2 + 11x3 - 10x4 + 26x6

XB0
= (x2, x4, x5)

T

x1,  x2, x3, x4 Ú 0

2x1 + 3x2 -  x3 +  x4  Ú 18

3x1 -
  x2 +  x3 + 2x4  … 20

 x1 + 7x2 + 3x3 + 7x4  … 46

Minimizar z = 5x1 - 4x2 + 6x3 + 8x4

x1, x2 Ú 0

x1 + 2x2 … 3

 4x1 + 3x2 Ú 6

 3x1 + x2 = 3

Minimizar z = 2x1 +  x2
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Paso 3. Obtenga la nueva base intercambiando los vectores de entrada y de salida (Pj y
Pr). Calcule la nueva inversa y vaya al paso 1.
Aplique el método al siguiente problema:

sujeto a

7.3 ALGORITMO DE VARIABLES ACOTADAS

En modelos de PL, las variables pueden tener cotas superiores e inferiores explícitas.
Por ejemplo, en instalaciones de producción, las cotas inferior y superior pueden re-
presentar las demandas mínimas y máximas de determinados productos. Las variables
acotadas también surgen de forma prominente al resolver programas enteros median-
te el algoritmo de ramificación y acotamiento (vea la sección 9.3.1).

El algoritmo de acotamiento es computacionalmente eficiente porque tiene en
cuenta de manera implícita a las cotas. Primero consideramos las cotas inferiores por-
que su tratamiento es sencillo. Dada X $ L, sustituya X 5 L 1 X9, X9 $ 0 y resuelva el
problema en función de X9 (cuya cota inferior ahora es igual a cero). La X original se
determina entonces mediante una sustitución inversa, X 5 X9 1 L $ 0.

Luego considere las restricciones de acotamiento superior, X # U. La idea de
sustitución directa (es decir, X 5 U 2 X0, X0 $ 0) no es correcta porque la sustitución
inversa X 5 U 2 X0, no garantiza que X permanecerá no negativa. Por lo tanto, se re-
quiere un procedimiento diferente.

Defina el modelo de PL de acotamiento superior como

El algoritmo de acotamiento utiliza sólo las restricciones principales (A,I)X 5 b, X $ 0.
Tiene en cuenta las cotas superiores X # U, implícitamente al modificar la condición
de factibilidad.

Sea XB 5 B21b una solución factible básica actual de (A,I)X 5 b, X $ 0, y su-
ponga que Pj es el vector de entrada (tal como lo determina la condición de optimali-
dad). Entonces, dado que todas las variables no básicas son cero, la ecuación de restric-
ción de la i-ésima variable básica es 

Cuando la variable de entrada xj se incrementa por encima del nivel cero (XB) se incre-
mentará o decrecerá según si (B21Pj)i es negativa o positiva, respectivamente. Por lo
tanto, al determinar el valor del vector de entrada Pj, deben satisfacerse tres condiciones.

1. La variable básica permanece no negativa, es decir (XB)i $ 0.
2. La variable básica (XB)i no excede su cota superior, es decir (XB)i # (UB)i donde

UB comprende los elementos de U correspondientes a XB.

(XB)i = (B-1b)i - (B-1Pj)i xj

Maximizar z = ECX|(A, I) X = b, 0 … X … UF

x1, x2 Ú 0

 x1 + 2x2 … 3

 4x1 + 3x2 Ú 6

 3x1 + x2 Ú 3

Minimizar z = 3x1 + 2x2



284 Capítulo 7 Programación lineal avanzada

3. La variable de entrada xj no puede asumir un valor mayor que su cota superior,
es decir, xj # uj, donde uj es el elemento j-ésimo de U.

La primera condición (XB)i $ 0 es la misma que en el método simplex regular.
Da por resultado

La segunda condición (XB)i # (UB)i especifica que

Se satisface si

Combinando las tres restricciones, xj entra a la solución en el nivel que satisface las tres
condiciones, es decir,

El cambio de base para la siguiente iteración depende de si xj, o uj (cualquiera de
las dos), introduce la solución en el nivel u1, u2. Suponiendo que (XB)r es la variable de
salida, entonces tenemos las siguientes reglas:

1. xj 5 u1: (XB)r sale de la solución básica (se vuelve no básica) en el nivel cero. La
nueva iteración se genera con el método simplex regular con xj y (XB)r como las
variables de entrada y salida, respectivamente.

2. xj 5 u2: (XB)r se vuelve no básica en su cota superior. La nueva iteración se gene-
ra como en el caso de xj 5 u1, con una modificación que tiene en cuenta el hecho
de que (XB)r será no básica en la cota superior. Como los valores de u1 y u2 re-
quieren que todas las variables no básicas estén en el nivel cero (¡convénzase
de que éste es el caso!), la nueva (XB)r no básica, en la cota superior se convierte
en una variable no básica en el nivel cero. Eso se logra con la sustitución de (XB)r
5 (UB)r 2 (X99B)r, donde (X99B)r $ 0. Es intrascendente si la sustitución se hace
antes o después de que se calcule la nueva base.

3. xj 5 uj: El vector básico XB no cambia porque xj 5 uj se detiene antes de hacer
que cualquiera de las variables básicas actuales alcance su cota inferior (5 0) o
cota superior. Esto significa que xj permanecerá no básica pero en la cota supe-
rior. El único cambio requerido en la tabla es utilizar la sustitución (xj 5 uj 2 x9j)
para garantizar que todas las variables no básicas están en el nivel cero.

Un empate entre u1, u2 y uj puede romperse arbitrariamente. Sin embargo, es preferible,
siempre que sea posible, implementar la regla de xj 5 uj porque implica menos cálculos.

xj =  mín {u1, u2, uj}

xj … u2 = mín
i

 c AB-1b B i - AUB B iAB-1Pj B i  `B-1Pji 6 0 s
AB-1b B i - AB-1Pj B i xj … AUB B i

xj … u1 =  mín
i
c (B-1b)i

(B-1Pj)i
 ` AB-1Pj B i 7 0 s
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3Puede utilizar la secuencia de opciones
de TORA para producir las iteraciones simplex asociadas (archivo

toraEx7.3-1.txt).
simplexBoundedQIterations

QAlgebraicQSolve problemQLinear Programming

La sustitución cambiará las cj, Pj y b originales a c9j 5 2cj, P9j 5 2 Pj
y b a b9 5 b 2 ujPj. Esto significa que si se utiliza el método simplex revisado, todos los
cálculos (p. eje., B21, XB y zj 5 cj) deben basarse en los valores cambiados de C, A y b
en cada iteración (vea el problema 5, conjunto 7.3a, para más detalles).

Ejemplo 7.3-1

Resuelva el siguiente modelo de PL con el algoritmo de acotamiento superior.3

sujeto a

La cota inferior en y se tiene en cuenta para la sustitución y 5 x2 1 7, donde 0 # x2 # 10 2 7 5 3.
Para que los detalles computacionales no lo “despisten”, no utilizaremos el método simplex

revisado para realizar los cálculos. En su lugar, utilizaremos la forma de tabla compacta. Los pro-
blemas 5, 6 y 7, conjunto 7.3a, abordan la versión revisada del algoritmo.

Iteración 0

0 … x1 … 4, 7 … y … 10, 0 … x3 … 3

2x1 + 4y + 3x3 … 43

x1 + y + 2x3 … 14

Maximizar z = 3x1 + 5y + 2x3

xj = uj - xj
œ

Básica x1 x2 x3 x4 x5 Solución

z –3 –5 –2 0 0 35

x4 1 1 2 1 0 7
x5 2 4 3 0 1 15

Tenemos B 5 B21 5 I y XB 5 (x4,x5)T 5 B21b 5 (7.15)T. Dado que x2 es la variable de en-
trada (z2 2 c2 5 2 5), tenemos 

la cual resulta

u2 5 u (porque todos los elementos de B21P2 . 0)

Luego, dada la cota superior en la variable de entrada, x2 # 3, por consiguiente 

x2 =  mín {3.75, q, 3} = 3

u1 =  mín e  
7
1

 , 
15
4

 f = 3.75,  correspondiente a x5

B-1P2 = (1, 4)T
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Como x2 5 u2, XB no cambia, y x2 se vuelve no básica en su cota superior. La sustitución de
da por resultado la nueva tabla siguiente:x2 = 3 - x2

œ

Básica x1 x2
œ x3 x4 x5 Solución

z –3 5 –2 0 0 50

x4 1 –1 2 1 0 4
x5 2 –4 3 0 1 3

La sustitución cambia el vector del lado derecho original de b 5 (7.15)T a b9 5 (4.3)T. Por lo
tanto, b9 reemplaza a b en iteraciones futuras.

Iteración 1
La variable de entrada es x1. El vector básico XB y B21 (5 I) son los mismos que en la iteración 0.
Luego, dado B21P1 5 (1.2)T.

Por lo tanto,

Como x 5 u1, la variable de entrada x1 se vuelve básica y la variable de salida x5 se vuelve no bá-
sica en el nivel cero, lo cual da por resultado

x1 =  mín  {1.5, q, 4} = 1.5 

u2 = q  (porque B-1P1 7 0)

u1 =  mín e  
4
1

 , 
3
2

 f = 1.5,  correspondiiente a la  x5 básica

Básica x1 x2
œ x3 x4 x5 Solución

z 0 –1 5
2 0 3

2
109

2

x4 0 1 1
2 1 - 12

5
2

x1 1 –2 3
2 0 1

2
3
2

Iteración 2
La nueva inversa es 

Ahora, donde como se calculó al final de la ite-
ración 0. Seleccionamos a x92 como la variable de entrada, y, observando que P9252P2, obtenemos 

Por lo tanto,

 u2 =  mín e- ,  
3
2 - 4

-2
 f = 1.25, correspondiente a la x1 básica

 u1 =  mín e  
5
2

1
 , - f = 2.5, correspondiente a la x4 básica

B-1P2
œ = (1, -2)T

bœ = (4, 3)TXB = Ax4, x1 BT = B-1bœ = A   52 ,  32 B  T,
B-1 = a1 -1

2

0 1
2
b
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Entonces tenemos 

Como x92 5 u1, x1 se vuelve no básica en la cota superior y el resultado es la sustitución x1 5

4 2 x91. La nueva tabla es

x2
œ = mín{2.5, 1.25, 3} = 1.25 

Básica x1
œ x2

œ x3 x4 x5 Solución

z 0 –1 5
2 0 3

2
109
2

x4 0 1 1
2 1 - 12

5
2

x1
œ –1 –2 3

2 0 1
2 - 52

Luego, la variable de entrada x92 se vuelve básica y la variable de salida x91 se vuelve no básica, de
lo cual resulta 

Básica x1
œ x2

œ x3 x4 x5 Solución

z
1
2

0 7
4

0 5
4

223
4

x4 -1
2

0 5
4

1 -1
4

5
4

xœ
2

1
2

1 - 34 0 -1
4

5
4

La última tabla es factible y óptima. Observe que los últimos dos pasos podían haber sido
invertidos; es decir, primero podríamos hacer básica a x92 y luego aplicar la sustitución x1 5 4 2
x91, (¡pruébelo!). Sin embargo, la secuencia aquí presentada implica menos cálculos.

Los valores óptimos de x1, x2 y x3 se obtienen mediante sustitución inversa como x1 5 u1 2

x91 5 4 2 0 5 4, x2 5 u2 1 x92 5 Finalmente, obtenemos y 5 l2 1 x2 5

. El valor óptimo asociado de la función objetivo es

CONJUNTO DE PROBLEMAS 7.3A

1. Considere el siguiente programa lineal

sujeto a

(a) Resuelva el problema gráficamente, y trace la secuencia de puntos extremos que
conduce a la solución óptima. (Puede utilizar TORA).

(b) Resuelva el problema por el algoritmo de acotamiento superior, y demuestre que el
método produce la misma secuencia de puntos extremos como en la solución óptima
gráfica (puede utilizar TORA para generar las iteraciones).

(c) ¿Cómo reconoce el algoritmo de acotamiento superior los puntos extremos?
*2. Resuelva el siguiente problema mediante el algoritmo de acotamiento:

Maximizar z = 6x1 + 2x2 + 8x3 + 4x4 + 2x5 + 10x6

0 … x1 … 2,  0 … x2 … 2

x1 + x2 … 3

Maximizar z = 2x1 + x2

223
4  .7 +  74 =  35

4

3 -  54 =  74 ,  y  x3 = 0.
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sujeto a

3. Resuelva el siguiente problema con el algoritmo de acotamiento:
(a)

sujeto a

(b)
sujeto a

4. En los siguientes problemas, algunas de las variables tienen cotas inferiores positivas. Use
el algoritmo de acotamiento para resolver estos problemas.
(a)

sujeto a

(b)
sujeto a

(c)
sujeto a

5. Considere la definición de matriz del problema de variables acotadas. Suponga que el
vector X se particiona en (Xz,Xu), donde Xu representa las variables básicas y no básicas

1 … x1 … 3, 0 … x2 … 5,  0 … x3 … 2

 -3x1 + x2 + 4x3 … 12

 -x1 + x2 + 2x3 …  8

 4x1 - x2 … 9

Maximizar z = 4x1 + 2x2 + 6x3

1 … x1 … 3, 0 … x2 … 1

 -x1 +
 
x2 … 1

 3x1 + 2x2 … 10

 -x1 + 2x2 Ú 0

Maximizar z = x1 + 2x2

1 … x1 … 3,  0 … x2 … 3,  2 … x3

x1 + 2x2 - x3 Ú 3

2x1 + x2 + x3 … 8

Maximizar z = 3x1 + 2x2 - 2x3

0 … x1 … 4,  0 … x2 … 3,  0 … x3 … 3

2x1 + 4x2 + 3x3 … 15

x1 + 2x2 + 2x3 … 10

Maximizar z = 3x1 + 5x2 + 2x3

0 … x1 … 2, 0 … x2 … 2,  0 … x3 … 1

x1 - 2x2 + 3x3 … 7

2x1 + 4x2 + 2x3 … 8

Minimizar z = 6x1 - 2x2 - 3x3

0 … xj … 1, j = 1, 2, . . . , 6

8x1 + x2 + 8x3 + 2x4 + 2x5 + 4x6 … 13
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que serán sustituidas en la cota superior durante el curso del algoritmo. El problema
puede escribirse como

Utilizando donde Uu es un subconjunto de U que representa las cotas su-
periores de Xu, sea B (y XB) la base de la iteración simplex actual después de que se haya
sustituido Xu. Demuestre que la tabla simplex general asociada se da como 

Xu = Uu - Xœ
u

a1 -Cz -Cu
0 Dz Du

b £ zXz
Xu

≥ = a0
b
b

6. En el ejemplo 7.3-1, haga lo siguiente:
(a) En la iteración 1, compruebe que aplicando manipulacio-

nes matriciales.
(b) En la iteración 2, demuestre como puede calcularse B21 a partir de los datos origina-

les del problema. Luego verifique los valores dados de x4 básica y aplicando ma-
nipulaciones matriciales.

7. Resuelva la parte (a) del problema 3 aplicando la versión (matricial) simplex revisada
para variables con cotas superiores.

8. Algoritmo simplex dual de acotamiento. El algoritmo simplex dual (sección 4.4.1) se
puede modificar para que acepte las variables acotadas como sigue. Dada la restricción
de cota superior xj # uj para toda j (si uj es infinita, reemplácela con una cota superior su-
ficientemente grande M), el problema de PL se transforma en una factible dual (es decir,
primal óptima) al utilizar la sustitución , donde sea necesario.
Paso 1. Si cualquiera de las variables básicas actuales (XB)i excede su cota superior, use

la sustitución . Vaya al paso 2.
Paso 2. Si todas las variables son factibles, deténgase. En caso contrario, seleccione la

variable de salida xr como la variable básica que tiene el valor más negativo.
Avance al paso 3.

Paso 3. Seleccione la variable de entrada utilizando la condición de optimalidad del
método simplex dual regular (sección 4.4.1). Vaya al paso 4.

Paso 4. Cambie la base. Vuelva al paso 1.
Aplique el algoritmo dado a los siguientes problemas:
(a)

sujeto a

(b)
sujeto a

0 … x1 … 2, 0 … x2 … 3,  x3 Ú 0

 x1 + 3x2 + 4x3 Ú 17

 4x1 + 2x2 + 2x3 … 26

Maximizar z = x1 + 5x2 - 2x3

0 … x1 … 2, 0 … x2 … 3, 0 … x3 … 1

 -x1 + 2x2 + x3 Ú 13

 2x1 + x2 + x3 … 8

Minimizar z = -3x1 - 2x2 + 2x3

(XB)i = (UB)i - (XB)i¿

xj = uj - xœ
j

xœ
2

XB = Ax4,  x1 BT = A 52,  32 BT
Básica Xz

T Xu
¿ T Solución

z CBB-1Dz - Cz - CBB-1Du + Cu CuB
-1B-1(b - DuUu) + CuUu

XB B-1Dz - B-1Du B-1(b - DuUu)
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7.4 DUALIDAD

Esta sección presenta un riguroso tratamiento de la dualidad. La presentación también
sienta las bases para el desarrollo de la programación paramétrica.

7.4.1 Definición matricial del problema dual

Suponga que el problema primal en forma de ecuación con m restricciones y n varia-
bles se define como

sujeto a

Defina el vector de variables duales Y 5 (y1,y2,…,ym). Las reglas dadas en la tabla 4.1
producen el siguiente problema dual:

sujeto a

(Algunas de las restricciones en YA $ C pueden invalidar la Y no restringida).

CONJUNTO DE PROBLEMAS 7.4A

1. Demuestre que el dual del dual es el primal.
*2. Defina el problema dual dado que el primal es mín z 5 {CXΩAX $ b, X $ 0}.

7.4.2 Solución dual óptima

Esta sección establece relaciones entre los problemas primales y duales y muestra
cómo puede determinarse la solución dual óptima a partir de la solución primal ópti-
ma. Sea B la base primal óptima actual, y defina a CB como los coeficientes de la fun-
ción objetivo asociados con el vector óptimo XB.

Teorema 7.4-1 (Teoría de la dualidad débil). Para cualquier par de soluciones primal y
dual, (X,Y), el valor de la función objetivo en el problema de minimización establece
una cota superior en el valor de la función objetivo en el problema de maximización.
Para el par óptimo (X*,Y*), los dos valores objetivo son iguales.

Comprobación. El par factible (X,Y) satisface todas las restricciones de los dos pro-
blemas. Multiplicando con anterioridad ambos lados de las restricciones del problema
de maximización por Y (no restringida) obtenemos 

(1)YAX =  Yb =  w

Y irrestricta

YA Ú C

Minimizar w = Yb

 X Ú 0

 AX = b

Maximizar z = CX
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También, para el problema de minimización, multiplicando posteriormente ambos lados
de cada uno de los primeros dos conjuntos de restricciones por X ($ 0), obtenemos 

(2)

Por lo tanto, de acuerdo con (1) y (2), z # w para cualquier par factible (X,Y).

Observe que el requisito de factibilidad de X y Y está implicado por AX 5 b en (1), y
X $ 0 y YA $ C en (2). Asimismo, la designación de los problemas como primales o
duales es irrelevante. Lo importante es el sentido de optimización en cada problema; es
decir que, para cualquier par de soluciones factibles, el valor objetivo en el problema de
maximización no excede el valor objetivo en el problema de minimización.

La implicación del teorema es que, dada z # w para cualquier par de soluciones
factibles, el máximo de z y el mínimo de w se alcanzan cuando los dos valores objetivo
son iguales. Una consecuencia de este resultado es que la “bondad” de cualesquier so-
luciones primal y dual con respecto al óptimo puede verificarse comparando la dife-
rencia (w 2 z) con . Cuanto más pequeña sea la relación , más cercanas
están las dos soluciones de ser óptimas. La regla empírica dada no indica que el valor
objetivo óptimo sea .

No acotamiento y no factibilidad. Si el valor objetivo de uno de los dos problemas no
está acotado, entonces el otro problema debe ser no factible. Si no lo está, entonces
ambos problemas tienen soluciones factibles, y la relación z # w debe mantenerse; lo
cual es un resultado imposible debido a que valor objetivo no acotado significa z 5 1

q o w 5 2q.
Si un problema es no factible, entonces el otro también puede ser no factible,

como el siguiente ejemplo lo demuestra (¡verifíquelo gráficamente!):

Teorema 7.4-2. Dada la base primal óptima B y su vector de coeficientes objetivos aso-
ciado CB, la solución óptima del problema dual es

Comprobación. La comprobación se basa en demostrar que Y 5 CBB21 es una solu-
ción dual factible y que, de acuerdo con el teorema 7.4-1, z 5 w.

La factibilidad de Y 5 CBB21 está garantizada por la optimalidad del primal,
zj 2 cj $ 0 para todas las j; es decir,

(Vea la sección 7.2.1). Por lo tanto, YA 2 C $ 0, lo que demuestra que Y 5 CBB21 sa-
tisface las restricciones duales, YA $ C.

Luego demostramos que w 5 z observando que

(1)w = Yb = CBB-1b

CBB-1A -  C Ú 0 

Y =  CBB-1

Dual. Minimizar   w = {-y1 - y2|y1 - y2 Ú 1, -y1 + y2 Ú 1, y1, y2 Ú 0}

 Primal. Maximizar z = {x1 + x2|x1 - x2 … -1, -x1 + x2 … -1, x1, x2 Ú 0}

z + w
2

2(w - z)
z + w

z + w
2

YAX Ú CX = z
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Asimismo, dada la solución primal XB 5 B21b, tenemos

(2)

Las variables duales Y 5 CBB21 se conocen por los nombres estándar duales o
precios sombra (véase la sección 4.3.1).

Motivación para el algoritmo simplex dual. Dado que Pj es la columna j-ésima de A,
observamos de acuerdo con el teorema 7.4-2 que zj 2 cj 5 CBB21Pj 2 cj 5 YPj 2 cj
representa la diferencia entre los lados izquierdo y derecho de las restricciones duales.
El problema primal de maximización se inicia con zj 2 cj , 0 al menos para una j, lo
que significa que la restricción dual correspondiente, YPj $ cj, no se satisface. Cuando
se alcanza la primal óptima, tenemos zj 2 cj $ 0 para todas las j, y se obtiene la solución
dual Y 5 CBB21 factible. Por lo tanto, así como el problema primal busca la
optimalidad, el problema dual busca la factibilidad. Este punto es la base para el
desarrollo del método simplex dual (sección 4.4.1) en el cual las iteraciones se inician
(mejor que) óptimas y no factibles y permanecen así hasta que se alcanza la
factibilidad en la última iteración. Esto contrasta con el método simplex (primal)
(capítulo 3), el cual permanece peor que óptimo pero factible hasta que se alcanza la
iteración óptima.

Ejemplo 7.4-1

La base óptima para la siguiente PL es B 5 (P1,P4). Escriba el dual, y encuentre la solución óp-
tima utilizando la base primal óptima.

sujeto a

El problema dual es 

sujeto a

Tenemos XB 5 (x1,x4)T y CB 5 (3,0). La base óptima y su inversa son

B = a 1 0
-1 1

b , B-1 = a1 0
1 1

b
y1, y2 Ú 0

2y1 + 3y2 Ú 5

y1 - y2 Ú 3

Minimizar w = 5y1 + 2y2

x1, x2, x3, x4 Ú 0

 -x1 + 3x2 + x4 = 2

 x1 + 2x2 + x3 = 5

Maximizar z = 3x1 + 5x2

z = CBXB = CBB-1b
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Los valores primal y dual asociados son 

Ambas soluciones son factibles, y z 5 w 5 15(¡compruébelo!). Por lo tanto, las dos soluciones
son óptimas.

CONJUNTO DE PROBLEMAS 7.4B

1. Verifique que el problema dual del ejemplo numérico dado al final del teorema 7.4-1 es
correcto. Luego verifique gráficamente que tanto el problema primal como el dual no tie-
nen una solución factible.

2. Considere la siguiente PL:

sujeto a

(a) Escriba el dual.
(b) Demuestre por inspección que la primal es no factible.
(c) emuestre que la dual en (a) es no acotada.
(d) A partir de los problemas 1 y 2, desarrolle una conclusión general con respecto a la

relación entre no factiblidad y no acotamiento en los problemas primales y duales.
3. Considere la siguiente PL:

sujeto a

(a) Escriba el dual.
(b) En cada uno de los siguientes casos, primero compruebe que la base dada B es facti-

ble para la primal. Luego, utilizando Y 5 CBB21, calcule los valores duales, y verifi-
que si la solución primal es óptima o no lo es.
(i) (iii)
(ii) (iv)

4. Considere la siguiente PL:

Maximizar z = 2x1 + 4x2 + 4x3 - 3x4

B = (P1, P4)B = (P1, P2)
B = (P2, P3)B = (P4, P3)

x1, x2, x3, x4 Ú 0

 x1 + 2x2 +  x3 + x4 = 5

 2x1 -  x2 + 3x3 = 2

Maximizar z = 5x1 + 12x2 + 4x3

 x1, x2, x3 Ú 0

 4x1 + x3 = 6

 2x2 = -5

 2x1 + x2 = 1

Maximizar z = 50x1 + 30x2 + 10x3

 (y1, y2) = CBB-1 = (3, 0)

 (x1, x4)
T = B-1b = (5, 7)T
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sujeto a

(a) Escriba el problema dual.

(b) Verifique que B 5 (P2,P3) es óptima calculando zj 2 cj para todas las Pj no básicas.

(c) Encuentre la solución dual óptima asociada.

*5. Un modelo de PL incluye dos variables x1 y x2, y tres restricciones del tipo #. Las holguras
asociadas con x3, x4 y x5. Suponga que la base óptima es B 5 (P1,P2,P3), y su inversa es 

Las soluciones primal y dual óptimas son 

Determine el valor óptimo de la función objetivo de dos maneras por medio de los pro-
blemas primal y dual.

*6. Escriba el dual de máx z 5 {CXΩAX 5 b, X no restringida}

7. Demuestre que el dual de máx z 5 {CXΩAX 5 b, 0 , L # X # U} siempre posee una so-
lución factible.

7.5 PROGRAMACIÓN LINEAL PARAMÉTRICA

La programación lineal paramétrica es una extensión del análisis postóptimo presenta-
do en la sección 4.5. Investiga el efecto de las variaciones continuas predeterminadas en
los coeficientes de la función objetivo y el lado derecho de las restricciones en la solu-
ción óptima.

Sea X 5 (x1, x2,…, xn) y defina la PL como

En el análisis paramétrico, la función objetivo y los vectores del lado derecho, C y b,
son reemplazados con funciones parametrizadas C(t) y b(t), donde t es el parámetro de
variación. Matemáticamente, t puede asumir cualquier valor positivo o negativo. En
esta presentación supondremos que t $ 0.

La idea general del análisis paramétrico es iniciar con la solución óptima en t 5 0.
Luego, utilizando las condiciones de optimalidad y factibilidad del método simplex, de-
terminamos el intervalo 0 # t # t1 donde la solución en t 5 0 permanece óptima y fac-
tible. En este caso, t1 se conoce como valor crítico. El proceso continúa determinando
valores críticos sucesivos y sus soluciones factibles óptimas correspondientes. El análi-
sis postóptimo termina cuando, independiente de t, la última solución no cambia y no
hay ninguna otra indicación de que exista una solución factible.

Maximizar z = eCX ƒ  a
n

j= 1
Pjxj = b,  X Ú 0 f

 Y = (y1, y2, y3) = (0, 3, 2)

 XB = (x1, x2, x3)
T = (2, 6, 2)T

B-1 = £0 -1 1
0 1 0
1 1 -1

≥

x1, x2, x3, x4 Ú 0

 x1 + 4x2 + + x4 = 8

x1 + x2 + x3 = 4
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7.5.1 Cambios paramétricos en C

Sean los elementos que definen la solución óptima asociada con ti crítica
(los cálculos se inician en t0 5 0 con B0 como su base óptima). Luego se determinan el
valor crítico ti + 1 y su base óptima, si existe una. Como los cambios en C pueden afec-
tar sólo la optimalidad del problema, la solución actual permanecerá ópti-
ma para algunos t $ ti en tanto el costo reducido, zj(t) 2 cj(t), satisfaga la siguiente con-
dición de optimalidad:

El valor de ti+1 es igual al t . ti mayor que satisfaga todas las condiciones de optimalidad.
Observe que nada en las desigualdades requiere que C(t) sea lineal en t.

Cualquier función C(t), lineal o no lineal, es aceptable. Sin embargo, con no linealidad,
la manipulación numérica de las desigualdades resultantes puede ser tediosa (vea el
problema 5, conjunto 7.5a, para una ilustración del caso no lineal).

Ejemplo 7.5-1

sujeto a

Tenemos

Las variables x4, x5 y x6 se utilizarán como variables de holgura asociadas con las tres restricciones.

Solución óptima en t 5 t0 5 0 

C(t) = (3 - 6t, 2 - 2t, 5 + 5t), t Ú 0

x1, x2, x3 Ú 0

 x1 + 4x2 … 30

 3x1 + 2x3 … 60

 x1 + 2x2 + x3 … 40

Maximizar z = (3 - 6t)x1 + (2 - 2t)x2 + (5 + 5t)x3

zj(t) - cj(t) = CBi(t)Bi
-1Pj - cj(t) Ú 0,  para todas las  j

XBi = Bi
-1b

XBi, Bi, CBi(t)

Básica x1 x2 x3 x4 x5 x6 Solución

z 4 0 0 1 2 0 160

x2 -1
4 1 0 1

2 -1
4 0 5

x3
3
2 0 1 0 1

2 0 30
x6 2 0 0 –2 1 1 10

 B0
-1 = £ 1

2 -1
4 0

0 1
2 0

-2 1 1
≥CB0

(t) = (2 - 2t, 5 + 5t, 0)

XB0  = (x2,  x3 x6)
T = (5, 30, 10)T
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Las condiciones de optimalidad para los vectores no básicos actuales P1, P4 y P5, son

Por lo tanto, permanece óptima con t # t1, donde t1 se determina a partir de las condiciones
de optimalidad como

El costo reducido es igual a cero en t 5 1 y se vuelve negativo para t . 1.
Por lo tanto, P4 debe entrar a la base para t . 1. En este caso, P2 debe salir de la base (vea la tabla
óptima en t 5 0). La nueva solución básic es la solución alternativa obtenida en t 5 1 al per-
mitir que P4 entre a la base; es decir, y 

Base óptima alternativa en t 5 t1 5 1

Por lo tanto,

Los vectores no básicos asociados son P1, P2 y P5, y tenemos

De acuerdo con estas condiciones, la solución básica permanece óptima para todas las t $ 1.
Observe que la condición de optimalidad, 2 2 1 2t $ 0,“nos recuerda” de forma automática que

es óptima dentro de un intervalo de t que se inicia a partir del último valor crítico t1 5 1. Éste
siempre será el caso en cálculos de programación paramétrica.

La solución óptima dentro de todo el intervalo de t se resume en la siguiente tabla (el
valor de z se calcula mediante sustitución directa).

XB1

XB1

ECB1
(t)B1

-1Pj - cj (t)F j= 1, 2, 5 = A9 + 27t
2 , -2 + 2t,  5 + 5t

2  B Ú 0

 CB1
(t) = (0, 5 + 5t, 0)

 XB1
= (x4, x3, x6)

T = B1
-1b = (10, 30, 30)T

B1 = £1 1 0
0 2 0
0 0 1

≥ ,  B1
-1 = £1 -1

2 0
0 1

2 0
0 0 1

≥
B1 = (P4,  P3, P6).XB1

= (x4, x3, x6)
T

XB1

 z4(t) - c4(t) = 1 - t

4 + 14t Ú 0
1 - t Ú 0

2 + 3t Ú 0
s Q 0 … t … 1Q t1 = 1

XB0

ECB0
(t)B0

-1Pj - cj(t)F j= 1, 4, 5 = (4 + 14 t, 1 - t, 2 + 3t) Ú 0

t x1 x2 x3 z

0 1… t … 0 5 30 t160 + 140
1t Ú 0 0 30 t150 + 150

CONJUNTO DE PROBLEMAS 7.5A

*1. En el ejemplo 7.5-1, suponga que t no está restringida en cuanto al signo. Determine el
intervalo de t dentro del cual permanece óptima.XB0
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2. Resuelva el ejemplo 7.5-1, suponiendo que la función objetiva se da como
*(a) Maximizar 

(b) Maximizar 
(c) Maximizar 

3. Estudiar la variación de la solución óptima de la siguiente PL parametrizada, dado que t $ 0.

sujeto a

4. El análisis en esta sección asume que la solución óptima de la PL en t 5 0 se obtiene con
el método simplex (primal). En algunos problemas puede ser más conveniente obtener la
solución óptima mediante el método simplex (sección 4.4.1). Demuestre cómo puede rea-
lizarse el análisis paramétrico en este caso, luego analice la programación lineal del ejem-
plo 4.4-1, suponiendo que la función objetivo se da como 

*5. En el ejemplo 7.5-1, suponga que la función objetivo es no lineal en t (t $ 0) y que se de-
fine como 

Determine el primer valor crítico t1.

7.5.2 Cambios paramétricos en b

El lado derecho parametrizado b(t) puede afectar sólo la factibilidad del problema.
Los valores críticos de t se determinan por lo tanto a partir de la condición 

Ejemplo 7.5-2

sujeto a

x1, x2, x3 Ú 0

 x1 + 4x2 … 30 - 7t

 3x1 + 2x3 … 60 + 2t

 x1 + 2x2 +  x3 … 40 - t

Maximizar z = 3x1 + 2x2 + 5x3

XB(t) = B-1b(t) Ú 0

Maximizar z = (3 + 2t2)x1 + (2 - 2t2)x2 + (5 - t)x3

Minimizar z = (3 + t)x1 + (2 + 4t)x2 + x3,  t Ú 0

x1, x2, x3 Ú 0

 x1 + 2x2 + 5x3 … 4

 4x1 + 3x2 + 2x3 Ú 6

 3x1 + x2 + 2x3 = 3

Minimizar z = (4 - t)x1 + (1 - 3t)x2 + (2 - 2t)x3

z = (3 + t)x1 + (2 + 2t)x2 + (5 - t)x3

z = (3 - 2t)x1 + (2 + t)x2 + (5 + 2t)x3

z = (3 + 3t)x1 + 2x2 + (5 - 6t)x3
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Suponga que t $ 0.
En t 5 t0 5 0, el problema es idéntico al del ejemplo 7.5-1. Por lo tanto tenemos 

Para determinar el primer valor crítico t1, aplicamos las condiciones de factibilidad
las cuales dan por resultado

La base B0 permanece factible en el intervalo . Sin embargo, los valores de las varia-
bles básicas, x2, x3 y x6 cambian con t.

El valor de la variable básica x6 (5 10 2 3t) es igual a cero en , y se volverá ne-
gativa para Por lo tanto, en podemos determinar la base alternativa B1 aplican-
do el método simplex dual revisado (vea el problema 5, conjunto 7.2b para los detalles). La va-
riable de salida es x6.

Base alternativa en

Dado que x6 es la variable de salida, determinamos la variable de entrada como sigue:

Por lo tanto,

Luego, para xj no básica, j 5 1. 4, 5, calculamos 

Por tanto, la variable de entrada está asociada con

Así que P4 es el vector de entrada. La solución básica alternativa y su B1 y son

B1 = 1P2, P3, P42 = £2 1 1
0 2 0
4 0 0

≥ , B1
-1 = £0 0 1

4

0 1
2 0

1 -1
2 -1

2

≥XB1
= (x2, x3, x4)

T

B1
-1

u = míne - , ` 1
-2
` , - f = 1

2

= (2, -2, 1)

=  (-2, 1, 1 )  (P1, P4, P5)

(Fila de B0
-1 asociada con x6) P1, P4, P5 = (Tercera fila de B0

-1
 ) (P1, P4, P5)

{zj - cj}j= 1, 4, 5 = ECB0
B0

-1Pj - cjF j= 1, 4, 5 = (4, 1, 2)

XB0
= (x2, x3, x6)

T,  CB0
= (2, 5, 0)

t = t1 =  10
3

t =  10
3  ,t 7  10

3  .
t = t1 =  10

3

0 … t …  10
3

£x2

x3

x6

≥ = £ 5 - t
30 + t

10 - 3t
≥ Ú £0

0
0
≥ Q 0 … t … 10

3 Q t1 = 10
3

XB0
(t) = B0

-1b(t) Ú 0,

B0
-1 = £ 1

2 -1
4 0

0  1
2 0

-2  1 1
≥XB0

= (x2, x3, x6)
T = (5, 30, 10)T
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El siguiente valor crítico t2 se determina a partir de las condiciones de factibilidad,
, las cuales dan por resultado

En se puede obtener una base alternativa mediante el método simplex dual revisa-
do. La variable de salida es x2 porque corresponde a la condición que de la que resulta el valor
crítico t2.

Base alternativa en

Dado que x2 es la variable de salida, determinamos la variable de entrada como sigue:

Por lo tanto,

Luego, para xj no básica, j 5 1, 5 y 6, calculamos

Como todos los elementos del denominador, son $ 0, el problema no tiene
una solución factible para , y el análisis paramétrico termina en

La solución óptima se resume como 
t = t2 =  30

7  .t 7  30
7

( 14, 0, 14 ),

= A14, 0, 14 B= A0, 0, 14 B1P1, P5, P62 1Fila de B1
-1 asociada con x221P1, P5, P62 = 1Primera fila de B1

-121P1, P5, P62
{zj - cj}j= 1, 5, 6 = ECB1

B1
-1Pj - cjF j= 1, 5, 6 = (5,  52,  12)

XB1
= (x2, x3, x4)

T,  CB1
= (2, 5, 0)

 t = t2 =  30
7

t = t2 =  30
7  ,

£x2

x3

x4

≥ = £ 30 - 7t
4

30 + t
- 10 + 3t

2

≥ £0
0
0
≥ Q 10

3 … t … 30
7 Q t2 = 30

7

XB1
(t) = B1

-1b(t) Ú 0

t x1 x2 x3 z

0 … t …  10
3

0 5 - t 30 + t t160 + 3
10
3  … t …  30

7
0 30 - 7t

4
30 + t 165 +  32 t

t 7  30
7

(No existe solución factible)

CONJUNTO DE PROBLEMAS 7.5B

1. En el ejemplo 7.5-2, encuentre el primer valor crítico, t1, y defina los vectores de B1 en
cada uno de los siguientes casos:

*(a)
(b)

*2. Estudie las variaciones en la solución óptima de la siguiente PL parametrizada, dada t $ 0.

Minimizar z = 4x1 + x2 + 2x3

b(t) = (40 - t, 60 +  2t, 30 - 5t)T
b(t) = (40 + 2t, 60 - 3t, 30 + 6t)T
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sujeto a

3. El análisis en esta sección asume que la solución de PL óptima en t 5 0 se obtiene me-
diante el método simplex (primal). En algunos problemas puede ser más conveniente ob-
tener la solución óptima mediante el método simplex dual (sección 4.4.1). Demuestre
cómo puede realizarse el análisis paramétrico en este caso, y luego analice la PL del
ejemplo 4.4-1, asumiendo que t $ 0 y que el vector de lado derecho es

4. Resuelva el problema 2 asumiendo que el lado derecho cambia a 

Suponga además que t puede ser positiva, cero o negativa.

7.6 MÁS TEMAS DE PROGRAMACIÓN LINEAL

La siguiente lista proporciona más temas de PL (que por lo común se tratan en cursos
de IO especializados) que se abordan en el capítulo 22, en el sitio web.

1. Problema de flujo de capacitado de costo mínimo, incluida la formulación de PL
y el modelo del algoritmo simplex de red capacitada.

2. Algoritmo de descomposición de Danzig-Wolfe.
3. Algoritmo de punto interior de Karmarkar.
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b(t) = (3 + 3t2,  6 + 2t2, 4 - t2)T

b(t) = (3 + 2t,  6 - t,  3 - 4t)T

x1, x2, x3 Ú 0

 x1 + 2x2 + 5x3 … 4 - t

 4x1 + 3x2 + 2x3 Ú 6 + 2t

 3x1 + x2 + 2x3 = 3 + 3t
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8.1 FORMULACIÓN DE UNA PROGRAMACIÓN DE METAS

La idea de la programación de metas se ilustra con un ejemplo.

Ejemplo 8.1-1 (Planificación tributaria)1

Fairville es una pequeña ciudad con una población de aproximadamente 20,000 habitantes. La
base tributaria anual por el impuesto predial asciende a $550 millones. Las recaudaciones anua-
les por alimentos y medicinas así como por ventas generales es de $35 y $55 millones, respecti-
vamente. El consumo anual de gasolina local se estima en 7.5 millones de galones. El concejo
municipal desea desarrollar las tasas tributarias con base en cuatro metas principales:

1. Los ingresos fiscales deben ser por lo menos de $16 millones para satisfacer los compro-
misos financieros de la ciudad.

2. Los impuestos sobre alimentos y medicinas no deben exceder el 10% de todos los im-
puestos recaudados.

CAPÍTULO 8

Programación de metas

Aplicación de la vida real. Asignación de tiempo de quirófano en el hospital
Monte Sinaí

La situación ocurre en Canadá, donde el seguro de asistencia médica es obligatorio y
universal. El financiamiento, basado en una combinación de primas e impuestos, lo
controlan las provincias. Según este sistema, a los hospitales se les asigna un presu-
puesto anual fijo, y cada provincia les paga posteriormente a los médicos por medio de
un mecanismo de financiamiento de pago por servicio. Este arreglo de financiamiento
limita la disponibilidad de las instalaciones hospitalarias (por ejemplo quirófanos), lo
que a su vez frena la tendencia de los médicos a elevar sus ganancias personales por la
atención de más a sus pacientes. El objetivo del estudio es determinar un programa
diario equitativo para el uso de los quirófanos disponibles. El problema se modela apli-
cando una combinación de programación de metas y entera. (El caso 6 en el capítulo
26, en inglés, del sitio web proporciona los detalles del estudio).

1Este ejemplo está basado en Chissman and Associates, 1989



302 Capítulo 8 Programación de metas

3. Los impuestos sobre las ventas generales no deben exceder el 20% de todos los impues-
tos recaudados.

4. El impuesto sobre la gasolina no debe exceder de 2 centavos por galón.

Sean las variables xp, xf y xs las tasas tributarias (expresadas como proporciones de las bases
tributarias) sobre la propiedad, alimentos, medicinas y ventas generales, y defina la variable xg
como el impuesto sobre la gasolina en centavos por galón. Las metas del concejo municipal se
expresan entonces como 

Estas restricciones se simplifican entonces como

Cada una de las desigualdades del modelo representa una meta que el concejo municipal
aspira satisfacer. Es muy probable, sin embargo, que lo mejor que se puede hacer sea una solu-
ción compromiso que implique estas metas conflictivas.

La forma en que la programación de metas determina una solución compromiso es convertir
cada desigualdad en una meta flexible en la cual la restricción correspondiente pueda ser violada,
si es necesario. En función del modelo de Fairville, las metas flexibles se expresan como sigue:

Las variables no negativas y , i 5 1, 2, 3, 4 son variables de desviación que representan las
desviaciones por debajo y por arriba del lado derecho de la restricción i.

Las variables de desviación y son dependientes por definición, y de ahí que no pueden
ser las variables básicas al mismo tiempo (de acuerdo con la teoría del método simplex). Esto sig-
nifica que en cualquier iteración simplex, no más de una de las dos variables de desviación puede
asumir un valor positivo. Si la desigualdad i-ésima original es del tipo # y su $ 0, entonces se
satisface la meta i-ésima; en caso contrario, no se satisface la meta i. En esencia, la definición de 
y permite satisfacer o violar la meta i-ésima a voluntad. Éste es el tipo de flexibilidad que ca-
racteriza a la programación de metas cuando se busca una solución compromiso. Lógicamente,
una buena solución compromiso busca minimizar la cantidad por la que se viole cada meta.

si
+

si
-

si
-

si
+si

-

si
+si

-

si
-, si

+ Ú 0,   i = 1, 2, 3, 4

xp, xf, xs, xg Ú 0

 xg + s4
- - s4

+ = 2

 110xp + 7xf - 44xs + .015xg + s3
- - s3

+ = 0

 55xp - 31.5xf + 5.5xs + .0075xg + s2
- - s2

+ = 0

 550xp + 35xf + 55xs + .075xg + s1
- - s1

+ = 16

xp, xf, xs, xg Ú 0

 xg … 2

 110xp + 7xf - 44xs + .015xg Ú 0

 55xp - 31.5xf + 5.5xs + .0075xg Ú 0

 550xp + 35xf + 55xs + .075xg Ú 16

xp, xf, xs, xg Ú 0

xg … 2  1Impuesto sobre la gasolina2 55xs … .21550xp + 35xf + 55xs + .075xg2 1Impuesto general2 35xf … .11550xp + 35xf + 55x3 + .075xg2 1Impuestos sobre alimentos/medicinas2550xp + 35xf + 55xs + .075xg Ú 16 1Ingresos fiscales2



8.1 Formulación de una programación de metas 303

En el modelo de Fairville, dado que las tres primeras restricciones son del tipo $ y la cuarta
es del tipo #, las variables de desviación , , y (que en el modelo aparecen en negritas)
representan las cantidades por las cuales se violan las metas respectivas. Por lo tanto, la solución
compromiso busca satisfacer en cuanto sea posible los siguientes cuatro objetivos:

Estas funciones se minimizan sujetas a las ecuaciones de restricción del modelo.
¿Cómo podemos optimizar un modelo de múltiples objetivos con metas conflictivas? Con

este fin se desarrollaron dos métodos: (1) el método de los pesos, y (2) el método preventivo.
Ambos métodos se basan en la conversión de los múltiples objetivos en una sola función. La sec-
ción 8.2 proporciona los detalles.

CONJUNTO DE PROBLEMAS 8.1A

*1. Formule el problema fiscal de Fairville, suponiendo que el concejo municipal especifique
una meta más, G5, que requiera que el impuesto sobre la gasolina sea igual por lo menos
a 10% de la factura fiscal total.

2. El Centro Comercial NW gestiona eventos especiales para atraer clientes potenciales.
Entre los eventos que parecen atraer a los adolescentes, al grupo de jóvenes de mediana
edad y a los adultos mayores, los dos más populares son los conciertos de bandas y las ex-
posiciones de arte. Sus costos por presentación son de $1500 y $3000, respectivamente. El
presupuesto anual (estricto) total asignado a los dos eventos es de $15,000. El gerente del
centro comercial estima la asistencia como sigue:

 Minimizar G4 = s4
+

 Minimizar G3 = s3
-

 Minimizar G2 = s2
-

 Minimizar G1 = s1
-

s4
+s3

-s2
-s1

-

El gerente ha fijado metas mínimas de 1000, 1200 y 800 para la asistencia de adolescen-
tes, personas de mediana edad y adultos mayores, en ese orden. Formule el problema
como un modelo de programación de metas.

*3. La oficina de admisión de la Universidad de Ozark está recibiendo solicitudes de estu-
diantes de primer año para el año académico venidero. Las solicitudes caen dentro de
tres categorías: estudiantes del estado, de fuera del estado, e internacionales. Las relacio-
nes hombres-mujeres de los solicitantes del estado y de fuera del estado son 1:1 y 3:2;
para estudiantes internacionales, la relación correspondiente es de 8:1. La calificación en
el Examen de Universidades Americanas (ACT, por sus siglas en inglés) es un importan-
te factor en la aceptación de nuevos estudiantes. Las estadísticas recopiladas por la uni-
versidad indican que las calificaciones promedio de estudiantes del estado, fuera del esta-
do e internacionales, son de 27, 26 y 23, respectivamente. El comité de admisiones ha
establecido las siguientes metas deseables para la nueva clase de primer año:
(a) Que la clase que empieza sea por lo menos de 1200 estudiantes.
(b) Que la calificación promedio de todos los solicitantes sea por lo menos de 25.

Cantidad de personas que asisten por presentación

Evento Adolescentes Mediana edad Adultos mayores

Concierto de bandas 200 100 0
Exposición de arte 0 400 250
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(c) Que los estudiantes internacionales constituyan por lo menos 10% de la clase.
(d) Que la relación mujeres-hombres sea por lo menos de 3:4.
(e) Que los estudiantes de fuera del estado comprendan por lo menos 20% de la clase.
Formule el problema como un modelo de programación de metas.

4. Las granjas Circle K consumen 3 toneladas diarias de un alimento especial, el cual está
constituido por una mezcla de piedra caliza (carbonato de calcio), maíz y soya, y que
debe satisfacer los siguientes requisitos nutricionales:
Calcio. Al menos 0.8%, pero no más de 1.2%.
Proteína. Por lo menos 22%.
Fibra. A lo sumo 5%.
La siguiente tabla muestra el contenido nutricional de los ingredientes alimenticios.

Formule el problema como un modelo de programación de metas, y establezca su opi-
nión con respecto a la aplicabilidad de la programación de metas a esta situación.

*5. Mantel produce un carruaje de juguete, cuyo ensamble final debe incluir cuatro ruedas y
dos asientos. La fábrica que produce las piezas trabaja tres turnos al día. La siguiente
tabla proporciona las cantidades producidas de cada pieza en los tres turnos.

Idealmente, la cantidad de ruedas producidas es el doble de la de asientos. Sin embargo,
como las tasas de producción varían de turno a turno, el balance exacto en la producción
puede no ser posible. A Mantel le interesa determinar la cantidad de corridas de produc-
ción en cada turno que minimice el desbalance en la producción de las piezas. Las limita-
ciones de la capacidad restringen  las corridas a entre 4 y 5 para el turno 1; 10 y 20 para el
turno 2, y 3 y 5 para el turno 3. Formule el problema como un modelo de programación
de metas.

6. Camyo Manufacturing produce cuatro piezas que requieren el uso de un torno y un tala-
dro vertical. Las dos máquinas operan 10 horas al día. La siguiente tabla proporciona el
tiempo en minutos que se requiere por pieza:

lb por lb de ingrediente 

Ingrediente Calcio Proteína Fibra

Piedra caliza .380 .00 .00
Maíz .001 .09 .02
Soya .002 .50 .08

Unidades producidas por carrera de producción 

Turno Ruedas Asientos

1 500 300
2 600 280
3 640 360
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Se desea balancear las dos máquinas limitando la diferencia entre sus tiempos de opera-
ción totales a lo sumo a 30 minutos. La demanda del mercado de cada pieza es de al
menos 10 unidades. Además, la cantidad de unidades de la pieza 1 no puede exceder la de
la pieza 2. Formule el problema como un modelo de programación de metas.

7. Se fabrican dos productos en dos máquinas secuenciales. La siguiente tabla da los tiem-
pos de maquinado en minutos por unidad para los dos productos.

Las cuotas de producción diarias para los dos productos son de 80 y 60 unidades. Cada
máquina opera 8 horas al día, y si es necesario, aunque no deseable, puede utilizarse
tiempo extra para satisfacer las cuotas de producción. Formule el problema como un mo-
delo de programación de metas.

8. El hospital de Vista City planea la asignación de camas sobrantes (las que no estén ya
ocupadas) para estancias cortas, con 4 días de anticipación. Durante el periodo de planifi-
cación de 4 días, alrededor de 30,25 y 20 pacientes requerirán estancias de 1, 2 o 3 días,
respectivamente. Las camas sobrantes durante el mismo periodo se estiman en 20, 30, 30
y 30, respectivamente. Aplique la programación de metas para resolver el problema de
sobreadmisión y subadmisión en el hospital.

9. La familia Von Trapp planea irse a vivir a una nueva ciudad donde los dos padres han
aceptado nuevos trabajos. Al tratar de encontrar una ubicación ideal para su nuevo
hogar, los Von Trapp enumeran las siguientes metas:
(a) Debe estar lo más cerca posible al lugar de trabajo de la señora Von Trapp (alrede-

dor de de milla).
(b) Debe estar lo más lejos posible del ruido del aeropuerto (mínimo a 10 millas).
(c) Debe estar razonablemente cerca de un centro comercial (a lo sumo a 1 milla).

El señor y la señora Von Trapp utilizan un sitio destacado en la ciudad como punto
de referencia y localizan las coordenadas (x,y) del lugar de trabajo, el aeropuerto y el
centro comercial en (1,1), (20,15) y (4,7), respectivamente (todas las distancias están en
millas). Formule el problema como un modelo de programación de metas. (Nota: Las res-
tricciones resultantes son no lineales.)

10. Análisis de regresión. En un experimento de laboratorio, suponga que yi es el resultado 
i-ésimo observado (independiente) asociado con las mediciones experimentales depen-
dientes xij, i 5 1, 2,…,m; j 5 1, 2,..., n. Se desea determinar una regresión lineal que enca-
je en estos datos. Sea bj, j 5 0, 1,…, n, los coeficientes de la regresión. Se desea determi-

1
4

Tiempo de producción en min

Pieza Torno Taladro vertical

1 5 3
2 6 2
3 4 6
4 7 4

Tiempo de maquinado en min

Máquina Producto 1 Producto 2

1 5 3
2 6 2
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nar todas las bj de modo que la suma de las desviaciones absolutas entre los resultados
observados y los estimados sea mínima. Formule el problema como un modelo de pro-
gramación de metas.

11. Problema de Chebyshev. Una meta alterna para el modelo de regresión del problema 10
es minimizar sobre bj el máximo de las desviaciones absolutas. Formule el problema
como un modelo de programación de metas.

8.2 ALGORITMOS DE PROGRAMACIÓN DE METAS

Esta sección presenta dos algoritmos para resolver la programación de metas. Ambos
métodos se basan en la representación de múltiples metas por una sola función objeti-
vo. En el método de pesos, la función objetivo única es la suma ponderada de las fun-
ciones que representan las metas del problema.El método preventivo inicia priorizando las
metas por orden de importancia. Luego, el modelo optimiza las metas de una en una en el
orden de prioridad de modo que no degrade una solución de más alta prioridad.

Por lo común, los dos métodos propuestos no presentan la misma solución.
Ninguno de los métodos, sin embargo, es superior al otro porque las dos técnicas pre-
suponen preferencias distintas en la toma de decisiones.

8.2.1 Método de los pesos

Suponga que el modelo de programación de metas tiene n metas y que la meta i-ésima
se da como 

La función objetivo combinada utilizada en el método de pesos se define entonces como

Los parámetros wi, i 5 1, 2,..., n son pesos positivos que reflejan las preferencias de la
toma de decisiones con respecto a la importancia relativa de cada meta. Por ejemplo,
wi 5 1, para todas las i, significa que todas las metas tienen una misma importancia. La
determinación de los valores específicos de estos pesos es subjetiva. En realidad, los
procedimientos analíticos aparentemente complejos, desarrollados en la literatura
(vea, por ejemplo, Cohon, 1978) aún están arraigadas en evaluaciones subjetivas.

Ejemplo 8.2-1

TopAd, una nueva agencia de publicidad con 10 empleados, firmó un contrato para promover un
nuevo producto. La agencia puede hacer publicidad por radio y televisión. La siguiente tabla
proporciona la cantidad de personas alcanzadas diariamente por cada tipo de anuncio publicita-
rio, así como los requerimientos de costos y mano de obra. El contrato prohíbe a TopAd utilizar

Minimizar z = w1G1 + w2G2 + Á + wnGn

Minimizar Gi, i = 1, 2, Á ,  n

Radio Televisión

Exposición (en millones de personas)/min 4 8
Costo (en miles de dólares)/min 8 24
Empleados asignados/min 1 2
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más de 6 minutos de publicidad por radio.Además, los anuncios de radio y televisión tienen que llegar
al menos a 45 millones de personas. TopAd tiene una meta presupuestaria de $100,000 para el pro-
yecto. ¿Cuántos minutos de anuncios de radio y televisión debe utilizar TopAd?

Sean x1 y x2 los minutos asignados a los anuncio de radio y televisión. La formulación de la pro-
gramación de metas para el problema se da como

Minimizar G2
1 5 (Satisfacer la meta de exposición) 

Minimizar G1
2 5 (Satisfacer la meta de presupuesto)

sujeto a

La gerencia de TopAd estima que la meta de exposición es dos veces más importante que la meta
de presupuesto. Por lo tanto, la función objetivo combinada se convierte en 

La solución óptima es z 5 10, x1 5 5 minutos, x2 5 2.5 minutos, millones de personas,

El hecho de que el valor óptimo de z no sea cero indica que al menos una de las metas no se cum-
ple. Específicamente, significa que la meta de exposición (de al menos 45 millones de perso-
nas) falla por 5 millones de personas. Por otra parte, la meta de presupuesto (de no exceder $100,000)
no se viola porque .

Comentarios. La programación de metas busca sólo una solución eficiente, más que óptima, al pro-
blema. Por ejemplo, la solución x1 5 6 y x2 5 2 produce la misma exposición (4 3 6 1 8 3 2) 5 40 mi-
llones de personas) pero cuesta menos (8 3 6 1 24 3 2) 5 $96,000). En esencia, lo que la programa-
ción de metas hace es hallar una solución que satisfaga las metas del modelo sin tomar en cuenta la
optimización. La falla de no hallar la solución óptima levanta dudas sobre la viabilidad de la progra-
mación de metas como una técnica de optimización (vea el ejemplo 8.2-3 para un tratamiento más
amplio).

CONJUNTO DE PROBLEMAS 8.2A

*1. Considere el problema 1, conjunto 8.1a que se refiere a la situación tributaria de Fairville.
Resuelva el problema, suponiendo que las cinco metas tienen el mismo peso. ¿Satisface la so-
lución todas las metas?

2. En el problema 2, conjunto 8.1a, suponga que la meta de atraer personas de mediana edad es
dos veces más importante que la de las otras dos categorías (adolescentes y adultos mayores).
Encuentre la solución asociada, y verifique si todas las metas se han cumplido.

s2
+ = 0

s1
- = 5

s1
- = 0, y s2

- = 0.
s1

- = 5

Minimizar z = 2G1 + G2 = 2s1
- + s2

+

 x1, x2, s1
-, s1

+, s2
-, s2

+ Ú 0

x1 … 6 1Límite de radio2x1 + 2x2 … 10 1Límite de personal28x1 + 24x2          + s2
- - s2

+
  = 100 1Meta de presupuesto2 4x1 + 8x2 + s1

-
 - s1

+
 = 45 1Meta de exposición2

si
+

si
-
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3. En la situación de la admisión a la Universidad de Ozark descrita en el problema 3, con-
junto 8.1a suponga que se debe cumplir con el límite en el tamaño de la clase de estu-
diantes de primer año, pero los requisitos restantes pueden tratarse como metas flexi-
bles. Suponga, además, que la calificación del examen ACT es dos veces más importante
que cualquiera de las metas restantes.
(a) Resuelva el problema y especifique si se cumplen o no todas las metas.
(b) Si, además, el tamaño de la clase de estudiantes de primer año puede tratarse como

una meta flexible que es dos veces más importante que la meta del examen ACT,
¿cómo afectaría este cambio a la solución?

*4. En el modelo de Circle K del problema 4, conjunto 8.1a, ¿es posible satisfacer todos los
requerimientos nutricionales?

5. En el problema 5, conjunto 8.1a, determine la solución, y especifique si puede balancear-
se o no la producción diaria de ruedas y asientos.

6. En el problema 6, conjunto 8.1a, suponga que la meta de la demanda del mercado es dos
veces más importante que la de balancear las dos máquinas, y que no se permite tiempo
extra. Resuelva el problema, y determine si se cumplen las metas.

*7. En el problema 7, conjunto 8.1a, suponga que la producción se esfuerza por satisfacer las
cuotas de los dos productos, utilizando tiempo extra si es necesario. Encuentre una solu-
ción al problema, y especifique la cantidad de tiempo extra, si se requiere, para cumplir
con las cuotas de producción.

8. En el hospital de Vista City del problema 8, conjunto 8.1a, suponga que solamente los lí-
mites de camas representan metas flexibles y que todas las metas tienes pesos iguales.
¿Puede cumplirse con todas las metas?

9. La compañía Malco ha recopilado la siguiente tabla de los archivos de cinco de sus em-
pleados, para estudiar el impacto en el ingreso de tres factores: edad, educación (expresa-
da en años de universidad terminados), y experiencia (expresada en años en los negocios).

Aplique la formulación de programación de metas del problema 10, conjunto 8.1a,
para encajar los datos en la ecuación lineal y 5 b0 1 b1x1 1 b2x2 1 b3x3.

10. Resuelva el problema 9 siguiendo el método de Chebyshev propuesto en el problema 11,
conjunto 8.1a.

8.2.2 Método preventivo

En este tipo de método, el tomador de decisiones clasifica las metas del problema en
orden de importancia. Dada una situación de n metas, los objetivos del problema se
escriben como

 Minimizar Gn = rn (Mínima proridad)

 o

 Minimizar G1 = r1 (Máxima prioridad)

Edad Educación Experiencia Ingreso anual
(años) (años) (años) ($)

30 4 5 40,000
39 5 10 48,000
44 2 14 38,000
48 0 18 36,000
37 3 9 41,000
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La variable ri es el componente de las variables de desviación, o que representan
la meta i. Por ejemplo, en el modelo de TopAd (ejemplo 8.2-1), y 

El procedimiento de solución se inicia con la optimización de la prioridad máxi-
ma, G1, y termina con la optimización de la prioridad mínima, Gn. El método preventi-
vo está diseñado de modo que una solución de menor prioridad nunca degrade a una
solución de alta prioridad.

La literatura sobre programación de metas presenta un método simplex “especial”
que garantiza la no degradación de soluciones de alta prioridad. El método utiliza la regla
de eliminación de columnas que exige eliminar una variable xj no básica con un costo re-
ducido  diferente de cero (zj 2 cj Z 0) de la tabla óptima de metas Gk antes de resolver el
problema de la meta Gk11. La regla reconoce que tales variables no básicas, si se elevan
por encima del nivel cero en las optimización de metas subsiguientes, pueden degradar
(pero nunca mejorar) la calidad de una meta de mayor prioridad. El procedimiento re-
quiere incluir las funciones objetivo de todas las metas en la tabla simplex del modelo.

La modificación propuesta de eliminación de columnas complica sin necesidad la
programación de metas. En esta presentación demostramos que se pueden alcanzar los
mismos resultados de una manera más simple dando los siguientes pasos:

Paso 0. Identifique las metas del modelo y clasifíquelas en orden de prioridad:

Establezca i 5 1.
Paso general Resuelva la PLi que minimice Gi, y que defina el valor óptimo

correspondiente de la variable de desviación ri. Si i 5 n, deténgase; la PLn re-
suelve el problema de n metas. En caso contrario, agregue la restricción

a las restricciones del problema Gi para garantizar que el valor de ri
no se degrade en problemas futuros. Establezca i 5 i 1 1, y repita el paso i.

La adición sucesiva de las restricciones especiales puede no ser tan “elegan-
te” teóricamente como la regla de eliminación de columnas; no obstante, se logra el mismo
resultado. Pero lo más importante es que es más fácil de implementar y de entender.

Comentarios. Algunas personas pueden argumentar que la regla de eliminación de
columnas ofrece una ventaja computacional porque hace el problema sucesivamente
más pequeño al eliminar variables, en tanto que nuestro procedimiento lo hace más
grande al agregar nuevas restricciones. Considerando la naturaleza de las restricciones
adicionales podemos modificar el algoritmo simplex para implementar la
restricción adicional implícitamente sustituyendo . La sustitución (que afecta
sólo a la restricción en la que aparece ri) reduce el número de variables a medida que
el algoritmo se mueve de una meta a la siguiente. De otra manera, podemos utilizar el
método simplex acotado de la sección 7.4.2, reemplazando con en
cuyo caso las restricciones adicionales se toman en cuenta de manera tácita. Al
respecto, la regla de eliminación de columnas, aparte de su atractivo teórico no parece
ofrecer una ventaja computacional particular.

Para completar el planteamiento, el ejemplo 8.2-3 ilustrará cómo funciona la
regla de eliminación de columnas.

ri … ri…,ri = ri…

ri = ri…
(ri = ri…),

ri = ri…

ri = ri…

ri = ri…

G1 = r1 � G2 = r2 � Á � Gn = rn

r2 = s2
+.r1 = s1

-
si

+,si
-
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Ejemplo 8.2-2

El problema del ejemplo 8-2.1 se resuelve por el método preventivo. Suponga que la meta de ex-
posición tiene la prioridad más alta.

Paso 0.

G1: Minimizar s2
1 (Satisfacer la meta de exposición) 

G2: Minimizar s1
2 (Satisfacer la meta de presupuesto)

Paso 1. Resuelva la PLi

sujeto a

La solución óptima (determinada por TORA) es x1 5 5 minutos, x2 5 2.5 minutos,
millones de personas, con las variables restantes iguales a cero. La solución

muestra que 5 millones de personas violan la meta de exposición, G1. La restricción
adicional que se añade al problema G2 es s2

1 5 5 (o, lo que es lo mismo, s2
1 # 5).

Paso 2. La función objetivo de la PL2 es 

Las restricciones son las mismas que en el paso 1 más la restricción adicional s2
1 5 5.

(Puede aplicarse la opción de TORA para representar la nueva restricción
asignando 5 tanto a la cota inferior como a la cota superior de s2

1 .)
Por lo general, la restricción adicional s2

1 5 5 también puede explicarse al susti-
tuir  en la primera restricción. El resultado es que el lado derecho de la restricción de
la meta de exposición cambiará de 45 a 40, lo que reduce la LP2 a

sujeto a

x1, x2, s1
+, s2

-, s2
+ Ú 0

x1 … 6 1Límite de radio2 x1 + 2x2 … 10 1Límite de personal2 8x1 + 24x2 + s2
- - s2

+ = 100 1Meta de presupuesto2 4x1 + 8x2 - s1
+ = 40 1Meta de exposición2

Minimizar G2 = s2
+

MODIFY

Minimizar G2 = s2
+

s1
- = 5

x1, x2, s1
-, s1

+, s2
-, s2

+ Ú 0

x1  … 6 1Límite de radio2  x1 +    2x2 … 10 1Límite de personal28x1 + 24x2 + s2
- - s2

+
   = 100 1Meta de presupuesto24x1 +   8x2 + s1

- - s1
+    = 45 1Meta de exposición2

Minimizar G1 = s1
-

G1.G2
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La nueva formulación tiene una variable menos que la de la PL1, la cual es la idea ge-
neral anticipada por la regla de eliminación de columnas.

En realidad, la optimización de la PL2 no es necesaria en este problema porque
la solución óptima al problema G1 ya da por resultado s1

2 5 0; es decir, ya es óptima
para la PL2. Tales oportunidades de ahorro de cálculos deben aprovecharse siempre
que se presenten durante el curso de implementación del método preventivo.

Ejemplo 8.2-3 (Regla de eliminación de columnas) 

En este ejemplo demostramos que puede obtenerse una mejor solución para el problema de los
ejemplos 8.2-1 y 8.2-2 si se utiliza el método preventivo para optimizar los objetivos en lugar de
satisfacer las metas. Más adelante, el mismo ejemplo se resuelve aplicando la regla de eliminación
de columnas.

Las metas del ejemplo 8.2-1 se puede formular como

Prioridad 1: Maximizar la exposición (P1)

Prioridad 2: Minimizar el costo (P2) 

Matemáticamente, los dos objetivos se dan como

Los límites específicos para las metas de exposición y de costo (5 45 y 100) en los ejemplos
8.2-1 y 8.2-2 se eliminan, porque dejaremos que el método simplex determine estos límites ópti-
mamente.

Por lo tanto el nuevo problema se formula como

sujeto a

Primero resolvemos el problema siguiendo el procedimiento presentado en el ejemplo 8.2-2.

Paso 1. Resuelva la PL1.

sujeto a

La solución óptima (obtenida por TORA) es x1 5 0, x2 5 5 con P1 5 40, lo que demuestra que la
exposición máxima que podemos obtener es de 40 millones de personas.

x1, x2 Ú 0

x1 … 6

x1 + 2x2  … 10

Maximizar P1 = 4x1 + 8x2

x1, x2 Ú 0

x1 …    6

x1 + 2x2 … 10

Minimizar P2  = 8x1 + 24x2

Maximizar P1 = 4x1 + 8x2

  Minimizar P2   = 8x1 + 24x2      (Costo)

  Maximizar P1 = 4x1 + 8x2      (Exposición)
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Paso 2. Agregue la restricción 4x1 1 8x2 $ 40 para asegurarnos de que la meta G1 no se de-
grade. Por lo tanto, resolvemos la PL2 como

sujeto a

La solución óptima de la PL2 es P2 5 $96,000, x1 5 6 minutos, y x2 5 2 minutos. Esto da por
resultado la misma exposición (P1 5 40 millones de personas) pero a un costo menor que el del
ejemplo 8.2-2, donde buscamos satisfacer en lugar de optimizar las metas.

El mismo problema se resuelve ahora con la regla de eliminación de columnas. La regla in-
dica que incluyamos las filas objetivo asociadas con todas las metas en la tabla simplex, como se
demostrará a continuación.

PL1 (Maximización de la exposición). La tabla simplex de la PL1 incluye ambas filas
objetivo P1 y P2. La condición de optimalidad aplica sólo a la  fila objetivo P1. La fila
P2 desempeña un rol pasivo en la PL1, pero debe ser actualizada (mediante las
operaciones de filas de simplex) con el resto de la tabla simplex en preparación para la
optimización de la PL2.

La PL1 se resuelve en dos iteraciones como sigue:

x1,  x2 Ú 0

 4x1 + 8x2 Ú 40  (restricción adicional)

 x1 … 6

 x1 + 2x2 … 10

Minimizar P2 = 8x1 + 24x2

Iteración Básica x1 x2 s1 s2 Solución

1 P1 –4 –8 0 0 0
P2 –8 –24 0 0 0
s1 1 2 1 0 10
s2 1 0 0 1 6

2 P1 0 0 4 0 40
P2 4 0 12 0 120
x2 1

2
1 1

2
0 5

s2 1 0 0 1 6

La última tabla da por resultado la solución óptima x1 5 0, x2 5 5 y P1 5 40.
La regla de eliminación de columnas pide que se elimine cualquier variable no

básica xj con zj 2 cj Z 0 a partir de la tabla óptima de la PL1 antes de optimizar la PL2.
La razón es que si estas variables no se verifican, podrían volverse positivas en proble-
mas de optimización de baja prioridad, las cuales pueden degradar la calidad de solu-
ciones de alta prioridad.

PL2 (Minimización de costos). La regla de eliminación de columnas elimina s1 (con zj
2 cj 5 4 en la PL1). En la fila P2 podemos ver que si no se elimina s1 será la variable de
entrada en el inicio de las iteraciones P2 y el resultado será la solución óptima x1 5

x2 5 0, la cual degradará el valor objetivo óptimo del problema P1 desde P1 5 40 hasta
P1 5 0 (¡compruébelo!).
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El problema P2 es del tipo de minimización. Después de la eliminación de s1, la
variable x1 con zj 2 cj 5 4 (. 0) puede mejorar el valor de P2. La siguiente tabla mues-
tra las iteraciones la PL2. Se eliminó la fila P1 porque no tiene ningún propósito en la
optimización de la PL2.

La solución óptima (x1 5 6, x2 5 2) con una exposición total de P1 5 40 y un
costo total de P2 5 96 es la misma que se obtuvo antes.

Momento de AMPL

AMPL se presta muchísimo para la aplicación de la idea presentada en el ejemplo 8.2-2, donde
se agregan restricciones simples para garantizar que las soluciones de alta prioridad no se degra-
den. El archivo amplEx.8.1-1.txt proporciona un código AMPL genérico que permite aplicar el
método preventivo. El modelo debe implementarse de manera interactiva como se explica en la
sección C9 en el sitio web.

CONJUNTO DE PROBLEMAS 8.2B2

1. En el ejemplo 8.2-2, suponga que la meta de presupuesto se incrementa a $110,000. La
meta de exposición permanece en 45 millones de personas. Demuestre cómo determi-
nará una solución el método preventivo.

*2. Resuelva el problema 1, conjunto 8.1a, utilizando el siguiente orden de las prioridades
para las metas: G1 . G2 . G3 . G4 . G5.

3. Considere el problema 2, conjunto 8.1a, que se refiere a la presentación de conciertos y
exposiciones de arte en el centro comercial NW. Suponga que las metas establecidas para
adolescentes, el grupo de mediana edad y el de adultos mayores se designan como G1, G2
y G3, respectivamente. Resuelva el problema para cada uno de los siguientes órdenes de
prioridad.
(a) G1 > G2 > G3

(b) G3 > G2 > G1 

Iteración Básica x1 x2 s1 s2 Solución

1 P1 40
P2 4 0 0 120

x2 1
2

1 0 5

s2 1 0 1 6

2 P1 40
P2 0 0 –4 96
x2 0 1 -1

2
2

x1 1 0 1 6

2Puede ver que es computacionalmente conveniente utilizar AMPL de manera interactiva para resolver los
problemas de este conjunto.
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Demuestre que la satisfacción de las metas (o falta de ella) puede ser una función del
orden de las prioridades.

4. Resuelva el modelo de la Universidad de Ozark (problema 3, conjunto 8.1a) siguiendo el
método preventivo, a reserva de que las metas se hayan priorizado en el mismo orden
que se dio en el problema.
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9.1 APLICACIONES ILUSTRATIVAS

Por lo general, las aplicaciones de programación lineal entera (PLE) caen dentro de
dos categorías: directa y transformada. En la categoría directa, la naturaleza de la situa-
ción impide la asignación de valores fraccionarios a las variables del modelo. Por ejem-
plo, el problema puede implicar la determinación de si se emprende o no un proyecto
(variable binaria), o la determinación del número óptimo de máquinas necesarias para
realizar una tarea (variable general entera). En la categoría transformada se utilizan
variables enteras auxiliares para convertir analíticamente situaciones insolubles en
modelos que pueden resolverse por medio de algoritmos de optimización disponibles.
Por ejemplo, en la secuencia de dos trabajos, A y B, en una sola máquina, el trabajo A
puede preceder al trabajo B o viceversa. La naturaleza “o” de las restricciones es lo
que hace al problema analíticamente insoluble, porque todos los algoritmos de progra-
mación matemáticos tratan con sólo restricciones “y”. La sección 9.1.4 muestra cómo
se utilizan las variables binarias auxiliares para transformar las restricciones “o” en
“y”, sin modificar la naturaleza del modelo.

CAPÍTULO 9

Programación lineal entera

Aplicación de la vida real. Optimización de las cargas de camiones de remolque
en PFG Building Glass 

PFG utiliza camiones de remolque (de quinta rueda) especialmente equipados para
entregar paquetes de hojas de vidrio plano a clientes. Los paquetes varían tanto en ta-
maño como en peso, una carga puede incluir diferentes paquetes, según los pedidos re-
cibidos. Los reglamentos gubernamentales limitan los pesos sobre los ejes y la coloca-
ción de los paquetes en el remolque es crucial para determinar estos pesos. El
problema tiene que ver con la determinación de la carga óptima de los paquetes sobre
la cama del camión para satisfacer los límites de peso sobre los ejes. El problema se re-
suelve como un programa entero. El caso 7 del capítulo 26 en el sitio web proporciona
los detalles del estudio.
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Por comodidad, un problema se define como programa entero puro cuando todas

las variables son enteras. En caso contrario, es un programa entero combinado (PEC)
que implica una combinación de variables enteras y continuas.

9.1.1 Presupuesto de capital

La toma de decisiones de emprender o no un proyecto suele hacerse conforme a con-
sideraciones y prioridades preestablecidas de presupuesto limitado. El siguiente ejem-
plo presenta una de estas situaciones.

Ejemplo 9.1-1 (Selección de un proyecto)

Se están evaluando cinco proyectos a lo largo de un horizonte de planeación de 3 años. La si-
guiente tabla presenta los rendimientos esperados y los gastos anuales que conllevan.

¿Cuáles proyectos deben seleccionarse a lo largo del periodo de 3 años?
El problema se reduce a una decisión “sí-no” para cada proyecto. Defina la variable binaria

xj como 

El modelo de PLE es

Sujeto a

La solución óptima entera (obtenida con AMPL, Solver, o TORA)1 es x1 5 x2 5 x3 5 x4 5 1,
x5 5 0, con z 5 95 ($ millones). La solución excluye el proyecto 5 de la combinación de proyectos.

x1, x2, x3, x4, x5 = (0, 1)

 8x1 + 10x2 + 2x3 + x4 + 10x5 … 25

 x1 +  7x2 + 9x3 + 4x4 + 6x5 … 25

 5x1 +  4x2 + 3x3 + 7x4 + 8x5 … 25

Maximizar z = 20x1 + 40x2 + 20x3 + 15x4 + 30x5

xj = e1, si se selecciona el proyecto j
0, si no se selecciona el proyecto j

Proyecto

Gastos ($ millones)/año

Rendimientos ($ millones)1 2 3

1 5 1 8 20
2 4 7 10 40
3 3 9 2 20
4 7 4 1 15
5 8 6 10 30

Fondos disponibles ($ millones) 25 25 25

1Para utilizar TORA, seleccione el menú de la barra de menús . Después de in-
gresar los datos del problema, diríjase a la pantalla de resultados, y seleccione para obte-
ner la solución óptima. Solver se utiliza igual que en la PL, sólo que las variables deben declararse enteras.
La opción entera (int o bin) está disponible en el cuadro de diálogo Solver Parameters cuando agrega una
nueva restricción. La implementación de AMPL para programación entera es la misma que en la PL, ex-
cepto que algunas o todas las variables se declaran enteras agregando la palabra clave integer (o binary)
en la instrucción de definición de las variables. Por ejemplo, la instrucción var x {J}>= 0,integer; decla-
ra a xj como entera no negativa para todas las j e J. Si xj es binaria, la instrucción se cambia a var x{J}>=0,
binary;. Para su ejecución, la instrucción option solver cplex; debe preceder a solve;.

Automated B&B
MainInteger Programming
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Comentarios. Es interesante comparar la solución de PL continua con la solución del PLE. La
solución óptima de PL, obtenida reemplazando xj 5 (0,1) con 0 # xj # 1 para todas las j, da por
resultado x1 5 .5789, x2 5 x3 5 x4 5 1, x5 5 .7368, y z 5 108.68 ($ millones). La solución no tiene
sentido porque la x1 y x5 binarias asumen valores fraccionarios. Podemos redondear la solución
al entero más cercano, lo que da x1 5 x5 5 1. Sin embargo, la solución resultante infringe las res-
tricciones. Además, el concepto de redondeo carece de sentido en este caso porque xj representa
una decisión “sí-no”.

CONJUNTO DE PROBLEMAS 9.1A2

1. Modifique y resuelva el modelo de presupuesto de capital del ejemplo 9.1-1 para tener
en cuenta las siguientes restricciones adicionales:
(a) Debe seleccionarse el proyecto 5 ya sea que se seleccionen el proyecto 1 o el proyecto 3.
(b) Los proyectos 2 y 3 son mutuamente excluyentes.

2. Se van a cargar cinco artículos en un buque. A continuación se tabulan el peso wi, el vo-
lumen vi y el valor ri del artículo i.

El peso y el volumen de la carga máximos permisibles son de 112 toneladas y 109
yd3, respectivamente. Formule el modelo de programación lineal entera, y determine la
carga más valiosa.

*3. Suponga que tiene 7 botellas de vino llenas, 7 a la mitad y 7 vacías. Le gustaría dividir las
21 botellas entre tres individuos de modo que cada uno reciba exactamente 7. Además,
cada individuo debe recibir la misma cantidad de vino. Exprese el problema como res-
tricciones del PLE, y halle una solución. (Sugerencia: Use una función objetivo ficticia en
la que todos los coeficientes objetivo sean ceros.).

4. Un excéntrico jeque dejó testamento para distribuir un rebaño de camellos entre sus tres
hijos: Tarek recibe la mitad del rebaño, Sharif obtiene una tercera parte y Maisa recibe
un noveno. El resto se destina a la caridad. El testamento no específica el tamaño del re-
baño, sólo dice que es un número impar de camellos y que la institución de caridad nom-
brada recibe exactamente un camello. Use la PLE para determinar cuántos camellos dejó
el jeque en el testamento y cuántos obtiene cada hijo.

5. Una pareja de granjeros envía a sus tres hijos al mercado para que vendan 90 manzanas;
Karen, la mayor, lleva 50 manzanas; Bill el de en medio, lleva 30; y John, el más joven,
lleva sólo 10. Los padres han estipulado cinco reglas: (a) el precio de venta es de $1 por
7 manzanas o $3 por 1 manzana; o una combinación de los dos precios. (b) Cada hijo
puede ejercer una o ambas opciones del precio de venta. (c) Cada uno debe regresar con
exactamente la misma cantidad de dinero. (d) El ingreso de cada hijo debe ser de dólares
enteros (no se permiten centavos). (e) La cantidad recibida por cada hijo debe ser la má-
xima posible según las condiciones estipuladas. Dado que los tres hijos son capaces de

Artículo i Peso unitario,wi (toneladas) Volumen unitario, vi (yd3) Valor unitario, ri ($100)

1 5 1 4
2 8 8 7
3 3 6 6
4 2 5 5
5 7 4 4

2Los problemas 3 a 6 son una adaptación de Malba Tahan, El Hombre que Calculaba, Editorial Limusa,
México, DF, págs. 39-182, 1994. Los problemas 13 a 16 son una adaptación de acertijos compilados en http:
www.chlond.demon.co.uk/puzzles/puzzles1.html. Desde luego sin tomar en cuenta las letras compuestas CD
y LL. (N. del T).
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vender todo lo que llevan, use la PLE para mostrar cómo se pueden satisfacer las condi-
ciones de sus padres.

*6. Un capitán de un barco mercante deseaba recompensar a tres miembros de la tripulación
por su valiente esfuerzo al salvar la carga del barco durante una inesperada tormenta en
alta mar. El capitán apartó una suma de dinero en la oficina del sobrecargo e instruyó al
primer oficial para que la distribuyera en partes iguales entre los tres marineros después
de que el barco atracara. Una noche, uno de los marineros, sin que los otros supieran, se
dirigió a la oficina del sobrecargo y decidió reclamar un tercio (equitativo) del dinero de
forma anticipada. Después de que dividió el dinero en tres partes iguales sobró una mo-
neda, la que el marinero decidió conservar (además de un tercio del dinero). La noche si-
guiente, el segundo marinero tuvo la misma idea y repitió la misma división en tres partes
con lo que quedó, y terminó quedándose con una moneda extra. La tercera noche el ter-
cer marinero también tomó un tercera parte de lo que quedaba, más una moneda extra
que no podía dividirse. Cuando el barco arribó, el primer oficial dividió lo que restaba del
dinero en partes iguales entre los tres marineros, quedando de nuevo una moneda extra.
Para simplificar las cosas, el primer oficial apartó la moneda extra y les dio a los marine-
ros sus partes iguales asignadas. ¿Cuánto dinero había en la caja fuerte al inicio? Formule
el problema como una PLE, y halle la solución. (Sugerencia: El problema tiene una infini-
tud de soluciones enteras. Por comodidad, supongamos que nos interesa determinar la
suma mínima de dinero que satisfaga las condiciones del problema. Luego, aumente uno
a la suma resultante, y agréguelo como cota inferior para obtener la siguiente suma míni-
ma. Continuando de esta manera, emergerá un patrón de solución general.)

7. Weber (1990). Supongamos que tenemos las siguientes palabras de tres letras: AFT, FAR,
TVA, ADV, JOE, FIN, OSF y KEN. Supongamos que le asignamos valores numéricos al
alfabeto comenzando con A 5 1 y terminando con Z 5 27. A cada palabra se le asigna
una calificación sumando los códigos numéricos de sus tres letras. Por ejemplo, AFT 
tiene una calificación de 1 1 6 1 20 5 27. Debe seleccionar cinco de las ocho palabras
dadas que den la calificación máxima total. Al mismo tiempo, las cinco palabras deben
satisfacer las siguientes condiciones:

Formule el problema como una PLE y halle la solución óptima.
8. Resuelva el problema 7 dado que, además de que la suma total es la máxima, la suma de la

columna 1 y la suma de la columna 2 también serán las máximas. Halle la solución óptima.
9. Weber (1990). Considere los siguientes grupos de palabras:

asuma de las calificaciones
de la letra 1

b 6 asuma de las calificaciones
de la letra 2

b 6 asuma de las calificaciones
de la letra 3

b

Grupo 1 Grupo 2

AREA ERST
FORT FOOT
HOPE HEAT
SPAR PAST
THAT PROF
TREE STOP

Todas las palabras en los grupos 1 y 2 pueden formarse con las nueve letras A, E. F, H, O,
P, R, S y T. Desarrolle un modelo para asignar un valor numérico único del 1 al 9 a estas
letras, de modo que la diferencia entre las calificaciones totales de los dos grupos será lo
más pequeña posible. Nota: La calificación para una palabra es la suma de los valores
numéricos asignados a sus letras individuales.
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*10. La compañía Record-a-Song contrató a una estrella en ascenso para que grabe ocho can-
ciones. Los tamaños en MB de las diferentes canciones son de 8, 3, 5, 5, 9, 6 y 12, respecti-
vamente. Record-a-Song utiliza dos CD para la grabación. La capacidad de cada CD es
de 30 MB. A la compañía le gustaría distribuir las canciones en los dos CD de modo que
el espacio utilizado en cada uno sea aproximadamente el mismo. Formule el problema
como una programación lineal entera y determine la solución óptima.

11. En el problema 10, suponga que la naturaleza de las melodías dicta que las canciones 3 y
4 no pueden grabarse en el mismo CD. Formule el problema como una PLE. ¿Sería posi-
ble utilizar un CD de 25 MB para grabar las ocho canciones? Si no, utilice la PLE para
determinar la capacidad mínima del CD para realizar la grabación.

*12. Graves and Asoociates (1993). La Universidad de Ulern utiliza un modelo matemático
que optimiza las preferencias de los estudiantes tomando en cuenta la limitación del
salón de clases y el profesorado. Para demostrar la aplicación del modelo, considere el
caso simplificado de 10 estudiantes a los que se les pidió que seleccionaran dos cursos de
entre seis ofrecidos. La tabla siguiente muestra las calificaciones que representan la pre-
ferencia de cada estudiante por los cursos individuales, con 100 como la calificación más
alta. Para simplificar, se supone que la calificación de la preferencia de una selección de
dos cursos es la suma de las calificaciones individuales. La capacidad del curso es el nú-
mero máximo de estudiantes que pueden tomar la clase.

Formule el problema como una PLE y halle la solución óptima.
13. Tiene tres denominaciones de moneda con 11 monedas de cada una. El valor total (de las

11 monedas) es de 15 bits para la denominación 1, 16 para la denominación 2, y 17 bits
para la 3. Usted necesita comprar un artículo de 11 bits. Use la PLE para determinar la
cantidad mínima de monedas de las tres denominaciones que se requiere para realizar 
la compra.

14. Tiene un tablero de 4 3 4 casillas y un total de 10 fichas. Use la PLE para colocar las fichas
en el tablero de modo que cada fila y cada columna tengan un número par de fichas.

15. A un vendedor callejero que vende aparatos electrónicos le robaron toda su mercancía.
Cuando denunció el hecho a la policía, el vendedor no supo decir cuántos aparatos que
tenía pero declaró que cuando dividía el total en lotes de 2, 3, 4, 5 o 6, siempre sobraba un
aparato. Por otra parte, no sobraba ninguno cuando el total se dividía en lotes de 7. Use
PLE para determinar el total de aparatos que el vendedor tenía.

16. Dado que i 5 1, 2,…, n, formule un modelo de PLE (para cualquier n) para determinar el
número mínimo y que, cuando se divide entre la cantidad entera 2 1 i, siempre producirá
un remanente igual a i; es decir, y mod (2 1 i) 5 i.

Estudiante

Calificación de preferencia por curso

1 2 3 4 5 6

1 20 40 50 30 90 100
2 90 100 80 70 10 40
3 25 40 30 80 95 90
4 80 50 60 80 30 40
5 75 60 90 100 50 40
6 60 40 90 10 80 80
7 45 40 70 60 55 60
8 30 100 40 70 90 55
9 80 60 100 70 65 80

10 40 60 80 100 90 10

Capacidad del curso 6 8 5 5 6 5
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17. Un acertijo muy conocido requiere que se asigne un solo dígito distinto (del 0 al 9) a cada
letra de la ecuación SEND 1 MORE 5 MONEY. Formule el problema como un progra-
ma entero y halle la solución. (Sugerencia: Éste es un modelo de asignación con condicio-
nes colaterales.)

18. El acertijo lógico japonés mundialmente conocido, Sudoku, se compone de una cuadrícu-
la de 9 3 9 subdividida en 9 subcuadrículas de 3 3 3 que no se traslapan. El acertijo con-
siste en asignar los dígitos numéricos del 1 al 9 a las celdas de la cuadrícula de modo que
cada fila, cada columna y cada subcuadrícula, contenga dígitos distintos. Algunas de las
celdas pueden fijarse con anticipación.

Formule el problema como un programa entero, y halle la solución para el caso
dado a continuación.

[Sugerencia: sea xijk 5 1 si se coloca el dígito k en la celda (i,j), i,j,k 5 1, 2,…,n, n 5 9. Si uti-
liza AMPL, tenga en cuenta que con n 5 9, la cantidad de variables que resulte excederá la
capacidad de la versión estudiantil de AMPL. Si no tiene acceso a la versión completa de
AMPL, puede desarrollar un modelo general para n 5 4 o 9, y luego resolverlos para el
caso más sencillo (casi trivial) de una cuadrícula de 4 3 4 con una subcuadrícula de 2 3 2.

9.1.2 Problema de cobertura de conjunto

En esta clase de problemas, varias plantas ofrecen servicios que se traslapan a varias insta-
laciones. El objetivo es determinar la cantidad mínima de plantas que cubren (es decir, que
satisfacen las necesidades de servicio de) cada instalación.Por ejemplo, se pueden construir
plantas de tratamiento de agua en varios lugares, y cada planta sirve a un grupo de ciuda-
des. El traslape ocurre cuando a una ciudad dada le da servicio más de una planta.

Ejemplo 9.1-2 (Instalación de teléfonos de seguridad)

Para promover la seguridad en el campus el Departamento de Seguridad Pública de la Universidad
de Arkansas se encuentra en proceso de instalación de teléfonos de emergencia en lugares seleccio-
nados. El departamento desea instalar una cantidad mínima de estos aparatos que presten servicio
a cada una las calles principales del campus. La figura 9.1 es un mapa de dichas calles.

Es lógico maximizar la utilidad de los teléfonos si se les coloca en intersecciones de calles.
De este modo, una sola unidad puede prestar servicio al menos a dos calles.

Defina

xj = e1, se instala un teléfono en el lugar j, j = 1, 2, . . . , 8
0, en caso contrario

6 1 4 5

8 3 5 6

2 7

8 4 7 6

6 3

7 9 1 4

5 2

7 2 6 9

4 5 8 7
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FIGURA 9.1

Mapa de las calles del campus de la Universidad de Arkansas
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Las restricciones del problema requieren que se instale al menos un teléfono en cada una de las
11 calles (A a K). Por lo tanto, el modelo es 

Sujeto a

La solución óptima del problema requiere que se instalen cuatro teléfonos en las intersecciones
1, 2, 5 y 7.

Comentarios. En el sentido estricto, los problemas de cobertura se caracterizan por los si-
guientes criterios: (1) Las variables xj, j 5 1, 2,…,n son binarias; (2) los coeficientes del lado iz-

xj =  (0, 1),  j = 1, 2, . . . ,  8

 x3 + x5  Ú 1 (Calle K)

 x5  + x8 Ú 1 (Calle J)

 x2  + x4  Ú 1 (Calle I)

 x4  + x7  Ú 1 (Calle H)

 x1  + x6  Ú 1 (Calle G)

 x2  + x6  Ú 1 (Calle F)

 x6 + x7  Ú 1 (Calle E)

 x7 + x8 Ú 1 (Calle D)

 x4 + x5  Ú 1 (Calle C)

 x2 + x3  Ú 1 (Calle B)

 x1 + x2  Ú 1 (Calle A)

Minimizar z = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8
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quierdo de las restricciones son 0 o 1; (3) el lado derecho de cada restricción es de la forma ($1),
y (4) la función objetivo minimiza c1x1 1 c2x2 1 … 1 cnxn, donde cj . 0 para toda j 5 1, 2,...,n.
En este ejemplo, cj 5 1 para todas las j. Si cj representa el costo de instalación en la intersección
j, entonces estos coeficientes pueden asumir valores diferentes de 1. Las variaciones del proble-
ma de cobertura incluyen condiciones colaterales adicionales, como se describe por medio de al-
gunas de las situaciones descritas en los problemas del conjunto 9.1b.

Momento de AMPL

El archivo amplEx9.1-2.txt proporciona un modelo general para cualquier problema de cobertu-
ra. La formulación se detalla en la sección C.9 en el sitio web.

CONJUNTO DE PROBLEMAS 9.1B

*1. ABC es una compañía de transporte de menos de una carga de camión que entrega cargas
a diario a cinco clientes. La siguiente lista proporciona los clientes asociados con cada ruta:

Ruta Clientes atendidos en la ruta

1 1, 2, 3, 4
2 4, 3, 5
3 1, 2, 5
4 2, 3, 5
5 1, 4, 2
6 1, 3, 5

El objetivo es determinar la distancia mínima necesaria para realizar las entregas
diarias a los cinco clientes. Aun cuando la solución puede dar por resultado que un clien-
te sea atendido por más de una ruta, la fase de implementación utilizará sólo una de esas
rutas. Formule el problema como un PLE, y halle la solución óptima.

*2. La Universidad de Arkansas va a formar un comité para atender las quejas de los estu-
diantes. La administración desea que el comité incluya al menos una mujer, un hombre,
un estudiante, un administrador y un profesor. Diez personas (identificadas, por simplici-

Millas de i a j

i

j ABC 1 2 3 4 5

ABC 0 10 12 16 9 8
1 10 0 32 8 17 10
2 12 32 0 14 21 20
3 16 8 14 0 15 18
4 9 17 21 15 0 11
5 8 10 20 18 11 0

Los segmentos de cada ruta dependen de la capacidad del camión que entrega las
cargas. Por ejemplo, en la ruta 1, la capacidad del camión es suficiente para entregar las
cargas a los clientes, 1, 2, 3 y 4 únicamente. La siguiente tabla enlista las distancias (en mi-
llas) entre la terminal de los camiones (ABC) y los clientes.
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dad, con las letras de la a a la j) han sido nominadas, y se les ha combinado en las distin-
tas categorías siguientes:

La Universidad de Arkansas desea formar el menor comité con la representación
de cada una de las cinco categorías. Formule el problema como un PLE, y halle la solu-
ción óptima.

3. El condado de Washington incluye seis poblaciones que necesitan el servicio de ambulan-
cias de emergencia. Debido a la proximidad de algunas poblaciones, una sola estación
puede atender a más de una comunidad. La estipulación es que la estación debe estar
como máximo a 15 minutos de tiempo de manejo de la población que atiende. La si-
guiente tabla muestra los tiempos de manejo en minutos entre las seis poblaciones.

Categoría Personas

Mujeres a, b, c, d, e
Hombres f, g, h, i, j
Estudiantes a, b, c, j
Administradores e, f
Profesores d, g, h, i

Tiempos en minutos de i a j

i

j 1 2 3 4 5 6

1 0 23 14 18 10 32
2 23 0 24 13 22 11
3 14 24 0 60 19 20
4 18 13 60 0 55 17
5 10 22 19 55 0 12
6 32 11 20 17 12 0

Formule un PLE cuya solución produzca el número mínimo de estaciones y sus
ubicaciones. Determine la solución óptima.

4. Los inmensos tesoros del Rey Tut están en exhibición en el Museo de Giza en El Cairo.
La distribución del museo se muestra en la figura 9.2 con las diferentes salas comunica-
das por puertas abiertas. Un guardia de pie en una puerta puede vigilar dos salas adya-
centes. La política de seguridad del museo requiere la presencia de un guardia en cada
sala. Formule el problema como un PLE para determinar el mínimo de guardias.

FIGURA 9.2

Distribución del museo del problema 4,
conjunto 9.1c
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5. Bill acaba de terminar sus exámenes del año académico y desea celebrar viendo todas las
películas que se están exhibiendo en cines de su ciudad y otras ciudades vecinas. Si viaja a
otra ciudad, se quedará allí hasta que vea todas las películas que desea. La siguiente tabla in-
forma sobre las ofertas de películas y las distancias de viaje redondo a las ciudades vecinas.

Localización
del cine

Ofertas de
películas

Millas de
viaje redondo

Costo por
película ($)

En su ciudad 1, 3 0 7.95
Ciudad A 1, 6, 8 25 5.50
Ciudad B 2, 5, 7 30 5.00
Ciudad C 1, 8, 9 28 7.00
Ciudad D 2, 4, 7 40 4.95
Ciudad E 1, 3, 5, 10 35 5.25
Ciudad F 4, 5, 6, 9 32 6.75

El costo de conducir es de 75 centavos por milla. Bill desea determinar las ciudades
que necesita visitar para ver todas las películas, al mismo tiempo que minimiza su costo total.

6. Las tiendas Walmark están en proceso de expansión en el oeste de Estados Unidos.
Walmark planea construir durante el próximo año nuevas tiendas que prestarán servicio
a 10 comunidades geográficamente dispersas. La experiencia pasada indica que una co-
munidad debe estar a una distancia máxima de 25 millas de una tienda para atraer clien-
tes. Además, la población de una comunidad desempeña un rol importante en la ubica-
ción de una tienda, en el sentido que las comunidades grandes generan más clientes
participantes. La siguiente tabla proporciona las poblaciones y también las distancias (en
millas) entre las comunidades.

La idea es construir el menor número de tiendas, teniendo en cuenta la restricción
de la distancia y la concentración de las poblaciones.

Especifique las comunidades donde deben ubicarse las tiendas.
*7. Guéret and Associates (2002). Sección 12.6. El presupuesto de MobileCo para construir 7

transmisores que cubran la mayor población posible en 15 comunidades geográficas con-

Millas de la comunidad i a la comunidad j

i

j 1 2 3 4 5 6 7 8 9 10 Población

1 20 40 35 17 24 50 58 33 12 10,000
2 20 23 68 40 30 20 19 70 40 15,000
3 40 23 36 70 22 45 30 21 80 28,000
4 35 68 36 70 80 24 20 40 10 30,000
5 17 40 70 70 23 70 40 13 40 40,000
6 24 30 22 80 23 12 14 50 50 30,000
7 50 20 45 24 70 12 26 40 30 20,000
8 58 19 30 20 40 14 26 20 50 15,000
9 33 70 21 40 13 50 40 20 22 60,000

10 12 40 80 10 40 50 30 50 22 12,000
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Transmisor Comunidades cubiertas Costo (millones de $)

1 1, 2 3.60
2 2, 3, 5 2.30
3 1, 7, 9, 10 4.10
4 4, 6, 8, 9 3.15
5 6, 7, 9, 11 2.80
6 5, 7, 10, 12, 14 2.65
7 12, 13, 14, 15 3.10

tiguas, es de 15 millones de dólares. A continuación se presentan las comunidades cubier-
tas por cada transmisor y los costos de construcción presupuestados.

La siguiente tabla proporciona las poblaciones de las diferentes comunidades:

Comunidad 1 2 3 4 5 6 7 8 9 10

Población (en miles) 10 15 28 30 40 30 20 15 60 12

¿Cuáles de los transmisores propuestos deben construirse?
8. Gavermini and Associates (2004). Las redes eléctricas modernas utilizan medidores eléc-

tricos automáticos en lugar de los más costosos medidores manuales. En el sistema au-
tomático, los medidores de varios clientes se enlazan inalámbricamente a un solo recep-
tor. El medidor envía señales cada mes a un receptor designado para reportar el
consumo de electricidad del cliente. Luego los datos se canalizan a una computadora cen-
tral para generar los recibos. El objetivo es determinar el mínimo de receptores necesa-
rios para atender a un número dado de medidores. En la vida real, el problema compren-
de miles de medidores y receptores. Este problema emplea 10 medidores y 8 posibles
localizaciones para los receptores, con las siguientes configuraciones:

Receptor 1 2 3 4 5 6 7 8

Medidores 1, 2, 3 2, 3, 9 5, 6, 7 7, 9, 10 3, 6, 8 1, 4, 7, 9 4, 5, 9 1, 4, 8

9. Resuelva el problema 8 si, además, cada receptor puede manejar cuando mucho 3 medi-
dores.

9.1.3 Problema de cargo fijo

El problema de cargo fijo tiene que ver con situaciones en que la actividad económica
incurre en dos tipos de costos: un costo fijo necesario para iniciar la actividad y un
costo variable proporcional al nivel de la actividad. Por ejemplo, el herramental inicial
de una máquina antes de iniciar la producción incurre en un costo de preparación fijo
independientemente de cuántas unidades se fabriquen. Una vez completa la prepara-
ción de la máquina, el costo de la mano de obra y del material es proporcional a la can-
tidad producida. Dado que F es el cargo fijo, c es el costo unitario variable, y x es el
nivel de producción, la función de costo se expresa como 

C1x2 = eF + cx, si x 7 0
0, en caso contrario
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La función C(x) es analíticamente insoluble porque implica una discontinuidad
en x 5 0. El siguiente ejemplo demuestra cómo se utilizan las variables binarias para
volver el modelo analíticamente soluble.

Ejemplo 9.1-3 (Selección de una compañía telefónica)

Tres compañías telefónicas me ofrecen suscribirme a su servicio de larga distancia en Estados
Unidos. MaBell cobra una cuota fija de $16 por mes más $.25 por minuto. PaBell cobra $25 por
mes pero reduce el costo por minuto a $.21. En cuanto a BabyBell, la cuota fija mensual es de
$18, y el costo por minuto es de $.22. Usualmente ocupo un promedio de 200 minutos de llama-
das de larga distancia al mes. Suponiendo que no tenga que pagar la cuota fija mensual a menos
que realice llamadas y que pueda repartirlas entre las tres compañías como me plazca, ¿cómo
debería utilizar las tres compañías para minimizar mi recibo telefónico mensual?

Este problema es fácil de resolver sin PLE. No obstante, es instructivo formularlo como un
programa entero.

Defina

x1 5 Minutos de larga distancia de MaBell por mes 
x2 5 Minutos de larga distancia de PaBell por mes 
x3 5 Minutos de largo distancia de BabyBell por mes 
y1 5 1 si x1 . 0 y 0 si x1 5 0
y2 5 1 si x2 . 0 y 0 si x2 5 0
y3 5 1 si x3 . 0 y 0 si x3 5 0

Podemos asegurar que yj es igual a 1 cuando xj es positiva por medio de la restricción

El valor de M debe seleccionarse lo bastante grande como para no restringir artificialmente la
variable xj. Como ocupo aproximadamente 200 minutos de llamadas al mes, entonces xj # 200
para todas las j, es seguro seleccionar M 5 200.

El modelo completo es 

Sujeto a

La formulación muestra que la j-ésima cuota mensual fija formará parte de la función objetivo z
sólo si y1 5 1, lo cual puede suceder sólo si xj . 0 (de acuerdo con las últimas tres restricciones

y1, y2, y3              =   (0, 1)

x1, x2, x3            Ú  0

x3  …  200y3

x2  …  200y2

x1 …  200y1

x1 + x2 + x3 =  200

Minimizar z = .25x1 + .21x2 + .22x3 + 16y1 + 25y2 + 18y3

xj … Myj ,  j = 1, 2, 3
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3Por generalización, la condición y1 = 0 si xi = 0 puede reemplazarse con la condición compuesta yi = 1 si

xi . 0 y 0 si xi = 0 para hacerla independiente del sentido de optimización (maximización o minimización).

El resultado se logra reemplazando las  restricciones xi # Myi con .
xi

M
… yi … xi

Pantalones Chalecos Chamarras 

Piel por unidad (pies2) 5 3 8

Tiempo de mano de obra por unidad (h) 4 3 5
Costo de producción por unidad ($) 30 20 80
Costo de preparación del equipo por lote ($) 100 80 150
Precio por unidad ($) 60 40 120
Cantidad mínima de unidades necesarias 100 150 200

Determine la cantidad óptima de unidades que Leatherco debe fabricar de cada
producto.

*2. Jobco planea producir al menos 2000 artefactos con tres máquinas. El tamaño mínimo
del lote es de 500 artefactos. La siguiente tabla ofrece los datos pertinentes de la situa-
ción.

Máquina Costo de preparación ($) Costo de producción/unidad ($) Capacidad (unidades)

1 300 2 600
2 100 10 800
3 200 5 1200

Formule el problema como un PLE y halle la solución óptima.

del modelo). Si xj 5 0 en el óptimo, entonces la minimización de z, junto con el hecho de que el
coeficiente objetivo de y1 sea positivo, hace que yj sea igual a cero como se desea3.

La solución óptima resulta x3 5 200, y3 5 1, y todas las variables restantes iguales a cero,
lo que demuestra que debo seleccionar a BabyBell como mi proveedor de larga distancia.
Recuerde que la información ofrecida por y3 5 1 es redundante porque x3 . 0 (5 200) implica el
mismo resultado. En realidad, la razón principal para utilizar y1, y2 y y3 se explica por la cuota
mensual fija. De hecho, las tres variables binarias transforman un modelo (no lineal) de mal com-
portamiento en una formulación analíticamente soluble. Esta conversión ha dado por resultado la
introducción de las variables (binarias) enteras en un problema que de lo contrario sería continuo.

CONJUNTO DE PROBLEMAS 9.1C

1. Leatherco firmó un contrato para fabricar lotes de pantalones, chalecos y chamarras.
Cada producto requiere una preparación especial de las máquinas necesarias en los pro-
cesos de fabricación. La siguiente tabla proporciona los datos pertinentes con respecto al
uso de la materia prima (piel) y el tiempo de mano de obra junto con estimaciones de
costos e ingresos. Se estima que el abasto actual de piel es de 3000 pies2, y el tiempo de
mano de obra disponible está limitado a 2500 horas.
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*3. Oilco está considerando dos sitios de perforación potenciales para llegar a cuatro destinos
(posibles pozos petroleros). La siguiente tabla presenta los costos de preparación en cada
uno de los dos sitios, y el costo de perforación del sitio i al destino j (i 5 1, 2; j 5 1, 2, 3, 4).

Formule el problema como un PLE y halle la solución óptima.
4. Se consideran tres sitios industriales para situar plantas de manufactura. Las plantas

envían sus abastos a tres clientes. El abasto en las plantas, la demanda de los clientes y el
costo unitario de transporte de las plantas a los clientes aparecen en la siguiente tabla.

Aparte de los costos de transporte, las plantas 1, 2 y 3 incurren en costos fijos a
razón de $12,000, $11,000 y $12,000, respectivamente. Formule el problema como un pro-
grama lineal entero y halle la solución óptima.

5. Repita el problema 4 suponiendo que las demandas de los clientes 2 y 3 cambian a 800
por cada uno.

6. Liberatore and Miller (1985). Una planta manufacturera utiliza dos líneas de producción
para producir tres productos durante los próximos 6 meses. No se permiten demandas
atrasadas. Sin embargo, se pueden tener existencias de más de un producto para satisfa-
cer la demanda en meses posteriores. La siguiente tabla presenta los datos asociados con
la demanda, producción y almacenaje de los tres productos.

Sitio

Costo de perforación ($ millones) hasta el destino

Costo de preparación (($ millones)1 2 3 4

1 2 1 8 5 5
2 4 6 3 1 6

Costo de transporte unitario ($)

Cliente

Planta
1 2 3 Abasto

1 10 15 12 1800
2 17 14 20 1400
3 15 10 11 1300

Demanda 1200 1700 1600

Producto

Demanda en el periodo
Costo de retención
unitario ($/mes)

Inventario
inicial1 2 3 4 5 6

1 50 30 40 60 20 45 .50 55
2 40 60 50 30 30 55 .35 75
3 30 40 20 70 40 30 .45 60

Costo de cambio de la línea ($) 

Producto 1 Producto 2 Producto 3

Línea 1 200 180 300
Línea 2 250 200 174

Hay un costo fijo por el cambio de una línea de un producto a otro. Las siguientes tablas
dan el costo de cambio, las tasas de producción y el costo de producción unitario por
cada línea:
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Desarrolle un modelo para determinar el programa de producción óptimo.
7. Jarvis and Associates (1978). Se está pensando en siete ciudades como sitios potenciales

para la construcción de un máximo de cuatro plantas de tratamiento de aguas residuales.
La tabla siguiente presenta los datos de la situación. Los enlaces faltantes indican que no
se puede construir un oleoducto.

La capacidad de un oleoducto (en galones por hora) es una función directa de la canti-
dad de aguas residuales generada, la cual es una función de las poblaciones. Se descargan
aproximadamente 500 galones por cada 1000 residentes al sistema de drenaje por hora.
La capacidad máxima de la planta es de 100,000 gal/h. Determine la ubicación y capaci-
dad óptimas de las plantas.

8. Brown and Associates (1987). Una compañía utiliza cuatro camiones cisterna especiales
para entregar a clientes cuatro productos de gasolina diferentes. Cada camión tiene cinco
compartimientos de diferentes capacidades: 500, 750, 1200, 1500 y 1750 galones. Las de-
mandas diarias de los cuatro productos se estiman en 10, 15, 12 y 8 mil galones. Cualquier
cantidad que no pueda ser entregada por los cuatro camiones de la compañía debe sub-
contratarse a los costos adicionales de 5, 12, 8 y 10 centavos por galón de los productos 1,
2, 3 y 4, respectivamente. Desarrolle el programa de carga diaria óptimo para los cuatro
camiones que minimizará el costo adicional de subcontratación.

9. Una familia utiliza mensualmente al menos 3000 minutos de llamadas de larga distancia
y puede elegir el uso de los servicios de cualquiera de las compañías A, B y C. La com-
pañía A cobra una cuota mensual fija de $10 y 5 centavos por minuto por los primeros
1000 minutos, y 4 centavos por minuto por todos los minutos adicionales. La cuota men-
sual de la compañía B es de $20 con un cobro fijo de 4 centavos por minuto. El cobro
mensual de la compañía C es de $25 con 5 centavos por minuto por los primeros 1000 mi-
nutos, y 3.5 centavos después de ese límite. ¿Cuál compañía debe seleccionarse para mi-
nimizar el cobro mensual total?

*10. Barnett (1987). El profesor Yataha necesita programar seis viajes redondos entre Boston
y Washington, D.C. Tres aerolíneas cubren la ruta: Eastern, US Air, y Continental y no
hay penalización por la compra de un boleto de viaje sencillo. Cada aerolínea ofrece mi-

Tasa de producción (unidades/mes) Costo de producción unitario ($)

Producto 1 Producto 2 Producto 3 Producto 1 Producto 2 Producto 3

Línea 1 40 60 80 10 8 15
Línea 2 90 70 60 12 6 10

Costo ($) de construcción del oleoducto entre
ciudades por cada 1000 gal/h de capacidad

A

De

1 2 3 4 5 6 7

1 100 200 50
2 120 150
3 400 120 90
4 120 120
5 200 100 200
6 110 180 70
7 200 150

Costo millones de $ de
construcción de la planta 1.00 1.20 2.00 1.60 1.80 .90 1.40

Población (miles) 50 100 45 90 75 60 30
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llas de gratificación para viajeros frecuentes. Eastern otorga 1000 millas por boleto (de
viaje sencillo) y 5000 millas más si la cantidad de boletos en un mes es de 2, y otras 5000
millas si excede de 5 boletos. US Air ofrece 1500 millas por viaje más 10,000 extra por
cada 6 boletos. Continental ofrece 1800 millas, más 7000 extra por cada 5 boletos. El pro-
fesor Yataha desea repartir los 12 boletos de viaje sencillo entre las tres aerolíneas para
maximizar el total de millas ganadas.

9.1.4 Restricciones Uno - u - otro y Si - entonces

En el problema de cargo fijo (sección 9.1.3), se utilizan variables binarias auxiliares
para manejar la discontinuidad en la función de costo objetivo. Esta sección se ocupa
de modelos en los que las restricciones no se satisfacen al mismo tiempo (Uno - u -
otro) o son dependientes (Si - entonces), utilizando de nueva cuenta variables binarias
auxiliares. La transformación utiliza un artificio matemático para presentar la restric-
ción especial como restricciones “and” (“y”).

Ejemplo 9.1-4 (Modelo de secuenciación de trabajos) 

Jobco utiliza una sola máquina para procesar tres trabajos. Tanto el tiempo de procesamiento
como la fecha límite (en días) de cada trabajo aparecen en la siguiente tabla. Las fechas límite se
miden a partir de cero, el tiempo de inicio supuesto del primer trabajo.

El objetivo del problema es determinar la secuencia de los trabajos que minimice la penalización
por retraso en el procesamiento de los tres trabajos.

Defina

xj 5 Fecha de inicio en días del trabajo j (medida a partir del tiempo cero)

El problema tiene dos tipos de restricciones: las restricciones de no interferencia (que garantizan
que no se procesen dos trabajos al mismo tiempo) y las restricciones de fecha límite. Considere
primero las restricciones de no interferencia.

Dos trabajos i y j con tiempo de procesamiento pi y pj no se procesarán al mismo tiempo si
(dependiendo de qué trabajo se procese primero)

Con M lo bastante grande, las restricciones “o” se transforman en restricciones “y” por medio de

La conversión garantiza que sólo una de las dos restricciones puede estar activa en cualquier
momento. Si yij 5 0, la primera restricción está activa, y la segunda es redundante (porque su
lado izquierdo incluye a M, la cual es mucho mayor que pk). Si yij 5 1, la primera restricción es
redundante, y la segunda está activa.

Myij + (xi - xj) Ú pj  y  M(1 - yij) + (xj - xi) Ú pi

xi Ú xj + pj o xj Ú xi + pi

yij = e1, si i precede a j
0, si j precede a i

Trabajo Tiempo de procesamiento (días) Fecha límite (días) Penalización por retraso ($/día)

1 5 25 19
2 20 22 12
3 15 35 34
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A continuación, dado que di es la fecha límite para el trabajo j, el trabajo se retrasa si xj 1

pj . dj. Podemos utilizar dos variables no negativas, y para determinar el estado de un tra-
bajo j completado con respecto a su fecha límite, es decir, la restricción de fecha límite puede
escribirse como

El trabajo j se adelanta si y se retarda si El costo de penalización por retraso es
por lo tanto proporcional a

El modelo del problema dado es

Sujeto a

El modelo resultante es un PLE combinado.
Para resolverlo, seleccionamos M 5 100, un valor que es mayor que la suma de los tiempos

de procesamiento de las tres actividades. La solución óptima es x1 5 20, x2 5 0, y x3 5 25. Ésta in-
dica que el trabajo 2 se inicia en el tiempo 0, que el trabajo 1 se inicia en el tiempo 20, y que el
trabajo 3 se inicia en el tiempo 25, y por lo tanto se obtiene la secuencia de procesamiento ópti-
ma 2: 1: 3. La solución requiere que el trabajo 2 se complete en 0 1 20 5 20 días, el trabajo 1 en
un tiempo de 20 1 5 5 25 días y el trabajo 3 en 25 1 15 5 40 días. El trabajo 3 se retrasa 40 2 35
5 5 días después de la fecha límite a un costo de 5 3 $34 5 $170.

Momento de AMPL

El archivo amplEx9.1-4.txt proporciona el modelo para el problema del ejemplo 9.1-4. El mode-
lo se explica en la sección C.9 en el sitio web.

Ejemplo 9.1-5 (Modelo de secuenciación de trabajos revisitado)

En el ejemplo 9.1-4, supongamos que tenemos la siguiente condición adicional: Si el trabajo i
antecede al trabajo j, entonces el trabajo k debe anteceder al trabajo m. Matemáticamente, la
condición si - entonces (if-then) se escribe como 

si xi + pi … xj, entonces xk + pk … xm

y12, y13, y23 = (0, 1)

x1, x2, x3, s1
-, s1

+, s2
-, s2

+, s3
-, s3

+ Ú 0

 x3 + s3
- - s3

+
    = 35 - 15

 x2 + s2
- - s2

+
 = 22 - 20

 x1 + s1
- - s1

+
 = 25 - 5

 - x2 + x3 - My23  Ú 20 - M

 x2 - x3 + My23  Ú 15

 -x1 + x3 - My13  Ú 5 - M

 x1 - x3 + My13  Ú 15

 -x1 + x2 - My12  Ú 5 - M

 x1 - x2 + My12  Ú 20

Minimizar z = 19s1
+ + 12s2

+ + 34s3
+

sj
+.

sj
+ 7 0.sj

- 7 0,

xj + pj + sj
- - sj

+ = dj

sj
+sj

-
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Dado que e (. 0) es infinitesimalmente pequeño y M es suficientemente grande, esta condición
equivale a las dos restricciones simultáneas siguientes:

Si xi 1 pi # xj, entonces xj 2 (xi 1 pi) $ 0, la que requiere w5 0, y la segunda restricción se vuel-
ve xk 1 pk # xm, como se deseaba. Si no, w puede asumir el valor de 0 o 1, en cuyo caso la se-
gunda restricción puede o no ser satisfecha, dependiendo de las demás condiciones del modelo.

CONJUNTO DE PROBLEMAS 9.1D

*1. Un tablero de juego se compone de 3 3 3 casillas. Se requiere que coloque un número
entre 1 y 9 en cada casilla de modo que la suma de los números en cada fila, cada colum-
na y cada diagonal sea igual a 15. Además, los números en todas las casillas deben ser dis-
tintos. Use un PLE para determinar la asignación de números a las casillas.

2. Se utiliza una máquina para producir dos productos intercambiables. La capacidad diaria
de la máquina permite producir cuando mucho 20 unidades del producto 1 y 10 unidades
del producto 2. Como alternativa, se puede ajustar la máquina para que produzca diaria-
mente a lo sumo 12 unidades del producto 1 y 25 unidades del producto 2. El análisis del
mercado muestra que la demanda diaria máxima de los dos productos combinados es de
35 unidades. Dado que las utilidades unitarias de los productos respectivos son de $10 y
$12, ¿cuál de los dos ajustes de la máquina debe seleccionarse? Formule el problema
como un PLE para encontrar la solución óptima (Nota: Este problema bidimensional
puede resolverse inspeccionando el espacio de soluciones gráficas. Éste no es el caso para
problemas de n dimensiones.)

*3. Gapco fabrica tres productos cuyos requerimientos diarios de mano de obra y materia
prima se muestran en la siguiente tabla.

w = (0, 1)

(xk + pk) - xm … Mw

xj - (xi + pi) … M(1 - w) - e

Producto
Mano de obra diaria
requerida (h/unidad)

Materia prima diaria
requerida (lb/unidad)

1 3 4
2 4 3
3 5 6

Las utilidades por unidad de los tres productos son de $25, $30 y $22, respectivamen-
te. Gapco tiene dos opciones para situar su planta. Los dos sitios difieren sobre todo en la
disponibilidad de mano de obra y materia prima, como se muestra en la siguiente tabla:

Sitio Mano de obra diaria disponible (h) Materia prima diaria disponible (lb) 

1 100 100
2 90 120

Formule el problema como un PLE, y determine la ubicación óptima de la planta.
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Si el trabajo 4 precede al trabajo 3, entonces el trabajo 9 debe preceder al trabajo 7. El
objetivo es procesar los 10 trabajos en el tiempo más corto posible. Formule el modelo
como un PLE, y determine la solución óptima modificando el archivo amplEx9.1-4.txt.

5. En el problema 4, suponga que el trabajo 4 no puede ser procesado antes que el trabajo 3
se haya completado. Además, los ajustes de la máquina para los trabajos 7 y 8 requieren
que se procesen de inmediato uno después del otro (es decir, el trabajo 7 sucede o prece-
de inmediatamente al 8). El objetivo de Jobco es procesar los diez trabajos con la suma
mínima de violaciones del tiempo límite. Formule el modelo matemáticamente, y deter-
mine la solución óptima.

6. Jobco posee una planta donde se fabrican tres productos. Los requerimientos de mano de
obra y materia prima para los tres productos se muestran en la siguiente tabla.

La utilidad por unidad de los tres productos es de $25, $30 y $45, respectivamente.
Si se va a fabricar el total de las unidades requeridas diarias del producto 3, entonces su
nivel de producción debe ser de al menos 5 unidades diarias. Formule el problema como
un PLE combinado, y halle la combinación óptima.

7. UPak es una subsidiaria de la compañía de transporte LTL. Los clientes llevan sus envíos
a la terminal de UPak para que los carguen en el camión de remolque y pueden rentar
espacio hasta de 36 pies. El cliente paga por el espacio lineal exacto (en incrementos de 1
pie) que ocupa el envío. No se permiten envíos parciales, en el sentido de que un envío
que no requiere más de 36 pies deba ser cargado en un camión de remolque. Para separar
los envíos se instala una barrera móvil, llamada mampara. La tarifa por pie que UPak
cobra depende del destino del envío. La siguiente tabla proporciona las órdenes pendien-
tes que UPak necesita procesar.

Trabajo Tiempo de procesamiento (días) Tiempo límite (días)

1 10 20
2 3 98
3 13 100
4 15 34
5 9 50
6 22 44
7 17 32
8 30 60
9 12 80

10 16 150

4. Jobco Shop tiene 10 trabajos pendientes para ser procesados con una sola máquina. La
siguiente tabla proporciona los tiempos de procesamiento y las fechas límite. Todos los
tiempos están en días, y el tiempo límite se mide a partir del tiempo 0:

Producto
Mano de obra diaria

requerida (h/unidad))
Materia prima diaria
requerida (lb/unidad)

1 3 4
2 4 3
3 5 6

Disponibilidad diaria 100 100

Orden 1 2 3 4 5 6 7 8 9 10

Tamaño (pies) 5 11 22 15 7 9 18 14 10 12
Tarifa ($) 120 93 70 85 125 104 98 130 140 65
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Actualmente la terminal tiene dos camiones de remolque listos para ser cargados.
Determine los órdenes de prioridad que maximizarán el ingreso total de los dos camio-
nes de remolque. (Sugerencia: Una formulación que utiliza xij binarias para representar la
carga i en el camión j es sencilla. Sin embargo, se le reta a que defina xij como pies asigna-
dos a la carga i en el camión j. Luego utilice la restricción si - entonces (if-then), para im-
pedir el envío de cargas parciales.

8. Problema de N reinas. En el juego de ajedrez, las reinas atacan moviéndose horizontal,
vertical y diagonalmente. Se desea colocar N reinas en un tablero (N 3 N) de modo que
ninguna reina pueda “tomar” a cualquier otra reina. Formule el problema como un pro-
grama entero, y resuélvalo con AMPL (o cualquier otro software) con N 5 4, 5, 6 y 8
(Sugerencia: Formulación 1: Sea xij 5 1 si se coloca una reina en la casilla (i, j), y cero si
no es así. Las restricciones del problema son del tipo “si xij . 0, entonces ninguna otra
reina puede colocarse en la fila i, columna j o diagonal(es) que partan de la casilla (i, j)”.
Formulación 2: Sea Ri 5 fila asociada con la columna i en la que se coloca la reina i en el
tablero. Las restricciones impiden que se coloquen reinas en las diagonales.)

9. Un proceso de manufactura utiliza cuatro materias primas intercambiables. Las propie-
dades de las materias primas difieren, lo que conduce a diferentes unidades producidas
por unidad de materia prima. También difieren en costo y tamaños de lote. La siguiente
tabla resume los datos de la situación:

Una materia prima, si se utiliza, debe estar sólo en los lotes indicados (por ejemplo, la
materia prima 1 puede adquirirse o en lotes de 100 unidades o nada). Las unidades pro-
ducidas deben ser por lo menos 950. Formule un modelo para determinar las materias
primas que deben usarse a un costo mínimo.

10. Demuestre cómo pueden representarse los espacios de soluciones sombreados no convexos
que se muestran en la figura 9.3 por un conjunto de restricciones simultáneas. Encuentre la
solución óptima que maximiza z 5 2x1 1 3x2 sujeta al espacio de soluciones dado en (a).

11. Dadas las variables binarias x1, x2, x3, x4 y x5, si x1 5 1 y x2 5 0, entonces x3 5 1, x4 5 1 y
x5 5 1. Formule la condición como restricciones simultáneas.

Materia
prima 1

Materia
prima 2

Materia
prima 3

Materia
prima 4

Materia
prima 5

Tamaño de lote (unidades) 100 160 80 310 50
Unidades de producto por

unidad de materia prima 3 2 5 1 4
Costo por unidad de 

materia prima ($)
30 80 200 10 120

FIGURA 9.3

Espacios de soluciones para el problema 10, conjunto 9.1d

x1 x1 x1

x2 x2 x2

0 2

(a)

1 3

3

2

1

0 2

(b)

1 3

3

2

1

0 2

(c)

1 3

3

2

1
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*12. Suponga que el producto zw aparece en una restricción, donde z y w son variables bina-
rias. Demuestre cómo puede linealizarse este término.

13. Considere la variable binaria yi, i 5 1, 2,…,n. Exprese la siguiente condición como un
conjunto de restricciones de PLE simultáneas: Si i 5 k, entonces yk 5 1, y todas las varia-
bles restantes son iguales a cero.

14. Suponga que se requiere que cualquier k de entre las siguientes m restricciones debe
estar activa:

Muestre cómo puede representarse esta condición.
15. En la siguiente restricción, el lado derecho puede asumir uno de los valores b1, b2,…, y bm.

Muestre cómo puede representarse esta condición.
16. Considere la siguiente función objetivo.

Aplique variables binarias auxiliares para convertir la función objetivo z en un formato
analíticamente manejable que elimine la función principal.

17. Dadas las variables binarias y1, y2,..., yn, de modo que si x1 5 1, entonces xi2l o xi11 deben
ser iguales a 1, i 5 1, 2,…,n, donde y0 y yn11 definen la variable yn.

9.2 ALGORITMOS DE PROGRAMACIÓN ENTERA

Los algoritmos de PLE se basan en la explotación del tremendo éxito computacional
de la PL. La estrategia de estos algoritmos implica tres pasos.

Paso 1. Desahogue el espacio de soluciones del PLE al eliminar la restricción entera en
todas las variables enteras y reemplazar cualquier variable binaria y con el inter-
valo continuo 0 # y # 1. El resultado del desahogo es una programación lineal.

Paso 2. Resuelva la PL, e identifique su óptimo continuo.

Paso 3. Comenzando desde el punto óptimo continuo, agregue restricciones especiales
que modifiquen iterativamente el espacio de soluciones de PL de modo que fi-
nalmente dé un punto extremo óptimo que satisfaga los requerimientos enteros.

Se desarrollaron dos métodos generales para generar las restricciones especiales
en el paso 3.

1. Método de ramificación y acotación (B&B)
2. Método de plano de corte

Ninguno de los dos métodos es computacionalmente efectivo de forma consistente. Sin
embargo, la experiencia muestra que el método B&B (de ramificación y acotamiento)
es mucho más exitoso que el método del plano de corte.

Minimizar z =  min{2x1 + x2, 4x1 - 3x2|x1 Ú 1, x2 Ú 0}

g (x1, x2,  . . . ,  xn … (b1,  b2 , . . . ,  o  bm)

gi (x1, x2, . . . , xn) … bi,  i = 1, 2, . . . , m
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9.2.1 Algoritmo de ramificación y acotamiento4

El primer algoritmo de ramificación y acotamiento fue desarrollado en 1960 por A.
Land y G. Doig para el problema general de PLE combinada o pura. Más adelante, en
1965, E. Balas desarrolló el algoritmo aditivo para resolver PLEs con variables binarias
puras (cero o uno)5. Los cálculos del algoritmo aditivo eran tan simples (principalmente
sumas y restas) que en un inicio fue aclamado como un posible gran avance en la solu-
ción de la PLE. Por desgracia, no produjo las ventajas computacionales deseadas.
Además, se demostró que el algoritmo, que inicialmente no parecía estar relacionado
con la técnica de ramificación y acotamiento, era simplemente un caso especial del al-
goritmo general de Land y Doig.

Esta sección presenta sólo el algoritmo de ramificación y acotamiento de Land-
Doig. Se utiliza un ejemplo numérico para proporcionar los detalles.

Ejemplo 9.2-1

Sujeto a

x1, x2 enteras no negativas

Los puntos de cuadrícula en la figura 9.4 definen el espacio de soluciones de PLE. El pro-
blema PL1 continuo asociado en el nodo 1 (área sombreada) se define a partir de la PLE elimi-
nando las restricciones enteras. La solución óptima de PL1 es x1 5 3.75, x2 5 1.25 y z 5 23.75.

Como la solución óptima de PL1 no satisface las restricciones enteras, el espacio de soluciones
se subdivide de una manera sistemática que finalmente localiza el óptimo de la PLE. En primer
lugar, el algoritmo de ramificación y acotamiento selecciona una variable entera cuyo valor óp-
timo en PL1 no es entero. En este ejemplo, tanto x1 como x2 califican. Seleccionando x1(5 3.75)
arbitrariamente, la región 3 , x1 , 4 del espacio de soluciones de PL1 contiene valores no ente-
ros de x1, y por lo tanto puede ser eliminada. Esto equivale a reemplazar el PL1 original con dos
problemas de PL nuevos.

Espacio de PL2 5 Espacio de PL1 1 (x1 # 3)

Espacio de PL3 5 Espacio de PL1 1 (x1 # 4)

La figura 9.5 ilustra los espacios de PL2 y PL3. Los dos espacios combinados contienen los
mismos puntos enteros factibles que la PLE original, es decir, que no se pierde información
cuando PL1 se reemplaza con PL2 y PL3.

 10x1 + 6x2 … 45

 x1 +  x2 …  5

Maximizar z = 5x1 + 4x2

4El módulo de programación entera TORA está equipado con una función que genera interactivamente el
árbol de ramificación y acotamiento. Para utilizarla, seleccione en la pantalla de salida
del módulo de programación entera. La pantalla resultante proporciona toda la información necesaria para
crear un árbol de ramificación y acortamiento.
5Una PLE general puede expresarse en función de las variables binarias (021) como sigue. Dada una varia-
ble entera x con una cota superior finita u (es decir 0 # x # u), entonces

Las variables y0, y1,..., y yk son binarias, y el índice k es el entero más pequeño que satisface 2k21 2 1 $ u.

x = 20y0 + 21y1 + 22y2 + Á + 2kyk

User-guided B&B
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Si de una forma inteligente imponemos restricciones secuenciales que excluyan las regiones
libres de enteros (por ejemplo 3 , x1 , 4 en PL1), estaremos reduciendo el espacio de soluciones
continuo de PL1 a varios subproblemas de programación lineal cuyos puntos extremos óptimos
satisfacen las restricciones enteras. El mejor de estos subproblemas es la solución óptima de PLE.

Las nuevas restricciones, x1 # 3 y x1 # 4, son mutuamente excluyentes, de modo que el PL2
y el PL3 en los nodos 2 y 3 deben tratarse como programaciones lineales distintas, como se mues-
tra en la figura 9.6. Esta dicotomización da lugar al concepto de ramificación en el algoritmo de
ramificación y acotamiento. Es este caso, x1 se llama variable de ramificación.

FIGURA 9.4

Espacio de soluciones de la PLE (puntos de
cuadrícula) y del PL1 (área sombreada) del
ejemplo 9.2-1 (PL1) x1

x2

0 21 3 54 6

3

4

5

6

7

8

Óptimo (continuo):
x1 � 3.75, x2 � 1.25
z � 23.75

Puntos enteros factibles

2
PL1

1

FIGURA 9.5

Espacios de soluciones de PL2 y PL3 para el pro-
blema 9.2-1

x1

x2

0 21 3 54

3

4

5

6

PL3
PL2

2

1

x1 � 3 x1 � 4
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La PLE óptima queda o en PL2 o en PL3. Por consiguiente, ambos subproblemas deben ser
examinados. Arbitrariamente examinamos primero PL2 (asociada con x1 # 3):

Sujeto a

La solución de PL2 (la cual puede obtenerse de forma eficiente con el algoritmo de acota-
miento superior de la sección 7.3) es x1 5 3, x2 5 2 y z 5 23. La solución de PL2 satisface los re-
querimientos enteros para x1 y x2. De ahí que se dice que PL2 debe ser sondeado a fondo, lo que
significa que ya no puede dar una solución de programación lineal entera mejor y ya no se re-
quiere ninguna otra ramificación que provenga del nodo 2.

En este momento no podemos decir que la solución entera obtenida con PL2 sea óptima
para el problema original, porque PL3 puede producir una mejor solución entera. Todo lo que
podemos decir es que z 5 23 es una cota inferior del valor objetivo óptimo (máximo) de la PLE
original. Esto significa que cualquier subproblema no examinado que no puede producir un
mejor valor objetivo que la cota inferior, debe ser desechado como no promisorio. Si un subpro-
blema no examinado produce una mejor solución entera, entonces el límite inferior debe ser ac-
tualizado como corresponde.

Dada la cota inferior z 5 23, examinamos PL3 (el único subproblema restante no examinado
en este momento). Debido al óptimo z 5 23.75 en el PL1 y a que sucede que todos los coeficientes

de la función objetivo son enteros, es imposible que PL3 pueda producir una mejor solución ente-
ra (con z . 23). En consecuencia, desechamos PL3 y concluimos que fue sondeado a fondo.

El algoritmo de ramificación y acotamiento ya está completo porque PL2 y PL3 se exami-
naron y sondearon a fondo, el primero para producir una solución entera y el segundo porque no
produjo una mejor solución entera. Por lo tanto concluimos que la solución de programación li-
neal óptima es la asociada con la cota inferior, o sea, x1 = 3, x2 5 2 y z 5 23.

Considerando el algoritmo resultan dos preguntas:

1. En PL1, ¿podríamos haber seleccionado x2 como la variable de ramificación en lugar de x1?

2. Cuando seleccionamos el siguiente subproblema a ser examinado, ¿podríamos haber solu-
cionado primero PL3 en lugar de PL2?

La respuesta a ambas preguntas es “sí” pero los cálculos subsiguientes pueden diferir dramática-
mente. La figura 9.7 demuestra este punto. Supongamos que examinamos primero PL3 (en lugar
de PL2 como lo hicimos en la figura 9.6). La solución es x1 5 4, x2 5 .83 y z 5 23.33 (¡comprué-
belo!). Como x2 (5.83) no es entera, PL3 se examina más a fondo creando los subproblemas PL4
y PL5 por medio de las ramas x2 # 0 y x2 $ 1, respectivamente. Esto significa que

Espacio de PL4 5 Espacio de PL3 1 (x # 0)

5 Espacio PL1   1 (x1 $ 4) 1 (x2 # 0) 

Espacio de PL5 5 Espacio de PL3 1 (x2 $ 1)

5 Espacio de PL1 1 (x1 $ 4) 1 (x2 $ 1) 

Ahora tenemos tres subproblemas “desconectados” que se deben examinar: PL2, PL4 y
PL5. Supongamos que arbitrariamente examinamos primero PL5. No tiene ninguna solución

x1,  x2 Ú 0

x1  …  3

 10x1 + 6x2 … 45

x1 + x2 …  5

Maximizar z = 5x1 + 4x2
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FIGURA 9.6

Utilización de la variable de ramificación x1 para crear PL2 y PL3 para el ejemplo 9.2-1 

PL2
x1 � 3, x2 � 2, z � 23
Cota inferior (óptima)

2

PL3
x1 � 4, x2 � .83, z � 23.33

3

PL1
x1 � 3.75, x2 � 1.25, z � 23.75

1

x1 � 4x1 � 3

factible, y por consiguiente se sondeó a fondo.A continuación, examinamos PL4. La solución óp-
tima es x1 5 4.5, x25 0 y z 5 22.5. El valor no entero de x1 conduce a las ramificaciones x1 # 4 y
x1 $ 5 y la creación de los subproblemas PL6 y PL7 a partir del PL4.

Ahora, los subproblemas PL2, PL6 y PL7 permanecen sin ser examinados. Si seleccionamos
PL7 para examinarlo, el problema está sondeado a fondo porque no tiene ninguna solución fac-
tible. A continuación, seleccionamos PL6. El problema da por resultado la primera solución en-
tera (x1 5 4, x2 5 0, z 5 20), y, por lo tanto, proporciona la primera cota inferior (520) del valor
objetivo óptimo de la PLE. Sólo falta examinar el subproblema PL2, y da una mejor solución en-
tera (x1 5 3, x2 5 2, z 5 23). De este modo, la cota inferior se actualiza de z 5 20 a z 5 23.A estas
alturas, todos los subproblemas han sido sondeados (examinados) a fondo, y la solución óptima
es la asociada con la cota inferior más actualizada, es decir, x1 5 3, x2 5 2 y z 5 23.

La secuencia de solución para obtener la solución en la figura 9.7 (PL1 S PL3 S PL5 S
PL4 S PL7 S PL6 S PL2) es un escenario del peor caso que, sin embargo, muy bien puede ocu-
rrir en la práctica. En la figura 9.6, tuvimos suerte de “tropezarnos” con una buena cota inferior
en el primer subproblema (PL2), y que a su vez nos permitiera examinar a fondo PL3 sin necesi-
dad de ningún examen adicional. En esencia, completamos el procedimiento resolviendo un
total de dos subproblemas PL. En la figura 9.7 la historia es diferente, resolvimos siete subpro-
blemas PL para completar el algoritmo de ramificación y acotamiento.

Comentarios. El ejemplo apunta hacia una debilidad importante en el algoritmo de ramificación
y acotamiento. Dado que tenemos múltiples opciones, ¿cómo seleccionamos el siguiente subpro-
blema y su variable de ramificación? Aun cuando hay métodos heurísticos para mejorar la habili-
dad del algoritmo de ramificación y acotamiento para “prever” cual rama puede conducir a una so-
lución de PLE mejorada (vea Taha, 1975, págs. 154-171), no existe una teoría sólida con resultados
consistentes, y aquí yace la dificultad que afecta los cálculos en la PLE. El problema 7, conjunto
9.2a, demuestra este extraño comportamiento del algoritmo de ramificación y acotamiento al in-
vestigar más de 25,000 PLs, antes de que se verifique la optimalidad, aun cuando el problema sea
bastante pequeño (16 variables binarias y una restricción). Desafortunadamente, hasta la fecha, y
después de décadas de investigación junto con tremendos avances en las computadoras, los códi-
gos de PLE no son totalmente confiables. Sin embargo, los solucionadores comerciales disponibles
(por ejemplo CPLEX y XPESS) son excelentes para resolver problemas muy grandes.

Espacio del PL7  =  Espacio del PL1 +  (x1 Ú 4) + (x2 … 0) + (x1 Ú 5)

Espacio del PL6  =  Espacio del PL1 +  (x1 Ú 4) + (x2 … 0) + (x1 … 4)
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Momento de AMPL

AMPL puede usarse interactivamente para generar el árbol de búsqueda de ramificación y aco-
tamiento. La siguiente tabla muestra la secuencia de comandos necesaria para generar el árbol
del ejemplo 9.2-1 (figura 9.7) comenzando con PL1 continuo. El modelo AMPL (archivo
amplEx9.2-1.txt) se compone de dos variables x1 y x2 y dos restricciones c0 y c1. Verá que es
útil sincronizar los comandos AMPL con las ramas que aparecen en la figura 9.7.

FIGURA 9.7

Árbol de ramificación y acotamiento alternativo para el problema 9.2-1

PL6
x1 � 4, x2 � 0, z � 20

Cota inferior

6 5

PL4
x1 � 4.5, x2 � 0, z � 22.5

4

PL3
x1 � 4, x2 � 0.83, z � 23.33

2

PL2
x1 � 3, x2 � 2, z � 23
Cota inferior (óptima)

7

3

PL5
Ninguna solución factible

PL7
Ninguna solución factible

PL1
x1 � 3.75, x2 � 1.25, z � 23.75

1

x1 � 4x1 � 3

x2 � 1x2 � 0

x1 � 5x1 � 4

Comando AMPL Resultado

ampl: model amplEx9.2-1.txt;solve;display x1,x2; PL1 ( , )x2 = 1.25x1 = 3.75
ampl: c2:x1>=4;solve;display x1,x2; PL3 ( , )x2 = .83x1 = 4
ampl: c3:x2>=1;solve;display x1,x2; PL5 (ninguna solución)
ampl: drop c3;c4:x2<=0;solve;display x1,x2; PL4 ( , )x2 = 0x1 = 4.5
ampl: c5:x1>=5;solve;display x1,x2; PL7 (ninguna solución)
ampl: drop c5;c6:x1<=4;solve;display x1,x2; PL6 ( , )x2 = 0x1 = 4
ampl: drop c2;drop c4;drop c6;c7:x1<=3; solve; display x1,x2; PL2 ( , )x2 = 2x1 = 3



9.2 Algoritmos de programación entera 341

Momento de Solver
La solución de los diferentes subproblemas puede obtenerse utilizando Solver por medio de las
opciones add/change/delete en el cuadro de diálogo Solver Parameters.

Resumen del algoritmo de ramificación y acotamiento. Considere un problema de
maximización. Establezca una cota inferior inicial z 5 2q para el valor objetivo
óptimo de la PLE y establezca i 5 0.6

Paso 1. Examen a fondo/acotamiento). Seleccione PLi, el siguiente subproblema a ser
examinado. Resuelva PLi, y trate de examinarlo a fondo utilizando una de
estas tres condiciones.

(a) El valor z óptimo de PLi no puede dar un valor objetivo mejor que la
cota inferior actual.

(b) PLi da por resultado una solución entera factible mejor que la cota in-
ferior actual.

(c) PLi no tiene ninguna solución factible.
Surgirán dos casos.
(a) Si PLi se examina a fondo y se determina una solución mejor, actualice

la cota inferior. Si todos los subproblemas han sido examinados a
fondo, deténgase; la cota inferior da la solución óptima (si no existe una
cota inferior finita, el problema no tiene ninguna solución factible). De
otro modo, establezca i 5 i 1 1, y repita el paso 1.

(b) Si PLi no se ha examinado a fondo, proceda al paso 2 para ramificación.
Paso 2. (Ramificación). Seleccione una de las variables enteras xj, cuyo valor óptimo

en la solución de PLi no es entero. Cree los dos subproblemas de PL co-
rrespondientes a

Establezca i 5 i 1 1, y proceda el paso 1.
El algoritmo de ramificación y acotamiento puede ampliarse a problemas combi-

nados (en los que sólo algunas de las variables son enteras). Nunca se selecciona una
variable continua como variable de ramificación. Un subproblema factible proporcio-
na una nueva cota del valor objetivo si los valores de las variables discretas son enteros
con un valor objetivo mejorado.

CONJUNTO DE PROBLEMAS 9.2a7

1. Resuelva la PLE del ejemplo 9.2-1 por medio del algoritmo de ramificación y acotamien-
to con x2 como variable de ramificación. Inicie el procedimiento resolviendo el subpro-
blema asociado con .

2. Desarrolle el árbol de ramificación y acotamiento para cada uno de siguientes proble-
mas. Por comodidad, seleccione siempre x1 como la variable de ramificación en el nodo 0.

*(a)
Sujeto a

x1,  x2 Ú 0  y entera

4x1 + 2x2 … 9

2x1 + 5x2 … 9

Maximizar z = 3x1 +  2x2

x2 … [x2
*]

xj … [xj
* ]  y xj Ú [xj

* ] + 1

xj
*

6Para problemas de minimización, reemplace la cota inferior con una cota superior inicial z = 2q.
7En este conjunto, los subproblemas pueden resolverse interactivamente con AMPL o Solver o por medio
de la opción MODIFY de TORA para las cotas superior e inferior.



342 Capítulo 9 Programación lineal entera

(b)
Sujeto a

(c)
Sujeto a

(d)
Sujeto a

(e)
Sujeto a

*3. Repita el problema 2, suponiendo que x1 es continua.
4. Demuestre gráficamente que la siguiente PLE no tiene una solución factible, y luego ve-

rifique el resultado utilizando el algoritmo de ramificación y acotamiento.

Sujeto a

5. Resuelva el siguiente problema por medio del algoritmo de ramificación y acotamiento.

Sujeto a

x1, x2, x3, x4, x5 = (0, 1)

15x1 + 12x2 + 7x3 + 4x4 + x5 … 37

Maximizar z = 18x1 + 14x2 + 8x3 + 4x4

x1, x2 Ú 0  y entera

10x1 +  5x2 Ú 1

10x1 + 10x2 … 9

Maximizar z = 2x1 +  x2

x1,  x2 Ú 0  y entera

5x1 + 9x2 … 41

2x1 +  x2 … 13

Maximizar z = 5x1 +  7x2

x1, x2 Ú 0  y entera

2x1 + 3x2 Ú 7

3x1 + 2x2 Ú 5

Minimizar z = 5x1 +  4x2

x1,  x2 Ú 0  y entera

6x1 + 5x2 … 27

2x1 + 5x2 … 16

Maximizar z = x1 +  x2

x1,  x2 Ú 0  y entera

4x1 + 9x2 … 36

5x1 + 7x2 … 35

Maximizar z = 2x1 +  3x2
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6. Convierta el siguiente problema en una PLE combinada, y halle la solución óptima.

Sujeto a

7. Experimento con TORA/Solver/AMPL. El siguiente problema está diseñado para demos-
trar el extraño comportamiento del algoritmo de ramificación y acotamiento, incluso en
problemas pequeños. En particular, observe cuántos problemas se examinan antes de que
se halle la solución óptima y cuánto se requiere para verificar la optimalidad.

Sujeto a

(a) Use la opción automática de TORA para demostrar que aunque la solución óptima
se determina después de sólo 9 subproblemas, se examinan más de 25,000 subproble-
mas antes de que se confirme la optimalidad.

(b) Demuestre que Solver exhibe un comportamiento similar al de TORA [Nota: En
Solver puede vigilar el cambio del número de ramas generadas (subproblemas) al
pie de la hoja de cálculo.]

(c) Resuelva los problemas con AMPL, y demuestre que la solución se obtiene al ins-
tante con 0 iteraciones simplex MIP y 0 nodos de ramificación y acotamiento. La
razón de este desempeño superior sólo puede atribuirse a los pasos de presolución
realizados por AMPL y/o el solucionador CPLEX.

8. Experimento con TORA. Considere la siguiente PLE:

Sujeto a

Use la opción de ramificación y acotamiento guiada por el usuario de TORA para gene-
rar el árbol de búsqueda y sin activar la cota del valor objetivo. ¿Cuál es el impacto de ac-
tivar la cota del valor objetivo en el número de subproblemas generados? Por consisten-
cia, seleccione siempre la variable de ramificación como la del índice menor e investigue
todos los subproblemas en una fila existente de izquierda a derecha antes de proseguir
con la siguiente fila.

*9. Experimento con TORA. Reconsidere el problema 8 anterior. Conviértalo en una PLE
0-1 equivalente, y luego resuélvalo con la opción automática de TORA. Compare el ta-
maño de los árboles de búsqueda en los dos problemas.

x1, x2, x3 enteras no negativas

15x1 + 12x2 +  7x3 … 43

Maximizar z = 18x1 + 14x2 + 8x3

Todas los variables son (0, 1)

2(x1 + x2 + . . . + x15) + y = 15 

Minimizar y

x1, x2, x3 Ú 0

 2x1 +  x2 +  x3 …  10

 | - x1 + 10x2 - 3x3 | Ú 15

Maximizar z = x1 + 2x2 + 5x3
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10. Experimento con AMPL. En la siguiente PLE 0-1, use AMPL interactivamente para ge-
nerar el árbol de búsqueda asociado. En cada caso, demuestre cómo se utiliza la cota z
para examinar a fondo subproblemas.

Sujeto a

9.2.2 Algoritmo de plano de corte 

Como en el algoritmo de ramificación y acotamiento, el algoritmo de plano de corte
también se inicia en la solución óptima continua. Se agregan restricciones especiales
(llamadas cortes) al espacio de soluciones para que produzcan un punto extremo ópti-
mo entero. En el ejemplo 9.2-2, primero demostramos gráficamente cómo se utilizan
los cortes para producir una solución entera y después cómo se implementa la idea al-
gebraicamente.

Ejemplo 9.2-2

Considere la siguiente PLE.

Sujeto a

La figura 9.8 presenta un ejemplo de tales cortes. Inicialmente, comenzamos con la solución
óptima continua de la PL Luego agregamos el corte 1, el cual pro-
duce la solución óptima (continua) de la PL Agregamos posteriormen-
te el corte II, el cual (junto con el corte I y las restricciones originales) produce la solución ópti-
ma entera de la PL z 5 58, x1 5 4, x3 5 3.

z = 62, x1 = 4 47 , x2 = 3.
z = 66 12 , x1 = 4 12 , x2 = 3 12.

x1, x2 Ú 0  y entera

 7x1 + x2 … 35

 -x1 + 3x2 … 6

Maximizar z = 7x1 + 10x2

x1, x2, x3, x4, x5 = (0, 1)

 11x1 - 6x2 + 3x4 - 3x5 Ú 3

 7x1 + 3x3 - 4x4 + 3x5 … 8

 x1 + x2 + x3 + 2x4 + x5 … 4

Maximizar z = 3x1 + 2x2 - 5x3 - 2x4 + 3x5

FIGURA 9.8

Ilustración del uso de cortes en una PLE
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x1

x2

x1

x2
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Óptima: (4   , 3   )1
2

1
2

Óptima: (4   , 3)4
7

Corte I

Corte II4

3

2

1

0 1 2 3 4 5

Óptima: (4, 3)
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Los puntos agregados no eliminan ninguno de los puntos enteros factibles originales, pero
deben pasar al menos por un punto entero factible o no factible. Éstos son requerimientos bási-
cos de cualquier corte.

Es puramente accidental que un problema de 2 variables utilizara exactamente 2 cortes
para llegar a la solución entera óptima. En general, el número de cortes, aun cuando es finito, no
puede determinarse con base en el tamaño del problema, en el sentido que un problema pe-
queño puede requerir más cortes que uno grande.

A continuación, utilizamos el mismo ejemplo para demostrar cómo se construyen los cortes
e implementan algebraicamente. Dadas las holguras x3 y x4 para las restricciones 1 y 2, la tabla de
PL óptima se da como 

Básica x1 x2 x3 x4 Solución

z 0 0 63
22

31
22 66 12

x2 0 1 7
22

1
22 3 12

x1 1 0 - 1
22

3
22 4 12

La solución óptima continua es El corte se
desarrolla de acuerdo con la suposición de que todas las variables, incluidas las holguras, son en-
teras. Observe, además, que como todos los coeficientes objetivo originales son enteros en este
ejemplo, el valor de z también es entero.

La información en la tabla óptima puede escribirse explícitamente como 

(ecuación z)

(ecuación x2)

(ecuación x1)

Se puede utilizar una ecuación de restricción como fila origen para generar un corte, siempre
que su lado derecho sea fraccionario. Asimismo, la ecuación z puede utilizarse como fila origen
en este ejemplo porque sucede que z es entera. Demostraremos cómo se genera un corte con
cada una de estas filas origen, comenzando con la ecuación z.

Primero, factorizamos todos los coeficientes no enteros de la ecuación en un valor entero y
un componente fraccionario positivo. Por ejemplo,

La factorización de la ecuación z da por resultado

Si movemos todos los componentes enteros al lado izquierdo y todos los componentes fraccio-
narios al lado derecho, obtenemos

(1)

Como x3 y x4 son no negativas y todas las fracciones son positivas por construcción, el lado de-
recho debe satisfacer la siguiente desigualdad:

(2)- 19
22 x3 -  9

22 x4 +  12 …  12

z + 2x3 + 1x4 - 66 = - 19
22 x3 -  9

22 x4 +  12

z + A2 + 19
22 Bx3 + A1 + 9

22 Bx4 = A66 +  12 B
 -  73 = A-3 +  23 B 52 = A2 +  12 B

 x1 -  1
22 x3 +  3

22 x4 = 4 12

 x2 +  7
22 x3 +  1

22 x4 = 3 12

 z +  63
22 x3 +  31

22 x4 = 66 12

z = 66 12 , x1 = 4 12 , x2 = 3 12 , x3 = 0, x4 = 0.
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Ahora, como el lado izquierdo de la ecuación (1), z 1 2x3 1 1x4 2 66, es un valor entero por
construcción, el lado derecho, también debe ser entero. Se deduce entonces
que (2) puede ser reemplazada con una desigualdad:

Este resultado se justifica porque un valor entero menor que una fracción positiva necesaria-
mente debe ser # 0.

La última desigualdad es el corte deseado, y representa una condición necesaria (pero no
suficiente) para obtener una solución entera.También se conoce como corte fraccionario porque
todos sus coeficientes son fracciones.

Como x3 5 x4 5 0 en la tabla de PL continua óptima dada antes, la solución continua actual
viola el corte (porque da como resultado). Por lo tanto si agregamos este corte a la tabla
óptima, el punto extremo óptimo resultante mueve la solución hacia la satisfacción de las res-
tricciones enteras.

Antes de demostrar cómo se implementa un corte en la tabla óptima, demostraremos cómo
también se pueden construir los cortes a partir de las ecuaciones de restricción. Considere la fila x1:

Factorizando la ecuación obtenemos 

El corte asociado es

Asimismo, la ecuación x2

se factoriza como 

Por consiguiente, el corte asociado es

Cualquiera de los tres cortes antes dados puede usarse en la primera iteración del algoritmo
de plano de corte. No es necesario generar los tres cortes antes de seleccionar uno.

Seleccionando arbitrariamente el corte generado con la fila x2, podemos escribirlo en forma
de ecuación como 

Esta restricción se agrega a la tabla óptima de PL como sigue:

-  7
22 x3 -  1

22 x4 + s1 = -1
2 ,  s1 Ú 0         (Corte I)

-  7
22 x3 -  1

22 x4 +  12 … 0

x2 + A0 +  7
22 Bx3 + A0 +  1

22 Bx4 = 3 +  12  

x2 +  7
22 x3 +  1

22 x4 = 3 12

- 21
22 x2 -  3

22 x4 +  12 … 0

x1 + A-1 +  21
22 Bx3 + A0 +  3

22 Bx4 = A4 +  12B
x1 -  1

22 x3 +  3
22 x4 = 4 12  

1
2 … 0

-19
22 x3 -  9

22 x4 +  12 … 0

-  19
22  x3 -  19

22 x4 +  12 ,

Básica x1 x2 x3 x4 s1 Solución

z 0 0 63
22

31
22 0 66 12

x2 0 1 7
22

1
22 0 3 12

x1 1 0 - 1
22

3
22 0 4 12

s1 0 0 - 7
22 - 1

22 1 -1
2
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La tabla es óptima pero no factible. Aplicamos el método simplex dual (sección 4.4.1) para
recuperar la factiblidad, lo cual da por resultado

Básica x1 x2 x3 x4 s1 Solución

z 0 0 0 1 9 62

x2 0 1 0 0 1 3

x1 1 0 0 1
7 -1

7 4 47
x3 0 0 1 1

7 -22
7 1 47

La última solución sigue siendo no entera en x1 y x3, y arbitrariamente seleccionamos x1
como la siguiente fila origen, es decir,

El corte asociado es 

Agregando el corte II a la tabla óptima previa, obtenemos

- 17 x4 -  67 s1 + s2 = -4
7 ,  s2 Ú 0      (Corte II)

x1 + (0 +  17 )x4 + (-1 +  67 )s1 = 4 +  47  

Básica x1 x2 x3 x4 s1 s2 Solución

z 0 0 0 1 9 0 62

x2 0 1 0 0 1 0 3
x1 1 0 0 1

7 -1
7 0 4 47

x3 0 0 1 1
7 -22

7 0 1 47
s2 0 0 0 -1

7 -6
7 1 -4

7

El método simplex dual da la siguiente tabla:

Básica x1 x2 x3 x4 s1 s2 Solución

z 0 0 0 0 3 7 58

x2 0 1 0 0 1 0 3
x1 1 0 0 0 –1 1 4
x3 0 0 1 0 –4 1 1
x4 0 0 0 1 6 –7 4

La solución óptima (x1 5 4, x3 5 3, z 5 58) es totalmente entera. No es accidental que todos
los coeficientes de la última tabla sean también enteros, una consecuencia de utilizar el corte
fraccionario.

Comentarios. Es importante señalar que el corte fraccionario asume que todas las variables,
incluidas las de holgura y superávit son enteras. Esto significa que el corte tiene que ver sólo con
problemas enteros puros. La importancia de esta suposición se ilustra con un ejemplo.

Considere la restricción

x1,  x2 Ú 0 y entera

x1 +  13 x2 …  13
2
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Desde el punto de vista de resolver la PLE asociada, la restricción se trata como una ecua-
ción utilizando la holgura no negativa s1, es decir,

La aplicación del corte fraccionario asume que la restricción tiene una solución entera facti-
ble en x1, x2 y s1. Sin embargo, la ecuación dada tendrá una solución entera factible en x1 y x2 sólo

si s1 es no entera. Esto significa que el algoritmo de plano de corte concluirá, gracias a la aplica-
ciones del simplex dual, que el problema no tiene una solución factible (entera), aun cuando las
variables de interés, x1 y x2 pueden asumir valores enteros factibles.

Hay dos formas de remediar esta situación.

1. Multiplique la restricción por una constante apropiada para eliminar todas las fracciones.
Por ejemplo, multiplicando la restricción anterior por 6, obtenemos

Cualquier solución entera de x1 y x2 da automáticamente por resultado la holgura entera.
Sin embargo, en algunos casos este tipo de conversión puede producir coeficientes enteros
excesivamente grandes, y esto a su vez puede conducir a errores de redondeo de cálculo en
la computadora.

2. Use un corte especial llamado corte combinado, el cual permite que sólo un subconjunto
de variables asuma valores enteros, con todas las demás variables (incluidas las de holgu-
ra y superávit) permaneciendo continuas. Los detalles de este corte no se presentarán en
este capítulo (vea Taha, 1975, págs. 198-202).

CONJUNTO DE PROBLEMAS 9.2B

1. En el ejemplo 9.2-2, demuestre gráficamente si cada una de las restricciones siguientes
puede o no formar un corte legítimo:

*(a)
(b) 2
(c) 3
(d) 3

2. En el ejemplo 9.2-2, demuestre gráficamente cómo los dos siguientes cortes (legítimos)
pueden conducir a la solución entera óptima:

3. Exprese los cortes I y II del ejemplo 9.2-2 en función de x1 y x2, y demuestre que son los
que se utilizaron gráficamente en la figura 9.8.

4. En el ejemplo 9.2-2, derive el corte II desde la fila x3. Use el nuevo corte para completar
la solución del ejemplo.

 3x1 + x2 … 15      (Corte II)

 x1 + 2x2 … 10      (Corte I)

x1 + x2 … 15
x2 … 10
x1 + x2 … 10
x1 + 2x2 … 10

6x1 + 2x2 … 39

x1 +  13 x2 + s1 =  13
2
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5. Demuestre que, aun cuando el siguiente problema tiene una solución entera factible en
x1 y x2, el corte fraccionario no dará una solución factible a menos que se eliminen todas
las fracciones que hay en la restricción.

Sujeto a

6. Resuelva los siguientes problemas por medio del corte fraccionario, y compare la solu-
ción entera óptima verdadera con la solución obtenida redondeando la solución óptima
continua.
(a)

Sujeto a

(b)
Sujeto a
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10.1 INTRODUCCIÓN

La heurística está diseñada para encontrar buenas soluciones aproximadas de proble-
mas combinatorios difíciles que de lo contrario no pueden resolverse mediante los
algoritmos de optimización disponibles. Una heurística es una técnica de búsqueda di-
recta que utiliza reglas favorables prácticas para localizar soluciones mejoradas. La
ventaja de la heurística es que en general determina (buenas) soluciones con rapidez,
utilizando reglas de solución simples. La desventaja es que la calidad de la solución
(con respecto a la óptima) suele desconocerse.

Las primeras generaciones de heurística se basan en la regla de búsqueda codicio-
sa que dicta que se mejore el valor de la función objetivo con cada movimiento de bús-
queda. La búsqueda termina en un óptimo local donde ya no son posibles más mejoras.

En la década de 1980, una nueva generación de metaheurística buscó mejorar la
calidad de las soluciones heurísticas al permitir la búsqueda de una trampa de escape en
óptimos locales. La ventaja obtenida se logra a expensas de los cálculos incrementados.

CAPÍTULO 10

Programación heurística

Aplicación de la vida real. FedEx genera líneas de oferta mediante recocido
simulado

FedEx entrega millones de artículos alrededor del mundo diariamente utilizando una
flota de más de 500 aviones y más de 3000 pilotos. Las líneas de oferta (viajes redon-
dos), que se inician y terminan en uno de nueve domicilios de las tripulaciones (o cen-
tros de distribución), deben satisfacer numerosos reglamentos de la Federal Aviation
Administration y FedEx y, hasta donde es posible, las preferencias personales basadas
en la antigüedad de los pilotos. El objetivo principal es minimizar la cantidad requeri-
da de líneas de oferta (es decir, la dotación necesaria de personal). La complejidad de
las restricciones impide la implementación de un modelo de programación entera. En
su lugar, se utiliza una heurística de recocido simulado para resolver el problema.

Fuente: Camplell, K., B. Durfee, y G. Hines, “FedEx Bid Lines Using Simulated Annealing”,
Interfaces, vol. 27, núm. 2, 1997, págs. 1-16.
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La sección 10.2 se ocupa de la heurística codiciosa. La sección 10.3 presenta tres
metaheurísticas prominentes: tabú, recocido simulado y genética. La sección 10.4 apli-
ca la metaheurística al problema de programación entera general. El capítulo concluye
en la sección 10.5 con una breve exposición de la búsqueda basada en restricciones re-
lacionadas conocida como programación de restricción.

10.2 HEURÍSTICA CODICIOSA (BÚSQUEDA LOCAL)

Las ideas principales de la heurística codiciosa se explican por medio de un problema de
una sola variable. Defina el problema de optimización con espacio de soluciones S como 

El proceso iterativo de una heurística codiciosa se inicia en un punto factible (aleatorio) y
luego intenta moverse a un punto de mejor solución en las inmediaciones (vecindad) del
punto de solución actual. Específicamente, en la iteración k, dado el punto de solución xk,
la heurística examina todos los puntos factibles en las inmediaciones N(xk) en busca de
una mejor solución. La búsqueda finaliza cuando ya no son posibles más mejoras.

La definición de N(xk)es importante en el diseño de la heurística. Por ejemplo, para
x entera, N(xk) 5 [xk 2 1, xk 1 1] define la vecindad inmediata de xk. Alternativamente,
una vecindad expandida puede incluir puntos de solución cercanos adicionales. La pri-
mera definición implica menos cálculos de búsqueda local pero podría deteriorar la cali-
dad de la solución final. La segunda definición (vecindad expandida) requiere más cálcu-
los de búsqueda local, pero podría mejorar la calidad de la solución.

Las secciones 10.2.1 y 10.2.2 aplican la heurística codiciosa a variables únicas
discretas y continuas. La ampliación de la heurística a múltiples variables se analiza al
final de la sección 10.2.2.

10.2.1 Heurística de variable discreta

Esta sección presenta dos ejemplos que utilizan la heurística codiciosa para estimar el
óptimo de una función de una sola variable discreta. El primer ejemplo utiliza la vecin-
dad inmediata y el segundo expande el dominio para incluir más puntos de solución.

Ejemplo 10.2-1

Considere la función F(x) dada en la figura 10.1 y defina el problema de optimización como

La función tiene un mínimo local en x 5 3(B) y un mínimo global en x 5 7D).
La tabla 10.1 proporciona las iteraciones de la heurística mediante una vecindad inmediata,

, . El número aleatorio R 5 .1002 selecciona el punto de inicio x 5 1 de
entre todos los puntos factibles x 5 1, 2,…, 8. En la iteración 1, N(1) 5 {2} porque x 5 0 es no fac-
tible. La búsqueda termina en la iteración 3 porque F(x) . F(x* 5 3) para todas las x H N(3).
Esto significa que la búsqueda se detiene en el mínimo local x* 5 3 con F(x*) 5 50.

La tabla 10.1 muestra que la búsqueda codiciosa se detiene en un mínimo local (x 5 3 en la
figura 10.1). Podemos mejorar la calidad de la solución de dos maneras:

1. Repitiendo la heurística con puntos de inicio aleatorios.
2. Expandiendo el tamaño de la vecindad para llegar a más puntos de solución factible.

xk + 1}N(xk) = {xk - 1

Minimizar F(x), x� S = {1, 2, Á , 8}

Minimizar z = F(x), x P S



10.2 Heurística codiciosa (búsqueda local) 353

FIGURA 10.1

Función F(x), x H S {1, 2,…,8}, con mínimo
local en x 5 3 y mínimo global en x 5 7
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TABLA 10.1 Heurística codiciosa aplicada a F(x) en la figura 10.1. Comenzando en x0 5 1 con N(xk) 5 {xk 2 1, xk 1 1}

Iteración k xk N(xk) F(xk - 1) F(xk + 1) Acción

(Inicio) 0 1 Establecer , , y xk+ 1 = 1F(x*) = 90x* = 1
1 1 {2} 60 : Establecer , , xk+ 1 = 2F(x*) = 60x* = 2F(xk + 1) 6 F(x*)
2 2 {1, 3} 90 50 : Establecer , , xk+ 1 = 3F(x*) = 50x* = 3F(xk + 1) 6 F(x*)

(Termi- 3
nación

3 {2, 4} 60 80 y : Mínimo local alcanzado,
detenerse.

F(xk + 1) 7 F(x*)F(xk - 1)

Resultado de búsqueda: x* 5 3, F(x*) 5 50, ocurre en la iteración 2

La aplicación de la primera idea es directa y no necesita más explicación.
La búsqueda de vecindad expandida puede basarse en la evaluación de todos los puntos

cercanos, una estrategia que incrementa la carga computacional.Alternativamente, podemos de-
terminar el siguiente movimiento de búsqueda mediante la selección aleatoria de la vecindad.
Específicamente, en la iteración k, el siguiente movimiento, xk 1 1, se selecciona de N (xk) con
probabilidad de 1/m, donde m es el número de elementos en el conjunto de vecindades. El mues-
treo de la vecindad se repite, si es necesario, hasta que se determina una solución mejorada, o
hasta que un número especificado de iteraciones se ha alcanzado. La regla de selección aleatoria
describe lo que se conoce como heurística de caminata aleatoria.

Ejemplo 10.2-2 (Heurística de caminata aleatoria)

Este ejemplo se aplica una vez más a F(x) en la figura 10.1. Arbitrariamente definimos el con-
junto de vecindades expandidas N(xk) como {1, 2,…,xk 2 1, xk 1 1,…,8}. La búsqueda continúa
durante cinco iteraciones comenzando en x0 5 1. Indique [seleccionada de entre N(xk)] como
un posible siguiente movimiento. Se acepta como el nuevo movimiento de búsqueda sólo si me-
jora la solución. Si no lo hace, se intenta una nueva selección aleatoria de N(xk).

La tabla 10.2 detalla la aplicación de la heurística de caminata aleatoria. En contraste con la
heurística de vecindad inmediata del ejemplo 10.2-1, la heurística de caminata aleatoria produce
la solución x 5 7 y F(x) 5 40 en la iteración 4, la que por accidente resulta ser mejor que la ob-
tenida en el ejemplo 10.2-1.

xk
œ
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TABLA 10.2 Heurística de caminata aleatoria aplicada a F(x) en la figura 10.1. Comenzando en x0 5 1

Iteración k xk F(xk) N(xk) Rk xk
œ F(xk

œ ) Acción

(Inicio) 0 1 90 ,F(x*) = 90x* = 1
1 1 90 {2, 3, 4, 5, 6, 7, 8} .4128 4 80 xk+ 1 = 4F(x*) = 80,Establecer x* = 4,F(xk

œ ) 6 F(x*):
2 4 80 {1, 2, 3, 5, 6, 7, 8} .2039 2 60 : Establecer , , xk+ 1 = 2F(x*) = 60x* = 2F(xk

œ ) 6 F(x*)
3 2 60 {1, 3, 4, 5, 6, 7, 8} .0861 1 100 : Volver a muestrear desde N(xk)F(xk

œ ) 7 F(x*)
4 2 60 {1, 3, 4, 5, 6, 7, 8} .5839 6 40 : Establecer , , xk+ 1 = 6F(x*) = 40x* = 6F(xk

œ ) 6 F(x*)
(Termi- 5
nación)

6 40 {1, 2, 3, 4, 5, 7, 8} .5712 4 80 : Volver a muestrear desde N(xk) F(xk
œ ) 7 F(x*)

Mejor solución: x 5 6, F(x) 5 40, ocurre en la iteración 4

Observe el comportamiento de la heurística. En la iteración 3, el posible movimiento alea-
torio desde N(xk) 5 2) 5 {1, 3, 4, 5, 6, 7, 8} no mejora la solución. Por consiguiente, en la
iteración 4 se intenta otro movimiento aleatorio desde la misma vecindad. En esta ocasión el
movimiento produce la solución superior x* 5 6.

10.2.2 Heurística de variable continua

El problema de optimización se define como

La heurística de caminata aleatoria difiere de la del caso discreto (ejemplo 10.2-2) en
la definición de la vecindad (continua) y la selección del siguiente movimiento a partir
de la vecindad. El dominio L # x # U define la vecindad continua de xk en cualquier
iteración k (un subconjunto de este dominio también es aceptable).

El siguiente movimiento, xk + 1, se calcula como un desplazamiento aleatorio (posi-
tivo o negativo) por encima o por debajo de xk. Hay dos formas de lograr este resultado:

1. El desplazamiento se basa en una distribución uniforme en el intervalo
Dado que R es un número aleatorio (0,1), entonces 

2. El desplazamiento se basa en una distribución normal con una media de xk y des-
viación estándar (la estimación de la desviación estándar se basa en el su-
puesto de que U 2 L representa de forma aproximada la dispersión 6-sigma de la
distribución normal). Por lo tanto,

La desviación estándar N(0,1) se determina con tablas normales en el apéndice
A, o utilizando ExcelStatTables.xls. También puede utilizarse la función NORM-
SINV(R) de Excel.

xk+ 1 = xk + AU-L
6 B  N(0, 1)

U -  L
6

 = xk + (R - .5)(U - L)

 xk+ 1 = xk + A- A  U-L
2 B + R(U - L) BA -U - L

2 , U - L
2 B

Minimizar F(x), L … x … U

xk
œ = 1
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En las dos fórmulas dadas antes quizá sea necesario volver a calcular xk11 más
de una vez, utilizando la misma xk, hasta que xk11 quede dentro del intervalo factible
(L,U). Además, si F(xk11) no es una solución mejorada con respecto a F(x*), la selec-
ción aleatoria se repite durante una cantidad específica de iteraciones o hasta se logre
una mejora, lo que ocurra primero.

Ejemplo 10.2-3

Aplique la heurística de caminata aleatoria al problema 

Use x 5 .5 como punto de inicio.
Las tablas 10.3 y 10.4 proporcionan 5 iteraciones cada una utilizando muestreo uniforme y

normal. Un incremento en el número de iteraciones por lo general produce soluciones de mejor
calidad (con respecto a la óptima verdadera). Aunque el muestreo normal produce una solución
de mejor calidad en este ejemplo, en general el resultado puede no ser cierto.

Los dos procedimientos de muestreo pueden combinarse en una heurística híbrida.
Primero, implementamos la heurística de muestreo uniforme. Luego se utiliza la solución resul-
tante para iniciar la heurística de muestreo normal. La idea es que la heurística de muestreo nor-
mal pueda “afinar” la solución obtenida por la heurística de muestreo uniforme (vea más ade-
lante el momento de Excel), que se implementa utilizando Excel.

Minimizar F(x) = x5 - 10x4 + 35x3 - 50x2 + 24x, 0 … x … 4

TABLA 10.3 Minimización de F(x) 5 x5 2 10x4 1 35x3 2 50x2 1 24x, 0 # x # 4 aplicando la heurística de caminata
aleatoria uniforme con x0 5 .5 y xk

œ = xk + 4(R - .5)

Iteración xk F(xk) Rk xk
œ F(xk

œ ) Acción

(Inicio) 0 .5 3.281 Establecer , , xk+ 1 = .5F(x*) = 3.281x* = .5
1 .5 3.281 .4128 .151 2.602  xk+ 1 = .151 F(x*) = 2.602,F(xk

œ ) 6 F(x*): x* = .1512,
2 .15 2.602 .2039 1.033- Fuera de intervalo: Volver a muestrear usando xk+ 1 = xk
3 .15 2.602 .9124 1.801 .757- , , xk+ 1 = 1.801F(x*) = - .757F(xk

œ ) 6 F(x*): x* = 1.801
4 1.8 .757- .5712 2.086 .339 : Volver a muestrear usando xk+ 1 = xkF(xk

œ ) 7 F(x*)
(Termi- 5
nación)

1.8 .757- .8718 3.288
1.987

- , ,xk+ 1 = 3.288F(x*) = -1.987F(xk
œ ) 6 F(x*): x* = 3.288

Resultado de la búsqueda: x 5 1.801, F(x) 5 2.757 ocurre en la iteración 3 [mínimo exacto global x* 5 3.64438, F(x*)
5 23.631]

TABLA 10.4 Minimización de F(x) 5 x5 2 10x4 1 35x3 2 50x2 1 24x, 0 # x # 4 utilizando la heurística de caminata
aleatoria normal con x0 5 .5 yxk

œ = xk + (4/6)N(0, 1)

Iteración k xk F(xk) Rk N(0, 1) xk
œ F(xk

œ ) Acción

(Inicio)0 .5 3.281 Establecer , , xk+ 1 = .5F(x*) = 3.281x* = .5
1 .5 3.281 .412 .2203- .353 3.631 : Volver a muestrear usando xk+ 1 = xkF(xk

œ ) 7 F(x*)
2 .5 3.281 .203 .8278- –.0519 Fuera de intervalo: Volver a muestrear usando xk+ 1 = xk
3 .5 3.281 .912 1.3557 1.404 1.401- , , xk+1 = 1.404F(x*) = -1.401F(xk

œ ) 6 F(x*): x* = 1.404

4 1.404 1.401- .571 .1794 1.523 1.390- : Volver a muestrear usando xk+ 1 = xkF(xk
œ ) 7 F(x*)

(Termi-5
nación)

1.404 1.401- .871 1.1349 2.160 .6219 : Volver a muestrear usando xk+ 1 = xkF(xk
œ ) 7 F(x*)

Resultado de la búsqueda: x 5 1.404, F(x) 5 21.401, ocurre en la iteración 3 [mínimo exacto global x* 5 3.64438, F(x*) 5
23.631]
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Extensión de la búsqueda codiciosa al caso de múltiples variables. Dada X 5 (x1,
x2,…,xn) y un espacio de soluciones S, el problema de optimización se define como

El algoritmo de búsqueda codiciosa se amplía al caso de múltiples variables poniendo
en la mira las variables una a la vez en cada iteración, donde una variable puesta en la
mira se selecciona al azar desde el conjunto (x1, x2,...,xn). Las heurísticas continua y
discreta de variable única dada en las secciones 10.2.1 y 10.2.2 se aplican entonces a la
variable seleccionada.

Momento de Excel

La figura 10.2 es una reproducción de aplicación de la hoja de cálculo de Excel de la heurística
de caminata aleatoria continua (archivo excel/ContSingleVarHeuristic.xls). Utilizando la sintaxis de
Excel, la función F(x) se ingresa en la celda D2 con la celda D5 asumiendo el rol de la variable x.
El sentido de optimización (máx o mín) se especifica en la celda C2. El intervalo de búsqueda se
ingresa en las celdas D3 y D4. El menú desplegable en la celda D5 permite utilizar el muestreo
uniforme o aleatorio.

Puede realizarse una heurística híbrida por medio de muestreo uniforme y normal conjun-
tamente como sigue:

1. Asigne un punto de inicio en la celda H3 y el número de iteraciones en la celda H4.
2. Seleccione muestreo uniforme en la celda D5, y ejecute la heurística oprimiendo el botón

de comando en el paso 6.
3. Use la solución obtenida con el muestreo uniforme (celda D6) como un nuevo punto de

inicio en la celda H3.
4. Seleccione el muestreo normal en la celda D5 y vuelva a ejecutar la heurística.

Minimizar z = F(X), X ε S

FIGURA 10.2

Heurística de caminata aleatoria realizada con Excel para hallar el óptimo (máximo o mínimo) de una fun-
ción continua de una sola variable (archivo excelContVarHeuristic.xls)
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CONJUNTO DE PROBLEMAS 10.2A

1. Vuelva a resolver el problema del ejemplo 10.2-1 para calcular el valor máximo de F(x).
Repita los cálculos con x 5 3 como solución inicial.

2. Vuelva a resolver el problema del ejemplo 10.2-2 para calcular el valor máximo de F(x).
3. Vuelva a resolver el problema del ejemplo 10.2-3 para calcular el valor máximo de F(x)

utilizando el muestreo uniforme. luego utilice la solución obtenida con el muestreo uni-
forme como solución inicial para la aplicación del muestreo normal.

4. Experimento con Excel. Considere la siguiente función:

La función tiene múltiples máximos y mínimos en el intervalo 0 # x # 10. Use el archivo
excelContVarHeuristic.xls para estimar el máximo y mínimo de la función utilizando el
muestreo uniforme en x0 5 5 y luego refinando la solución por medio del muestreo nor-
mal en el cual el punto de inicio es la solución obtenida a partir del muestreo uniforme.

5. Considere el problema de formar un rectángulo de área máxima con una pieza de alam-
bre de 40 pulgadas de longitud.
(a) Genere manualmente una iteración utilizando el muestreo uniforme en el intervalo

(0,20), comenzando con un rectángulo de 4 pulgadas de base y aplicando R 5 .7905.
Luego use el resultado como solución inicial para una iteración de muestreo normal
adicional con R 5 .9620.

(b) Experimento con Excel. Utilice el archivo excelContVarHeuristic.xls con muestreo
uniforme para generar 10 iteraciones de la heurística de la variable continua para es-
timar las dimensiones del rectángulo. Comience con una base del rectángulo igual a
una pulgada.

(c) Experimento con Excel. Utilice el archivo excelContVarHeuristic.xls con muestreo
normal para refinar la solución obtenida en (a). Realice 10 iteraciones.

*6. La fijación de impuestos puede usarse como instrumento para frenar la demanda de ciga-
rrillos. Suponga que, para una tasa tributaria t, el consumo diario promedio por fumador
sigue la función lineal 53 2 100(t/100), 10 # t # 60. Si la tasa tributaria se eleva, la de-
manda se reducirá, y la recaudación fiscal también lo hará. El objetivo es determinar la
tasa tributaria que maximice la recaudación fiscal. Para el propósito de fijación de im-
puestos, el precio base por cigarrillo es de 15 centavos. Formule el problema como un
modelo matemático, y utilice una heurística para determinar la tasa tributaria.

7. Aplique la heurística de muestreo uniforme para estimar la solución mínima de la si-
guiente función de dos variables f(x) 5 3x2 1 2y2 2 4xy 2 2x 2 3y, 0 # x # 5, 0 # y # 5.

8. La altura de un tanque de agua cilíndrico debe ser al menos dos veces el diámetro de su
base. Ni el diámetro ni la altura pueden exceder de 10 pies. El volumen del tanque debe ser
al menos de 300 pies3. El costo de la estructura elevada sobre la que se instala el tanque es
proporcional al área de la base. El costo de la lámina es de $8/pie2 y el costo de la estructu-
ra de soporte es de $15/pie2. Formule el problema como un modelo matemático, y desarro-
lle una heurística de caminata aleatoria para estimar el diámetro y altura del tanque.

10.3 METAHEURÍSTICA

La heurística codiciosa presentada en la sección 10.2 comparte una estrategia común.
En la iteración k la búsqueda se mueve a un nuevo punto Xk11 H N(Xk) sólo si el nuevo
punto mejora el valor de la función objetivo F(X). Si no se puede hallar una Xk11
mejor en N(Xk) o si se llega a una cantidad de iteraciones especificada por el usuario,
la solución se encuentra atrapada en un óptimo local y la búsqueda termina.

f(x) = .01172x6 - .3185x5 + 3.2044x4 - 14.6906x3 + 29.75625x2 - 19.10625x
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La metaheurística está diseñada principalmente para escapar del entranpamien-
to en el óptimo local al permitir movimientos inferiores, si es necesario. Se espera que
la flexibilidad agregada a la búsqueda conduzca a una mejor solución.

A diferencia de la heurística codiciosa, la cual siempre termina cuando se llega a
un óptimo local, la terminación de una búsqueda metaheurística se basa en los siguien-
tes puntos de referencia:

1. La cantidad de iteraciones de búsqueda excede una cantidad especificada.
2. La cantidad de iteraciones desde la última mejor solución excede una cantidad

especificada.
3. La vecindad asociada con el punto de búsqueda actual, o está vacía o no puede

conducir a un nuevo movimiento de búsqueda viable.
4. La calidad de la mejor solución actual es aceptable.

Esta sección presenta tres búsquedas prominentes metaheurísticas: Tabú, recoci-
do simulado y genética. Estos algoritmos difieren principalmente en la forma en que la
búsqueda escapa de un óptimo local. Cada metaheurística se ilustra por medio de dos
ejemplos: El primero, que se ocupa de una función F(x) de una sola variable, está di-
señado para explicar los fundamentos de la metaheurística. El segundo, que se ocupa
del más complejo problema de secuenciación de tareas en un taller, revela complejida-
des adicionales en la implementación de la metaheurística. En el capítulo 11, las tres
metaheurísticas se aplican al problema del agente viajero.

10.3.1 Algoritmo de búsqueda tabú

Cuando la búsqueda se queda atrapada en un óptimo local, la búsqueda tabú (BT) se-
lecciona el siguiente movimiento de búsqueda (posiblemente inferior) de una manera
que prohíbe temporalmente, volver a examinar las soluciones anteriores. El instrumento
principal para alcanzar este resultado es la lista tabú que “recuerda” los movimientos
de la búsqueda anterior y los deshabilita durante un periodo de tenencia especificada.
Cuando un movimiento tabú completa su tenencia, se elimina de la lista tabú y se hace
disponible para futuros movimientos.

Ejemplo 10.3-1 (Minimización de una función de una sola variable) 

Este ejemplo detalla la aplicación de la BT a la minimización de la función F(x) en la figura 10.1.
Para la iteración k sean 

xk 5 Solución de prueba actual

N(xk) 5 Vecindad de xk

Lk 5 Lista tabú de valores inadmisibles de x en la iteración k

t 5 Periodo de permanencia tabú expresado en cantidad de iteraciones sucesivas 

x* 5 Mejor solución encontrada durante la búsqueda

En términos de la función F(x) de la figura 10.1, los valores factibles son 1, 2,…, 8. En la ite-
ración k, el conjunto de vecindades de xk puede definirse como N(xk) 5 {xk 2 q,… xk 2 1, xk 1

1,…,xk 1 q} 2 Lk donde q es una constante entera. La definición excluye implícitamente los
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TABLA 10.5 Minimización mediante el algoritmo de BT de F(x), en la figura 10.1 con pe-
riodo de permanencia tabú t 5 3 yN(xk) = {xk - 4, Á , xk - 1, xk + 1, Á , xk + 4} - Lk

Iteración k Rk xk F(xk) Lk N(xk)

(Inicio)0 .0935 1 90 {2, 3, 4, 5}
1 .4128 3 50 {1} {2, 4, 5, 6, 7}
2 .2039 4 80 {1, 3} {2, 5, 6, 7, 8}
3 .0861 2 60 {1, 3, 4} {5, 6}
4 .5839 5 100 {3, 4, 2} {1, 6, 7, 8}

(Terminación)5 .5712 7 20 {4, 2, 5} {3, 6, 8}

Mejor solución heurística: x 5 7, F(x) 5 20, en la iteración 5 (sucede que también es óptima).

puntos de solución no factibles.1 Por ejemplo, en el caso en que xk 5 3, q 5 4 y Lk 5 {6},
. Los elementos tachados son no factibles.

Como se explica en la sección 10.2, el siguiente movimiento de búsqueda xk11 puede selec-
cionarse como el mejor entre todas las soluciones en N(xk), o como un elemento aleatorio de
N(xk) (selección de caminata aleatoria). Este ejemplo utiliza una selección aleatoria.

La tabla 10.5 proporciona 5 iteraciones del algoritmo de BT. La búsqueda se inicia en x0 5 1
(seleccionado al azar desde {1, 2,…,8}, utilizando R 5 .0935). Defina la vecindad con q 5 4 y con-
sidere un periodo de permanencia fijo t 5 3 iteraciones (el periodo de permanencia puede ser
aleatorio como el problema 3 del conjunto 10.3a lo demuestra).

Para ilustrar los cálculos, N(x0 5 1) 5 {2, 3, 4, 5}. En la iteración 1, L1 5 {1} y R1 5 .4128 se-
leccione x1 5 3 a partir de N(x0), la cual resulta N(x1) 5 {1, 2, 4, 5, 6, 7} 2 {1} 5 {2, 4, 5, 6, 7} y ac-
tualiza la lista tabú en la iteración 2 para L2 5 {1, 3}.

Se elimina un elemento de la lista tabú según el primero en entrar es el primero en salir des-
pués de un periodo de permanencia de t 5 3 iteraciones sucesivas. Por ejemplo el elemento {1}
permanece en la lista tabú durante las iteraciones 1, 2, y 3 hasta que se elimina en la iteración 4.

Ejemplo 10.3-2 (Secuenciación de tareas)

Considere el caso de secuenciar n tareas en una sola máquina. El tiempo de procesamiento de la
tarea j es tj y su fecha límite es dj (medida a partir de cero). Si la tarea j se completa con antici-
pación a su fecha límite se incurre en un costo de retención (almacenamiento) hj por unidad de
tiempo. Una tarea j retrasada provoca un costo de penalización pj por unidad de tiempo. La tabla
10.6 da los datos para un problema de 4 tareas.
Defina

jik 5 La tarea j ocupa la posición i durante la iteración k
sk 5 Secuencia de tareas utilizada en la iteración k
N(sk) 5 Secuencias de las vecindades de sk

Lk 5 Lista tabú en la iteración k
t 5 Periodo de permanencia expresado en cantidad de iteraciones sucesivas
zk 5 Costo total (retención 1 penalización) de la secuencia sk

s* 5 Mejor secuencia disponible durante la búsqueda 
z* 5 Costo total asociado con s*

N(xk) = {-1, 0, 1, 2, 4, 5, 6, 7} - {6} = {1, 2, 4, 5, 7}

1En realidad, un elemento tabú puede definir un siguiente movimiento de búsqueda si satisface el llamado
Criterio de Nivel de Aspiración, como se explicará en el ejemplo 10.3-2.

* *
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TABLA 10.6 Datos del problema de secuenciación de tareas para el ejemplo 10.3-2

Tarea, j

Tiempo de procesamiento
en días, Tj Fecha límite, dj

Costo de retención
por día, hj

Costo de penalización
por día, pj

1 10 15 $3 $10
2 8 20 2 22
3 6 10 5 10
4 7 30 4 8

Entre las posibles opciones para determinar la vecindad, N(sk), a partir de sk se encuentran las
siguientes:

1. Intercambiar las posiciones de pares sucesivos de tareas.
2. Intercambiar las posiciones de pares implícitos de cada dos tareas.
3. Intercambiar la posición de una tarea con otra seleccionada al azar de entre las tareas res-

tantes.

En este ejemplo se utiliza la primera definición. Para demostrar su uso considere s0 5 (1-2-3-4).
El conjunto de vecindades es N(s0) 5 {(2-1-3-4), (1-3-2-4, (1-2-4-3)}, el cual corresponde a inter-
cambiar las posiciones (en s0) de las tareas 1, y 2, las tareas 2 y 3, y las tareas 3 y 4, respectiva-
mente. La selección del siguiente movimiento s1 a partir de N(s0) puede hacerse al azar o basado
en el criterio de costo mínimo. Este ejemplo emplea la selección aleatoria.

La tabla 10.7 resume 5 iteraciones suponiendo un periodo de permanencia t 5 2 iteracio-
nes. La secuencia (3-1-2-4) en la iteración 2 proporciona la mejor solución con z* 5 126. Para de-

TABLA 10.7 BT aplicada al problema de secuenciación de tareas con periodo de permanencia t 5 2 iteraciones

Iteración, k
Secuencia,

sk Costo total (retención) 1 (penalización) z*
Lista tabú
L(sk) R

Vecindades
N(sk)*

(Inicio)0 (1-2-3-4) (5 *  3 +  2 *  2) + (14 *  10 +  1 *  8) = 167 167 .5124 (2-1-3-4)
(1-3-2-4)✓
(1-2-4-3)

1 (1-3-2-4) (5 *  3) + (6 *  10 +  4 *  22 +  1 *  8) = 171 {3-2} .3241 (3-1-2-4)✓
(1-2-3-4)
(1-3-4-2)

2 (3-1-2-4) (4 *  5) + (1 *  10 +  4 *  22 +  1 *  8) = 126 126 {3-2, 3-1} .2952 (1-3-2-4)
(3-2-1-4)✓
(3-1-4-2)

3 (3-2-1-4) (4 *  5 +  6 *  2) + (9 *  10 +  1 *  8) = 130 {3-1, 2-1} .4241 (2-3-1-4)✓
(3-1-2-4)
(3-2-4-1)

4 (2-3-1-4) (12 *  2) + (4 *  10 +  9 *  10 +  1 *  8) = 162 {2-1, 2-3} .8912 (3-2-1-4)
(2-1-3-4)
(2-3-4-1)✓

(Termi- 5
nación)

(2-3-4-1) (12 *  2 +  9 *  4) + (4 *  10 +  16 *  10) = 260 {4-1, 1-3} .0992 (3-2-4-1)✓
(2-4-3-1)
(2-3-1-4)

Mejor secuencia de búsqueda: (3-1-2-4) con costo 5 126 en la iteración 2

*La marca de verificación ✓ designa el elemento no tabú seleccionado al azar a partir de N(sk) utilizando R.
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2Por comodidad, los cálculos de los costos se automatizan con la hoja de cálculo excelJobSequencing.xls en si-
tuaciones que implican cuatro y cinco tareas. Puede modificarla para tener en cuenta otras situaciones.

Tarea: 3 1 2 4

Tiempo de procesamiento: 6 10 8 7

Fecha límite: 10 15 20 30

Fecha de terminación: 6 16 24 31

Tiempo de retención: 4 0 0 0

Tiempo de retardo: 0 1 4 1

Costo de retención: 20 0 0 0

Costo de penalización por retraso 0 10 88 8

mostrar los cálculos de los costos en la tabla, el valor de z para la secuencia s2 5 (3-1-2-4) de la
iteración 2 se determina en el siguiente orden:2

Por lo tanto, z 5 Costo de retención 1 Costo de penalización 5 20 1 (10 1 88 1 8) 5 $126.
La heurística funciona de la siguiente manera: En la iteración 1, R 5 .5124 selecciona la

secuencia s1 5 (1-3-2-4) al azar de N(s0). La lista tabú asociada es L1 5 {3-2}, lo que signifi- 
ca que las posiciones de las tareas 2 y 3 no pueden cambiarse durante el periodo de permanencia
(es decir, durante dos iteraciones sucesivas). Ésta es la razón por la que la secuencia (1-2-3-4) se
excluye en N(s1). El mismo razonamiento aplica a las secuencias tachadas en iteraciones sub-
siguientes. Observe que los cálculos en la tabla 10.7 aplican R sólo a elementos cercanos admisi-
bles (no tachados).

“Afinación fina” de la BT. Los siguientes refinamientos pueden ser efectivos para
mejorar la calidad de la solución final:

1. Criterio de aspiración. El diseño de la BT imposibilita los movimientos que apa-
recen en la lista tabú. Sin embargo, ocurre una excepción cuando un movimiento
imposibilitado conduce a una solución mejorada. Por ejemplo, en la tabla 10.7
(ejemplo 10.3-2), las secuencias tabú tachadas en las iteraciones 1, 2, 3 y 4 deben
examinarse en cuanto a la posibilidad de producir mejores movimientos de bús-
queda. Si lo hacen, deben ser aceptadas como movimientos de búsqueda.

2. Intensificación y diversificación. Por lo general se aplican dos estrategias adicio-
nales, llamadas intensificación y diversificación, cuando una cadena de iteracio-
nes sucesivas no produce mejoras. La intensificación demanda un examen más
completo de los puntos de solución cercanos, y la diversificación intenta despla-
zar la búsqueda a regiones de solución no exploradas. Una forma de implementar
estas estrategias es controlando el tamaño de la lista tabú. Una lista tabú más
corta aumenta el tamaño permisible del conjunto de vecindades y por consi-
guiente intensifica la búsqueda a puntos que queden cerca de la mejor solución.
Una lista tabú más larga hace lo contrario puesto que deja escapar de un punto
óptimo local al permitir explorar regiones “remotas”.

Resumen del algoritmo de búsqueda tabú

Paso 0. Seleccione una solución de inicio s0 H S. Inicie la lista tabú L0 5 [, y seleccio-
ne un esquema para especificar el tamaño de la lista tabú. Establezca k 5 0.
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TABLA 10.8 Datos para el problema 3, conjunto 10.3a

Tarea, j
Tiempo de procesamiento

en días, Tj

Fecha límite,
dj

Costo de retención
por día, hj

Costo de penalización
por día, pj

1 10 12 $3 $10
2 12 30 1 20
3 5 9 5 12
4 7 25 2 8
5 9 40 4 15

Paso 1. Determine la vecindad factible N(sk) que excluya miembros (inferiores) de la
lista tabú Lk.

Paso 2. Seleccione el siguiente movimiento sk11 a partir de N(sk) (o de Lk, si propor-
ciona una mejor solución), y actualice la lista tabú Lk11.

Paso 3. Si se llega a una condición de terminación, deténgase. Si no, establezca k 5

k11 y vaya al paso 1.

CONJUNTO DE PROBLEMAS 10.3A

1. Resuelva el ejemplo 10.2-1 para estimar el punto de solución máxima. Utilice x0 5 8 y t 5 2.
2. Considere la siguiente función:

La función tiene múltiples máximos y mínimos en el intervalo x 5 1, 2,…,10. Aplique 10
iteraciones de búsqueda tabú para estimar el máximo y el mínimo. Use x0 5 5 y periodo
de permanencia tabú t 5 2 iteraciones.

3. Aplique la BT con t 5 3 iteraciones para resolver el problema de secuenciación de 5 ta-
reas aplicando los datos de la tabla 10.8.
(Sugerencia: Quizá le sea cómodo utilizar el archivo excelJobSequencing.xls para calcular
las funciones de costo.)

4. Considere 10 variables Booleanas, Bi, i 5 1, 2,...,10. Cada variable asume el valor T (ver-
dadero) o F (falso). Luego considere las siguientes seis expresiones (la notación Bi no de-
fine a Bi):

Use la BT para asignar una solución a cada variable Booleana que maximice la can-
tidad de expresiones lógicas verdaderas. Realice cinco iteraciones de BT empezando con
una solución. S0 5 (T, F, T, F, T, F, T, F, T, F) y un periodo de permanencia tabú de dos

B2 o B5 o B6 o (B1 y B3)

(B4 y B6) o B9

(B1 y B3 o B4) o (B5)

(B2 o B5) y (B1 o B4 o B6)

B2 y B7

(B1 y B3 y B8) o (B4 y B10) y B6

f(x) = .01172x6 - .3185x5 + 3.2044x4 - 14.6906x3 + 29.75625x2 - 19.10625x
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TABLA 10.9 Datos para el problema 6, conjunto 10.2a

cij

j

i 1 2 3 4 5

1 10 15 20 9 40
2 12 17 15 20 10
3 18 14 10 35 16
4 9 12 33 28 19

iteraciones. (Sugerencia: Por comodidad, el archivo excelSAT.xls automatiza la evaluación
de las expresiones Booleanas.).

5. Repita el problema 4 para las siguientes expresiones Booleanas:

6. Asignación de almacenes. Considere el caso de 4 almacenes y 5 tiendas. El costo fijo de
abrir un almacén es de 20 ($ mil). El costo de transporte, cij, de los envíos entre almace-
nes y las tiendas se resume en la tabla 10.9.
(a) Formule el problema como una PLE y determine la solución óptima (con AMPL o

Solver).
(b) Resuelva el problema con la BT y un periodo de permanencia de dos iteraciones.

7. Árbol de expansión mínima restringida, Glover (1990). La sección 6.2 presenta un algorit-
mo óptimo para determinar el árbol de expansión mínima que enlace todos los nodos de
una red (por definición, un árbol no contiene ciclos). En un entorno práctico, puede ser
necesario imponer restricciones de interdependencia en los arcos (ramas) del árbol de ex-
pansión mínima (es decir, sólo uno de un subconjunto de arcos puede estar en el árbol de
expansión). Puede usarse la BT para tener en cuenta todas las restricciones adicionales.

Considere la red de 6 arcos (a, b, c, d, e, f, g, h) que es muestra en la figura 10.3 con
las siguientes restricciones adicionales:
1. Sólo uno de los dos arcos, a y c, puede estar en el árbol.
2. Si el arco b está en el árbol, entonces el arco d también debe estarlo.

La aplicación de la BT para determinar el árbol de expansión mínima restringida se
realiza como sigue: El árbol de expansión mínima no restringida (b, c, f, g, h) de longitud
(2 1 3 1 1 1 6 1 4) 5 16 se utiliza como una solución de inicio. Los arcos restantes a, d y
e, designan como libres. Un árbol de expansión de vecindad (solución) puede generarse
agregando un arco al árbol de expansión actual y eliminando uno existente para evitar
los ciclos. Por ejemplo, el arco b o c deben eliminarse si se admite al arco libre a en el

(B3 y B5 o B6) o (B1 o B8 y B9 o B10)

B1 o (B4 y B7) o B8

(B3 y B4 y B10) o (B5 y B7) o (B9 y B10)

B2 o B3 y B4 y B5 o B8 y (B1 o B6)

B4 y B7 y B8

B3 o B6 y (B7 o B9 y B10)

(B1 y B5) o (B3 y B9) y (B2 o B10)
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árbol de expansión (b, c, f, g, h) para evitar que se forme el ciclo a, b, c. El cambio produ-
ce dos alternativas: agregar a y eliminar b, o agregar a y eliminar c. Se pueden generar al-
ternativas similares cuando se consideran las variables libres restantes, d y e. El conjunto
de todas estas alternativas define la vecindad.

La aptitud de una alternativa incluye la longitud del árbol de expansión más una pe-
nalización por la violación de las restricciones adicionales dadas antes. Por ejemplo, dado
el árbol (b, c, f, g, h), la alternativa “agregar a y eliminar b” produce el árbol (a, c, f, g, h)
cuya aptitud es [(5 1 3 1 1 1 6 1 4) 1 (penalización por violar la primera restricción)].
Asimismo, la alternativa “agregar el arco a y eliminar el arco c” produce el árbol (a, b, f, g,
h) cuya aptitud es [5 1 2 1 1 1 6 1 4) 1 (penalización por violar la segunda restricción)].
La penalización debe ser suficientemente grande (es decir, un múltiplo de la suma de las
longitudes de todos los arcos en la red). En la presente situación, la longitud total de la red
es 37, y una penalización de 2000 es propicia. La alternativa con la menor aptitud propor-
ciona la siguiente solución de prueba. La variable libre correspondiente se agrega enton-
ces a la lista tabú para que no abandone el árbol durante su periodo de tenencia.

Aplique cinco iteraciones a la red en la figura 10.3.
8. Colocación de rótulos cartográficos, Yamamoto and Associates (2002). La colocación ine-

quívoca de los nombres de ciudades, calles, lagos y ríos en mapas impresos siempre ha
sido un proceso manual que requiere mucho tiempo. Con el advenimiento de la genera-
ción de mapas en línea (como en Google y MapQuest), el proceso manual no es una 
opción viable. Se puede utilizar una heurística tabú para automatizar la colocación de ró-
tulos en mapas. Este problema abordará el caso de rotulación de ciudades. El objetivo
general es evitar que se traslapen los rótulos, al mismo tiempo que se toman en cuenta las
preferencias para la colocación de los rótulos con respecto a la ubicación de la ciudad
nombrada en el mapa.

La figura 10.4 proporciona un ejemplo de colocación de los nombres de cuatro ciu-
dades, A, B, C y D en un mapa. Cada ciudad tiene cuatro opciones de colocación repre-
sentadas por cuatro rectángulos. La prioridad para la colocación de los rótulos entre los
cuatro rectángulos puede estar en cualquier orden. En la figura 10.4, asumimos un orden
de preferencia de la mejor a la peor en sentido contrario al de las manecillas del reloj
para los rectángulos de cada ciudad. Por ejemplo, para la ciudad A, el orden de las prefe-
rencias de rotulación es A1-A2-A3-A4. Una solución típica selecciona un rectángulo es-
pecífico para cada ciudad. Por ejemplo (A1, B2, C3, D2) es una solución para las cuatro
ciudades de la figura 10.4.

El “costo” de seleccionar un rectángulo específico en una solución es la suma de dos
componentes: una calificación de preferencia numérica en el intervalo (0,1) donde cero
es la mejor, y la cantidad de traslapes con otros rectángulos. La figura 10.4 presenta las
calificaciones de las preferencias para la ciudad A(A1 5 0, A2 5 .02, A3 5 .03, y A4 5
.04). Las mismas calificaciones se aplican a los rectángulos correspondientes en las ciuda-
des B, C y D. Para determinar los traslapes considere la solución (A1, B2, C3, D2). Sólo
C3 y D2 se traslapan.

FIGURA 10.3

Red para el problema 7, conjunto
10.2a

h – 4

d – 7

b – 2
f – 1

a – 5

c – 3 e – 9

2 5

6

g – 6
43

1
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FIGURA 10.4

Opciones de rotulación para el problema 7, conjunto 10.2a

A

B

C 

D

.00 

.04 

.02

.03

.04

.00 .02 

.03 

.00

.04

.02

.03

.00

.04

.02 

.03 

A1 

A3 

A2

A4 

A1 B2 C3 D2

A1 .00 .00 .00 .00
B2 .00 .02 .00 .00
C3 .00 .00 .03 1.00
D2 .00 .00 1.00 .02

La siguiente matriz resume las calificaciones asociadas con la solución (A1, B2, C3, D2).

Todas las entradas diagonales son las calificaciones de las preferencias del rectángulo
asociado. Un elemento afuera de la diagonal es igual a 1 si los elementos correspondien-
tes se traslapan. Si no, es cero. El costo asociado con la solución (A1, B2, C3, D2) es la
suma de todas las entradas en la matriz [5 (.02 1 .03 1 .02 1 (1 1 1) 5 2.7]. El objetivo
del modelo es hallar la solución que minimice el costo total.
(a) Construya la tabla de aptitud (16 3 16) que tenga en cuenta todas las colocaciones

posibles de los rótulos.
(b) Encuentre una solución al problema utilizando tres iteraciones de BT con un perio-

do tabú de permanencia de dos iteraciones. [Sugerencia: La solución óptima de este
problema trivial es obvia: (A1, B1, B2, B3 y B4) con aptitud total cero. Para demos-
trar iteraciones de BT significativas, sin embargo, se requiere que inicie con la solu-
ción A1, B2, C3, D3. Una solución de vecindad se compone del reemplazo de uno de
los rectángulos de una ciudad con otro: por ejemplo, reemplazando C3 con C1. En
este caso, la ciudad C se coloca en la lista tabú durante el periodo de tenencia.

10.3.2 Algoritmo de recocido simulado

El recocido simulado (RS) escapa del atrapamiento en un óptimo local utilizando una
condición de probabilidad que acepta o rechaza un movimiento inferior (siempre se
acepta un mejor movimiento). La idea de determinar la probabilidad de aceptación del
siguiente movimiento de búsqueda se explica como sigue: Suponga que el problema de
optimización se da como 

Maximizar o minimizar z = F(s), s ε S



366 Capítulo 10 Programación heurística

A medida que la cantidad de iteraciones se incrementa, el RS busca una determinación
más selectiva de estrategias de solución utilizando un parámetro ajustable T, llamado tem-
peratura, es decir, se hace progresivamente más pequeño de acuerdo con un programa de
temperatura.3 Un programa de I elementos para T suele definirse como [T 5 Ti, i 5 0,
1,…,I]. Cada Ti solicita un número específico de iteraciones de aceptación consecutivas, t.4

Dado que s0 es la estrategia de inicio de la búsqueda, Ti se calcula típicamente como

Defina sa como la última estrategia de solución aceptada. En la iteración k, la pro-
babilidad de aceptar una estrategia cercana como el siguiente movimiento de búsque-
da, sk11, se calcula como

 Ti = ri Ti- 1, 0 6 ri 6 1, i = 1, 2, Á , I

 T0 = r0 F(s0), 0 6 r0 6 1,

3El RS se inspiró en el proceso de recocido en la metalurgia, el cual implica el calentamiento y el enfria-
miento controlado de un material, de ahí el uso del término temperatura. El uso de la jerga metalúrgica en la
descripción del RS es puramente tradicional, sin ninguna relación técnica con el desarrollo de la heurística,
guarda la idea general detrás del proceso de recocido.
4Basar el cambio de temperatura en la cantidad de iteraciones de aceptación es una regla arbitraria y puede
ser reemplazada por otras, por ejemplo basar el cambio en el total de iteraciones (de aceptación o rechazo)
que intervienen.

P{aceptar sk+ 1| sK+ 1 �N(sk)} = b
e , si en caso contrario- |F(s) -F(sk + 1)|

 
T

1, si F(sk+ 1) no es peor que F(sa)

La fórmula dice que el siguiente movimiento de búsqueda, sk11, se acepta si
F(sk11) no es peor que F(sa). De lo contrario, F(sk11) es una solución inferior y sk11 se

acepta sólo si e , donde Rk es un número aleatorio (0,1). Si sk11 se
rechaza, se intenta una estrategia de solución diferente con N(sa). Observe que el pro-
grama de temperatura reduce la probabilidad de aceptación a medida que la cantidad
de iteraciones aumenta haciendo a Ti cada vez más pequeña.

Ejemplo 10.3-3 (Minimización de una función de una sola variable)

La tabla 10.10 aplica cinco iteraciones de RS para hallar el mínimo de la función de una sola va-
riable que aparece en la figura 10.1. La solución define arbitrariamente la vecindad en cualquier
iteración k como N(xk) 5 {1, 2,…,8} 2 {xa}, donde xa es la solución asociada con la iteración de
aceptación más reciente.

Para ilustrar los cálculos, la búsqueda selecciona arbitrariamente x0 5 1 con t 5 3 iteraciones
de aceptación y r0 5 .5. Por lo tanto, N(x0) 5 {2, 3, 4, 5, 6, 7, 8}, F(1) 5 90, y T0 5 .5F(1)5 45. Para k
5 1, el número aleatorio R11 5 .4128 selecciona el siguiente punto de solución (posible) x1 5 4
desde N(x0) con F(4) 5 80. Como F(x1) es mejor que F(x0), aceptamos el movimiento. En la itera-
ción 2 establecemos a 5 1, con F(xa) 5 80. El siguiente movimiento x2 5 2 se selecciona a partir de
N(x1) 5 {1, 2, 3, 5, 6, 7, 8} utilizando R12 5 .2039. De nuevo se acepta el movimiento porque mejora
la solución desde F(x1) 5 80 hasta F(x2) 5 60. Esto hace a 5 2 con F(xa) 5 60. En la iteración 3, R13
5 .0861 selecciona x3 5 1 a partir de N(x2) 5 {1, 3, 4, 5, 6, 7, 8} con F(x3) 5 90. La nueva solución es
inferior a F(xa) 560. Por lo tanto D 5 ƒ 60-90 ƒ 5 30, y e2Dt 5 .5134. Dado R23 5 .5462, se rechaza la
solución x3 5 1, lo cual requiere que se vuelva a muestrear desde la última vecindad aceptada
N(x2). En la iteración 4, se acepta x4 5 6 porque resulta una solución mejorada (con respecto a la de
la iteración 2). En este momento se satisface la condición t 5 3, lo que cambia la temperatura a
T1 5 .5T0 5 22.5 en la siguiente iteración. En la iteración 5, dada x5 5 5, R25 (5 .0197) , e2Dt

(5 .0695) acepta el movimiento aun cuando es una solución inferior [F(5) 5 100].

- |F(sa)-F(sk+ 1)|
TRk …
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Ejemplo 10.3-4 (Secuenciación de tareas)

Este problema se resuelve en el ejemplo 10.3-2 utilizando la BT. Por comodidad, en este caso se
repite el enunciado del problema. Las tareas se secuencian en una sola máquina. Cada tarea j
tiene un tiempo de procesamiento tj y una fecha límite dj. Si se completa j antes de la fecha lími-
te, se incurre en costo de retención hj por unidad de tiempo. Una tarea retrasada j da por resul-
tado un costo de penalización pj por unidad de tiempo. La tabla 10.11 proporciona los datos para
un problema de secuenciación de 4 tareas.
Defina

sk 5 Secuencia de tareas utilizada en el iteración k
N(sk) 5 Secuencias de vecindades de sk

Ti 5 Programa de temperatura, i 5 1,2,…,I
ck 5 Costo total (retención 1 penalización) de la secuencia sk

La tabla 10.12 proporciona cinco iteraciones de RS. La iteración 3 produce la mejor secuen-
cia. Observe que cuando una secuencia se rechaza en la iteración k, volvemos a utilizar la ve-
cindad de última iteración de aceptación para seleccionar al azar la secuencia para la iteración
k 1 1. Esto ocurre en la iteración 2, donde la vecindad no cambia como en la iteración 1.
Observe también que t 5 3 se satisface en la iteración 4, lo que hace que cambie la temperatura
de 83.5 a 41.75 en la iteración 5.

Resumen del algoritmo de recocido simulado

Paso 0. Seleccione una solución de inicio s0 e S. Establezca k 5 0, p 5 0, e i 5 0.
Paso 1. Genere la cercanía N(sk) y establezca la temperatura T 5 Ti.

TABLA 10.11 Datos para el problema de secuenciación de tareas del ejemplo 10.3-4

Tarea, j
Tiempo de

procesamiento en días, Tj

Fecha
límite, dj

Costo de retención
por día, hj

Costo de penalización
por día, pj

1 10 15 $3 $10
2 8 20 2 22
3 6 10 5 10
4 7 30 4 8

TABLA 10.10 Minimización de F(x) utilizando heurística de RS con programa T0 5 .5F(x0),Ti 5 .5Ti21, i 5 1,2,3, …
y t 5 3 iteraciones de aceptación

Iteración k R1k xk F(xk) a T D 5 Cambio en F e-¢/T R2k Decisión N(xk)

(Inicio)  0 1 90 0 45.0 {2, 3, 4, 5, 6, 7, 8}
1 0.4128 4 80 1 45.0 Aceptar:F(x1) 6 F(x0) {1, 2, 3, 5, 6, 7, 8}
2 0.2039 2 60 2 45.0 Aceptar:F(x2) 6 F(x1) {1, 3, 4, 5, 6, 7, 8}

3 0.0861 1 90 2 45.0 |60 - 90| = 30 .5134 .5462 Rechazar:R2k 7 e-¢/T Igual que N(x2)

4 0.5839 6 40 4 45.0 Aceptar:F(x4) 6 F(x2) {1, 2, 3, 4, 5, 7, 8}

(Termina-
ción) 5

0.5712 5 100 5 22.5 |40 - 100| = 60 .0695 .0197 Aceptar:R2k 6 e-¢/T {1, 2, 3, 4, 6, 7, 8}

Buscar la mejor solución: x 5 6 con F(6) 5 40 en la iteración 4.
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TABLA 10.12 RS aplicado al problema de secuenciación de tareas con programa 
T0 5.5z0, Ti 5 .5Ti21, i 5 1, 2, 3,…y t 5 3 iteraciones de aceptación

Iteración
k

Secuencia
sk

Costo total 
ck 5 (retención) 1

(penalización)
Tk

z =  |Cambio de costo|
Tk

e-z R1k Decisión R2k

Cercanía
N(sk)*

(Inicio)0 (1-2-3-4)

+1 *  8) = 167
(5 *  3 + 2 *  2) + (14 *  10 83.5 .5462 (2-1-3-4) 

(1-3-2-4) ✓
(1-2-4-3)

1 (1-3-2-4)

+ 1 *  8) = 171
(5 *  3) + (6 *  10 + 4 *  22 83.5 .0479 .9532 .5683 Aceptar:

R11 6 e-z
.7431 (3-1-2-4) 

(1-2-3-4) 
(1-3-4-2)✓

2 (1-3-4-2)

+11 *  22) = 345
(5 *  3 + 7 *  4) + (6 *  10 83.5 2.083 .1244 .3459 Rechazar:

R12 7 e-z
.1932 (3-1-2-4) ✓

(1-2-3-4) 
(1-3-4-2)

3 (3-1-2-4)

* 22 + 1 * 8) = 126
(4 * 5) +  (1 * 10 +  4 83.5 Aceptar:

c3 6 c1

.6125 (1-3-2-4) 
(3-2-1-4) ✓
(3-1-4-2)

4 (3-2-1-4)

(9 * 10 +  1 * 8) =  130
(4 * 5 +  6 * 3) +  83.5 .0479 .9532 .6412 Aceptar:

R14 6 e-z
.2234 (2-3-1-4) ✓

(3-1-2-4) 
(3-2-4-1)

(Termi-
nación)5

(2-3-1-4)

9 * 10 +  1 * 8) =  162
(12 * 2) +  (4 * 10 + 41.75 .766 .4647 .5347 Rechazar:

R15 7 e-z
.8127 (2-3-1-4) 

(3-1-2-4) 
(3-2-4-1)✓

Búsqueda de la mejor solución: (3-1-2-4) con costo de 126 en la iteración 3.

*La marca de verificación ✓ indica la secuencia seleccionada utilizando el número aleatorio R2k.

Paso 2. Determine la solución sk11 al azar desde N(sk). Si sk11 no es peor que la solu-
ción última aceptada o si R , P {acepte sk11}, luego acepte sk11, establezca
p 5 p 1 1, y vaya al paso 3. De lo contrario, rechace sk11 y establezca N(sk11)
5 N(sk). Establezca k 5 k 1 1, y vaya al paso 1.

Paso 3. Si se llega a una condición de terminación, deténgase. De lo contrario, esta-
blezca k 5 k 11. Si p 5 t, entonces establezca i 5 i 11. Vaya al paso 1.

CONJUNTO DE PROBLEMAS 10.3B

1. Realice cinco iteraciones en el ejemplo 10.3-3.
2. Resuelva el ejemplo 10.3-3 para estimar el punto de solución máximo. Use x0 5 8 y t 5 3.
3. Realice cuatro iteraciones más del problema de secuenciación de tareas en el ejemplo 10.3-4.
4. Programación de horarios. Considere un caso de desarrollo de un horario de 5 clases (C)

impartidas por 5 profesores (T). Los profesores proporcionan las siguientes preferencias
para impartir las clases (la parte superior de la lista es la más deseada):

T5: C2 - C5 - C3 - C1

T4: C4 - C2 - C5 - C3

T3: C1 - C5 - C4 - C3

T2: C2 - C1 - C4 - C5

T1: C1 - C2 - C3 - C5
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FIGURA 10.5

(a) Mapa de seis regiones (b) representación de red para el problema 5, conjunto 10.3b
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La situación se simplifica al desarrollar un horario de cinco periodos de un día que mini-
miza la insatisfacción entre los profesores. Una medida de insatisfacción está representa-
da por la asignación tan baja a un profesor en la lista de preferencias de un curso. Por
ejemplo, la medida de insatisfacción es cero si C1 se asigna a T1 y 3 si C5 se asigna a T1.
Un horario se evalúa por la suma de sus medidas individuales.

Desarrolle una heurística de RS de 5 iteraciones para el problema.
5. Problema del coloreado de los mapas. El problema de colorear tiene que ver con la de-

terminación del mínimo de colores para pintar las regiones de un mapa de modo que dos
regiones adyacentes no tengan el mismo color. La figura 10.5 (a) proporciona un ejemplo
de un mapa de 6 regiones. El problema puede modelarse como una red en la cual los
nodos representan las regiones como se muestra en la figura 10.5 (b). Un arco entre 
dos nodos significa que las dos regiones correspondientes son adyacentes (comparten
una frontera común). El problema de colorear el mapa puede representar otras situacio-
nes prácticas, como lo demuestra el problema 6.

Se puede aplicar una heurística de RS al problema de colorear. La solución de inicio,
x0, puede determinarse de una de dos maneras:
1. Asigne un color único a cada nodo de la red. Por lo tanto, x0 5 (1, 2,…,6) para la red

de la figura 10.5(b).
2. Use un algoritmo codicioso que se inicie asignando el color 1 al nodo 1. Luego, dado

que los nodos 1, 2,… e i 2 1 utilizan los colores 1, 2,…, y c, c # i 2 1, asigne el color de
número menor en el conjunto (1, 2,…,c) al nodo i sin crear arcos malos (aquellos
cuyos dos nodos extremos utilizan el mismo color). Si no se puede hallar ninguno,
aplique un nuevo color c 1 1. Para la red de la figura 10.5(b), los pasos sucesivos para
construir x0 son

El algoritmo codicioso utiliza 4 clases de colores: C1 5 (1,1), C2 5 (2,2), C3 5 (3), C4 5 (4)
que se aplican a los nodos 1 y 4, los nodos 2 y 6, el nodo 3, y el nodo 5, respectivamente.

 x0 = x0
6 = (1, 2, 3, 1, 4, 2)

 x0
5 = (1, 2, 3, 1, 4)

 x0
4 = (1, 2, 3, 1)

 x0
3 = (1, 2, 3)

 x0
2 = (1, 2)

 x0
1 = (1)
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Una solución vecina, xi11 se determina cambiando el color de un nodo aleatorio en
xi a un color aleatorio en el mismo conjunto. Por ejemplo, dado x0 5 (1, 2, 3, 1, 4, 2) y su
conjunto de colores asociado c0 5 (1, 2, 3, 4), las selecciones aleatorias del color 1 a partir
de c0 y nodo (posición) 5 a partir de x0 dan 

Las nuevas clases de colores de x1 son C1 5 (1, 1, 1), C2 5 (2,2) y C3 5 (3) correspondientes
a los nodos (1,4,5), (2,6) y (3), respectivamente. Para generar x2 a partir de x1, seleccione al
azar un color de c1 5 (1, 2, 3) para reemplazar el color de un nodo seleccionado al azar en
x1. Si es necesario, repita el intercambio aleatorio hasta que x2 se vuelva distinto de x1.

Luego desarrollamos una medida de desempeño para la solución. Una medida sim-
ple requiere la minimización de la cantidad de arcos malos (aquellos cuyos dos nodos ex-
tremos tienen el mismo color). Puede desarrollarse una medida más compleja como
sigue: La solución x1 es mejor que x0 desde el punto de vista de reducir la cantidad 
de clases de colores (es decir, use menos colores al aumentar el tamaño de al menos 
una clase de color), pero al mismo tiempo aumenta la posibilidad de crear arcos malos.
Específicamente, x0 del algoritmo codicioso no tiene arcos malos, y x1 tiene un arco malo,
4-5. Por lo tanto, una medida empírica del desempeño que balancea las dos situaciones
conflictivas, incrementando los tamaños (cardinalidades) de las clases de colores y redu-
ciendo, al mismo tiempo, el número de arcos malos, requiere maximización.

donde
k 5 Cantidad de clases de colores 
Aj 5 Conjunto de arcos malos asociado con la clase de colores j

[La notación representa el número de elementos (cardinalidad) del conjunto S]. En
función de x0 y x1 del algoritmo codicioso, tenemos

Los dos valores muestran que x1 es peor que x0 [recordemos que estamos maximizando f(x)].
Por consiguiente, de acuerdo con la heurística para RS, aceptamos x1 si

Observe que la generación de xi11 a partir de xi puede redundar en una asignación
de colores no factible (Este punto no surge en los ejemplos 10.3-3 y 10.3-4 debido a la na-
turaleza de los problemas asociados). En estos casos, puede aceptarse un movimiento no
factible utilizando la condición de probabilidad del RS, pero la mejor solución se actuali-
za sólo si se encuentra una mejor solución factible.

Aplique tres iteraciones de RS adicionales a la red de colorear de la figura 10.5(b)
por medio del algoritmo codicioso para determinar la solución de inicio y la medida de
desempeño f(x), como antes se explicó.

6. Programación de cursos conflictivos. Una versión simplificada de la programación de
cursos requiere que se asignen ocho cursos (1,2,…,8) en el mínimo posible de periodos.
La tabla 10.13 asigna una “x” a los cursos conflictivos (aquellos que no pueden ser pro-
gramados en el mismo periodo).
(a) Exprese el problema como una red de colorear mapas (problema 5).
(b) Determine una solución de inicio por medio del algoritmo codicioso.
(c) Aplique tres iteraciones de RS para estimar el mínimo de periodos.

R 6 e-|f(x0) -f(x1)|/T.

 f(x1) = (32 +  22 +  12)-2(3 *  1 +  1 *  0 +  2 *  0) = 8

 f(x0) = (22 +  22 +  12 +  12) - 2(2 *  0 +  2 *  0 +  1 *  0 +  1 *  0) = 10

|S|

f(x) = a
k

j= 1
(|Cj|)

2 - 2a
k

k= 1
|Cj|.|Aj|

x1 = (1, 2, 3, 1, 1, 2)
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TABLA 10.13 Conflictos en la programación de cursos para el problema 6, conjunto 10.3b

1 2 3 4 5 6 7 8

1 x x x x

2 x x x x

3 x x x

4 x x x x

5 x x x x

6 x x x x x

7 x x x x

8 x x x x

7. Considere la conocida función del camello de seis jorobas:

Los mínimos globales exactos son (2.08984, .71266) y (.08984, 2.71266) con f* 5 21.0316.
Aplique cinco iteraciones de recocido simulado para estimar los mínimos de f(x, y). Inicie
con (x0, y0) 5 (2,1), T0 5 .5f(x0, y0), Ti 5 .5Ti21 y t 5 3 iteraciones de aceptación.

10.3.3 Algoritmo genético

El algoritmo genético (AG) imita el proceso de evolución biológica de “sobrevivencia
del más apto”. Cada solución factible de un problema se considera como un cromoso-
ma codificado por un conjunto de genes. Los códigos genéticos más comunes son el
binario (0,1) y el numérico (0, 1, 2,…,n). Por ejemplo, los cromosomas de una sola va-
riable cuyos valores factibles son 0, 1, 2, 3, 4, 5, 6, 7 y 8 pueden ser representados por los
códigos binarios (0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110 y 0001). Los cromoso-
mas para un problema de dos variables (x1, x2) con x1 5 {0,1} y x2 {0, 1, 2, 3} pueden
representarse por medio de los códigos numéricos (0,0), (0,1), (0,2), (0,3), (1,0), (1,1),
(1,2) y (1,3). Los códigos numéricos de múltiples variables también pueden represen-
tarse como códigos binarios. Por ejemplo, el código binario de (x1,x2) 5 (0,3) es (000,
110). Existen otro esquemas de codificación, incluido el código de nodo para modelos
de red (vea Beasley and Associates, 1993, parte 2).

Un conjunto de N soluciones factibles se conoce como población con N cromo-
somas. La aptitud de un cromosoma se mide en términos de una función objetivo apro-
piada. Un cromosoma más apto da un mejor valor a la función objetivo.

La idea general del AG es seleccionar dos padres a partir de una población. Los
genes de los dos padres se cruzan entonces y (posiblemente) mutan (como se explicará
en el ejemplo 10.3-5) para producir dos hijos. La descendencia reemplaza a los dos cro-
mosomas más débiles (menos aptos) en la población, y el proceso de seleccionar nue-
vos padres se repite.

La implementación real del AG requiere detalles adicionales del problema-es-
pecífico. Asimismo, las reglas para seleccionar padres y crear hijos pueden variar. Por
ejemplo, los padres pueden ser seleccionados totalmente al azar de una población, o se
pueden componer de los dos cromosomas más aptos. Algunos de estos detalles se pro-
porcionarán mas adelante.

f(x,  y) = 4x2-2.1x4 + x6/3 + xy - 4y2 + 4y4, -3 … x …  3, -  2 … y …  2
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TABLA 10.15 Generación de la población inicial con N 5 4

i Ri xi Código binario xi F(xi)

1 .9842 8 0001 70
2 .3025 3 1100 50
3 .5839 5 1010 100
4 .5712 5 Se descarta
5 .0926 1 1000 90

Ejemplo 10.3-5 (Minimización de una función de una sola variable)

El AG se aplica al problema discreto de una sola variable de la figura 10.1 con el dominio facti-
ble X 5 {1, 2, 3, 4, 5, 6, 7, 8}. Especificaremos arbitrariamente una población de tamaño N 5 4 pa-
dres cuyos cromosomas se determinan a partir de X mediante muestreo aleatorio uniforme.

El número aleatorio R se aplica a la distribución uniforme en la tabla 10.14 para generar los
cuatro miembros (N 5 4) de la población inicial y su aptitud, como se muestra en la tabla 10.15.
La solución para i 5 4 es una repetición de la solución para i 5 3 (x3 5 x4), de ahí que la solución
para i 5 4 se descarta. La población inicial es X0 5 (8, 3, 5, 1), y la mejor solución asociada es
x* 5 3 con F(x*) 5 50.

Pueden seleccionarse dos padres de la población inicial X0 5 {8, 3, 5, 1} de varias maneras:
(1) Seleccione los dos miembros más aptos. (2) Seleccione el miembro más apto y luego uno al
azar de entre los miembros restantes. (3) Seleccione dos padres al azar a partir de X0. En esta
presentación utilizamos la tercera opción. Específicamente, los dos números aleatorios R1 5

.2869 y R2 5 .0281 que dan por resultado x 5 3 con F(3) 5 50 y x 5 8 con F(8) 5 70.
Los dos hijos se crean con los dos padres seleccionados por medio de un cruce genético.

Hay varios métodos para implementar el cruce.

1. Cruce uniforme. En esta regla, los genes comunes se aplican a ambos hijos. Los genes res-
tantes de un hijo se determinan al azar, mientras que el otro hijo obtiene el gen comple-
mento.

2. Cruce de un punto. Los genes de los padres P1 y P2 se dividen al azar en el mismo punto
y luego se intercambian; es decir, P1 5 (P11, P12) y P2 5 (P21, P22) producen los cromo-
somas hijos como C1 5 {P11, P22} y C2 5 {P21, P12}.

3. Cruce de múltiples puntos. Esta regla amplía el cruce de un punto a múltiples puntos alea-
torios. Por ejemplo, en un cruce de dos puntos, P1 5 (P11, P12, P13) y P2 5 (P21, P22, P23)
producen C1 5 (P11, P22, P13) y C2 5 (P21, P12, P23).

Este ejemplo utiliza la regla de cruce uniforme. En el ejemplo 10.3-6 se utilizará la regla de
cruce de un punto.

Para los dos padres (3,8) generados en la tabla 10.15, tenemos

 P2 =  (0 0 0 1)

 P1 =  (1 1 0 0)

TABLA 10.14 Muestreo aleatorio uniforme a partir del dominio X 5 {x} 5 {1,2,3,4,5,6,7,8}

x 1 2 3 4 5 6 7 8

Probabilidad acumulativa,P(x) .125 .250 .375 .500 .625 .750 .875 1.
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En el cruce uniforme, el tercer gen común (subrayado) en P1 y P2 se transmite a ambos hijos.
Los tres genes restantes se determinan al azar como sigue. Para el hijo 1, el gen es 1 si 0 # R , .5
y 0 si .5 # R # 1. Los genes correspondientes para el hijo 2 son los complementos de los asigna-
dos al hijo 1. Por ejemplo, los tres números aleatorios .2307, .7346 y .6220 muestran que los genes
1, 2 y 4 para el hijo 1 son 1, 0 y 0, respectivamente, lo que automáticamente asigna los genes com-
plemento 0,1, y 1 al hijo 2. Por lo tanto

El hijo 2 corresponde a una solución no factible (recordemos que el intervalo factible es x 5

(1, 2,…,8). Sin embargo, antes de descartar una solución de hijo no factible, primero aplicamos la
mutación aleatoria (reemplazando un gen con otro) y luego verificamos la descendencia mutada
en cuanto factibilidad. Si persiste la no factibilidad, se debe crear en su totalidad una nueva des-
cendencia (a partir de los mismos padres). El proceso puede repetirse cuantas veces sea necesa-
rio hasta que se logre la factibilidad.

La probabilidad de mutación suele ser de aproximadamente .1: es decir, un gen muta si 0 #
R , .1. Para el hijo 1, la secuencia de números aleatorios .6901, .7698, .0871, .9535 muestra que el
tercer gen muta sólo de 0 a 1, lo que produce C1 5 (1 0 1 0) [o x 5 5 con F(5) 5 100]. Para el hijo
2, la secuencia .5954, .2632, .6731, .0983 muta al gen 4 y produce C2 5 (0 1 0 0) [o x 5 2 con F(2)
5 60]. Los cromosomas de ambos hijos son factibles, pero ninguno produce una mejor solución.
De ahí que hasta ahora la solución x* 5 3 de la población inicial siga siendo la mejor.

Los padres menos aptos en X0 (x 55 y x 5 1) ahora son reemplazados con las dos solucio-
nes descendientes (x 5 5 y x 5 2). Esto, en realidad, dice que la siguiente población es X1 5 (8,
3, 5, 2). Ahora utilizamos X1 para iniciar una nueva iteración.

Tratamiento de las variables continuas. La codificación genética en el ejemplo 10.3-5
asume que la variable x es entera. La codificación puede modificarse para incluir
variables continuas como sigue. Especifique un intervalo factible finito (de preferencia
estrecho) de la forma l # x # u, donde l y u son constantes. Sea v el valor numérico de
una cadena binaria s de n bits de longitud. La cadena s se transforma luego en un valor
real (continuo) por medio de 

La lógica de la fórmula es que el valor máximo de una cadena binaria de n bits es 20 1

21 1 22 1… 1 2n21 5 2n 2 1, y es la proporción de la cantidad (u 2 l), la cual
cuando se agrega al límite inferior l produce el valor correspondiente de x en el inter-
valo (l, u). Por ejemplo, dado 21 # x # 3 y eligiendo arbitrariamente n 5 5, la cadena
binaria (0 0 1 0 1) tiene v 5 22 1 24 5 20, y el valor asociado de x es 

El diseño del código indica que los valores grandes de n producen una mejor exactitud.
Las cadenas de n bits que representan v se utilizan de la misma manera que en el

ejemplo 10.3-5. Esto significa que los hijos se crean por medio del cruce y mutación de
los genes padre. En realidad, una situación de múltiples variables se maneja de una ma-
nera similar con cada variable representada por una cadena independiente de n bits.

x = -1 + [3 - (-1)] A 20
25 - 1

 B = 1.580645

A v2n - 1 B
x = l + (u - l) A v

2n - 1 B

 C2 = (0 1 0 1) (o x = 10)

 C1 = (1 0 0 0) (o x = 1)
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Ejemplo 10.3-6 (Secuenciación de tareas)

Este problema se resolvió en el ejemplo 10.3-2 por medio de una BT y en el ejemplo 10.3-4 por
medio de RS. Aquí, por comodidad, repetimos el enunciado (se agrega una quinta tarea para
producir un ejemplo más viable). Las tareas se secuencian en una sola máquina. Cada tarea j
tiene un tiempo de procesamiento tj y una fecha límite dj. Si la tarea j se completa antes de la
fecha límite, se incurre en un costo de retención hj por unidad de tiempo. Una tarea retardada j
da por resultado un costo de penalización pj por unidad de tiempo. La tabla 10.16 proporciona
los datos para un problema de programación de 5 tareas.
Defina

sk 5 Secuencias de las tareas utilizada en la iteración k
N(sk) 5 Secuencias de cercanías de sk

zk 5 Costo total (retención 1 penalización) de la secuencia sk

s* 5 Mejor secuencia disponible durante la búsqueda 
z* 5 Costo total asociado con s*

La primera tarea es desarrollar el código genético de los cromosomas.Aunque en el proble-
ma de secuenciación de tareas puede usarse la codificación binaria (vea, por ejemplo, Yamada y
Nakano, 1997), el algoritmo resultante es complejo porque las operaciones de cruce y mutación
pueden dar por resultado programas no factibles que deben ser “reparados”. Por lo tanto, en
lugar de utilizar un código binario, la naturaleza del problema permite representar un cromoso-
ma como una secuencia de tareas (a saber, 1-2-5-3-4).

Para demostrar cómo se crean los hijos, considere los cromosomas padres P1 5 1-3-5-2-4 y
P2 5 5-4-2-3-1. Suponga que ocurre un cruce de un punto aleatorio en el tercer gen. Los dos pri-
meros genes de C1(C2) se construyen intercambiando los dos primeros genes de P1(P2). Los úl-
timos tres genes son los que permanecen a partir de P1(P2) después de excluir a los primeros dos
genes, es decir 

Primeros 2 genes de C1 5 {5,4}
Primeros 2 genes de C2 5 {1,3}
Últimos 3 genes de C1 5 {1, 3, 5, 2, 4} 2 {5,4} 5 {1, 3, 2}
Últimos 3 genes de C2 5 {5, 4, 2, 3, 1} 2 {1, 3} 5 {5, 4, 2}

Por lo tanto, C1 5 5-4-1-3-2 y C2 5 1-3-5-4-2.
A continuación, las mutaciones de C1 y C2 se transmiten de la siguiente manera. Si R , 1,

un cromosoma hijo se somete a mutación. La mutación se implementa entonces para el hijo
intercambiando dos genes seleccionados al azar (tareas). Por ejemplo, los números aleatorios R
5 .8452 (..1) y R 5 .0342 (, .1) aplicados a C1 y C2, respectivamente, indican que sólo muta
C2. Utilizando R 5 .1924 y R 5 .8299 para determinar los genes intercambiados en C2, el primer

TABLA 10.16 Datos para el problema de secuenciación de 5 tareas en una sola máquina

Tarea, j
Tiempo de procesamiento

en días, Tj

Fecha
límite, dj

Costo de retención
por día, hj

Costo de penalización
por día, pj

1 10 15 $3 $10
2 8 20 2 22
3 6 10 5 10
4 7 30 4 8
5 4 12 6 15
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TABLA 10.17 Iteraciones del AG aplicadas al problema de secuenciación de tareas del ejemplo 10.3-6

Iteración Secuencia, s z Explicación

0 P1 1-2-3-4-5 512 -Población inicial aleatoria (P1,P2,P3,P4).
P2 2-3-4-1-5 605 -Los padres seleccionados con P4 (mejor z) y P3 (al azar).
P3 4-1-5-2-3 695 -El cruce de P3 y P4 se inicia en la posición 3.
P4 3-2-1-4-5 475
C1 3-2-4-1-5 573 -C1 muta al intercambiar las posiciones 2 y 5.
C2 4-1-3-2-5 829 -C2 muta al intercambiar las posiciones 1 y 5.

mC1 3-5-4-1-2 534
mC2 5-1-3-2-4 367

1 P1
P2

1-2-3-4-5
3-5-4-1-2

512
534

-Los peores padres P2 y P3 en la iteración 0 son 
reemplazados por sus mC1 y mC2.

P3 5-1-3-2-4 367 -Los padres seleccionados son P3 (mejor z) y P1 (al azar).
P4 3-2-1-4-5 475 -El cruce de P1 y P3 se inicia en la posición 4.
C1 5-1-3-2-4 367 -C1 muta al intercambiar las posiciones 2 y 3.
C2 1-2-3-5-4 439 -C2 muta al intercambiar las posiciones 2 y 4.

mC1 5-3-1-2-4 314
mC2 1-5-3-2-4 361

2 P1
P2

5-3-1-2-4
1-5-3-2-4

314
361

-Los peores padres P1 y P2 en la iteración 1 son 
reemplazados por sus mC1 y mC2.

P3 5-1-3-2-4 367 -Los padres seleccionados son P1 (mejor z) y P4 (al azar).
P4 3-2-1-4-5 475 -El cruce de P1 y P4 se inicia en la posición 3.
C1 3-2-5-1-4 292 -C1 muta al intercambiar las posiciones 1 y 2.
C2 5-3-2-1-4 222 -Ninguna mutación en C2.

mC1 2-3-5-1-4 324
mC2 5-3-2-1-4 222

3 P1
P2

5-3-1-2-4
1-5-3-2-4

314
361

-Los peores padres P3 y P4 en la iteración 2 son 
reemplazados por su mC1 y mC2.

P3 2-3-5-1-4 324 -Los padres seleccionados son P4 (mejor z) y P2 (al azar).
P4 5-3-2-1-4 222 -El cruce de P2 y P4 se inicia en la posición 3.
C1 5-3-1-2-4 314 -Ninguna mutación.
C2 1-5-3-2-4 361 -Ninguna mutación.

número aleatorio selecciona la posición 1 (tarea 1), y el segundo número aleatorio selecciona la
posición 5 (tarea 2). Por lo tanto C2 muta de 1-3-5-4-2 a 2-3-5-4-1.

La tabla 10.17 resume los cálculos de las iteraciones 0 a 3. Por comodidad, los cálculos de los
costos (valores de z) se automatizan por medio de la hoja de cálculo excelJobSequencing.xls. La
mejor secuencia está asociada con P4 en la iteración 3.

Resumen del algoritmo genético

Paso 0:
(a) Genere una población aleatoria X de N cromosomas factibles.
(b) Para cada cromosoma s en la población seleccionada, evalúe su aptitud aso-

ciada. Registre s* como la mejor solución disponible hasta ahora.
(c) Codifique cada cromosoma mediante una representación binaria o numérica.
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Paso 1:
(a) Seleccione dos cromosomas padres de la población X.
(b) Cruce los genes padre para crear dos hijos.
(c) Mute los genes hijo al azar.
(d) Si las soluciones resultantes son no factibles, repita el paso 1 hasta lograr la

factibilidad. Si no, reemplace los dos padres más débiles con los nuevos hijos
para formar una nueva población X y actualice s*. Vaya al paso 2.

Paso 2: Si se llega a una condición de terminación, deténgase: s* es la mejor solución
disponible. De lo contrario, repita el paso 1.

CONJUNTO DE PROBLEMAS 10.3C

1. Suponga que se utiliza el AG para determinar el máximo de F(x), x 5 0, 1,…,300. Que x
5 171 y x 5 220 representen a los padres P1 y P2.
(a) Represente P1 y P2 como códigos binarios.
(b) Utilice el cruce uniforme para crear C1 y C2.
(c) Cree C1 y C2 por medio de un cruce de un punto.
(d) Cree C1 y C2 utilizando un cruce de dos puntos.
(e) En la parte (b), use números aleatorios para mutar C1 y C2.

2. Realice dos iteraciones adicionales del ejemplo 10.3-5.
3. Realice una iteración adicional del ejemplo 10.3-6.

*4. Posee una baraja de diez cartas numeradas del 1 al 10. Tiene que dividir las diez cartas en
dos pilas de modo que la suma de las cartas de la pila 1 sea 36 y el producto de las cartas
de la pila 2 sea 36. Desarrolle un AG para el problema utilizando una población inicial de
4 padres, un cruce de 1 punto y una tasa de mutación de 1%. Realice 5 iteraciones.

5. Tiene un pedazo de alambre cuya longitud es L 5 107.1 pulgadas y le gustaría darle una
forma de marco rectangular. Use el AG para determinar el ancho y la altura que dará por
resultado el área máxima del rectángulo.

6. Repita el problema 5 suponiendo que el alambre se utiliza para formar una caja de volu-
men máximo.

7. Considere el siguiente problema

Realice cinco iteraciones de AG para estimar la solución óptima.
8. En el juego de ajedrez, las reinas se mueven horizontal, verticalmente a lo largo de tra-

yectorias diagonales (45º). Tenemos que colocar N reinas en un tablero (N 3 N) de modo
que ninguna reina pueda “tomar” a otra reina. Diseñe un AG para el problema iniciando
con una población aleatoria de 4 padres y utilizando un cruce de un punto. Una medida
razonable de la efectividad es el número de reinas en conflicto. Realice tres iteraciones.

10.4 APLICACIÓN DE METAHEURÍSTICA A PROGRAMAS 
LINEALES ENTEROS

Esta sección muestra cómo se aplica la metaheurística desarrollada en la sección 10.3 a
los siguientes PLE generales.

Maximizar z = a
n

j= 1
cjxj

Maximizar f(x, y) =  xsen (4x) +  1.1 sen (2y), x =  0, 1, 2, . . . . , 10, y =  0, 1, 2, . . . , 10
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sujeto a

Los elementos básicos de una metaheurística de PLE incluyen la selección de la
solución de inicio, la definición de la vecindad y la determinación del siguiente movi-
miento de búsqueda.

1. Selección de la solución de inicio. La metaheurística utiliza la solución óptima
continua redondeada como solución de inicio.

2. Definición de las vecindades. Es más manejable computacionalmente buscar las
variables una a la vez definiendo las vecindades para la variable xj como 

Por ejemplo, suponga que la solución actual en un problema de 5 variables es (8,
6, 4, 0, 2), y suponga que x3 es objetivo de cambio. Entonces 

Las soluciones no factibles que violan las cotas superior e inferior se excluyen de
la vecindad. Por ejemplo, si x4 está diseñada para que cambie y 0 # x4 # q, en-
tonces N(x4) 5 {(8, 6, 4, 21, 2), (8,6, 4, 1, 2)} porque x4 5 1 es no factible.

3. Determinación del siguiente movimiento de búsqueda. El siguiente movimiento de
búsqueda se determina a partir de una vecindad como la solución X 5 (x1,x2,…,xn)
con no factibilidad mínima.5 La medida de no factibilidad se calcula como 

Si IX 5 0, entonces el siguiente movimiento de búsqueda es factible.
El resto de la sección detalla el desarrollo de la BT, el RS y el AG para PLE.6

Las ideas pueden aplicarse a cualquier PLE y, de hecho, puede ampliarse a pro-
gramas no lineales.

+ a
( = ) 

 máx {0, |a
n

j= 1
aijxj -  bi|} + a

n

j= 1
(máx {0, Lj - xj} +  máx {0, xj - Uj})

IX = a
( … ) 

 máx {0,a
n

j= 1
aijxj -  bi} + a

( Ú )
 máx {0, bi - a

n

j= 1
aijxj}

N(x3) = {(8, 6, 3, 0, 2),  (8, 6, 5, 0, 2)}

N(xj) = {(x1, Á  xj - 1, Á ,  xn),  (x1, Á , xj + 1, Á , xn)}

xj entera, j = 1, 2, Á , n

Lj … xj … Uj, j = 1, 2, Á , n

a
n

j= 1
aijxj( … , Ú , o = ) bi, i = 1, 2, Á , m

5La metaheurística más compleja incluye técnicas para restaurar la factibilidad o utilizar funciones lagran-
gianas para penalizar la violación de la factibilidad (vea, por ejemplo, Abramson y Randall, 1999).

6Se recomienda repasar la sección 10.3 antes de proceder con este material.
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10.4.1 Algoritmo tabú aplicado a una PLE

La figura 10.6 presenta los pasos algorítmicos de la BT aplicados a una PLE de n va-
riables. Utiliza las siguientes definiciones:

X 5 (x1,…,xj,…,xn) 
Lj 5 Cota inferior en xj (preestablecida 5 0) 
Uj 5 Cota superior en xj (preestablecida 5 q)
N(xj) 5 {(x1,…,xj 2 1,…,xn), (x1,…,xj 1 1,…xn)}

Solución X en la cual xj es reemplazada con xj 1 k (k 5 6 1) en la iteración t

X* 5 Mejor solución factible encontrada durante la búsqueda 
z* 5 Valor objetivo asociado con X* 

 zj
t (k) = Valor objetivo asociado con Xj

t (k)
 Ij
t(k) = Medida de no factibilidad de la solución Xj

t (k)
 Xj
t(k) =

1. Set X 5 solución redondeada de programación lineal y establecer z* 5 2q (caso de
maximización)

2. Iteración for t 5 1 a N

3. Set , , y , 

4. For j = 1 a n

5. If xj alcanza su límite de permanencia, luego eliminar j desde la lista tabú

6. For k = -1 a 1 paso 2

7. if o then next

8. Set

9. Determinar no factibilidad para 

10. If then

11. If then

12. set , y 

13. Else: if es tabú then next

14. Else y 

15. Else: If es tabú then next

16. Else: If then set , , y 

17. next

18. next

19. If , then establecer y colocar j* en la lista tabú.

20. Else: Vaciar la lista tabú (todas las variables son tabú o todos los vecinos no 
mejoran a z)

21. Next t

X = (x1, . . . , xj* + k*, . . . , xn)j* 7 0

j

k

k* = kj* = jI* = l j
t(k)I j

t(k) 6 l*
jj

k* = kj* = j

jj

z* = z j
t(k)j* = j, k* = k

z j
t(k) 7 z*

I j
t(k) = 0

xj + k, . . . , xn)Xj
t(k) = (x1, . . . ,I j

t(k)

X =  Xtemp

k
x j + k 7 Ujx j + k 6 Lj

Xtemp =  Xk* = 0j* = 0l* = q

Metaheurística tabú aplicada a una PLE.
FIGURA 10.6
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; encontrada en la iteración t
j* 5 Índice j asociado con I*
k* 5 Valor de k (5 61) asociado con I*
t 5 Periodo de permanencia tabú, expresado en número de iteraciones.

La lista tabú se compone de los índices de variables tabú.
El algoritmo se inicia estableciendo X igual a la solución de PL óptima redon-

deada (instrucción 1). En la iteración t, se permite que una variable tabú defina (de
acuerdo con el criterio de aspiración) el siguiente movimiento de búsqueda si da por
resultado una solución factible mejorada (instrucciones 11 y 12). En caso contrario, se
excluye una variable tabú (instrucción 13).

En la iteración t, la búsqueda calcula la medida de no factibilidad asociada
y el valor objetivo para todas las j y k. El algoritmo sigue la pista al candidato
para el siguiente movimiento al actualizar los índices j* y k* (instrucción 14). Una
mejor solución factible define automáticamente el siguiente movimiento (instruccio-
nes 10, 11 y 12). De lo contrario, se selecciona el movimiento no tabú con la mínima
medida de no factibilidad ($ 0) (instrucción 16). Si j* 5 0, todas las soluciones vecinas
son tabú y la lista se vacía para permitir que la búsqueda continúe (instrucción 20).

Ejemplo 10.4-1

Se aplica la BT a la siguiente PLE:

Sujeto a

La solución continua óptima es x1 5 4.625, x2 5 0, x3 5 14.625, x4 5 14.5 con z 5 82.125. Su so-
lución entera óptima (obtenida por medio de TORA) es x1 5 5, x2 5 1, x3 5 14, x4 5 14, x4 5 13
con z 5 79. La solución redondeada es X1 5 (5, 0, 15, 14) o X2 5 (5, 0, 15, 15). Las medidas de no
factibilidad asociadas son (¡compruébelo!). La solución X1 tiene una medida
de no factibilidad menor. Por consiguiente, se utiliza para iniciar la búsqueda.

La tabla 10.18 da cinco iteraciones utilizando un periodo de permanencia t 5 4 iteraciones.
Un índice subrayado identifica una variable tabú. Por ejemplo, x2 5 1 permanece en la lista du-
rante las iteraciones 1, 2, 3 y 4. La búsqueda encuentra la primera solución factible en la iteración
3 (la que resulta ser la mejor solución en las 5 iteraciones). En la iteración 4, todas las variables
son tabú, y ninguna solución vecina conduce a una mejor solución. Por lo tanto, la lista tabú se
vacía en la iteración 5 (y retiene la misma solución de la iteración 4, sin etiqueta de tabú) para
permitir que la búsqueda continúe. En problemas grandes típicos, es improbable que todas las
variables aparezcan en la lista tabú al mismo tiempo.

IX1
= 83 y IX2

= 85

x1, x2, x3,  x4  enteros no negativos

 -x1 + x2 + x3  … 10

 2x1 + x2 - 2x3 + 2x4 …  9

 3x1 - 2x2 + x3 - x4 …  14

 x1 + 2x2 - 3x3 - x4 …  10

Maximizar z =  2x1 +  x2 +  3x3 +  2x4

zj
t(k)

Ij
t(k)

k = -1, 1} I* = mín {Ij
t (k), j = 1, 2, Á , n
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Momento de Excel

La figura 10.7 proporciona el diseño de una hoja de cálculo Excel para BT aplicada a una PLE
(archivo excelTabu-IP-Heuristic.xls). Permite experimentar con problemas pequeños (hasta de
10 variables). La presentación de la hoja de cálculo es básicamente una herramienta de aprendi-
zaje diseñada para reforzar su comprensión de los detalles de los AT. Los algoritmos de BT co-
merciales incluyen reglas adicionales para resolver problemas muy grandes.

CONJUNTO DE PROBLEMAS 10.4A

1. Verifique las entradas en las iteraciones 1, 2 y 3 en la tabla 10.18.
2. Realice 10 iteraciones de BT en cada uno de los siguientes problemas.

(a)
sujeto a

(b)
sujeto a

3. Experimento con Excel. Use el archivo excelTabu-IP-heuristic.xls. para hallar una solu-
ción a los siguientes problemas:
(a) Problema de selección de un proyecto del ejemplo 9.1-1.
(b) Problema de cobertura de conjunto del ejemplo 9.1-2
Compare las soluciones heurísticas y exactas.

x1, x2, x3 Ú 0  y entera

  x1 - 3x2 + 2x3 … 3

4x2 - 3x3 … 2

-x1 + 2x2 +
  x3 … 4

Maximizar z = 3x1 + x2 + 3x3

x1, x2, x3 Ú 0  y entera

 -x1 + x2 + x3 … 5

 -x1 + 6x2 … 5

 4x1 - 4x2 … 5

Maximizar z = 4x1 + 6x2 + 2x3

TABLA 10.18 Búsqueda tabú del ejemplo de PLE con periodo de permanencia t 5 4 

Iteración x1 x2 x3 x4 I* z j* k*

Inicio de la búsqueda 4.625 0 14.625 14.5 82.125
óptima de PL 5 0 15 14 2 83

1 5 1 15 14 1 84 2 1
2 5 1 15 13 2 82 4 –1

(mejores) 3 5 1 14 13 0 79 3 –1
(todos tabú) 4 4 1 14 13 1 77 1 –1

5 4 1 14 13 1 77 1 –1
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FIGURA 10.7

Aplicación de búsqueda tabú a la PLE al inicio de la sección 10.4, realizada con Excel 
(archivo excelTabu-IP-Heuristic.xls)
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10.4.2 Algoritmo de recocido simulado aplicado a una PLE

En la sección 10.4.1 que aborda la BT, todas las variables se examinan antes de selec-
cionar el siguiente movimiento de búsqueda. La misma estrategia puede usarse con el
RS. Sin embargo, como una variación, adoptaremos una nueva estrategia que requiere
examinar una variable seleccionada al azar en cada iteración.

Se utilizan las siguientes definiciones al detallar los pasos del algoritmo de RS:

X 5 (x1,…,xj,…,xn)
Lj 5 Cota inferior en xj (preestablecida 5 0) 
Uj 5 Cota superior en xj (preestablecida 5 q) 
N(xj) 5 {(x1,…,xj 2 1,…,xn), (x1,…,xj 1 1,…xn)}

Solución X en la cual xj es reemplazada con

X* 5 Mejor solución factible encontrada durante la búsqueda 
z* 5 Valor objetivo asociado con X(k)

j* 5 Índice j asociado con I*
k* 5 Índice k asociado con I*
T0 5 Temperatura inicial
r 5 Relación de reducción de la temperatura aplicada a todas las t iteraciones de

aceptación
Ti 5 Temperatura en el nivel i

a 5 Contador de la cantidad de iteraciones de aceptación desde la última reduc-
ción de temperatura

a* 5 Cantidad de iteraciones de aceptación necesarias para activar la reducción
de la temperatura

zúltimo 5 Valor objetivo de la última solución aceptada.
R 5 (0,1) número aleatorio

La figura 10.8 resume los pasos del algoritmo. Al inicio del algoritmo, X se esta-
blece igual a la solución de la PL redondeada (instrucción 1). En cada iteración se se-
lecciona al azar un índice j 5 j* de entre el conjunto de variables {1, 2,…,n} (instrucción
4), y la medida de factibilidad se determina para las soluciones de vecindad (ins-
trucciones 5 a 8). La factibilidad incluye la verificación de las cotas superior e inferior
Uj y Lj.

1. Si la solución ya se encontró antes (es decir, es redundante), rechácela e
inicie una nueva iteración (instrucción 9).

2. Si es no factible, acéptela como el siguiente movimiento (instrucción 10).Xj*
t   (k*)

Xj*
t   (k*)

Ij
t (k)

= rTi-1, 0 6 r 6 1

I* = mín{Ij
t (k), k = -1, 1; j =  1, 2, Á , n} encontrada en la iteración t

zj
t(k) =  Valor objetivo asociado con Xtj(k)
Ij
t(k) = Medida de no factibilidad de la solución Xj

t(k)
 xj +  k (k =  ; 1) en la iteración t

Xj
i(k) =
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FIGURA 10.8

1. Set a 5 0, i 5 0, X 5 solución de PL redondeada inicial

2. Set l* 5 q, y zúltimo 5 2q (asumir maximización)

3. For iteración t 5 1 a N

4. Seleccionar j al azar en el intervalo [1, n] y establecer j* 5 j

5. For k 5 21 a 1 paso 2

6. Determinar para 

7. If

8. next

9. If es redundante, then rechazar el movimiento, next t

10. If , then es el siguiente movimiento

11. Else: If then

12. aceptar , set y 

13. Else: If then

14. aceptar , set y 

15. Else rechazar e iniciar una nueva iteración

16. If then , , 

17. Next t

T i = rT i -1i = i + 1a = 0a = a*
X j *

t (k*)

a = a + 1zúltimo = z j *
t (k*)X j *

t (k*)

R … exp (- |zúltimo - zj *
t (k*)|>Ti )

a = a + 1zúltimo = z j *
t (k*)X j *

t (k*)

z j *
t (k*) 7 = zúltimo

X j *
t (k*)l* 7 0

X j *
t (k*)

k

l j *
t (k) 6 l* then l* = l j *

t (k ), k * = k

= (x1, . . . , x j* + k, . . . , xn)Xj *
t  (k)lj *

t (k)

Metaheurística de recocido simulado aplicada a una PLE

3. Si no es una solución factible peor, acéptela como el siguiente movi-
miento (instrucción 12).

4. Si es una solución inferior factible, acéptela como el siguiente movimiento si

De lo contrario rechácela (instrucciones 13 a 15).

Antes de iniciar una nueva iteración, la temperatura T se reduce si a 5 a* (instrucción 16).

Ejemplo 10.4-2

Utilizamos la PLE definida en el ejemplo 10.4.1 e iniciamos con la solución redondeada (x1 5 5,
x2 5 0, x3 5 15, x4 5 15) y la temperatura inicial T0 5 .75 3 (valor objetivo óptimo de PL) 5
.75(82.125) L 62. La reducción de temperatura se activa cada a* 5 2 iteraciones de aceptación
utilizando una relación de reducción r 5 .5. La tabla 10.19 resume 10 iteraciones. En cada itera-
ción se subraya la variable seleccionada al azar. Por ejemplo, x1 es la selección aleatoria en la ite-
ración 1 y x4 en la iteración 2. De acuerdo con las reglas del algoritmo, una solución no factible no
redundante se acepta como un movimiento hacia la consecución de la factibilidad. Esto ocurre en
las iteraciones 1, 2 y 4. Además, siempre se genera un movimiento a partir del movimiento acep-
tado o permitido más reciente. Por ejemplo, el movimiento en la iteración 6 se genera a partir del
movimiento permitido en la iteración 4 porque se rechaza el movimiento en la iteración 5.

El movimiento en la iteración 3 se acepta porque es la primera solución factible encontrada
en la búsqueda. Esto establece z* 5 78 y X* 5 (4, 0, 14, 14). En la iteración 6, la solución factible

R … exp¢- ƒ zúltimo - ztj*(k
*) ƒ

T
≤ .

Xj*
t (k*)

Xj*
t   (k*)
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TABLA 10.19 Recocido simulado aplicado a la PLE del ejemplo 10.4-1 con T0 5 .75 
(valor objeto de la PL), r 5 .5, y a* 5 2 

Iteración t x1 x2 x3 x4 I* zj*
t (k*) zúltimo

Temp
T

exp¢ - ƒ zúltimo - ztj*(k
*) ƒ

T
≤ R

Explicación 

Inicio de la
búsqueda

5 0 15 15 2 85 -q 62 Primera solución de prueba no factible

1 4 0 15 15 3 83 -q 62 Movimiento no factible: Permitir
2 4 0 15 14 1 81 -q 62 Movimiento no factible: Permitir

(Mejor)3 4 0 14 14 0 78 -q 62 Primer movimiento factible: Aceptar
4 4 0 13 14 1 75 78 62 Movimiento no factible: Permitir
5 4 0 14 14 0 78 78 62 Redundante: Rechazar
6 4 0 13 13 0 73 78 62 0.92 0.11 : AceptarR 6 P{aceptar}
7 4 1 13 13 0 74 73 31 : Aceptarzj*k*

t
 7  zúltimo

8 4 1 13 12 0 72 74 31 0.94 0.93 : AceptarR 6 P{aceptar}
9 4 1 12 12 0 69 72 15.5 0.82 0.96 : RechazarR 7 P{aceptar}

10 4 0 13 12 0 71 72 15.5 0.94 0.38 : AceptarR 6 P{aceptar}

La mejor solución ocurre en la iteración 3

inferior se acepta porque satisface la condición R , P {aceptar}. En la iteración 7, el movimiento
factible se acepta porque es una mejora sobre la última solución aceptada (zúltima) en la iteración
6. Observe que la temperatura se ajusta cada 2 iteraciones de aceptación en las iteraciones 7 y 9.

Momento de Excel

La figura 10.9 muestra una hoja de cálculo Excel para la aplicación del RS a la PLE (archivo
excelSA-IP-Heuristic.xls). Como en la BT, la aplicación permite experimentar con problemas de
tamaño pequeño (número de variables # 10). El usuario puede estudiar el impacto de cambiar
los datos en los pasos 2 y 3 en la eficacia del algoritmo. Una de las observaciones inmediatas
acerca del comportamiento del algoritmo es que la “frecuencia” de rechazo de las soluciones fac-
tibles se incrementa con la cantidad de iteraciones, un comportamiento típico del RS.

CONJUNTO DE PROBLEMAS 10.4B

1. Realice 5 iteraciones del ejemplo 10.4-2 suponiendo cj 5 1 para todas las j.
2. Realice 5 iteraciones de RS para el siguiente problema:

sujeto a

Todas las variables son binarias

3. Experimento con Excel. Utilice el archivo excels-IP-Heuristic.xls para hallar una solución
a la siguiente PLE:

Minimizar z = x1 + x2 + x3 + x4 + x5 + x6 + x7

30x1 + 8x2 + 6x3 + 5x4 + 20x5 + 12x6 + 25x7 + 24x8 + 32x9 + 29x10 …  100

+ 92x6 + 102x7 + 74x8 + 67x9 + 80x10

Maximizar z =  99x1 + 90x2 + 58x3 + 40x4 + 79x5
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FIGURA 10.9

Aplicación Excel de recocido simulado a la PLE del ejemplo 10.4-1 (archivo excelSA-IP-Heuristic.xls)
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sujeto a

Todas las variables son binarias

10.4.3 Algoritmo genético aplicado a la PLE 

En la sección 10.2.3, se utiliza codificación binaria en el desarrollo del AG. La misma
idea se puede aplicar a la PLE. Por ejemplo, en un problema de 3 variables, la solución
(x1, x2, x3) 5 (100, 24, 60) puede representarse mediante el código binario de la tabla
10.20. Por lo general, el número de bits binarios se ajusta para representar el valor má-
ximo de cualquiera de las variables.

Una forma cómoda de representar las variables de PLE es utilizar una codifica-
ción numérica. En este caso, la solución de PLE redondeada en un problema de n
variables se representa como Los cromosomas de la población
inicial pueden generarse al azar a partir del intervalo
Los límites resultantes del intervalo se ajustan, si las cotas Lj # xj # Uj, j 5 1, 2, 3,…, n
son más estrechas. Una forma cómoda de determinar los genes es muestrear desde el
intervalo de búsqueda continuo y luego aproximar el resultado a un valor entero.

La tabla 10.21 demuestra la idea de generar una población de tres cromosomas
padre comenzando con la solución (x1, x2, x3) 5 (100, 1, 60) con cotas 0 # x1 # 99, 0 #

(xqj - qxqj,  xqj + qxqj), 0 6 q 6 1.
X =  (xq1, xq2, Á , x qn).

       x3 + x4 + x5 +
 
x6 

+ x7  Ú 14

    x2 + x3 + x4 + x5 +
 
x6  Ú 19

x1 + x2 + x3 + x4 + x5  Ú 18

x1 + x2 + x3 + x4     
+ x7  Ú 17

x1 + x2 + x3       + x6 
+ x7  Ú 14

x1 + x2       +  x5  +  x6 +  x7  Ú 12

x1      
+ x4 + x5 +

 
x6 

+ x7  Ú 20

TABLA 10.20 Codificación binaria de (x1,x2,x3) 5 (100,24,60)

x1 = 100 x2 = 24 x3 = 60

0010011 0001100 0011110

TABLA 10.21 Generación aleatoria de la población inicial de 3 padres comenzando con
la solución (x1,x2,x3) 5 (100,24,60)

x1 x2 x3

Valor inicial 100 8 60
Lj … xj … Uj 0 … x1 … 99 0 … x2 … q 50 … x3 … q
(xj - qxj,  xj + qxj), q = .2 (80, 120) (6.4, 9.6) (48, 72)
Intervalos de búsqueda ajustados (80, 99) (6, 10) (50, 72)
Padre 1 92 7 58
Padre 2 81 9 70
Padre 3 90 8 62
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x2 # q, 50 # x3 # q, y utilizando q 5 2. Los genes de cada padre se determinan al azar
a partir de los intervalos respectivos (ajustados).

Supongamos que se seleccionan los padres 1 y 2 en la tabla 10.21 para crear los
dos hijos basados en un cruce de un punto en x3. Esto significa que el gen 3 se inter-
cambia entre los padres 1 y 2 para proporcionar los cromosomas hijos como

Hijo 1: (92, 7, 70)

Hijo 2: (81, 9, 58)

(Es irrelevante cuál cromosoma está diseñado como hijo 1 o hijo 2.)
La mutación se aplica de acuerdo con una probabilidad (pequeña) especificada.

Supongamos que el gen 1 del hijo 1 muta a partir del valor original de 92 al nuevo valor
aleatorio de 89 seleccionado desde el intervalo de búsqueda (80,99). Por lo tanto, el
cromosoma mutado del hijo 1 se transforma en (89, 7, 70).

La figura 10.10 describe los pasos algorítmicos para la aplicación del AG a una
PLE de n variables. Se utilizan las siguientes definiciones:

X 5 (x1,…,xj,…,xn)

q 5 Relación de búsqueda vecina (, 1) 

X* 5 Mejor solución factible encontrada durante la búsqueda

z* 5 Valor objetivo asociado con X* 

Ii 5 No factibilidad asociada con el cromosoma i

I* 5 Menor no factibilidad asociada con la población actual

i* 5 Cromosoma con el mejor valor objetivo o la mínima 
no factibilidad en la población actual

i** 5 Cromosoma con la peor no factibilidad en la población actual

i*** 5 Cromosoma con la siguiente peor no factibilidad con respecto a i**

P = Tamaño de la población

c 5 Cantidad de cruces 

p 5 Probabilidad de mutación

La metaheurística se inicia con una población de P cromosomas (instrucción 3).
Luego se examina la población en busca de la mejor solución factible (instrucciones 5
a 8). Si tal solución existe, identifica al padre 1. Si no existe ninguna solución factible, se
utiliza el cromosoma con la no factibilidad mínima en lugar de identificar al padre 1
(instrucción 9). Luego se determina el padre 2 al azar de entre los cromosomas restan-
tes (después de excluir el del padre 1) (instrucción 11). El padre 1 y el padre 2 crean al
hijo 1 y al hijo 2 (utilizando cruces o algún otro método) con mutación aleatoria (ins-
trucción 12). A continuación, el hijo 1 y el hijo 2 reemplazan a los cromosomas i** e
i*** que tienen las dos no factibilidades peores (instrucciones 13 a 16).
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Ejemplo 10.4-3

Para la PLE en el ejemplo 10.4-1, la tabla 10.22 proporciona una población inicial de 10 cromo-
somas generados al azar con la solución de programación lineal redondeada (5, 0, 15, 15).

Los intervalos de búsqueda, basados en q 5 .2 se dan en la parte inferior de la tabla. Los
diez cromosomas resultan ser no factibles. Se elige el cromosoma 5 como padre 1 porque tiene la
no factibilidad mínima. El cromosoma 2 se selecciona al azar de entre los cromosomas restantes
para representar el padre 2. Por lo tanto

Padre 1: (4, 0, 15, 16)

Padre 2: (5, 0, 15, 17)

Con sólo un cruce (c 5 1), la partición (seleccionada al azar) ocurre en la variable 4. Por lo
tanto, los hijos se crean intercambiando el gen 4 (mostrado en negritas) como:

Hijo 1: (4, 0, 15, 17) 

Hijo 2: (5, 0, 15, 16)

FIGURA 10.10

1. Set X 5 solución de PL redondeada inicial, z* 5 2 q (suponga maximización)

2. Calcular los intervalos de búsqueda utilizando q

3. Crear la población inicial de tamaño P al azar utilizando los intervalos de búsqueda 

4. Iteración For i 5 I a N

5. For i 5 1 a P

6. Determinar la no factibilidad Ii asociada con el cromosoma i

7. If Ii 5 0 then

8. If zj . z*then establecer I* 5 0, z* 5 zj y X* 5 Xi

9. Else: If Ij , I* then establecer I* = Ii e i* = i

10. Next

11. Set i* como Padre 1 y seleccionar al azar el Padre 2 de entre {1, 2,…, P} 2 {i*}

12. Crear los Hijos 1 y 2 de los padres 1 y 2 utilizando cruces c

13. Mutar los genes de los hijos con probabilidad p

13. For i 5 1 a P

14. Determinar la no factibilidad Ii para el cromosoma i

15. Identificar i** e i*** con las dos peores no factibilidades

16. Next

17. If i*** e i*** tienen no factibilidad cero then

18. Set i** e i*** para que correspondan a los dos peores valores objetivo 

19. Reemplazar i** e i*** con el Hijo 1 y el Hijo 2, respectivamente 

20. Next t

i

i

Metaheurística genética aplicada a una PLE
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A continuación aplicamos mutación a cada hijo. La probabilidad de mutación de .1 exige
mutar un gen (a un nuevo valor en el intervalo de búsqueda) si R , .1. Como se muestra en la
tabla, sólo el gen 14 (subrayado) del hijo 1 muta de 17 a 14.

En la siguiente iteración, el hijo 1 y el hijo 2 reemplazan a dos padres en la población actual.
El padre 3 tiene la no factibilidad más alta (5 9), de ahí que i** 5 3. Hay un empate entre los pa-
dres 9 y 10 por la siguiente no factibilidad peor. El empate se rompe a favor del cromosoma con
el peor valor objetivo (87 para el padre 9 contra 76 para el padre 10), lo cual da i*** 5 10. Por
consiguiente, el padre 3 y el padre 10 son reemplazados por el hijo 1 y el hijo 2, respectivamente.
La nueva población ya esta lista para una nueva iteración.

Momento de Excel 

La figura 10.11 muestra una implementación Excel del algoritmo genético (archivo excelGA-IP-
Heuristic.xls). Puede ejecutar las iteraciones una por una o ejecutarlas todas de forma automáti-
ca. En el primer caso, el botón FIRST Iteration inicia los cálculos. Cada clic adicional del botón
Next Iteration genera una nueva iteración. Este diseño iterativo utiliza códigos de colores para
demostrar cómo un cromosoma hijo reemplaza a un cromosoma padre en la siguiente iteración.

Si la cantidad de cruces, c, en la celda H4 se establece igual a cero, las medias aritmética y
geométrica de los padres dan los genes de los dos hijos.

CONJUNTO DE PROBLEMAS 10.4C

1. Realice la siguiente iteración que sigue de la que se da en la tabla 10.22.
2. Realice dos iteraciones del problema 2, conjunto 10.4b.
3. Experimento con Excel. Aplique excelIPHeuristicGA.xls al problema 3, conjunto 10.4b.

TABLA 10.22 Población inicial de tamaño p 5 10 generada a partir de la solución 
redondeada de PL (5, 0, 15, 15) con q 5 2, cruce c 5 1 y probabilidad de mutación de .1

Cromosoma x1 x2 x3 x4 I z

1 4 1 16 15 3 87
(Padre 2) 2 5 0 15 17 5 89

3 6 1 17 12 9 88
4 4 0 12 14 3 72

(Padre 1) 5 4 0 15 16 2 85
6 5 1 12 13 4 73
7 6 0 14 13 6 80
8 6 1 15 12 5 82
9 6 0 15 15 7 87

10 4 0 12 16 7 76
Hijo 1 4 0 15 14 1 81
Hijo 2 5 0 15 16 3 87

Intervalos de búsqueda (4, 6) (0, 1) (12, 18) (12, 18)
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FIGURA 10.11

Aplicación Excel de metaheurística genética a la PLE al inicio de la sección 10.4 (archivo excelGA-IP-Heuristic.xls) 
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10.5 INTRODUCCIÓN A LA PROGRAMACIÓN DE RESTRICCIÓN (PR)7

Supongamos que deseamos determinar los valores de las variables x, y y z que satisfa-
gan los siguientes requerimientos:

Una forma de resolver el problema es enumerar las 800 combinaciones, lo cual es
computacionalmente ineficiente. La programación de restricción resuelve el problema
produciendo dominios más estrechos para las variables y luego aplicando un árbol de
búsqueda “inteligente” para hallar las soluciones factibles.

Las restricciones x Z 7 y y Z 2 reducen los dominios x e y a

Dominio de x: x e {1, 2, 3, 4, 5, 6, 8}

Dominio de y: y e {1, 3, 4, 5, 6, 7, 8, 9, 10}

Luego, la restricción x 2 y 5 3z requiere que el valor mínimo de x sea 4, lo cual ocurre
cuando y 5 z 5 1. El valor máximo de y es 5, que ocurre cuando x 5 8 y z 5 1. Luego,
máx (x 2 y) 5 7, lo cual ocurre cuando x 5 8 y y 5 1 y produce máx(z) 5 2. Esta
llamada propagación de la restricción produce los siguientes dominios factibles, pero
estrechos:

El uso de la propagación de la restricción reduce la cantidad de combinaciones
de 800 a 32. Aun cuando el nuevo problema es más computacionalmente manejable,
podemos hacerlo mejor con el árbol de búsqueda que se muestra en la figura 10.12.
Seleccionaremos z para iniciar la búsqueda porque tiene el dominio más pequeño, lo
que da lugar a sólo dos ramas: z 5 1 y z 5 2. La rama z 5 1 implica que x 2 y 5 3, lo cual
se satisface para (x 5 4, y 5 1), (x 5 6, y 5 3), y (x 5 8, y 5 5), y el resultado son las tres
soluciones que aparecen en la figura 10.12. Para z 5 2, la condición resultante x 2 y 5 6
es imposible para satisfacer los dominios dados. Esto completa el árbol de búsqueda.
La ventaja computacional en este caso es que sólo tenemos que investigar 4 de las 32
posibles combinaciones.

z ε {1, 2}

y ε {1, 3, 4, 5}

x ε {4, 5, 6, 8}

x Z  7, y Z  2, x - y =  3z

z ε {1,  2, Á , 10}

y ε {1, 2, Á , 10}

x ε {1,  2, Á , 8}

7El material en esta sección está basado en parte en la información presentada en http://www.mozart.oz.org/
documentation/fdt/node1.html.
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El ejemplo anterior proporciona la esencia de lo que hace la PR. Básicamente es
un eficiente proceso de búsqueda basado en la descripción del problema en función de
los dominios de las variables y un conjunto de restricciones. Para facilitar la búsqueda,
se desarrollaron lenguajes de computadora especiales que permiten restringir los valo-
res de las variables dentro de sus dominios para satisfacer las restricciones. Como una
ilustración, la figura 10.13 codifica el problema en ILOG OPL. El código describe de
manera directa el problema en función de los dominios de las variables y restricciones.
Todas las reducciones de los dominios las realiza de forma automática el procesador de
lenguaje utilizando procedimientos inteligentes.

Como el ejemplo lo demuestra, la PR no es una técnica de optimización en el
sentido en que se utiliza en la programación matemática. Sin embargo, el hecho de que
la PR pueda utilizarse para determinar soluciones factibles puede mejorar la eficiencia
de algoritmos de programación matemáticos. En particular, la programación de res-
tricción puede insertarse dentro del algoritmo de ramificación y acotamiento (B&B)
para el problema MIP.

CONJUNTO DE PROBLEMAS 10.5A

1. Construya el árbol de búsqueda que aparece en la figura 10.12 utilizando la variable x
para iniciar la búsqueda.

2. Repita el problema 1 utilizando la variable y.

BIBLIOGRAFÍA
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Program”, Annals of Operations Research, vol. 86, 1999, págs. 3-21.

FIGURA 10.12

Construcción del árbol de búsqueda
para el ejemplo de PR

x ε {4, 5, 6, 8}, y ε {1, 3, 5}, z ε {1, 2}

Soluciones factibles:
(x, y , z) = (4, 1, 1)
(x, y , z) = (6, 3, 1)
(x, y , z) = (8, 5, 1)

Ninguna solución factible

z = 1 => x – y = 3  z = 2 => x – y = 6

Restricción: x – y = 3z 

FIGURA 10.13

1 var int x in 1..8;

2 var int y in 1..10;

3 var int z in 1..10;

4 solve{

5 x<>7;

6 y<>2;

7 x–y=3*z;

8 };Código ILOG OPL para el ejemplo de PR
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11.1 APLICACIONES DE EJEMPLO DE TSP

Clásicamente, el problema de TSP tiene que ver con hallar el recorrido más corto (ce-
rrado) en una situación de n ciudades, donde cada ciudad es visitada exactamente una
vez antes de regresar al punto de partida. El modelo TSP asociado se define por medio
de dos datos:

1. El número de ciudades, n.
2. Las distancias dij entre las ciudades i y j (dij 5 q si las ciudades i y j no están co-

municadas).

El máximo de recorridos en una situación de n ciudades es ¡(n 2 1)!
En realidad, las aplicaciones de TSP van más allá de la definición clásica de visi-

tar ciudades. La aplicación de la vida real que se presenta al inicio de este capítulo

CAPÍTULO 11

Problema del agente viajero (TSP*)

Aplicación de la vida real 

La Organización de Ciencias y Tecnología del Departamento de la Defensa de
Australia emplea un radar de apertura sintética montado en un avión para obtener
imágenes de alta resolución de hasta 20 franjas de tierra rectangulares. En sus orígenes,
la trayectoria de vuelo para cubrir una secuencia de franjas de tierra se realizaba vi-
sualmente por medio de un software de trazado de mapas que se llevaba mucho tiem-
po y en general era subóptimo. Posteriormente se desarrolló un software basado en
TSP para planificar misiones hasta de 20 franjas de tierra. El nuevo software puede
planear una misión en menos de 20 segundos, comparado con una hora que requería el
proceso visual. Además, la longitud promedio de la misión es 15 por ciento menor que
la obtenida manualmente.

Fuente: D. Panton, y A. Elbers, “Misión Planning for Synthetic Aperture Radar
Surveillance”, Interfaces, vol. 29, núm. 2, 1999, págs. 73-88.

*Del inglés: Traveling Salesperson Problem.
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describe la planificación de misiones de vigilancia por medio de radar de apertura
sintética. Esta sección resume otras cinco aplicaciones que muestran cómo puede
adaptarse el modelo TSP clásico (“ciudades” conectadas por “rutas”) para representar
otras situaciones. En el conjunto de problemas 11.2a se dan más aplicaciones.

1. Secuenciación de pinturas en una planta de producción. Una compañía pro-
duce lotes de diferentes pinturas en la misma planta de producción. Cuando se completa
una secuencia de colores, se inicia un nuevo ciclo en el mismo orden. La secuenciación de
los colores afecta el tiempo de preparación (arreglo) entre lotes sucesivos. La meta es se-
leccionar la secuencia que minimice el tiempo de preparación total por ciclo.

El modelo TSP en esta situación considera un color de pintura como una ciudad
y el tiempo de preparación entre dos colores como una distancia.

2. Tarjeta de circuito integrado. Se perforan agujeros en tarjetas de circuito
idénticas para montar los componentes electrónicos. Las tarjetas se alimentan en se-
cuencia debajo de un taladro móvil. La meta es determinar la secuencia que complete
la perforación de todos los agujeros en una tarjeta en el tiempo más corto posible.

En el modelo TSP, los agujeros representan las ciudades, y los desplazamientos
entre los agujeros representan las distancias.

3. Agrupamiento de proteínas. Las proteínas se agrupan utilizando una medi-
da numérica de similitud basada en la interacción de las proteínas. La información del
agrupamiento se utiliza para predecir las funciones de proteínas desconocidas. El
mejor agrupamiento es el que maximiza la suma de las medidas de similitud entre pro-
teínas adyacentes.

En el modelo TSP cada proteína toma el lugar de una ciudad. La medida de simi-
litud sij entre la proteína i y la proteína j puede convertirse en una medida de “distan-
cia” teniendo en cuenta que 

Las distancias pueden representarse como 2sij o M 2 sij donde M es una constante
mayor que la sij máxima, para todas las i y j.

4. Obtención de imágenes celestes. La agencia espacial de Estados Unidos,
NASA, utiliza satélites para obtener imágenes de objetos celestes. La cantidad de com-
bustible necesaria para reposicionar los satélites depende de la secuencia en la cual se
toman las imágenes de los objetos. La meta es determinar la secuencia de obtención de
imágenes óptima que minimice el consumo de combustible.

En el modelo TSP, un objeto celeste se considera como una ciudad. La distancia
se transforma en el consumo de combustible entre dos objetos sucesivos.

5. Creación de la Mona Lisa con TSP. Esta intrigante aplicación “crea” la
Mona Lisa de Leonardo da Vinci mediante el trazo de líneas continuas. La idea gene-
ral es representar de forma aproximada la pintura original por medio de gráficos de
computadora para agrupar puntos en una gráfica. Los puntos se conectan luego en se-
cuencia mediante segmentos de línea (vea Bosch y Herman, 2004).

En el modelo TSP, los puntos representan ciudades y sus ubicaciones relativas en
la gráfica proporcionan la matriz de distancias.

 máx e a
i, j en el recorrido

sij f K mín e - a
i, j en el recorrido

sij f
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CONJUNTO DE PROBLEMAS 11.1A

Nota: En cada una de las siguientes instancias, describa los datos (ciudades y distancias) necesa-
rios para modelar el problema como TSP.

1. Seers Service Center programa sus visitas diarias de mantenimiento a los clientes. Los
trabajos se clasifican y agrupan, y cada grupo se asigna a un técnico en mantenimiento. Al
final de la asignación el técnico se reporta al centro de servicio.

2. A un fanático del béisbol le gustaría visitar ochos parques de ligas mayores en (1)
Seattle, (2) San Francisco, (3) Los Ángeles, (4) Phoenix, (5) Denver, (6) Dallas, (7)
Chicago, y (8) Tampa antes de regresar a casa en Seattle. Cada visita dura aproximada-
mente una semana. El objetivo es gastar lo menos posible en pasajes aéreos.

*3. Un turista en la ciudad de Nueva York desea visitar 8 sitios turísticos utilizando el trans-
porte local. El recorrido se inicia y termina en un hotel ubicado en el centro. El turista
desea gastar la menor cantidad posible de dinero en el transporte.

4. Un gerente tiene m empleados que trabajan en n proyectos. Un empleado puede trabajar
en más de un proyecto, lo que traslapa las asignaciones. En la actualidad, el gerente se en-
trevista con cada empleado una vez por semana. Para reducir el tiempo de entrevista con
todos los empleados, el gerente desea realizar entrevistas en grupo que impliquen pro-
yectos compartidos. El objetivo es reducir el tráfico (cantidad de empleados) que entren
y salgan de la sala de juntas.

5. Meals-on-Wheels es un servicio de caridad que prepara comidas en su cocina central
para personas que califican para el servicio. Idealmente, todas las comidas deben ser en-
tregadas en un máximo de 20 minutos después de que salen de la cocina. Esto significa
que el tiempo de regreso desde la última ubicación hasta la cocina no es un factor al de-
terminar la secuencia de las entregas.

6. Secuenciación del DNA. En ingeniería genética, un conjunto de cadenas de DNA, cada una
de una longitud específica, se concatena para formar una cadena universal. Los genes de ca-
denas de DNA individuales pueden traslaparse. La cantidad de traslapes entre dos cadenas
sucesivas es medible en unidades de longitud. La longitud de la cadena universal es la suma
de las longitudes de las cadenas individuales menos los traslapes. El objetivo es concatenar
las cadenas individuales de una manera que minimice la longitud de la cadena universal.

7. Vehículo guiado automático. Un vehículo guiado automático (VGA) realiza un viaje re-
dondo que inicia y termina en el cuarto de correo, para entregar correspondencia a depar-
tamentos en el piso de la fábrica. El vehículo guiado automático se desplaza a lo largo de
pasillos horizontales y verticales. El objetivo es minimizar la longitud del viaje redondo.

11.2 MODELO TSP MATEMÁTICO

Como se planteó en la sección 11.1, un modelo TSP se define mediante el número de
ciudades n y la matriz de distancias ‘dij ‘. La definición de un recorrido prohíbe conec-
tar una ciudad a sí misma al asignar una penalización muy alta a los elementos diago-
nales de la matriz de distancias. Un modelo TSP es simétrico si dij 5 dji para todas las
i y j. De lo contrario, el modelo TSP es asimétrico.

Defina

El modelo TSP se da como

Minimizar z = a
n

i= 1
a
n

j= 1
dijxij, dij = q para todas las  i = j

xij = e1, si se llega a la ciudad j desde la ciudad i
0, de lo contrario
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sujeto a

(1)

(2)

(3)

La solución forma un viaje redondo por las ciudades (4)

Las restricciones (1), (2) y (3) definen un modelo de asignación regular (sección 5.4)
donde xij 5 1 si el nodo (ciudad) i está conectado a un nodo (ciudad) j, y cero en caso
contrario. Si la solución del modelo de asignaciones resulta ser un recorrido [es decir,
satisface la restricción (4)], entonces automáticamente es óptimo para el TSP. Esta es
una rara ocurrencia, sin embargo, y es problema que el modelo de asignaciones se com-
ponga de subrecorridos. En ese caso se requieren cálculos adicionales para determinar
la solución de recorrido óptima.

La figura 11.1 muestra un modelo TSP de 5 ciudades. Los nodos representan ciu-
dades, y los arcos representan rutas en dos sentidos que pueden ser distintas si el mo-
delo es asimétrico. Como antes se explicó, el modelo de asignaciones puede producir
una solución de recorrido o subrecorrido como lo demuestra la figura.

Ejemplo 11.2-1

El programa de producción diaria en la compañía Rainbow incluye lotes de pintura blanca (W),
amarilla (Y), roja (R), y negra (B). Las instalaciones de producción se deben limpiar entre uno y
otro lotes. La tabla 11.1 resume en minutos los tiempos de limpieza. El objetivo es determinar la
secuencia de los colores que minimice el tiempo de limpieza total.

 xij = (0, 1)

 a
n

i= 1
xij = 1, j = 1, 2, Á , n

 a
n

j= 1
xij = 1,  i = 1,  2, Á ,  n

Problema de 5 ciudades Solución del recorrido
(x12 � x25 � x54 � x43 � x31 � 1)

Solución de subrecorrido
(x23 � x32 � –1)(x15 � x54 � x41 � 1)

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

FIGURA 11.1

Un ejemplo TSP de 5 ciudades con una solución de recorrido o subrecorrido del modelo de asignaciones asociado
según la instancia de matriz de distancias específica
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TABLA 11.1 Tiempos de limpieza entre lotes (en minutos) 
para el problema de producción de pintura

Limpieza entre lotes (min)

Pintura Blanca Amarilla Negra Roja

Blanca q 10 17 15
Amarilla 20 q 19 18
Negra 50 44 q 22
Roja 45 40 20 q

En el modelo TSP, cada color representa una “ciudad”, y el tiempo de limpieza entre dos co-
lores sucesivos representa “distancia”. Sea M una penalización suficientemente grande y defina

xij 5 1 si la pintura j sucede a la pintura i y cero de lo contrario

El modelo TSP se da como

sujeto a

La solución es un recorrido (bucle) 

El uso de la penalización M en la función objetivo equivale a eliminar xWW, xYY, xBB, y xRR del
modelo. Sin embargo, la eliminación de estas variables destruye la estructura del modelo de asig-
naciones subyacente necesaria para resolver los modelos de TSP y de ramificación y acotamiento.

Solución del modelo TSP. Una forma simple de resolver el modelo de TSP es una enumeración
exhaustiva. El máximo de recorridos en un problema de n ciudades es ¡(n 2 1)!. En este ejemplo
la enumeración exhaustiva es factible porque el número de recorridos posibles es pequeño (5

6). La tabla 11.2 muestra y evalúa los seis recorridos e indica que el recorrido W S Y S B S R
S W es óptimo.

La enumeración exhaustiva no es práctica para el modelo TSP general. La sección 11.3 pre-
senta por lo tanto dos algoritmos de programación entera exactos: el de ramificación y acota-
miento, y el de plano de corte. Ambos algoritmos tienen su raíz en la solución del modelo de
asignaciones, con restricciones agregadas para garantizar una solución de recorrido. Por desgra-
cia, como es típico con la mayoría de los algoritmos de programación entera, los métodos pro-

xij = (0, 1) para todas las i y j

xWR  + xYR + xBR + xRR  = 1

xWB  + xYB + xBB + xRB  = 1

xWY  + xYY + xBY + xRY  = 1

 xWW + xYW + xBW + xRW = 1

xRW  + xRY + xRB + xRR  = 1

xBW  + xBY + xBB + xBR  = 1

xYW  + xYY + xYB + xYR  = 1

xWW + xWY + xWB + xWR = 1

+ 22xBR + 45xRW + 40xRY + 20xRB + M(xWW + xYY + xBB + xRR)

Minimizar z = 10xWY + 17xWB + 15xWR + 20xYW + 19xYB + 18xYR + 50xBW + 44xBY
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TABLA 11.2 Solución del problema de secuenciación de las
pinturas mediante enumeración exhaustiva 

Bucle de producción Tiempo de limpieza total

W: Y: B: R:W 10 + 19 + 22 + 45 = 96
W: Y: R: B:W 10 + 18 + 20 + 50 = 98
W: B: Y: R:W 17 + 44 + 18 + 45 = 124
W: B: R: Y:W 17 + 22 + 40 + 20 = 99
W: R: B: Y:W 15 + 20 + 44 + 20 = 99
W: R: Y: B:W 15 + 40 + 19 + 50 = 124

puestos no son computacionalmente confiables. Por esa razón se utilizan heurísticas para obte-
ner soluciones (pero no necesariamente óptimas) del problema. Tres de estas heurísticas se pre-
sentan en la sección 11.4.

Interpretación de la solución óptima. La secuencia de producción óptima W S Y S B S R S W
en la tabla 11.2 se inicia con el color blanco seguido por el amarillo, luego el negro, y luego el
rojo. Es realmente irrelevante qué color utilicemos para iniciar el ciclo de producción porque
la solución es un recorrido cerrado. Por ejemplo, las secuencias B S R S W S Y S B y Y S B
S R S W S Y también son óptimas.

TSP de recorrido abierto. Los recorridos abiertos ocurren cuando no es necesario regresar a la
ciudad de inicio. Este caso puede demostrarse en el problema de las pinturas cuando la producción
se limita a exactamente un lote de cada color. Por ejemplo, en la secuencia de recorrido abierto,
B S W S Y S R, la última “ciudad” (R) no conecta de vuelta a la “ciudad” de inicio (B).

Esta condición se puede tener en cuenta en una situación de n ciudades agregando una ciudad
ficticia, n 1 1, con distancias cero hasta y desde todas las ciudades reales; es decir, di, n+1 5 0, i 5 1,
2,…,n y dn+1,J 5 0, j 5 1, 2,…,n. Para el ejemplo de las pinturas, la nueva matriz de distancias es

La fila 5 y la columna 5 representan el color ficticio.
El recorrido óptimo es

W S Y S R S B S Ficticio S W, longitud 5 48 minutos

La solución puede leerse reacomodando los puntos de inicio y terminación del recorrido con el
color ficticio:

Ficticio S W S Y S R S B S Ficticio

Si eliminamos el color ficticio, obtenemos la siguiente solución de recorrido abierto:

W S Y S R S B

Es importante observar que la solución óptima de recorrido abierto no puede obtenerse a partir
de la solución de recorrido cerrado óptima (W S Y S B S R SW) de forma directa.

‘ dij ‘ = • q 10 17 15 0
20 q 19 18 0
50 44 q 22 0
45 40 20 q 0
0 0 0 0 q

μ
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Cota inferior en la longitud de recorrido óptima. Una cota inferior en la longitud del recorrido
óptima puede ser útil al resolver el modelo TSP o con los algoritmos exactos o con los algoritmos
heurísticos. En el caso de los algoritmos exactos, una cota inferior estrecha restringe el espacio
factible, y por consiguiente hace más eficiente el algoritmo (particularmente en el caso del algo-
ritmo de ramificación y acotamiento). Para los heurísticos puede usarse una cota inferior para
evaluar la calidad de la solución heurística.

Hay varios métodos para estimar una cota inferior. Dos de ellos son los siguientes:

1. Modelo de asignación. El modelo de asignación es una simplificación del modelo TSP, y
su solución óptima proporciona una cota inferior en la longitud de recorrido óptima. En
realidad, si la solución óptima del modelo de asignaciones es factible (es decir, un recorri-
do), también es óptima para el modelo TSP.

La solución del modelo de asignación (recorrido cerrado) del problema de las pintu-
ras produce una cota inferior de 72 minutos.

2. Programación lineal. Una cota inferior en una situación de n ciudades puede determi-
narse inscribiendo los círculos más grandes no traslapantes alrededor de todas las ciuda-
des. Sea rj, j 5 1, 2,…,n el radio más grande de un círculo inscrito alrededor de la ciudad j.
El valor óptimo de la siguiente programación lineal proporciona una cota inferior:

sujeto a

La función objetivo reconoce que un agente viajero que entra al círculo alrededor de
la ciudad i debe cubrir una distancia de al menos 2ri antes de entrar al dominio del círculo
de cualquier otra ciudad en la red. Las restricciones garantizan que ninguno de los círculos
se traslape.

Para el ejemplo de las pinturas, tenemos 

sujeto a

La solución produce una cota inferior de 60 minutos, la cual no es tan  ajustada al ob-
tenido con el modelo de asignación (5 72 minutos) En realidad, la experimentación con
los métodos sugiere que el modelo de asignación produce de manera consistente cotas in-
feriores más estrechas, en particular cuando el modelo TSP es asimétrico. Observe que la
programación lineal siempre proporciona una cota inferior de valor cero trivial para un
TSP de recorrido abierto debido a que las distancias de entrada y salida de la ciudad ficti-
cia limitan todos los radios a cero.

rW, rY, rB, rR Ú 0

rB + rR …  min(22, 20)

rY + rR …  min(18, 40)

rY + rB …  min(19, 44)

rW + rR …  min(15, 45)

rW + rB …  min(17, 50)

rW + rY …  min(10, 20)

Maximizar z = 2(rW + rY + rB + rR)

ri + rj …  min (dij, dji) i, j = 1, 2, Á , n, i 6 j

Maximizar z = 2(r1 + r2 + Á + rn)
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Momento de AMPL

Los modelos de asignación y programación lineal previamente dados para estimar la cota infe-
rior pueden resolverse con los archivos AMPL proporcionados con este capítulo.
model amplAssign.txt; data amplInputData.txt; commands solutionAssign.txt;
model amplLP.txt; data amplInputData.txt; commands solutionLP.txt; File
amplInputData.txt proporciona los datos TSP del problema de las pinturas.

CONJUNTO DE PROBLEMAS 11.2A

*1. Un vendedor de libros que vive en Basin debe visitar una vez al mes a cuatro clientes lo-
calizados en Wald, Bon, Mena y Kiln antes de regresar a su casa en Basin. La siguiente
tabla muestra las distancias en millas entre las diferentes ciudades.

El objetivo es minimizar la distancia total recorrida por el vendedor.
(a) Escriba la programación lineal para calcular una cota inferior en la longitud de reco-

rrido óptima.
(b) Compare las cotas inferiores en la longitud de recorrido óptima tanto con un mode-

lo de asignación como con una programación lineal. ¿Es óptima la solución del mo-
delo de asignación para el TSP?

2. Seers Service Center programa sus visitas diarias de mantenimiento a sus clientes. La ma-
triz ‘Tij ‘ siguiente presenta el tiempo de recorrido (en minutos) entre el centro de servi-
cio (fila 1 y columna 1) y las siete órdenes de mantenimiento. Las órdenes se asignan a
uno de los técnicos en mantenimiento durante un turno de 8 horas. Al final del día, el téc-
nico regresa al centro de servicio para completar la documentación.

(a) Compare las cotas inferiores en la longitud de recorrido óptima utilizando tanto el
modelo de asignación como la programación lineal. ¿Es óptima la solución del mo-
delo de asignación para el TSP?

(b) Dado que el desplazamiento entre los clientes no es productivo, y suponiendo una
pausa para el almuerzo de una hora, determine la productividad máxima del técnico
durante el día.

‘Tij ‘ = ® 0 20 15 19 24 14 21 11
20 0 18 22 23 22 9 10
15 18 0 11 21 14 32 12
19 22 11 0 20 27 18 15
24 23 21 20 0 14 25 20
14 22 14 27 14 0 26 17
21 9 32 18 25 26 0 20
11 10 12 15 20 17 20 0

∏

Millas entre ciudades

Basin Wald Bon Mena Kiln

Basin 0 120 220 150 210
Wald 120 0 80 110 130
Bon 220 80 0 160 185
Mena 150 110 160 0 190
Kiln 210 130 185 190 0
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3. Un fanático del béisbol desea visitar ocho parques de ligas mayores en (1) Seattle, (2)
San Francisco, (3) Los Ángeles, (4) Phoenix, (5) Denver, (6) Dallas, (7) Chicago, y (8)
Tampa antes de regresar a casa a Seattle. El fanático utilizará transportación aérea entre
las diferentes ciudades. La matriz ‘ pij ‘ siguiente proporciona el precio en dólares de un
boleto de viaje sencillo entre las 8 ciudades.

El fanático ha presupuestado $2000 para los viajes aéreos. ¿Es realista este presu-
puesto de viaje?

4. Agrupamiento de proteínas. Las proteínas se agrupan utilizando una medida total de si-
militud basada en la información de interacción entre las proteínas. La información de
agrupamiento se utiliza para predecir las funciones de proteínas desconocidas. Por de-
finición, el mejor agrupamiento maximiza la suma de las medidas de similitud entre pro-
teínas adyacentes. La matriz ‘ sij ‘ siguiente proporciona las medidas de las similitudes
(expresadas como un porcentaje) entre las 8 proteínas.

(a) Defina la matriz de distancias del TSP.
(b) Determine una cota superior en la medida de similitud del agrupamiento de pro-

teínas óptimo.
5. Un turista en la ciudad de Nueva York utiliza el transporte local para visitar 8 sitios. El

inicio y la terminación, así como el orden en el cual se visitan los sitios, no son importan-
tes. Lo que es importante es gastar la cantidad mínima de dinero en el transporte. La ma-
triz ‘cij ‘ siguiente proporciona los pasajes en dólares entre los diferentes lugares.

‘ cij ‘ = ® 0 20 30 25 12 33 44 57
22 0 19 20 20 29 43 45
28 19 0 17 38 48 55 60
25 20 19 0 28 35 40 55
12 18 34 25 0 21 30 40
35 25 45 30 20 0 25 39
47 39 50 35 28 20 0 28
60 38 54 50 33 40 25 0

∏

‘ sij ‘ = ®100 20 30 29 24 22 38 45
20 100 10 22 0 15 31 0
30 10 100 14 11 95 30 41
29 22 14 100 20 27 28 50
24 0 11 20 100 24 55 0
22 15 95 27 24 100 26 37
38 31 30 28 55 26 100 40
45 0 41 50 0 37 40 100

∏

‘ pij ‘ = ® 0 250 300 290 240 320 380 450
250 0 190 220 230 300 310 390
300 190 0 140 310 295 390 410
290 220 140 0 200 275 285 350
240 230 310 200 0 240 255 400
320 300 295 275 240 0 260 370
380 310 390 285 255 260 0 420
450 390 410 350 400 370 420 0

∏
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El turista está presupuestando $120 para el costo del taxi a todos los ochos sitios. ¿Es rea-
lista esta expectativa? (Sugerencia: Éste es un modelo TSP de recorrido abierto.)

*6. Un gerente tiene en total 10 empleados que trabajan en seis proyectos. Los proyectos se
revisan semanalmente con cada empleado. Un proyecto puede emplear más de un em-
pleado por lo que las asignaciones se traslapan, como se muestra en la siguiente tabla.

Proyecto
1 2 3 4 5 6

1 x x x
2 x x x
3 x x x x
4 x x x

Empleado 5 x x x
6 x x x x x
7 x x x x
8 x x x
9 x x

10 x x x x x

En la actualidad, el gerente se reúne con cada empleado una vez por semana. Cada
reunión dura aproximadamente 20 minutos para un total de 3 horas 20 minutos para los 
10 empleados. Para reducir el tiempo total, el gerente desea realizar reuniones de grupo de-
pendiendo de los proyectos compartidos. El objetivo es programar las reuniones de modo
que se reduzca el tráfico (cantidad de empleados) que entra y sale de la sala de juntas.
(a) Defina las ciudades y la matriz de distancias del modelo TSP.
(b) Determine una cota inferior en la longitud de recorrido óptima utilizando el modelo

de asignación. ¿Es óptima la solución del modelo de asignación para el TSP?
7. Meals-on-Wheels es un servicio de caridad que prepara comidas en su cocina central

para personas que califican para el servicio. Idealmente, todas las comidas deben ser en-
tregadas en un máximo de 20 minutos después de que salen de la cocina. Esto significa
que el tiempo de regreso desde la última ubicación hasta la cocina no es un factor al de-
terminar la secuencia de las entregas. El servicio de caridad se encuentra en el proceso 
de determinar la ruta de entrega. El primer itinerario piloto incluye siete recipientes 
con los siguientes tiempos de viaje ‘ tij ‘ (la fila 1 y la columna 1 representan la cocina).

(a) Compare las cotas inferiores en la longitud de recorrido óptima utilizando tanto el
modelo de asignación como la programación lineal. ¿Es óptima la solución de mode-
lo de asignación para el TSP?

(b) Basado en la información en (a), ¿es posible entregar las ocho comidas dentro de la
ventana de tiempo de 20 minutos?

‘ tij ‘ = ® 0 10 12 5 17 9 13 7
10 0 9 20 8 11 3 5
12 9 0 14 4 10 1 16
5 20 14 0 20 5 28 10
17 8 4 20 0 21 4 9
9 11 10 5 21 0 2 3
13 3 1 28 4 2 0 2
7 5 16 10 9 3 2 0

∏
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8. Tarjetas de circuito integrado. A las tarjetas de circuito integrado (como las que se utilizan
en las computadoras personales) se les perforan agujeros para montar los diferentes
componentes electrónicos. Las tarjetas son alimentadas de una en una bajo un taladro
móvil. La matriz ‘dij ‘ siguiente proporciona las distancias (en milímetros) entre pares de
6 agujeros de una tarjeta específica.

Suponga que el taladro se mueve a una velocidad lineal de 7 milímetros por segundo
y que le lleva medio segundo taladrar un agujero. Determine una cota superior en la tasa
de producción (tarjetas por hora).

9. Secuenciación del DNA. En ingeniería genética, un conjunto de cadenas de DNA, cada
una de 10 pies de longitud, se concatena para formar una cadena universal. Los genes de
cadenas de DNA individuales pueden traslaparse, lo que produce una cadena universal 
de longitud menor que la suma de las longitudes individuales. La matriz ‘Oij ‘ siguiente pro-
porciona la longitud en pies de traslapes para un caso hipotético de seis cadenas de DNA.

Compare las cotas inferiores en la longitud de recorrido óptima utilizando tanto el
modelo de asignación como la programación lineal. ¿Es óptima la solución obtenida con
el modelo de asignación para el TSP?

10. La Agencia Espacial de Estados Unidos, NASA, utiliza satélites para formar imágenes de
objetos celestes. La cantidad de combustible necesaria para reposicionar los satélites es
una función de la secuencia en la cual se forman las imágenes de los objetos. La matriz
‘cij ‘ siguiente proporciona las unidades de combustible utilizadas para realinear los saté-
lites con los objetos.

Suponga que el costo por unidad de combustible es de $12. Estime una cota inferior
en el costo de formar las imágenes de los seis objetos.

11. Vehículo guiado automático. Un VGA realiza un viaje redondo (que empieza y termina
en el cuarto de correo) para entregar correspondencia a 5 departamentos de una fábrica.
Utilizando el cuarto de correo como el origen (0,0), las ubicaciones (x,y) de los puntos de
entrega son (10,30), (10,50), (30,10), (40,40) y (50,60) para los cinco departamentos. Todas

‘ cij ‘ = ¶ - 1.5 2.6 3.1 4.4 3.8
1.9 - 4.7 5.3 3.9 2.7
2.9 4.3 - 3.5 5.4 6.2
3.4 5.1 3.6 - 2.2 1.9
4.4 3.4 5.9 2.4 - 2.6
3.1 2.7 6.5 1.1 2.9 -

∂

‘Oij ‘ = ¶ - 1 0 3 4 3
1 - 4 5 3 2
0 4 - 3 5 6
3 5 3 - 2 1
4 3 5 2 - 2
3 2 6 1 2 -

∂

‘ dij ‘ = ¶ - 1.2 .5 2.6 4.1 3.2
1.2 - 3.4 4.6 2.9 5.2
.5 3.4 - 3.5 4.6 6.2

2.6 4.6 3.5 - 3.8 .9
4.1 2.9 4.6 3.8 - 1.9
3.2 5.2 6.2 .9 1.9 -

∂
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las distancias están en metros. El vehículo se mueve sólo a lo largo de pasillos horizonta-
les y verticales. El objetivo es minimizar la longitud del viaje redondo.
(a) Defina las ciudades y la matriz de distancias del modelo TSP.
(b) Suponiendo que el vehículo se mueve a una velocidad de 35 metros por minuto,

¿puede hacerse el viaje redondo en menos de 5 minutos?
12. Corte de papel tapiz, Garfinkel (1977). Usualmente, tapizar los muros de una habitación

requiere cortar hojas de diferentes longitudes de acuerdo con las puertas y ventanas, y
algo más. Las hojas se cortan de un solo rollo, y sus puntos de inicio deben alinearse para
que coincidan con el dibujo repetitivo del rollo. Por tanto, la cantidad de desperdicio de-
pende de la secuencia en que se cortan las hojas. Con el objeto de determinar el desper-
dicio, podemos considerar un solo dibujo como una unidad de longitud (independiente-
mente de su medida real) y luego expresar la longitud de una hoja en función de esta
unidad. Por ejemplo, una hoja de dibujos de 9.50 de longitud requiere diez dibujos conse-
cutivos. Si  la correspondencia de los dibujos en el muro requiere iniciar la hoja a un
cuarto hacia abajo del primer dibujo, entonces la hoja (de 9.5 dibujos de longitud) debe
terminar a tres cuartos hacia abajo del décimo dibujo. Por lo tanto, el desperdicio en una
hoja puede presentarse en el primero y último dibujos únicamente, y su cantidad siempre
es menor que la longitud completa de un dibujo completo.

Defina 0 # si # 1 y 0 # ei # 1 como las ubicaciones de los cortes debajo del primero
y el último dibujos. Luego, para la hoja i con dibujo de longitud Li, tenemos

Para el ejemplo que se acaba de citar, s 5 .25 y e 5 (.25 1 9.5) mod(1) 5 .75.
El desperdicio entre dos hojas secuenciales, i y j, en la que la hoja j sucede de inme-

diato a la hoja i, puede calcularse como sigue: Si sj $ ei, el desperdicio es sj 2 ei. De lo
contrario, si sj , ei, entonces el corte final de i y el corte de inicio de j se traslapan. El re-
sultado es que el corte de inicio sj de la hoja j debe hacerse en el dibujo que sigue inme-
diatamente del dibujo donde se hizo del corte final ei de la hoja i. En este caso, el desper-
dicio resultante es 1 2 ei 1 sj.

En realidad, las dos cantidades de desperdicio (si 2 ei y 1 2 ei 1 sj) pueden expre-
sarse como 

Por ejemplo, dados e1 5 .8 y s2 5 .35, utilizamos la fórmula para s2 , e1 para obtener w12
5 1 2 .8 1 .35 5 .55. Se obtiene el mismo resultado utilizando w12 5 (.35 2 .8) mod(1) 5
(2.45) mod(1) 5 (21 1 .55) mod(1) 5 .55.

Para tener en cuenta el desperdicio resultante del corte en el primer dibujo de la pri-
mera hoja (nodo 1) y el último dibujo de la última hoja (nodo n), se agrega una hoja ficticia
(nodo n 1 1) con su sn+1 5 en+1 5 0. La longitud de un recorrido que pasa por todos los n
11 nodos proporciona el desperdicio total que resulta de una secuencia específica.Ahora
el problema puede modelarse como modelo TSP de (n 1 1) nodos con distancia wij.
(a) Calcule la matriz wij con el siguiente conjunto de datos sin procesar (por comodidad,

la hoja de cálculo excelWallPaper.xls realiza los cálculos de wij de forma automática):

wij = (sj - ei)  mod(1)

ei = (si + Li)  mod (1)

Hoja, i Corte de inicio en el dibujo, si Longitud de la hoja, Li

1 0 10.47
2 .342 3.82
3 .825 5.93
4 .585 8.14
5 .126 1.91
6 .435 6.32
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(b) Demuestre que la solución óptima de la asignación asociada produce el recorrido óptimo.
(c) Cuantifique el desperdicio total como un porcentaje de la longitud de todas las hojas.

13. Recolección de pedidos en un almacén, Ratliff y Rosenthal (1983). En un almacén rectangu-
lar se utiliza una grúa elevada para recolectar y entregar pedidos entre lugares específicos
en el almacén. Las tareas de la grúa implican lo siguiente: (1) Recolectar una carga en un
lugar; (2) entregarla en un lugar, y (3) moverse descargada para llegar a un lugar de reco-
lección. Supongamos que hay n pedidos que se tiene que recolectar y entregar. El objeti-
vo sería completar todos los pedidos al mismo tiempo que se minimiza el tiempo no pro-
ductivo de la grúa [elemento (3)]. Los tiempos no productivos pueden calcularse con
base en los lugares de recolección y entrega de los pedidos y las velocidades lateral y
transversal de la grúa, entre otros factores. Para el propósito de esta situación, la grúa ini-
cia con los pedidos desde un estado inactivo y también termina en un estado inactivo
después de completar todos los pedidos.

Para un grupo especifico de ocho pedidos, los tiempos (en minutos) para llegar a los
lugares de los pedidos 1, 2,…, y 8 desde un estado inactivo son .1, .4, 1.1, 2.3, 1.4, 2.1, 1.9 
y 1.3, respectivamente. La siguiente tabla proporciona los tiempos no productivos (en mi-
nutos) asociados con la secuenciación de los pedidos.

(a) Defina las ciudades y la matriz de distancias para el modelo TSP.
(b) Determine una cota inferior en el tiempo no productivo durante la finalización de

todos los pedidos.

11.3 ALGORITMOS TSP EXACTOS

Esta sección presenta dos algoritmos de PE exactos: el de ramificación y acotamiento
(B&B) y el plano de corte. En teoría, ambos algoritmos garantizan la optimalidad. El
tema computacional es una historia diferente; esto quiere decir que los algoritmos pue-
den no producir la solución óptima en una cantidad razonable de tiempo y el impulso
del desarrollo de la heurística de las secciones 11.4 y 11.5.

11.3.1 Algoritmo de ramificación y acotamiento

La idea del algoritmo de ramificación y acotamiento (B&B) es iniciar con la solución
óptima del problema de asignación asociado. Si la solución es un recorrido, el proceso
termina. De lo contrario, se imponen restricciones en la solución resultante para impo-
sibilitar los subrecorridos. La idea es crear ramas que asignen un valor cero a cada una
de las variables de uno de los subrecorridos. Por lo común, el subrecorrido con la
menor cantidad de ciudades se selecciona para la ramificación porque es el que crea el
menor número de ramas.

Si la solución del problema de asignación en cualquier nodo es un recorrido, su
valor objetivo proporciona una cota superior en la longitud óptima del recorrido. Si no,
se requiere más ramificación en el nodo. Un subproblema se sondea a fondo si produ-

‘ tij ‘ = ® 0 1.0 1.2 .5 1.7 .9 1.3 .7
1.1 0 .9 2.0 .8 1.1 .3 .5
1.2 1.9 0 1.4 .4 1.0 1.0 1.6
1.5 2.3 .4 0 2.0 1.5 2.8 1.0
1.2 1.8 1.4 2.5 0 2.1 .4 .9
.9 1.1 1.0 .5 2.1 0 .2 .3
1.3 .8 1.1 2.2 1.4 .6 0 1.2
1.7 1.5 1.6 1.0 1.9 .9 2.0 0

∏
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FIGURA 11.2

Solución obtenida con el algoritmo de ramificación y acotamiento del problema TSP del ejemplo 11.3-1

4 5

z � 19
(1-4-2-5-3-1)

z � 17
(2-5-2)(1-4-3-1)

z � 21
(1-4-5-2-3-1)

2

1

z � 15
(1-3-1)(2-5-4-2)

3

z � 16
(1-3-4-2-5-1)

x31 � 0x13 � 0

x52 � 0x25 � 0

ce una cota superior más pequeña, o si hay evidencia de que no puede conducir a una
mejor cota superior. El recorrido óptimo se da en el nodo con la menor cota superior.

El siguiente ejemplo proporciona los detalles de los algoritmos de ramificación y
acotamiento, y TSP.

Ejemplo 11.3-1

Considere la siguiente matriz TSP de 5 ciudades:

La asignación asociada se resuelve utilizando AMPL, TORA o Excel. La solución es

Se compone de dos subrecorridos, 1-3-1 y 2-5-4-2, además de constituir el nodo de inicio del
árbol de búsqueda de ramificación y acotamiento, como se muestra en el nodo 1 en la figura 11.2.

En este ejemplo utilizaremos un recorrido arbitrario, 1-2-3-4-5-1, para determinar la cota
superior inicial; es decir, 10 1 5 1 7 1 4 1 3 5 29 unidades. Como alternativa, se pueden utilizar
las heurísticas en las secciones 11.4 y 11.5 para producir cotas superiores mejoradas (más
pequeñas). La cota superior estimada significa que la longitud del recorrido óptima no puede ex-
ceder de 29. Los futuros nodos de ramificación y acotamiento buscan cotas superiores más pe-
queñas, si existe alguna.

z = 15, (x13 = x31 = 1), (x25 = x54 = x42 = 1), todas las demás = 0

‘ dij ‘ = • q 10 3 6 9
5 q 5 4 2
4 9 q 7 8
7 1 3 q 4
3 2 6 5 q

μ
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En el nodo 1 del árbol de ramificación y acotamiento, el subrecorrido más corto 1-3-1 crea
la rama x13 5 0 que conduce al nodo 2 y x31 5 0 que conduce al nodo 3. Los problemas de asig-
nación asociados en los nodos 2 y 3 se crean a partir del problema en el nodo 1 estableciendo d13
5 q y d31 5 q, respectivamente.

En este momento, podemos examinar el nodo 2 o el nodo 3, y elegir arbitrariamente explo-
rar el nodo 2. Su solución de asignación es 2-5-2 y 1-4-3-1 con z 5 17. Como la solución no es un
recorrido, seleccionamos el subrecorrido más corto 2-5-2 para ramificación: la rama x25 5 0 con-
duce al nodo 4, y la rama x52 5 0 conduce al nodo 5.

Ahora tenemos tres subproblemas sin explorar: los nodos 3, 4, y 5. Examinamos arbitraria-
mente el subproblema en el nodo 4, estableciendo d25 5 q en la matriz de distancias en el nodo
2. La solución resultante, el recorrido 1-4-5-2-3-1, produce la cota superior más pequeña z 5 21.

Los dos subproblemas en los nodos 3 y 5 permanecen sin explorar. Seleccionando arbitraria-
mente el subproblema 5, establecemos d52 5 q en la matriz de distancias en el nodo 2. El resulta-
do es el recorrido 1-4-2-5-3-1 con la cota superior más pequeña z 5 19. El subproblema 3 es el
único que permanece sin explorar. Sustituyendo d31 5 q en la matriz de distancias en el nodo 1,
obtenemos una mejor solución de recorrido: 1-3-4-2-5-1 con la cota superior más pequeña z 5 16.

Se han examinado todos los nodos del árbol, y por consiguiente se completa la búsqueda de
ramificación y acotamiento. El recorrido óptimo es el asociado con la cota superior más pe-
queña: 1-3-4-2-5-1 de 16 unidades de longitud.

Comentario. La solución del ejemplo 11.3-1 revela dos puntos:

1. La secuencia de búsqueda 1 S 2 S 4 S 5 S 3 se seleccionó deliberadamente para de-
mostrar un escenario del peor caso en el algoritmo de ramificación y acotamiento, en el
sentido de que requiere explorar 5 nodos. Si hubiéramos explorado el nodo 3 (x31 5 0)
antes que el nodo 2 (x13 5 0), habríamos encontrado la cotas superior z 5 16 unidades, y
concluido que la ramificación en el nodo 2, con z 5 17, no puede conducir a una mejor so-
lución, y por lo tanto se eliminaría la necesidad de explorar los nodos 4 y 5.

Por lo general no hay reglas exactas para seleccionar la mejor secuencia de búsqueda,
excepto algunas reglas prácticas. Por ejemplo, en un nodo dado podemos iniciar con una
rama que tenga la dij más larga entre todas las ramas creadas. La esperanza es que la eli-
minación del segmento que tenga el recorrido más largo conduzca a un recorrido de
menor longitud. En el ejemplo 11.3-1, esta regla le habría dado prioridad al nodo 3 sobre
el nodo 2 porque d31 (54) es mayor que d13(53), como se desea. Otra regla demanda se-
cuenciar la exploración de los nodos horizontalmente (en lugar de verticalmente), es
decir, el ancho antes que la profundidad. La idea es que es más probable que los nodos
más cercanos al nodo de inicio produzcan cotas superiores más estrechas debido a que el
número de restricciones adicionales (del tipo xij 5 0) es más pequeño. Esta regla también
habría producido la búsqueda computacionalmente eficiente 1 S 2 S 3.

2. Las heurísticas de las secciones 11.4 y 11.5 pueden mejorar la eficiencia computacional del
algoritmo de ramificación y acotamiento al proporcionar una cota superior “estrecha”.
Por ejemplo, la heurística vecina más cercana en la sección 11.4-1 produce el recorrido
1-3-4-2-5-1 con longitud z 5 16. Esta cota superior estrecha habría eliminado de inmedia-
to la necesidad de explorar el nodo 2 (la matriz de distancias es totalmente entera, por lo
que no se puede encontrar una mejor solución en el nodo 2.)

Momento de AMPL
Los comandos interactivos de AMPL son ideales para implementar el algoritmo TSP de ramifi-
cación y acotamiento por medio del archivo del modelo de asignación general amplAssign.txt.
Los datos del problema se proporcionan en el archivo Ex11.3-1.txt. El archivo solutionAssign.txt
resuelve y despliega la solución en pantalla. La siguiente tabla resume los comandos AMPL ne-
cesarios para crear el árbol de ramificación y acotamiento mostrado en la figura 11.2 (ejemplo
11.3-1) interactivamente.
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Comandos AMPL Resultado

ampl: model amplAssign.txt; data Ex11.3-1.txt;
commands solutionAssign.txt;

Solución del nodo 1

ampl: fix x[1,3]: ; commands
solutionAssign.txt;

= 0 Solución del nodo 2

ampl: fix x[2,5]: ; commands
solutionAssign.txt;

= 0 Solución del nodo 4

ampl: unfix x[2,5]; fix x[5,2]: ; commands
solutionAssign.txt;

= 0 Solución del nodo 5

ampl: unfix x[5,2]; unfix x[1,3]; fix x[3,1]: ;
commands solutionAssign.txt;

= 0 Solución del nodo 3

Momento de TORA

También puede usarse TORA para generar el árbol de ramificación y acotamiento. Inicie con el
modelo de asignación en el nodo 1. La condición de rama xij 5 0 se ve afectada al utilizar
Solve/Modify Input Data para cambiar a cero la cota superior en xij.

CONJUNTO DE PROBLEMAS 11.3A

1. Resuelva el ejemplo 11.3-1 con un subrecorrido 2-5-4-2 para iniciar el proceso de ramifi-
cación en el nodo 1, utilizando las siguientes secuencias para explorar los nodos.
(a) Explore todos los subproblemas horizontalmente de izquierda a derecha en cada hi-

lera antes de proseguir con la siguiente.
(b) Siga cada ruta verticalmente a partir del nodo 1, seleccionando siempre la rama más

a la izquierda, hasta que la ruta termine en un nodo sondeado a fondo.
2. Resuelva el problema 1, conjunto 11.2a por el algoritmo de ramificación y acotamiento.

*3. Resuelva el problema 6, conjunto 11.2a por el algoritmo de ramificación y acotamiento.
4. Resuelva el problema 8, conjunto 11.2a por el algoritmo de ramificación y acotamiento.
5. Experimento con AMPL. Use los archivos amplAssign.txt y solutionsAssign.txt para re-

solver el problema 5, conjunto 11.2a por el algoritmo de ramificación y acotamiento.

11.3.2 Algoritmo del plano de corte

En este algoritmo se agrega un conjunto de restricciones al problema de asignación para
excluir las soluciones de subrecorrido. Definamos una variable continua uj ($ 0) para la
ciudad j 5 2, 3,…, y n. Las restricciones adicionales deseadas (planos de corte) son

La adición de estos cortes al modelo de asignación produce un programa lineal entero
combinado con xij binaria y uj continua.

ui - uj + nxij … n - 1,  i = 2,  3, Á , n;  j = 2,  3, Á , n;  i Z j
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TABLA 11.3 Cortes para excluir los subrecorridos en el modelo de asignación del ejemplo 11.3-2

Núm. x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 x41 x42 x43 x44 u2 u3 u4

1 4 1 -1 …3

2 4 1 -1 …3

3 4 -1 1 …3

4 4 1 -1 …3

5 4 -1 1 …3

6 4 -1 1 …3

Ejemplo 11.3-2

Considere la siguiente matriz de distancias de un problema TSP de 4 ciudades.

El problema entero combinado completo se compone del modelo de asignación y las restriccio-
nes adicionales, como se muestra en la tabla 11.3. Todas las xij 5 (0,1) y todas la uj $ 0.

La solución óptima es u2 5 0, u3 5 2, u4 5 3, x12 5 x23 5 x34 5 x415 1. El recorrido corres-
pondiente es 1-2-3-4-1 con longitud de 59. La solución satisface todas las restricciones adiciona-
les (¡compruébelo!).

Para demostrar que la solución óptima dada no puede satisfacer una solución de subreco-
rrido, considere el subrecorrido (1-2-1, 3-4-3), o x12 5 x21 5 1, x34 5 x43 5 1. Los valores óptimos
u2 5 0, u3 5 2, y u4 5 3 junto con x43 5 1 no satisfacen la restricción 6, 4x43 1 u4 2 u3 # 3, en la
tabla 11.3. (Convénzase de que la misma conclusión es cierta para otras soluciones de subreco-
rrido, como (3-2-3, 1-4-1)).

‘ dij ‘ = § - 13 21 26
10 - 29 20
30 20 - 5
12 30 7 -

¥

La desventaja del modelo de plano de corte es que el tamaño del programa lineal entero
combinado resultante crece exponencialmente con la cantidad de ciudades, que  lo hace ser com-
putacionalmente insoluble. Cuando esto sucede, el único recurso es utilizar, o bien el algoritmo
de ramificación y acotamiento, o una de las heurísticas de las secciones 11.4 y 11.5.

Momento de AMPL

En el archivo amplCut.txt se da un modelo general del algoritmo de plano de corte. El modelo
TSP de 4 ciudades del ejemplo 11.3-2 utiliza los siguientes comandos AMPL:

model amplCut.txt; data Ex11.3-2.txt; commands SolutionCut.txt;

Los resultados se presentan en el siguiente formato propio:

Optimal tour 
Optimal tour: 1- 2- 3- 4- 1

length = 59.00
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CONJUNTO DE PROBLEMAS 11.3B

1. Escriba a continuación los cortes asociados con el siguiente modelo TSP:

2. Experimento con AMPL. Use AMPL para resolver el siguiente problema TSP por el al-
goritmo de plano de corte.
(a) Problema 2, conjunto 11.2a.
(b) Problema 3, conjunto 11.2a.
(c) Problema 11, conjunto 11.2a.

3. Experimento con AMPL. En el modelo de tarjeta de circuito del problema 8, conjunto
11.2a, los datos de entrada se suelen dar en función de las coordenadas (x,y) de los aguje-
ros en lugar de la distancia entre los respectivos agujeros. Específicamente, considere las
siguientes coordenadas (x,y) para una tarjeta de 9 agujeros:

‘ dij ‘ = • q 43 21 20 10
12 q 9 22 30
20 10 q 5 13
14 30 42 q 20
44 7 9 10 q

μ

Agujero (x,y) en mm

1 (1, 2)
2 (4, 2)
3 (3, 7)
4 (5, 3)
5 (8, 4)
6 (7, 5)
7 (3, 4)
8 (6, 1)
9 (5, 6)

El taladro siempre recorre la distancia más corta entre dos agujeros sucesivos.
(a) Modifique el archivo de datos para determinar el recorrido de perforación óptimo

utilizando las coordenadas (x,y).
(b) Determine la tasa de producción en tarjetas por hora dado que la velocidad de 

desplazamiento del taladro es de 5 mm/s y el tiempo de perforación por agujero 
es de .5 s. Use los archivos amplCut.Txt.y solutionCut.txt.

11.4 HEURÍSTICAS DE BÚSQUEDA LOCAL

Esta sección presenta dos heurísticas de búsqueda local para el modelo TSP : de vecino
más cercano e inversión. Las heurísticas de búsqueda local terminan en un óptimo
local. Una forma de mejorar la calidad de la solución es repetir la búsqueda mediante
recorridos de inicio generados al azar. Otra opción es utilizar metaheurísticas, cuya
idea básica es escapar del entrampamiento en un óptimo local. Las metaheurísticas se
abordarán en la sección 11.5.
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11.4.1 Heurística del vecino más cercano

Como su nombre lo sugiere, una solución TSP puede hallarse comenzando con una
ciudad (nodo) y luego conectándola con la ciudad no conectada más cercana (los em-
pates se rompen arbitrariamente). La ciudad que se acaba de agregar se conecta en-
tonces con su ciudad no conectada más cercana. El proceso continúa hasta que se
forma un recorrido.

Ejemplo 11.4-1

La matriz siguiente resume las distancias en millas en un modelo TSP de 5 ciudades.

La heurística puede iniciarse desde cualquiera de las cinco ciudades. Cada ciudad de inicio
puede conducir a un recorrido diferente. La tabla 11.4 proporciona los pasos de la heurística que
se inicia en la ciudad 3. (Las distancias previamente seleccionadas se reemplazan con —).

‘ dij ‘ = • q 120 220 150 210
120 q 100 110 130
220 80 q 160 185
150 q 160 q 190
210 130 185 q q

μ

1En una matriz de distancias simétrica, la inversión de subrecorrido de (n – 1) ciudades no produce un reco-
rrido diferente. Por ejemplo, la inversión 2-4-5-3 en el recorrido 1-2-4-5-3-1) produce el recorrido idéntico
1-3-5-4-2-1) cuando la matriz de distancias es simétrica (dij = dij) para todas las i y j. Esto quizá no sea cierto
en el caso asimétrico porque tal vez los segmentos i-j y j-i pueden no ser iguales.

TABLA 11.4 Pasos de la heurística del vecino más cercano para resolver el modelo TSP del ejemplo 11.4-1

Paso Acción Construcción de recorrido

1 Inicio en la ciudad 3 3
2 La ciudad 2 está más cercana a la ciudad 3 (d32 = min{220, 80, q, 160, 185}) 3-2
3 La ciudad 4 está mas cercana a la ciudad 2 (d24 = min{120, q, —–, 110, 130}) 3-2-4
4 La ciudad 1 está más cercana a la ciudad 4 (d41 = min{150, q, —–,—–, 190}) 3-2-4-1
5 La ciudad 5 está más cercana a la ciudad 1 (d15 = min{q,—–, —–, —–, 210}) 3-2-4-1-5
6 Agregue la ciudad 3 para completar el recorrido 3-2-4-1-5-3

El recorrido resultante, 3-2-4-1-5-3, tiene una longitud total de 80 1 110 1 150 1 210 1 185
5 735 millas. Observe que la calidad de la solución depende de la selección de la ciudad de inicio.
Por ejemplo, si partimos de la ciudad 1, el recorrido resultante es 1-2-3-4-5-1 con una longitud de
780 millas (¡compruébelo!). Por tanto, una mejor solución puede determinarse repitiendo la
heurística con inicio en diferentes ciudades.

11.4.2 Heurística de inversión

En un modelo TSP de n ciudades, la heurística de inversión trata de mejorar un reco-
rrido actual invirtiendo el orden de los nodos de un subrecorrido abierto (un subrecorri-
do es abierto si le falta exactamente un segmento). Por ejemplo, considere el recorrido,
1-3-5-2-4-1 en la figura 11.3. La inversión de un subrecorrido abierto 3-5-2 produce el
nuevo recorrido 1-2-5-3-4-1 al eliminar los segmentos 1-3 y 2-4 y al agregar los seg-
mentos 1-2 y 3-4, como se muestra en la figura 11.3. El número mínimo del subrecorri-
do invertido es 2 (por ejemplo, 3-5 o 5-2). El número máximo es n 22 si la matriz de
distancias es simétrica, y n 2 1 si es asimétrica.1 La heurística examina todas las inver-
siones en la búsqueda para un mejor recorrido.
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FIGURA 11.3

La inversión de subrecorrido 3-5-2 en el recorrido 
1-3-5-2-4-1 produce el recorrido 1-2-5-3-4-1 al 
eliminar los segmentos 1-3 y 2-4, y agregar los 
segmentos 1-2 y 3-4

TABLA 11.5 Aplicación de la heurística de inversión al modelo TSP del ejemplo 11.4-1

Tipo Inversión Recorrido Longitud 

Inicio — (1-4-3-5-2-1) 745

Inversión de 4-3 1-3-4-5-2-1 820
dos a la vez 3-5 (1-4-5-3-2-1) 725

5-2 1-4-3-2-5-1 730

Inversión de 4-3-5 1-5-3-4-2-1 q
tres a la vez 3-5-2 1-4-2-5-3-1 q

Inversión de
cuatro a la vez

4-3-5-2 1-2-5-3-4-1 745

La longitud del recorrido de inicio en la heurística de inversión no necesita ser fi-
nita (es decir, le podrían faltar segmentos). De hecho, iniciar con un recorrido de longi-
tud finita no parece ofrecer una ventaja particular con respecto a la calidad de la solu-
ción final (vea el problema 2, conjunto 11.4A, para una ilustración).

Ejemplo 11.4-2

Considere el modelo TSP del ejemplo 11.4-1. Los pasos de inversión (autoexplicativos) se reali-
zan en la tabla 11.5 comenzando con recorrido arbitrario 1-4-3-5-2-1 de 745 millas de longitud.

La inversión de cuatro a la vez se investiga porque la matriz de distancias es asimétrica.
Además, ninguna de las inversiones puede incluir la ciudad de inicio del recorrido inicial (5 1 en
este ejemplo) ya que esto no producirá un recorrido factible. Por ejemplo, la inversión 1-4 con-
duce a 4-1-3-5-2-1, lo cual no es un recorrido.

La solución determinada por la heurística de inversión es una función del recorrido de inicio.
Por ejemplo, si iniciamos con 2-3-4-1-5-2 de 750 millas de longitud, la heurística produce un reco-
rrido diferente: 2-5-1-4-3-2 de 730 millas de longitud (¡compruébelo!). Por esta razón, la calidad
de la solución puede mejorarse si la heurística se repite con diferentes recorridos de inicio.

Momento de Excel

La figura 11.4 muestra una hoja de cálculo Excel general (archivo excelReversalTSP.xls) utilizan-
do las reglas dadas anteriormente (un subconjunto del modelo proporciona la solución del vecino
más cercano, vea las opciones dadas a continuación). La matriz de distancias puede ingresarse
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FIGURA 11.4

Ejecución de la heurística TSP por medio de una hoja de cálculo (archivo excelReversalTSP.xls)

manualmente, o llenarse al azar (simétrica o asimétrica) con una densidad especificada. La
heurística verifica automáticamente la matriz en cuanto a simetría y ajusta el nivel de inversión
máximo como corresponda. También automatiza cuatro opciones para el recorrido de inicio:

1. La opción all aplica la heurística del vecino más cercano utilizando cada una de las ciuda-
des como punto de inicio. Se utiliza entonces el mejor entre los recorridos resultantes para
iniciar la heurística de inversión.

2. La opción tour permite utilizar un recorrido de inicio específico.
3. La opción random genera un recorrido de inicio aleatorio.
4. La opción specific city number se aplica a la heurística de vecino más cercano iniciando en

la ciudad designada.

CONJUNTO DE PROBLEMAS 11.4A

1. En la tabla 11.5 del ejemplo 11.4-2, especifique los segmentos eliminados y agregados
con cada una de las inversiones de dos a la vez.

2. En la tabla 11.5 del ejemplo 11.4-2, use el recorrido desconectado de longitud infinita
3-2-5-4-1-3 (es decir, un recorrido al que le falta al menos un segmento) como recorrido
de inicio para demostrar que la heurística de inversión de recorrido puede seguir condu-
ciendo a una solución que es tan buena como cuando la heurística se inicia con un reco-
rrido conectado.

3. Aplique la heurística de inversión a los siguientes problemas iniciando con el recorrido
del mejor vecino más cercano:
(a) El problema de secuenciación de las pinturas del ejemplo 11.1-1.
(b) Problema 1 del conjunto 11.2a.
(c) Problema 4 del conjunto 11.2a.
(d) Problema 5 del conjunto 11.2a.

4. Experimento con Excel. La matriz siguiente proporciona las distancias entre 10 ciudades
(todas las entradas faltantes 5 q). (Por comodidad, el archivo Probl11.4a-4.txt propor-
ciona la matriz de distancias en formato AMPL.)
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Use el archivo excelReversalTSP.xls para implementar las siguientes situaciones:
(a) Use la heurística de vecino más cercano para determinar el recorrido asociado que

se inicia en el nodo 1.
(b) Determine el recorrido por medio de la heurística de inversión iniciando con el re-

corrido 4-5-3-6-7-8-10-9-1-4-5.
(c) Determine el recorrido utilizando la heurística de inversión iniciando con el mejor

recorrido del vecino más cercano.
(d) Compare la calidad de las soluciones en los incisos (a), (b) y (c) con la solución exac-

ta óptima obtenida por AMPL.

11.5 METAHEURÍSTICAS

La desventaja de las heurísticas de búsqueda local de la sección 11.4 es el posible en-
trampamiento en un óptimo local. Las metaheurísticas, como se explica en el capítulo
10, están diseñadas para aliviar este problema. Esta sección detalla la aplicación al mo-
delo TSP de la búsqueda tabú, de recocido simulado, y genética. Se recomienda que re-
vise el material del capítulo 10 antes de proseguir con el resto de este capítulo.

11.5.1 Algoritmo tabú aplicado al modelo TSP

Como se explica en la sección 10.3-1, la búsqueda tabú se escapa del entrampamiento
en óptimos locales al permitir movimientos de búsqueda inferiores. Una lista tabú im-
pide que se repitan las soluciones encontradas antes durante un número específico de
iteraciones sucesivas, llamado periodo de tenencia. Un movimiento tabú puede ser
aceptado si conduce a una solución mejorada. Para el modelo TSP, los elementos de la
búsqueda tabú se definen como sigue:

1. Recorrido de inicio. Hay cuatro opciones disponibles: (a) un recorrido específico;
(b) una ciudad de inicio específica para un recorrido construido mediante la
heurística del vecino más cercano (sección 11.4.1); (c) el mejor entre todos los re-
corridos construidos por la heurística del vecino más cercano utilizando cada una
de las ciudades 1, 2,…, y n como punto de inicio, y (d) un recorrido aleatorio.

2. Inversión de un subrecorrido. Dos segmentos de recorrido agregados reempla-
zan a dos eliminados para producir un nuevo recorrido (vea la sección 11.4-2
para los detalles).

3. Vecindad en la iteración i. Todos los recorridos (incluidos los no factibles con
longitud infinita) generados por la aplicación de inversiones de subrecorrido al
recorrido i.

4. Movimiento tabú. Un recorrido invertido es tabú si sus dos segmentos elimina-
dos están en la lista tabú.

1 2 3 4 5 6 7 8 9 10

1 100 2 11 80 5 39 95 28
2 17 42 33 21 59 46 79 29
3 63 57 92 55 68 52
4 36 27 25 40 49 48 63 16
5 51 11 46 60 22 11 13 54 55
6 20 46 15 93 76 47 21 10
7 17 45 88 28 26 33 30 49
8 35 49 87 76 55 64 93
9 35 48 100 3 55 41 73

10 50 70 43 82 43 23 49 89
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5. Siguiente movimiento en la iteración i. Identifique el recorrido más corto en el
vecindario i, y selecciónelo como el siguiente movimiento si no es tabú, o si es
tabú pero produce una mejor solución. De lo contrario, excluya el recorrido más
corto (tabú) y repita la prueba con siguiente recorrido de vecindario más corto.

6. Periodo de tenencia tabú t en la iteración i. El periodo de tenencia es el número
(aleatorio o determinístico) de iteraciones sucesivas que un elemento tabú per-
manece en la lista tabú.

7. Cambios en la lista tabú en la iteración i. Los segmentos invertidos que definen el
recorrido i del recorrido i 2 1 se agregan a la lista. Los segmentos del recorrido que
completan la tenencia (aquellos que entraron en la lista en la iteración i 2 t 1 1) se
eliminan de la lista.

Ejemplo 11.5-1

Utilizaremos la matriz de distancias del ejemplo 11.4-1 para demostrar la aplicación de la me-
taheurística tabú.

Supongamos un periodo de tenencia tabú t 5 2 iteraciones y utilizamos un recorrido 1-2-3-
4-5-1 de 780 de longitud como recorrido de inicio.

La tabla 11.6 proporciona las cinco iteraciones. En las iteraciones 1, 2 y 3, los recorridos más
cortos no son tabú. En la iteración 4, el recorrido más corto, 1-4-3-5-2-1 de 745 de longitud, es
tabú porque la inversión requiere eliminar los segmentos 4-5 y 3-2, y ambos están en la lista tabú.
Como el recorrido (tabú) no es mejor que la solución registrada (recorrido 1-4-5-3-2-1 de 725 de
longitud en la iteración 3), el siguiente recorrido más corto 1-4-5-2-3-1 de 790 de longitud, el cual
resulta ser no tabú, define el siguiente movimiento.

En la iteración 5, los dos recorridos 1-4-5-3-2-1 (longitud 5 725) y 1-4-3-2-5-1 (longitud 5
730) son tabú (y ninguno proporciona un mejor recorrido). El siguiente mejor recorrido en la ve-
cindad, 1-4-2-5-3-1 (de longitud infinita), no es tabú y por consiguiente representa el siguiente
movimiento. Observe que sólo un segmento eliminado (4-5) en el recorrido seleccionado 1-4-2-
5-3-1 aparece en la lista tabú, lo cual no es suficiente para declararlo tabú porque ambos seg-
mentos eliminados deben estar en la lista. Observe también que el recorrido superior 1-5-4-2-3-
1 (de longitud infinita) no se selecciona porque le faltan dos segmentos, en comparación con el
no faltante en el recorrido seleccionado, 1-4-2-5-3-1.

Momento de Excel 

La figura 11.5 presenta la hoja de cálculo Excel (archivo excelTabuTSP.xls) para aplicar la bús-
queda tabú al modelo TSP. Para facilitar la experimentación, los modelos TSP simétricos y
asimétricos de TPS pueden generarse al azar. Incluso, el recorrido de inicio puede especificarse
de manera determinística o aleatoria. Los botones on/off (fila 6 de la hoja de cálculo) suprimen
o revelan los detalles de las iteraciones, incluyendo los cambios en la lista tabú.

‘ dij ‘ = • q 120 220 150 210
120 q 100 110 130
220 80 q 160 185
150 q 160 q 190
210 130 185 q q

μ



418 Capítulo11 Problema del agente viajero (TSP)

CONJUNTO DE PROBLEMAS 11.5A

1. Realice tres iteraciones más del ejemplo 11.5-1.
2. Aplique el algoritmo tabú a los siguientes problemas iniciando con el recorrido del veci-

no más cercano:
(a) El problema de secuenciación de las pinturas del ejemplo 11.1-1.
(b) Problema 1 del conjunto 11.2a
(c) Problema 4 del conjunto 11.2a
(d) Problema 5 del conjunto 11.2a.

TABLA 11.6 Solución heurística tabú del ejemplo 11.5-1 con periodo de tenencia t 5 2 iteraciones

Iteración Inversión Recorrido Longitud Eliminar Agregar Lista tabú (t 5 2) 

0 — 1-2-3-4-5-1 780 —

1 2-3 1-3-2-4-5-1 810
3-4 1-2-4-3-5-1 785
4-5 1-2-3-5-4-1 q
2-3-4 1-4-3-2-5-1 730 1-2, 5-1 1-4, 2-5 1-4, 2-5
3-4-5 1-2-5-4-3-1 q
2-3-4-5 1-5-4-3-2-1 q

2 4-3 1-3-4-2-5-1 q
3-2 1-4-2-3-5-1 q
2-5 1-4-3-5-2-1 745 3-2, 5-1 3-5, 2-1 1-4, 2-5, 3-5, 2-1
4-3-2 1-2-3-4-5-1 780
3-2-5 1-4-5-2-3-1 790
4-3-2-5 1-5-2-3-4-1 750

3 4-3 1-3-4-5-2-1 820
3-5 1-4-5-3-2-1 725 4-3, 5-2 4-5, 3-2 3-5, 2-1, 4-5, 3-2
5-2 1-4-3-2-5-1 730
4-3-5 1-5-3-4-2-1 q
3-5-2 1-4-2-5-3-1 q
4-3-5-2 1-2-5-3-4-1 745

4 4-5 1-5-4-3-2-1 q
5-3 1-4-3-5-2-1 745 4-5, 3-2 — Tabú
3-2 1-4-5-2-3-1 790 5-3, 2-1 5-2, 3-1 4-5, 3-2, 5-2, 3-1
4-5-3 1-3-5-4-2-1 q
5-3-2 1-4-2-3-5-1 q
4-5-3-2 1-2-3-5-4-1 q

5 4-5 1-5-4-2-3-1 q
5-2 1-4-2-5-3-1 q 4-5, 2-3 4-2, 5-3 5-2, 3-1, 4-2, 5-3
2-3 1-4-5-3-2-1 725 5-2, 3-1 — Tabú
4-5-2 1-2-5-4-3-1 q
5-2-3 1-4-3-2-5-1 730 4-5, 3-1 — Tabú
4-5-2-3 1-3-2-5-4-1 q
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FIGURA 11.5

Metaheurística tabú aplicada al modelo TSP utilizando la hoja de cálculo Excel (archivo excelTabuTSP.xls)

3. Experimento con Excel-AMPL. La matriz siguiente proporciona las distancias entre 10
ciudades (todas las entradas faltantes 5 q). (Por comodidad, el archivo prob11.5a-4.txt
presenta las distancias en formato AMPL).
Use el archivo ExcelTabuTSP.xls iniciando con lo siguiente:
(a) Un recorrido aleatorio.
(b) Recorrido 4-5-3-2-6-7-8-10-9-1-4.
(c) El mejor recorrido del vecino más cercano.
Compare la calidad de la solución en los incisos (a), (b) y (c) con la solución óptima exac-
ta obtenida por AMPL, utilizando el archivo amplCut.txt.
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11.5.2 Algoritmo de recocido simulado aplicado al modelo TSP

La sección 10.3.2 explica que en cualquier iteración en el recocido simulado, ninguna
solución de vecindad no peor siempre es aceptada como el siguiente movimiento. Si no
existe tal solución, la búsqueda puede moverse a una solución de vecindad inferior
condicionalmente si

R<e

donde

R 5 Número aleatorio (0,1) 
Lactual 5 Longitud de recorrido en la iteración actual 
Lsiguiente 5 Longitud de recorrido (inferior) en la iteración (.Lactual)
T 5 Temperatura

La temperatura T supone valores más pequeños a medida que se incrementa la canti-
dad de iteraciones de búsqueda, por lo que se reduce el valor de e , y se produce
una búsqueda más selectiva. Incluso, la medida de aceptación favorece los movimien-
tos cuyo valor objetivo, Lsiguiente se acerca más al valor objetivo actual, Lactual, porque
incrementa el valor de e .

Los componentes principales del recocido simulado son los siguientes:

1. Recorrido de inicio. Hay cuatro opciones disponibles: (a) Un recorrido específi-
co; (b) una ciudad de inicio específica para un recorrido construido por la heurís-
tica del vecino más cercano (sección 11.4-1); (c) el mejor entre todos los
recorridos construidos por la heurística del vecino más cercano utilizando cada
una de las ciudades 1, 2,…, y n como punto de inicio, y (d) un recorrido aleatorio.

2. Inversión de subrecorrido. Dos segmentos agregados reemplazan a dos segmen-
tos eliminados para producir un nuevo recorrido (vea la sección 11.4-2 para los
detalles).

3. Programa de temperatura. {Tk, k 5 0, 1,…}, T0 5 temperatura inicial, Tk 5 rkTk21,
0 , rk , 1, k 5 1, 2,…, con el cambio de una temperatura a la siguiente ocurrien-
do cada t iteraciones de aceptación.

4. Vecindad en la iteración i. Todos los recorridos (incluidos los no factibles de lon-
gitud infinita) generados a partir de la aplicación de inversiones de subrecorrido
(sección 11.4.2) al recorrido i.

ALactual -Lsiguiente
T

B
ALactual -Lsiguiente

T
B

ALactual -Lsiguiente
T

B

1 2 3 4 5 6 7 8 9 10

1 100 2 11 80 5 39 95 28
2 17 42 33 21 59 46 79 29
3 63 57 92 55 68 52
4 36 27 25 40 49 48 63 16
5 51 11 46 60 22 11 13 54 55
6 20 46 15 93 76 47 21 10
7 17 45 88 28 26 33 30 49
8 35 49 87 76 55 64 93
9 35 48 100 3 55 41 73

10 50 70 43 82 43 23 49 89



11.5 Metaheurísticas 421

TABLA 11.7 Solución de recocido simulado del ejemplo 11.5-2 con Tk 5 .5Tk21, T0 5 50, y cambio de Tk21 a Tk
que ocurre cada dos iteraciones de aceptación

Iteración Inversión Recorrido Longitud Lactual Lsiguiente T
p = e ALactual -Lsiguiente

T
B R Decisión

0 — 3-2-5-4-1-3 q q 50 — —

1 2-5 3-5-2-4-1-3 795 50
5-4 3-2-4-5-1-3 810 50
4-1 3-2-5-1-4-3 730 50
2-5-4 3-4-5-2-1-3 820 50
5-4-1 3-2-1-4-5-3 725 q 725 50 — Aceptar el movimiento, L siguiente , Lactual 

2-5-4-1 3-1-4-5-2-3 790 50
50

2 2-1 3-1-2-4-5-3 825 50
1-4 3-2-4-1-5-3 735 725 735 50 .8187 .8536 Rechazar el movimiento, R . p

4-5 3-2-1-5-4-3 q 50
2-1-4 3-4-1-2-5-3 745 725 745 50 .6703 .3701 Aceptar el movimiento, R , p

1-4-5 3-2-5-4-1-3 q 50
2-1-4-5 3-5-4-1-2-3 q 50

q

3 4-1 3-1-4-2-5-3 q 25
1-2 3-4-2-1-5-3 q 25
2-5 3-4-1-5-2-3 750 25
4-1-2 3-2-1-4-5-3 725 745 725 25 Aceptar el movimiento, Lsiguiente , Lactual

1-2-5 3-4-5-2-1-3 820 25
4-1-2-5 3-5-2-1-4-3 745 25

5. Siguiente movimiento en la iteración i. Seleccione la inversión de subrecorrido
que no es peor que el mejor recorrido actual; de lo contrario, examine los recorri-
dos en el vecindario i en orden ascendente de la longitud de recorrido hasta que
se acepte un movimiento (utilizando la medida de probabilidad).

Ejemplo 11.5-2

Utilizaremos la matriz de distancias del ejemplo 11.4-1 para demostrar la aplicación de la me-
taheurística de recocido simulado.

Suponga el programa de temperatura Tk 5 .5Tk21 con T0 5 50. Un cambio de Tk21 a Tk tiene
lugar cada dos iteraciones de aceptación. El ejemplo se inicia con el recorrido no factible (longi-
tud infinita) 3-2-5-4-1-3.

La tabla 11.7 detalla los cálculos para tres iteraciones. El mejor movimiento de inversión
5-4-1 en la iteración 1 se acepta porque da por resultado una mejor longitud de recorrido
(Lsiguiente 5 725 contra Lactual 5 q. Esto significa que el recorrido 3-2-1-4-5-3 es la mejor solu-

‘ dij ‘ = • q 120 220 150 210
120 q 100 110 13
220 80 q 160 185
150 q 160 q 190
210 130 185 q q

μ
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ción disponible hasta ahora. La iteración 2 produce movimientos inferiores, lo que significa que
el movimiento anterior, 5-4-1 en la iteración 1, es un mínimo local. Por consiguiente, examinamos
todos los recorridos en la iteración 2 en orden ascendente de longitudes de recorrido hasta que
se acepta un recorrido (si todos los recorridos se rechazan, o se repite el examen con una nueva
ronda de números aleatorios o la búsqueda termina). El movimiento 1-4 con una longitud de re-
corrido de 735 se rechaza porque R 5 .8536 es mayor que . El siguiente
movimiento en el orden, 2-1-4, con longitud de recorrido de 745 se acepta porque R 5 .3701 es
menor que .

En la iteración 3 se obtuvieron dos iteraciones de aceptación en las iteraciones 1 y 2. Por
consiguiente, la temperatura cambia de 50 a .5(50) 5 25. El proceso iterativo continúa entonces
hasta que ocurre una condición de terminación.

Momento de Excel

La figura 11.6 proporciona una reproducción de la aplicación de recocido simulado al modelo de
TSP (archivo excelSimulatedAnnealingTSP.xls). La hoja de cálculo sigue el diseño general de la
hoja de cálculo tabú de la figura 11.5.

p = e( 725 - 745
50  ) = .6703

p = e( 725 - 735
50  ) = .8187

FIGURA 11.6

Metaheurística de recocido simulado aplicada al modelo TSP utilizando la hoja de cálculo Excel (archivo
excelSimulatedAnnelingTSP.xls)
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1 2 3 4 5 6 7 8 9 10

1 100 2 11 80 5 39 95 28
2 17 42 33 21 59 46 79 29
3 63 57 92 55 68 52
4 36 27 25 40 49 48 63 16
5 51 11 46 60 22 11 13 54 55
6 20 46 15 93 76 47 21 10
7 17 45 88 28 26 33 30 49
8 35 49 87 76 55 64 93
9 35 48 100 3 55 41 73

10 50 70 43 82 43 23 49 89

CONJUNTO DE PROBLEMAS 11.5B

1. Realice tres iteraciones más del ejemplo 11.5-2.
2. Aplique el recocido simulado a los siguientes problemas iniciando con el mejor recorrido

del vecino más cercano.
(a) El problema de secuenciación de pinturas del ejemplo 11.1-1.
(b) Problema 1 del conjunto 11.2a.
(c) Problema 4 del conjunto 11.2a.
(d) Problema 5 del conjunto 11.2a.

3. Experimento con Excel-AMPL. La siguiente matriz proporciona las distancias entre 10
ciudades (todas las entradas faltantes 5 q). (Por comodidad, el archivo prob11.5b-3.txt
proporciona las distancias en formato AMPL.)

Use el archivo excelSimulatedAnnealingTSP.xls iniciando con lo siguiente:
(a) Un recorrido aleatorio.
(b) Recorrido 4-5-3-2-6-7-8-10-9-1-4.
(c) El mejor recorrido del vecino más cercano.
Compare la calidad de la solución en los incisos (a), (b) y (c) con la solución óptima exac-
ta obtenida por AMPL.

11.5.3 Algoritmo genético aplicado al modelo TSP

En la metaheurística genética presentada en la sección 10.3.3, se seleccionan dos pa-
dres de una población para crear dos hijos. Los hijos luego se convierten en padres y
reemplazan a los dos padres menos aptos (en función de longitud de recorrido) en la
población. El proceso de crear hijos y de retirar a los padres se repite hasta que se llega
a una condición de terminación.

La siguiente es una descripción de los principales elementos de la metaheurística
genética tal como se aplica al TSP.

1. Codificación de genes. La codificación puede ser binaria o numérica. La lite-
ratura presenta heurísticas basadas en ambos tipos de codificación. Esta presentación
adopta el código de recorrido numérico directo (por ejemplo, 1-2-5-4-3-1).

2. Población inicial. El primer paso es identificar los conjuntos de código que
salen de cada nodo en la red a lo que se puede llegar por medio de un segmento de re-
corrido finito. Comenzando desde un nodo (origen) específico, un recorrido se cons-
truye agregando en la posición más a la derecha un nodo único no redundante selec-
cionado de entre todos los nodos que salen del último nodo agregado. Si se llega a un
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TABLA 11.8 Pasos para crear los hijos Cl y C2 a partir de los padres Pl y P2 utilizando un cruce ordenado

Paso Acción Ejemplo (suponer n 5 7 nodos)

0 Seleccionar P1 y P2 de la población (enlace de regreso al nodo 1)
(enlace de regreso al recorrido 5)P2 = 5-4-2-6-3-1-7

P1 = 1-2-5-4-3-7-6

1 Seleccionar al azar dos puntos de cruce 
c1 y c2 con c1 , c2. R = .7123 produce  c2 = int(7 * .7123) + 1 = 5

R = .4425 produce c1 = int(7 * .3425) + 1 = 3

2 Intercambiar posiciones (c1, c1 1 1,…, c2) en P1 y P2
para formar parcialmente C2 y C1, respectivamente. C2 = ?-?-5-4-3-?-?

C1 = ?-?-2-6-3-?-?

3 Crear la lista L1 (L2) reacomodando los elementos 
de P1(P2) en el sentido de las manecillas del reloj 
c2 1 1, c2 1 2,…, n, 1, 2,…, c2

L2 = (1, 7, 5, 4, 2, 6, 3)
L1 = (7, 6, 1, 2, 5, 4, 3)

4 De L1 (L2), cree L19 (L29) eliminando los nodos 
ya asignados a C1(2) en el paso 2 al mismo tiempo 
que se conserva el orden en L1 y L2.

L2œ = L2 - (5, 4, 3) = (1, 7, 2, 6)
L1œ = L1 - (2, 6, 3) = (7, 1, 5,  4)

5 Asignar los elementos de L19 (L29) a los elementos 
faltantes en C1(C2) en el orden 
c2 1 1, c2 1 2,…, n, 1, 2,…, c1 2 1.

(enlace de regreso al nodo 5)
(enlace de regreso al nodo 2)C2 = 2-6-5-4-3-1-7

C1 = 5-4-2-6-3-7-1

punto donde no existe ningún nodo de salida único, todo el proceso se repite hasta que
se encuentre un recorrido de longitud finita.

El requerimiento que estipula que se llegue a los nodos de salida por medio de
enlaces finitos garantiza que el recorrido construido es factible (tiene una longitud fi-
nita). A diferencia del algoritmo tabú y del recocido simulado donde una nueva bús-
queda puede ser no factible, es posible que los recorridos de padre no factible nunca
conduzcan a la creación de recorridos hijos factibles. Este resultado es particularmente
cierto cuando la matriz de distancias es dispersa.

3. Creación de un hijo. El proceso se inicia seleccionando dos padres, P1 y P2,
cuyos genes se intercambian para crear dos hijos, C1 y C2. Supondremos que P1 repre-
senta el mejor padre (en función de la longitud de recorrido) y P2 el siguiente mejor.
Hay varias formas de intercambio de genes [vea Larrañaga y colaboradores (1999)
para una lista de 25 de estos procedimientos]. En esta presentación utilizaremos el pro-
cedimiento de cruce ordenado, cuyos pasos se explican en la tabla 11.8.

El procedimiento propuesto para la creación de hijos puede conducir a recorridos
no factibles (con segmentos faltantes). Si esto sucede, el procedimiento debe repetirse
cuantas veces sea necesario hasta que se presente la factibilidad de la descendencia.

4. Mutación. La mutación en los genes del hijo ocurre con una pequeña probabi-
lidad de aproximación de .1, al intercambiarse los nodos de dos posiciones selecciona-
das al azar en el recorrido (excluidas las del nodo de inicio). La selección al azar puede
repetirse para asegurar dos posiciones distintas.

Ejemplo 11.5-3
Utilizaremos el modelo TSP del ejemplo 11.4-1 para demostrar la aplicación de la heurística
genética.

7dij 7 =   • q 120 220 150 210
120 q 100 110 130
220 80 q 160 185
150 q 160 q 190
210 130 185 q q

μ
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Nodo i Nodos de salida

1 {2, 3, 4, 5}
2 {1, 3, 4, 5}
3 {1, 2, 4, 5}
4 {1, 3, 5}
5 {1, 2, 3}

TABLA 11.9 Algoritmo genético aplicado al modelo TSP del ejemplo 11.4.3

Iteración Miembro Recorrido Cruces Longitud

1 1 1-4-5-2-3-1 790
2 3-2-4-5-1-3 810
3 1-2-4-5-3-1 825

(Padre 2) 4 2-5-3-4-1-2 745
5 3-4-5-1-2-3 780

(Padre 1) 6 1-5-3-2-4-1 735
Hijo 1 5-2-3-4-1-5 3 y 5 750
Hijo 2 5-1-3-2-4-5 810

2 1 1-4-5-2-3-1 790
2 5-1-3-2-4-5 810
3 5-2-3-4-1-5 750

(Padre 2) 4 2-5-3-4-1-2 745
5 3-4-5-1-2-3 780

(Padre 1) 6 1-5-3-2-4-1 735
Hijo 1 5-3-2-4-1-5 4 y 5 735
Hijo 2 5-3-1-2-4-5 825

. . . . . . . . . . . . . . .

11 (Padre 2) 1 1-5-3-2-4-1 735
2 5-3-2-4-1-5 735
3 5-3-2-4-1-5 735
4 5-3-2-4-1-5 735

(Padre 1) 5 4-5-3-2-1-4 725
6 5-3-2-4-1-5 735

Hijo 1 4-5-3-2-1-4 3 y 4 725
Hijo 2 1-5-3-2-4-1 735

La lista de nodos de salida se determina a partir de la matriz de distancias como 

La tabla 11.9 proporciona los detalles de las iteraciones 1, 2 y 11. La iteración 11 proporcio-
na la mejor solución (la cual también resulta ser óptima). Las iteraciones que intervienen se omi-
tieron para conservar espacio.

Demostramos la determinación de la población inicial (6 padres) en la iteración 1 conside-
rando el padre 1. Comenzando con el nodo de inicio 1, se selecciona el nodo 4 al azar de entre el
conjunto de nodos de salida {2,3,4,5}. Luego, los nodos salientes del nodo 4 son {1,3,5}2{1} por-
que {1} ya está en el recorrido parcial. Seleccionando el nodo 5 al azar se produce el recorrido
parcial 1-4-5. El proceso se repite hasta que se construye el recorrido completo 1-4-5-2-3-1.
Tengamos en cuenta que si la construcción del recorrido se detiene (no pueden agregarse nodos
nuevos), entonces todo el proceso debe repetirse de nuevo. Por ejemplo, la construcción del re-
corrido no puede continuar más allá del recorrido parcial 1-2-3-5 porque no hay ninguna cone-
xión del nodo 5 al nodo de salida 4 (el único restante).
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FIGURA 11.7

Metaheurística genética aplicada al modelo TSP utilizando una hoja de calculo Excel 
(archivo excelGeneticTSP.xls) 

En la iteración 1, P1 5 1-5-3-2-4 y P2 5 2-5-3-4-1 porque son los dos padres más aptos (ob-
serve que las definiciones de P1 y P2 no incluyen los últimos elementos 1 y 2. respectivamente).
Utilizando los puntos de cruce (generados al azar) c1 5 3 y c2 5 5, obtenemos C1 5 ?-?-3-4-1 y
C2 5 ?-?-3-2-4 parciales. Luego, L19 5 {1,5,3,2,4} — {3,4,1} 5 {5,2}, lo cual produce Cl 5 5-2-3-4-
1. Asimismo, L29 5 {2,5,3,4,1} — {3,2,4} 5 {5,1}, lo cual produce C2 5 5-1-3-2-4. Ahora los hijos
C1 y C2 reemplazan a los padres menos aptos 2 y 3 que corresponden a las longitudes de los peo-
res (más largos) recorridos (810 and 825) para producir la nueva población que se utilizará en la
iteración 2 (es irrelevante cuál hijo reemplace a cuál de los dos peores padres).

Para problemas pequeños, las iteraciones pueden “saturarse” en una forma un tanto rápida,
en el sentido de que los hijos no pueden distinguirse de los padres que reemplazan, como lo de-
muestra la iteración 11. El único recurso en este caso es iniciar un nuevo ciclo de ejecución que
permita utilizar una nueva condición de inicio (aleatoria).

Momento de Excel

La figura 11.7 muestra un modelo general basado en Excel para experimentar con la metaheurísti-
ca genética (archivo excelGeneticTSPxls). El modelo puede ejecutarse una iteración a la vez o de
forma automática hasta que se llega a una condición de terminación. La aleatoriedad de las condi-
ciones de inicio proporciona condiciones diferentes cada vez que se pulsa el botón de ejecución.
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CONJUNTO DE PROBLEMAS 11.5C

1. Realice las iteraciones 3 y 4 en el ejemplo 11.5-3.
2. Aplique la metaheurística genética a los siguientes problemas iniciando con el mejor re-

corrido del vecino más cercano.
(a) El problema de secuenciación de pinturas del ejemplo 11.1-1.
(b) Problema 1 del conjunto 11.2a.
(c) Problema 4 del conjunto 11.2a.
(d) Problema 5 del conjunto 11.2a.

3. Experimento con Excel-AMPL. La siguiente matriz proporciona las distancias entre 10
ciudades (todas las entradas faltantes 5 q). (Por comodidad, el archivo probl1.5c-3.txt
proporciona las distancias en formato AMPL).

Utilice el archivo file excelGeneticTSP.xls comenzando con lo siguiente:
(a) Un recorrido aleatorio.
(b) Recorrido 4-5-3-2-6-7-8-10-9-1-4-5.
(c) El mejor recorrido del vecino más cercano.
Compare la calidad de las soluciones en los incisos (a); (b) y (c) con la solución óptima
exacta obtenida por AMPL.
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12.1 NATURALEZA RECURSIVA DE LOS CÁLCULOS 
DE PROGRAMACIÓN DINÁMICA (PD)

La idea principal de la programación dinámica (PD) es descomponer el problema en
subproblemas (más manejables). Los cálculos se realizan entonces recursivamente
donde la solución óptima de un subproblema se utiliza como dato de entrada al si-
guiente problema. La solución para todo el problema está disponible cuando se solu-
ciona el último subproblema. La forma en que se realizan los cálculos recursivos de-
pende de cómo se descomponga el problema original. En particular, normalmente los
subproblemas están vinculados por restricciones comunes. La factibilidad de estas res-
tricciones comunes se mantiene en todas las iteraciones.

Ejemplo 12.1-1 (Problema de la ruta más corta)

Supongamos que deseamos seleccionar la ruta por carretera más corta entre dos ciudades. La red
en la figura 12.1 proporciona las posibles rutas entre la ciudad de inicio en el nodo 1 y la ciudad
destino en el nodo 7. Las rutas pasan por ciudades intermedias designadas por los nodos 2 a 6.

CAPÍTULO 12

Programación dinámica determinística

Aplicación de la vida real. Optimización del corte de árboles 
y asignación de troncos en Weyerhaeuser

Los árboles maduros se talan y aserran transversalmente en troncos para fabricar dife-
rentes productos finales (madera para construcción, madera contrachapada, tablas de
aglomerado de madera, o papel). Las especificaciones de los troncos (por ejemplo lon-
gitud y diámetro finales) difieren según el aserradero donde se procesan los troncos.
Con árboles talados hasta de 100 pies de altura, la cantidad de combinaciones de corte
que satisfacen los requerimientos del aserradero puede ser grande, y la forma de cortar
el árbol en troncos puede afectar los ingresos. El objetivo es determinar las combina-
ciones de corte que maximicen el ingreso total. El estudio utiliza programación diná-
mica para optimizar el proceso. El sistema propuesto se implementó por primera vez
en 1978 con un incremento anual en la utilidad de al menos $7 millones. (El caso 8 del
capítulo 26, en inglés, en el sitio web proporciona los detalles del estudio).
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FIGURA 12.1

Red de rutas para el ejemplo 12.1-1
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Podemos resolver este problema enumerando todas las rutas entre los nodos 1 y 7 (hay
cinco rutas). Sin embargo, la enumeración exhaustiva es computacionalmente insoluble en redes
grandes.

Para resolver el problema por PD, primero lo descomponemos en etapas como se indica
mediante las líneas de rayas verticales en la figura 12.2.A continuación, realizamos por separado
los cálculos en cada etapa.

La idea general para determinar la ruta más corta es calcular las distancias (acumulativas)
más cortas a todos los nodos terminales de una etapa, y luego utilizarlas como datos de entrada
a la etapa inmediatamente subsiguiente. Partiendo del nodo 1, la etapa 1 llega a tres nodos ter-
minales (2, 3 y 4) y sus cálculos son simples.

Resumen de la etapa 1.

Distancia más corta del nodo 1 al nodo 2 5 7 millas (desde el nodo 1)

Distancia más corta del nodo 1 al nodo 3 5 8 millas (desde el nodo 1) 

Distancia más corta del nodo 1 al nodo 4 5 5 millas (desde el nodo 1) 

FIGURA 12.2

Descomposición del problema de la ruta más corta en etapas

3

4

2

7

6

5

12

8

9

7

13

8

5

3

4

2

7

1
8

7

5

0 8

5

17

12

7

6

5

6

9

17

12

21

f1f1

f0

f2 f2

f3



12.1 Naturaleza recursiva de los cálculos de programación dinámica (PD) 431

Luego, la etapa 2 tiene dos nodos terminales, 5 y 6. La figura 12.2 muestra que se puede lle-
gar al nodo 5 desde los nodos 2, 3 y 4 por las rutas (2,5), (3,5) y (4,5). Esta información, junto con
los resultados resumidos (distancias más cortas) en la etapa 1, determina la distancia (acumula-
tiva) más corta al nodo 5 como 

Se puede llegar al nodo 6 sólo desde los nodos 3 y 4. Por lo tanto

Resumen de la etapa 2.

Distancia más corta del nodo 1 al nodo  5 5 12 millas (desde el nodo 4) 

Distancia más corta del nodo 1 al nodo 6 5 17 millas (desde el nodo 3)

El último paso es considerar la etapa 3. Se puede llegar al nodo de destino 7 desde el nodo
5 o desde el 6. Utilizando los resultados resumidos desde la etapa 2 y las distancias de los nodos
5 y 6 al nodo 7, obtenemos 

Resumen de la etapa 3.

La distancia más corta desde el nodo 1 al nodo 7 5 21 millas (desde el nodo 5)

El resumen de la etapa 3 muestra que la distancia más corta entre los nodos 1 y 7 es de 21
millas. Para determinar la ruta óptima comenzamos con el resumen de la etapa 3, donde el nodo
7 se conecta al nodo 5; en el resumen de la etapa 2 el nodo 4 se conecta al nodo 5, y en el resu-
men de la etapa 1 el nodo 4 se conecta al nodo 1. Por lo tanto, la ruta más corta es 1 S 4 S5 S7.

El ejemplo revela las propiedades básicas de los cálculos de PD.

1. Los cálculos en cada etapa son una función de las rutas factibles de dicha etapa, y
sólo de esa etapa.

2. Una etapa actual está conectada a la etapa inmediatamente precedente sólo (sin tener
en cuenta las etapas anteriores) con base en el resumen de distancias más cortas de la
etapa inmediatamente precedente.

=  mín e 12 + 9 = 21
17 + 6 = 23

f = 21 (desde el nodo 5)

aDistancia más corta
al nodo  7

b =  mín 
i= 5, 6

 e aDistancia más corta
al nodo i

b + a Distancia del
nodo i al nodo 7

b f

=  mín e 8 + 9 = 17
5 + 13 = 18

f = 17 (desde el nodo 3)

aDistancia más corta
al nodo  6

b =  mín 
i= 3, 4

 e aDistancia más corta
al nodo i

b + a Distancia del
nodo i al nodo 6

b f

 = mín c 7 + 12 = 19
8 + 8 = 16
5 + 7 = 12

s = 12 (desde el nodo 4)

 aDistancia más corta
al nodo 5

b  = mín 
i= 2, 3, 4

e aDistancia más corta
al nodo i

b + a Distancia del 
nodo i al nodo 5

b f
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Ecuación recursiva. Esta sección muestra cómo pueden expresarse matemá-
ticamente los cálculos recursivos en el ejemplo 12.1-1. Sea fi(xi) la distancia más corta
al nodo xi en la etapa i, y defina d(xi21, xi) como la distancia del nodo xi21 al nodo xi.
La ecuación recursiva de PD se define como 

Todas las distancias se miden desde 0 al establecer f0(x0 = 1) = 0. La ecuación re-
cursiva principal expresa la distancia más corta fi(xi) en la etapa i como una función del
siguiente nodo, xi. En terminología de PD, xi se conoce como el estado en la etapa i. El
estado conecta las etapas sucesivas de una manera que permite tomar decisiones facti-
bles óptimas en una etapa futura independientemente de las decisiones que se hayan
tomado en todas las etapas precedentes.

La definición del estado conduce al siguiente marco unificador para la PD.

Principio de optimalidad. Las decisiones futuras para todas las etapas futuras

constituyen una política óptima independientemente de la política adoptada en todas
las etapas precedentes.

La implementación del principio de optimalidad es evidente en los cálculos del
ejemplo 12.1-1. En la etapa 3, los cálculos recursivos en el nodo 7 utilizan la distancia
más corta a los nodos 5 y 6 (es decir, los estados de la etapa 2) sin preocuparse sobre
cómo se llega a los nodos 5 y 6 desde el nodo de inicio 1.

El principio de optimalidad no aborda los detalles de cómo se optimiza un sub-
problema. La razón es la naturaleza genérica del subproblema. Puede ser lineal o no li-
neal, y la cantidad de alternativas puede ser finita o infinita.Todo lo que hace el princi-
pio de optimalidad es “descomponer” el problema original en subproblemas más
manejables computacionalmente.

CONJUNTO DE PROBLEMAS 12.1A

*1. Resuelva el problema 12.1-1, suponiendo que se utilizan las siguientes rutas:

2. Soy un ávido excursionista. El verano pasado, mi amigo G. Don y yo nos fuimos de cam-
pamento durante 5 días a las hermosas White Mountains en New Hampshire. Decidimos
limitar nuestra excursión a tres picos muy conocidos: Los montes Washington, Jefferson y
Adams. El monte Washington tiene un sendero de 6 millas de la base a la cumbre. Los
senderos correspondientes de los montes Jefferson y Adams son de 4 y 5 millas. Los sen-
deros que conectan las bases de las tres montañas son de 3 millas entre los montes
Washington y Jefferson; de 2 millas entre los montes Jefferson y Adams, y de 5 millas
entre los montes Adams y Washington. Comenzamos el primer día en la base del monte

 d(6, 7) = 9

 d(5, 7) = 8

 d(4, 5) = 9, d(4, 6) = 9

 d(3, 5) = 4, d(3, 6) = 10

d(2, 5) = 10, d(2, 6) = 17

  d(1, 2) = 5, d(1, 3) = 9, d(1, 4) = 8

fi1xi2 = mín
todas factibles1xi - 1, xi2 rutas

5d1xi- 1, xi2 + fi- 11xi- 126, i = 1, 2, 3

f0(x0 = 1) = 0
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Washington y regresamos al mismo lugar al final de los 5 días. Nuestro objetivo era reco-
rrer a pie tantas millas como pudiéramos. También decidimos escalar una montaña exac-
tamente cada día y acampar en la base de la montaña que escalaríamos el siguiente día.
Además, decidimos que no se podía visitar la misma montaña en dos días consecutivos.
Utilice la PD para programar la caminata de 5 días.

12.2 RECURSIVIDAD HACIA ADELANTE (AVANCE) Y HACIA ATRÁS (RETROCESO)

El ejemplo 12.1-1 utiliza la recursividad hacia adelante en la cual los cálculos proceden
de la etapa 1 a la etapa 3. El mismo ejemplo puede resolverse por medio de recursivi-
dad hacia atrás, comenzando en la etapa 3 y terminando en la etapa 1.

Naturalmente, la recursividad hacia adelante y hacia atrás da la misma solución
óptima. Aun cuando el procedimiento  hacia adelante parece más lógico, la mayor
parte de la literatura de PD utiliza la recursividad hacia atrás. La razón de esta prefe-
rencia es que, por lo general, la recursividad hacia atrás puede ser más eficiente desde
el punto de vista computacional.

Demostraremos el uso de la recursividad hacia atrás aplicándola al ejemplo 12.1-1.
La demostración también nos brindará la oportunidad de presentar los cálculos de PD
en una forma tabular compacta.

Ejemplo 12.2-1

La ecuación recursiva inversa para el ejemplo 12.2-1 es

El orden de los cálculos es f3 S f2 S f1.

Etapa 3. El nodo 7 (x4 5 7) está conectado a los nodos 5 y 6 (x3 5 5 y 6) exactamente con una
ruta cada uno. La siguiente tabla resume los cálculos de la etapa 3:

fi1xi2 = mín
todas factibles
rutas 1xi, xi + 125d1xi, xi+ 12 + fi+ 11xi+ 126, i = 1, 2, 3

f4(x4 = 7) = 0

d(x3, x4) Solución óptima

x3 x4 = 7 f3(x3) x4
…

5 9 9 7
6 6 6 7

Etapa 2. La ruta (2,6) no existe. Dada f3(x3) desde la etapa 3, podemos comparar las alternati-
vas factibles como se muestra en la siguiente tabla:

d(x2, x3) + f3(x3) Solución óptima

x2 x3 = 5 x3 = 6 f2(x2) x3
…

2  12 + 9 = 21 — 21 5
3  8 + 9 = 17 9 + 6 = 15 15 6
4  7 + 9 = 16 13 + 6 = 19 16 5



434 Capítulo 12 Programación dinámica determinística

La solución óptima de la etapa 2 se lee como sigue: Para las ciudades 2 y 4, la ruta más corta
pasa por las ciudad 5; y para la ciudad 3, la ruta más corta pasa por la ciudad 6.

Etapa 1. Partiendo del nodo 1, tenemos las rutas alternativas: (1,2), (1,3) y (1,4). Utilizando
f2(x2) de la etapa 2, obtenemos

La solución de la etapa 1 conecta la ciudad 1 con la ciudad 4. Luego, la solución de la etapa 2
conecta la ciudad 4 con la ciudad 5. Por último, la solución de la etapa 3 conecta la ciudad 5 con
la ciudad 7. La ruta óptima es 1 S 4 S 5 S 7, y la distancia asociada es de 21 millas.

CONJUNTO DE PROBLEMAS 12.2A

1. Para el problema 1, conjunto 12.1a, desarrolle la ecuación recursiva hacia atrás y utilícela
para hallar la solución óptima.

2. Para el problema 2, conjunto 12.1a, desarrolle la ecuación recursiva hacia atrás, y utilícela
para encontrar la solución óptima.

*3. Para la red de la figura 12.3 se desear determinar la ruta más corta entre las ciudades 1 y
7. Defina las etapas y los estados por medio de la recursividad hacia atrás, y luego resuel-
va el problema.

12.3 APLICACIONES DE PD SELECCIONADAS

Esta sección presenta cuatro aplicaciones, cada una con una nueva idea en la imple-
mentación de la PD. Todos los ejemplos utilizan la ecuación recursiva hacia atrás debi-
do a su prevalencia en la literatura.

d(x1, x2) + f2(x2) Solución óptima 

x1 x2 = 2 x2 = 3 x2 = 4 f1(x1) x2
…

1 7 + 21 = 28 8 + 15 = 23 5 + 16 = 21 21 4

FIGURA 12.3

Red para el problema 3,
conjunto 12.2a
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Conforme estudie cada aplicación, preste especial atención a los tres elementos
básicos del modelo PD:

1. Definición de las etapas

2. Definición de las alternativas en cada etapa
3. Definición de los estados para cada etapa

De los tres elementos, la definición del estado suele ser la más sutil. Las aplicaciones
que se presentan aquí muestran que la definición del estado varía según la situación que
se ha de modelar. No obstante, a medida que investigue cada aplicación se dará cuenta
que es útil considerar las siguientes preguntas:

1. ¿Qué relaciones ligan a las etapas entre sí?
2. ¿Qué información se requiere para tomar decisiones factibles en la etapa actual

independientemente de cómo se hayan tomado las decisiones en las etapas pre-
cedentes?

Puede mejorar su comprensión del concepto de estado si cuestiona la validez de
la forma en que se definió aquí. Pruebe otra definición que le parezca “más lógica” y
utilícela en los cálculos recursivos. Pronto descubrirá que las definiciones presentadas
aquí son correctas. Entre tanto, el proceso mental asociado le permitirá entender mejor
el rol de los estados en el desarrollo de la ecuación recursiva de PD.

12.3.1 Modelo de la mochila/equipo de vuelo/carga de contenedor

El modelo de la mochila tiene que ver clásicamente con el hecho de determinar los artí-
culos más valiosos que un combatiente carga en una mochila. El problema representa
un modelo de asignación de recursos general en el cual se utilizan recursos limitados
por varias actividades económicas. El objetivo es maximizar el rendimiento total.1

La ecuación recursiva (hacia atrás) se desarrolla para el problema general de
asignar n artículos a una mochila con capacidad de peso W. Sea mi la cantidad de uni-
dades del artículo i en la mochila, y defina ri y wi como el ingreso unitario y el peso del
artículo i. El problema general se representa como

sujeto a

Los tres elementos del modelo son 

m1, m2, Á  , mn  enteros no negativos

w1m1 + w2m2 + Á + wnmn … W

Maximizar  z = r1m1 + r2m2 + Á  +  rnmn

1El problema de la mochila también se conoce en la literatura como el problema del equipo de vuelo (deter-
minación de los artículos más valiosos que un piloto de jet lleva a bordo) y el problema de carga de un con-
tenedor (determinación de los artículos más valiosos que se cargarán en un buque de la armada). ¡Parece que
los tres nombres fueron acuñados para garantizar una representación igual de las tres ramas de las fuerzas
armadas: Ejército, Fuerza Aérea y Armada!
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1. La etapa i está representada por el artículo i, i = 1, 2,…, n.
2. Las alternativas en la etapa i son la cantidad de unidades del artículo i,

, donde es el mayor entero que es menor o igual a . Esta
definición permite que la solución distribuya algunos, ninguno, o todos los recur-
sos W a cualquiera de los m artículos. El rendimiento para mi es rimi.

3. El estado en la etapa i está representado por xi, el peso total asignado a las etapas
(artículos) i, i + 1,…, y n. Esta definición reconoce que el límite de peso es la
única restricción que liga a todas las n etapas.2

Defina

fi(xi) = rendimiento máximo para las etapas i, i 11, y n, dado el estado xi

La manera más conveniente de construir la ecuación recursiva es un procedimiento de
dos pasos:

Paso 1. Exprese fi(xi) como una función de fi(xi11) como sigue:

Paso 2. Exprese xi11 como una función de xi para asegurar la consistencia con el lado
izquierdo de la ecuación recursiva. Por definición, xi 2 xi11 = wimi represen-
ta el peso utilizado en la etapa i. Por lo tanto, xi11 = xi 2 wimi, y la ecuación
recursiva apropiada se da como 

Ejemplo 12.3-1

Un barco de 4 toneladas puede cargarse con uno o más de tres artículos. La siguiente tabla da el
peso unitario,wi, en toneladas y el ingreso unitario en miles de dólares, ri, para el artículo i. El ob-
jetivo es determinar la cantidad de unidades de cada artículo que maximizará el rendimiento total.

fi1xi2 = máx
mi= 0, 1, Á  , CWwi D

xi…W

5rimi + fi+ 11xi - wimi26, i = 1, 2, Á , n

 fi1xi2 = mín
mi= 0, 1, Á  , CWwi D

xi…W

5rimi + fi+ 11xi+ 126, i = 1, 2, Á , n

fn+ 1(xn+ 1) K 0

W
wi

CWwi Dmi = 0, 1, . . . , CWwi D

Artículo i wi ri

1 2 31
2 3 47
3 1 14

2La definición del estado puede ser multidimensional. Digamos que el volumen de la mochila puede impo-
ner otra restricción. Por lo general, un estado multidimensional implica cálculos de etapa más complejos.Vea
la sección 12.4.

Como el peso unitario wi y el peso máximo W son enteros, el estado xi asume sólo valores
enteros.

Etapa 3. El peso exacto a ser asignado a la etapa 3 (artículo 3) no se conoce con anticipación
pero puede suponer uno de los valores 0, 1,…, y 4 (porque W 5 4 toneladas y w3 5 1 tonelada).
Un valor de m3 es factible sólo si w3m3 # x3. Por lo tanto se excluyen todos los valores no facti-
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bles (con w3m3 . x3). El ingreso para el artículo 3 es 14m3. En consecuencia, la ecuación recur-
siva para la etapa 3 es 

La siguiente tabla resume los cálculos para la etapa 3.

f31x32 = máx
m3 = 0, 1, Á , 4

514m36

Etapa 2. , o , f21x22 = máx
m3 = 0, 1

547m2 + f31x2 - 3m226m3 = 0, 1 máx {m2} = C  43 D = 1

Etapa 1. o , f11x12 = máx
m3 = 0, 1, 2 

531m2 + f21x1 - 2m126m1 = 0, 1, 2 máx  {m1} = C  42 D = 2

14m3 Solución óptima

x3 m3 = 0 m3 = 1 m3 = 2 m3 = 3 m3 = 4 f3 (x3) m3
…

0 0 — — — — 0 0
1 0 14 — — — 14 1
2 0 14 28 — — 28 2
3 0 14 28 42 — 42 3
4 0 14 28 42 56 56 4

47m2 + f3 (x2 - 3m2) Solución óptima

x2 m2 = 0 m2 = 1 f2 (x2) m2
…

0 0 + 0 = 0 — 0 0
1 0 + 14 = 14 — 14 0
2 0 + 28 = 28 — 28 0
3 0 + 42 = 42 47 + 0 = 47 47 1
4 0 + 56 = 56 47 + 14 = 61 61 1

31m1 + f2 (x1 - 2m1) Solución óptima

x1 m1 = 0 m1 = 1 m1 = 2 f1(x1) m1
…

0 0 + 0 = 0 — — 0 0
1 0 + 14 = 14 — — 14 0
2 0 + 28 = 28 31 + 0 = 31 — 31 1
3 0 + 47 = 47 31 + 14 = 45 — 47 0
4 0 + 61 = 61 31 + 28 = 59 62 + 0 = 62 62 2

La solución óptima se determina como sigue: Dado que W 5 4 toneladas, del estado 1, x1 5 4
se da la  alternativa óptima ; es decir que en el barco se cargarán dos unidades del
artículo 1. Esta asignación deja, para las etapas 2 y 3. De la
etapa 2, x2 5 0 da por resultado, , lo cual deja x3 5 x2 2 3m2 5 0 2 3 3 0 5 0 unidades
para la etapa 3. Luego, a partir de la etapa 3, x3 5 0 da . Por lo tanto, la solución óptima
completa es, , , y . El rendimiento asociado es f1(4) 5 $62,000.m3

… = 0m2
… = 0m1

… = 2
m3
… = 0

m2
… = 0

x2 = x1 - 2 m2
… = 4 - 2 * 2 = 0

m1
… = 2
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En la tabla para la etapa 1, en realidad tenemos que calcular la fila sólo para x1 5 4, porque
ésta es la última etapa que se considerará. Sin embargo, se incluyen los cálculos para x1 5 0, 1, 2
y 3 para poder realizar el análisis de sensibilidad. Por ejemplo, ¿qué sucede si la capacidad del
barco es de 3 toneladas en lugar de 4? La nueva solución óptima puede determinarse como 

Por lo tanto la solución óptima es , y el ingreso óptimo es f1(3) 5 $47,000.

Momento de Excel

La naturaleza de los cálculos de PD hace imposible desarrollar un código de computadora gene-
ral que pueda manejar todos los problemas de PD. Tal vez esto explique la persistente ausencia
de software de PD comercial.

En esta sección presentamos un algoritmo basado en Excel para manejar una subclase de pro-
blemas de PD: El problema de la mochila de una sola restricción (archivo excelKnnapsack.xls). El
algoritmo no es específico de datos y puede manejar problemas en los cuales una alternativa
puede suponer valores en el intervalo de 0 a 10.

La figura 12.4 muestra la pantalla de inicio del modelo de PD ( hacia atrás) de la mochila. La
pantalla está dividida en dos secciones: La sección de la derecha(columnas Q:V) resume la solu-
ción de salida. En la sección de la izquierda (columnas A:P), los datos de entrada para la etapa
actual aparecen en las filas 3, 4, y 6. Los cálculos de las etapas se inician en la fila 7. (Las colum-
nas H:N están ocultas para conservar espacio). Los símbolos de los datos de entrada son auto-
explicativos. Para ajustar la hoja de cálculo de manera conveniente en una pantalla, el valor fac-
tible máximo de la alternativa mi en la etapa i es 10 (celdas D6:N6).

La figura 12.5 muestra los cálculos de etapa generados por el algoritmo para el ejemplo
12.3-1. Los cálculos se realizan etapa por etapa, y el usuario proporciona los datos básicos que
controlan cada etapa.

Comenzando con la etapa 3 y utilizando la notación y datos del ejemplo 12.3-1, las celdas de
entrada se actualizan como se muestra en la lista siguiente:

(m1
…, m2

…, m3
…) = (0, 1, 0)

(x1 = 3): (m1
… = 0): (x2 = 3): (m2

… = 1): (x3 = 0): (m3
… = 0)

FIGURA 12.4

Pantalla Excel de inicio del modelo general de PD del modelo de la mochila (archivo excelKnapsack.xls)

Celda(s) Datos

D3 Número de etapas N 5 3
G3 Límite de los recursos, W 5 4

C4 Etapa actual 5 3
E4 w3 = 1
G4 r3 = 14
D6:H6 m3 = (0, 1, 2, 3, 4)
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Observemos que los valores factibles de m3 son 0, 1,…, y , como en el
ejemplo 12.3-1. La hoja de cálculo valida de forma automática los valores que el usuario ingresa
y emite mensajes autoexplicativos en la fila 5: “sí”, “no”, y “eliminar”.

A medida que se ingresan y verifican los datos de la etapa 3, la hoja de cálculo “cobra vida”
y genera automáticamente todos los cálculos necesarios de la etapa (columnas B a P). Se utiliza
el valor 2 1111111 para indicar que el ingreso correspondiente no es factible. La solución ópti-
ma (f3,m3) para la etapa se da en las columnas O y P. La columna A proporciona los valores de
f4, los cuales son iguales a cero para todas las x3 porque los cálculos se inician en la etapa 3
(puede dejar las celdas A9:A13 en blanco o ingresar ceros).

4  A= C  Ww3
 D = C  41 D  B

FIGURA 12.5

Modelo de PD Excel para el problema de la mochila del ejemplo 12.3-1 (archivo excelKnapsack.xls)

Etapa 2: 

Etapa 3: 

Etapa 1: 
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Ahora que los cálculos de la etapa 3 están completos, realice los pasos siguientes para crear
un registro permanente de la solución óptima de la etapa actual y preparar la hoja de cálculo
para la siguiente etapa:

Paso 1. Copie los valores x3, C9:C13, y péguelos en Q5:Q9 en la sección de resumen de la solu-
ción óptima. Luego copie los valores (f3, m3) O9:P13, y péguelos en R5:S9. Recuerde
que tiene que pegar sólo valores, lo que requiere seleccionar la opción Pegado especial

en el menú Edición y Datos en el cuadro de diálogo.
Paso 2. Copie los valores f3 en R5:R9, y péguelos en A9:A13 (no necesita la opción Pegado es-

pecial en este paso.)
Paso 3. Cambie la celda C4 a 2, e ingrese los nuevos valores de w2, r2 y m2 para la etapa 2.

El paso 2 coloca fi11(xi 2wimi) en la columna A como preparación para calcular fk(xi) en la
etapa i (vea la fórmula recursiva para el problema de la mochila del ejemplo 12.3-1). Un proce-
dimiento parecido se repite para la etapa 1. Cuando la etapa 1 está completa, el resumen de la
solución puede usarse para leer la solución óptima, como se explicó en el ejemplo 12.3-1.
Observe que la organización del área de resumen de la solución de salida (columnas Q:V) apa-
rece sin formato, y que usted puede organizar su contenido como le plazca.

CONJUNTO DE PROBLEMAS 12.3A3

1. En el ejemplo 12.3-1, determine la solución óptima suponiendo que la capacidad de peso má-
xima del barco es de 2 toneladas. Repita el ejemplo para una capacidad de peso de 5 toneladas.

2. Resuelva el problema de carga de un contenedor del ejemplo 12.3-1 para cada uno de los
siguientes conjuntos de datos:

*(a) , , , , , ,
(b) , , , , , ,

3. En el modelo de carga de un contenedor del ejemplo 12.3-1, suponga que el ingreso por
artículo incluye una cantidad constante que se obtiene sólo si se elige el artículo, como se
muestra en la tabla siguiente:

W = 4r3 = 80w3 = 3r2 = 60w2 = 2r1 = 30w1 = 1
W = 6r3 = 40w3 = 2r2 = 20w2 = 1r1 = 70w1 = 4

3En este conjunto de problemas se le insta para que en los casos en que sea aplicable verifique los cálculos
manuales utilizando la plantilla excelKnapsack.xls.

Artículo Ingreso

1 e -5 + 31m1, si m1 7 0
0, de lo contrario

2 e -15 + 47m2, si m2 7 0
0, de lo contrario

3 e -4 + 14m3, si m3 7 0
0, de lo contrario

Encuentre la solución óptima por medio de PD. (Sugerencia: Puede utilizar el archivo
Excel excelSetupKnapsack.xls para verificar sus cálculos).

4. Un excursionista debe empacar tres artículos: alimento, botiquín de primeros auxilios y
ropa. La mochila tiene una capacidad de 3 pies3. Cada unidad de alimento ocupa 1 pie3, el
botiquín de primeros auxilios ocupa 1/4 pie3, y cada pieza de ropa ocupa aproximadamente
1/2 pie3. El excursionista asigna pesos de prioridad de 3, 4 y 5 al alimento, el botiquín, y la
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ropa, respectivamente, lo que significa que la ropa es el más valioso de los tres artículos.
Por experiencia, el excursionista debe llevar al menos una unidad de cada artículo y no
más de dos botiquines. ¿Cuántas unidades de cada artículo debe llevar el excursionista?

*5. Un estudiante debe elegir 10 cursos optativos de cuatro departamentos diferentes, con
por lo menos un curso de cada departamento. Los 10 cursos se asignan a los cuatro de-
partamentos de una manera que maximice el “conocimiento”. El estudiante mide su co-
nocimiento en una escala de 100 puntos y aparece con la siguiente tabla:

¿Cómo debe seleccionar el estudiante los cursos?
6. Tengo un pequeño jardín de 10 3 20 pies. Esta primavera pienso plantar tres tipos de

hortalizas: tomates, chícharos y maíz. El jardín está organizado en filas de 10 pies. Las
filas del maíz y de los tomates son de 2 pies de ancho, y las de los chícharos son de 3 pies
de ancho. Me gustan más los tomates y menos los chícharos, y en una escala del 1 al 10
asignaría un 7 a los tomates, un 7 al maíz y un 3 a los chícharos. A pesar de mis preferen-
cias, mi esposa insiste en que plante al menos una fila de chícharos y no más de dos filas
de tomates. ¿Cuántas filas de cada legumbre debo plantar? 

*7. Habitat for Humanity es una maravillosa organización de caridad que construye casas
para familias necesitadas por medio de mano de obra voluntaria y donaciones de mate-
riales de construcción. Una familia elegible puede escoger de entre tres tamaños de casa:
1000, 1100 y 1200 pies2. Cada tamaño requiere determinada cantidad de voluntarios de
mano de obra. La sucursal de Fayetteville, Arkansas, ha recibido cinco solicitudes para
los 6 meses venideros. El comité a cargo asigna una calificación a cada solicitud basado
en varios factores. Una alta calificación significa una alta necesidad. Durante los 6 meses
siguientes, la sucursal puede contar con un máximo de 23 voluntarios. Los siguientes
datos resumen las calificaciones de las solicitudes y la cantidad requerida de voluntarios.
¿Cuáles solicitudes debe aprobar el comité?

Cantidad de cursos 

Departamento 1 2 3 4 5 6 Ú  7

I 25 50 60 80 100 100 100
II 20 70 90 100 100 100 100
III 40 60 80 100 100 100 100
IV 10 20 30 40 50 60 70

Solicitud 
Tamaño de la casa

(pies2) 
Califi-
cación

Cantidad de
voluntarios

1 1200 78 7
2 1000 64 4
3 1100 68 6
4 1000 62 5
5 1200 85 8

8. El alguacil Bassam busca reelegirse en el condado de Washington. Los fondos disponibles
para la campaña son aproximadamente de $10,000. Aunque al comité de reelección le gus-
taría lanzar la campaña en los cinco distritos del condado, los fondos limitados lo dictan de
otra manera. La tabla siguiente incluye listas de la población votante y el monto de los
fondos necesarios para lanzar una campaña efectiva en cada distrito. Un distrito puede re-
cibir todos sus fondos asignados, o ninguno. ¿Cómo deberán asignarse los fondos?
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9. Un aparato electrónico consta de tres componentes los cuales están en serie, de modo
que la falla de uno hace que falle el aparato. La confiabilidad (probabilidad de que no
falle) del aparato puede mejorarse instalando una o dos unidades suplentes en cada com-
ponente. La tabla siguiente incluye la confiabilidad, r, y el costo, c. El capital total dispo-
nible para la construcción del aparato es de $10,000. ¿Cómo deberá construirse el apara-
to? (Sugerencia: El objetivo es maximizar la confiabilidad, r1r2r3, del aparato. Esto
significa que la descomposición de la función objetivo es de multiplicación más que de
adición.)

10. Resuelva el siguiente modelo por medio de PD:

sujeto a

(Sugerencia: Este problema es parecido al problema 9, excepto que las variables, yj, son
continuas.)

11. Resuelva el siguiente problema por medio de PD:

sujeto a

12. Resuelva el siguiente problema mediante PD:

Maximizar z = (y1 + 2)2 + y2y3 + (y4 - 5)2

yi 7 0, i = 1, 2, Á , n

q
n

i= 1
yi = c

Minimizar z = y1
2 + y2

2 + Á + yn
2

yj Ú 0,  j = 1, 2, Á , n

y1 + y2 + Á + yn = c

Maximizar z = q
n

i= 1
yi

Distrito Población Fondos requeridos ($)

1 3100 3500
2 2600 2500
3 3500 4000
4 2800 3000
5 2400 2000

Cantidad de unidades
Componente 1 Componente 2 Componente 3

en paralelo r1 c1($) r2 c2($) r3 c3($)

1 .6 1000 .7 3000 .5 2000
2 .8 2000 .8 5000 .7 4000
3 .9 3000 .9 6000 .9 5000
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sujeto a

13. Resuelva el siguiente problema por medio de PD:

sujeto a

Proporcione la solución para el caso especial de n 5 3, c 5 10, y f(y1) 5 y1 1 5, f(y2) 5
5y2 + 3, y f(y3) 5 y3 2 2.

12.3.2 Modelo de tamaño de la fuerza de trabajo

Las necesidades de mano de obra en proyectos de construcción pueden satisfacerse
contratando y despidiendo trabajadores. Ambas actividades incurren en un costo. El
objetivo es minimizar el costo total de la mano de obra requerida para el proyecto.

Supongamos que la duración del proyecto es de n semanas y que la fuerza de
mano de obra mínima requerida en la semana i es de bi trabajadores. El modelo asume
que se incurre en un costo adicional si la fuerza de trabajo de una semana excede el reque-
rimiento mínimo o si en una semana se realiza una contratación adicional. Por senci-
llez, no se incurre en ningún costo cuando ocurre un despido.

El costo de mantener una fuerza de trabajo xi mayor que la mínima bi en la se-
mana i incurre en costo excedente C1(xi 2 bi). Si xi . xi21, ocurre contratación a un
costo adicional de C2(xi 2 xi21).

Los elementos del modelo de PD se definen como sigue:

1. La etapa i está representada por la semana i, i 5 1, 2,…, n.
2. Las alternativas en la etapa i son xi, la cantidad de trabajadores en la semana i.
3. El estado en la etapa i es xi21, la cantidad de trabajadores disponible en la semana i 2 1.

La ecuación recursiva de PD se da como 

Los cálculos se inician en la etapa n y concluyen en la etapa 1.

Ejemplo 12.3-2

Un contratista estima que el tamaño de la fuerza de trabajo necesaria durante las siguientes 5 se-
manas es de 5,7,8,4 y 6 trabajadores, respectivamente. La mano de obra excedente conservada en
la fuerza de trabajo costará $300 por trabajador por semana, y una nueva contratación en cual-
quier semana incurrirá en un costo fijo de $400 más $200 por trabajador por semana.

 fi1xi- 12 = mín
xiÚbi
5C11xi - bi2 + C21xi - xi- 12 + fi+ 11xi26, i = 1, 2, Á , n

fn+ 1(xn) K 0

yi Ú 0, i = 1, 2, Á , n

y1 + y2 + Á + yn = c

Minimizar  z =  máx {f(y1), f(y2), Á ,  f(yn)}

yi Ú 0 y entera,  i = 1, 2, 3, 4

y1 + y2 + y3 + y4 … 5
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Los datos del problema son

Las funciones de costo C1 y C2 están en cientos de dólares.

C2(xi - xi- 1) = 4 + 2(xi - xi- 1), xi 7 xi- 1, i = 1, 2, Á , 5

C1(xi - bi) = 3(xi - bi), xi 7 bi,  i = 1, 2, Á , 5

b1 = 5, b2 = 7, b3 = 8, b4 = 4, b5 = 6

C1(x5 - 6) + C2(x5 - x4) Solución óptima

x4 x5 = 6 f5(x4) x5
…

4 3(0) + 4 + 2(2) = 8 8 6
5 3(0) + 4 + 2(1) = 6 6 6
6 3(0) + 0             = 0 0 6

C1(x4 - 4) + C2(x4 - x3) + f5(x4) Solución óptima

x3 x4 = 4 x4 = 5 x4 = 6 f4(x3) x4
…

8 3(0) + 0 + 8 = 8 3(1) + 0 + 6 = 9 3(2) + 0 + 0 = 6 6 6

C1(x3 - 8) + C2(x3 - x2) + f4(x3) Solución óptima

x2 x3 = 8 f3(x2) x6
…

7 3(0) + 4 + 2(1) + 6 = 12 12 8
8 3(0) + 0          + 6 =   6 6 8

C1(x2 - 7) + C2(x3 - x2) + f3(x2) Solución óptima

x1 x2 = 7 x2 = 8 f2(x1) x2
…

5 3(0) + 4 + 2(2) + 12 = 20 3(1) + 4 + 2(3) + 6 = 19 19 8
6 3(0) + 4 + 2(1) + 12 = 18 3(1) + 4 + 2(2) + 6 = 17 17 8
7 3(0) + 0          + 12 = 12 3(1) + 4 + 2(1) + 6 = 15 12 7
8 3(0) + 0          + 12 = 12 3(1) + 0          + 6 =   9 9 8

Etapa 4. (b4 = 4)

Etapa 3. (b3 = 8)

Etapa 2. (b2 = 7)

Etapa 5. (b5 = 6)
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La solución óptima se determina como

La solución puede convertirse en el siguiente plan:

x0 = 0: x1
… = 5: x2

… = 8: x3
… = 8: x4

… = 6: x5
… = 6

El costo total es f1(0) 5 $3300

CONJUNTO DE PROBLEMAS 12.3B

1. Resuelva el ejemplo 12.3.2 para cada uno de los siguientes requerimientos de mano de
obra mínimos:

*(a)
(b)

2. En el ejemplo 12.3-2, si se incurre en una indemnización por cada trabajador despedido,
determine la solución óptima.

*3. Luxor Travel organiza viajes turísticos de una semana al sur de Egipto. La agencia ofrece
7,4,7 y 8 automóviles en renta durante las siguientes 4 semanas. Luxor Travel subcontrata
a un concesionario automotriz local para que satisfaga las necesidades de renta de au-
tomóviles. El concesionario cobra una cuota de renta semanal de $220 por automóvil,
más una cuota fija de $500 por cualquier transacción de renta. Luxor, sin embargo, puede
elegir si los conserva en  renta durante una semana más y simplemente sigue pagando la
renta. ¿Cuál es la mejor forma para que Luxor  maneje la situación de renta?

4. GECO fue contratado por los siguientes 4 años para que surta motores de avión a razón
de cuatro motores al año. La capacidad de producción disponible y los costos de produc-
ción varían de un año a otro. GECO puede producir cinco motores en el año 1, seis en el
año 2, tres en el año 3, y cinco en el año 4. Los costos de producción correspondientes por
motor a lo largo de los siguientes 4 años son de $300,000, $330,000, $350,000 y $420,000,
respectivamente. GECO puede elegir si produce más de lo que necesita en un cierto año,
en cuyo caso el motor se debe almacenar apropiadamente hasta la fecha de envío. El
costo de almacenamiento por motor también varía de un año a otro, y se estima que sea
de $20,000 en el año 1, $30,000 en el año 2, $40,000 en el año 3, y $50,000 en el año 4. En
la actualidad, al inicio del año 1 GECO tiene un motor listo para ser enviado. Desarrolle
un plan de producción óptimo para GECO.

b1 = 8, b2 = 4, b3 = 7, b4 = 8, b5 = 2
b1 = 6, b2 = 5, b3 = 3, b4 = 6, b5 = 8

C1(x1 - 5) + C2(x1 - x0) + f2(x1) Solución óptima

x0 x1 = 5 x1 = 6 x1 = 7 x1 = 8 f1(x0) x1
…

0 3(0) + 4 + 2(5) 3(1) + 4 + 2(6) 3(2) + 4 + 2(7) 3(2) + 4 + 2(8)
+ 19 = 33 + 17 = 36 + 12 = 36 + 9 = 35 33 5

Semana i
Fuerza de mano de
obra mínima (bi)

Fuerza de mano
de obra real (xi) Decisión Costo

1 5 5 Contratar 5 trabajadores 4 + 2 * 5 = 14
2 7 8 Contratar 3 trabajadores 4 + 2 * 3 + 1 * 3 = 13
3 8 8 Ningún cambio 0
4 4 6 Despedir 2 trabajadores 3 * 2 = 6
5 6 6 Ningún cambio 0

Etapa 1. (b1 = 5)
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12.3.3 Modelo de reemplazo de equipo

Las máquinas que permanecen mucho tiempo en servicio incurren en un alto costo de
mantenimiento y pueden ser reemplazadas después de una cierta cantidad de años en ope-
ración. La situación tiene que ver con determinar la edad más económica de una máquina.

Supongamos que el problema de reemplazo de una máquina abarca n años. Al
inicio de cada año, una máquina o se mantiene en servicio un año más, o es reemplaza-
da por una nueva. Sean r(t), c(t) y s(t) el ingreso anual, el costo de operación y el valor
de desecho, respectivamente, de una máquina de t años. El costo de adquisición de una
máquina nueva en cualquier año es I.

Los elementos del modelo de PD son los siguientes:

1. La etapa i está representada por el año i, i 5 1, 2,…, n.

2. Las alternativas en la etapa (año) i son conservar (K) o reemplazar (R) la máqui-
na al inicio del año i.

3. El estado en la etapa i es la edad de la máquina al inicio del año i.

Dado que la máquina tiene t años al inicio del año i, defina

f(t) 5 ingreso neto máximo en los años i, i 11,…, y n

La ecuación recursiva es

Ejemplo 12.3-3

Una compañía necesita determinar la política de reemplazo para una máquina que a la fecha
tiene tres años de edad, durante los siguientes 4 años (n 5 4). Una máquina de 6 años de edad
debe ser reemplazada. El costo de una máquina nueva es de $100,000. La siguiente tabla da los
datos del problema.

 fi1t2 = máxe r1t2 - c1t2 + fi+ 11t + 12 si se CONSERVA
r102 + s1t2 - I - c102 + fi+ 1112 si se REEMPLAZA

 f , i =  1, 2, . . . , n-1

 fn1t2 = máxe r1t2 - c1t2 + s1t + 12,      si se CONSERVA
r102 + s1t2 + s(1) - I - c102,      si se REEMPLAZA

Edad, t (años) Ingresos, r(t) ($) Costo de operación, c(t) ($) Valor de desecho, s(t) ($)

0 20,000 200 —
1 19,000 600 80,000
2 18,500 1200 60,000
3 17,200 1500 50,000
4 15,500 1700 30,000
5 14,000 1800 10,000
6 12,200 2200 5000

La determinación de los valores factibles para la edad de la máquina es algo complicada. La
figura 12.6 resume la red que representa el problema. Al inicio del año 1 tenemos una máquina
de 3 años de edad. Podemos o reemplazarla (R), o bien conservarla (K) durante otro año. Si el
reemplazo ocurre, la nueva máquina tendrá un año de edad al inicio del año 2; de lo contrario, la
máquina conservada tendrá 4 años de edad. La misma lógica aplica al inicio de los años 2 a 4. Si
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una máquina de un año de edad es reemplazada al inicio de los años 2,3 y 4, su reemplazo tendrá
un año de edad al inicio del año siguiente. Asimismo, al inicio del año 4, una máquina de 6 años
de edad debe ser reemplazada, y al final del año 4 (final del horizonte de planificación), de-
sechamos (S) la máquina.

La red muestra que al inicio del año 2 las posibles edades de la máquina son 1 y 4 años. Al
inicio del año 3 las posibles edades son 1,2 y 5 años, y al inicio del año 4 las posibles edades son
1,2,3 y 6 años. La red también supone que la máquina será desechada al inicio del año 5 inde-
pendientemente de la edad.

La solución de la red mostrada en la figura 12.6 equivale a encontrar la ruta más larga (es
decir, el ingreso máximo) a partir del inicio del año 1 hasta el final del año 4. Utilizaremos la
forma tabular para resolver el problema. Todos los valores están en miles de dólares.
Observemos que si una máquina se reemplaza en el año 4 (es decir, al final del horizonte de pla-
nificación), su ingreso incluirá el valor de rescate, s(t), de la máquina reemplazada y el valor de
desecho, s(1), de la máquina de reemplazo.Además, si en el año 4 una máquina de t años de edad
se conserva, su valor de rescate será s(t 1 1).

Etapa 4.

FIGURA 12.6

Representación de la edad de una máquina como una función del año de decisión en el ejemplo 12.3-3
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K � Conservar
R � Reemplazar
S � Desechar

Año de decisión

K R Solución óptima

t r(t) + s(t + 1) - c(t) r(0) + s(t) + s(1) - c(0) - I f4(t) Decisión

1 19.0 + 60 -   .6 = 78.4 20 + 80 + 80 - .2 - 100 = 79.8 79.8 R

2 18.5 + 50 - 1.2 = 67.3 20 + 60 + 80 - .2 - 100 = 59.8 67.3 K

3 17.2 + 30 - 1.5 = 45.7 20 + 50 + 80 - .2 - 100 = 49.8 49.8 R

6 (Debe reemplazarse) 20 +   5 + 80 - .2 - 100 =   4.8 4.8 R
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Etapa 3.

Etapa 2.

K R Solución óptima

t r(t) - c(t) + f4(t + 1) r(0) + s(t) - c(0) - I + f4(1) f3(t) Decisión

1 19.0 -   .6 + 67.3 = 85.7 20 + 80 - .2 - 100 + 79.8 = 79.6 85.7 K

2 18.5 - 1.2 + 49.8 = 67.1 20 + 60 - .2 - 100 + 79.8 = 59.6 67.1 K

5 14.0 - 1.8 +   4.8 = 17.0 20 + 10 - .2 - 100 + 79.8 =   9.6 17.0 R

K R Solución óptima

t r(t) - c(t) + f3(t + 1) R(0) + s(t) - c(0) - I + f3(1) f2(t) Decisión

1 19.0 -   .6 + 67.1 = 85.5 20 + 80 - .2 - 100 + 85.7 = 85.5 85.5 K o R
4 15.5 - 1.7 + 17.0 = 30.8 20 + 30 - .2 - 100 + 85.7 = 35.5 35.5 R

K R Solución óptima

t r(t) - c(t) + f2(t + 1) R(0) + s(t) - c(0) - I + f2(1) f1(t) Decisión

3 17.2 - 1.5 + 35.5 = 51.2 20 + 50 - .2 - 100 + 85.5 = 55.3 55.3 R

FIGURA 12.7

Solución del ejemplo 12.3-3

(t � 2)K (t � 3)K

(t � 3) (t � 1)R

R

(t � 1)R (t � 2)K K

Vender

Año 3 Año 4Año 1 Año 2

Etapa 1.

La figura 12.7 resume la solución óptima. Al inicio del año 1, dada t 5 3, la decisión óptima
es reemplazar la máquina. Por lo tanto, la máquina nueva tendrá un año de edad al inicio del año
2, y t 5 1 al inicio del año 2 exige o que se conserve o que se reemplace la máquina. Si se reem-
plaza, la máquina tendrá un año de edad al inicio del año 3; de lo contrario, la máquina conser-
vada tendrá dos años de edad. El proceso continúa de esta manera hasta que se llegue al año 4.

Las políticas óptimas alternativas al inicio del año 1 son (R,K,K,R) y (R,R,K,K). El costo
total es de $55,300.
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CONJUNTO DE PROBLEMAS 12.3C

1. En cada uno de los siguientes casos, desarrolle la red y encuentre la solución óptima para
el modelo del ejemplo 12.3-3:
(a) La máquina tiene dos años de edad al inicio del año 1.
(b) La máquina tiene 1 año de edad al inicio del año 1.
(c) La máquina se compró nueva al inicio del año 1.

*2. Mi hijo de 13 años maneja un negocio de corte de césped con 10 clientes. A cada cliente
le corta el césped 3 veces al año, y cobra $50 por cada corte. Acaba de pagar $200 por una
cortadora nueva. El costo de operación y mantenimiento de la cortadora es de $120 para
el primer año de servicio y de ahí en adelante se incrementa 20% al año. Una cortadora
de un año de edad tiene un valor de reventa de $150, el cual se reduce de ahí en adelante
un 10% al año. Mi hijo, que planea conservar su negocio hasta que tenga 16 años, piensa
que es más económico comprar una cortadora nueva cada 2 años. Basa su decisión en el
hecho de que el precio de una cortadora nueva se incrementará sólo 10% al año. ¿Se jus-
tifica su decisión?

3. Circle Farms desea desarrollar una política de reemplazo para su tractor de dos años de
edad durante los siguientes 5 años. Un tractor debe mantenerse en servicio durante al
menos 3 años, pero debe ser desechado después de 5 años. El precio actual de compra de
un tractor es de $40,000 y se incrementa 10% al año. El valor de desecho de un tractor 
de un año de edad es de $30,000 y se reduce 10% al año. El costo actual de operación
anual del tractor es de $1300 pero se espera que se incremente 10% al año.
(a) Formule el problema como un problema de la ruta más corta.
(b) Desarrolle la ecuación recursiva asociada.
(c) Determine la política de reemplazo óptima del tractor durante los siguientes 5 años.

4. Considere el problema de reemplazo de equipo durante un periodo de n años. Un equipo
nuevo cuesta c dólares y su valor de reventa después de t años de operación es s(t) 5 n 2 t

para n . 1 y cero en caso contrario. El ingreso anual es una función de la edad t y está
dada por r(t) 5 n2 2 t2 para n . t y cero en caso contrario.
(a) Formule el problema como un modelo de PD.
(b) Encuentre la política de reemplazo óptima dado que c 5 $10,000, n 5 5, y el equipo

tiene dos años de edad.
5. Resuelva el problema 4, suponiendo que el equipo tiene un año de edad y que n 5 4, c 5

$6000 y , .

12.3.4 Modelo de inversión

Suponga que desea invertir las cantidades P1, P2,…, Pn, al inicio de cada uno de los si-
guientes n años. Tiene dos oportunidades de inversión en dos bancos. First Bank paga
una tasa de interés r1 y Second Bank paga r2, ambos compuestos anualmente. Para fo-
mentar los depósitos, ambos bancos pagan bonos sobre nuevas inversiones en la forma
de un porcentaje de la cantidad invertida. Los porcentajes de los bonos respectivos
para First Bank y Second Bank son qi1 y qi2 para el año i. Los bonos se pagan al final
del año en que se hizo la inversión y pueden reinvertirse en cualquiera de los bancos en
el año inmediatamente subsiguiente. Esto significa que sólo pueden invertirse bono y
dinero nuevo fresco en cualquiera de los bancos. Sin embargo, una vez que se deposita
una inversión, debe permanecer en el banco hasta el final del año n.

c = $6000, y  r1t2 =  n1 + tn = 4
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Los elementos del modelo de PD son como sigue:

1. La etapa i está representada por el año i, i 5 1, 2…., n.
2. Las alternativas en la etapa i son Ii e , las cantidades invertidas en First Bank y

en Second Bank, respectivamente.
3. El estado, xi, en la etapa i es la cantidad de capital disponible para inversión al ini-

cio del año i.

Observamos que, , por definición. Por lo tanto 

La cantidad reinvertida xi incluye sólo dinero nuevo más cualesquier bonos de inver-
siones realizadas en el año i 2 1.

Defina

fi(xi) 5 valor óptimo de las inversiones en los años i, i 1 1,…, y n, dada xi.

Luego defina si como la suma acumulada al final de año n, dado que Ii y (xi 2 Ii) son las
inversiones realizadas en el año i en First Bank y en Second Bank, respectivamente.
Sea ak 5 (1 1 rk), k 5 1, 2, el problema se establece como

donde

Los términos qn1 y qn2 en sn se agregan porque los bonos para el año n forman parte de
la suma de dinero final acumulada a partir de la inversión.

Por tanto, la ecuación recursiva hacia atrás de PD está dada como

Como se hizo antes, xi11 se define en función de xi

Ejemplo 12.3-4

Suponga que desea invertir $4000 ahora y $2000 al inicio de los años 2 a 4. La tasa de interés
ofrecida por First Bank es 8% compuesto anualmente, y los bonos a lo largo de los 4 años si-
guientes son 1.8%, 1.7%, 2.1% y 2.5%, respectivamente. La tasa de interés anual ofrecida por
Second Bank es .2% más baja que la de First Bank, pero sus bonos son .5% más altos. El objeti-
vo es maximizar el capital acumulado al cabo de 4 años.

fi1xi2 = máx
0 …Ii…xi

5si + fi+ 11xi+ 126, i = 1, 2, Á , n - 1

fn+ 1(xn+ 1) K 0

 sn = (a1 + qn1 - a2 - qn2)In + (a2 + qn2)xn

 = (a1
n+ 1 - i - a2

n+ 1 - i)Ii + a2
n+ 1 - ixi, i = 1, 2, Á , n - 1

 si = Iia1
n+ 1 - i + (xi - Ii)a2

n+ 1 - i

Maximizar z = s1 + s2 + Á + sn

 = Pi + (qi- 1, 1 - qi- 1, 2) Ii- 1 + qi- 1, 2xi- 1, i = 2, 3, Á ,  n

 xi = Pi + qi- 1, 1Ii- 1 + qi- 1, 2(xi- 1 - Ii- 1)

 x1 = P1

Ii = xi - Ii

Ii
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Utilizando la notación presentada antes, tenemos

Etapa 4.

donde

La función s4 es lineal en I4 en el intervalo 0 # I4 # x4, y su valor máximo ocurre en I4 5 0 debi-
do al coeficiente negativo de I4. Por lo tanto, la solución óptima para la etapa 5 puede resumirse
como 

s4 = (a1 + q41 - a2 - q42)I4 + (a2 + q42)x4 = - .003I4 + 1.108x4

f41x42 = máx
0 …I4 …x4

5s46
 q12 = .023, q22 = .022, q32 = .026, q42 = .030

 q11 = .018, q21 = .017, q31 = .021, q41 = .025

 a2 = (1 + .078) = 1.078

 a1 = (1 + .08) = 1.08

 P1 = $4,000, P2 = P3 = P4 = $2000

Solución óptima

Estado f4(x4) I4
…

x4 1.108x4 0

Etapa 3.

donde

Por lo tanto,

 = máx
0 …I3 …x3

52216 - .00122I3 + 1.1909x36
 f31x32 = máx

0 …I3 …x3

5.00432I3 + 1.1621x3 + 1.10812000 - .005I3 + 0.026x36
 x4 = 2000 - .005I3 + .026x3

 s3 = (1.082 - 1.0782)I3 + 1.0782x3 = .00432I3 + 1.1621x3

f31x32 = máx
0 … l3 …x3

5s3 + f41x426

Solución óptima

Estado f3(x3) I3
…

x3 2216 + 1.1909x3 0

Etapa 2.

f21x22 = máx
0 …I2 …x2

5s2 + f31x326
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donde

Por lo tanto,

 = máx
0 …I2 …x2

54597.8 + .0010305I2 + 1.27893x26
 f21x22 = máx

0 …I2 …x2

5.006985I2 + 1.25273x2 + 2216 + 1.190912000 - .005I2 + .022x226
 x3 = 2000 - .005I2 + .022x2

 s2 = (1.083 - 1.0783)I2 + 1.0783x2 = .006985I2 + 1.25273x2

Etapa 1.

donde

Por lo tanto,

 = máx
0 …I1 …x1

57157.7 + .00365I1 + 1.37984x16
 f11x12 = máx

0 …I1 …x1

5.01005I1 + 1.3504x1 + 4597.8 + 1.2799612000 - .005I1 + .023x126
 x2 = 2000 - .005I1 + .023x1

 s1 = (1.084 - 1.0784)I1 + 1.0784x1 = .01005I2 + 1.3504x1

f11x12 = máx
0 …I1 …x1

5s1 + f21x226

Trabajando hacia atrás y observando que , obtenemos

 x4 = 2000 - .005 * 0 + .026 * $2035.22 = $2052.92

 x3 = 2000 - .005 * 2072 + .022 * 2072 = $2035.22

 x2 = 2000 - .005 * 4000 + .023 * 4000 = $2072

 x1 = 4000

I1
… = 4000,  I2

… = x2, I3
… = I4

… = 0

Solución óptima

Estado f2(x2) I2
…

x2 4597.8 + 1.27996x2 x2

Solución óptima

Estado f1(x1) I1
…

x1 = $4000 7157.7 + 1.38349x1 $4000
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La solución óptima se obtiene al hacer la suma de la siguiente manera

CONJUNTO DE PROBLEMAS 12.3D

1. Resuelva el problema 12.3-4, suponiendo que r1 5 .085 y r2 5 .08. Además, suponga que
P1 5 $5000, P2 5 $4000, P3 5 $3000 y P4 5 $2000.

2. Un inversionista con un capital inicial de $10,000 debe decidir al final de cada año cómo
invertir en una cuenta de ahorros. Cada dólar invertido reditúa a 5 $1.09 al final del año.
La satisfacción derivada de gastar $y en cualquier año se cuantifica monetariamente
como . Resuelva el problema por PD para un espacio de 5 años.

3. Un granjero posee k ovejas. Al final de cada año, decide sobre cuántas vender o conser-
var. La utilidad de vender una oveja en el año i es Pi. Las ovejas conservadas en el año i
duplicarán su número en el año i 1 1. El granjero planea vender todas las ovejas al cabo
de n años.

*(a) Derive la ecuación recursiva general para el problema.
(b) Resuelva el problema para n 5 3 años, k 5 2 ovejas, p1 5 $100, p2 5 $130, y p3 5 $120.

12.3.5 Modelos de inventario

La PD tiene importantes aplicaciones en el área de control de inventarios. Los capítu-
los 13 y 16 presentan algunas de estas aplicaciones. Los modelos en el capítulo 13 son
determinísticos, y los del capítulo 16 son probabilísticos. Otras aplicaciones de progra-
mación dinámica probabilística se dan en el capítulo 24 en el sitio web.

12.4 PROBLEMA DE DIMENSIONALIDAD

En todos los modelos de PD presentados en este capítulo, el estado en cualquier etapa
está representado por un solo elemento. Por ejemplo, en el modelo de la mochila (sec-
ción 12.3.1), la única restricción es el peso del artículo. De manera más realista en este
caso, el volumen de la mochila también puede ser una restricción viable, en cuyo caso
se dice que en cualquier etapa el estado es bidimensional: peso y volumen.

El aumento en la cantidad de variables de estado incrementa los cálculos en cada
etapa. Esto es particularmente evidente en cálculos tabulares de PD debido a que el
número de filas en cada tabla corresponde a todas las posibles combinaciones de las

$1y

Año
Solución
óptima Decisión Acumulación

1 I1
… = x1 Inversión x1 5 $4000 en First Bank s1 = $5441.80

2 I2
… = x2 Inversión x2 5 $2072 en First Bank s2 = $2610.13

3 I3
… = 0 Inversión x3 5 $2035.22 en Second Bank s3 = $2365.13

4 I4
… = 0 Inversión x4 5 $2052.92 en Second Bank s4 = $2274.64

Acumulación total = f1(x1) = 7157.7 + 1.38349(4000) = $12,691.66 (= s1 + s2 + s3 + s4)
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variables de estado. Esta dificultad computacional en ocasiones se conoce en la litera-
tura como el maleficio de dimensionalidad.

El siguiente ejemplo se escogió para demostrar el problema de dimensionalidad.
También sirve para demostrar la relación entre programación lineal y dinámica.

Ejemplo 12.4-1

Acme Manufacturing fabrica dos productos. La capacidad diaria del proceso de fabricación es
de 430 minutos. El producto 1 requiere 2 minutos por unidad, y el producto 2 requiere 1 minuto
por unidad. No hay límite en la cantidad producida del producto 1, pero la demanda diaria del
producto 2 es de 230 unidades. La utilidad unitaria del producto 1 es de $2 y la del producto 2 es
de $5. Determine la solución óptima por medio de PD.

El problema se representa por medio del siguiente programa lineal:

sujeto a

Los elementos del modelo de PD son los siguientes:

1. La etapa i corresponde al producto i, i 5 1, 2.
2. La alternativa xi es la cantidad de producto i, i 5 1, 2.
3. El estado (v2, w2) representa las cantidades de los recursos 1 y 2 (tiempo de producción y

límites de demanda) utilizados en la etapa 2.
4. El estado (v1,w1) representa las cantidades de los recursos 1 y 2 (tiempo de producción y

límites de demanda) utilizados en las etapas 1 y 2.

Etapa 2. Defina como la utilidad máxima en la etapa 2 (producto 2), dado el estado
(v2,w2). Entonces

Por lo tanto, máx {5x2} ocurre en x2 5 mín {v2,w2}, y la solución para la etapa 2 es 

f21v2, w22 = máx
0 … x

2
… v

2
0 … x2 …w2

55x26
f21v2, w22

 x1, x2 Ú 0
 x2 … 230

 2x1 + x2 … 430

Maximizar z = 2x1 + 5x2

Solución óptima

Estado f2(v2, w2) x2

(v2, w2) 5 mín {v2, w2}  mín {v2, w2}

Etapa 1.

= máx
0 …x1 …v1/2

52x1 + 5 mín1v1 - 2x1, w126 f11v1, w12 = máx
0 … 2x1 …v1

52x1 + f21v1 - 2x1, w126
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La optimización de la etapa 1 implica la solución de un problema minimax (generalmente más difí-
cil). Para este problema establecemos v1 5 430 y w1 5 230, lo cual da 0 # x1 # 215. Como min (4302

2x1, 230) es la  envoltura menor de dos líneas que se cortan (¡compruébelo!), se desprende que

y

Puede verificar gráficamente que el valor de f1(430, 230) ocurre en x1 5 100. Por lo tanto, obte-
nemos,

 = máx
x1

e2x1 + 1150, 0 … x1 … 100
-8x1 + 2150, 100 … x1 … 215

 f11430, 2302 = máx
0 …x1 … 215

52x1 + 5 mín1430 - 2x1, 23026
mín1430 - 2x1, 2302 = e230, 0 … x1 … 100

430 - 2x1, 100 … x1 … 215

Para determinar el valor óptimo de x2, observamos que

En consecuencia,

La solución óptima completa se resume entonces como 

x1 5 100 unidades, x2 5 230 unidades, z 5 $1350

CONJUNTO DE PROBLEMAS 12.4A

1. Resuelva los siguientes problemas por medio de PD.
(a)

sujeto a

(b)
sujeto a

x1, x2 Ú 0 y enteras

 5x1 + 2x2 … 15

 2x1 + x2 … 8

Maximizar z = 8x1 + 7x2

x1, x2 Ú 0

7x1 + 2x2 … 21

2x1 + 7x2 … 21

Maximizar z = 4x1 + 14x2

x2 =  mín  1v2, w22 = 230

 w2 = w1 - 0 = 230

 v2 = v1 - 2x1 = 430 - 200 = 230

Solución óptima

Estado f1(v1, w1) x1

(430, 230) 1350 100
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(c)
sujeto a

2. En el problema de la mochila con n artículos del ejemplo 12.3-1, suponga que las limita-
ciones de peso y volumen son W y V, respectivamente. Dado que wi, vi, y ri son el peso, el
valor y el ingreso por unidad, respectivamente, del artículo i, escriba la ecuación recursiva
hacia atrás de PD para el problema.
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x1, x2 Ú 0

 x1 - 3x2 … 9

 x1 + 2x2 … 10

Maximizar z = 7x1
2 + 6x1 + 5x2

2
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13.1 MODELO GENERAL DE INVENTARIO

El problema del inventario tiene que ver con guardar en reserva un artículo para satis-
facer las fluctuaciones de la demanda. El exceso de existencias de un artículo aumenta
el costo del capital y de almacenamiento, y la escasez de existencias interrumpe la pro-
ducción y/o las ventas. El resultado es buscar un nivel de inventario que balancee las
dos situaciones extremas minimizando una función de costo apropiada. El problema se
reduce a controlar el nivel del inventario diseñando una política de inventario que res-
ponda dos preguntas:

1. ¿Cuánto pedir?
2. ¿Cuándo pedir?

La base del modelo de inventario es la siguiente función de costo genérica:

1. El costo de compra es el precio por unidad de un artículo de inventario. En ocasiones,
el artículo se ofrece con un descuento si el tamaño del pedido excede una cantidad
determinada, lo cual es un factor al momento de tomar la decisión de cuánto pedir.

2. El costo de preparación representa el cargo fijo en que se incurre cuando se colo-
ca un pedido (no importa su tamaño).

3. El costo de retención (almacenamiento) representa el costo de mantener las exis-
tencias de algo. Incluye el interés sobre el capital y el costo del almacenamiento,
mantenimiento y manejo.

4. El costo por escasez (faltante) es la penalización en que se incurre cuando se ago-
tan las existencias. Incluye la pérdida potencial de ingresos, la interrupción de la
producción y el costo subjetivo de pérdida de lealtad del cliente.

£ Costo
total del

inventario
≥ = aCosto de

compra
b + a Costo de

preparación
b + a Costo de

retención
b + aCosto por

escasez
b

CAPÍTULO 13

Modelos de inventario determinísticos
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Los costos descritos son conflictivos en el sentido de que el incremento de uno
puede provocar la reducción de otro (por ejemplo, pedir con más frecuencia eleva el costo
de preparación pero reduce el costo de retención del inventario). El propósito de la mini-
mización de la función de costo del inventario total es balancear estos costos conflictivos.

Un sistema de inventario puede requerir revisiones periódicas (por ejemplo,
pedir al inicio de cada semana o cada mes). Alternativamente, el sistema puede estar
basado en revisiones continuas, colocando un nuevo pedido cuando el nivel del inven-
tario se reduce a un punto de volver a pedir específico. Un ejemplo de los dos tipos
ocurre en tiendas al menudeo. La revisión es periódica si el artículo se repone cada se-
mana o cada mes. Es continua si la reposición ocurre siempre que el nivel del inventa-
rio se reduce por debajo de un determinado nivel.

13.2 EL PAPEL (ROL) DE LA DEMANDA EN EL DESARROLLO 
DE MODELOS DE INVENTARIO

En general, la complejidad de los modelos de inventario depende de si la demanda es
determinística o probabilística. Dentro de ambas categorías, la demanda puede variar,
o no, con el tiempo. Por ejemplo, el consumo de gas natural que se utiliza en la calefac-
ción doméstica es estacional. Aun cuando dicho patrón se repite anualmente, el consu-
mo en un mismo mes puede variar de un año a otro, dependiendo, por ejemplo, de la
severidad del clima.

En situaciones prácticas, el patrón de la demanda en un modelo de inventario
puede asumir uno de cuatro tipos:

1. Determinístico y constante (estático) con el tiempo.
2. Determinístico y  variable (dinámico) con el tiempo.
3. Probabilístico y estacionario a lo largo del tiempo.
4. Probabilístico y no estacionario a lo largo del tiempo.

Esta clasificación supone la disponibilidad de datos confiables para pronosticar la fu-
tura demanda.

En función del desarrollo de modelos de inventario, la primera categoría es la
más sencilla analíticamente, y la cuarta es la más compleja. Por otra parte, la primera
categoría es la menos probable que ocurra en la práctica, y la cuarta es la más preva-
lente. En la práctica, el objetivo es balancear la sencillez y la precisión del modelo.

¿Cómo podemos decidir si una determinada aproximación de la demanda es
aceptable? Una “estimación aproximada” inicial se basa en el cálculo de la media y la
desviación estándar del consumo durante un periodo específico (por ejemplo, mensual-
mente). Entonces puede usarse el coeficiente de variación, ,
para valorar la naturaleza de la demanda utilizando el siguiente lineamiento:1

1. Si la demanda mensual promedio (registrada a lo largo de varios años) es “de
manera aproximada” constante y V es razonablemente pequeño (,20%), enton-
ces la demanda puede considerarse determinística y constante

V =  Desviación estándar
Media  * 100

1El coeficiente de variación, V, mide la variación relativa o dispersión de los datos alrededor de la media. Por
lo general, los valores altos de V indican una alta incertidumbre en el uso de la media como una aproxima-
ción del consumo mensual. Para la demanda determinística, V = 0, dado que la desviación estándar asociada
es cero.
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2. Si la demanda mensual promedio varía de manera apreciable entre los diferentes
meses pero V permanece razonablemente pequeño en todos los meses, entonces
la demanda puede considerarse determinística pero variable.

3. Si en el caso 1 V es alto (.20%) pero aproximadamente constante, entonces la
demanda es probabilística y estacionaria.

4. El caso restante es la demanda probabilística no estacionaria, la cual ocurre
cuando los promedios y los coeficientes de variación varían apreciablemente mes
con mes.

Ejemplo 13.2-1

Los datos que aparecen en la tabla 13.1 proporcionan el consumo mensual (enero a diciembre)
de gas natural en una residencia rural a lo largo de 10 años (1990-1999). El proveedor envía un
camión para llenar el tanque a petición del propietario de la casa.

Desde el punto de vista del modelado de inventarios, es razonable suponer que cada mes re-
presenta un periodo de decisión para la colocación de un pedido. El propósito de este ejemplo es
analizar la naturaleza de la demanda.

Un examen de la media y el coeficiente de variación,V, en la tabla 13.1, revela dos resultados:

1. El consumo promedio es dinámico (no constante) debido al alto consumo promedio du-
rante los meses invernales.

2. El coeficiente de variación V es pequeño (, 15%) de modo que la demanda mensual
puede considerarse aproximadamente determinística.

La conclusión es que la demanda mensual es (aproximadamente) determinística pero variable.

TABLA 13.1 Consumo mensual de gas natural (enero a diciembre)

Consumo de gas natural en pies3

Año Ene. Feb. Mar. Abr. May. Jun. Jul. Ago. Sep. Oct. Nov. Dic.

1990 100 110 90 70 65 50 40 42 56 68 88 95
1991 110 125 98 80 60 53 44 45 63 77 92 99
1992 90 100 88 79 56 57 38 39 60 70 82 90
1993 121 130 95 90 70 58 41 44 70 80 95 100
1994 109 119 99 75 68 55 43 41 65 79 88 94
1995 130 122 100 85 73 58 42 43 64 75 80 101
1996 115 100 103 90 76 55 45 40 67 78 98 97
1997 130 115 100 95 80 60 49 48 64 85 96 105
1998 125 100 94 86 79 59 46 39 69 90 100 110
1999 87 80 78 75 69 48 39 41 50 70 88 93
Media 111.7 110 95 82.5 69.6 55.3 42.7 42.2 62.8 77.2 90.7 98
Desv. Est. 15.54 15.2 7.5 7.99 7.82 3.95 3.4 2.86 6.09 6.91 6.67 6
V(%) 13.91 13.8 7.9 9.68 11.24 7.13 7.96 6.78 9.69 8.95 7.35 6.1
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FIGURA 13.1

Patrón de inventario en el modelo EOQ clásico 

Puntos en el tiempo en los cuales se reciben pedidos

    Inventario
promedio �

Tiempo

Nivel de
inventario

y

t0 �
y
D

y
2

13.3 MODELOS ESTÁTICOS DE CANTIDAD DE PEDIDO ECONÓMICO (EOQ)

Esta sección presenta tres variaciones del modelo de cantidad de pedido económico
(EOQ, por sus siglas en inglés) con demanda estática (constante). Estos modelos son
analíticamente simples.

13.3.1 Modelo EOQ clásico

El más simple de los modelos de inventario implica una demanda de tasa constante
con reposición de pedidos instantánea y sin escasez. Defina 

y 5 Cantidad de pedido (número de unidades)
D 5 Tasa de demanda (unidades por unidad de tiempo)
t0 5 Duración del ciclo de pedido (unidades de tiempo)

El nivel de inventario sigue el patrón ilustrado en la figura 13.1. Cuando el inventario
llega al nivel cero, se recibe al instante un pedido de y unidades de tamaño. Las exis-
tencias se agotan uniformemente a una tasa de demanda constante, D. El ciclo de pe-
dido de este patrón es

El modelo de costo requiere dos parámetros de costo.

K 5 Costo de preparación asociado con la colocación de un pedido (dólares por
pedido) 

h 5 Costo de retención (dólares por unidad de inventario por unidad de tiempo)

Dado que el nivel de inventario promedio es , el costo total por unidad de tiempo
(TCU, por sus siglas en inglés) es

TCU(y) 5 Costo de preparación por unidad de tiempo 1 Costo de 
retención por unidad de tiempo

=  
KA yD B  + h A y2 B=  
K + h A y2 B  t0

t0

=  
Costo de preparación + Costo de retención por ciclo  t0

t0

y

2

t0 =  
y

D
  unidades de tiempo
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FIGURA 13.2

Punto de volver a pedir en el modelo EOQ clásico 

Puntos de volver a pedir

L L Tiempo

Nivel de
inventario

y*

El valor óptimo de la cantidad de pedido y se determina minimizando el TCU(y).
Suponiendo que y es continua, una condición necesaria para la optimalidad es

La condición también es suficiente porque TCU(y) es convexa.
La solución de la ecuación da por resultado el EOQ y* como

Por lo tanto, la política de inventario óptima para el modelo propuesto es

En realidad, un nuevo pedido no tiene que recibirse en el instante que se pide. En
su lugar, puede ocurrir un tiempo de espera (tiempo de anticipación) positivo L, entre
la colocación y el recibo de un pedido como se muestra en la figura 13.2. En este caso
el punto de volver a pedir (punto de reorden) ocurre cuando el nivel del inventario se
reduce a LD unidades.

La figura 13.2 asume que el tiempo de espera L es menor que la duración del
ciclo , lo cual por lo general puede no ser el caso. Si así sucediera, definimos el tiem-
po de espera efectivo como 

El parámetro n es el valor entero más grande no mayor que . La fórmula reconoce
que después de n ciclos el intervalo real entre la colocación y la recepción de dos pedi-
dos sucesivos es Le. Por lo tanto, el punto de volver a pedir ocurre cuando el inventario
llega a LeD unidades, y la política de inventario puede volverse a formular como

Pedir la cantidad y* siempre que el nivel del inventario se reduzca a LeD unidades.

Ejemplo 13.3-1

Las luces de neón en el campus de la Universidad de Arkansas se reemplazan a razón de 100
unidades por día. La planta física pide las luces de neón de forma periódica. Iniciar un pedido de
compra cuesta $100. Se estima que el costo de una luz de neón almacenada es de aproximada-

L
t0
…

Le = L - nt0
…

t0
…

Pedido y* = 42 K D
h  unidades de cada t*0 =  y*D   unidades de tiempo

y* = C2KD
h

 
d TCU1y2
dy

 = -  
KD

y2  +  
h

2
 = 0
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mente $.02 por día. El tiempo de espera entre la colocación y la recepción de un pedido es de
12 días. Determine la política de inventario óptima para pedir las luces de neón.

Con los datos del problema, tenemos 

D 5 100 unidades por día
K 5 $100 por pedido
h 5 $.02 por unidad por día 
L 5 12 días 

Por lo tanto,

La duración del ciclo asociado es

Ya que el tiempo de espera L (5 12 días) excede la duración del ciclo , debe-
mos calcular Le. El número de ciclos enteros incluidos en L es

Por lo tanto,

Por lo tanto, el punto de volver a pedir ocurre cuando el nivel del inventario se reduce a 

La política de inventario es

Pedir 1000 unidades siempre que el nivel del inventario se reduzca a 200 unidades.

El costo de inventario diario asociado con la política propuesta es 

Momento de Excel

El archivo excelEOQ.x1s está diseñado para realizar los cálculos del EOQ general con escasez y
operación de producción y consumo simultáneos, como se indica en el problema 10, conjunto
13.3a. También resuelve las situaciones de reducciones de precios presentada en la sección
13.3.2. Para utilizar la plantilla con el caso especial del ejemplo 13.3-1, ingrese 21 en las celdas
C3:C5, C8 y C10 para indicar que los datos correspondientes no son aplicables, como se muestra
en la figura 13.3.

 =  
$100A  1000
100  B  + $.02 A 1000

2  B = $20 por día

 TCU 1y2 =  
KA yD B  + h A y2 B

 LeD = 2 * 100 = 200 luces de neón

 Le = L - nt0* = 12 - 1 * 10 = 2 días

 n = Aentero más grande …  L
t*0

 B = Aentero más grande …  12
10 B = 1

t0
…
  (=10 días)

t*0 =
y*

D  =  1000
100  = 10 días

y* = C2KD
h

= C2 * $100 * 100
.02

= 1000 luces de neón
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FIGURA 13.3

Solución del ejemplo 13.3-1 obtenida con Excel (archivo excelFOQ.xls)

CONJUNTO DE PROBLEMAS 13.3A

1. En cada uno de los siguientes casos no se permite la escasez, y el tiempo de espera entre
la colocación y la recepción de un pedido es de 30 días. Determine la política de inventa-
rio óptima y el costo asociado por día.
(a) K 5 $100, h 5 $.05, D 5 30 unidades por día
(b) K 5 $50, h 5 $.05, D 5 30 unidades por día
(c) K 5 $100, h 5 $.01, D 5 40 unidades por día
(d) K 5 $100, h 5 $.04, D 5 20 unidades por día

*2. McBurger pide carne molida al principio de cada semana para cubrir la demanda de 300
lb de la semana. El costo fijo por pedido es de $20. Refrigerar y guardar la carne cuesta
aproximadamente $.03 por lb por día.
(a) Determine el costo de inventario por semana de la presente política de pedido.
(b) Determine la política de inventario óptima que McBurger debe utilizar, suponiendo

un tiempo de espera cero entre la colocación y la recepción de un pedido.



464 Capítulo 13 Modelos de inventario determinísticos

3. Una compañía tiene un artículo en existencia que se consume a razón de 50 unidades por
día. Cada vez que se coloca un pedido, a la compañía le cuesta $20. Una unidad de inven-
tario mantenida en existencia durante una semana le costará $.35.
(a) Determine la política de inventario óptima, suponiendo un tiempo de espera de una

semana.
(b) Determine la cantidad óptima anual de pedidos  (basado en 365 días por año).

*4. El departamento de compras de una compañía sugirió dos políticas de inventario:
Política 1. Pedir 150 unidades. El punto de volver a pedir es 50 unidades, y el tiempo
entre la colocación y la recepción de un pedido es de 10 días.
Política 2. Pedir 200 unidades. El punto de volver a pedir es 75 unidades, y el tiempo
entre la colocación y la recepción de un pedido es de 15 días.
El costo de preparación por pedido es de $20, y el costo de retención por unidad en

inventario por día es de $.02.
(a) ¿Cuál de las dos políticas debe adoptar la compañía?
(b) Si estuviera a cargo de idear una política de inventarios para la compañía, ¿qué reco-

mendaría suponiendo que el proveedor requiere un tiempo de espera de 22 días?
5. La tienda Walmark Store comprime y carga en una tarima las cajas de cartón vacías para

reciclarlas. La tienda genera cinco tarimas al día. El costo de almacenar una tarima en la
parte trasera de la tienda es de $.10 por día. La compañía que traslada las tarimas al centro
de reciclaje cobra una cuota fija de $100 por la renta de su equipo de carga, más un costo de
transporte variable de $3 por paleta. Grafique el cambio en la cantidad de tarimas con el
tiempo, e idee una política óptima para el traslado de las tarimas al centro de reciclaje.

6. Un hotel utiliza un servicio de lavandería externo para proporcionar toallas limpias. El
hotel genera 600 toallas sucias al día. El servicio de lavandería recoge las toallas sucias y
las reemplaza con limpias a intervalos regulares. Hay un cargo fijo de $81 por el servicio
de recolección y entrega, además del costo variable de $.60 por toalla. Al hotel le cuesta
$.02 al día guardar una toalla sucia y $.01 por día guardar una limpia. ¿Con qué frecuen-
cia debe utilizar el hotel el servicio de recolección y entrega? (Sugerencia: Hay dos tipos
de artículos de inventario en esta situación. Conforme el nivel de las toallas sucias se 
incrementa, el de las toallas limpias se reduce al mismo ritmo).

7. Lewis (1996). Un empleado de una compañía multinacional se va de Estados Unidos a la
subsidiaria de la compañía en Europa en calidad de préstamo. Durante el año, las obliga-
ciones financieras del empleado en los Estados Unidos (por ejemplo, pagos de hipoteca y
primas de seguros) ascienden a $12,000, distribuidas de manera uniforme a lo largo de los
meses del año. El empleado puede cumplir con estas obligaciones depositando toda la
suma en un banco estadounidense antes de partir a Europa. Sin embargo, en este mo-
mento la tasa de interés en Estados Unidos es bastante baja (alrededor de 1.5% anual)
en comparación con la tasa de interés en Europa (6.5% anual). El costo del envío de fon-
dos desde el extranjero es de $50 por transacción. Determine una política óptima para la
transferencia de fondos de Europa a los Estados Unidos, y analice la implementación
práctica de la solución. Mencione todas las suposiciones.

8. Considere la situación de inventarios en la cual las existencias se reponen de manera unifor-
me (en lugar de instantáneamente) a una tasa a. El consumo ocurre a la tasa constante D.Ya
que el consumo también ocurre durante el periodo de reposición, es necesario que a . D. El
costo de preparación es K por pedido, y el costo de retención es h por unidad, por unidad de
tiempo. Si y es el tamaño del pedido y no se permite que haya escasez, demuestre que 

(a) El nivel máximo del inventario es .
(b) El costo total por unidad de tiempo dado y es

TCU(y) = KD
y  +  h2 A1 - D

a  By
y A1 -  Da  B
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(c) La cantidad de pedido económica es

(d) Demuestre que la EOQ en la situación de reposición instantánea puede derivarse de
la fórmula en (c)

9. Una compañía puede producir una mercancía o adquirirla de un contratista. Si la produ-
ce, le costará $20 cada vez que se preparen las máquinas. La tasa de producción es de 100
unidades por día. Si se la compra al contratista le costará $15 cada vez que se coloque un
pedido. El costo de mantener la mercancía en existencia, ya sea que se compre o se pro-
duzca, es de $.02 por unidad por día. El uso que la compañía hace de la mercancía se esti-
ma en 26,000 unidades anualmente. Suponiendo que no se permite que haya escasez, ¿la
compañía debe comprarla o producirla?

10. En el problema 8, suponga que se permite que haya escasez a un costo de penalización
de p por unidad por unidad de tiempo.
(a) Si w es la escasez máxima durante el ciclo de inventario, demuestre que 

(b) Demuestre que los resultados de la EOQ de la sección 13.3.1 pueden derivarse a
partir de las fórmulas generales en (a).

13.3.2 EOQ con reducciones de precios

Este modelo es el mismo de la sección 13.3.1, excepto que el artículo en inventario
puede adquirirse con un descuento si el tamaño del pedido, y, excede un límite dado, q.
Matemáticamente, el precio de compra unitario, c, es 

Por consiguiente,

Aplicando la notación utilizada en la sección 13.3.1, el costo total por unidad de
tiempo es 

TCU(y) = µ TCU1(y) = Dc1 +
KD

y
+
h

2
y, y … q

TCU2(y) = Dc2 +
KD

y
+
h

2
y, y 7 q

 Costo de compra por unidad de tiempo = µ c1yt0 =
c1yA yD B = Dc1, y … q

c2y

t0
=
c2yA yD B = Dc2, y 7 q

 c = e c1, si y … q
c2, si y 7 q

f , c1 7 c2

w = C2KDh A1 -  Da  B
p(p + h)

y = C2KD(p + h)

ph A1 - D
a  B

 TCU (y, w) =  
KD

y
 +  

h{y A1 -  Da  B - w}2 + pw2

2 A1 -  Da  By

y* = C 2KD

h A1 - D
a  B , D 6 a
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FIGURA 13.4

Función de costo de inventario con reduc-
ciones de precio

II IIII

Costo
TCU1

TCU2

y
ym Q

Las funciones TCU1 y TCU2 se grafican en la figura 13.4. Debido a que las dos
funciones difieren sólo por una constante, sus mínimos deben coincidir en 

La determinación de la cantidad de pedido óptima y* depende de dónde queda
el punto de reducción de precios, q, con respecto a las zonas I, II y III, delineadas en la
figura 13.4 por los intervalos (0, ym), (ym, Q) y (Q, q), respectivamente. El valor de
Q(. ym) se determina a partir de la ecuación 

o

la cual se simplifica a 

La figura 13.5 muestra que la cantidad óptima deseada y* es

Los pasos para determinar y* son

Paso 1. Determine . Si q está en la zona I, entonces y* 5 ym. De lo con-

trario, vaya al paso 2.

Paso 2. Determine Q(. ym) a partir de la ecuación Q

Defina las zonas II y III. Si q está en la zona II, y* 5 q. De lo contrario, q
está en la zona III, y y* 5 ym.

Q2 + a  
2(c2D - TCU1(ym))

h
 b  Q +  

2KD
h

 = 0

ym = C2KD
h

y* = eym, si  q  se encuentra en las zonas I o III
q, si  q  se encuentra na la zona II 

Q2 + a  
2(c2D - TCU1(ym))

h
 b  Q +  

2KD
h

 = 0

c2D +  
KD

Q
 +  

hQ

2
 =  TCU1(ym)

TCU2(Q) = TCU1(ym)

ym = C2KD
h
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FIGURA 13.5

Solución óptima de los problemas de inventario con reducciones de precio

Costo

Mínimo

TCU1
TCU2

y
ym
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y
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Caso 3: q queda en la zona III, y* � ym
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Ejemplo 13.3-2

LubeCar se especializa en cambios de aceite rápidos. El taller compra aceite automotriz a granel
a $3 por galón descontado a $2.50 si la cantidad de pedido es de más de 1000 galones. El taller
atiende aproximadamente 150 automóviles por día, y cada cambio de aceite requiere 1.25 galo-
nes. LubeCar guarda el aceite a granel a un costo de $.02 por galón por día. Incluso, el costo de
colocar un pedido es de $20. El tiempo de espera es de 2 días para la entrega. Determine la polí-
tica de inventario óptima.

El consumo de aceite por día es 

D 5 150 autos por día 3 1.25 galones por auto 5 187.5 galones por día 

También tenemos

h 5 $.02 por galón por día 
K 5 $20 por pedido
L 5 2 días 
c1 5 $3 por galón 
c2 5 $2.50 por galón 
q 5 1000 galones 

Paso 1. Calcule

Como q 5 1000 es mayor que ym 5 612.37, nos vamos al paso 2.

ym = C2KD
h

= C2 * 20 * 187.5
.02

= 612.37 galones
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Paso 2. Determine Q.

Por consiguiente la ecuación Q se calcula como 

o

La solución Q 5 10,564.25 (. ym) define las zonas como

Ahora, q(5 1000) queda en la zona II, la cual produce la cantidad  de pedido óptima y* 5
q 5 1000 galones.

Dado un tiempo de espera de 2 días, el punto de volver a pedir es 2D 5 2 3 187.5 5 375 ga-
lones. Por lo tanto, la política de inventario óptima es “Pedir 1000 galones cuando el nivel de in-
ventario se reduzca a 375 galones”.

 Zona III = (10,564.25, q)

 Zona II = (612.37, 10,564.25)

 Zona I = (0, 612.37)

Q2 - 10,599.74 Q + 375,000 = 0

Q2 + a  
2 * (2.5 * 187.5 - 574.75)

.02
 b  Q +  

2 * 20 * 187.5
.02

 = 0

 = 574.75

 = 3 * 187.5 +  
20 * 187.5

612.37
 +  

.02 * 612.37
2

 TCU1(ym) = c1D +  
KD

ym
 +  

hym

2

Momento de Excel

El archivo excelEOQ.xIs resuelve la situación de precio descontado como un caso especial de la plan-
tilla en la figura 13.3. Ingrese los datos aplicables en la sección de datos de entrada C3:C11. La panta-
lla de resultados da la política de inventario óptima y también los cálculos intermedios del modelo.

CONJUNTO DE PROBLEMAS 13.3B

1. Considere la situación del servicio de lavandería del hotel del problema 6, conjunto
13.3a. El cobro normal por lavar una toalla sucia es de $.60, pero el servicio de lavandería
cobrará sólo $.50 Si el hotel entrega las toallas en lotes de al menos 2500. ¿El hotel debe
aprovechar el descuento?

*2. Un artículo se consume a razón de 30 artículos por día. El costo de retención por unidad
por día es de $.05 y el costo de preparación es de $100. Suponga que no se permiten fal-
tantes y que el costo de compra por unidad es de $10 para cualquier cantidad que de otro
modo no exceda las 500 unidades y los $8. El tiempo de espera es de 21 días. Determine
la política de inventario óptima.

3. Un artículo se vende a $25 cada uno, pero se ofrece un 10% de descuento para lotes de 150
unidades o más. Una compañía utiliza este artículo a razón de 20 unidades por día. El costo
de preparación para pedir un lote es de $50, y el costo de retención por unidad por día es de
$.30. El tiempo de espera es de 12 días. ¿Debe aprovechar la compañía el descuento?

*4. En el problema 3, determine el intervalo del porcentaje de descuento del precio que,
cuando se ofrece para lotes de 150 unidades o más, no representará una ventaja financie-
ra para la compañía.

5. En el modelo de inventario analizado en esta sección, suponga que el costo de retención
por unidad por unidad de tiempo es h1 para cantidades por debajo de q y h2, de lo con-
trario, h1 . h2. Demuestre cómo se determina el tamaño de lote económico.
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13.3.3 Cantidad de pedido económica (EOQ) de varios artículos con limitación 
de almacenamiento

Este modelo se ocupa de varios artículos cuyas fluctuaciones de inventario individua-
les siguen el patrón mostrado en la figura 13.1 (no se permiten faltantes). La diferencia
es que los artículos compiten por un espacio de almacenamiento limitado.

Defina para el artículo i, i 5 1, 2,…, n,

Di 5 Tasa de demanda
Ki 5 Costo de preparación
hi 5 Costo de retención unitario por unidad de tiempo 
yi 5 Cantidad de pedido
ai 5 Requerimiento de área de almacenamiento por unidad de inventario
A 5 Área de almacenamiento máxima disponible para todos los n artículos 

Conforme a la suposición de que no se permiten faltantes, el modelo matemático que
representa la situación del inventario se da como

sujeto a

Para resolver el problema, primero abordamos la situación no restringida:

Si la solución satisface la restricción, entonces el proceso termina. De lo contrario, la
restricción es obligatoria y debe ser activada.

En ediciones anteriores de este libro utilizamos el algoritmo Lagrangeano (un
tanto complicado) y cálculos de prueba y error para determinar la solución óptima res-
tringida. Con la disponibilidad de poderosos  programas de cómputo (como AMPL y
Solver), el problema se resuelve de forma directa como un programa no lineal, como se
demostrará en el siguiente ejemplo.

Ejemplo 13.3-3

Los datos siguientes describen tres artículos de inventario.

y i* = C2KiDi
hi

, i = 1, 2, Á , n

yi 7 0, i = 1, 2, Á , n

a
n

i= 1
aiyi … A

Minimizar TCU1y1, y2, Á , yn2 = a
n

i= 1
aKiDi
yi

 +  
hiyi

2
b

Artículo i ($)Ki Di(unidades por día) ($)hi ai(pies2)

1 10 2 .30 1
2 5 4 .10 1
3 15 4 .20 1

Área de almacenamiento total disponible 5 25 pies2
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FIGURA 13.6

Plantilla Solver para el ejemplo 13.3-3 (archivo solverConstrEOQ.xls)

Los valores óptimos no restringidos, son 11.55, 20.00 y 24.49 uni-
dades, respectivamente, los cuales violan la restricción de almacenamiento y1 1 y2 # 25. El pro-
blema restringido puede resolverse como un programa lineal utilizando Solver o AMPL, como
se explica a continuación.

La solución óptima es , , , y el
costo 5 $13.62/día.

Momento de Solver 

La figura 13.6 muestra cómo puede usarse Solver para resolver el ejemplo 13.3-3 como un pro-
grama no lineal (archivo solverConstrEOQ.xls). Los detalles de las fórmulas utilizadas en la
plantilla y de los parámetros Solver se muestran en la figura. Como con la mayoría de los pro-
gramas no lineales, deben darse los valores iniciales (en esta plantilla, y1 5 y2 5 y3 5 1 en la fila
9). Un valor inicial no cero es obligatorio porque la función objetivo incluye la división entre yi.
De hecho, puede ser una buena idea reemplazar KiDi/yi con KiDi/(yi 1 D), donde D es un valor
positivo muy pequeño, para evitar la división entre cero durante las iteraciones. Por lo  general,
quizá se requieran valores iniciales diferentes antes de que se determine una solución (óptima
local). En este ejemplo, la solución resultante es la óptima global porque la función objetivo y las
restricciones se comportan bien (función objetivo convexa y espacio de soluciones convexo).

Momento AMPL

El modelo AMPL no lineal para la situación general de cantidad de pedido económica de varios
artículos con limitación de almacenamiento (archivo amplConstrEOQ.txt) se explica en la figu-
ra C.17 en el apéndice C en el sitio web.

y3
… = 11.57  unidadesy2

… = 7.09  unidadesy1
… = 6.34  unidades

y i* = 42K
i
D
i

hi
, i = 1, 2, 3,
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CONJUNTO DE PROBLEMAS 13.3C2

*1. Los datos siguientes describen cinco artículos de inventario.

Determine las cantidades de pedido óptimas.
2. Resuelva el modelo del ejemplo 13.3-3, suponiendo que requerimos que la suma de los

inventarios promedio de todos los artículos sea menor que 25 unidades.
3. En el problema 2, suponga que la única restricción es un límite de $1000 en la cantidad

de capital que puede invertirse en el inventario. Los costos de compra por unidad de los
artículos 1, 2 y 3 son, $100, $55 y $100, respectivamente. Determine la solución óptima.

*4. Los siguientes datos describen cuatro artículos de inventario.

2Verá que los archivos solverConstrEOQ.xls y amplConstrEOQ son útiles al resolver problemas de este con-
junto.

Artículo, i ($)Ki Di (unidades por día) ($) hi ai (pies2)

1 20 22 0.35 1.0
2 25 34 0.15 0.8
3 30 14 0.28 1.1
4 28 21 0.30 0.5
5 35 26 0.42 1.2

Área de almacenamiento total disponible 5 25 pies2

Artículo, i ($) Ki Di (unidades por día) ($)hi

1 100 10 .1
2 50 20 .2
3 90 5 .2
4 20 10 .1

La compañía desea determinar la cantidad de pedido económica para cada uno de los
cuatro artículos de modo que el total de pedidos por año de 365 días es cuando mucho de
150. Formule el problema como un programa no lineal, y determine la solución óptima.

13.4 MODELOS DINÁMICOS DE CANTIDAD DE PEDIDO ECONÓMICA (EOQ)

Estos modelos difieren de los de la sección 13.3 en dos aspectos:

1. El nivel del inventario se revisa periódicamente a lo largo de un número finito de
periodos iguales.

2. La demanda por periodo, aun cuando es determinística, es dinámica, en cuanto
varía de un periodo al siguiente.

Una situación en la cual ocurre la demanda determinística dinámica es la pla-
neación de requerimiento de materiales (MRP, por sus siglas en inglés). La idea de la
MRP se describe con un ejemplo. Suponga que las demandas trimestrales durante el
año siguiente para dos modelos finales, M1 y M2, de un producto dado son 100 y 150
unidades, respectivamente. Al final de cada trimestre se entregan los lotes trimestrales.
El tiempo de espera de producción es de dos meses para Ml y de un mes para M2. Cada
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unidad de M1 y M2 utiliza 2 unidades de un subensamble S. El tiempo de espera para
la producción de S es de un mes.

La figura 13.7 muestra los programas de producción para Ml y M2. Los progra-
mas se  inician con la demanda trimestral de los dos modelos (mostrada por flechas só-
lidas) que ocurre al final de los meses 3, 6, 9 y 12. Dados los tiempos de espera para M1
y M2, las flechas de rayas muestran los inicios planeados de cada lote de producción.

Para iniciar a tiempo la producción de los dos modelos, la entrega del subensam-
ble S debe coincidir con la ocurrencia de las flechas de rayas M1 y M2. Esta informa-
ción se muestra por medio de las flechas sólidas en la gráfica S, donde la demanda S
resultante es de 2 unidades por unidad de M1 y M2. Utilizando un tiempo de espera de
un mes, las flechas de rayas en la gráfica S dan los programas de producción de S. De
acuerdo con estos dos programas, la demanda combinada de S correspondiente a M1 y
M2 puede determinarse entonces como se muestra en la parte inferior de la figura 13.7.
La demanda variable pero conocida resultante de S es típica de la situación, donde
aplica la EOQ dinámica.

En esta sección se presentan dos modelos. El primero asume que no hay costo de
preparación (de pedido), y el segundo asume que sí lo hay. Esta variación aparente-
mente “pequeña” hace la diferencia en la complejidad del modelo.

CONJUNTO DE PROBLEMAS 13.4A

1. En la figura 13.7, determine los requerimientos combinados para el subensamble S en
cada uno de los siguientes casos:

*(a) El tiempo de espera para M1 es de sólo un periodo.
(b) El tiempo de espera para M1 es de tres periodos.

FIGURA 13.7

Ejemplo de demanda dinámica generada por  MRP
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13.4.1 Modelo de EOQ sin costo de preparación

Este modelo implica un horizonte de planeación de n periodos iguales. Cada periodo
tiene una capacidad de producción limitada con uno o más niveles de producción (por
ejemplo, el tiempo regular y el tiempo extra representan dos niveles de producción).
Un periodo actual puede producir más que su demanda inmediata para satisfacer la
necesidad de periodos posteriores, en cuyo caso ocurre un costo de retención.

Las suposiciones generales del modelo son:

1. No se incurre en costo de preparación en ningún periodo.
2. No se permite que haya faltantes.
3. La función de costo de producción unitario en cualquier periodo es constante o

tiene costos marginales crecientes (convexos).
4. El costo de retención unitario en cualquier periodo es constante.

La ausencia de faltantes significa que la producción demorada en periodos futu-
ros no puede satisfacer la demanda en un periodo actual. Esta suposición requiere que
la capacidad de producción acumulada para los periodos 1, 2,…, e i sea igual al menos
a la demanda acumulada durante los mismos periodos.

La figura 13.8 ilustra la función de costo de producción unitario con márgenes
crecientes. Por ejemplo, la producción durante el tiempo regular y el tiempo extra co-
rresponde a dos niveles donde el costo de producción unitario durante el tiempo extra
excede al del tiempo regular.

El problema de n periodos puede formularse como un modelo de transporte (vea
el capítulo 5) con kn orígenes y n destinos, donde k es el número de niveles de produc-
ción por periodo (por ejemplo, k 5 2 si cada periodo utiliza tiempo regular y tiempo
extra). La capacidad de producción de cada uno de los kn orígenes de nivel de produc-
ción es igual a las cantidades de oferta. Las cantidades demandadas se especifican por
la demanda de cada periodo. El costo de “transporte” unitario desde un origen hasta
un destino es la suma de los costos de producción y retención aplicables por unidad. La
solución del problema como un modelo de transporte determina las cantidades de pro-
ducción a un costo mínimo en cada nivel de producción.

El modelo de transporte resultante puede resolverse sin utilizar la conocida téc-
nica del transporte presentada en el capítulo 5. La validez del nuevo algoritmo de solu-
ción se fundamenta en las suposiciones especiales de nada de faltantes y en una función
de costo de producción convexa.

FIGURA 13.8

Función de costo de producción
unitario convexa

Costo

0 Cantidad producida

Nivel
II
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Ejemplo 13.4-1

Metalco produce deflectores de chiflones que se utilizan en chimeneas domésticas durante los
meses de diciembre a marzo. Al inicio la demanda es lenta, alcanza su máximo a mediados de la
temporada, y baja hacia el final. Debido a la popularidad del producto, MetalCo puede utilizar
tiempo extra para satisfacer la demanda. La siguiente tabla proporciona las capacidades de pro-
ducción y las demandas durante los cuatro meses de invierno.

3Para una comprobación de la optimalidad de este procedimiento, vea S.M. Johnson,“Sequential Production
Planning over Time at Minimum Cost”, Management Science, vol. 3, págs. 435-437, 1957.

Capacidad

Mes Tiempo regular (unidades) Tiempo extra (unidades) Demanda (unidades)

1 90 50 100
2 100 60 190
3 120 80 210
4 110 70 160

Mes Oferta acumulada Demanda acumulada

1 90 + 50 = 140 100 
2 140 + 100 + 60 = 300 100 + 190 = 290
3 300 + 120 + 80 = 500 290 + 210 = 500
4 500 + 110 + 70 = 680 500 + 160 = 660

El costo de producción unitario en cualquier periodo es de $6 durante el tiempo regular y de $9
durante el tiempo extra. El costo de retención por unidad por mes es de $.10.

Para asegurarnos de que el modelo tenga una solución factible cuando no se permiten fal-
tantes, la oferta acumulada de cada mes no puede ser menor que la demanda acumulada, como
se muestra en la tabla siguiente.

La tabla 13.2 resume el modelo y su solución. Los símbolos Ri y Oi representan niveles de
producción durante tiempo regular y durante tiempo extra en el periodo i, i 5 1, 2, 3, 4. Debido
a que la oferta acumulada en el periodo 4 excede la demanda acumulada, se agrega un destino
ficticio para balancear el modelo como se muestra en la tabla 13.2.Todas las rutas de “transporte”
desde un periodo anterior a uno actual están bloqueadas porque no se permiten faltantes.

El costo de “transporte” unitario es la suma de los costos de producción y retención aplica-
bles. Por ejemplo, el costo unitario del periodo R1 al periodo 1 es igual al costo de producción uni-
tario únicamente (5 $6), en tanto que el costo unitario de O1 al periodo 4 es igual al costo de
producción unitario en O1 más el costo de retención unitario desde el periodo 1 hasta el periodo 4;
es decir, $9 1 ($.1 1 $.1 1 $.1) 5 $9.30. El costo unitario para cualquier destino excedente es cero.

El modelo se resuelve iniciando en la columna 1 y terminando en la columna excedente.
Para cada columna, la demanda se satisface dando prioridad a su rutas mas económicas.3 Para la
columna 1, la ruta (R1, 1) es la más económica y por lo tanto se le asigna la cantidad factible má-
xima 5 min{90, 100} 5 90 unidades. Esta asignación deja 10 unidades no satisfechas en la colum-
na 1. La siguiente ruta más económica en la columna 1 es {O1, 1}, a la cual se le asigna 10 (5 min
{50, 10}). Ahora la demanda durante el periodo 1 está satisfecha.
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Luego pasamos a la columna 2. Las asignaciones en esta columna ocurren en el orden si-
guiente: 100 unidades a (R2, 2), 60 unidades a (02, 2), y 30 unidades a (01, 2). Los costos unitarios
de estas asignaciones son $6, $9 y $9.10, respectivamente. No utilizamos la ruta (R1, 2), cuyo
costo unitario es de $6.10, porque toda la oferta de Rl ya se asignó al periodo 1.

Continuando de la misma manera, satisfacemos las demandas de la columna 3 y de la co-
lumna 4. La solución óptima (mostrada en negritas en la tabla 13.2) se resume como sigue:

TABLA 13.2 Solución del ejemplo 13.4-1

1 2 3 4 Excedente 

6 6.1 6.2 6.3 0

R1 90 90
9 9.1 9.2 9.3 0

O1 10 30 10 50: 40: 10
6 6.1 6.2 0

R2 100 100
9 9.1 9.2 0

O2 60 60
6 6.1 0

R3 120 120
9 9.1 0

O3 80 80
6 0

R4 110 110
9 0

O4 50 20 70: 20

100

10 
T

190

90

30
T

T
210

90

10
T

T
160

50
T

20

Periodo Programa de producción

Tiempo regular 1 Producir 90 unidades durante el periodo 1.
Tiempo extra 1 Producir 50 unidades: 10 unidades durante el periodo 1, 30 durante el 2, y 10 durante el 3.
Tiempo regular 2 Producir 100 unidades durante el periodo 2.
Tiempo extra 2 Producir 60 unidades durante el periodo 2.
Tiempo regular 3 Producir 120 unidades durante el periodo 3.
Tiempo extra 3 Producir 80 unidades durante el periodo 3.
Tiempo regular 4 Producir 110 unidades durante el periodo 4.
Tiempo extra 4 Producir 50 unidades durante el periodo 4, con 20 unidades de capacidad ociosa.

El costo total asociado es  (90 3 $6) 1 (10 3 $9) 1 (30 3 $9.10) 1 (100 3 $6) 1 (60 3 $9) 1 (10
3 $9.20) 1 (120 3 $6) 1 (80 3 $9) 1 (110 3 $6) 1(50 3 $9) 5 $4685.
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CONJUNTO DE PROBLEMAS 13.4B

1. Resuelva el ejemplo 13.4-1, suponiendo que los costos de producción y retención unita-
rios son los que aparecen en la tabla siguiente.

Periodo i
Costo unitario durante

tiempo regular ($)
Costo unitario durante

tiempo extra ($)
Costo de retención unitario ($)

hasta el periodo i 1 1

1 5.00 7.50 .10
2 3.00 4.50 .15
3 4.00 6.00 .12
4 1.00 1.50 .20

Costo de producción unitario ($) durante el periodo

Intervalo de producción (unidades) 1 2 3 4

1–3 1 2 2 3
4–11 1 4 5 4

12–15 2 4 7 5
16–25 5 6 10 7

Costo de retención unitario hasta el siguiente periodo ($) .30 .35 .20 .25
Demanda total (unidades) 11 4 17 29

Capacidad de producción (unidades)

Periodo Tiempo regular Tiempo extra Subcontratación Demanda

1 100 50 30 153
2 40 60 80 200
3 90 80 70 150
4 60 50 20 200
5 70 50 100 203

2. Se fabrica un artículo para satisfacer la demanda conocida durante cuatro periodos de
acuerdo con los datos siguientes:

(a) Encuentre la solución óptima e indique las unidades que se producirán en cada periodo.
(b) Suponga que se requieren 10 unidades adicionales en el periodo 4. ¿Dónde deben

producirse?
*3. La demanda de un producto durante los siguientes cinco periodos puede satisfacerse con

producción regular, producción con tiempo extra, o subcontratación. Puede acudirse a la
subcontratación sólo si se ha utilizado la capacidad de tiempo extra. La siguiente tabla
proporciona la oferta, la demanda y los datos del costo de la situación.

Los costos de producción unitarios en los tres niveles de cada periodo son $4, $6 y
$7, respectivamente. El costo de retención unitario por periodo es de $.50. Determine la
solución óptima.

13.4.2 Modelo de EOQ con costo de preparación

En esta situación no se permiten faltantes, y se incurre en un costo de preparación cada
vez que se inicia un nuevo lote de producción. Se presentarán dos métodos de solu-
ción: un algoritmo de programación exacta dinámica y una heurística.
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La figura 13.9 resume esquemáticamente la situación del inventario. Los símbo-
los mostrados en la figura se definen para el periodo i, i 5 1, 2,…, n, como

zi 5 Cantidad pedida
Di 5 Demanda durante el periodo 
xi 5 Inventario al inicio del periodo i

Los elementos de costos de la situación se definen como

Ki 5 Costo de preparación en el periodo i
hi 5 Costo de retención de inventario unitario del periodo i a i 11

La función de costo de producción asociado para el periodo i es 

La función ci(zi) es la función de costo de producción marginal, dada zi.

Algoritmo de programación dinámica general. Sin faltantes, el modelo de inventario
se basa en minimizar la suma de los costos de producción y retención en los n periodos.
A fin de simplificar, supondremos que el costo de retención en el periodo i se basa en
el inventario de final de periodo, definido como 

Para la ecuación recursiva hacia adelante, o de avance, el estado en la etapa (periodo) i se
define como xi+1, el nivel del inventario al final del periodo. En el caso extremo, el inven-
tario restante, xi+1, puede satisfacer la demanda en todos los periodos restantes; es decir,

Sea fi(xi+1) el  costo mínimo del inventario para los periodos 1, 2,…, e i dado el in-
ventario al final del periodo xi+1. La ecuación recursiva  hacia adelante es

Observe que durante el periodo 1, z1 es exactamente igual a D1 1 x2 2 x1. Para i . 1,
zi puede ser cero porque Di puede satisfacerse a partir de la producción en periodos
precedentes.

 fi1xi+ 12 = mín
0 …zi…Di+xi + 1

5Ci1zi2 + hixi+ 1 + fi- 11xi+ 1 + Di - zi26, i = 2, 3, Á , n

 f11x22 = mín
z1 =D1 +x2 -x1

5C11z12 + h1x26
0 … xi+ 1 … Di+ 1 + . . . + Dn

xi+ 1 = xi + zi - Di

Ci(zi) = e 0,                      z i =  0
Ki  +   Ci (zi),   z i 7  0

FIGURA 13.9

Elementos del modelo de inventario dinámico con costo de preparación

z1

x1

D1

z2

x2

zi

xi

Di

xn�1 � 0

zi�1

xi�1

zn

xn

Dn
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Ejemplo 13.4-2

La siguiente tabla proporciona los datos de una situación de inventario de 3 periodos.

Periodo
i

Demanda Di
(unidades)

Costo de preparación, Ki ($) Costo de
retención, hi($)

1 3 3 1
2 2 7 3
3 4 6 2

C1(z1) + h1x2

z1 = 2 3 4 5 6 7 8 Solución óptima

x2 h1x2 C1(z1) = 23 33 53 73 93 113 133 f1 (x2) z1
…

0 0 23 23 2
1 1 34 34 3
2 2 55 55 4
3 3 76 76 5
4 4 97 97 6
5 5 118 118 7
6 6 139 139 8

Observe que debido a que x1 5 1, el valor mínimo de z1 es D1 – x1 5 3 – 1 5 2.

La demanda ocurre en unidades discretas, y el inventario de inicio es xl 5 1 unidad. El costo de
producción unitario, ci(zi), es de $10 para las primeras 3 unidades y de $20 para cada unidad adi-
cional, es decir,

Determine la política de inventario óptima.

Periodo 1: D1 5 3, 0 # x2 # 2 1 4 5 6, z1 1 D1 2 x1 5 x2 1 2 

ci1zi2 = e10zi, 0 … zi … 3
30 + 201zi - 32, zi Ú 4

Periodo 2: D2 5 2,0 # x3 4,0 # z2 # D2 1 x3 5 x3 1 2

C2(z2) + h2x3 + f1(x3 + D2 - z2) Solución

z2 = 0 1 2 3 4 5 6 óptima

x3 h2x3 C2(z2) = 0 17 27 37 57 77 97 f2(x3) z2
…

0 0
= 55

0 + 55
= 51

17 + 34
= 50

27 + 23 50 2

1 3
= 79

3 + 76
= 75

20 + 55
= 64

30 + 34
= 63

40 + 23 63 3

2 6
= 103

6 + 97
= 99

23 + 76
= 88

33 + 55
= 77

43 + 34
= 86

63 + 23 77 3

3 9
= 127

9 + 118
= 123

26 + 97
= 112

36 + 76
= 101

46 + 55
= 100

66 + 34
= 109

86 + 23 100 4

4 12
= 151

12 + 139
= 147

29 + 118
= 136

39 + 97
= 125

49 + 76
= 124

69 + 55
= 123

89 + 34
= 132

109 + 23 123 5



13.4 Modelos dinámicos de cantidad de pedido económica (EOQ) 479

Periodo 3: D3 5 4, x4 5 0, 0 # z3 # D3 1 x4 5 4

La solución óptima se lee como sigue:

Por lo tanto, la solución óptima es , y , con un costo total de $99.

Momento de Excel

La plantilla exce1DPlnv.xls está diseñada para resolver el problema de inventario de PD con
hasta 10 periodos. El diseño de la hoja de cálculo es parecido al de excelKnapsack.xls dada en la
sección 12.3.1, donde los cálculos se realizan etapa por etapa y se requiere que el usuario ingre-
se los datos para conectar las etapas sucesivas.

La figura 13.10 muestra la aplicación de excelDPInv.xls al ejemplo 13.4-2. Los datos de en-
trada se ingresan para cada etapa. Los cálculos se inician con el periodo 1. Observe cómo se in-
gresa la función de costo ci(zi) en la fila 3: (G3 5 10, H3 5 20, I3 5 3) significa que el costo uni-
tario es de $10 para los primeros tres artículos y de $20 para los artículos adicionales. Observe
también que la cantidad ingresada para D1 debe ser la neta una vez que se ha amortizado el in-
ventario inicial (53 2 x1 5 3 2 1 5 2). Además, tiene que crear los valores factibles de la varia-
ble z1. La hoja de cálculo verifica de forma automática si los valores ingresados son correctos, y
envía mensajes autoexplicativos en la fila 6 (sí, no, o borrar).

Una vez que se han ingresado todos los datos, los valores óptimos de fi y zi para la etapa se
dan en las columnas S y T. Luego se crea un registro permanente de la solución para el periodo 1
(x1, f1, z1), en la sección de resumen de la  solución óptima de la hoja de cálculo, como se mues-
tra en la figura 13.10. Esto requiere copiar D9:D15 y S9:T15 y luego pegarlas mediante la opción
Pegado especial 1 valores (quizá tenga que revisar el procedimiento para crear el registro per-
manente dado junto con excelKnapsackxls en la sección 12.3.1).

A continuación, en preparación para la etapa 2, copie f1 del registro permanente y péguela
en la columna A como se muestra en la figura 13.10. Todo lo que se requiere ahora es actualizar
los datos de entrada para el periodo 2. El proceso se repite para el periodo 3.

CONJUNTO DE PROBLEMAS 13.4C

*1. Considere el ejemplo 13.4-2.
(a) ¿Es lógico tener x4 . 0?
(b) Para cada uno de los dos casos siguientes, determine los intervalos factibles para z1,

z2, z3, x1, x2 y x3. (Verá que es útil representar cada situación como en la figura 13.10.)

z3
… = 3z1

… = 2, z2
… = 3

 : 1x2 = 1 + 2 - 3 = 02: � z1 = 2 �

1x4 = 02: � z3 = 3 �: 1x3 = 0 + 4 - 3 = 12: � z2 = 3 �

C3(z3) + h3x4 + f2 (x4 + D3 - z3)

z3 = 0 1 2 3 4 Solución óptima

x4 h3x4 C3(z3) = 0 16 26 36 56 f3(x4) z3
…

0 0
= 123

0 + 123
= 116

16 + 100
= 103

26 + 77
= 99

36 + 63
= 106

56 + 50 99 3
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(i) xl 5 4 y todos los datos restantes son los mismos.
(ii) x1 5 0, D1 5 5, D2 5 3 y D3 5 4.

2. *(a) Encuentre la solución óptima del siguiente inventario de 4 periodos.

FIGURA 13.10

Solución de PD del ejemplo 13.4-2 (archivo excelDPInv.xls) obtenida con Excel

Periodo 1:

Periodo 2:

Periodo 3:

Periodo i
Demanda Di
(unidades)

Costo de
preparación Ki ($)

Costo de
retención hi ($)

1 5 5 1
2 2 7 1
3 3 9 1
4 3 7 1

El costo de producción unitario es de $1 para cada una de las primeras 6 unidades y
de $2 para cada una de las unidades adicionales.

(b) Verifique los cálculos usando excelDPInv.xls.
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3. Suponga que el costo de retención del inventario se basa en el inventario promedio du-
rante el periodo. Desarrolle la ecuación recursiva  hacia adelante correspondiente.

4. Desarrolle la ecuación recursiva hacia atrás o de retroceso  para el modelo, y luego utilí-
cela para resolver el ejemplo 13-4-2.

5. Desarrolle la ecuación recursiva hacia atrás para el modelo, suponiendo que el costo de
retención del inventario se basa en el inventario promedio en el periodo.

Algoritmo de programación dinámica con costos marginales constantes o decrecientes.
La PD general dada antes es aplicable con cualquier función de costo. Esta
generalización dicta que el estado xi y las alternativas zi en la etapa i asumen valores
en incrementos de 1, lo que podría dar lugar a tablas grandes cuando las cantidades
demandadas son grandes.

Un caso especial del modelo de PD general promete reducir el volumen de los
cálculos. En esta situación especial, tanto el costo de producción unitario como los cos-
tos de retención unitarios son funciones no crecientes (cóncavas) de la cantidad de pro-
ducción y el nivel del inventario, respectivamente. Esta situación suele ocurrir cuando
la función de costo unitario es constante o si se permite el descuento por cantidad.

En las condiciones dadas, se puede demostrar que4

1. Dado que un inventario inicial cero (xi) es óptimo para satisfacer la demanda en
cualquier periodo i o con una nueva producción con inventario entrante, pero
nunca con ambos; es decir, zixi 5 0. (En el caso de inventario inicial positivo, x1 .

0, la cantidad puede amortizarse con las demandas de los periodos sucesivos
hasta que se agote.)

2. La cantidad de producción óptima, zi, durante el periodo i debe ser cero o satis-
facer la demanda exacta de uno o más periodos subsiguientes contiguos.

Ejemplo 13.4-3

Un modelo de inventario de 4 periodos opera con los siguientes datos:

Periodo i Demanda Di (unidades) Costo de preparación Ki ($)

1 76 98
2 26 114
3 90 185
4 67 70

El inventario inicial x1 es de 15 unidades, el costo de producción unitario es de $2, y el costo
de retención unitario es de $1 durante todos los periodos. (Para simplificar, los costos de pro-
ducción y retención unitarios son los mismos durante todos los periodos.)

La solución se determina por el algoritmo  hacia adelante ya proporcionado, excepto que
los valores de xi+1 y zi ahora suponen sumas “concentradas” en lugar de con incrementos de uno.
Debido a que x1 5 15, la demanda del primer periodo se ajusta a 76 2 15 5 61 unidades.

4Vea H. Wagner y T. Whitin, “Dynamic Version  of the Economic Lot Size Model”, Management Science, vol.
5, págs. 89-96, 1958. La comprobación de optimalidad impone la suposición restrictiva de funciones de costo
constantes e idénticas durante todos los periodos. Más tarde, la suposición fue flexibilizada por A.Veinott Jr.
para permitir funciones de costo cóncavas diferentes.



482 Capítulo 13 Modelos de inventario determinísticos

Periodo 1: D1 5 61

Periodo 2. D2 5 26

C1(z1) + h1x2
Solución

z1 = 61 87 177 244 óptima

x2 h1x2 C1(z1) = 220 272 452 586 f1(x2) z1
…

0 0 220 220 61
26 26 298 298 87

116 116 568 568 177
183 183 769 769 244

Pedir en 1 para 1 1, 2 1, 2, 3 1, 2, 3, 4

C2(z2) + h2x3 + f1(x3 + D2 - z2)
Solución

z2 = 0 26 116 183 óptima

x3 h2x3 C2(z2) = 0 166 346 480 f2(x3) z2
…

0 0
= 298

0 + 298
= 386

166 + 220 298 0

90 90
= 658

90 + 568
= 656

436 + 220 656 116

157 157
= 926

157 + 769
= 857

637 + 220 857 183

Pedir en 2 para — 2 2, 3 2, 3, 4

C3(z3) + h3x4 + f2(x4 + D3 - z3)
Solución

z3 = 0 90 157 óptima

x4 h3x4 C3(z3) = 0 365 499 f3(x4) z3
…

0 0 0 + 656 = 656 365 + 298 = 663 656 0
67 67 67 + 857 = 924 566 + 298 = 864 864 157

Pedir en 3 para — 3 3, 4

Periodo 3. D3 5 90

C4(z4) + h4x5 + f3(x5 + D4 - z4)
Solución

z4 = 0 67 óptima

x5 h4x5 C4(z4) = 0 204 f4(x5) z4
…

0 0 0 + 864 = 864 204 + 656 = 860 860 67

Pedir en 4 para — 4

Periodo 4. D4 5 67
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La política óptima se determina a partir de las tablas como sigue:

Esto da , y , a un costo total de $860.

Momento de Excel

La plantilla excelWagnerWhitin.xls es semejante a la del modelo general excelDPlnv.xls. La única
diferencia es que las sumas concentradas se utilizan para el estado x y la alternativa z. Además,
por sencillez, la nueva hoja de cálculo no permite el descuento por cantidad. La plantilla está li-
mitada a un máximo de 10 periodos. Recuerde utilizar la opción Pegado especial + valores cuan-
do cree el resumen de la solución de resultados (columnas Q:V).

CONJUNTO DE PROBLEMAS 13.4D

*1. Resuelva el ejemplo 13.4-3, suponiendo que el inventario inicial es de 80 unidades. Puede
utilizar la plantilla excelWagnerWhitin.xls para verificar sus cálculos.

2. Resuelva el siguiente modelo de inventario determinístico de 10 periodos. Suponga un
inventario inicial de 50 unidades.

z4
… = 67z1

… = 61, z2
… = 116, z3

… = 0

 : 1x3 = 902: � z2 = 116 �: 1x2 = 02: � z1 = 61 �

1x5 = 02: � z4 = 67 �: 1x4 = 02: � z3 = 0 �

3. Encuentre la política de inventario óptima para el siguiente modelo de 5 periodos. El
costo de producción unitario es de $10 para todos los periodos. El costo de retención uni-
tario es de $1 por periodo.

Periodo i
Demanda Di
(unidades)

Costo de producción
unitario ($)

Costo de retención
unitario ($)

Costo de
preparación ($)

1 150 6 1 100
2 100 6 1 100
3 20 4 2 100
4 40 4 1 200
5 70 6 2 200
6 90 8 3 200
7 130 4 1 300
8 180 4 4 300
9 140 2 2 300
10 50 6 1 300

Periodo i Demanda Di (unidades) Costo de preparación K1 ($)

1 50 80
2 70 70
3 100 60
4 30 80
5 60 60
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4. Encuentre la política de inventario óptima para la siguiente situación de inventario de 6
periodos: El costo de producción unitario es de $2 para todos los periodos.

Heurística Silver Meal. Esta heurística es válida sólo cuando el costo de producción
unitario es constante e idéntico para todos los periodos. Por esta razón sólo balancea
los costos de preparación y retención.

La heurística identifica los periodos futuros sucesivos cuya demanda puede ser
satisfecha a partir de la producción del periodo actual. El objetivo es minimizar los cos-
tos de preparación y retención asociados por periodo.

Suponga que producimos en el periodo i para los periodos i, i 1 1,…, y t, i # t, y
definimos TC(i, t) como los costos de preparación y retención asociados para los mis-
mos periodos. Utilizando la misma anotación de los modelos de PD, tenemos

Luego definimos TCU(i, t) como el costo por periodo asociado; es decir,

Dado un periodo actual i, la heurística determina i* que minimiza el TCU(i, t).
La función TC(i, t) se calcula recursivamente como 

Paso 0. Establezca i 5 1.

Paso 1. Determine el mínimo local t* que satisfaga las dos condiciones siguientes:

La heurística requiere que se pida la cantidad (Di 1 Di+1 1 … 1 Di*) en el
periodo i para los periodos i, i 1 1,…, y t*.

TCU1i, t… + 12 Ú TCU1i, t…2TCU1i, t… - 12 Ú TCU1i, t…2

 TC1i, t2 = TC1i, t - 12 + aat- 1

k= i
hkbDt, t = i + 1, i + 2, Á , n

 TC1i, i2 = Ki

TCU1i, t2 =  
TC1i, t2
t - i + 1

TC1i, t2 = dKi , t = i

Ki + hiDi+ 1 + 1hi + hi+ 12Di+ 2 + Á + aat- 1

k= i
hkbDt, t 7 i

Periodo i Di (unidades) ($)Ki ($)hi

1 10 20 1
2 15 17 1
3 7 10 1
4 20 18 3
5 13 5 1
6 25 50 1
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Paso 2. Establezca i 5 t* 1 1. Si i . n, deténgase; ya se ha cubierto todo el horizonte
de planeación. De lo contrario, vaya al paso 1.

Ejemplo 13.4-4

Encuentre la política de inventario óptima para la siguiente situación de inventario de 6 periodos:

El costo de producción unitario es de $2 para todos los periodos.

Iteración 1 (i 5 1), K1 5 $20). La función TC (1, t) se calcula recursivamente en t. Por ejemplo,
dada TC (1,1) 5 $20, TC(1,2) 5 TC(1,1) 1 h1D2 5 20 1 (1 3 15) 5 $35.

El mínimo local ocurre en t* 5 3, lo que requiere pedir 10 1 15 1 7 5 32 unidades en el pe-
riodo 1 para los periodos 1 a 3. Establezca i 5 t* 1 1 5 3 1 1 5 4.

Iteración 2 (i 5 4, K4 5 $18).

Periodo t Di (unidades) ($)Ki ($)hi

1 10 20 1
2 15 17 1
3 7 10 1
4 20 18 3
5 13 5 1
6 25 50 1

Periodo t Di TC(1, )t TCU(1, )t

1 10 $20 20
1  = $20.00

2 15 20 + 1 * 15 = $35 35
2  = $17.50

3 7 35 + (1 + 1) * 7 = $94 49
3  = $16.33

4 20 49 + (1 + 1 + 1) * 20 = $109 109
4  = $27.25

Periodo t Di TC(4, )t TCU(4, )t

4 20 $18 18
1  = $18.00

5 13 18 + 3 * 13 = $57 57
2  = $28.50

Periodo t Dr TC(5, t) TCU(5, t)

5 13 $5 5
1  =   $5

6 25 5 + 1 * 25 = $30 30
2  = $15

Los cálculos muestran que t* 5 4, el cual requiere pedir 20 unidades en el periodo 4 para
el periodo 4. Establezca i 5 4 1 1 5 5.

Iteración 3 (i 5 5, K5 5 $5)
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El mínimo ocurre en t* 5 5, que requiere pedir 13 unidades en el periodo 5 para el periodo
5. Luego establecemos i 5 5 1 1 5 6. Sin embargo, como i 5 6 es el último periodo del horizon-
te de planificación, debemos pedir 25 unidades en el periodo 6 para el periodo 6.

Comentarios. La siguiente tabla compara la solución heurística y la solución de PD exacta.
Hemos eliminado el costo de producción unitario en el modelo de programación dinámica por-
que no está incluido en los cálculos heurísticos.

Los costos del programa de producción heurístico son alrededor de 32% más que los de la
solución de PD ($122 vs. $92). El desempeño “inadecuado” de la heurística puede atribuirse a
la naturaleza de los datos, ya que el problema puede quedar en los valores de costo de prepara-
ción extremos para los periodos 5 y 6. No obstante, el ejemplo muestra que la heurística no tiene
la capacidad de “mirar hacia delante” en busca de mejores oportunidades de programación. Por
ejemplo, si pedimos en el periodo 5 para los periodos 5 y 6 (en lugar de pedir para cada periodo
por separado) podemos ahorrar $25, lo que reducirá el costo heurístico total a $97.

Momento de Excel

La plantilla excelSilverMeal.xls está diseñada para realizar todos los cálculos iterativos y propor-
cionar la solución final. El procedimiento se inicia con el ingreso de los datos necesarios para
realizar los cálculos, incluyendo N, K, h y D para todos los periodos (estos ingresos aparecen re-
saltados en color turquesa en la hoja de cálculo). El usuario debe iniciar entonces cada iteración
manualmente hasta que se hayan cubierto todos los periodos.

La figura 13.11 muestra la aplicación de la heurística Excel al ejemplo 13.4-4. La primera
iteración se inicia ingresando el valor 1 en la celda J11, señalando que la iteración 1 se inicia en
el periodo 1. La hoja de cálculo generará entonces tantas filas cuantos periodos N (56 en este
ejemplo). El número del periodo aparecerá en orden ascendente en las  K11:K16. Ahora exami-
namos el TCU en la columna P (resaltado en color turquesa) y localizamos el periodo que co-
rresponde al mínimo local en t 5 3 con TCU 5 $16.33. Esto significa que la siguiente iteración se
iniciará en el periodo 4. Ahora, deje una fila en blanco e ingrese el valor 4 en J18. Esta acción, la
cual produce los cálculos en la iteración 2, muestra que su mínimo local aparecerá en el periodo
4 (TCU 5 $18.00) y señala el inicio de la iteración en el periodo 5. De nueva cuenta, ingresando
5 en J22, el mínimo local para la iteración 3 ocurre en el nodo 5. Luego, ingresando el valor de 6
en J25 se produce la iteración de terminación del problema. La hoja de cálculo actualizará au-
tomáticamente la política óptima asociada y su costo total, como se muestra en la figura 13.11.

Heurística Programación dinámica

Periodo Unidades producidas Costo ($) Unidades producidas Costo ($)

1 32 49 10 20
2 0 0 22 24
3 0 0 0 0
4 20 18 20 18
5 13 5 38 30
6 25 50 0 0

Total 90 122 90 92
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CONJUNTO DE PROBLEMAS 13.4E

*1. La demanda de cañas de pescar es mínima durante el mes de diciembre y máxi-
ma durante el mes de abril. Fishing Hole, Inc. estima que la demanda en diciem-
bre es de 50 cañas. Se incrementa en 10 cañas cada mes hasta que llega a 90 en
abril. De ahí en adelante, la demanda se reduce a razón de 5 cañas por mes. El
costo de preparación de un lote de producción es de $250, excepto durante los
meses de demanda máxima de febrero a abril, donde se incrementa a $300. El
costo de producción por caña se mantiene aproximadamente constante en $15 a
lo largo del año, y el costo de retención por mes es de $1. Fishing Hole está de-
sarrollando el plan de producción del año siguiente (enero a diciembre). ¿Cómo
debe programar sus instalaciones de producción?

2. Una pequeña casa editora reimprime una novela para satisfacer la demanda du-
rante los siguientes 12 meses. Las estimaciones de la demanda en meses sucesi-
vos son 100, 120, 50, 70, 90, 105, 115, 95, 80, 85, 100 y 110. El costo de preparación
para reimprimir el libro es de $200.00 y el costo de retención por libro por mes
es de $1.20. Determine el programa de reimpresión óptimo.
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FIGURA 13.11

Solución del ejemplo 13.4-4 obtenida con Excel por medio de heurística Silver-Meal (archivo ExcelSiver-
Medal.xls)

Modelo de inventario heurístico Silver Medal

Datos de entrada:

Número de periodos, N =

Periodo t  =

Costo de preparación, K =

Costo de retención, ht =

Demanda, Dt =

<< Máximo 14 periodos

Solución completa

Iniciar iteración en el periodo

Cálculos del modelo (Borrar la columna J manualmente) Solución óptima (Costo total = $122.00)

Periodo

Pedir 32 en el periodo 1 para los periodos 1 a 3, costo = $49.00

Pedir 20 en el periodo 4 para los periodos 4 a 4, costo = $18.00

Pedir 13 en el periodo 5 para los periodos 5 a 5, costo = $49.00

Pedir 25 en el periodo 6 para los periodos 6 a 6, costo = $50.00
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14.1 LEYES DE PROBABILIDAD

La probabilidad tiene que ver con los resultados aleatorios de un experimento. La con-
junción de todos los resultados es el espacio de muestreo, y un subconjunto de éste es
un evento. A modo de ilustración, el experimento de lanzar un dado (de 6 caras) pro-
duce el espacio de muestreo {1,2,3,4,5,6}. El subconjunto {l,3,5} define el evento de ob-
tener valores impares.

Un experimento también puede ocuparse de un espacio de muestreo continuo.
Por ejemplo, el tiempo entre las fallas de un componente electrónico puede asumir
cualquier valor no negativo.

Si un evento E ocurre m veces en un experimento de n ensayos, entonces la pro-
babilidad de realizar el evento E se define como 

La definición dice que cuando el experimento se repite un número infinito de veces
(n S q), la probabilidad de realizar un evento es m/n. Por ejemplo, cuantas más veces se
lanza una moneda equilibrada, más se acercará la estimación de P{cara} (o P{cruz}) al
valor teórico de 0.5.

Por definición,

Un evento E es imposible si P{E} 5 0, y seguro si P{E} 5 1. Por ejemplo, en el experi-
mento del dado de 6 caras, obtener un siete es imposible, pero obtener un número en el
rango de 1 a 6 es seguro.

CONJUNTO DE PROBLEMAS 14.1A

*1. En una encuesta dirigida en las preparatorias del estado de Arkansas para estudiar la co-
rrelación entre las calificaciones de matemáticas de estudiantes del último año y la ins-

0 … P{E} … 1

P{E} = lím
n:q

m

n

CAPÍTULO 14

Repaso de probabilidad básica
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cripción en carreras de ingeniería, 400 de 1000 estudiantes encuestados han estudiado
matemáticas. La inscripción en carreras de ingeniería muestra que, de los 1000 estudian-
tes de último año, 150 han llevado matemáticas y 29 no. Determine las probabilidades de
los siguientes eventos:
(a) Un estudiante que llevó matemáticas se inscribe (o no) en una carrera de ingeniería.
(b) Un estudiante que ni llevó matemáticas ni se inscribe en una carrera de ingeniería.
(c) Un estudiante que no está en una carrera de ingeniería.

*2. Considere una reunión aleatoria de n personas. Determine el número n mínimo de modo
que sea más probable que dos personas hayan nacido el mismo día. (Sugerencia: Asuma que
no hay años bisiestos y que todos los días del año tienen la misma probabilidad de ser el
cumpleaños de una persona.)

*3. Solucione el problema 2 suponiendo que dos o más personas comparten su cumpleaños.

14.1.1 Ley de la adición de probabilidad

La unión de dos eventos E y F es E 1 F o E ª F, y su intersección es EF o E º F. Los
eventos E y F son mutuamente excluyentes si la ocurrencia de uno excluye la ocurren-
cia del otro, P{EF} 5 0. Basada en estas definiciones, la ley de adición de probabilidad
puede formularse como

Ejemplo 14.1-1

Considere el experimento de lanzar un dado. El espacio de muestreo del experimento es
{1,2,3,4,5,6}. Para un dado equilibrado, tenemos

Defina

El evento EF 5 {3 o 4} porque los resultados 3 y 4 son comunes entre E y F. Por lo tanto

Intuitivamente, el resultado tiene sentido porque .

CONJUNTO DE PROBLEMAS 14.1B

1. Se lanza dos veces un dado de 6 caras. Si E y F representan los resultados de los dos lan-
zamientos, calcule las siguientes probabilidades:
(a) La suma de E y F es 11.
(b) La suma de E y F es par.

P{E + F} = P{1, 2, 3, 4, 5} =  56

P{E + F} = P{E} + P{F} - P{EF} =  23 +  12 -  13 =  56

P{EF} = P{3} + P{4} =  13

P{F} = P{3} + P{4} + P{5} =  12

P{E} = P{1} + P{2} + P{3} + P{4} =  16 +  16 +  16 +  16 =  23

 F = {3, 4,  o  5}

 E = {1, 2, 3,  o  4}

P{1} = P{2} = P{3} = P{4} = P{5} = P{6} =  16

P{E + F} = eP{E} + P{F},
P{E} + P{F} - P{EF},

       
E y F son mutuamente excluyentes
de lo contrario
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(c) La suma de E y F es impar y mayor que 3.
(d) E es par y menor que 6, y F es impar y mayor que 1.
(e) E es mayor que 2, y F es menor que 4.
(f) E es 4, y la suma de E y F es impar.

2. Se lanzan dos dados de forma independiente, y se registran los dos números que resulten.
Determine lo siguiente:
(a) La probabilidad de que los dos números sean pares.
(b) La probabilidad de que la suma de los dos números sea 10.
(c) La probabilidad de que los dos números difieran en por lo menos 3.

3. Puede lanzar una moneda siete veces. Ganará $100 si aparecen tres cruces antes de que
aparezca una cara. ¿Cuáles son las probabilidades de ganar?

*4. Ann, Jim, John y Nancy se han programado para competir en un torneo de frontenis. Es
dos veces más probable que Ann derrote a Jim, y Jim está al mismo nivel que John. El
pasado registro ganador de Nancy contra John es uno de tres. Determine lo siguiente:
(a) La probabilidad de que Jim gane el torneo.
(b) La probabilidad de que una mujer gane el torneo.
(c) La probabilidad de que ninguna mujer gane.

14.1.2 Ley de probabilidad condicional

Dados los dos eventos E y F con P{F} . 0, la probabilidad condicional de E dado F se
calcula como 

Si E  es un subconjunto de F, entonces P{EF} 5 P{E}. Los dos eventos son indepen-
dientes si, y sólo si,

En este caso, la ley de probabilidad condicional se reduce a 

Ejemplo 14.1-2

Usted participa en un juego en el que otra persona lanza un dado. No puede ver el dado, pero le
informan sobre los resultados. Su tarea es predecir el resultado de cada lanzamiento. Determine
la probabilidad de que el resultado sea 6, dado que le dicen que el resultado fue un número par.

Sea E 5 {6}, y defina F 5 {2,4 o 6} por lo tanto,

Observe que P{EF} 5 P{E} porque E es un subconjunto de F.

P{E|F} =  
P{EF}

P{F}
 =  

P{E}

P{F}
 = a  

1/6
1/2

 b =  13

P{EF} = P{E} P{F}

P{E|F} = P{E}

P{E|F} =  
P{EF}

P{F}
, P{F} 7 0
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CONJUNTO DE PROBLEMAS 14.1C

1. En el ejemplo 14.1-2, suponga que le dicen que el resultado es menor que 6.
(a) Determine la probabilidad de obtener un número par.
(b) Determine la probabilidad de obtener un número non mayor que uno.

2. Las acciones de WalMark Stores, Inc. se cotizan en la Bolsa de Valores de Nueva York
bajo el símbolo WMS. Históricamente, el precio de WMS sube con el índice Dow 60% de
las veces, y baja 25% de las veces. Hay también 5% de probabilidades de que WMS suba
cuando el Dow baja, y 10% de que baje cuando el Dow sube.
(a) Determine la probabilidad de que WMS subirá independientemente del Dow.
(b) Encuentre la probabilidad de que WMS suba dado que el Dow suba.
(c) ¿Cuál es la probabilidad de que WMS baje dado que el Dow baje?

*3. Los graduados de preparatoria con una calificación ACT de al menos 26 pueden buscar
ser admitidos en dos universidades, A y B. La probabilidad de ser aceptados en A es de
.4, y de .25 en B. La probabilidad de ser aceptado en ambas universidades es de sólo 15%.
(a) Determine la probabilidad de que el estudiante sea aceptado en B, dado que tam-

bién fue aceptado en A.
(b) ¿Cuál es la probabilidad de que sea aceptado en A, dado que el estudiante fue acep-

tado en B?
4. Demuestre que si la probabilidad P{A|B} 5 P{A}, entonces A y B deben ser indepen-

dientes.
5. Teorema de Bayes.1 Dados los dos eventos A y B, demuestre que

6. Un minorista recibe 75% de sus baterías de la fábrica A y 25% de la fábrica B. Se sabe
que el porcentaje de baterías defectuosas producidas por A y B es de 1 y 2%, respectiva-
mente. Un cliente acaba de comprarle una batería al minorista.
(a) ¿Cuál es la probabilidad de que la batería resulte defectuosa?
(b) Si la batería resulta defectuosa, ¿cuál es la probabilidad de que provenga de la fábri-

ca A? (Sugerencia: Aplique el teorema de Bayes en el problema 5.) 
*7. Las estadísticas muestran que 70% de los hombres sufren de alguna forma de cáncer de

próstata. El examen del antígeno prostático específico (PSA, por sus siglas en inglés) resul-
ta positivo 90% de las veces en los hombres afectados, y 10% en hombres sanos. ¿Cuál es la
probabilidad de que un hombre que haya resultado positivo no tenga cáncer de próstata?

14.2 VARIABLES ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDAD

Los resultados de un experimento pueden ser naturalmente numéricos (por ejemplo
el lanzamiento de un dado), o estar representados por un código (como en el caso del
lanzamiento de una moneda con el resultado cara/cruz codificado como 0/1). La repre-
sentación numérica de los resultados define lo que se conoce como variable aleatoria.

Una variable aleatoria, x, puede ser discreta (como en el lanzamiento de un
dado) o continua (como en el tiempo para que falle un equipo). Cada variable x aleato-

P{A|B} =  
P{B|A}P{A}

P{B}
,  P{B} 7 0

1La sección 15.2.2 proporciona más detalles sobre el teorema de Bayes.
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ria continua o discreta puede ser cuantificada por una función de distribución de pro-
babilidad (fdp), f(x) o p(x), que satisface las siguientes condiciones:

FIGURA 14.1

FDA y fdp para el lanzamiento
de un dado 

1

0
1 62 3 4 x

fdp, p(x)

FDA, P(x)

5

5
6
4
6
3
6
2
6
1
6

Variable aleatoria, x

Característica Discreta Continua

Intervalo de aplicabilidad x = a, a + 1, Á , b a … x … b
Condiciones para la fdp

p(x) Ú 0, a
b

x=a
p(x) = 1 f(x) Ú 0,L

b

a

f(x)dx = 1 

Una importante medida de probabilidad es la función de distribución acumulada
(FDA), definida como 

Ejemplo 14.2-1

Considere el experimento de lanzar un dado representado por la variable aleatoria x 5

{1,2,3,4,5,6}. La fdp y la FDA asociadas son 

La figura 14.1 grafica las dos funciones. La fdp p(x) es una función discreta uniforme porque
todos los valores de las variables aleatorias ocurren con iguales probabilidades.

La contraparte continua de la p(x) uniforme se ilustra mediante el siguiente experimento.
Una aguja de longitud l gira en el centro de un círculo de diámetro l. Después de marcar un
punto de referencia arbitrario en la circunferencia, se hace girar la aguja en el sentido de las ma-

 P(X) =  
X

6
, X = 1, 2, Á , 6

 p(x) =
1
6

 , x = 1, 2, Á ,  6

pEx … XF = L P(X) = a
X

x=a
p(x),       x discreta

F(X) =1Xa f(x)dx,    x continua
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FIGURA 14.2

FDA y fdp para una aguja que gira

1

0 x

fdp, f(x)

FDA, F(x)

1
pl

pl

necillas del reloj y se mide la distancia de la circunferencia, x, desde el punto marcado hasta el
punto donde se detuvo la aguja. Como cualquier punto de detención sobre la circunferencia
tiene la misma probabilidad de ocurrir, la distribución de x es uniforme en el intervalo 0 # x #

pl con la siguiente fdp:

La FDA asociada, F(X) se calcula como 

La figura 14.2 muestra las gráficas de las dos funciones.

CONJUNTO DE PROBLEMAS 14.2A

1. El número de unidades, x, requeridas de un artículo es discreto de 1 a 5. La probabilidad,
p(x), es directamente proporcional al número de unidades requeridas. La constante de
proporcionalidad es K.

(a) Determine la fdp y la FDA de x, y trace la gráfica de las funciones resultantes.
(b) Encuentre la probabilidad de que x sea un valor par.

2. Considere la siguiente función:

*(a) Determine el valor de la constante k que hará que f(x) sea una fdp.
(b) Determine la FDA y encuentre la probabilidad de que x sea (i) mayor que 12 y que

(ii) tenga un valor entre 13 y 15.
*3. La demanda diaria de gasolina sin plomo está uniformemente distribuida entre 750 y

1250 galones. El tanque de 1100 galones se rellena diariamente a medianoche. ¿Cuál es 
la probabilidad de que el tanque se vacíe antes de volverlo a rellenar?

f(x) =  
k

x2 ,  10 … x … 20

F(X) = P{x … X} = L
X

0
f(x)dx = L

X

0
 

1
pl

 dx =  
X

pl
 , 0 … X … pl

f(x) =  
1
pl

 ,  0 … x … pl
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14.3 EXPECTATIVA DE UNA VARIABLE ALEATORIA

Si h(x) es una función real de una variable aleatoria x, el valor esperado de h(x) se
calcula como 

Ejemplo 14.3-1

Durante la primera semana de cada mes pagué todas mis facturas y contesté algunas cartas.
Suelo comprar 20 estampillas de primera clase cada mes para este propósito. En realidad, la can-
tidad de estampillas que uso varía al azar entre 10 y 24 con iguales probabilidades. Determine el
promedio de estampillas que sobran (es decir, el excedente promedio) por mes.

La fdp de la cantidad de estampillas utilizadas es 

El número de estampillas sobrantes es 

Por lo tanto,

El producto representa el resultado de quedarse sin estampillas lo que corresponde a
la probabilidad de utilizar al menos 20 estampillas; es decir,

CONJUNTO DE PROBLEMAS 14.3A

1. En el ejemplo 14.3-1, calcule el faltante promedio de estampillas por mes. (Sugerencia:
Puede haber un faltante si necesita más de 20 estampillas.)

2. Los resultados del ejemplo 14.3-1 y del problema 1 muestran promedios positivos tanto
del exceso como de la falta de estampillas. ¿Son inconsistentes estos resultados?
Explique.

*3. El propietario de un puesto de periódicos recibe 50 ejemplares del periódico Al Ahram
cada mañana. La cantidad de ejemplares vendidos, x, varía al azar de acuerdo con la 
siguiente distribución de probabilidad:

(a) Determine la probabilidad de que el propietario venda todos los ejemplares.
(b) Determine el número esperado de ejemplares no vendidos por día.
(c) Un ejemplar cuesta 50 centavos y se vende a $1.00. Determine el ingreso neto espe-

rado por día.

p(x) = L
1

45, x = 35, 36, . . . , 49
1
30 , x = 50, 51, . . . , 59
1
33 , x = 60, 61, . . . , 70

  

P{x Ú 20} = p1202 + p1212 + p1222 + p1232 + p1242 = 51 1
152 =  5

15

5
15 (0)

E{h(x)} =  1
15 [(20 - 10) + (20 - 11) + (20 - 12) + Á + (20 - 19)] +  5

15 (0) = 3 23

h(x) = e 20-x, x = 10, 11, . . . , 19
0,         de lo contrario

p(x) =  1
15 ,  x = 10, 11, Á ,  24.

EEh(x)F = L a
b

x=a
h(x)p(x),       x discreta

1ba h(x)f(x)dx,    x continua
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14.3.1 Media y varianza (desviación estándar) de una variable aleatoria

El valor medio E{x} mide la tendencia central (o suma ponderada) de la variable alea-
toria x. La varianza var{x} mide la dispersión o desviación de x alrededor de su valor
medio. Su raíz cuadrada se conoce como desviación estándar de x, Desv.Est.{x}. Una
desviación estándar grande implica una alta incertidumbre.

Las fórmulas para la media y la varianza de derivan a partir de la definición ge-
neral de E{h(x)} en la sección 14.3 al sustituir h(x) 5 x para obtener E{x} y sustituir
h(x) 5 (x 2 E{x})2 para obtener var{x}; es decir,

Ejemplo 14.3-2

Calculamos la media y la varianza para cada uno de los experimentos del ejemplo 14-2-1.

Caso 1 (Lanzamiento de un dado) La fdp es p(x) 5 1/6, x 5 1, 2,…, 6. Por lo tanto,

Caso 2 (Rotación de la aguja) Suponga que la longitud de la aguja es de una pulgada. Entonces,

La media y la varianza son 

Desv.Est.(x) = 1.822 = .906  pulg.

var(x) = L
3.14

0
1x - 1.5722 A 1

3.14 B  dx = .822  pulg.2

E(x) = L
3.14

0
x1 1

3.142 dx = 1.57  pulg.

f(x) =  
1

3.14
, 0 … x … 3.14

Desv.Est.(x) = 12.917 = 1.708

+ (5 - 3.5)2 + (6 - 3.5)2F = 2.917

var{x} = A 1
6 B E11 - 3.522 + 12 - 3.522 + 13 - 3.522 + 14 - 3.522E{x} = 1 A 16 B + 2 A 16 B + 3 A 16 B + 4 A 16 B + 5 A 16 B + 6 A 16 B = 3.5

Desv.Est.{x} = 3var{x}

var{x} = L a
b

x=a
(x - E{x})2 p(x),      x discreta

1b
a (x - E{x})2 f(x)dx,    x continua 

E(x) = L a
b

x=a
xp(x),      x discreta

1ba xf(x)dx,  x continua
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Momento de Excel 

La plantilla excelStatTables.xls calcula la media, la desviación estándar, las probabilidades, y los
percentiles para 16 fdp comunes, incluidas las distribuciones uniformes continuas. El uso de la
hoja de cálculo es autoexplicativo.

CONJUNTO DE PROBLEMAS 14.3B

*1. Calcule la media y la varianza de la variable aleatoria definida en el problema 1, conjun-
to 14.2a.

2. Calcule la media y la varianza de la variable aleatoria del problema 2, conjunto 14.2a.
3. Demuestre que la media y la varianza de una variable aleatoria uniforme x, a # x # b, son 

4. Si f(x), a # x # b es una fdp, demuestre que

5. Si f(x), a # x # b es una fdp, y y 5 cx 1 d, donde c y d son constantes, demuestre que

14.3.2 Variables aleatorias conjuntas

Considere las dos variables aleatorias continuas x1 y x2, donde a1 # x1 # b1 y a1 # x2 #

b2. Defina f(x1, x2) como la fdp conjunta de x1 y x2 y f1(x1) y f2(x2) como sus respectivas
fdp marginales. Entonces

Las mismas fórmulas aplican a las fdp discretas, al reemplazar la integración con la suma.

f1x1, x22 = f11x12f21x22, si x1 y x2 son independientes

f21x22 =Lb1

a1

f1x1, x22 dx1

f11x12 =Lb2

a2

f1x1, x22 dx2

L
b1

a1

dx1L
b2

a2

dx2 f1x1, x22 = 1

f1x1, x22 Ú 0, a1 … x1 … b1,  a2 … x2 … b2

 var{y} = c2
 
 var{x}

 E{y} = cE{x} + d

var{x} = E{x2} - 1E{x}22
 var{x} =  

(b - a)2

12

 E{x} =  
b + a

2
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En el caso especial y 5 c1x1 1 c2x2, donde las variables aleatorias x1 y x2 están
conjuntamente distribuidas de acuerdo con la fdp f(x1, x2), podemos demostrar que 

donde

Si x1 y x2 son independiente, entonces E{x1x2} 5 E{x1}E{x2} y cov {x1, x2) 5 0. Lo con-
trario no es cierto, en el sentido de que dos variables dependientes puedan tener cova-
rianza cero.

Ejemplo 14.3-3

Un lote incluye cuatro artículos defectuosos (D) y seis buenos (G). Se selecciona un artículo al
azar y se examina. Luego se selecciona un segundo artículo de entre los nueve artículos restan-
tes y se examina. Sean x1 y x2 que representen los resultados de la primera y segunda selecciones.

(a) Determine las fdp conjuntas y marginales de x1 y x2.

(b) Suponga que un artículo bueno reditúa un ingreso neto de $5 y uno defectuoso
representa una pérdida de $6. Determine la media y la varianza del ingreso des-
pués  examinar los dos artículos.

Sea p(x1, x2) la fdp conjunta de x1 y x2, y definimos a p1(x1) y p2(x2) como las fdp margina-
les. Primero, determinamos p1(x1) como 

Luego, sabemos que el segundo resultado x2 depende del primer resultado x1. Por consiguiente,
para determinar p2(x2), primero determinamos la fdp conjunta p(x1, x2) (aplicando la fórmula
P{AB} 5 P{A|B}P{B} en la sección 14.1.2), a partir de la cual podemos determinar la distribución
marginal p2(x2). Por lo tanto,

Luego,

p{x2 = B, x1 = B} =  39 *  4
10 =  2

15

p{x2 = B, x1 = G} =  49 *  6
10 =  4

15

p{x2 = G, x1 = B} =  69 *  4
10 =  4

15

p{x2 = G, x1 = G} =  59 *  6
10 =  5

15

P{x2 = B|x1 = B} =  39

P{x2 = B|x1 = G} =  49

P{x2 = G|x1 = B} =  69

P{x2 = G|x1 = G} =  59

p11G2 =  6
10 = .6,  p11D2 =  4

10 = .4

 = E{x1x2} - E{x1}E{x2}

 = E1x1x2 - x1E{x2} - x2E{x1} + E{x1}E{x2}2 cov {x1, x2} = E{1x1 - E{x1}21x2 - E{x2}2
var {c1x1 + c2x2} = c1

2var {x1} + c2
2var {x2} + 2c1c2cov {x1, x2}

E{c1x1 + c2x2} = c1E{x1} + c2E{x2}
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El ingreso esperado se determina con la distribución conjunta reconociendo que G produce
$5 y B produce 2$6. Por lo tanto,

El mismo resultado puede determinarse reconociendo que el ingreso esperado de ambas se-
lecciones es la suma del ingreso esperado de cada selección individual (aun cuando las dos va-
riables no son independientes). Estos cálculos requieren determinar las distribuciones margina-
les p1(x1) y p2(x2).

Una forma conveniente de determinar las distribuciones marginales es presentar la distri-
bución conjunta, p(x1, x2), como una tabla y luego agregar las columnas y filas correspondientes
para determinar p(x1)y p(x2), respectivamente. Por lo tanto,

Ingreso esperado = 15 + 52 5
15 + 15 - 62 4

15 + 1- 6 + 52 4
15 + 1- 6 - 62 2

15 = $1.20

x2 = G x2 = B p1(x1)

x1 = G 5
15

4
15

9
15 = .6

x1 = B 4
15

2
15

6
15 = .4

p2(x2) 9
15 = .6 6

15 = .4

Ahora, las distribuciones marginales determinan el ingreso esperado como

Ingreso esperado 5 Ingreso esperado de la selección 1 1 Ingreso esperado de la selección 2

Para calcular la varianza del ingreso total observamos que

var{ingreso} 5 var{ingreso1} 1 var{ingreso2} 1 2cov{ingreso1, ingreso2}

Ya que p1(x1) 5 p2(x2), var{ingreso1} 5 var{ingreso2}. Para calcular la varianza, utilizamos
la siguiente fórmula (vea el problema 4, conjunto 14.3b)

Por lo tanto,

Luego calculamos la covarianza aplicando la fórmula

El término E{xlx2} se calcula a partir de la fdp conjunta de x1 y x2 como

Por lo tanto,

Varianza = 29.04 + 29.04 + 2(-3.23) = 51.62

+ (-6 * -6)1 2
15 2] -.6 * .6 = -3.23

Convarianza = [(5 * 5)1 5
15 2 + (5 * -6)1 4

15 2 + (-6 * 5)1 4
15 2

cov{x1, x2) = E{x1x2} - E{x1}E{x2}

var{ingreso1} = [52 * .6 + (-6)2 * .4] - .62 = 29.04

var{x} = E{x2} - 1E{x}22

 = (5 * .6 - 6 * .4) + (5 * .6 - 6 * .4) = $1.20
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CONJUNTO DE PROBLEMAS 14.3C

1. La fdp conjunta de x1 y x2 es

x2 = 3 x2 = 5 x2 = 7

x1 = 1 .2 0 .2

x1 = 2 0 .2 0

x1 = 3 .2 0 .2

*(a) Determine las fdp marginales p1(x1) y p2(x2)
*(b) ¿x1 y x2 son independientes? 

(c) Calcule E{x1 1 x2}.
(d) Calcule cov{x1,x2}.
(e) Calcule var{5x1 2 6x2}.

14.4 CUATRO DISTRIBUCIONES DE PROBABILIDAD COMUNES

En las secciones 14.2 y 14.3 analizamos la distribución uniforme (discreta y continua).
Esta sección presenta cuatro fdp adicionales que a menudo se presentan en estudios de
investigación de operaciones: binomial discreta y de Poisson, y exponencial continua y
normal.

14.4.1 Distribución binomial

Un fabricante produce un artículo en lotes de n artículos cada uno. La fracción de ar-
tículos defectuosos, p, en cada lote se estima a partir de datos históricos. Nos interesa
determinar la fdp  de la cantidad de artículos defectuosos en un lote.

Hay combinaciones distintas de x artículos defectuosos en un lote

de tamaño n, y la probabilidad de realizar cada combinación es px(1 2 p)n-x. Por lo
tanto, de acuerdo con la ley de la adición (sección 14.1.1), la probabilidad de k artícu-
los defectuosos en un lote de n artículos es

Ésta es la distribución binomial con parámetros n y p. Su media y varianza son 

Ejemplo 14.4-1

Las labores diarias de John Doe requieren hacer 10 viajes redondos por automóvil entre dos ciu-
dades. Una vez que realiza los 10 viajes, el señor Doe puede descansar el resto del día, una moti-
vación suficientemente buena para exceder el límite de velocidad. La experiencia muestra que
hay 40% de probabilidad de ser multado por exceso de velocidad en cualquier viaje redondo.

 var{x} = np(1 - p)

 E{x} = np

P{x = k} = Ck
n pk(1 - p)n-k,  k = 0, 1, 2, Á , n

Cx
n =  n!

x!(n - x)!

p(x1, x2) =
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(a) ¿Cuál es la probabilidad de que el día termine sin una multa por exceso de ve-
locidad?

(b) Si cada multa por exceso de velocidad es de $80, ¿cuál es la multa diaria promedio?

La probabilidad de ser multado en cualquier viaje es p 5 .4. Por lo tanto, la probabilidad de
no ser multado en cualquier día es 

Esto significa que la probabilidad de terminar el día sin ser multado es menor que 1%.
La multa promedio por día es 

Comentarios. P{x 5 0} puede calcularse con excelStatTables.xls. Ingrese 10 en F7, .4 en G7, y 0
en J7. La respuesta es P{x 5 0} 5 .006047, aparece en M7.

CONJUNTO DE PROBLEMAS 14.4A

*1. Se lanza un dado 10 veces. ¿Cuál es la probabilidad de que el dado lanzado no muestre
un número par?

2. Suponga que se lanzan cinco monedas de forma independiente. ¿Cuál es la probabilidad
de que exactamente una de las monedas sea diferente de las demás?

*3. Un adivino de la suerte afirma que puede predecir si una persona amasará riqueza finan-
ciera a lo largo de su vida al examinar su escritura. Para verificar su afirmación, a 10 mi-
llonarios y a 10 profesores universitarios se les pidió que proporcionaran muestras de su
escritura, las cuales luego se emparejaron, un millonario y un profesor, y se le presenta-
ron al adivino de la suerte. Decimos que la afirmación es cierta si el adivino hace al
menos ocho predicciones correctas. ¿Cuál es la probabilidad de que la afirmación sea un
“fiasco”.

4. En un casino hay un juego que consiste en seleccionar un número del 1 al 6 antes de que
el operador lance 3 dados al mismo tiempo. El casino paga tantos dólares cuantos núme-
ros de los dados resulten iguales a su selección. Si no hay ninguna coincidencia, usted
sólo le paga $1 al casino. Determine su ganancia esperada a largo plazo.

5. Suponga que lanza dos dados al mismo tiempo. Si coinciden recibe 50 centavos. De lo
contrario, paga 10 centavos. Determine la ganancia esperada del juego.

6. Compruebe las fórmulas de la media y la varianza de la distribución binomial.

14.4.2 Distribución de Poisson

Los clientes llegan a un banco o a una tienda de abarrotes de una forma “totalmente
aleatoria”; es decir, las horas de llegada no pueden predecirse con anticipación. La fdp
que describe el número de llegadas durante un lapso de tiempo específico es la distri-
bución de Poisson.

Sea x el número de eventos (por ejemplo, llegadas) que ocurren durante un lapso
de tiempo específico (a saber, un minuto, o una hora). Dado que l es una constante co-
nocida, la función de densidad de probabilidad de Poisson se define como

P{x = k} =  
lke-l

k!
 ,  k = 0, 1, 2, Á

Multa promedio = $80 E{x} = $80 (np) = 80 * 10 * .4 = $320

P{x = 0} = C0
10 (.4)0 (.6)10 = .006
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La media y la varianza de la distribución de Poisson son

La fórmula de la media revela que l debe representar la tasa a que ocurren los eventos.
La distribución de Poisson destaca en el estudio de colas (vea el capítulo 18).

Ejemplo 14.4-2

A un taller de reparación de motores pequeños llegan trabajos de reparación a razón de 10 por día.

(a) ¿Cuál es el número promedio de trabajos que se reciben a diario  en el taller?

(b) ¿Cuál es la probabilidad de que no lleguen trabajos durante cualquier hora, su-
poniendo que el taller está abierto 8 horas al día?

El número promedio de trabajos recibidos por día es igual a l 5 10 trabajos por día. Para
calcular la probabilidad de que lleguen trabajos por hora, tenemos que calcular la tasa de llega-
das por hora; es decir, trabajos de reparación por hora. Por lo tanto.

Comentario. La probabilidad anterior se puede calcular con excelStatTables.xls. Ingrese 1.25
en F16 y 0 en J16. La respuesta .286505 aparece en M16.

CONJUNTO DE PROBLEMAS 14.4B

*1. De acuerdo con la distribución de Poisson, los clientes llegan a una instalación de servicio
a razón de 4 por minuto. ¿Cuál es la probabilidad de que al menos un cliente llegue en
cualquier intervalo dado de 30 segundos?

2. La distribución de Poisson con el parámetro l se aproxima a la distribución binomial con
parámetros (n, p) cuando n S q, p S 0 y np S l. Demuestre este resultado para la si-
tuación en la que sabe que un lote fabricado contiene 1% de artículos defectuosos. Si se
toma una muestra de 10 artículos del lote, calcule la probabilidad de que en la muestra
haya cuando mucho un artículo defectuoso, primero por medio de la distribución bino-
mial (exacta) y luego por medio de la distribución de Poisson (aproximada). Demuestre
que la aproximación no será aceptable si el valor de p se incrementa a, digamos, 0.5.

*3. A una recepción llegan clientes al azar a una razón promedio de 20 por hora.
(a) Determine la probabilidad de que la recepción esté ociosa.
(b) ¿Cuál es la probabilidad de que al menos dos personas hagan cola en espera de ser

atendidas?
4. Compruebe las fórmulas de la media y la varianza de la distribución de Poisson.

 =  
1.250 e-1.25

0!
 = .2865

 P{no hay llegadas por hora} =  
(lhora)

0 e-lhora

0!

lhora =  10
8  = 1.25

 var{x} = l

 E{x} = l
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FIGURA 14.3

Función de densidad de probabilidad de la 
distribución exponencialx

 f(x)

f(x) �    e�  x

l

ll

14.4.3 Distribución exponencial negativa

Si el número de llegadas a una instalación de servicio durante un lapso de tiempo es-
pecífico sigue la distribución de Poisson (sección 14.4.2), entonces, automáticamente, la
distribución del tiempo entre llegadas (es decir, entre llegadas sucesivas) es la distribu-
ción exponencial negativa (o, simplemente exponencial). Específicamente, si l es la
tasa de ocurrencia de las llegadas de Poisson, entonces la distribución del tiempo entre
llegadas, x, es 

La figura 14.3 muestra la gráfica de f(x).
La media y la varianza de la distribución exponencial son

var{x} =  
1
l

E{x} =  
1
l

f(x) = le-lx,x 7 0

La media E{x} es consistente con la definición de l. Si l es la tasa a la cual ocurren los
eventos, entonces es el intervalo de tiempo promedio entre eventos sucesivos.

Ejemplo 14.4-3

Los automóviles llegan al azar a una gasolinera. El tiempo promedio entre llegadas es de 2 mi-
nutos. Determine la probabilidad de que el tiempo entre llegadas no exceda de 1 minuto.

La determinación de la probabilidad deseada es igual a la de calcular la FDA de x; es decir,

La tasa de llegadas para el ejemplo es llegadas por minuto. Si sustituimos A 5 1, la pro-
babilidad deseada es 

P{x … 1} = 1 - e-( 12 )(1) = .3934

l =  12 

 = 1 - e-lA

 = - e-lx|o
A

 P{x … A} =L
A

0
le-lxdx

1
l
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FIGURA 14.4

Función de densidad de probabilidad
de la variable aleatoria normal 

x

 f(x)

f(x) � e
1

2      2
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2

�
2

ps

m

s

m

Comentarios. Puede utilizar la plantilla excelStatTables.xls para calcular la probabilidad ante-
rior. Ingrese .5 en F9, 1 en J9. La respuesta (5 .393468) aparece en O9.

CONJUNTO DE PROBLEMAS 14.4C

*1. Los clientes que compran en Walmark Store son tanto urbanos como suburbanos. Los
clientes urbanos llegan a razón de 5 por minuto y los suburbanos llegan a razón de 7 por
minuto. Las llegadas son totalmente aleatorias. Determine la probabilidad de que el
tiempo entre llegadas de todos los clientes sea menor que 5 segundos.

2. Compruebe las fórmulas de la media y la varianza de la distribución exponencial.

14.4.4 Distribución normal

La distribución normal describe muchos fenómenos aleatorios de la vida diaria, como
las calificaciones de exámenes y el peso y la estatura de las personas. La fdp  de la dis-
tribución normal es 

La media y la varianza son

La notación N(m, s) se suele utilizar para representar una distribución normal con
media m y desviación estándar s.

La figura 14.4  muestra las gráficas de la fdp normal. La función siempre es simé-
trica alrededor de la media m.

Una propiedad importante de la variable aleatoria normal es que representa de
forma aproximada la distribución del promedio de una muestra tomada de cualquier
distribución. Este notable resultado se basa en el teorema siguiente:

Teorema del límite central. Sean x1, x2,… y xn variables aleatorias independientes
e idénticamente distribuidas, cada una con media m y desviación estándar s, y se definan

sn = x1 + x2 + Á + xn

 var{x} = s2

 E{x} = m

f(x) =  
122ps2

 e- 12 1x -m
s 22, - q 6 x 6 q
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La distribución de sn es asintóticamente normal con media nµ y varianza ns2, indepen-
dientemente de la distribución original de x1, x2,…, y xn.

Un caso especial del teorema del límite central tiene que ver con la distribución
de la media de una muestra de tamaño n (tomada de cualquier distribución). El pro-
medio es asintóticamente normal con media m y varianza . Este resultado tiene im-
portantes aplicaciones en el control de calidad estadístico.

La FDA de la variable aleatoria normal no puede determinarse en una forma ce-
rrada. La tabla A.1 en el apéndice A da las probabilidades de N(0, 1), la distribución
normal estándar con media cero y desviación estándar 1. En general, una variable alea-
toria normal x con media m y desviación estándar s puede convertirse en normal
estándar z mediante la transformación

Más de 99% del área bajo cualquier función de densidad normal se encuentra encerra-
da en el intervalo m 2 3s # x # m 1 3s, también conocido como límites 6 sigma.

Ejemplo 14.4-4

El diámetro interno de un cilindro tiene la especificación 1 6 .03 cm. El resultado del proceso de
maquinado que produce el cilindro sigue una distribución normal con media de 1 cm y desviación
estándar de .1 cm. Determine el porcentaje de la producción que satisfará las especificaciones.

Definiendo x como el parámetro interno del cilindro, la probabilidad de que satisfaga las es-
pecificaciones es

Esta probabilidad se calcula por medio de la normal estándar (tabla A.1 en el apéndice A). Dado
que m 5 1 y s 5 .1, tenemos

Observe que P{z # 2 .3} 5 1 – P{z # .3} debido a la simetría de la fdp, como se muestra en la fi-
gura 14.5. La probabilidad acumulada P{z # .3}(5 .6179) se obtiene con la tabla normal estándar
(tabla A.1 en el apéndice A) como la entrada designada con la fila z 5 0.3 y la columna z 5 0.00.

Comentario. P{.97 # x # 1.03} puede calcularse directamente desde excelStatTablesxls. Ingrese
1 en F15, .1 en G15, .97 en J15 y 1.03 en K15. La respuesta (5 .235823) aparece en Q15.

= .2358

= 2 * .6179 - 1

= 2P{z … .3} - 1

= P{z … .3} - [1 - P{z … .3}]

= P{z … .3} - P{z Ú .3}

= P{z … .3} - P{z … - .3}

= P{- .3 … z … .3}

P{.97 … x … 1.03} = P{.97 - 1
.1  … z …  1.03 - 1

.1  }

P{1 - .03 … x … 1 + .03} = P{.97 … x … 1.03}

z =  
x - m

s

s2

n
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CONJUNTO DE PROBLEMAS 14.4D

1. La facultad de ingeniería de la Universidad de Arkansas requiere una calificación ACT
mínima de 26. Las calificaciones de examen entre estudiantes del último año de prepara-
toria en un distrito escolar dado, por lo común se distribuyen con media de 22 y desvia-
ción estándar de 2.
(a) Determine el porcentaje de estudiantes de último año de la preparatoria que son

reclutas potenciales de carreras de ingeniería.
(b) Si la Universidad de Arkansas no acepta a cualquier estudiante con una calificación

ACT menor que 17, ¿qué porcentaje de estudiantes no será elegible para admisión
en la Universidad de Arkansas?

*2. Los pesos de personas que quieren hacer un paseo en helicóptero en un parque de diver-
siones tienen una media de 180 lb y una desviación estándar de 15 lb. El helicóptero
puede llevar a 5 personas, pero su capacidad de peso máxima es de 1000 lb. ¿Cuál es la
probabilidad de que el helicóptero no despegue con cinco personas a bordo?
(Sugerencia: Aplique el teorema del límite central.)

3. Por lo común, el diámetro interno de un cilindro está distribuido con una media de 1 cm
y una desviación estándar de .01 cm. En el interior de cada cilindro se ensambla una
barra sólida. El diámetro de la barra también suele distribuirse con una media de .99 cm
y una desviación estándar de .01 cm. Determine el porcentaje de pares de cilindro-barra
que no podrán ser ensamblados. (Sugerencia: La diferencia entre dos variables aleatorias
normales también es normal.)

14.5 DISTRIBUCIONES EMPÍRICAS

Las secciones precedentes abordaron las fdp y las FDA de cinco distribuciones comu-
nes: uniforme, binomial, de Poisson, exponencial y normal. ¿Cómo se reconocen estas
distribuciones en la práctica?

La base para identificar cualquier fdp son los datos sin procesar que reunimos
sobre la situación que estamos estudiando. Esta sección muestra cómo los datos mues-
treados pueden convertirse en una fdp.
Paso 1. Resuma los datos sin procesar en la forma de un histograma de frecuencia

apropiado para determinar la fdp  empírica asociada.
Paso 2. Use la prueba de bondad de ajuste para evaluar si la fdp empírica resultante

se muestrea a partir de una fdp teórica conocida.

Histograma de frecuencias. Este histograma se construye con datos sin procesar
dividiendo el rango de éstos (valor mínimo a valor máximo) en clases que no se
traslapan. La frecuencia en cada clase es la cuenta de los valores de los datos sin
procesar que quedan comprendidos dentro de los límites designados de la clase.

FIGURA 14.5

Cálculo de P{2.3 # z # .3} en una distribución
normal estándar z0 .3�.3

 f (z)
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.7 .4 3.4 4.8 2.0 1.0 5.5 6.2 1.2 4.4
1.5 2.4 3.4 6.4 3.7 4.8 2.5 5.5 .3 8.7
2.7 .4 2.2 2.4 .5 1.7 9.3 8.0 4.7 5.9

.7 1.6 5.2 .6 .9 3.9 3.3 .2 .2 4.9
9.6 1.9 9.1 1.3 10.6 3.0 .3 2.9 2.9 4.8
8.7 2.4 7.2 1.5 7.9 11.7 6.3 3.8 6.9 5.3

Ejemplo 14.5-1

Los siguientes datos representan el tiempo de servicio (en minutos) en una instalación de servi-
cio de una muestra de 60 clientes.

Los valores mínimo y máximo de los datos son 2 y 11.7, respectivamente. Esto significa que
la muestra está cubierta por el rango (0, 12). Dividimos arbitrariamente el rango (0, 12) en 12 cla-
ses, cada una de 1 minuto de ancho. La selección apropiada del ancho de la clase es crucial para
revelar la forma de la distribución empírica.Aun cuando no haya reglas exactas para determinar
el ancho de clase óptimo, una regla práctica es utilizar de 10 a 20 clases. En la práctica puede ser
necesario probar diferentes anchos de clase antes de decidir sobre un histograma aceptable.

La siguiente tabla resume la información en forma de histograma de la muestra dada. La co-
lumna de frecuencias relativas fi, se calcula dividiendo las entradas de la columna de frecuencias
observadas oi en el total de observaciones (n 5 60). Por ejemplo, . La columna
de frecuencias acumuladas Fi, se genera al sumar los valores de fi de manera recursiva. Por ejem-
plo, F1 5 f1 5 .1833 y F2 5 F1 1 f2 5 .1833 1 .1333 5 .3166.

f1 =  11
60 = .1833

i

Intervalo
de clase 

Cuenta de
observaciones

Frecuencia
observada, oi

\Frecuencia
relativa, fi

Frecuencia relativa
acumulada, Fi

1 (0, 1) ||||    ||||    | 11 .1833 .1833
2 (1, 2) ||||     ||| 8 .1333 .3166

3 (2, 3) ||||     |||| 9 .1500 .4666

4 (3, 4) ||||    || 7 .1167 .5833

5 (4, 5) ||||   | 6 .1000 .6833

6 (5, 6) |||| 5 .0833 .7666

7 (6, 7) |||| 4 .0667 .8333

8 (7, 8) || 2 .0333 .8666

9 (8, 9) ||| 3 .0500 .9166

10 (9, 10) ||| 3 .0500 .9666

11 (10, 11) | 1 .0167 .9833

12 (11, 12) | 1 .0167 1.0000

Totales 60 1.0000

Los valores de fi y Fi proporcionan una versión “discretizada” de la fdp y la FDA en el tiem-
po de servicio. Podemos convertir la FDA resultante en una función continua si unimos los pun-
tos resultantes con segmentos de línea. La figura 14.6 proporciona la fdp empírica y la FDA para
el ejemplo. La FDA, como la presenta el histograma, aparece definida en los puntos medios de
las clases.
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Ahora podemos estimar la media, , y la varianza, , de la distribución empírica. Sea N el
número de clases en el histograma y se defina como el punto medio de la clase i, entonces

Aplicando estas fórmulas al ejemplo presente, obtenemos 

Momento de Excel 

Los histogramas se pueden construir  de manera muy cómoda si utilizamos Excel. Seleccione
, luego ingrese los datos pertinentes en el cuadro de diálogo.

La herramienta Histogram en Excel no produce la media y la desviación estándar directa-
mente como parte de los resultados.2 Puede utilizar la plantilla Excel excelMeanVar.xls para 
calcular la media, la varianza, el máximo y el mínimo de la muestra. Incluso, Excel permite utili-
zar la herramienta Histogram.

HistogramQData Analysis

+ .0167 * 111.5 - 3.93422 = 8.646 minutos2

 st
2 = .1883 * 1.5 - 3.93422 + .1333 * 11.5 - 3.93422 + Á

 tq = .1833 * .5 + .133 * 1.5 + Á + 11.5 * .0167 = 3.934 minutos

 st
2 = a

N

i= 1
fi1tqi - tq22

 tq = a
N

i= 1
fitqi

tqi

st
2tq

2Data Análisis en Excel proporciona una herramienta aparte llamada Descriptive Statistics, la cual puede
usarse para calcular la media y la varianza (¡y también los volúmenes de otras estadísticas que quizá nunca
utilice!).

FIGURA 14.6

FDA lineal de una distribución 
empírica

1.0

0.8

0.6

0.4

0.2

0
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t (minutos)
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FIGURA 14.7

Comparación de la FDA empírica y la FDA exponencial teórica

1.0

Distribución acumulada empírica

Distribución acumulada exponencial

0.50

t (minutos)

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

Prueba de bondad de ajuste. Esta prueba evalúa si la muestra utilizada para
determinar la distribución empírica se tomó de una distribución teórica específica.
Puede realizarse una evaluación inicial de los datos comparando la FDA empírica con
la FDA de la distribución teórica propuesta. Si las dos FDA no se desvían “en exceso”,
entonces es probable que la muestra se tomó de la distribución teórica propuesta. Esta
“corazonada” inicial puede respaldarse aún más con la prueba de bondad de ajuste. El
siguiente ejemplo proporciona los detalles del procedimiento propuesto.

Ejemplo 14.5-2

Este ejemplo prueba los datos del ejemplo 14.5-1 en cuanto a la hipótesis de una distribución ex-
ponencial. La primera tarea es especificar la función que define la distribución teórica. Según el
ejemplo 14.5-1, minutos. Por consiguiente, servicios por minuto
según la distribución exponencial hipotética (vea la sección 14.4.3), y la fdp y la FDA asociadas
se dan como

Podemos utilizar la FDA, F(T), para calcular la FDA teórica para T 5 .5, 1.5,…, y 11.5, y
luego compararla gráficamente con el valor empírico Fi, i 5 1,2,…, 12, calculado en el ejemplo
14.5-1 como se muestra en la figura 14.7. Un examen superficial de las dos gráficas sugiere que la
distribución exponencial puede proporcionar un ajuste razonable por los datos observados.

El siguiente paso es implementar la prueba de bondad de ajuste. Existen dos pruebas como
esa: (1) la prueba de Kolmogrov-Smirnov, y (2) la prueba ji cuadrada. Limitaremos la presenta-
ción a la prueba ji cuadrada.

 F1T2 =LT0
f1t2 dt = 1 - e-.2542T,  T 7 0

 f1t2 = .2542e-.2542t,  t 7 0

l =  1
3.934 = .2542tq = 3.934
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La prueba ji cuadrada se basa en una medición de la desviación entre las frecuencias empí-
ricas y teóricas. Específicamente, para la clase i, la frecuencia teórica ni correspondiente a la fre-
cuencia observada oi se calcula como

Luego, suponiendo N clases, se calcula una medida de la desviación entre las frecuencias empíri-
cas y observadas como

La medida x2 es asintóticamente una función de densidad de probabilidad ji cuadrada con N 2

k 2 1 grados de libertad, donde k es el número de parámetros estimados desde los datos sin pro-
cesar y utilizados para definir la distribución teórica.

La hipótesis  nula de la prueba que expresa que la muestra observada se toma de la distri-
bución teórica f(t) se acepta si

El valor crítico se obtiene  a partir de tablas ji cuadrada (vea la tabla A.3, apéndice
A) correspondientes a N 2 k 2 1 grados de libertad y a un nivel de significancia a.

Los cálculos de la prueba se muestran en la siguiente tabla:

xN-k- 1, 1 -a
2

H: Aceptar f(t) si x2 6 xN-k- 1, 1 -a
2

x2 = a
N

i= 1
 
1oi - ni22
ni

 = 601e-.2542Ii - 1 - e-.2542Ii2 = n1F1Ii2 - F1Ii- 122
 ni = nL

Ii

Ii - 1

f1t2dt

i Clase
Frecuencia

observada, oi

Frecuencia
teórica, ni

1oi - ni22
ni

1 (0, 1) 11 13.448 .453
2 (1, 2) 8 10.435 .570
3 (2, 3) 9 8.095 .100
4 (3, 4) 7 6.281 .083

5 (4, 5) 6 4.873
.6366 (5, 6) 5 3.781

7 (6, 7) 4 2.933
8 (7, 8) 2 2.276 .588
9 (8, 9) 3 1.766

10 (9, 10) 3 1.370
11 (10, 11) 1 1.063 .202
12 (11,  q) 1 3.678

Totales n = 60 n = 60 valor de c2 5 2.623

11F
9f
5f

8.654F
6.975f
6.111f

Como regla práctica, el conteo de frecuencia teórica debe ser al menos de 5. Este requeri-
miento se suele resolver combinando clases sucesivas hasta que se satisface la regla, como se
muestra en la tabla. El número resultante de clases llega a ser N 5 7. Como estamos estimando
un parámetro a partir de los datos observados (es decir, l), el grado de libertad de la ji cuadrada
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4.3 3.4 .9 .7 5.8 3.4 2.7 7.8
4.4 .8 4.4 1.9 3.4 3.1 5.1 1.4

.1 4.1 4.9 4.8 15.9 6.7 2.1 2.3
2.5 3.3 3.8 6.1 2.8 5.9 2.1 2.8
3.4 3.1 .4 2.7 .9 2.9 4.5 3.8
6.1 3.4 1.1 4.2 2.9 4.6 7.2 5.1
2.6 .9 4.9 2.4 4.1 5.1 11.5 2.6

.1 10.3 4.3 5.1 4.3 1.1 4.1 6.7
2.2 2.9 5.2 8.2 1.1 3.3 2.1 7.3
3.5 3.1 7.9 .9 5.1 6.2 5.8 1.4

.5 4.5 6.4 1.2 2.1 10.7 3.2 2.3
3.3 3.3 7.1 6.9 3.1 1.6 2.1 1.9

es 7 2 1 2 1 5 5. Si consideramos un nivel de significancia a 5 .05, obtenemos el valor crítico
(utilice la tabla A.3 en el apéndice A, o, en excelStatTables.xls, ingrese 5 en F8 y .05

en L8, y obtenga la respuesta en R8). Ya que el valor de x2 (5 2.623) es menor que el valor críti-
co, aceptamos la hipótesis de que la muestra de toma de una fdp exponencial.

CONJUNTO DE PROBLEMAS 14.5A

1. Los datos siguientes representan el tiempo entre llegadas (en minutos) a una instalación
de servicio:

x5,.05
2 = 11.07

(a) Use Excel para desarrollar tres histogramas con los datos basados en anchos de
clase de .5, 1 y 1.5 minutos, respectivamente.

(b) Compare gráficamente la distribución acumulada de la FDA empírica y la de una
distribución exponencial correspondiente.

(c) Pruebe la hipótesis de que la muestra dada se toma de una distribución exponencial.
Aplique un nivel de confianza de 95%.

(d) ¿Cuál de los tres histogramas es el “mejor” para comprobar la hipótesis  nula?
2. Los datos siguientes representan el periodo (en segundos) necesarios para transmitir

un mensaje.

25.8 67.3 35.2 36.4 58.7
47.9 94.8 61.3 59.3 93.4
17.8 34.7 56.4 22.1 48.1
48.2 35.8 65.3 30.1 72.5
5.8 70.9 88.9 76.4 17.3

77.4 66.1 23.9 23.8 36.8
5.6 36.4 93.5 36.4 76.7

89.3 39.2 78.7 51.9 63.6
89.5 58.6 12.8 28.6 82.7
38.7 71.3 21.1 35.9 29.2

Utilice Excel para construir un histograma apropiado. Compruebe la hipótesis de que
estos datos se toman de una distribución uniforme con un nivel de confianza de 95%,
dada la siguiente información adicional sobre la distribución uniforme teórica:
(a) El rango de la distribución es entre 0 y 100.
(b) El rango de la distribución se estima a partir de los datos muestreados.
(c) El límite máximo en el rango de la distribución es 100, pero el  límite mínimo debe

estimarse a partir de los datos muestreados.
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3. Para contar el volumen del tráfico en una intersección de congestionamiento se utiliza un
dispositivo automático. Se registra el tiempo de llegada y se transforma en un tiempo ab-
soluto que inicia de cero. La siguiente tabla proporciona los tiempos de llegada (en minu-
tos) de los primeros 60 automotores. Use Excel para construir un histograma apropiado.
Compruebe la hipótesis de que el tiempo entre llegadas es exponencial utilizando un
nivel de confianza de 95%.

Llegada
Tiempo de

llegada (min) Llegada
Tiempo de

llegada (min) Llegada
Tiempo de

llegada (min) Llegada
Tiempo de

llegada (min)

1 5.2 16 67.6 31 132.7 46 227.8
2 6.7 17 69.3 32 142.3 47 233.5
3 9.1 18 78.6 33 145.2 48 239.8
4 12.5 19 86.6 34 154.3 49 243.6
5 18.9 20 91.3 35 155.6 50 250.5
6 22.6 21 97.2 36 166.2 51 255.8
7 27.4 22 97.9 37 169.2 52 256.5
8 29.9 23 111.5 38 169.5 53 256.9
9 35.4 24 116.7 39 172.4 54 270.3

10 35.7 25 117.3 40 175.3 55 275.1
11 44.4 26 118.2 41 180.1 56 277.1
12 47.1 27 124.1 42 188.8 57 278.1
13 47.5 28 1127.4 43 201.2 58 283.6
14 49.7 29 127.6 44 218.4 59 299.8
15 67.1 30 127.8 45 219.9 60 300.0
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15.1 TOMA DE DECISIONES BAJO CERTIDUMBRE. PROCESO 
DE JERARQUÍA ANALÍTICA (PJA)

Los modelos de PL presentados en los capítulos 2 a 9 son ejemplos de toma de deci-
siones bajo certidumbre (todos los datos se conocen con certeza). El PJA está diseña-
do para situaciones en que las ideas, sentimientos y emociones que afectan el proceso
de toma de decisiones se cuantifican y así obtener una escala numérica para priorizar
las alternativas.

Ejemplo 15.1-1 (Idea general del PJA)

Martin Hans, un brillante estudiante del último año de la preparatoria, recibió ofertas de becas
académicas completas de tres instituciones: U de A, U de B y U de C. Martin fundamenta su
elección en dos criterios: la ubicación y la reputación académica. Para él, la reputación académi-
ca es cinco veces más importante que la ubicación, y asigna un peso de aproximadamente 83% a
la reputación y un 17% a la ubicación. Luego utiliza un proceso sistemático (el cual se detallará

CAPÍTULO 15

Análisis de decisiones y juegos

Aplicación de la vida real. Planeación de la distribución de planta 
de una instalación de fabricación integrada por computadora (FIC)

El colegio de ingeniería en una institución académica desea establecer un laboratorio
de fabricación integrada por computadora (FIC) ) en un edificio desocupado. El nue-
vo laboratorio funcionará como instalación de enseñanza e investigación y como cen-
tro industrial de excelencia técnica. Se recopilan las recomendaciones solicitadas por
los profesores sobre el plan de diseño del nuevo laboratorio, incluida el área ideal y ab-
soluta para cada unidad. El estudio utiliza tanto un proceso de jerarquía analítica
(PJA) como la programación de metas para llegar a una solución comprometida que
cumpla con las necesidades de enseñanza, investigación y servicio a la industria. (El
caso 9 del capítulo 26, en el sitio web de este libro, detalla este estudio).
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más adelante) para calificar las tres universidades desde el punto de vista de la ubicación y la
reputación, como se muestra en la tabla siguiente:

La estructura del problema de decisión se resume en la figura 15.1. El problema implica una
sola jerarquía (nivel) con dos criterios (ubicación y reputación) y tres alternativas de decisión
(U de A, U de B y U de C).

La calificación de cada universidad se basa en los siguientes pesos compuestos:

Basado en estos cálculos, Martin elige la U de A porque tiene el peso compuesto más alto.

Comentarios. La estructura general del PJA puede incluir varios niveles de criterios.
Suponga en el ejemplo 15.1-1 que la hermana gemela de Martin, Jane, también fue
aceptada con beca completa a las tres universidades. Los padres insisten en que los dos
hermanos asistan a la misma universidad. La figura 15.2 resume el problema de
decisión, el cual ahora implica dos jerarquías. Los valores de p y q en la primera
jerarquía son los pesos relativos que representan las opiniones de Martin y Jane
(presumiblemente iguales). Los pesos (p1, p2) y (q1, q2) en la segunda jerarquía,

 U de C = .17 * .594 + .83 * .182 = .2520

 U de B = .17 * .277 + .83 * .273 = .2737

 U de A = .17 * .129 + .83 * .545 = .4743

Estimaciones de peso en porcentaje para

Criterio U de A U de B U de C

Ubicación 12.9 27.7 59.4
Reputación 54.5 27.3 18.2

FIGURA 15.1

Resumen de cálculos de PJA para el ejemplo 15.1-1

Seleccionar una
universidad

Ubicación
(.17)

Criterios 
de jerarquía 1

Decisión:

Alternativas: U de B
(.277)

U de C
(.594)

U de A
(.129)

U de A U de B U de C

Reputación
(.83)

U de B
(.273)

U de C
(.182)

U de A
(.545)

.17 � .129 � .83 � .545 � .4743 .17 � .277 � .83 � .273 � .2737 .17 � .594 � .83 � .182 � .2520
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respectivamente, representan las preferencias de Martin y Jane con respecto a la
ubicación y reputación de cada universidad. El resto de la gráfica de toma de
decisiones puede interpretarse del mismo modo. Observe que p 1 q 5 1, p1 1 p2 5 1,
q1 1 q2 5 1, p11 1 p12 1 p13 5 1, p21 1 p22 1 p23 5 1, q11 1 q12 1 q13 5 1, y q21 1 q22
1 q23 5 1. La parte inferior de la figura 15.2 demuestra cómo se calcula el peso
compuesto de la U de A.

CONJUNTO DE PROBLEMAS 15.1A

*1. Suponga que se especifican los siguientes pesos para la situación de Martin y Jane (figura
15.2):

Basado en esta información, califique las tres universidades.

q21 = .5, q22 = .2, q23 = .3

q11 = .2, q12 = .3, q13 = .5

 q1 = .3, q2 = .7

p21 = .545, p22 = .273, p23 = .182

p11 = .129, p12 = .277, p13 = .594

 p1 = .17, p2 = .83

 p = .5, q = .5

FIGURA 15.2

Refinamiento del problema de decisión del ejemplo 15.1-1

Seleccionar
una universidad

Criterios 
de jerarquía 2

Criterios 
de jerarquía 1

Decisión:

Alternativas:

U de A
(p11)

U de B
(p12)

U de A � p(p1 � p11 � p2 � p21) � q(q1 � q11 � q2 � q21)

U de C
(p13)

Ubicación (p1)

U de A
(p21)

U de B
(p22)

U de C
(p23)

Reputación (p2)

Martin (p)

U de A
(q11)

U de B
(q12)

U de C
(q13)

Ubicación (q1)

U de A
(q21)

U de B
(q22)

U de C
(q23)

Reputación (q2)

Jane (q)
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Determinación de los pesos. El quid (asunto) del PJA es la determinación de los
pesos relativos (como los utilizados en el ejemplo 15.1-1) para calificar las alternativas.
Suponiendo que nos enfrentamos a n criterios en una jerarquía dada, el PJA establece
una matriz de comparación por pares A de n 3 n, que cuantifica el juicio del tomador
de decisiones de la importancia relativa de los criterios. La comparación por pares se
hace de modo que el criterio en la fila i (i 5 1, 2,…, n) se califica con respecto a cada
criterio alterno. Si aij define el elemento (i, j) de A, el PJA utiliza una escala numérica
del 1 al 9 en la cual aij 5 1 significa que i y j son de igual importancia, aij 5 5 indica que
i es mucho más importante que j, y aij 5 9 indica que i es extremadamente más
importante que j. Otros valores intermedios entre 1 y 9 se interpretan según
corresponda. Consistencia en el juicio implica que si aij 5 k, entonces
Además, todos los elementos diagonales aii de A son iguales a 1, porque estos
elementos califican cada criterio contra sí mismo.

Ejemplo 15.1-2
Para demostrar cómo se determina la matriz de comparación A para el problema de decisión de
Martin del ejemplo 15.1-1, comenzamos con la jerarquía superior que tiene que ver con los cri-
terios de ubicación (L) y reputación (R). En el juicio de Martin, R es mucho más importante que
L, y por consiguiente a21 5 5 y, de forma automática, por lo que se produce la siguien-
te matriz de comparación:

Los pesos relativos de R y L se determinan normalizando A para crear una nueva matriz N.
El proceso requiere dividir los elementos individuales de cada columna entre la suma de la colum-
na. Por lo tanto, dividimos los elementos de la columna 1 entre 6 (1 1 5) y los de la columna 2 entre
1.2 Los pesos relativos deseados,wR y wL, se calculan entonces como promedios de fila:

Promedios de fila

Los cálculos arrojan wL 5 .17 y wR 5 .83, los pesos que utilizamos en la figura 15.1. Las co-
lumnas de N son iguales, una indicación de que el tomador de decisiones está ejerciendo un jui-
cio consistente al especificar las entradas de la matriz de comparación A. La consistencia siempre
está garantizada en matrices de comparación de 2 3 2 pero no en matrices de mayor orden
(como explicaremos en breve).

Las preferencias de Martin con respecto a la importancia relativa de las tres universidades desde
el punto de vista de los dos criterios L y R se resumen en las siguientes matrices de comparación:

A   B    C A   B    C

A continuación, tenemos

Suma de la columna AL 5 {8, 3, 5, 1, 7}

Suma de la columna AR 5 {1.83, 3.67, 5.5}

AL =
A

B

C

±1 1
2

1
5

2 1 1
2

5 2 1
≤ , AR =

A

B

C

±1 2 3
1
2 1 3

2
1
3

2
3 1

≤

wL = .17 + .17
2 = .17

wR = .83 + .83
2 = .83

N =
L

R
¢ .17 .17

.83 .83
≤L   R

1=  15 + 12.
A =

L

R
a1 1

5

5 1
bRL

a12 =  15 , 

aji =  1k .
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Las matrices normalizadas se determinan dividiendo cada entrada de una columna entre la suma
de la columna respectiva; es decir,

A B C Promedios de fila

A B C Promedios de fila

Los valores wLA,wLB, y wLC (5.129, .277, y .594) dan los pesos de las ubicaciones respec-
tivas de U de A, U de B y U de C, respectivamente.Asimismo, los valores de wRA,wRB, y wRC (5

.545, .273, .182) dan los pesos relativos con respecto a la reputación académica de las tres univer-
sidades. Éstos son los valores utilizados en la figura 15.1.

Consistencia de la matriz de comparación. En el ejemplo 15.1-2, todas las columnas
de las matrices normalizadas N y NR son idénticas, y las de NL no lo son. Esto significa
que A y AR son consistentes y que AL no lo es.

Consistencia implica juicio racional por parte del tomador de decisiones.
Matemáticamente decimos que una matriz de comparación A es consistente si 

aijajk 5 aik, para todas las i, j y k

Por ejemplo, en la matriz AR del ejemplo 15.1-2, a13 5 3 y Esta
propiedad requiere que todas las columnas (y filas) de AR sean linealmente depen-
dientes. En particular, las columnas de cualquier matriz de comparación de 2 3 2,
como A, son dependientes por definición, y por consiguiente una matriz de 2 3 2 siem-
pre es consistente.

Es raro que las matrices de comparación de mayor orden sean siempre consis-
tentes, y se espera un grado de inconsistencia. Para decidir qué nivel de inconsistencia
es “tolerable” tenemos que desarrollar una medida cuantificable de consistencia para
la matriz de comparación A. En el ejemplo 15.1-2 vimos que una matriz consistente A
produce una matriz normalizada N en la cual todas las columnas son idénticas; es decir,

La matriz de comparación original A puede determinarse a partir de N mediante un
proceso de retroceso que divide los elementos de la columna i entre wi; es decir,

N = ±w1 w1 Á w1

w2 w2 Á w2

o o o o

wn wn Á wn

≤

a12a23 = 2 *  32 = 3.

NR =
A

B

C

± .545 .545 .545
.273 .273 .273
.182 .182 .182

≤ wRA = .545 + .545 + .545
3 = .545

wRB = .273 + .273 + .273
3 = .273

wRC = .182 + .182 + .182
3 = .182

NL =
A

B

C

± .125 .143 .118
.250 .286 .294
.625 .571 .588

≤ wLA = .125 + .143 + .118
3 = .129

wLB = .250 + .286 + .294
3 = .277

wLC = .625 + .571 + .588
3 = .594
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Multiplicado por A por w 5 (w1,w2, ...,wn)T, tenemos

Por consiguiente, A es consistente si,

Para el caso en que A no sea consistente, el peso relativo,wi, está dado aproxima-
damente por el promedio de los n elementos de la fila i en la matriz normalizada N (vea
el ejemplo 15.1-2). Si es el vector de los promedios calculados, se puede demostrar que 

En este caso, cuanto más se acerca nmáx a n, más consistente es la matriz de compara-
ción A. Basado en esta observación, el PJA calcula la razón de consistencia como

donde

El índice de consistencia aleatoria, RI, se determina empíricamente como el promedio
CI de una muestra grande de matrices de comparación A generadas al azar.

Si CR # .1, el nivel de inconsistencia es aceptable. De lo contrario, la inconsisten-
cia es alta, y quizás el tomador de decisiones tenga que revisar las estimaciones de los
elementos aij para obtener una mejor consistencia.

El valor de nmáx se calcula a partir de observando que la i-ésima
ecuación es 

a
n

j= 1
aijwj = nmáxwi, i = 1, 2, Á , n

Aw =   nmáxw

=  
1.98(n - 2)

n

RI = Consistencia aleatoria de A

=  
nmáx - n

n - 1

CI = Índice de consistencia A

CR =  
CI

RI

Aw =   nmáxw, nmáx Ú n

w

Aw =   nw

±w1

w2

o
wn

≤ = ±nw1

nw2

o
nwn

≤ = n±w1

w2

o
wn

≤± 1 w1
w2

Á w1
wn

w2
w1

1 Á w2
wn

o o o o
wn
w1

wn
w2

Á 1

≤

A = ± 1 w1
w2

Á w1
wn

w2
w1

1 Á w2
wn

o o o o
wn
w1

wn
w2

Á 1

≤
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Dado que tenemos

Esto significa que el valor de nmáx es igual a la suma de los elementos de la columna del
vector

Ejemplo 15.1-3

En el ejemplo 15.1-2, la matriz AL es inconsistente porque las columnas de su NL no son idénticas.
Para probar la consistencia de NL, comenzamos calculando nmáx. Por el ejemplo 15.1.2, tenemos 

Por lo tanto,

Ahora, con n 5 3,

Ya que CR , .1, el nivel de inconsistencia en AL es aceptable.

Momento de Excel 

Los datos introducidos por el usuario controlan la plantilla excelAHP.xls y puede manejar ma-
trices de comparación de tamaño 8 3 8 o menor. La figura 15.3 demuestra la aplicación del mo-
delo al ejemplo 15.1-2 (las columnas F:I y las filas 10:13 están ocultas para conservar espacio).
Las matrices de comparación del problema se ingresan una por una en la sección (superior) de
datos de entrada de la hoja de cálculo. El orden en el cual se ingresan las matrices de compara-
ción no es importante, aunque tiene más sentido considerarlas en su orden jerárquico natural.

La sección de resultados (inferior) de la hoja de cálculo proporciona la matriz normalizada
asociada y su relación de consistencia, CR.1 Los pesos,w, se copian de la columna J y se pegan en
el área de resumen de la solución (la sección derecha de la hoja de cálculo). Recuerde utilizar

cuando realice este paso para garantizar un registro permanente.
El proceso se repite hasta que todos los pesos de todas las matrices de comparación se guardan
en el área de resumen de la solución que comienza en la columna K.

ValoresQPegado especial

CR =
CI

RI
=

.00565
.66

= .00856

RI  =
1.98(n - 2)

n
=  

1.98 * 1
3

= .66

CI  =
nmáx - n

n - 1
=

3.0113 - 3
3 - 1

= .00565

nmáx = .3863 + .8320 + 1.7930 = 3.0113

ALw = ±1 1
2

1
5

2 1 1
2

5 2 1
≤ ± .129

.277

.594
≤ = ±0.3863

0.8320
1.7930

≤
w1 = .129, w2 = .277, w3 = .594

Aw.

a
n

i= 1
aan
j= 1
aijwjb = nmáxa

n

i= 1
wi = nmáx

an

i= 1wi = 1,

1Los resultados más precisos de la hoja de cálculo difieren de los ejemplos 15.1.2 y 15.1.3, debido a la apro-
ximación redondeada manual.
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En la figura 15.3, la calificación final se da en las celdas (K18:K20). La fórmula en la celda K18 es

Esta fórmula proporciona el peso compuesto de la alternativa U de A y se copia en las celdas
K19 y K20 para evaluar las alternativas U de B y U de C. Observe por la fórmula en K18 que la
referencia a la alternativa U de A debe estar fija en la columna (es decir, $L7 y $N7), mientras
que todas las demás referencias deben estar fijas en la fila y columna (o bien $L$4 y $L$5). La
validez de las fórmulas copiadas requiere que se apilen los pesos alternativos (fijos en la colum-
na) de cada matriz en una sola columna (sin celdas vacías que intervengan). En la figura 15.3, los
pesos AR están en la columna L y los pesos AL están en la columna N. No hay restricciones en la
colocación de los pesos A porque son columna y fila fijas en la fórmula.

Puede refinar la fórmula en K18 para capturar los nombres de las alternativas aplicando

El procedimiento para evaluar alternativas puede ampliarse a cualquier cantidad de niveles
de jerarquía. Una vez que desarrolla la fórmula correctamente para la primera alternativa, la
misma fórmula se copia en las celdas restantes. Recuerde que todas las referencias a celdas en
la fórmula deben estar fijas en columna y fila, excepto las referencias a las alternativas, las cuales
deben estar fijas sólo en la columna. El problema 1, conjunto 15.1b, le pide que desarrolle la
fórmula para un problema de 3 niveles.

CONJUNTO DE PROBLEMAS 15.1B2

1. Considere las dos jerarquías del problema 1, conjunto 15.1a. Copie los pesos en un orden
lógico en la sección de resumen de solución de la hoja de cálculo excelAHP.xls, luego de-

= $K7&" = "&TEXT($L$4*$L7 + $L$5*$ N7,"#### 0.00000")

= $L$4*$L7 + $L$5*$N7

FIGURA 15.3

Solución del ejemplo 15.1-2 obtenida con Excel (archivo excelAHP.xls)

2La hoja de cálculo excelAHP.xls debe resultar útil para verificar sus cálculos.
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sarrolle la fórmula para evaluar la primera alternativa, U de A, y cópiela para evaluar las
dos alternativas restantes.

*2. El departamento de personal en C&H ha reducido la búsqueda de una nueva contrata-
ción a tres candidatos: Steve (S), Jane (J), y Maisa (M). La selección final se basa en tres
criterios: entrevista personal (I), experiencia (E), y referencias (R). El departamento uti-
liza la matriz A (dada a continuación) para establecer las preferencias entre los tres crite-
rios. Después de entrevistar a los tres candidatos y compilar los datos con respecto a sus
experiencias y referencias, se construyen las matrices AI, AE y AR. ¿Cuál de los tres can-
didatos debe ser contratado? Evalúe la consistencia de los datos.

I E R S J M

S J M S J M

3. Kevin y June Park (K y J) están en el proceso de comprar una nueva casa. Tres casas
están disponibles: A, B y C. Los Park acordaron dos criterios para seleccionar la casa,
como cantidad de trabajo de jardinería (Y), y cercanía al lugar de trabajo (W), para lo
cual desarrollaron las siguientes matrices de comparación. Califique las tres casas en
orden de prioridad, y calcule la relación de consistencia para cada matriz.

K J

Y W Y W

*4. Un nuevo autor establece tres criterios para seleccionar un editor para un libro de texto
de Investigación de Operaciones: porcentaje de regalías (R), comercialización (M), y
pago anticipado (A). Dos editores, H y P, expresaron su interés en el libro. Utilizando las
siguientes matrices de comparación clasifique a los dos editores y evalúe la consistencia
de la decisión.

 

     A

AJW = B
    C

A B C

P
1 1

2 4
1
2 1 3
1
4

1
3 1Q

 

     A

AJY = B
    C

A B C

P
1 4 2
1
4 1 3
1
2

1
3 1Q

 

     A

AKW = B
    C

A B C

P
1 2 1

2
1
2 1 1

3

2 3 1Q
 

     A

AKY = B
    C

A B C

P
1 2 3
1
2 1 2
1
3

1
2 1Q

AJ =
Y

W
a1 4

1
4 1

bAK =
Y

W
a1 1

3

3 1
b

A =
K

J
a1 2

1
2 1

b

AE =
S
J
M

±1 1
3 2

3 1 1
2

1
2 2 1

≤ AR =
S
J
M

±1 1
2 1

2 1 1
2

1 2 1
≤

 A =
I
E
R

±1 2 1
4

1
2 1 1

5

4 5 1
≤ AI =

S
J
M

±1 3 4
1
3 1 1

5
1
4 5 1

≤
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R M A

H P H P H P

5. Un profesor de ciencias políticas desea predecir el resultado de elección de la mesa di-
rectiva de la escuela. Tres candidatos, Ivy (I), Bahrn (B) y Smith (S), se postularon para 
el puesto. Existen tres categorías de votantes: izquierda (L), centro (C) y derecha (R). Se
juzga a los candidatos con base en tres factores: experiencia académica (E), postura ante
los problemas (S) y carácter personal (P). Las siguientes son las matrices de comparación
para la primera jerarquía de izquierda, centro y derecha.

L C R E S P

E S P E S P

El profesor generó nueve matrices de comparación más para la segunda jerarquía
que representa experiencia (E), postura ante los problemas (S), y carácter personal (P).
Luego se utilizó el PJA para reducir las matrices a los siguientes pesos relativos.

AC =
E
S
P

±1 2 2
1
2 1 1
1
2 1 1

≤ AR =
E
S
P

±1 1 9
1 1 8
1
9

1
8 1

≤

A =
L
C
R

±1 2 1
2

1
2 1 1

5

2 5 1
≤ AL =

E
S
P

±1 3 1
2

1
3 1 1

3

2 3 1
≤

AR =
H
P
a1 2

1
2 1

b AM =
H
P
a1 1

2

2 1
b AA =

H
P
a1 1

1 1
b

A =
R

M

A

±1 1 1
4

1 1 1
5

4 5 1
≤

Izquierda Centro Derecha

Candidato E S P E S P E S P

Ivy .1 .2 .3 .3 .5 .2 .7 .1 .3
Bahrn .5 .4 .2 .4 .2 .4 .1 .4 .2
Smith .4 .4 .5 .3 .3 .4 .2 .5 .5

Determine el candidato ganador y evalúe la consistencia de la decisión.
6. Un distrito escolar enfrenta la imperiosa necesidad de reducir gasto para cumplir con las

nuevas restricciones de presupuesto en sus escuelas primarias. Hay dos opciones disponi-
bles: Eliminar el programa de educación física (E), o el de música (M). El superintenden-
te formó un comité con igual representación de votos de la Mesa Directiva (S) y la
Asociación de Padres y Profesores (P) para estudiar la situación y hacer una recomenda-
ción. El comité ha decidido estudiar el problema desde el punto de vista de restricción al
presupuesto (B) y de necesidades de los estudiantes (N). El análisis produjo las siguien-
tes matrices de comparación:

B N B N 

AP =
B
N
a1 1

2

2 1
bAs =

B
N
a1 1

1 1
b
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E M E M

E M E M

Analice el problema de decisión y haga recomendaciones.
7. Una persona va a comprar un automóvil y redujo las opciones a tres modelos: M1, M2 y

M3. Los factores para decidir incluyen el precio de compra (PP), el costo de manteni-
miento (MC), el costo de manejo en la ciudad (RD). La siguiente tabla proporciona los
datos pertinentes durante 3 años de operación:

APN =
E
M
a1 2

1
2 1

bAPB =
E
M
a1 1

3

3 1
b
ASN =

E
M
a1 1

3

3 1
bASB =

E
M
a1 1

2

2 1
b

Modelo del automóvil PP($) MC($) CD($) RD($)

M1 6,000 1800 4500 1500
M2 8,000 1200 2250 750
M3 10,000 600 1125 600

Utilice los datos de costos para desarrollar las matrices de comparación. Evalúe la
consistencia de las matrices, y determine la selección del modelo.

15.2 TOMA DE DECISIONES EN CONDICIONES DE RIESGO

En condiciones de riesgo, los beneficios asociados con cada alternativa de decisión
están representados por distribuciones de probabilidad, y la decisión puede basarse en
el criterio de valor esperado, maximización de la utilidad esperada o la minimización del
costo esperado. En ocasiones, el criterio del valor esperado se modifica para tener en
cuenta otras situaciones, como se describirá más adelante en esta sección.

Aplicación de la vida real. Límites en las reservaciones de un hotel 

El hotel La Posada cuenta con 300 habitaciones. Su clientela incluye tanto a viajeros por
negocios como por placer. Las tarifas de las habitaciones tienen descuentos, sobre
todo para los viajeros por placer. Los viajeros por negocios, que suelen tardarse en re-
servar sus habitaciones, pagan la tarifa completa. La Posada establece un límite en la
reservación de habitaciones con tarifas descontadas para aprovechar la tarifa completa
que pagan los clientes por negocios. El caso 10 en el capítulo 26 en el sitio web utiliza el
análisis del árbol de decisiones para determinar el límite de las reservaciones.

15.2.1 Árbol de decisiones. Basado en el criterio del valor esperado

El criterio del valor esperado busca maximizar la utilidad esperada (promedio) o la
minimización del costo esperado. Los datos del problema asumen que la retribución (o
costo) asociado con cada alternativa de decisión es probabilística.

Análisis con árbol de decisiones. El siguiente ejemplo considera situaciones de
decisión simples con una cantidad finita de alternativas de decisión y matrices explíci-
tas de retribución.
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Ejemplo 15.2-1

Suponga que desea invertir $10,000 en el mercado de valores adquiriendo acciones en una de
dos compañías: A y B. Las acciones de la compañía A, aun cuando son riesgosas, podrían redi-
tuar 50% durante el siguiente año. Si las condiciones del mercado de valores no son favorables
(es decir, un mercado “bajista”) las acciones pueden perder 20% de su valor. La compañía B
proporciona inversiones seguras con 15% de rendimiento en un mercado “alcista” y de sólo 5%
en un mercado “bajista”. Todas las publicaciones que ha consultado (¡y siempre hay una abun-
dancia de ellas al final del año!) pronostican una probabilidad de 60% de un mercado “alcista” y
40% de un mercado “bajista”. ¿Cómo debe invertir su dinero?

El problema de decisión se resume en la siguiente tabla.

El problema también puede representarse como un árbol de decisiones como se muestra en
la figura 15.4. Se utilizan dos tipos de nodos en el árbol: Un cuadrado (n) representa un punto de
decisión, y un círculo (O) representa un evento aleatorio. Por lo tanto, las dos ramas que emanan
del punto de decisión 1 representan las dos alternativas de invertir en la acción A o en la acción
B.A continuación, las dos ramas que emanan de los eventos aleatorios 2 y 3 representan los mer-
cados “alcista” y “bajista” con sus respectivas probabilidades y retribuciones.

Según la figura 15.4, las retribuciones esperadas a 1 año son 

Acción A 5 ($5000 3 .6) 1 (22000 3 .4) 5 $2200

Acción B 5 ($1500 3 .6) 1 ($500 3 .4) 5 $1100

Se elige la acción A porque produce un rendimiento esperado más alto.

Comentarios. En la terminología de teoría de la decisión, los mercados probabilísticos “alcis-
ta” y “bajista” se llaman estados de naturaleza. Por lo general, un problema de decisión puede
incluir n estados de naturaleza y m alternativas. Si pj(.0) es la probabilidad de ocurrencia del es-
tado j y aij es la retribución de la alternativa i, dado el estado j(i 5 1, 2,…, m; j 5 1, 2,…, n), en-
tonces la retribución esperada de la alternativa i se calcula como 

p1 + p2 + Á + pn =  1

EVi = ai1 p1 + ai2p2 + Á  + ainpn, i = 1, 2, Á , n

Rendimiento a 1 año de la inversión de 10,000 

Alternativa de decisión Mercado “alcista” ($) Mercado “bajista” ($)

Acciones de la compañía A 5000 �2000
Acciones de la compañía B 1500 500
Probabilidad de ocurrencia .6 .4

FIGURA 15.4

Representación en forma de
árbol de decisiones del problema
del mercado de valores 

Mercado 
“alcista” (.6)

Mercado 
“bajista” (.4)

Inversión 
en la acción A 2

Mercado 
“alcista” (.6)

Mercado 
“bajista” (.4)

$5000

�$2000

$1500

$500

Inversión
en la acción B

3

1
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La mejor alternativa es la asociada con EV* 5 máxi{EVi en el caso de utilidad o EV* 5

míni{EVi} en el caso de pérdida.

CONJUNTO DE PROBLEMAS 15.2A

1. Lo invitaron a participar en el juego de la Rueda de la Fortuna en la televisión. La rueda
funciona electrónicamente con dos botones para producir un giro duro (H) y un giro
suave (S). La rueda está dividida en dos regiones semicirculares, una blanca (W) y una
roja (R). Le dijeron que la rueda está diseñada para que se detenga 30% de las veces en
la región blanca. La retribución del juego es 

W R

H $800 $200

S �$2500 $1000

Desarrolle un árbol de decisiones asociado, y determine un curso de acción basado
en el criterio del valor esperado.

*2. Farmer McCoy puede sembrar maíz o soya (soja). Las probabilidades de que los precios
de la siguiente cosecha suban, no cambien, o bajen son .25, .30 y .45, respectivamente. Si
los precios suben, la cosecha de maíz redituará un ingreso neto de $30,000 y la de soya re-
dituará un ingreso neto de $10,000. Si los precios no cambian, McCoy (apenas) saldrá a
mano. Pero si los precios bajan, las cosechas de maíz y soya sufrirán pérdidas de $35,000 
y $5000, respectivamente.
(a) Represente el problema de McCoy como un árbol de decisiones.
(b) ¿Cuál cosecha debe sembrar McCoy?

3. Se le presenta la oportunidad de invertir en tres fondos mutuos: de servicios, de cre-
cimiento agresivo, y global. El valor de su inversión cambiará según las condiciones 
del mercado. Hay 10% de probabilidades de que el mercado baje; 50% de que perma-
nezca moderado, y 40% de que funcione bien. La siguiente tabla proporciona el cambio
porcentual del valor de la inversión en las tres condiciones:

Porcentaje de rendimiento sobre la inversión

Alternativa Mercado bajista (%) Mercado moderado (%) Mercado alcista (%)

Servicios +5 +7 +8
Crecimiento agresivo -10 +5 +30
Global +2 +7 +20

(a) Represente el problema como un árbol de decisiones.
(b) ¿Cuál fondo mutuo debe seleccionar?

4. Hay la oportunidad de invertir su dinero en un bono que rinde 7.5% y que se vende a su
precio nominal, o en una acción de crecimiento agresivo que paga sólo 1% de dividendo.
Si ocurre inflación, la tasa de interés subirá a 8%, en cuyo caso el valor principal del bono
bajará 10% y el valor de la acción bajará 20%. Si la recesión se materializa, la tasa de in-
terés bajará a 6%. En este caso, se espera que el valor principal del bono baje 5%, y que
el valor de la acción suba 20%. Si la economía no cambia, el valor de la acción subirá 8%
y el valor principal del bono no cambiará. Los economistas estiman 20% de probabilidad
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de inflación y 15% de recesión. Usted está basando su decisión de inversión en las condi-
ciones económicas del siguiente año.
(a) Represente el problema como un árbol de decisiones.
(b) ¿Invertiría en acciones o en bonos?

5. AFC está a punto de lanzar su nueva comida rápida Wings ‘N Things a nivel nacional. El
departamento de investigación está convencido de que Wings ‘N Things será un gran
éxito y desea presentarlo de inmediato en todas las tiendas de distribución de AFC sin
publicidad. El departamento de mercadotecnia ve las “cosas” de forma diferente y desea
lanzar una intensa campaña publicitaria. La campaña publicitaria costará $100,000, y hay
70% de probabilidades de que tenga éxito con ingresos de $950,000. Si la campaña no
tiene éxito, el ingreso estimado bajará a $200,000. Si no se utiliza publicidad, el ingreso se
estima en $400,000 con una probabilidad de .8 si los clientes son receptivos al nuevo pro-
ducto, y de $200,000 con probabilidades de .2 si no lo son.
(a) Desarrolle el árbol de decisiones asociado.
(b) ¿Qué curso de acción debe seguir AFC al lanzar el nuevo producto?

*6. Se lanza al aire una moneda tres veces sucesivas. Recibe $1.00 por cada cara (H) que
salga y $.25 más por cada dos caras sucesivas que aparezcan (recuerde que HHH incluye
dos conjuntos de HH). Sin embargo, regresa $1.10 por cada cruz que salga. Tiene las op-
ciones de jugar o no jugar el juego.
(a) Desarrolle el árbol de decisiones para el juego.
(b) ¿Le favorecería la decisión de continuar el juego?

7. Se le presenta la oportunidad de participar en el siguiente juego en un casino. Se lanza un
dado dos veces, con cuatro resultados: (1) ambos lanzamientos muestran el mismo núme-
ro par; (2) ambos lanzamientos muestran el mismo número impar; (3) los dos lanzamien-
tos muestran un número par seguido por uno impar o un número impar seguido por uno
par, y 4) todos los demás resultados. Le permiten apostar su dinero en exactamente dos
resultados con cantidades en dólares iguales. Por ejemplo, puede apostar cantidades de
dólares iguales a un lanzamiento par (resultado 1) y un lanzamiento impar (resultado 2).
El premio por cada dólar que apueste es de $2.00 por el primer resultado, $1.95 por el se-
gundo y tercer resultados, y $1.50 por el cuarto resultado.
(a) Desarrolle el árbol de decisiones para el juego.
(b) ¿Cuál de las dos opciones tomaría?
(c) ¿Alguna vez resultó ganador en este juego?

8. Acme Manufacturing produce lotes de aparatos con 0.8%, 1%, 1.2% y 1.4% de aparatos
defectuosos de acuerdo con las probabilidades respectivas, 0.4, 0.3, 0.25 y 0.05. Tres clien-
tes, A, B, y C están contratados para recibir lotes con no más de 0.8%, 1.2% y 1.4% de
aparatos defectuosos, respectivamente. Si los aparatos defectuosos resultan ser más que
los contratados, se penaliza a Acme con $100 por cada 0.1% de incremento. Si Acme
surte lotes con mayor calidad que la requerida le cuesta $50 por cada 0.1% por debajo de
las especificaciones. Suponga que no se inspeccionan los lotes antes de su envío.
(a) Desarrolle el árbol de decisiones asociado.
(b) ¿Cuál de los tres clientes debe tener la más alta prioridad para recibir su pedido? 

9. TriStar planea abrir una nueva planta en Arkansas. La compañía puede abrir una planta
de tamaño normal ahora o una planta pequeña que puede ampliarse 2 años más tarde si
se garantiza una demanda alta. El horizonte de tiempo para el problema de decisión es
de 10 años. TriStar estima que las probabilidades de demandas altas y bajas durante los
siguientes 10 años son .75 y .25, respectivamente. El costo de construcción dentro de 
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2 años es de $4.2 millones. El ingreso por la operación durante los siguientes 10 años se
da en la tabla siguiente:

Estimaciones del ingreso anual (en $1000)

Alternativa Demanda alta Demanda baja

Planta de tamaño normal ahora 1000 300
Planta pequeña ahora 250 200
Planta ampliada en 2 años 900 200

(a) Desarrolle el árbol de decisiones asociado, si después de 2 años TriStar tiene la 
opción de ampliar o no la planta pequeña.

(b) Desarrolle una estrategia de construcción para TriStar durante los siguientes 
10 años. (Por sencillez, ignore el valor del dinero con el tiempo.)

10. Resuelva de nuevo el problema 9, suponiendo que las decisiones se toman considerando
el valor del dinero con el tiempo a una tasa de interés anual de 10%. [Nota: Necesita ta-
blas de interés compuesto para resolver este problema. Puede utilizar la función NPV
(i,R) de Excel para calcular el valor actual de los flujos de efectivo en el rango R, dada
una tasa de interés i. NPV asume que cada flujo de efectivo ocurre al final del año.]

11. Resuelva una vez más el problema 9, suponiendo que la demanda puede ser alta, media y
baja con probabilidades de 0.7, 0.2 y 0.1, respectivamente. La ampliación de una planta
pequeña ocurrirá sólo si la demanda en los primeros 2 años es alta. La siguiente tabla
proporciona estimaciones del ingreso anual. Ignore el valor del dinero con el tiempo.

Estimaciones del ingreso anual (en $1000)

Alternativa Demanda alta Demanda mediana Demanda baja

Planta de tamaño normal ahora 1000 500 300
Planta pequeña ahora 400 280 150
Planta ampliada dentro de 2 años 900 600 200

*12. Sunray Electric Coop utiliza una flotilla de 20 camiones para dar servicio a su red eléctri-
ca. La compañía desea desarrollar un programa de mantenimiento preventivo para la flo-
tilla. La probabilidad de una avería en el año 1 es cero. Durante el año 2, la probabilidad
de una avería es de 0.03 y se incrementa 0.01 en los años del 3 al 10. Después del año 10, la
probabilidad de una avería se mantiene constante en 0.13. El costo de mantenimiento por
camión es de $200 por una avería aleatoria y de $75 por un mantenimiento programado.
(a) Desarrolle el árbol de decisiones asociado.
(b) Determine el periodo óptimo (en meses) entre mantenimientos preventivos

sucesivos.
13. La demanda diaria de hogazas de pan en una tienda de abarrotes se especifica mediante

la siguiente distribución de probabilidades:

n 100 150 200 250 300

pn .20 .25 .30 .15 .10
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La tienda compra una hogaza a 55 centavos y la vende a $1.20 cada una. Las hogazas
que no se venden al final del día se liquidan a 25 centavos cada una. Suponga que el nivel
de las existencias se limita a uno de los niveles de demanda especificado para pn.
(a) Desarrolle el árbol de decisión asociado.
(b) ¿Cuántas hogazas deben tenerse en existencia diariamente?

14. En el problema 13, suponga que la tienda desea ampliar el problema de decisión a un ho-
rizonte de 2 días. Las alternativas para el segundo día dependen de la demanda en el pri-
mer día. Si la demanda en el día 1 es igual a la cantidad en existencia, la tienda continuará
pidiendo la misma cantidad para el día 2; si excede la cantidad en existencia, la tienda
puede pedir cualquiera de las existencias de alto nivel; y si es menor que la cantidad en
existencia, la tienda puede pedir cualquiera de la existencia de bajo nivel. Desarrolle el
árbol de decisiones y determine la estrategia de colocación de pedidos óptima.

*15. Una máquina automática produce m (miles de) unidades de un producto por día. A medi-
da que a se incrementa, la proporción de unidades defectuosas, p, se eleva de acuerdo
con la siguiente función de densidad de probabilidad

Cada unidad defectuosa incurre en una pérdida de $50. Una unidad en buen estado pro-
duce una utilidad de $5.
(a) Desarrolle un árbol de decisiones para este problema.
(b) Determine el valor de a que maximice la utilidad esperada.

16. El diámetro externo, d, de un cilindro se procesa con una máquina automática con límites
de tolerancia superiores e inferiores de d 1 tU y d 2 tL. El proceso de producción sigue
una distribución normal con media m y desviación estándar s. Los cilindros de dimensio-
nes excedidas se vuelven a trabajar a un costo de c1 dólares cada uno. Los cilindros de di-
mensiones menores se desechan a un costo de c2 dólares cada uno. Desarrolle el árbol de
decisiones, y determine el ajuste d óptimo para la máquina.

17. Cohan and Associates (1984). La dirección de bosques de ahora aplica incendios contro-
lados para reducir los riesgos de incendio y estimular el crecimiento de nuevos árboles.
La dirección tiene la opción de posponer o planear una quema. En una extensión de bos-
que específica, si se pospone una quema, se incurre en un costo administrativo general de
$300. Si se planea una quema controlada, hay 50% de probabilidades de que el buen
tiempo prevalecerá y que la quema costará $3200. Los resultados de la quema pueden ser
exitosos con probabilidad de .6, o marginales con probabilidad de .4. La ejecución exitosa
producirá un beneficio estimado de $6000, y la ejecución marginal proporcionará sólo
$3000 en beneficios. Si el tiempo es malo, la quema se cancelará y se incurrirá en un costo
de $1200 sin beneficios.
(a) Desarrolle un árbol de decisiones para determinar si la quema debe planearse o pos-

ponerse.
(b) Estudie la sensibilidad de la solución a los cambios de la probabilidad de buen tiempo.

18. Rappaport (1967). Un fabricante ha utilizado programación lineal para determinar la
combinación de producción óptima de los varios modelos de televisiones que fabrica.
Información reciente recibida por el fabricante indica que hay 40% de probabilidad de
que el proveedor de un componente utilizado en uno de los modelos pueda elevar el pre-
cio en $35. Por tanto, el fabricante puede seguir utilizando la combinación de productos
(óptima) original (A1), o utilizar una nueva combinación (óptima) con base en el compo-
nente de mayor precio (A2). Desde luego, la acción A1 es ideal si el precio no se eleva, y
la acción A2 también será ideal si el precio se eleva. La siguiente tabla proporciona la uti-

f(p) = eapa- 1, 0 … p … 1
0, de otro modo
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lidad resultante por mes como una función de la acción tomada y el resultado aleatorio
con respecto al precio del componente.

Incremento de precio (01) Sin incremento de precio (02)

Combinación original (A1) $400, 000 $295, 500

Combinación nueva (A2) $372, 000 $350, 000

(a) Desarrolle el árbol de decisiones asociado, y determine la acción que debe adoptarse.
(b) El fabricante puede invertir $1000 para obtener más información sobre si el precio

se incrementará o no. Esta información dice que hay 58% de probabilidades de que
el incremento del precio sea de .9 y 42% de que sea de .3. ¿Recomendaría la inver-
sión adicional?

*19. Criterio del nivel de aspiración. Acme Manufacturing utiliza un producto químico en uno
de sus procesos. La vida de anaquel es de un mes, y cualquier cantidad sobrante se des-
truye. La cantidad, x, en galones del producto químico utilizada por Acme está represen-
tada por la siguiente distribución:

El consumo real del producto químico ocurre instantáneamente al inicio del mes.
Acme desea determinar el nivel del producto químico que satisfaga dos criterios conflic-
tivos (o niveles de aspiración): La cantidad excedente mensual no debe superar los 20 ga-
lones, y la cantidad faltante promedio mensual no debe exceder de 40 galones.

15.2.2 Variantes del criterio del valor esperado

Esta sección aborda dos temas relacionados con el criterio del valor esperado: la de-
terminación de probabilidades a posteriori basada en experimentación, y el uso de la
utilidad contra el valor real del dinero.

Probabilidades a posteriori (de Bayes). Las probabilidades utilizadas en el criterio del
valor esperado se suelen estimar a partir de datos históricos (vea la sección 14.5). En
algunos casos la precisión de estas estimaciones puede mejorarse por medio de
experimentación adicional. Las probabilidades resultantes se conoce como pro-
babilidades a posteriori (o de Bayes), en contraste con las probabilidades a priori
determinadas a partir de datos duros sin procesar.

f(x) = L
200

x2 , 100 … x … 200

0, de otro modo

Aplicación de la vida real. Problema de Casey: Interpretación y evaluación 
de un nuevo examen

Un examen de detección de un recién nacido, de nombre Casey, revela una deficiencia
de la enzima C14:1. La enzima se requiere para digerir una forma particular de grasas de
cadena larga, y su ausencia podría conducir a una enfermedad grave o a una muerte
misteriosa (catalogada comúnmente bajo el síndrome de muerte repentina infantil, o
SIDS por sus siglas en inglés). El examen se había administrado antes a aproximada-
mente 13,000 recién nacidos, y Casey fue el primero en dar positivo. Aun cuando el
examen de detección por sí mismo no constituye un diagnóstico definitivo, la extrema
rareza de la condición llevó a los doctores a concluir que había 80-90% de probabili-
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Ejemplo 15.2-2

Este ejemplo demuestra cómo se modifica el criterio del valor esperado para aprovechar las pro-
babilidades a posteriori. En el ejemplo 15.2-1, las probabilidades (anteriores) de .6 y .4 de un
mercado “alcista” y un mercado “bajista” se determinan a partir de publicaciones financieras dis-
ponibles. Suponga que en lugar de depender únicamente de estas publicaciones, usted decidió
conducir una investigación más “personal” al consultar a un amigo que se desempeña bien en el
mercado de valores. El amigo cuantifica una recomendación de invertir “a favor/o en contra”, de
la siguiente manera: En un mercado “alcista”, hay 90% de probabilidades de que la recomenda-
ción sea “a favor”. Se reduce a 50% en un mercado “bajista”. ¿Cómo afecta la información adicio-
nal a la decisión?

La afirmación del amigo proporciona probabilidades condicionales de las recomendaciones “a
favor” y “en contra” dado que los estados de la naturaleza son mercados “alcista” y “bajista”. Defina

v1 5 Voto “a favor”
v2 5 Voto “en contra”

m1 5 Mercado “alcista”
m2 5 Mercado “bajista”

Por lo tanto, la afirmación del amigo se escribe en la forma de enunciados de probabilidad como

Con esta representación el problema de decisión se resume como:

1. Si la recomendación del amigo es “a favor”, ¿invertiría en la acción A o en la acción B?
2. Si la recomendación del amigo es “en contra”, ¿invertiría en la acción A o en la acción B?

El árbol de decisiones que aparece en la figura 15.5 representa el problema. El nodo 1 es un
evento aleatorio que representa las posibilidades “a favor” y “en contra”. Los nodos 2 y 3 son
puntos de decisión para seleccionar entre las acciones A y B, dadas las recomendaciones “a
favor” y “en contra”, respectivamente. Por último, los nodos 4 a 7 son eventos aleatorios que re-
presentan los mercados “alcista” y “bajista”.

Para evaluar las diferentes alternativas en la figura 15.5 es necesario calcular las probabilida-
des a posteriori P{mi|vj} mostradas en las ramas m1 y m2 de los nodos 4, 5, 6 y 7. Estas probabili-
dades a posteriori toman en cuenta la información adicional proporcionada por la recomendación
“a favor” o “en contra” y se calculan de acuerdo con los siguientes pasos generales:

Paso 1. Resuma las probabilidades condicionales P{vj|mi} en la siguiente forma tabular:

 P{v1| m2} = .5, P{v2| m2} = .5

 P{v1| m1} = .9, P{v2| m1} = .1

dades de que padeciera esta deficiencia. Dado que Casey dio positivo, se utiliza la pro-
babilidad a posteriori de Bayes para valorar si la bebé sufre o no de deficiencia de
C14:1. La situación se detalla en el caso 11, capítulo 26 en el sitio web.

v1 v2

m1 .9 .1

m2 .5 .5
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Paso 2. Calcule las probabilidades conjuntas como 

Dadas las probabilidades a priori P{m1} 5 .6 y P{m2} 5 .4, las probabilidades conjun-
tas se determinan multiplicando la primera y segunda filas de la tabla en el paso 1 por
.4, respectivamente; es decir,

P{mi, vj} = P{vj| mi}P{mi}, para todas las  i y j

FIGURA 15.5

Árbol de decisiones para el problema del mercado de valores con probabilidades a posteriori

Mercado 
“alcista” (m1)

Mercado 
“bajista” (m2)

Mercado 
“alcista” (m1)

Mercado 
“bajista” (m2)

Acción A
4

$5000

–$2000

$1500

$500

Acción B
5

2

Mercado 
“alcista” (m1)

Mercado 
“bajista” (m2)

Mercado 
“alcista” (m1)

Mercado 
“bajista” (m2)

Acción A
6

$5000

–$2000

$1500

$500

Acción B
7

1

3

Voto “a favor” (v1)

voto “en contra” (v2)

P  m1|v1   � .730

P  m2|v1   � .270

P  m1|v1   � .730

P  m2|v1   � .270

P  m1|v2   � .231

P  m2|v2   � .769

P  m1|v2   � .231

P  m2|v2   � .769

v1 v2

m1 .54 .06

m2 .20 .20

La suma de todas las entradas en la tabla es igual a 1.

Paso 3. Calcule las probabilidades absolutas como 

Estas probabilidades son las sumas en las columnas de la tabla del paso 2; es decir,

P{vj} = a
todas i

P{mi, vj}, para todas las j

P{v1} P{v2}

.74 .26
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Paso 4. Determine las probabilidades a posteriori deseadas como

Estas probabilidades se calculan dividiendo cada columna en la tabla del paso 2 entre
la suma en la columna correspondiente en la tabla del paso 3, lo cual da

P{mi| vj} =  
P{mi, vj}

P{vj}

v1 v2

m1 .730 .231
m2 .270 .769

Éstas son las probabilidades utilizadas en la figura 15.5 y son diferentes de las probabi-
lidades previas P{m1} 5 .6 y P{m2} 5 .4.

Ahora ya estamos listos para evaluar las alternativas basados a partir de las retri-
buciones esperadas para los nodos 4,5,6 y 7; es decir,

Recomendación “A favor”

Acción A en el nodo 4 5 (5000 3 0.730) 1 (22000 3 0.270) 5 $3110

Acción B en el nodo 5 5 (1500 3 0.730) 1 (500 3 0.270) 5 1230

Decisión. Invertir en la acción A.

Recomendación “En contra”

Acción A en el nodo 6 5 (5000 3 0.231) 1 (22000 3 0.769) 5 2$383

Acción B en el nodo 7 5 (1500 3 0.231) 1 (500 3 0.769) 5 $731

Decisión. Invertir en la acción B.

Las decisiones dadas equivalen a decir que las retribuciones esperadas en los nodos de de-
cisión 2 y 3 son $3110 y $731, respectivamente (vea la figura 15.5). Por lo tanto, dadas las proba-
bilidades P{v1} 5 0.74 y P{v2} 5 0.26 como se calcularon en el paso 3, podemos calcular la retri-
bución esperada para todo el árbol de decisiones (vea el problema 3, conjunto 15.2b).

Momento de Excel

El archivo excelBayes.xls está diseñado para determinar las probabilidades a posteriori de matri-
ces de probabilidad previa de tamaños hasta de 10 3 10 (algunas filas y columnas se ocultaron
para conservar espacio). Los datos de entrada incluyen P{m} y P{v|m}. La hoja de cálculo verifi-
ca los errores en los datos de entrada y muestra los mensajes de error apropiados.

CONJUNTO DE PROBLEMAS 15.2B

1. Los datos en un colegio comunitario muestran que el 75% de los estudiantes que cursa-
ron cálculo en la preparatoria se desempeñan bien, en comparación con el 50% de los
que no lo cursaron. Las admisiones para el año académico actual muestran que sólo 30%
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de los estudiantes nuevos completaron un curso de cálculo. ¿Cuál es la probabilidad que
un estudiante nuevo se desempeñe bien en el colegio?

*2. Elektra recibe 75% de sus componentes electrónicos del proveedor A y el 25% restante
del vendedor B. El porcentaje de componentes defectuosos provenientes de los provee-
dores A y B son 1 y 2%, respectivamente. Cuando se inspeccionó una muestra aleatoria
de tamaño 5 de un lote recibido, sólo se encontró una unidad defectuosa. Determine la
probabilidad de que el lote se reciba del vendedor A. Del vendedor B. (Sugerencia: La
distribución de probabilidad de artículos defectuosos en una muestra es binomial.)

3. En el ejemplo 15.2-2, suponga que tiene la opción de invertir los $10,000 originales en un
certificado de depósito seguro que produce 8% de interés. El consejo del amigo es inver-
tir sólo en el mercado de valores.
(a) Desarrolle el árbol de decisión asociado.
(b) ¿Cuál es la decisión óptima en este caso? (Sugerencia: Utilice las probabilidades

P{v1} y P{v2} dadas en el paso 3 del ejemplo 15.2-2 para determinar el valor espera-
do de invertir en el mercado de valores.)

*4. Usted es el autor de la que promete ser una novela exitosa. Tiene la opción de o publicar
la novela usted mismo, o por medio de un editor. El editor le ofrece $20,000 por firmar el
contrato. Si la novela tiene éxito, venderá 200,000 copias. De lo contrario, venderá sólo
100,000. El editor le paga $1 de regalías por ejemplar. Una investigación del mercado in-
dica que hay 70% de probabilidades de que la novela tenga éxito. Si decide publicarla
usted mismo, incurrirá en un costo inicial de $90,000 por la impresión y la comercializa-
ción, pero obtendrá una utilidad neta de $2 por cada ejemplar vendido.
(a) Basado en la información dada, ¿aceptaría la oferta del editor, o publicaría usted

mismo la novela?
(b) Suponga que contrata a un agente literario para que realice una encuesta en relación

con el éxito potencial de la novela. Por experiencia pasada, el agente le aconseja que
cuando una novela tiene éxito, la encuesta predecirá el resultado equivocado 20%
de las veces. Cuando la novela no tenga éxito, la encuesta predecirá correctamente
85% de las veces. ¿Cómo afectaría esta información su decisión?

5. Considere la situación de decisión de Farmer McCoy en el problema 2, conjunto 15.2a. El
granjero tiene la opción adicional de utilizar el terreno como área de pastizales, en cuyo
caso está garantizada una retribución de $7500. El granjero también recabó información
adicional segura de un corredor de bolsa con respecto al grado de estabilidad de los futu-
ros precios de artículos de consumo. La valoración del agente de “favorable” o “desfavo-
rable” se describe por medio de las siguientes probabilidades condicionales:

a1 a2

s1 .85 .15

P{aj| sl} = s2 .50 .50

s3 .15 .85

Los símbolos a1 y a2 representan las valoraciones “favorable” y “desfavorable”, y s1, s2 y s3
representan los cambios “hacia arriba”, “iguales”, y “hacia abajo” de los futuros precios.
(a) Desarrolle el árbol de decisiones asociado.
(b) Especifique la decisión óptima para el problema.

6. En el problema 5, conjunto 15.2a, suponga que la gerencia de AFC decidió investigar el
mercado para su nuevo producto Wings ‘N Things en lugares seleccionados. El resultado
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de la investigación es o “bueno” (a1) o “malo” (a2). La investigación arroja las siguientes
probabilidades condicionales y sin campaña publicitaria.

P{aj| vi} - Con campaña P{aj| wi} -  Sin campaña

a1 a2 a1 a2

v1 .95 .05 w1 .8 .2

v2 .3 .7 w2 .4 .6

Los símbolos v1 y v2 representan “éxito” y “no éxito”, y w1 y w2 representan “receptivo”
y no “receptivo”.
(a) Desarrolle el árbol de decisiones asociado.
(b) Determine el mejor curso de acción para AFC.

7. Datos históricos en Acme Manufacturing estiman 5% de probabilidad de que un lote de
artefactos sea inaceptable (malo). Un lote malo tiene 15% de artículos defectuosos, y 
un lote bueno incluye sólo 4% de artículos defectuosos. Si a 5 u1 y a 5 u2 representan un
lote bueno y un lote malo, respectivamente, las probabilidades a priori se dan como

En lugar de enviar lotes con base en sólo probabilidades a priori, se utiliza una muestra
de prueba de dos artículos, y se obtienen tres posibles resultados: (1) ambos artículos son
buenos (z1); (2) un artículo está bueno (z2), y (3) ambos artículos están defectuosos (z3).

(a) Determine las probabilidades a posteriori

*(b) Suponga que el fabricante envía lotes a dos clientes A y B. Los contratos especifican
que los artículos defectuosos para A y B no deben exceder de 5 y 8%, respectiva-
mente. Se incurre en una penalización de $100 por punto porcentual por arriba del
límite máximo. Si entrega lotes de mejor calidad que la especificada por los costos 
del contrato le cuesta al fabricante $50 por punto porcentual. Desarrolle el árbol de
decisiones, y determine la estrategia de prioridad para enviar los lotes.

Funciones de utilidad. En la sección anterior el criterio del valor esperado se aplica a
situaciones en que la retribución es dinero real. Hay casos en que debe aplicarse la
utilidad en lugar del valor real en el análisis. Para ilustrar este punto, suponga que hay
una probabilidad 50-50 de que una inversión de $20,000 produzca una retribución
de $40,000 o que se pierda. La retribución esperada asociada es de ($40,000 3 0.5)
— ($20,000 3 0.5) 5 $10,000. Aunque hay una retribución esperada neta, diferentes
individuos interpretan de forma diferente el resultado. Un inversionista que desea
correr el riesgo puede realizar la inversión con 50% de probabilidades de obtener una
retribución de $40,000. Por el contrario, quizás un inversionista conservador no esté
dispuesto a correr el riesgo de perder $20,000. El concepto de función de utilidad se
ideó para reflejar estas diferencias. La función de utilidad ocupa entonces el lugar del
dinero real en el modelo de toma de decisiones.

¿Cómo se cuantifica la actitud subjetiva ante el riesgo en la forma de una función
de utilidad? En la ilustración anterior de inversión, la mejor retribución es de $40,000,
y la peor de 2 $20,000. Podemos establecer una escala de utilidad, U, de 0 a 100 que es-
pecifique U(2 $20,000) 5 0 y U($40,000) 5 100. El valor de U para un rendimiento de
la inversión entre 2 $20,000 y $40,000 se determina como sigue: Si la actitud del toma-
dor de decisiones hacia el riesgo es neutra (indiferente), entonces U puede represen-

P{ui| zj}, i = 1, 2; j = 1, 2, 3.

P{a = u1} = .95 y P{a = u2} = .05
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tarse por medio de una línea recta que une (0, — $20,000) y (100, $40,000). En este
caso, tanto el dinero real como su utilidad conducen a las mismas decisiones. De mane-
ra más general, la función U puede adoptar otras formas que reflejan diferentes actitu-
des hacia el riesgo. La figura 15.6 ilustra los casos de los individuos X, Y y Z. El indivi-
duo Y es neutro ante el riesgo, el individuo X es adverso al riesgo (o precavido), y el
individuo Z es lo opuesto de X, es un propenso al riego. La figura demuestra que para
el adverso al riesgo X, la reducción de la utilidad bc correspondiente a una pérdida de
$10,000 es mayor que el incremento ab asociado con una ganancia de $10,000. Lo con-
trario funciona para el propenso al riesgo Z donde de . ef. Por lo general, un individuo
puede ser tanto propenso como adverso al riesgo, en cuyo caso la curva de utilidad se-
guirá una forma de S alargada.

Curvas de utilidad similares a las demostradas en la figura 15.6 se determinan
“cuantificando” la actitud del tomador de decisiones hacia el riesgo, con diferentes ni-
veles de efectivo. En nuestro ejemplo, el intervalo deseado es (2$20,000 a $40,000) con
U(2$20,000) 5 0 y U($40,000) 5 100. Para especificar los valores de U para valores de
efectivo intermedio (por ejemplo, 2$10,000, $0, $10,000, $20,000 y $30,000), establece-
mos una lotería para una suma de efectivo x cuya utilidad esperada es 

Para determinar U(x), el tomador de decisiones debe formular una preferencia
entre una cantidad de efectivo garantizada x y la oportunidad de jugar una lotería en la
que puede haber una pérdida de 2$20,000 con probabilidad p y una utilidad de $40,000

 = 100 - 100p

 = 0p + 100(1 - p)

 U(x) = pU(-20,000) + (1 - p)U($40,000), 0 … p … 1

FIGURA 15.6

Funciones de utilidad para tomadores de decisiones reacios al riesgo (X), neutros ante el riesgo (Y),
y buscadores de riegos (Z)
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con probabilidad 1 2 p. El valor de p refleja la neutralidad del tomador de decisiones
(o indiferencia) hacia el riesgo. Por ejemplo, para x 5 $20,000, el tomador de decisio-
nes puede pensar que un efectivo garantizado de $20,000 y la lotería con p 5 0.8 son
igualmente atractivos. En este caso podemos calcular la utilidad de x 5 $20,000 como 

Observe que los altos valores de p con la misma lotería reflejan la búsqueda del riesgo
(en oposición a la aversión al riesgo). Por ejemplo, con p 5 0.2,

CONJUNTO DE PROBLEMAS 15.2C

*1. Usted es un estudiante en la Universidad de Arkansas y desea desesperadamente asistir
al siguiente juego de básquetbol de los Razorbacks. El problema es que el boleto de ad-
misión cuesta $10 y usted sólo tiene $5. Puede apostar sus $5 en un juego de poker, con
una probabilidad de 50-50 de duplicar su dinero o perderlo todo.
(a) Basado en el valor real del dinero, ¿intentaría participar en el juego de poker?
(b) Basado en su ardiente deseo de ver el juego, transforme el dinero real en una fun-

ción de utilidad.
(c) Basado en la función de utilidad que desarrolló en (b), ¿intentaría participar en el

juego de poker?
*2. La familia Golden se acaba de mudar a una ciudad donde los terremotos no son raros.

Deben decidir si construyen su casa de acuerdo con el código sísmico de alto estándar. El
costo de construcción aplicando el código sísmico es de $850,000; de lo contrario, puede
construirse una casa comparable por sólo $350,000. Si ocurre un sismo (y la probabilidad
de que ocurra uno es de .001), costará $900,000 reparar una casa construida por debajo de
las normas. Desarrolle la lotería asociada con esta situación, suponiendo una escala 
de utilidad de 0 a 100.

3. Una inversión de $10,000 en una empresa de alto riesgo tiene una probabilidad de 50-50
de que se incremente a $14,000 o de que se reduzca a $8,000 durante el siguiente año. Por
lo tanto el rendimiento neto puede ser o de $4000 o de 2 $2,000.
(a) Suponiendo un inversionista neutro hacia el riesgo y una escala de utilidad de 0 a

100, determine la utilidad de rendimiento neto de $0 sobre la inversión y la probabi-
lidad de indiferencia asociada.

(b) Suponga que dos inversionistas A y B han seguido las siguientes probabilidades de
indiferencia:

U($20,000) = 100 - (100 * 0.2) = 80

U($20,000) = 100 - (100 * 0.8) = 20

Probabilidad de indiferencia

Rendimiento neto ($) Inversionista A Inversionista B

-2000 1.00 1.00
-1000 0.30 0.90

0 0.20 0.80
1000 0.15 0.70
2000 0.10 0.50
3000 0.05 0.40
4000 0.00 0.00

Trace la gráfica de las funciones de utilidad para los inversionistas A y B, y clasifique a
cada inversionista ya sea como persona adversa al riesgo o como propensa al riesgo.
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(c) Suponga que el inversionista A tiene la oportunidad de invertir en una de dos opcio-
nes. Venture I puede producir un rendimiento neto de $20,000 con probabilidad de
0.4 o una pérdida neta de $10,000 con probabilidad de 0.6. Venture II puede produ-
cir un rendimiento de $3000 con probabilidad de 0.6 y de nada de rendimiento con
probabilidad de 0.4. Basado en la función de utilidad en (b), aplique el criterio de
utilidad esperado para determinar la empresa que el inversionista A debe elegir.
¿Cuál es el valor monetario esperado asociado con la empresa seleccionada?
(Sugerencia: Utilice interpolación lineal de la función de utilidad).

(d) Repita el inciso (c) para el inversionista B.

15.3 DECISIÓN BAJO INCERTIDUMBRE

La toma de decisiones bajo incertidumbre, así como bajo riesgo, implica acciones alter-
nativas cuyas retribuciones dependen de los estados de la naturaleza (aleatorios).
Específicamente, la matriz de retribución de un problema de decisión con m acciones
alternativas y n estados de la naturaleza puede representarse como 

s1 s2 . . . sn

a1 , s1)v(a1 , s2)v(a1 . . . , sn)v(a1

a2 , s1)v(a2 , s2)v(a2 . . . , sn)v(a2

o o o o o

am v(am, s1) v(am, s2) . . . v(am, sn)

El elemento ai representa la acción i y el elemento s, representa el estado de la natura-
leza j. La retribución o resultado asociado con la acción ai y el estado sj es v(ai, sj).

En la toma de decisiones bajo incertidumbre, la distribución de probabilidad aso-
ciada con los estados sj, j 5 1,2,…, n, o se desconoce o no puede ser determinada. Esta
falta de información condujo al desarrollo de criterios de decisión especiales:

1. Laplace
2. Minimax
3. Savage
4. Hurwicz

Estos criterios difieren en el enfoque que adopte el tomador de decisiones ante el pro-
blema.

El criterio de Laplace se basa en el principio de razón insuficiente. Ya que no se co-
nocen las distribuciones de probabilidad, no hay razón alguna para creer que las proba-
bilidades asociadas con los estados de la naturaleza sean diferentes. Por tanto, las alter-
nativas se evalúan utilizando la suposición simplificadora de que todos los estados son
igualmente probables de que ocurran; es decir, Si la
retribución v(ai, sj) representa la ganancia, la mejor alternativa es la que da por resultado

ai
máxe  

1
n

 a
n

j= 1
v(ai, sj) f
P{s1} = P{s2} = Á = P{sn} =  1n .
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El criterio maximin (minimax) está basado en la actitud conservadora de hacer la
mejor de las peores condiciones posibles. Si v(ai, sj) es una pérdida, entonces seleccio-
namos la acción que corresponde al siguiente criterio minimax.

Si v(ai, sj) es una ganancia, utilizamos el criterio maximin dado por 

El criterio de lamento de Savage “modera” el grado de conservadurismo del cri-
terio minimax (maximin) al reemplazar la matriz de retribución (ganancia o pérdida)
v(ai, sj) con una matriz de pérdida (o lamento), r(ai, sj) mediante la siguiente transfor-
mación:

Para demostrar por qué el criterio de Savage modera el criterio minimax (maxi-
min), considere la siguiente matriz de pérdida:

Fila máx

La aplicación del criterio minimax muestra que a2, con una pérdida definida de
$10,000, es la alternativa preferida. Sin embargo, puede ser mejor elegir a1 porque hay
una probabilidad de limitar la pérdida a $90 sólo si s2 ocurre. Éste suele ser el caso
cuando se utiliza la matriz de lamento:

Fila máx

El último criterio, Hurwicz, está diseñado para representar diferentes actitudes
de decisión que van desde la más optimista hasta la más pesimista. Defina 0 # a # 1.
La acción seleccionada debe asociarse con 

El parámetro a es el índice de optimismo. Si a 5 0, entonces el criterio se reduce al cri-
terio minimax conservador, que busca la mejor de las peores condiciones. Si a 5 1, en-
tonces el criterio es optimista porque busca la mejor de las mejores condiciones. El

mín
ai

 ea mín
sj

 v(ai, sj) + (1 - a)máx
sj

 v(ai, sj) f , si v es una pérdida

máx
ai

 ea máx
sj

 v(ai, sj) + (1 - a)mín
sj

 v(ai, sj) f , si v es una ganancia

r(ai, vj) =
a1

a2
 

$1,000 $0
$0 $9,910

 

  $1,000 ;Minimax
 $9,910

  s1   s2

v(ai, sj) =
a1

a2
 

$11,000 $90
$10,000 $10,000

 

  $11,000
$10,000 ;Minimax

  s1   s2

r1ai, sj2 = c v1ai, sj2 - mín
ak

5v1ak, sj26, si v es una pérdida

máx
ak

5v1ak, sj26 - v1ai, sj2, si v es una ganancia

máx
ai
bmín
sj

 v(ai, sj) rmín
ai
bmáx

sj
 v(ai, sj) r
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grado de optimismo (o pesimismo) puede ajustarse seleccionando un valor de a entre
0 y 1. Sin la fuerte sensación con respecto a un optimismo y a un pesimismo extremos,
a 5 .5 puede ser una elección justa.

Ejemplo 15.3-1

National Outdoors School (NOS) está preparando un sitio para acampar en el verano en el co-
razón de Alaska para enseñar técnicas de sobrevivencia en áreas salvajes. NOS estima que la
asistencia puede caer dentro de una de cuatro categorías: 200, 250, 300 y 350 personas. El costo
del campamento será mínimo cuando su tamaño satisfaga la demanda con exactitud. Las desvia-
ciones por encima y por debajo de los niveles de demanda ideales incurren en costos adicionales
por construir más capacidad que la necesaria o por perder oportunidades de ingresos cuando la
demanda no se satisface. Si a1 a a4 representan los tamaños de los campamentos (200, 250, 300 y
350 personas) y s1 a s4 el nivel de asistencia, la siguiente tabla resume la matriz de costos (en
miles de dólares) para la situación.

s1 s2 s3 s4

a1 5 10 18 25

a2 8 7 12 23

a3 21 18 12 21

a4 30 22 19 15

El problema se analiza aplicando los cuatro criterios.

Laplace. Dado que a 4, los valores esperados con las diferentes acciones se
calculan como

Minimax. El criterio minimax produce la siguiente matriz:

E{a4} =
1
4

 (30 + 22 + 19 + 15) = $21,500

E{a3} =
1
4

 (21 + 18 + 12 + 21) = $18,000

E{a2} =
1
4

 (8 + 7 + 12 + 23)  = $12,500 ; Óptimo

E{a1} =
1
4

 (5 + 10 + 18 + 25)  = $14,500

P{sj} =  14 , j = 1

s1 s2 s3 s4 Fila máx 

a1 5 10 18 25 25

a2 8 7 12 23 23

a3 21 18 12 21 21 Minimax;

a4 30 22 19 15 30
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Hurwicz. La siguiente tabla resume los cálculos.

Alternativa Fila mín Fila máx a(Fila mín) 1 (1 2 a)(Fila máx)

a1 5 25 25-20a
a2 7 23 23-16a
a3 12 21 21-   9a
a4 15 30 30-15a

Utilizando una a apropiada podemos determinar la alternativa óptima. Por ejemplo, en a 5

.5, a1 o a2 es la óptima, y en a 5 .25, a3 es la óptima.

Momento de Excel

La plantilla excelUncertainty.xls puede usarse para automatizar los cálculos de los criterios de
Laplace, maximin, Savage y Hurwicz. La hoja de cálculo está basada en el uso de una matriz
de costos. Para utilizar una matriz de recompensas, todas las entradas deben multiplicarse por
21. El tamaño máximo de la matriz es (10 3 10).

CONJUNTO DE PROBLEMAS 15.3A

*1. Hank es un estudiante inteligente y suele obtener buenas calificaciones, siempre que
pueda repasar el material del curso la noche anterior al examen. Para el examen de maña-
na, Hank enfrenta un pequeño problema. Sus hermanos de fraternidad van a tener una
fiesta que va a durar toda la noche, y a la cual le gustaría asistir. Hank tiene tres opciones:

a1 5 Parrandear toda la noche
a2 5 Dividir la noche en partes iguales entre estudiar y participar en la fiesta
a3 5 Estudiar toda la noche

El examen de mañana puede ser fácil (s1), moderado (s2), o difícil (s3), dependiendo
del impredecible humor del profesor. Hank anticipa las siguientes calificaciones:

s1 s2 s3

a1 85 60 40

a2 92 85 81

a3 100 88 82

Savage. La matriz de arrepentimiento se determina restando 5, 7, 12 y 15 de las columnas 1 a 4,
respectivamente. Por lo tanto,

s1 s2 s3 s4 Fila máx

a1 0 3 6 10 10

a2 3 0 0 8 8 Minimax;

a3 16 11 0 6 16

a4 25 15 7 0 25
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(a) Recomiende un curso de acción para Hank (basado en cada uno de los cuatro crite-
rios de decisión bajo incertidumbre).

(b) Suponga que a Hank le interesa más la calificación que obtendrá. Las calificaciones
aprobatorias que van de la A a la D, son 90, 80, 70 y 60, respectivamente. ¿Exigiría
esta actitud hacia las calificaciones un cambio del curso de acción de Hank?

2. Para la temporada de siembra venidera, Farmer McCoy puede sembrar maíz (a1), trigo
(a2), o soya (a3), o utilizar el terreno para pastoreo (a4). Las retribuciones asociadas con
las diferentes acciones dependen de la cantidad de lluvia: lluvia fuerte (s1), lluvia mode-
rada (s2), lluvia ligera (s3), o sequía (s4). La matriz de retribuciones (en miles de dólares)
se estima como

s1 s2 s3 s4

a1 -20 60 30 -5

a2 40 50 35 0

a3 -50 100 45 -10

a4 12 15 15 10

Máquina i ($)Ki ($)Ci

1 100 5
2 40 12
3 150 3
4 90 8

Desarrolle un curso de acción para Farmer McCoy basado en cada una de las cuatro de-
cisiones bajo criterios de incertidumbre.

3. Hay que seleccionar una de N máquinas para fabricar Q unidades de un producto espe-
cífico. Las demandas mínima y máxima del producto son Q* y Q**, respectivamente.
El costo de producción total de Q artículos con la máquina i implica un costo fijo Ki y 
un costo variable por unidad ci, y está dado como

(a) Idee una solución para el problema conforme a cada uno de los cuatro criterios de
decisión bajo incertidumbre.

(b) Con 1000 # Q # 4000 y el siguiente conjunto de datos, resuelva el problema:

TCi = Ki + ciQ

15.4 TEORÍA DE JUEGOS

Esta teoría tiene que ver con situaciones de decisión en la que dos oponentes inteligen-
tes con objetivos conflictivos (en caso de suma cero) compiten intensamente para su-
perar al otro. Ejemplos típicos incluyen el lanzamiento de campañas publicitarias de
productos que compiten y estrategias de planeación de batallas en la guerra.

En un conflicto, cada uno de los dos jugadores (oponentes) tiene una cantidad
(finita o infinita) de alternativas o estrategias. Asociada con cada par de estrategias
está la retribución que un jugador recibe del otro. Tal situación se conoce como juego
de suma cero entre dos personas porque la ganancia de un jugador es igual a la pérdi-
da del otro. Esto significa que podemos representar el juego en función de la retribu-
ción que recibe un jugador. Designando los dos jugadores A y B con m y n estrategias,
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respectivamente, el juego se presenta usualmente en función de la matriz de retribu-
ciones que recibe el jugador A como

15.4.1 Solución óptima de juegos de suma cero entre dos personas

Debido a que los juegos de suma cero o constante implican un conflicto de intereses, la
base para la selección de estrategias óptimas garantiza que ninguno de los jugadores
intenta buscar una estrategia diferente porque el resultado será una retribución peor.
Estas soluciones pueden ser en la forma de una sola estrategia o varias estrategias
combinadas al azar.

Ejemplo 15.4-1

Dos compañías, A y B, venden dos marcas de un medicamento para la gripe. La compañía A se
anuncia en radio (A1), televisión (A2) y periódicos (A3). La compañía B, además de utilizar la
radio (B1), la televisión (B2) y los periódicos (B3), también envía folletos por correo (B4).
Dependiendo de la efectividad de cada campaña publicitaria, una compañía puede capturar una
parte del mercado de la otra. La siguiente matriz resume el porcentaje del mercado capturado o
perdido por la compañía A.

Aplicación de la vida real. Ordenación de golfistas en el último día de juegos
por parejas de la copa Ryder

En el día final de un torneo de golf, dos equipos compiten por el campeonato. El ca-
pitán de cada equipo presenta una pizarra (una lista ordenada de los golfistas) que de-
termina las parejas. Para dos golfistas que ocupan el mismo orden en sus respectivas
pizarras, es plausible suponer que haya una probabilidad de 50-50 de que cualquiera de
ellos gane el juego. La probabilidad de ganar se incrementa para un golfista de más
alto orden cuando se enfrenta a uno de más bajo orden. El objetivo es desarrollar un
procedimiento analítico que apoye o refute la idea de utilizar pizarras. El caso 12, capí-
tulo 26, en el sitio web detalla el estudio basado en la teoría de juegos.

B1 B2 B3 B4 Fila mín

A1 8 -2 9 -3 -3

A2 6 5 6 8 Maximin5;

A3 -2 4 -9 5 -9

Columna máx 8 5 9 8

c
Minimax

B1 B2 Á Bn

A1 a11 a12 Á a1m

A2 a21 a22 Á a2m

o o o o o

Am am1 am1 Á amn

La representación indica que si A utiliza la estrategia i y B utiliza la estrategia j, la re-
tribución para A es aij, y la retribución para B es 2aij.
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La solución del juego se basa en el principio de asegurar lo mejor de lo peor para cada juga-
dor. Si la compañía A selecciona la estrategia A1, entonces, independientemente de lo que haga
B, lo peor que puede suceder es que A pierda 3% del segmento del mercado ante B. Esto se re-
presenta por medio del valor mínimo de las entradas en la fila 1. Asimismo, con la estrategia A2,
el peor resultado es que A capture 5% de B, y con la estrategia A3, el peor resultado es que A
pierda 9% ante B. Estos resultados aparecen bajo fila mín. Para lograr lo mejor de lo peor, la
compañía A elige la estrategia A2 porque corresponde a un valor maximin.

Luego, para la compañía B, la matriz de retribuciones dada es para A, la mejor de la peor solu-
ción de B está basada en el valor minimax. El resultado es que la compañía B elegirá la estrategia B2.

La solución óptima del juego exige seleccionar las estrategias A2 y B2, lo que significa que
ambas compañías deben utilizar la publicidad por televisión. La retribución favorecerá a la com-
pañía A porque su segmento del mercado se incrementará 5%. En este caso decimos que el valor
del juego es 5% y que A y B están utilizando una solución de punto de silla.

La solución de punto de silla impide seleccionar una mejor estrategia por parte de cual-
quiera de las compañías. Si B cambia de estrategia (B1, B3 o B4), la compañía A puede seguir con
la estrategia A2, lo que resultaría en una pérdida peor para B (6 u 8%). Por la misma razón, A no
buscaría una estrategia diferente porque B puede cambiar a B3 para obtener 9% de ganancia del
mercado si se utiliza A1, y 3% si se utiliza A3.

BH BT Fila mín

AH 1 -1 -1

AT -1 1 -1

Columna máx 1 1

Ejemplo 15.4-2

Dos jugadores, A y B, juegan a tirar la moneda. Cada jugador, sin saberlo el otro, escoge cara (H)
o cruz (T). Ambos jugadores revelan sus elecciones al mismo tiempo. Si coinciden (HH o TT), el
jugador A recibe $1 de B. De lo contrario, A le paga $1a B.

La siguiente matriz de retribuciones para el jugador A da los valores de fila mín y columna
máx correspondientes a las estrategias de A y B, respectivamente.

Los valores maximin y minimax de los juegos son 2 $1 y $1, respectivamente, y el juego no
tiene una estrategia pura porque los dos valores no son iguales. Específicamente, si el jugador A
selecciona AH, el jugador B puede seleccionar BT para recibir $1 de A. Si esto sucede, A puede
cambiar a la estrategia AT para invertir el resultado al recibir $1 de B. La constante tentación
de cambiar de estrategia muestra que una solución de estrategia pura no es aceptable. Lo que se
requiere en este caso es que ambos jugadores combinen al azar sus estrategias puras respectivas.
El valor óptimo del juego ocurrirá entonces en alguna parte entre los valores maximin y mini-
max del juego; es decir,

valor maximin (menor) # valor del juego # valor minimax (mayor)

En el ejemplo de tirar la moneda, el valor del juego debe quedar entre 2 $1 y 1 $1 (vea el pro-
blema 5 del conjunto 15.4a).

La solución de punto de silla óptima de un juego no tiene que ser una estrategia
pura. En su lugar, la solución puede requerir combinar dos o más estrategias al azar,
como lo ilustra el siguiente ejemplo.
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*(a) (b)

2. En los juegos (a) y (b) dados a continuación, la retribución es para el jugador A.
Determine los valores de p y q que harán de (A2, B2) un punto de silla:

(a) (b)

B1 B2 B3 B4

A1 8 6 2 8

A2 8 9 4 5

A3 7 5 3 5

B1 B2 B3 B4

A1 4 -4 -5 6

A2 -3 -4 -9 -2

A3 6 7 -8 -9

A4 7 3 -9 5

B1 B2 B3

A1 1 q 6

A2 p 5 10

A3 6 2 3

B1 B2 B3

A1 2 4 5

A2 10 7 q

A3 4 p 6

3. En los juegos (a) y (b) dados a continuación, la retribución es para el jugador A.
Especifique el intervalo del valor del juego en cada caso.

*(a) (b)B1 B2 B3 B4

A1 1 9 6 0
A2 2 3 8 4
A3 -5 -2 10 -3
A4 7 4 -2 -5

B1 B2 B3 B4

A1 -1 9 6 8
A2 -2 10 4 6
A3 5 3 0 7
A4 -2 8 4

(c) (d)B1 B2 B3

A1 3 6 1

A2 5 2 3

A3 4 2 -5

B1 B2 B3 B4

A1 3 7 1 3

A2 4 8 0 -6

A3 6 -9 -2 4

4. Dos compañías promueven dos productos competidores. En la actualidad, cada producto
controla 50% del mercado. Debido a mejoras recientes en los dos productos, cada compañía
planea lanzar una campaña publicitaria. Si ninguna de las dos compañías se anuncia, conti-
nuarán iguales las partes del mercado. Si alguna de las compañías lanza una campaña más
agresiva, la otra compañía con toda certeza perderá un porcentaje proporcional de sus clien-
tes. Un encuesta del mercado muestra que se puede llegar a 50% de los clientes potenciales
por medio de la televisión, a 30% por medio de periódicos, y a 20% por medio de la radio.
(a) Formule el problema como un juego de suma cero entre dos personas, y determine

el medio publicitario para cada compañía.
(b) Determine un intervalo para el valor del juego. ¿Puede operar cada compañía con

una estrategia pura única?

CONJUNTO DE PROBLEMAS 15.4A

1. En los juegos (a) y (b) dados a continuación, la retribución es para el jugador A. Cada
juego tiene una solución de estrategia pura. En cada caso, determine las estrategias que
definan el punto de silla y el valor del juego.
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5. Si aij es el elemento (i, j)-ésimo de una matriz de retribuciones con m estrategias para el
jugador A y n estrategias para el jugador B, la retribución es para el jugador A.
Demuestre que 

15.4.2 Solución de juegos con estrategias combinadas

Los juegos con estrategias combinadas pueden resolverse por medio de métodos gráfi-
cos o programación lineal. La solución gráfica es adecuada para juegos con exactamen-
te dos estrategias puras de uno o ambos jugadores. Por otra parte, la PL (programación
lineal) puede resolver cualquier juego de suma cero entre dos personas. El método grá-
fico es interesante porque explica la idea de un punto de silla visualmente.

Solución gráfica de juegos. Comenzamos con el caso de (2 3 n) juegos en los cuales
el jugador A tiene dos estrategias, A1 y A2.

El jugador A combina las estrategias A1 y A2 con probabilidades x1 y 1 2 x1, 0 # x1
# 1. El jugador B combina las estrategias B1, B2,…, y Bn con probabilidades y1, y2,…, y
yn, yj $ 0 para j 5 1,2,…, n, y y1 1 y2 1 … 1 yn 5 1. En este caso, la retribución espe-
rada de A correspondiente a la estrategia pura j-ésima de B es 

El jugador A busca el valor de x1 que maximice las retribuciones mínimas esperadas, es
decir,

Ejemplo 15.4-3

Considere el siguiente juego de 2 3 4. La retribución es para el jugador A.

El juego no tiene ninguna solución de estrategia pura porque los valores maximin y
minimax no son iguales (¡compruébelo!). Las retribuciones esperadas de A correspon-
dientes a las estrategas puras de B se dan como

2 2 3 -1
4 3 2    6

A1

A2

B1  
B2  
B3  
B4

máx
xj

 mín
j

 {(a1j - a2j)x1 + a2j}

(a1j - a2j)x1 + a2j, j = 1, 2, Á , n

y1 y2 Á yn

B1 B2 Á Bn

a11 a12 Á a1m

a21 a22 Á a2m

x1: A1

1 - x1: A2

máx
i

 mín
j

 aij … mín
j

 máx
i

 aij

Estrategia pura de B Retribución esperada de A

1 -2x1 + 4
2 -x1 + 3
3 x1 + 2
4 -7x1 + 6
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La figura 15.7 muestra una gráfica creada por TORA de las cuatro líneas rectas asociadas
con las estrategias puras de B (archivo toraExl5.4-3.txt).3 Para determinar la mejor de la peor so-
lución, la envolvente inferior de las cuatro líneas (delineada por franjas verticales) representa la
retribución mínima (peor) esperada para A, independientemente de las elecciones de B. El má-
ximo (mejor) de la envolvente inferior corresponde al punto de solución maximin Este
punto es la intersección de las líneas asociadas con las estrategias B3 y B4. La solución óptima del
jugador A demanda una combinación 50-50 de A1 y A2. El valor correspondiente del juego, v, se
determina sustituyendo x1 5 0.5 en la función o bien de la línea 3, o de la línea 4, lo cual da 

La combinación óptima del jugador B se determina por medio de las dos estrategias que de-
finen la envolvente inferior de la gráfica. Esto significa que B puede combinar las estrategias B3
y B4 en cuyo caso y1 5 y2 5 0 y y4 5 1 2 y3. En consecuencia, las retribuciones esperadas de B
correspondientes a estrategias puras de A son

v = e 1
2 + 2 = 5

2,
- 7(1

2) + 6 = 5
2,

x1
* = 0.5.

desde la línea 3

desde la línea 4

FIGURA 15.7

Solución gráfica del juego de suma cero entre dos personas del ejemplo 15.4-3 obtenida con TORA 
(archivo toraEx15.4-3.txt)

3Del menú , seleccione la opción e ingrese los datos del problema, luego seleccione
la opción en el menú desplegable .SOLVE/MODIFYGraphical

Zero-sum GamesMain
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Estrategia pura de A Retribuciones esperadas de B

1 4y3 - 1
2 -4y3 + 6

La mejor de la peor solución para B es el punto mínimo de la envolvente superior de las dos
líneas dadas (será instructivo que trace las dos líneas e identifique la envolvente superior). Este
proceso equivale a resolver la ecuación

La solución da la cual da el valor del juego como
La solución del juego exige que el jugador combine A1 y A2 con probabilidades iguales, y

que el jugador B combine B3 y B4 con probabilidades y (En realidad, el juego tiene solucio-
nes alternativas para B, porque el punto máximo en la figura 15.7 está determinado por más de
dos líneas. Cualquier combinación no negativa de estas soluciones alternativas también es una
solución legítima.)

Comentarios. Los juegos en que el jugador A tiene m estrategias y el jugador B sólo
tiene dos, pueden tratarse del mismo modo. La diferencia principal es que
graficaremos la retribución esperada de B correspondiente a estrategias puras de A.
Por consiguiente, buscaremos el punto minimax en lugar del punto maximin de la
envolvente superior de las líneas trazadas. Sin embargo, para resolver el problema con
TORA, es necesario expresar la retribución en función del jugador que tiene dos
estrategias, multiplicándola por 2 1.

CONJUNTO DE PROBLEMAS 15.4B4

*1. Resuelva gráficamente el juego de tirar la moneda del ejemplo 15.4-2.
*2. Robin viaja entre dos ciudades y puede utilizar dos rutas. La ruta A es una carretera rápi-

da de cuatro carriles, y la ruta B es una larga carretera sinuosa. Robin maneja “superrá-
pido”. La patrulla de caminos cuenta con una fuerza policial limitada. Si se asignara toda
la fuerza a la ruta por la que maneja Robin, con toda certeza recibiría una multa de $100
por exceso de velocidad. Si la fuerza se reparte 50-50 entre las dos rutas, hay 50% de pro-
babilidades de que reciba una multa de $100 en la ruta A, y sólo 30% de que reciba la
misma multa en la ruta B. Desarrolle una estrategia tanto para Robin como para la pa-
trulla de caminos.

3. Resuelva gráficamente los siguientes juegos. La retribución es para el jugador A.
(a) (b)

1
8
.7

8

v = 4 * ( 78 ) - 1 =  52 .y3 =  78, 

4y3 - 1 = -4y3 + 6

B1 B2 B3

A1 1 -3 7

A2 2 4 -6

B1 B2

A1 5 8

A2 6 5

A3 5 7

4Puede usar el módulo Zero-sum games de TORA para verificar su respuesta.
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4. Considere el siguiente juego de suma cero entre dos personas:

B1 B2 B3

A1 5 50 50

A2 1 1 .1

A3 10 1 10

(a) Compruebe que las estrategias para A y para B son óptimas, y
determine el valor del juego.

(b) Demuestre que el valor óptimo del juego es igual a

Solución de juegos por medio de programación lineal. La teoría de juegos está
estrechamente relacionada con la PL en el sentido de que cualquier juego de suma
cero entre dos personas puede expresarse como un programa lineal, y viceversa. De
hecho, G. Dantzig (1963, pág. 24) expresa que cuando J. von Neumann, padre de la
teoría de juegos, la introdujo por primera vez al método simplex en 1947, de inmediato
reconoció esta relación y además precisó y recalcó el concepto de dualidad en la
programación lineal. Esta sección explica cómo se resuelven los juegos mediante PL.

Las probabilidades óptimas del jugador A, x1, x2,…, y xm, pueden determinarse
resolviendo el siguiente problema maximin:

Sea

La ecuación implica que

El problema del jugador A puede escribirse por lo tanto como 

Maximizar z = v

a
m

i= 1
aijxi Ú v, j = 1, 2, Á , n

v = mín eam
i= 1
ai1xi, a

m

i= 1
ai2xi, Á , a

m

i= 1
ainxi f

xi Ú 0, i = 1, 2, Á , m

x1 + x2 + Á + xm = 1

máx
xi

 c mínaam
i= l
ai1xi, a

m

i= 1
ai2xi, Á , a

m

i= 1
ainxib s

a
3

i= 1
a

3

j= 1
aijxiyj

1 49
54, 5

54 , 021 16, 0, 56 2
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sujeto a

v irrestricta

Observe que el valor del juego, v, no está restringido en cuanto a signo.
Las estrategias óptimas del jugador B y1, y2,…, y yn, se determinan resolviendo el

problema

Utilizando un procedimiento similar al del jugador A, el problema de B se reduce a

sujeto a

v irrestricta

Los dos problemas optimizan la misma variable v (irrestricta), el valor del juego.
La razón es que el problema de B es el dual del problema de A (verifique esta afirma-
ción por medio de la definición de dualidad del capítulo 4). Esto significa que la solución
óptima de un problema da automáticamente la solución óptima del otro.

Ejemplo 15.4-4

Resuelva el siguiente juego mediante programación lineal. El valor del juego, v, queda entre
2 2 y 2.

yj Ú 0, j = 1, 2, Á , n

y1 + y2 + Á + yn = 1

v - a
n

j= 1
aijyj Ú 0, i = 1, 2, Á , m

Minimizar w = v

yj Ú 0, j = 1, 2, Á , n

y1 + y2 + Á + yn = 1

mín
yj

 
c máx aan

j= 1
a1jyj, a

n

j= 1
a2jyj, Á , a

n

j= 1
amjyjb s

xi Ú 0, i = 1, 2, Á , m

x1 + x2 + Á  + xm = 1

v - a
m

i= 1
aijxi … 0, j = 1, 2, Á , n

B1 B2 B3 Fila mín

A1 3 -1 -3 -3

A2 -2 4 -1 -2

A3 -5 -6 2 -6

Columna máx 3 4 2
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Programa lineal del jugador A

sujeto a

v irrestricta

La solución óptima5 es x1 5 0.39, x2 5 0.31, x3 5 0.29, y v 5 2 0.91

Programa lineal del jugador B

sujeto a

v irrestricta

La solución da y1 5 .32, y2 5.08, y3 5 .60, y v 5 20.91.

y1 + y2 + y3 = 1

v + 5y1 + 6y2 - 2y3 Ú 0

v + 2y1 - 4y2 + y3 Ú 0

v -  3y1 + y2 + 3y3 Ú 0

Minimizar z = v

x1, x2, x3 Ú 0

x
1

+ x2 + x3 = 1

v + 3x1 + x2 - 2x2 … 0

v + x1 - 4x2 + 6x3 … 0

v -  3x1 + 2x2 + 5x3 … 0

Maximizar z = v

CONJUNTO DE PROBLEMAS 15.4C

1. En un paseo campestre, 2 equipos de dos personas juegan a las escondidas. Hay cuatro
escondites (A,B,C y D) y los dos miembros del equipo que se esconden pueden hacerlo
por separado en dos de los cuatro escondites. El otro equipo puede entonces buscar en
los otros dos escondites restantes. El equipo que busca obtiene un punto si encuentra 
a los dos miembros del equipo que se esconde; si no encuentra a los dos pierde un punto.
De lo contrario, el resultado es un empate.
*(a) Desarrolle el problema como un juego de suma cero entre dos personas.
(b) Determine la estrategia óptima y el valor del juego.

2. La U de A y la U de D están ideando sus estrategias para el juego de básquetbol colegial
varonil del campeonato de 1994. Valorando las fuerzas de sus respectivas “bancas”, cada
entrenador aparece con cuatro estrategias para rotar a los jugadores durante el encuen-
tro. La habilidad de cada equipo de encestar canastas de 2 puntos, 3 puntos y tiros libres
es la clave para determinar el marcador final del juego. La siguiente tabla resume los
puntos netos que la U de A anotará por posesión como una función de las diferentes es-
trategias disponibles para cada equipo:

5Puede usarse la opción de TORA para resolver cualquier juego
de suma cero entre dos personas.

LP-basedQSolveQZero-sum Games
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(a) Resuelva el juego mediante programación lineal, y determine una estrategia para el
juego de campeonato.

(b) Basado en la información dada, ¿cuál de los dos equipos se perfila para ganar el
campeonato?

(c) Suponga que todo el juego constará de 60 posesiones (30 para cada equipo).
Pronostique el número de puntos esperado con el cual se ganará el campeonato.

3. El ejército del coronel Blotto está peleando por el control de dos posiciones estratégicas.
Blotto dispone de dos regimientos y el enemigo de tres. Una posición caerá ante el ejérci-
to con más regimientos. De lo contrario, el resultado de la batalla es un empate.
*(a) Formule el problema como un juego de suma cero entre dos personas y resuélvalo

mediante programación lineal.
(b) ¿Cuál ejército ganará la batalla?

4. En el juego Morra de dos dedos entre dos jugadores, cada jugador muestra uno o dos
dedos, y al mismo tiempo adivina cuántos dedos mostrará el oponente. El jugador que
adivina correctamente gana una cantidad igual al número de dedos mostrados. De lo
contrario, el juego es un empate. Desarrolle el problema como un juego de suma cero
entre dos personas, y resuélvalo mediante programación lineal.
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U de D1 U de D2 U de D3 U de D5

U de A1 3 -2 1 2

U de A2 2 3 -3 0

U de A3 -1 2 -2 2

U de A4 -1 -2 4 1
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16.1 MODELOS DE REVISIÓN CONTINUA

Esta sección presenta dos modelos: (1) una versión “probabilizada” del modelo EOQ
determinístico (sección 13.3-1) que utiliza existencias de reserva para satisfacer las de-
mandas probabilísticas, y (2) un modelo EOQ probabilístico más exacto que incluye la
demanda aleatoria directamente en la formulación.

16.1.1 Modelo EOQ “probabilizado”

Algunos profesionales han buscado adaptar el modelo EOQ determinístico (sección
13.3.1) para representar de forma aproximada la naturaleza probabilística de la de-
manda. El periodo crítico durante el ciclo de inventario ocurre entre la colocación y la

CAPÍTULO 16

Modelos de inventario probabilísticos

Aplicación de la vida real. Decisiones de inventario en la cadena de abasto de Dell 

Dell, Inc. implementa un modelo de negocio de ventas directas en el que las computa-
doras personales se venden directamente a los clientes en los Estados Unidos. Cuando
llega un pedido de un cliente, las especificaciones se envían a una planta de manufac-
tura en Austin,Texas, donde la computadora se construye, prueba y empaca en, aproxi-
madamente, 8 horas. Dell maneja poco inventario. A sus proveedores, que por lo
común se ubican en el sureste asiático, se les pide que manejen lo que se conoce como
inventario “revolvente” disponible en revolvedores (almacenes) cerca de las plantas de
manufactura. Estos revolvedores son propiedad de Dell y los rentan a los proveedores.
Dell entonces “saca” las partes que necesita de los revolvedores, y la responsabilidad
de los proveedores es reponer el inventario para satisfacer la demanda de Dell.
Aunque Dell no posee el inventario guardado en los revolvedores, su costo se transfiere
de manera indirecta a los clientes mediante la fijación de precios de los componentes.
Por lo tanto, cualquier reducción del inventario beneficia directamente a los clientes de
Dell con la reducción de los precios de los productos. La solución propuesta ha dado
por resultado un estimado de $2.7 millones en ahorros anuales. (El caso 13 del capítu-
lo 26, en el sitio web de este libro, detalla este estudio).
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FIGURA 16.1

Existencias de reserva, B, impuestas al modelo EOQ clásico

Nivel de
inventario

Tiempo

B � y*

B

L
0

B � mL

recepción de pedidos. Éste es el lapso de tiempo en que se podrían presentar los fal-
tantes (agotamiento de las existencias). La idea entonces es mantener existencias de
seguridad constantes que eviten la probabilidad de faltantes. Por intuición, una proba-
bilidad de pocos faltantes implica mayores existencias de reserva, y viceversa.

La figura 16.1 ilustra la relación entre las existencias de reserva, B, y los paráme-
tros del modelo EOQ determinístico que incluyen el tiempo de espera, L; la demanda
promedio durante el tiempo de espera, mL, y la cantidad económica de pedido (EOQ),
y*. Observe que L es el tiempo de espera efectivo definido en la sección 13.3.1.

La suposición principal del modelo es que la demanda por unidad de tiempo es
normal con media D y desviación estándar s; es decir, N(D, s). Con arreglo a esta
suposición, la demanda durante el tiempo de espera L también debe ser normal
con media mL 5 DL y desviación estándar . La fórmula para sL supone
que L es (representado de forma aproximada si es necesario por) un valor entero.

El tamaño de las existencias de reserva B se determina de modo que la probabi-
lidad de faltantes durante L sea a lo sumo a. Si xL es la demanda durante el tiempo de
espera L, entonces

Utilizando N(0, 1), (como se define en la sección 14.4.4), obtenemos

Definiendo el parámetro Ka para la distribución normal estándar de modo que P{z $

ka} # a (vea la figura 16.2) se desprende que 

La cantidad sLKa proporciona el valor mínimo de B. (El valor de Ka puede determi-
narse desde la tabla normal estándar que aparece en el apéndice A, o utilizando el
archivo excelStatTables.xls.)

B Ú sLKa

Pe z Ú  
B

sL
 f … a

z =  
x
L

- m
L

sL

P{xL Ú B + mL} … a

sL = 2Ls2



FIGURA 16.2

Probabilidad de que se agoten las
existencias, P{z # Ka} 5 a

zK

 f(z)

0

N(0, 1)

Área � a

a

Ejemplo 16.1-1
En el ejemplo 13.3-1, donde se determina la política de inventario de las luces de neón, la canti-
dad económica de pedido es de 1000 unidades. Suponga que la demanda diaria es N(100, 10); es
decir, D 5 100 unidades y que la desviación estándar es s 5 10 unidades. Determine el tamaño de
las existencias de reserva, B, utilizando a 5 .05.

Según el ejemplo 13.3-1, el tiempo de espera efectivo es L 5 2 días. Por lo tanto,

Si K.05 5 1.645, las existencias de reserva se calculan como

La política de inventario óptimo (de reserva) requiere pedir 1000 unidades siempre que el nivel
del inventario se reduzca a 223 (5 B 1 mL 5 23 1 2 3 100) unidades.

CONJUNTO DE PROBLEMAS 16.1A

1. En el ejemplo 16.1-1, determine la política de inventario óptima en cada uno de los si-
guientes casos:

*(a) Tiempo de espera 5 15 días.
(b) Tiempo de espera 5 23 días.
(c) Tiempo de espera 5 8 días.
(d) Tiempo de espera 5 10 días.

2. La demanda diaria de un popular CD en una tienda de música es aproximadamente
N(200, 20). El costo de conservar el CD en los anaqueles es de $.04 por disco por día. A
la tienda le cuesta $100 colocar un nuevo pedido. El tiempo de espera para la entrega es
de 7 días. Determine la política de inventario óptima de la tienda dado que la tienda
desee limitar la probabilidad de un faltante a cuando mucho .02.

3. La demanda diaria de rollos de película para cámara en una tienda de regalos es N(300, 5).
El costo de retener un rollo en la tienda es de $.02 por día, y el costo fijo de colocar un
pedido de reposición es de $30. La política de inventario de la tienda es pedir 150 rollos
siempre que el nivel del inventario se reduzca a 80 unidades. Al mismo tiempo, mantie-
ne siempre una existencia de reserva de 20 rollos.
(a) Determine la probabilidad de quedarse sin existencias.
(b) Dados los datos de la situación, recomiende la política de inventario para la tienda,

puesto que la probabilidad de que haya faltantes no puede exceder el .10.

B Ú 14.14 * 1.645 L 23 luces de neón

 sL = 2s2L = 2102 * 2 = 14.14 unidades

 mL = DL = 100 * 2 = 200 unidades

16.1 Modelos de revisión continua 555
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16.1.2 Modelo EOQ probabilístico

La base para el desarrollo del modelo EOQ “probabilizado” en la sección 16.1.1 es
“plausible”, pero no hay razón alguna para creer que el modelo produce una política
de inventario óptima. El hecho de que la información pertinente en relación con la na-
turaleza probabilística de la demanda se ignore en un principio, sólo para ser “revivi-
da” de una manera totalmente independiente en una etapa posterior de los cálculos,
basta para refutar la optimalidad. Para remediar la situación, esta sección presenta un
modelo más preciso en el cual la naturaleza probabilística de la demanda se incluye di-
rectamente en la información del modelo. Por supuesto, la precisión más alta se obtie-
ne a expensas de cálculos más complejos.

La figura 16.3 ilustra un cambio típico del nivel de inventario con el tiempo.
Pueden o no ocurrir faltantes durante los tiempos de espera (posiblemente aleatorios),
como se ilustra por los ciclos 1 y 2, respectivamente. La política exige pedir la cantidad
y, siempre que la cantidad del inventario disponible se reduzca a un nivel R. Como en
el caso determinístico, el nivel de volver a pedir R es una función del tiempo de espera
entre la colocación y la recepción de un pedido. Los valores óptimos de y y R se deter-
minan minimizando la suma esperada de los costos de retención y los costos de faltan-
tes por unidad de tiempo.

El modelo está basado en tres suposiciones:

1. La demanda no satisfecha durante el tiempo de espera se pone en rezago.
2. No se permite más de un pedido pendiente.
3. La distribución de la demanda durante el tiempo de espera permanece estacio-

naria con el tiempo.

Para desarrollar la función de costo total por unidad de tiempo, sean

f(x) 5 fdp de la demanda, x, durante el tiempo de espera
D 5 Demanda esperada por unidad de tiempo 
h 5 Costo de retención por unidad de inventario por unidad de tiempo
p 5 Costo por faltantes por unidad de inventario
K 5 Costo de preparación por pedido

FIGURA 16.3

Modelo de inventario probabilístico
con faltantes

Tiempo
de espera

Ciclo 1 Ciclo 2

Tiempo
de espera

y y

yR
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Ahora se determinan los elementos de la función de costos.

1. Costo de preparación. La cantidad aproximada de pedidos por unidad de tiempo
es , de modo que el costo de preparación por unidad de tiempo es aproximada-

mente .
2. Costo de retención esperado. Si I es el nivel de inventario promedio, el costo de

retención esperado por unidad de tiempo es hI. El nivel de inventario promedio
se calcula como

La fórmula promedia los inventarios inicial y final esperados en un ciclo, el cual
es y 1 E{R2x} y E{R2x}, respectivamente. Como una aproximación, la expre-
sión ignora el caso en que R – E{x} pueda ser negativo.

3. Costo por faltantes esperado. Los faltantes ocurren cuando x . R. Su valor espe-
rado por ciclo se calcula como 

Debido a que se supone que p es proporcional sólo a la cantidad faltante, el costo es-
perando por ciclo es pS, y, basándose en ciclos por unidad de tiempo, el costo por

faltante por unidad de tiempo es .
La función de costo total resultante por unidad de tiempo es

Los valores óptimo, y* y R*, se determinan a partir de 

Estas dos ecuaciones dan por resultado

(1)

(2)

Los valores óptimos de y* y R* no pueden determinarse en formas cerradas. Se
aplica un algoritmo iterativo, desarrollado por Hadley y Whitin (1963, págs. 169-174) a

L
q

R

f1x2 dx =  
hy…

pD

y… = C2D1K + pS2
h

0TCU
0R

 = h - apD
y
bLq

R

f1x2dx = 0

0TCU
0y

 = - aDK
y2 b +

h

2
-
pDS

y2 = 0

TCU1y, R2 =  
DK

y
+ h ay

2
 + R - E{x}b +

pD

y
 L

q

R

1x - R2f1x2 dx

pS

y/D =  pDSy

D
y

S = L
q

R

1x - R2f1x2dx

I =  
1y + E{R - x}2 + E{R - x}

2
 =  

y

2
 + R - E{x}

KD
y

D
y
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las ecuaciones (1) y (2) para determinar la solución. El algoritmo converge en un nú-
mero finito de iteraciones, siempre que haya una solución factible.

Para R 5 0, las ecuaciones (1) y (2) producen

Los valores óptimos únicos de y y R existen cuando . El valor mínimo de y* es

, el cual ocurre cuando S 5 0.
Los pasos del algoritmo son

Paso 0. Use la solución inicial , y sea R0 5 0. Establezca i 5 1, y
continúe con el paso i.

Paso i. Use yi para determinar Ri a partir de la ecuación (2). Si Ri « Ri21, deténgase;
la solución óptima es y* 5 yi y R* 5 Ri. De lo contrario, use Ri en la ecuación
(1) para calcular yi. Establezca i 5 i 1 1, y repita el paso i.

Ejemplo 16.1-2

Electro utiliza resina en su proceso de fabricación a razón de 1000 galones por mes. Colocar un
pedido le cuesta $100 a Electro. El costo de retención por galón por mes es de $2, y el costo por
faltante por galón es de $10. Los datos históricos muestran que la demanda durante el tiempo de
espera es uniforme en el rango (0, 100) galones. Determine la política de colocación de pedidos
óptima para Electro.

Utilizando los símbolos del modelo, tenemos

D 5 1000 galones por mes 
K 5 $100 por pedido
h 5 $2 por galón por mes
p 5 $10 por galón

E{x} 5 50 galones 

Primero tenemos que verificar si el problema tiene una solución única. Con las ecuaciones
de y obtenemos

Debido a que , existe una solución única para y* y R*.
La expresión para S se calcula como

S = L
100

R

1x - R2 1
100

 dx =  
R2

200
 - R + 50

y
'

Ú yN

y
'

 =  
10 * 1000

2
 = 5000 galones

yN  = C2 * 10001100 + 10 * 502
2

= 774.6 galones

y
'

yN

f(x) =  1
100 , 0 … x … 100

y1 = y… = 42KD
h

42KD
h

y
'

Ú yN

y
'

 =  
PD

h

yN  = C2D1K + pE{x}2
h



16.1 Modelos de revisión continua 559

Utilizando S en las ecuaciones (1) y (2) obtenemos

(3)

(4)

La ecuación (4) produce

(5)

Ahora utilizamos las ecuaciones (3) y (5) para determinar la solución óptima.

Iteración 1

Iteración 2

Por consiguiente,

Iteración 3

Por lo tanto,

Debido a que y3 « y3 y R3 « R2, la solución óptima es R* « 93.611 galones, y* « 319.44 galo-
nes. Se puede utilizar el archivo excelContRev.xls para determinar la solución a cualquier grado
de precisión especificando la tolerancia |Ri212Ri|. La política de inventario óptima exige pedir
aproximadamente 320 galones siempre que el nivel del inventario se reduzca a 94 galones.

R3 = 100 -  
319.44

50
 = 93.611 galones

y3 = 1100,000 + 10,000 * .20399 = 319.44 galones

S  =  
R2

2

200
 - R2 + 50 = .20399 galones

R2 = 100 -  
319.39

50
 - = 93.612

y2 = 1100,000 + 10,000 * .19971 = 319.37 galones

S  =  
R1

2

200
 - R1 + 50 = .19971 galones

R1 = 100 -  
316.23

50
 = 93.68 galones

y1  = C2KD
h

= C2 * 1000 * 100
2

= 316.23 galones

Ri = 100 -  
yi

50

L
100

R

1
100

 dx =  
2yi

10 * 1000

yi = C2 * 10001100 + 10S2
2

= 1100,000 + 10,000S galones
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CONJUNTO DE PROBLEMAS 16.1B

1. Por los datos dados en el ejemplo 16.1-2, determine lo siguiente:
(a) El número aproximado de pedidos por mes.
(b) El costo de preparación mensual esperado.
(c) El costo de retención esperado por mes.
(d) El costo por faltantes esperado por mes.
(e) La probabilidad de que las existencias se agoten durante el tiempo de espera.

*2. Resuelva el problema 16.1-2, suponiendo que la demanda durante el tiempo de espera se
mantiene uniforme entre 0 y 50 galones.

*3. En el ejemplo 16.1-2 suponga que la demanda durante el tiempo de espera se mantiene
uniforme entre 40 y 60 galones. Compare la solución con la obtenida en el ejemplo 
16.1-2, e interprete los resultados. (Sugerencia: En ambos problemas, E{x} es la misma,
pero la varianza en este problemas es más pequeña.)

4. Determine la solución óptima para el ejemplo 16.1-2, suponiendo que la demanda 
durante el tiempo de espera sea N(100, 2). Suponga que D 5 10,000 galones por mes,
h 5 $2 por galón por mes, p 5 $4 por galón, y K 5 $20.

16.2 MODELOS DE UN SOLO PERIODO

Esta sección se ocupa de artículos de inventario que están en existencia durante un
solo periodo de tiempo. Al final del periodo se desechan las unidades sobrantes, si las
hay, como en el cado de artículos de moda. Se desarrollarán dos modelos. La diferencia
entre ellos es si se incurre o no en un costo de preparación para colocar un pedido.

Los símbolos utilizados en el desarrollo de los modelos incluyen

K 5 Costo de preparación por pedido
h 5 Costo de retención por unidad retenida durante el periodo
p 5 Costo de penalización por unidad faltante durante el periodo
f(D) = pdf de la demanda, D, durante el periodo
y 5 Cantidad de pedido
x 5 Inventario disponible antes de que se coloque un pedido

El modelo determina el valor óptimo de y que minimiza la suma de los costos de
retención y por faltantes. Si y(5y*) es óptima, la política de inventario exige pedir
y*2x si x , y; de lo contrario, no se coloca pedido alguno.

16.2.1 Modelo sin preparación (Modelo Newsvendor)

Este modelo se conoce en la literatura como modelo newsvendor (el nombre original
clásico es modelo del periodiquero). Tiene que ver con el almacenamiento y venta de
periódicos.

Las suposiciones del modelo son

1. La demanda ocurre al instante en el inicio del periodo inmediatamente después
de que se recibe el pedido.

2. No se incurre en ningún costo de preparación.
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FIGURA 16.4

Inventario con retención y faltantes en un modelo de un solo periodo
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La figura 16.4 muestra la posición del inventario después de que se satisface la
demanda, D. Si D , y, la cantidad y 2 D se mantiene durante el periodo. Si D . y,
habrá una cantidad faltante si D 2 y.

El costo esperado durante el periodo, E{C(y)}, se expresa como

Se puede demostrar que la función E{C(y)} es convexa en y, y por lo tanto tiene un mí-
nimo único. Si tomamos la primera derivada E{C(y)} con respecto a y y la igualamos a
cero, obtenemos 

o

o

Si la demanda, D, es discreta, entonces la función de costo asociada es 

Las condiciones necesarias para optimalidad son 

E{C1y - 12} Ú E{C1y2} y E{C1y + 12} Ú E{C1y2}
E{C1y2} = ha

y

D= 0
1y - D2f1D2 + p a

q

D=y+ 1
1D - y2f1D2

P{D … y…} =  
p

p + h

hP{D … y} - p11 - P{D … y}2 = 0

hL
y

0
f1D2 dD - pL

q

0
f1D2 dD = 0

E{C1y2} = hL
y

0
1y - D2f1D2dD + pL

q

y

1D - y2f1D2dD
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Estas condiciones también son suficientes porque E{C(y)} es una función convexa.
Después de algunas manipulaciones algebraicas, la aplicación de estas condiciones da
por resultado las siguientes desigualdades para determinar y*:

P{D … y… - 1} …  
p

p + h
 … P{D … y…}

Ejemplo 16.2-1

El propietario de un puesto de periódicos desea determinar la cantidad de ejemplares de USA
Now que debe tener en existencia al inicio de cada día. El propietario paga 30 centavos por un
ejemplar y lo vende a 75 centavos. La venta del periódico suele ocurrir entre 7:00 y 8:00 A.M. (la
demanda es prácticamente instantánea). Los periódicos que sobran al final del día se reciclan y
se obtiene un ingreso de 5 centavos por ejemplar. ¿Cuántos ejemplares debe tener en existencia
cada mañana?, suponiendo que la demanda del día puede describirse como 

(a) Una distribución normal con media de 300 ejemplares y desviación estándar de 20.

(b) Una fdp discreta, f(D), definida como

D 200 220 300 320 340
f(D) .1 .2 .4 .2 .1

Los costos de retención y penalización no se definen de forma directa en esta situación. Los
datos del problema indican que cada ejemplar no vendido le costará al dueño 30 2 5 5 25 cen-
tavos, y que el costo de penalización por agotamiento de las existencias es de 75 2 30 5 45 centa-
vos por ejemplar. Por lo tanto, en función de los parámetros del problema de inventario, tene-
mos h 5 25 centavos por ejemplar por día y p 5 45 centavos por ejemplar por día.

Primero determinamos la relación crítica como

Caso (a). La demanda D es N(300, 20). Podemos utilizar la plantilla excelStatTables.xls para
determinar la cantidad de pedido óptima ingresando 300 en F15, 20 en G15, y .643 en L15, y así
se obtiene la respuesta deseada de 307.33 periódicos en R15.Además, podemos utilizar las tablas
normales estándar del apéndice A. Defina 

Entonces a partir de las tablas normales

o

Por lo tanto, y* 5 307.3. El pedido óptimo es aproximadamente de 308 ejemplares.

y… - 300

20
 = .366

P{z … .366} L .643

z =  
D - 300

20

p

p + h
 =  

45
45 + 25

 = .643
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y 200 220 300 320 340
P{D … y} .1 .3 .7 .9 1.0

Caso (b). La demanda D sigue una fdp discreta, f(D). Pero antes determinamos la FDA P{D # y} como

CONJUNTO DE PROBLEMAS 16.2A

1. Para el modelo de un solo periodo, demuestre que para la demanda discreta la cantidad
de pedido óptima se determina a partir de 

2. La demanda de un artículo durante un solo periodo ocurre de manera instantánea al ini-
cio del periodo. La fdp asociada se mantiene uniforme entre 10 y 15 unidades. Debido a
la dificultad de estimar los parámetros de costo, la cantidad de pedido se determina de
modo que la probabilidad de un excedente o de un faltante no exceda de .1. ¿Es posible
satisfacer ambas condiciones al mismo tiempo?

*3. El costo de retención unitario en una situación de inventario de un solo periodo es de $1.
Si la cantidad de pedido es de 4 unidades, encuentre el intervalo permisible del costo de
penalización unitario implicado por las condiciones óptimas. Suponga que la demanda
ocurre instantáneamente al inicio del periodo y la función de densidad de probabilidad
de la demanda es como sigue:

P{D … y… - 1} …  
p

p + h
 … P{D … y…}

D 0 1 2 3 4 5 6 7 8
f(D) .05 .1 .1 .2 .25 .15 .05 .05 .05

Para la relación crítica calculada de .643, tenemos

Por lo tanto, y* 5 300 ejemplares.

P1D … 2202 … .643 … P1D … 3002

4. La librería de la U de A ofrece un programa de reproducción de apuntes de clase para
profesores participantes. El profesor Yataha le da clases a un grupo de primer año de
entre 200 y 250 estudiantes, distribuidos de manera uniforme. La reproducción de una
copia cuesta $10 y se vende a $25. Los estudiantes compran sus libros al inicio del semes-
tre. Las copias de los apuntes del profesor Yataha que no se venden se trituran para re-
ciclarlas. Mientras tanto, una vez que la librería se queda sin copias, no se imprimen más.
Si la librería desea maximizar sus ingresos, ¿cuántas copias debe imprimir?

5. QuickStop vende todos los días café y donas a sus clientes a las 6:00 A.M. La tienda com-
pra las donas a 7 centavos cada una y las vende a 25 centavos hasta las 8:00 A.M. Después
de esa hora las donas se venden a 5 centavos cada una. La cantidad de clientes que com-
pran donas entre las 6:00 y las 8:00 está uniformemente distribuida entre 30 y 50. Cada
cliente suele pedir 3 donas con café. ¿Cuántas donas debe tener aproximadamente en
existencia QuickStop cada mañana para maximizar los ingresos?
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FIGURA 16.5

Política de pedir óptima (s-S) en
un modelo de un solo periodo con
costo de preparación
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*6. Colony Shop se está surtiendo de abrigos para el siguiente invierno. Colony paga $50 por
un abrigo y lo vende a $110.Al final de la temporada invernal, Colony ofrece los abrigos a
$55 cada uno. La demanda de abrigo durante la temporada invernal es de más de 20 pero
menor que o igual a 30, todos con iguales probabilidades. Debido a que la temporada inver-
nal es corta, el costo de retención es insignificante.Asimismo, el gerente de Colony no cree
que la escasez de sacos provoque penalizaciones. Determine la cantidad de pedido óptima
que maximizará el ingreso para Colony Shop. Puede utilizar una aproximación continua.

7. Para el modelo de un solo periodo, suponga que el artículo se consume de modo unifor-
me durante el periodo (y no de forma instantánea al inicio del periodo). Desarrolle el
modelo de costo asociado, y determine la cantidad de pedido óptima.

8. Resuelva el ejemplo 16.2.-1 suponiendo que la demanda es continua y uniforme durante
el periodo, y que la fdp de la demanda es uniforme entre 0 y 100. (Sugerencia: Aproveche
los resultados del problema 7.)

16.2.2 Modelo con preparación (Política s-S)

El presente modelo difiere del de la sección 16.2.1 en que se incurre en un costo de
preparación K. Utilizando la misma notación, el costo esperado total por periodo es

Como se muestra en la sección 16.2.1, el valor óptimo y* debe satisfacer

Ya que K es constante, el valor mínimo de también debe ocurrir en y*.
En la figura 16.5, S 5 y*, y el valor de s(, S) se determina a partir de la ecuación

La ecuación resulta en otro valor s1(.S), el cual se descarta.

E{C1s2} = E{C1S2} = K + E{C1S2}, s 6 S

E{C1y2}
P{y … y…} =  

p

p + h

 = K + hL
y

0
1y - D2f1D2dD + pL

q

y

1D - y2f1D2dDE{C1y2} = K + E{C1y2}



Suponga que x es la cantidad disponible antes de que se coloque un pedido.
¿Cuánto debe pedirse? Esta pregunta se responde con tres condiciones:

1. .
2. .
3. .

Caso 1 . Debido a que x ya está disponible, su costo equivalente es E{C(x)}. Si se
pide cualquier cantidad adicional y 2 x (y . x), el costo correspondiente dada y es

, el cual incluye el costo de preparación K. De acuerdo con la figura 16.5, tenemos

Por lo tanto, la política de inventario óptima en este caso es pedir S 2 x unidades.

Caso 2 . De acuerdo con la figura 16.5, tenemos

Por lo tanto, no es ventajoso pedir en este caso, y y* 5 x.

Caso 3 . De acuerdo con la figura 16.5, tenemos y . x,

Esta condición indica que, como en el caso (2), no es ventajoso colocar un pedido; es
decir, y* 5 x.

La política de inventario óptima, más conocida como política s-S, se resume como
Si x , s, pedir S 2 x

Si x $ s, no pedir 

La optimalidad de la política s-S está garantizada porque la función de costo asociada
es convexa.

Ejemplo 16.2-2

La demanda diaria de un artículo durante un solo periodo ocurre de forma instantánea al inicio
del periodo. La fdp de la demanda es uniforme entre 0 y 10 unidades. El costo de retención uni-
tario del artículo durante el periodo es de $.50, y el costo de penalización unitario por agota-
miento de las existencias es de $4.50. Se incurre en un costo fijo de $25 cada vez que se coloca un
pedido. Determine la política de inventario óptima para el artículo.

Para determinar y*, considere

Inclusive,

P{D … y…} = L
y*

0

1
10

  dD =  
y…

10

p

p + h
 =  

4.5
4.5 + .5

 = .9

E{C1x2} 6 E{C1y2}(x 7 S)

E{C1x2} …  mín 
y7x
E{C1y2} = E1C1S22(s … x … S)

mín 
y7x
E{C1y2} = E1C1S22 6 E{C1x2}E{C1y2}(x 7  s)

x 7 S
s … x … S
x 6 s
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FIGURA 16.6

Política s-S aplicada al ejemplo 16.2-2 S � 9
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Por lo tanto, S 5 y* 5 9.
La función de costo esperada es

El valor de s se determina resolviendo

O bien

Si S 5 9, la ecuación anterior se reduce a

La solución de esta ecuación es s 521, o s 5 19. Se descarta el valor de s . S. Debido a que
el valor restante es negativo (521), s no tiene un valor factible. Como se muestra en la figura
16.6, la política de inventario óptima en este caso exige que no se pida el artículo. Este resultado
se suele presentar cuando la función de costo es “plana” o cuando el costo de preparación es alto
con respecto a los demás costos del modelo.

CONJUNTO DE PROBLEMAS 16.2B

*1. Determine la política de inventario óptima para la situación en el ejemplo 16.2-2, supo-
niendo que el costo de preparación es de $5.

2. En el modelo de un solo periodo de la sección 16.2.1, suponga que el modelo maximiza la
utilidad y que se incurre en un costo de preparación K. Si r es el precio de venta unitario y
utilizando la información de la sección 16.2-1, desarrolle una expresión para la utilidad espe-
rada, y determine la cantidad de pedido óptima. Resuelva el problema numéricamente para
r 5 $3, c 5 $2, p 5 $4, h 5 $1 y K 5 $10. La fdp de la demanda es uniforme entre 0 y 10.

3. Resuelva el problema 5, conjunto 16.2a, suponiendo que hay un costo fijo de $10 asocia-
do con la entrega de las donas.

s2 - 18s - 19 = 0

.25s2 - 4.5s + 22.5 = 25 + .25S2 - 4.5S + 22.5

E{C1s2} = K + E{C1S2}
 = .25y2 - 4.5y + 22.5

E{C1y2} = .5 L
y

0
 

1
10

 1y - D2dD + 4.5 L
10

y

 
1
10

 1D - y2 dD



16.3 MODELO DE VARIOS PERIODOS

Esta sección presenta un modelo de varios periodos en el supuesto de que no haya
costo de preparación.Adicionalmente, el modelo permite un retraso en el cumplimien-
to de la demanda y supone un retraso cero en la entrega. Además, asume que una fdp
estacionaria, f(D), describe la demanda en cualquier periodo.

El modelo de varios periodos considera el valor descontado del dinero. Si a (, 1)
es el factor de descuento por periodo, entonces una cantidad $A disponible durante n
periodos a partir de ahora tiene un valor actual de $anA.

Suponga que la situación del inventario comprende n periodos y que la demanda
no satisfecha se deja pendiente exactamente un periodo. Defina

Fi(xi) 5 Utilidad máxima esperada durante los periodos i, i 1 1,…, y n, dado que xi
es la cantidad disponible antes de que se coloque un pedido en el periodo i.

Aplicando la notación utilizada en la sección 16.2 y suponiendo que c y r son el costo y
el ingreso por unidad, respectivamente, la situación del inventario puede formularse
utilizando el siguiente modelo de programación dinámica probabilística (el capítulo
24, en el sitio web, detalla este punto):

El valor de xi puede ser negativo porque la demanda no satisfecha se quedó pendiente.
Se incluye la cantidad ar(D 2 yi) en la segunda integral porque (D 2 yi) es la demanda
no satisfecha en el periodo i que se debe satisfacer en el periodo i 1 1.

El problema puede resolverse de manera recursiva. En el caso en que la cantidad
de periodos es infinita, la ecuación recursiva se reduce a

donde x y y son los niveles del inventario durante cada periodo antes y después de re-
cibir un pedido, respectivamente.

+ aL
q

0

F1y - D2f1D2dD f
+ L

q

y

[ry + ar(D - y) - p(D - y)] f(D)dD

 F(x) =  máx 
yÚx

 e-c(y - x) + L
y

0
[rD - h(y - D)] f(D)dD

+ aL
q

0
Fi+ 11yi - D2f1D2dD f ,  i = 1, 2, Á , n

+ L
q

yi

[ryi + ar(D - yi) - p(D - yi)] f(D)dD

 Fi(xi) =  máx 
yiÚxi
e-c(yi - xi) + L

yi

0
[rD - h1yi - D2] f(D)dD

 Fn+ 11yn - D2 = 0
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El valor óptimo de y se determina a partir de la siguiente condición necesaria, la cual
también resulta ser suficiente porque la función del ingreso esperado F(x) es cóncava.

El valor de se determina como sigue. Si hay más unidades b (. 0) disponibles
al inicio del siguiente periodo, la utilidad durante el siguiente periodo se incrementará
en cb, porque se tiene que pedir esta cantidad mucho menor. Esto significa que 

La condición necesaria es por lo tanto

Por tanto, el nivel óptimo del inventario y* se determina a partir de

La política de inventario óptima durante cada periodo, si el nivel del inventario
de entrada es x, se da por tanto como

Si x , y*, pedir y*2x

Si x $ y*, no pedir

CONJUNTO DE PROBLEMAS 16.3A

1. Considere un modelo de inventario probabilístico de dos periodos en el cual el cumpli-
miento de la demanda se queda pendiente, y los pedidos se reciben con retraso cero en
entrega. La fdp de la demanda por periodo es uniforme entre 0 y 10, y los parámetros de
costos se dan como

Precio de venta unitario 5 $2
Precio de compra unitario 5 $1
Costo de retención unitario por mes 5 $.10
Costo de penalización por mes 5 $3
Factor de descuento 5 .8

Encuentre la política de inventario óptima para los dos periodos, suponiendo que el in-
ventario inicial en el periodo 1 es cero.

L
y*

0
f1D2 dD =  

p + 11 - a21r - c2
p + h + 11 - a2r

-c - h L
y

0
f(D) dD + c(1 - a)r + p d a1 - L

y

0
f1D2dDb + ac L

q

0
f(D) dD = 0

0F1y - D2
0y

 = c

0F1y - D2
0y

 + aL
q

0

0F1y - D2
0y

 f1D2dD = 0

 
0(.)
0y

 = - c - hL
y

0
f(D) dD + L

q

y

[(1 - a)r + p] f(D)dD



*2. La fdp de la demanda por periodo en un modelo de inventario de horizonte infinito se da
como

Los parámetros de costos unitarios son 

Precio de venta unitario 5 $10
Precio de compra unitario 5 $8
Costo de retención unitario 5 $1
Costo de penalización unitario por mes 5 $10
Factor de descuento 5 .9

Determine la política de inventario óptima suponiendo un retraso en la entrega cero y
que el no cumplimiento de la demanda se queda pendiente.

3. Considere la situación de inventario de horizonte infinito con retraso cero en la entrega y
cumplimiento de la demanda pendiente. Desarrolle la política de inventario óptima basa-
do en la minimización del costo dado que

Costo de retención por z unidades 5 hz2

Costo de penalización por z unidades 5 px2

Demuestre que para el caso especial en que h 5 p, la solución óptima es independiente
de la fdp de la demanda.
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17.1 DEFINICIÓN DE UNA CADENA DE MARKOV

Sea Xi una variable aleatoria que caracteriza el estado del sistema en puntos discretos
en el tiempo t 5 1, 2… . La familia de variables aleatorias {Xi} forma un proceso es-
tocástico con una cantidad finita o infinita de estados.

Ejemplo 17.1-1 (Mantenimiento de una máquina)

La condición de una máquina en el momento del mantenimiento preventivo mensual es mala,
regular o buena. Para el mes t, el proceso estocástico en esta situación se representa como sigue:

La variable aleatoria Xt es finita porque representa tres estados: malo (0), regular (1) y bueno (2).

Ejemplo 17.1-2 (Taller)

Los trabajos llegan al azar a un taller a razón de 5 trabajos por hora. El proceso de llegada sigue
una distribución de Poisson, la cual, en teoría, permite que llegue cualquier cantidad de trabajos
durante el intervalo de tiempo (0, t). El proceso de estado infinito que describe la cantidad de
trabajos que llegan es Xt 5 0,1,2,…, t . 0.

Proceso de Markov. Un proceso estocástico es un proceso de Markov si un estado
futuro depende sólo del estado inmediatamente anterior. Esto significa que dados los

Xt = L
0,  si la condición es mala
1,  si la condición es regular
2,  si la condición es buena

M ,  t = 1, 2, . . .

CAPÍTULO 17

Cadenas de Markov
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tiempos cronológicos t0, t1,…, tn, la familia de variables aleatorias
es un proceso de Markov si

En un proceso Markoviano con n estados exhaustivos y mutuamente excluyen-
tes, las probabilidades en un punto específico del tiempo t 5 0,1,2,… se definen como 

Esto se conoce como probabilidad de transición en un paso al ir del estado i en el ins-
tante t 2 1 al estado j en el instante t. Por definición, tenemos 

La notación utilizada en la matriz es una forma conveniente de resumir las probabili-
dades de transición en un paso:

La matriz P define una cadena de Markov. Tiene la propiedad de que todas sus
probabilidades de transición pij son estacionarias e independientes a lo largo del tiem-
po.Aunque una cadena de Markov puede incluir un número infinito de estados, la pre-
sentación en este capítulo se limita a sólo cadenas finitas, ya que es el único que se
necesita en el texto.

Ejemplo 17.1-3 (Problema del jardinero)

Cada año, durante la temporada de siembra de marzo a septiembre, un jardinero realiza una prue-
ba química para verificar la condición de la tierra. Según el resultado de la prueba, la productividad
en la nueva temporada puede ser uno de tres estados: (1) buena, (2) regular y (3) mala. A lo largo
de los años, el jardinero ha observado que la condición de la tierra del año anterior afecta la pro-
ductividad del año actual y que la situación se describe mediante la siguiente cadena de Markov:

Las probabilidades de transición muestran que la condición de la tierra puede o deteriorar-
se o permanecer como está pero nunca mejorar. Por ejemplo, si la condición de la tierra es buena
en este año (estado 1) hay 20% de que no cambie el año siguiente, 50% de probabilidad de que

P =
Estado del
sistema el

siguiente año
c 1

2
3

1 2 3£ .2 .5 .3
0 .5 .5
0 0 1

≥
Estado del

sistema
este año

P = ±p11 p12 p13 Á p1n

p21 p22 p23 Á p2n

o o o o o

pn1 pn2 pn3 Á pnn

≤

pij Ú 0, (i, j) = 1, 2, Á ,  n

a
j

pij = 1, i = 1, 2, Á , n

pij = P{Xt = j ƒXt- 1 = i}, i = 1, 2, Á , n, j = 1, 2, Á , n, t = 0, 1, 2, Á , T

P{Xtn = xn ƒXtn - 1
= xn- 1, Á , Xt0 = x0} = P{Xtn = xn ƒXtn - 1

= xn- 1}

{Xtn} = {x1, x2, Á , xn}
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sea regular (estado 2), y 30% de probabilidad de que se deteriorará a una condición mala (esta-
do 3). El jardinero modifica las probabilidades de transición P utilizando un fertilizante orgáni-
co. En este caso, la matriz de transición se vuelve:

El uso de fertilizante puede conducir a mejorar las condiciones del suelo.

CONJUNTO DE PROBLEMAS 17.1A

1. Un profesor de ingeniería adquiere una computadora nueva cada dos años. El profesor
puede elegir de entre tres modelos: Ml, M2 y M3. Si el modelo actual es Ml, la siguiente
computadora puede ser M2 con probabilidad .2, o M3 con probabilidad .15. Si el modelo
actual es M2, las probabilidades de cambiar a Ml y M3 son .6 y .25, respectivamente. Pero
si el modelo actual es M3, entonces las probabilidades de comprar los modelos Ml y M2
son .5 y .1, respectivamente. Represente la situación como una cadena de Markov.

*2. Una patrulla policiaca vigila un vecindario conocido por sus actividades pandilleriles.
Durante un patrullaje hay 60% de probabilidades de llegar a tiempo al lugar donde se re-
quiere la ayuda; si no sucede algo, continuará el patrullaje regular. Después de recibir una
llamada, hay 10% de probabilidades de cancelación (en cuyo caso el patrullaje normal se
reanuda), y 30% de probabilidad de que la unidad ya esté respondiendo a la llamada ante-
rior. Cuando la patrulla llega a la escena del suceso, hay 10% de probabilidades de que los
instigadores hayan desaparecido (en cuyo caso reanuda su patrullaje), y 40% de probabili-
dades de que se haga una aprehensión de inmediato. De otro modo, los oficiales rastrearán
el área. Si ocurre una aprehensión, hay 60% de probabilidades de trasladar a los sospecho-
sos a la estación de policía, de lo contrario son liberados y la unidad regresa a patrullar.
Exprese las actividades probabilísticas de la patrulla en la forma de una matriz de transición.

3. Cyert and Associates (1963). Banco 1 ofrece préstamos los que o se liquidan cuando se
vencen o se retrasan. Si el pago sobre un préstamo se retrasa más de cuatro trimestres 
(1 año), Banco 1 considera el préstamo como una deuda incobrable y la cancela. La siguien-
te tabla proporciona una muestra de la experiencia anterior de Banco 1 con préstamos.

P1 =
1
2
3
  
 £ 1 2 3

.30 .60 .10

.10 .60 .30

.05 .40 .55
≥

Exprese la situación del préstamo de Banco 1 como una cadena de Markov.
4. Pliskin and Tell (1981). Los pacientes que sufren de falla de riñón pueden conseguir un

trasplante o someterse a diálisis periódicas. Durante un año cualquiera, 30% se somete 
a trasplantes cadavéricos y 10% recibe riñones de donadores vivos. En el año después de
un trasplante, 30% de los trasplantes cadavéricos y 15% de los recipiendarios de donado-

Cantidad
prestada

Trimestres 
de retraso Historia de pagos

$10,000 0 $2000 pagados, $3000 retrasados un trimestre, $3000 retrasados 2 
trimestres, y el resto retrasados 3 trimestres.

$25,000 1 $4000 pagados, $12,000 retrasados un trimestre, $6000 retrasados dos
trimestres, y el resto retrasado 3 trimestres.

$50,000 2 $7500 pagados, $15,000 retrasados un trimestre, y el resto retrasado 
2 trimestres.

$50,000 3 $42,000 pagados, y el resto retrasado un trimestre.
$100,000 4 $50,000 pagados.
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res vivos regresan a la diálisis. Los porcentajes de muertes entre los dos grupos son 20%
y 10%, respectivamente. De aquellos que están en el grupo de diálisis, 10% mueren, y de
los que sobreviven más de un año después de un trasplante, 5% mueren y 5% regresan a
la diálisis. Represente la situación como una cadena de Markov.

17.2 PROBABILIDADES DE TRANSICIÓN ABSOLUTAS Y DE n PASOS

Dada la matriz de transición P de una cadena de Markov y el vector de probabilidades

iniciales , las probabilidades absolutas

después de n(. 0) transiciones se calculan como sigue:

La matriz Pn se conoce como la matriz de transición de n pasos. A partir de estos
cálculos, podemos ver que

y

Éstas se conocen como ecuaciones de Chapman-Kolomogorov.

Ejemplo 17.2-1

La siguiente matriz de transición es aplicable al problema del jardinero con fertilizante (ejemplo
17.1-3):

La condición inicial de la tierra es buena, es decir a(0) 5 (1,0,0). Determine las probabilidades
absolutas de los tres estados del sistema después de 1,8 y 16 temporadas de siembra.

P16 = £ .30 .60 .10
.10 .60 .30
.05 .40 .55

≥16

= £ .101659 .52454 .372881
.101659 .52454 .372881
.101659 .52454 .372881

≥
P8 = £ .30 .60 .10

.10 .60 .30

.05 .40 .55
≥8

= £ .101753 .525514 .372733
.101702 .525435 .372863
.101669 .525384 .372863

≥
P =

1
2
3
   £ 1 2 3

.30 .60 .10

.10 .60 .30

.05 .40 .55

≥

Pn = Pn-m Pm, 0 6 m 6 n

Pn = Pn- 1P

 a(n) = a(0)Pn
o

 a(3) = a(2)P = a(0)P2P = a(0)P3

 a(2) = a(1)P = a(0)PP = a(0)P2

 a(1) = a(0)P

a(n) = {aj
1n2, j = 1, 2, Á , n}a(0) = {aj

102, j = 1, 2, Á , n}
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Por lo tanto, las probabilidades absolutas requeridas se calculan como 

Las filas de P8 y el vector de probabilidades absolutas a(8) son casi idénticos. El resultado es
más evidente para P16. Ello demuestra que, a medida que la cantidad de transiciones aumenta,
las probabilidades absolutas se vuelven independientes del a(0) inicial. Las probabilidades resul-
tantes se conocen como probabilidades de estado estable.

Comentarios. Los cálculos asociados con las cadenas de Markov son tediosos. La plantilla ex-
celMarkovChains.xls proporciona una hoja de cálculo general fácil de usar para realizar estos
cálculos (vea el Momento de Excel después del ejemplo 17.4-1).

CONJUNTO DE PROBLEMAS 17.2A

1. Considere el problema 1, conjunto 17.1a. Determine la probabilidad de que el profesor
compre el modelo actual en 4 años.

*2. Considere el problema 2, conjunto 17.1a. Si la patrulla se encuentra en este momento en
la escena de una llamada, determine la probabilidad de que haga una aprehensión en dos
patrullajes.

3. Considere el problema 3, conjunto 17.1a. Suponga que actualmente Banco 1 tiene présta-
mos pendientes que ascienden a $500,000. De éstos, $100,000 son nuevos, $50,000 están
retrasados un trimestre, $150,000 están retrasados dos trimestres, $100,000 están retrasa-
dos tres trimestres, y el resto están retrasados más de tres trimestres. ¿Cuál sería la situa-
ción de estos préstamos después de dos ciclos de préstamos? 

4. Considere el problema 4, conjunto 17.1a.
(a) Para un paciente al que se está tratando con diálisis, ¿cuál es la probabilidad de reci-

bir un trasplante en dos años?
(b) Para un paciente que ha sobrevivido más de un año, ¿cuál es la probabilidad de que

sobreviva cuatro años más?
5. Un juego de lanzamiento de dados utiliza una cuadrícula de cuatro casillas. Las casillas

están designadas en sentido horario como A, B, C y D con retribuciones monetarias de
$4, 2 $2, 2 $6 y $9, respectivamente. Comenzando en la casilla A, lanzamos el dado para
determinar la siguiente casilla a la que nos moveremos en el sentido de las manecillas del
reloj. Por ejemplo, si el dado muestra 2, nos movemos a la casilla C. El juego se repite uti-
lizando la última casilla como punto inicial.
(a) Exprese el problema como una cadena de Markov.
(b) Determine la ganancia o pérdida esperadas después de lanzar el dado 5 veces.

 a(16) = (1 0 0) £ .101659 .52454 .372881
.101659 .52454 .372881
.101659 .52454 .372881

≥ = (.101659 .52454 .372881)

 a(8) = (1 0 0) £ .101753 .525514 .372733
.101702 .525435 .372863
.101669 .525384 .372863

≥ = (.101753 .525514 .372733)

 a(1) = (1 0 0) £ .30 .60 .10
.10 .60 .30
.05 .40 .55

≥ = (.30 .60 .1)
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17.3 CLASIFICACIÓN DE LOS ESTADOS EN UNA CADENA DE MARKOV

Los estados de una cadena de Markov se clasifican con base en la probabilidad de tran-
sición pij de P.

1. Un estado j es absorbente si está seguro de regresar a sí mismo en una transición;
es decir, pij 5 1.

2. Un estado j es transitorio si puede llegar a otro estado pero no puede regresar desde
otro estado. Matemáticamente, esto sucederá si .

3. Un estado j es recurrente si la probabilidad de ser revisitado desde otros estados
es 1. Esto puede suceder si, y sólo si, el estado no es transitorio.

4. Un estado j es periódico con periodo de t . 1 si es posible un retorno sólo en t, 2t,
3t,… pasos. Esto significa que cuando n no es divisible entre t.

Con base en las definiciones dadas, una cadena de Markov finita no puede cons-
tar de todos los estados transitorios porque, por definición, la propiedad transitoria re-
quiere entrar a otro estado de “atrapamiento” y nunca volver a visitar el estado transi-
torio. El estado de “atrapamiento” no necesita ser un solo estado absorbente. Por
ejemplo, considere la cadena

Los estados 1 y 2 son transitorios porque no se puede volver a entrar a ellos una vez que
el sistema se queda “atrapado” en los estados 3 y 4. Un conjunto cerrado lo constituyen
los estados 3 y 4, que en cierta forma desempeñan el papel de un estado absorbente. Por
definición, todos los estados de un conjunto cerrado deben comunicarse, lo cual significa
que es posible ir de cualquier estado a cualquier otro estado del conjunto en una o más
transiciones; es decir, . Observe que cada uno de los
estados 3 y 4 puede ser absorbente si p33 5 p44.

Se dice que una cadena de Markov es ergódica si todos los estados son recurren-
tes y aperiódica (no periódica). En este caso las probabilidades absolutas después de n
transiciones, a(n) 5 a(0)Pn, siempre convergen de forma única a una distribución limi-
tante (estado estable) que es independiente de las probabilidades iniciales a(0), como
se demostrará en la sección 17.4.

Ejemplo 17.3-1 (Estados absorbentes y transitorios)

Considere la cadena de Markov del jardinero sin fertilizante:

Los estados 1 y 2 son transitorios porque llegan al estado 3 pero nunca se puede regresar a ellos.
El estado 3 es absorbente porque p33 5 1. Estas clasificaciones también pueden verse cuando

es calculada. Por ejemplo, considere

P100 =  £ 0 0 1
0 0 1
0 0 1

≥ lím
n:q
p
ij

(n) = 0

P = £ .2 .5 .3
0 .5 .5
0 0 0

≥

pij
(n) 7 0  para todas las i Z j y  n Ú 1

P = § 0 1 0 0
0 0 1 0
0 0 .3 .7
0 0 .4 .6

¥

pjj
1n2 = 0

lím 
n:q

p
ij

(n) = 0,  para todas las  i



17.3 Clasificación de los estados en una cadena de Markov 577

El resultado muestra que, a la larga, la probabilidad de volver a entrar al estado 1 o 2 es cero, y
que la probabilidad de quedarse “atrapado” en el estado absorbente 3 es segura.

Ejemplo 17.3-2 (Estados periódicos)

Podemos probar la periodicidad de un estado calculando Pn y observando los valores de
para n 5 2,3,4,… . Estos valores serán positivos sólo en el periodo correspondiente del estado.
Por ejemplo, consideremos

Los resultados muestran que p11 y p33 son positivos para valores impares de n y cero en otro res-
pecto (puede confirmar esta observación calculando Pn con n . 5). Esto significa que el periodo
de cada uno de los estados 1 y 3 es t 5 2.

CONJUNTO DE PROBLEMAS 17.3A

1. Clasifique los estados de las siguientes cadenas de Markov. Si un estado es periódico, de-
termine su periodo:

*(a)

*(b)

(c)

(d) £ .1 0 .9
.7 .3 0
.2 .7 .1

≥
¶0 1 0 0 0 0

0 .5 .5 0 0 0
0 .7 .3 0 0 0
0 0 0 1 0 0
0 0 0 0 .4 .6
0 0 0 0 .2 8

∂
§ 1

2
1
4

1
4 0

0 0 1 0
1
3 0 1

3
1
3

0 0 0 1

¥
£0 1 0

0 0 1
1 0 0

≥

P4 = £ .0567 .9424 0
0 1 0
0 .9424 .0576

≥ ,  P5 = £ 0 .97696 .02304
0 1 0

.03456 .96544 0
≥

P = £ 0 .6 .4
0 1 0
.6 .4 0

≥   P2 = £ .24 .76 0
0 1 0
0 .76 .24

≥ ,  P3 = £ 0 .904 .0960
0 1 0

.144 .856 0
≥

pii
(n)
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2. Un juego implica cuatro bolas y dos urnas. Una bola en cualquier urna tiene una proba-
bilidad de 50-50 de ser transferida a la otra urna. Represente el juego como una cadena
de Markov, y demuestre que sus estados son periódicos con periodo t 5 2.

3. Un museo consta de seis salas de tamaños iguales dispuestas en forma de una cuadrícula
con tres filas y dos columnas. Cada muro interior tiene una puerta que conecta con las
salas adyacentes. Los guardias se desplazan por las salas a través de las puertas interiores.
Represente los movimientos de cada guardia en el museo como una cadena de Markov, y
demuestre que sus estados son periódicos con periodo t 5 2.

17.4 PROBABILIDADES DE ESTADO ESTABLE Y TIEMPOS DE RETORNO MEDIOS 
DE CADENAS ERGÓDICAS

En una cadena ergódica, las probabilidades de estado estable se definen como

Estas probabilidades, las cuales son independientes de , se pueden determinar de
las ecuaciones

(Una de las ecuaciones en p5 pP es redundante). Lo que p5 pP dice es que las pro-
babilidades p permanecen sin cambiar después de una transición adicional, y por esta
razón representan la distribución de estado estable.

Un subproducto directo de las probabilidades de estado estable es la determina-
ción del número esperado de transiciones antes de que el sistema regrese a un estado j
por primera vez. Esto se conoce como tiempo medio del primer retorno o tiempo
medio de recurrencia, y se calcula en una cadena de Markov de n estados como 

Ejemplo 17.4-1

Para determinar la distribución de probabilidad de estado estable del problema del jardinero
con fertilizante (ejemplo 17.1-3), tenemos

O bien,

p1 + p2 + p3 = 1

 p3 = .1p1 + .3p2 + .55p3

 p2 = .6p1 + .6p2 + .4p3

 p1 = .3p1 + .1p2 + .05p3

(p1  p2  p3) = (p1  p2  p3) £ .3 .6 .1
.1 .6 .3

.05 .4 .55
≥

mjj =  
1
pj

 , j = 1, 2, Á ,  n

 a
j

pj = 1

 P = P P

{aj
(0)}

pj =  lím
n:q

 aj
1n2

, j = 0, 1, 2, Á
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FIGURA 17.1

Hoja de cálculo Excel para realizar los cálculos de cadena de Markov (archivo excelMarkovChanins.xls)

(Cualquiera de las primeras tres ecuaciones es redundante). La solución es p1 5 0.1017, p2 5

0.5254 y p3 5 0.3729; es decir que a la larga la condición de la tierra será buena 10% del tiempo,
regular 52% del tiempo, y mala 37% del tiempo.

Los tiempos medios del primer retorno se calculan como

Esto quiere decir que, en promedio, se requerirán aproximadamente 10 temporadas de siembra
para que la tierra regrese a un buen estado, 2 temporadas para que regrese al estado regular, y 3
temporadas para que regrese a un estado malo. Estos resultados apuntan hacia un panorama
menos promisorio para la condición de la tierra con el uso propuesto de fertilizantes. Un pro-
grama más agresivo debe mejorar el panorama. Por ejemplo, considere la siguiente matriz de
transición en la que las probabilidades de trasladarse a un buen estado son más altas que en la
matriz previa:

En este caso, p1 5 0.31, p2 5 0.58, y p3 5 0.11, lo cual da m11 5 3.2, m22 5 1.7 y m33 5 8.9, un cam-
bio reversible del sombrío panorama dado anteriormente.

Momento de Excel 

La figura 17.1 aplica la plantilla general excelMarkovChains.xls al ejemplo del jardinero. La
plantilla calcula las probabilidades absolutas y de estado constante de n pasos de cualquier ca-
dena de Markov. Los pasos son autoexplicativos. En el paso 2a, puede invalidar los códigos de
estado preestablecidos (1,2,3,…) por un código de su elección, y luego hacer clic en el botón ubi-
cado en la celda L2. Los nuevos códigos se transferirán automáticamente a través de la hoja de
cálculo cuando ejecute el paso 4.

P = £ .35 .6 .05
.3 .6 .1

.25 .4 .35
≥

m11 =  
1

.1017
 = 9.83,  m22 =  

1
.5254

 = 1.9,  m33 =  
1

.3729
 = 2.68
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Ejemplo 17.4-2 (Modelo de costos)

Considere el problema del jardinero con fertilizante (ejemplo 17.1-3). El jardín necesita dos
sacos de fertilizante si la tierra es buena. La cantidad se incrementa en 25% si la tierra es regu-
lar, y 60% si la tierra es mala. El costo del fertilizante es de $50 por saco. El jardinero estima un
rendimiento anual de $250 si no se utiliza fertilizante, y de $420 si se aplica el fertilizante. ¿Es re-
dituable utilizar fertilizante?

Aplicando las probabilidades de estado constante del ejemplo 17.4-1, obtenemos

Incremento diferencial del valor anual del rendimiento 5 $420 — $250 5 $170. Se recomienda el
uso del fertilizante.

CONJUNTO DE PROBLEMAS 17.4A
*1. En un día soleado, MiniGolf puede tener ingresos de $2000. Si el día está nublado, los in-

gresos se reducen 20%. Un día lluvioso reducirá los ingresos en 80%. Si hoy está soleado
hay 80% de probabilidades de que mañana esté soleado sin amenaza de lluvia. Si está
nublado, hay 20% de probabilidades de que mañana llueva, y 30% de probabilidades de
que esté soleado. Seguirá lloviendo hasta el día siguiente con una probabilidad de .8, pero
con 10% de probabilidades de que esté soleado.

(a) Determine los ingresos diarios esperados para MiniGolf.

(b) Determine el promedio de días que no estarán soleados.

2. A Joe le encanta salir a comer a los restaurantes del área. Sus comidas favoritas son la
mexicana, la italiana, la china y la tailandesa. En promedio, Joe paga $10,00 por una co-
mida mexicana, $15.00 por una comida italiana, $9.00 por una comida china, y $11.00 por
una comida tailandesa. Los hábitos alimenticios de Joe son predecibles: Hay 70% de pro-
babilidad de que la comida de hoy sea una repetición de la de ayer y probabilidades igua-
les de que cambie a una de las tres restantes.

(a) ¿Cuánto paga Joe en promedio por su comida diaria?

(b) ¿Con qué frecuencia consume Joe comida mexicana?

3. Algunos exconvictos pasan el resto de su vida libre en juicio, en la cárcel, o en libertad
condicional. Al inicio de cada año, las estadísticas muestran que hay 50% de probabilida-
des de que un exconvicto libre cometa un nuevo delito y de que sea procesado. El juez
puede enviar al exconvicto a la cárcel con una probabilidad de .6, u otorgarle la libertad
condicional con probabilidad de .4. Un vez que están en la cárcel, 10% de los exconvictos
serán puestos en libertad por buena conducta. De los que están en libertad condicional,
10% cometen nuevos delitos y son arraigados para ser procesados, 50% regresarán para
cumplir su sentencia por violar las órdenes de libertad condicional, y 10% serán puestos
en libertad por falta de pruebas. Los contribuyentes solventan el costo asociado con el
castigo de los exconvictos. Se estima que un juicio costará aproximadamente $5000, una
sentencia de cárcel promedio costará $20,000, y un periodo de libertad condicional pro-
medio costará $2000.

(a) Determine el costo esperado por exconvicto.

(b) ¿Con qué frecuencia regresa un exconvicto a la cárcel?

= $135.51

= 100 * .1017 + 125 * .5254 + 160 * .3729

+ (1.60 * 2) * $50 * p3

Costo del fertilizante anual esperado = 2 * $50 * p1 + (1.25 * 2) * $50 * p2
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Demanda diaria D 0 1 2 3
P{D} .1 .3 .4 .2

4. Una tienda vende un artículo especial cuya demanda diaria puede ser descrita por la si-
guiente función de densidad de probabilidad:

La tienda está comparando dos políticas de colocar pedidos: (1) Pedir hasta 3 unidades
cada 3 días si el nivel de las existencias es menor que 2; de lo contrario, no pedir. (2) Pedir
3 unidades cada 3 días si el nivel del inventario es cero; de lo contrario, no pedir. El costo
fijo por ordenar por envío es de $300, y el costo de retener las unidades excedentes por
unidad por día es de $3. Se espera una entrega inmediata.
(a) ¿Cuál política debe adoptar la tienda para minimizar el costo diario esperado total

de pedir y retener?
(b) Para las dos políticas, compare el promedio de días entre agotamientos sucesivos del

inventario.
*5. Hay tres categorías de filtro del impuesto sobre la renta en los Estados Unidos: los que

nunca evaden impuestos, lo que en ocasiones lo hacen, y los que siempre lo hacen. Un
examen de las declaraciones de impuestos auditadas de un año al siguiente muestra que
de los que no evadieron impuestos el año pasado, 95% continuará en la misma categoría
este año; 4% se moverá a la categoría “a veces”, y el resto se moverá a la categoría “siem-
pre”. Para los que a veces evaden impuestos, 6% se moverá a “nunca”, 90% permanecerá
igual, y 4% se moverá a “siempre”. Por lo que se refiere a los evasores de “siempre”, los
porcentajes respectivos son 0, 10 y 90%.
(a) Exprese el problema como una cadena de Markov.
(b) A la larga, ¿cuáles serían los porcentajes de  las categorías de evasión de impuestos

de “nunca”, “a veces” y “siempre”?
(c) Las estadísticas muestran que un contribuyente en la categoría “a veces” evade im-

puestos que suman aproximadamente $5000 por declaración y en la categoría “siem-
pre” suman aproximadamente $12,000. Suponiendo que la población de contribu-
yentes es de 70 millones y la tasa del impuesto sobre la renta promedio es  12%,
determine la reducción anual de los impuestos recolectados debido a la evasión.

6. Warehouzer posee un bosque renovable para plantar pinos. Los árboles caen dentro de
una de cuatro categorías según su edad: bebés (0-5 años); jóvenes (5-10 años); maduros
(11-15 años), y viejos (más de 15 años). Diez por ciento de los árboles bebés y jóvenes se
muere antes de llegar al siguiente grupo de edad. Por lo que se refiere a los árboles ma-
duros y viejos, 50% se talan y sólo 5% se mueren. Debido a la naturaleza de renovación
de la operación, todos los árboles talados y muertos son reemplazados con árboles nue-
vos (bebés) al final del siguiente ciclo de cinco años.
(a) Exprese la dinámica del bosque como una cadena de Markov.
(b) Si el bosque puede contener un total de 500,000 árboles, determine la composición a

largo plazo del bosque.
(c) Si un árbol nuevo se planta a un costo de $1 por árbol y uno talado tiene un valor de $20

en el mercado, determine el ingreso anual promedio derivado de la operación del bosque.
7. La dinámica de la población se ve afectada por el continuo movimiento de personas que

busca una mejor calidad de vida o un mejor empleo. La ciudad de Mobile tiene una pobla-
ción citadina interna, una población suburbana y una población rural circundante. El
censo levantado a intervalos de 10 años muestra que 10% de la población rural se traslada
a los suburbios y 5% al interior de la ciudad. En cuanto a la población suburbana, 30% se
traslada a las áreas rurales y 15% al interior de la ciudad. La población del interior de la
ciudad no se cambiaría a los suburbios, pero 20% sí se cambiaría a la quieta vida rural.
(a) Exprese la dinámica de la población como una cadena de Markov.
(b) Si el área metropolitana de Mobile en la actualidad incluye 20,000 residentes rurales,

100,000 suburbanos, y 30,000 habitantes citadinos, ¿cuál será la distribución de la po-
blación en 10 años? ¿En 20 años?

(c) Determine el panorama de la población de Mobile a largo plazo.
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8. Una agencia de renta de automóviles tiene oficinas en Phoenix, Denver, Chicago y
Atlanta. La agencia permite rentas en una y en dos direcciones de modo que los automó-
viles rentados en un lugar pueden terminar en otro. Las estadísticas muestran que al final
de cada semana 70% de todas las rentas son en dos direcciones. En cuanto a las rentas en
una dirección: Desde Phoenix, 20% van a  Denver, 60% a Chicago, y el resto va a
Atlanta; desde Denver, 40% va a Atlanta y 60% a Chicago; de Chicago, 50% va a Atlanta
y el resto a Denver; y desde Atlanta, 80% va a Chicago, 10% a Denver, y 10% a Phoenix.
(a) Exprese la situación como una cadena de Markov.
(b) Si la agencia inicia la semana con 100 autos en cada lugar, ¿cómo será la distribución

en dos semanas?
(c) Si cada lugar está diseñado para manejar un máximo de 110 autos, ¿habría a la larga

un problema de disponibilidad de espacio en cualquiera de los lugares?
(d) Determine el promedio de semanas que transcurren antes de que un auto regrese a

su lugar de origen.
9. Una librería repone las existencias de un libro popular a nivel de 100 ejemplares al inicio

de cada día. Los datos de los últimos 30 días proporciona las siguientes posiciones de in-
ventario al final del día: 1,2,0,3,1,0,0,3,0,1,1,3,2,3,3,2,1,0,2,0,1,3,0,0,3,2,1,2,2.
(a) Represente el inventario diario como una cadena de Markov.
(b) Determine la probabilidad de estado estable de que la librería se quede sin libros en

cualquier día.
(c) Determine el inventario diario esperado.
(d) Determine el promedio de días entre inventarios cero sucesivos.

10. En el problema 9, suponga que la demanda diaria puede exceder la oferta, lo cual da
lugar a faltantes (inventario negativo). El nivel del inventario al final del día durante 
los 30 días pasados se da como: 1,2,0, —2,2,2, —1, —1,3,0,0,1, —1, —2,3,3, —2, —1,0,2,0,
—1,3,0,0,3, —1,1,2, —2.
(a) Exprese la situación como una cadena de Markov.
(b) Determine la probabilidad a largo plazo de un excedente de inventario en un día.
(c) Determine la probabilidad a largo plazo de una escasez de inventario en un día.
(d) Determine la probabilidad a largo plazo de que la oferta diaria satisfaga la demanda

diaria con exactitud.
(e) Si el costo de retención por libro excedente (al final del día) es de $15 por día y el

costo de penalización por libro faltante es de $4.00 por día, determine el costo del in-
ventario esperado por día.

11. Una tienda inicia una semana con al menos 3 PC. La demanda por semana se estima en 0
con probabilidad de .15, 1 con probabilidad de .2, 2 con probabilidad de .35, 3 con proba-
bilidad de .25, y 4 con probabilidad de .05. La demanda insatisfecha se deja pendiente. La
política de la tienda es colocar un pedido para entregarse al inicio de la siguiente semana
siempre que el nivel del inventario se reduzca por debajo de 3 PC. El nuevo pedido siem-
pre regresa las existencias a 5 PC.
(a) Exprese la situación como una cadena de Markov.
(b) Suponga que la semana se inicia con 4 PC. Determine la probabilidad de que un pe-

dido se coloque al final de dos semanas.
(c) Determine la probabilidad a largo plazo de que no se coloque ningún pedido en

cualquier semana.
(d) Si el costo fijo de colocar un pedido es de $200, el costo de retención  por PC por se-

mana es de $5, y el costo de penalización por computadora faltante es de $20, deter-
mine el costo de inventario esperado por semana.

12. Resuelva el problema 11, suponiendo que el tamaño del pedido, cuando se coloca, sea
exactamente de 5 piezas.
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13. En el problema 12, suponga que la demanda de las PC es de 0,1,2,3,4 o 5 con iguales pro-
babilidades. Suponga además que la demanda no satisfecha no se ha dejado pendiente,
pero que aún se incurre en un costo de penalización por faltante.
(a) Exprese la situación como una cadena de Markov.
(b) Determine la probabilidad a largo plazo de que ocurra un faltante.
(c) Si el costo fijo de colocación de un pedido es de $200, el costo de retención por

computadora por semana es de $5, y el costo de penalización por faltante de PC 
por semana es de $20, determine los costos de colocación de pedido e inventario e
sperados por semana.

14. El gobierno federal trata de promover las actividades de las pequeñas empresas otorgan-
do concesiones anuales para proyectos. Todas las licitaciones son competitivas, pero la
probabilidad de recibir una concesión es máxima si el propietario no ha recibido alguna
durante los últimos tres años, y mínima si se dieron otorgamientos en cada uno de los úl-
timos tres años. De manera específica, la probabilidad de obtener una concesión si no se
ha recibido ninguna en los últimos tres años es de .9. Se reduce a .8 si se recibió una, a .7
si se recibieron dos, y de sólo .5 si se recibieron tres.
(a) Exprese la situación como una cadena de Markov.
(b) Determine la cantidad esperada de otorgamientos por propietario por año.

15. Jim Bob ha recibido muchas multas por violaciones al reglamento de tránsito.
Desafortunadamente para Jim Bob, la tecnología moderna puede seguir el rastro de sus
multas anteriores. En cuanto acumula 4 infracciones, su licencia de manejo es revocada
hasta que completa una nueva clase de educación vial en cuyo caso comienza con un his-
torial limpio. Jim Bob es más imprudente inmediatamente después de completar la clase
de educación vial, e invariablemente la policía lo detiene con 50% de probabilidades de
ser multado. Después de cada nueva multa, trata de ser más cuidadoso, lo cual reduce la
probabilidad de una multa en .1.
(a) Exprese el problema de Jim Bob como una cadena de Markov.
(b) ¿Cuál es el promedio de veces que Jim Bob es detenido por la policía antes de que

su licencia sea revocada de nuevo?
(c) ¿Cuál es la probabilidad de que Jim Bob pierda su licencia?
(d) Si cada multa es de $100, ¿cuánto, en promedio, paga Jim Bob entre suspensiones su-

cesivas de su licencia? 
16. El clima diario en Fayettville, Arkansas, puede ser nublado (C), soleado (S), lluvioso (R),

o ventoso (W). Los registros a lo largo de los últimos 90 días son
CCSWRRWSSCCCRCSSWRCRRRRR CWSSWRWWRCRRRRCWSSWRWCCS
WRRWSSCCCRCSSWSSWRWWRCRRRRCWSSWRWCCSWRRWSSS. Basado en
estos registros, use una cadena de Markov para determinar la probabilidad de que un día
típico en Fayetteville pueda estar nublado, soleado, lluvioso o ventoso.

17.5 TIEMPO DEL PRIMER PASO

En la sección 17.4 utilizamos las probabilidades de estado estable para calcular mij, el
tiempo medio del primer retorno para el estado j. En esta sección nos interesa el tiempo
medio del primer paso mij, definido como el número esperado de transiciones para llegar
por primera vez al estado j desde el estado i. Los cálculos tienen su origen en la deter-
minación de la probabilidad de al menos un paso del estado i al estado j, definido como

, donde es la probabilidad del primer paso del estado i al estado j en

n transiciones. Se puede determinar una expresión para recursivamente a partir de 

pij
1n2 = fij

1n2 + a
n- 1

k= 1
fij
1k2
pij
1n-k2,  n = 1, 2, Á

fij
1n2fij

1n2
fij = aq

n= 1fij
(n)
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Se supone que la matriz de transiciones tiene m estados.

1. Si fij , 1,no es seguro que el sistema pase alguna vez del estado i al estado j y mij 5 q.
2. Si fij 5 1, la cadena de Markov es ergódica, y el tiempo medio del primer paso del

estado i al estado j se calcula como

Una forma más simple de determinar el tiempo medio del primer paso de todos
los estados en una matriz de n transiciones, P, es utilizar la siguiente fórmula ba-
sada en una matriz:

donde
I 5 matriz de identidad (m 2 1) 

Nj 5 Matriz de transiciones P sin su fila j-ésima y columna j-ésima del estado destino j
1 5 vector columna (m 2 1) con todos los elementos iguales a 1

La operación matricial (I 2 Nj)
211 suma en esencia las columnas de (I 2 Nj)

21.

Ejemplo 17.5-1

Considere una vez más la cadena de Markov del jardinero con fertilizantes.

Para demostrar el cálculo del tiempo del primer paso a un estado específico desde todos los
demás, considere el paso de los estados 2 y 3, (regular y malo) al estado 1 (bueno). Por lo tanto, j 5 1 y 

De modo que,

Por lo tanto, se requerirán 12.5 temporadas en promedio, para pasar la tierra regular a tierra
buena, y 13.34 temporadas para ir de la tierra mala a la tierra buena.

Pueden realizarse cálculos similares para obtener m12 y m32 desde (I 2 N2) y m13 y m23 desde
(I 2 N3), como se muestra a continuación.

Momento de Excel

Se puede usar la plantilla excelFirstPassTime.xls para realizar los cálculos de los tiempos medios
del primer paso. La figura 17.2 muestra los cálculos asociados con el ejemplo 17.5-1. El paso 2 de
la hoja pone automáticamente la matriz de transiciones P en cero según el tamaño dado en el

am21

m31
b = a7.50 5.00

6.67 6.67
b a1

1
b = a12.50

13.34
b

N1 = a.60 .30
.40 .55

b ,  (I - N1)
-1 = a .4 - .3

- .4 .45
b-1

= a7.50 5.00
6.67 6.67

b

P = £ .30 .60 .10
.10 .60 .30
.05 .40 .55

≥

‘ mij ‘ = (I - Nj)
-11, j Z i

mij = a
q

n= 1
nfij

(n)

P = ‘ pij ‘
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FIGURA 17.2

Cálculos del tiempo del primer paso del ejemplo 17.5-1 utilizando la hoja de cálculo de Excel 
(archivo excelFirstPassTime.xls)

paso 1. En el paso 2a, puede anular los códigos de estado preestablecidos en la fila 6 con un có-
digo de su elección. El código se transfiere entonces automáticamente por toda la hoja de cálcu-
lo. Después de que ingrese las probabilidades de transición, el paso 3 crea la matriz I 2 P. El
paso 4 se realiza por completo utilizando I 2 P como el origen para crear I 2 Nj(j 5 1,2 y 3).
Puede hacerlo copiando toda la I 2 P y sus códigos de estado y pegándola en la ubicación desti-
no y luego utilizando las operaciones apropiadas de Excel Cut and Paste para liberar I 2 P de la
fila j y la columna j. Por ejemplo, para crear I 2 N2, primero copie I 2 P y sus códigos de estado
en la ubicación destino seleccionada. A continuación, resalte la columna 3 de la matriz copiada,
córtela, y péguela en la columna 2, y así se elimina la columna 2. Asimismo, resalte ahora la fila 3
de la matriz resultante, córtela, y luego péguela en la fila 2, y así se elimina la fila 2. La I 2 N2
creada automáticamente realiza su código de estado correcto.

Una vez que se crea I 2 Nj, se calcula la inversa (I 2 Nj)
21 en la ubicación destino. Las ope-

raciones asociadas se demuestran invirtiendo (I 2 N1) en la figura 17.2:

1. Ingrese la fórmula 5 MINVERSE(B18:C19) en E18.
2. Resalte E18:F19, el área donde residirá la inversa.
3. Pulse F2.
4. Pulse CTRL + SHIFT + ENTER.
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FIGURA 17.3

Laberinto del ratón del problema 1,
conjunto 17.5a

2

1

3

4

5

Los valores del primer paso de los estados 2 y 3 al estado 1 se calculan entonces sumando las
filas de la inversa, es decir, ingresando 5 SUM(E18:F18) en H18 y luego copiando H18 en H19.
Después de crear I 2 N para i 5 2, e i 5 3, los cálculos restantes se realizan de forma automáti-
ca copiando E18:F19 en E22:F23 y E26:F27, y copiando H18:H19 en H22:H23 y H26:H27.

CONJUNTO DE PROBLEMAS 17.5A

*1. Un laberinto se compone de las rutas mostradas en la figura 17.3. La intersección 1 es la
entrada al laberinto, y la intersección 5 es la salida. En cualquier intersección, el ratón
tiene probabilidades iguales de seleccionar cualquiera de las rutas disponibles. Cuando el
ratón llega a la intersección 5, el experimento se repite volviendo a entrar al laberinto
por la intersección 1.
(a) Exprese el laberinto como una cadena de Markov.
(b) Determine la probabilidad de que, comenzando en la intersección 1, el ratón llegue a

la salida después de tres intentos.
(c) Determine la probabilidad a largo plazo de que el ratón localice la intersección de salida.
(d) Determine el promedio de intentos necesario para llegar al punto de salida desde la

intersección 1.
2. En el problema 1, por intuición, si se agregan más opciones (rutas) al laberinto, ¿se incre-

mentará o reducirá el promedio de intentos necesarios para llegar al punto de salida?
Demuestre la respuesta agregando una ruta entre las intersecciones 3 y 4.

3. Jim y Joe comienzan un juego con cinco fichas, tres para Jim y dos para Joe. Se lanza una
moneda, y si el resultado es cara, Jim le da a Joe una ficha, de lo contrario Jim obtiene
una ficha de Joe. El juego termina cuando Jim o Joe tiene todas las fichas. En este punto,
hay 30% de probabilidades de que Jim y Joe continúen con el juego, comenzando de
nuevo con tres fichas para Jim y dos para Joe.
(a) Represente el juego como una cadena de Markov.
(b) Determine la probabilidad de que Joe gane con tres lanzamientos de la moneda. De

que Jim gane haciendo lo mismo.
(c) Determine la probabilidad de que un juego termine a favor de Jim. A favor de Joe.
(d) Determine el promedio de lanzamientos de moneda necesario antes de que Jim

gane. Joe gana.
4. Un jardinero aficionado con capacitación en botánica está buscando la forma de fecun-

dar por polinización cruzada flores de lis rosas con flores de lis rojas, naranjas y blancas.
Experimentos anuales muestran que las rosas pueden producir 60% rosas y 40% blancas;
las rojas pueden producir 40% rojas, 50% rosas y 10% naranjas, las naranjas pueden pro-
ducir 25% naranjas, 50% rosas y 25% blancas, y las blancas pueden producir 50% rosas y
50% blancas.
(a) Exprese la situación del jardinero como una cadena de Markov.
(b) Si el jardinero inició la fecundación por polinización cruzada con números iguales de

cada tipo de flores de lis, ¿cómo sería la distribución después de 5 años? ¿A largo plazo?
(c) ¿Cuántos años en promedio les llevaría a las flores de lis rojas producir flores de lis

blancas?
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*5. Los clientes pueden ser leales a marcas de productos pero pueden ser persuadidos me-
diante publicidad y mercadotecnia inteligentes para que cambien de marcas. Considere el
caso de tres marcas: A, B y C. Los clientes que se “mantienen” leales a una marca dada se
estiman en 75%, con un margen de sólo 25% para que sus competidores hagan un cam-
bio. Los competidores lanzan sus campañas publicitarias una vez al año. Para los clientes
de la marca A, las probabilidades de que cambien a las marcas B y C son de .1 y .15, res-
pectivamente. Los clientes de la marca B son propensos a cambiar a las marcas A y C,
con las siguientes probabilidades: .2 y .05 respectivamente. Los clientes de la marca C
pueden cambiar a la marcas A y B con probabilidades iguales.
(a) Exprese la situación como una cadena de Markov.
(b) A largo plazo, ¿qué tanto segmento del mercado dominará cada marca?
(c) ¿Cuánto tiempo en promedio le llevará a un cliente de la marca A cambiar a la

marca B?

17.6 ANÁLISIS DE LOS ESTADOS ABSORBENTES

En el problema del jardinero, sin fertilizante la matriz de transición se da como

Los estados 1 y 2 (condiciones de tierra buena y regular) son transitorios, y el estado 3
(condición de tierra mala) es absorbente, porque una vez que llega a ese estado el siste-
ma permanecerá allí por tiempo indefinido. Una cadena de Markov puede tener más de un
estado absorbente. Por ejemplo, un empleado puede permanecer con la misma compañía
hasta su retiro o renunciar antes (dos estados absorbentes). En estos tipos de cadenas, nos
interesa determinar la probabilidad de llegar a la absorción y el número esperado de
transiciones para llegar a ella, dado que el sistema se inicia en un estado transitorio es-
pecífico. Por ejemplo, en la cadena de Markov antes dada, si actualmente la tierra es
buena, nos interesará determinar el promedio de temporadas de siembra hasta que la
tierra se vuelva mala, e igualmente la probabilidad asociada con esta transición.

El análisis de las cadenas de Markov con estados absorbentes puede realizarse de
forma conveniente con matrices. En primer lugar, la cadena de Markov se particiona
como sigue:

La disposición requiere que todos los estados absorbentes ocupen la esquina sureste
de la nueva matriz. Por ejemplo, considere la siguiente matriz de transición:

P =

1
2
3
4

   § 1 2 3 4
.2 .3 .4 .1
0 1 0 0
.5 .3 0 .2
0 0 0 1

¥
P = aN A

0 1
b

P = £ .2 .5 .3
0 .5 .5
0 0 1

≥
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La matriz P puede reacomodarse y particionarse como 

En este caso, tenemos 

Dada la definición de A y N y el vector columna unitario 1 (de todos los elemen-
tos 1), se puede demostrar que:

Tiempo esperado en el estado j iniciado en el estado i 5 elemento (i,j) de (I 2 N)21

Tiempo esperado para la absorción 5 (I 2 N)21 1
Probabilidad de la absorción 5 (I 2 N)21A

Ejemplo 17.6-11

Se procesa un producto en secuencia en dos máquinas, I y II. La inspección se realiza después de
que una unidad del producto se completa en cualquiera de las máquinas. Hay 5% de probabili-
dades de que una unidad sea desechada antes de inspeccionarla. Después de la inspección, hay
3% de probabilidades de que la unidad sea desechada, y 7% de probabilidades de ser devuelta a
la misma máquina para trabajarla de nuevo. De lo contrario, una unidad que pasa la inspección
en ambas máquinas es buena.

(a) Para una pieza que se inicia en la máquina 1, determine el promedio de visitas a cada
estado.

(b) Si un lote de 1000 unidades se inicia en la máquina I, determine el promedio de uni-
dades buenas completadas.

Para la cadena de Markov, el proceso tiene 6 estados: iniciar en 1(s1), inspeccionar después
de I (i1), iniciar en II (s2), inspección después de II (i2), desechar después de la inspección I o II
(J), y buena después de II (G). Los estados J y G son estados absorbentes. La matriz de transi-
ciones se da como

P =

s1
i1
s2
i2
J

G

 ¶ s1 i1 s2 i2 J G

0 .95 0 0 .05 0
.07 0 .9 0 .03 0
0 0 0 .95 .05 0
0 0 .07 0 .03 .9
0 0 0 0 1 0
0 0 0 0 0 1

∂

N = a.2 .4
.5 0

b ,   A = a.3 .1
.3 .2

b ,  I = a1 0
0 1

b
P* =

1
3
2
4

   § 1 3 2 4
.2 .4 .3 .1
.5 0 .3 .2
0 0 1 0
0 0 0 1

¥

1Adaptado de J. Shamblin y G. Stevens, Operations Research: A Fundamental Approach, McGraw-Hill,
Nueva York, capítulo 4, 1974.
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Por lo tanto,

Utilizando los cálculos realizados con la plantilla excelExl7.6-1.xls (vea Momento de Excel des-
pués del ejemplo 17.5-1), obtenemos

La fila superior de (I 2 N)21 muestra que, en promedio, la máquina I es visitada 1.07 veces,
la inspección I es visitada 1.02 veces, la máquina II es visitada .98 veces, y la inspección II es visi-
tada .93 veces. La razón por la que el número de visitas en la máquina I y la inspección I sea
mayor que 1 son el retrabajo y la reinspección. Por otra parte, los valores correspondientes para
la máquina II son menores que 1 porque algunas piezas se desechan antes de que lleguen a la
máquina II. En realidad, en condiciones perfectas (ningunas piezas se desechan o retrabajan),
la matriz (I 2 N)21 demostrará que cada estación es visitada exactamente una vez (compruébelo
asignando una probabilidad de transición de 1 a todos los estados). Por supuesto, la permanencia
en cada estado podría diferir. Por ejemplo, si los tiempos de procesamiento en las máquinas I y II
son de 20 y 30 minutos y si los tiempos de inspección en I y II son de 5 y 7 minutos, entonces una
pieza que inicia en la máquina 1 será procesada (es decir, desechada o terminada) en (1.07 3 20)
1 (1.02 3 5) 1 (.98 3 30) 1 (.93 3 7) 5 62.41 minutos.

Para determinar la cantidad de piezas terminadas en un lote inicial de 1000 piezas, podemos
ver en la fila superior de (I 2 N)21A que

Probabilidad de que una pieza sea desechada 5 .16
Probabilidad de que una pieza sea terminada 5 .84

Esto significa que 1000 3 .84 5 840 piezas serán terminadas en cada lote inicial de 1000.

CONJUNTO DE PROBLEMAS 17.6A

1. En el ejemplo 17.6-1, suponga que el costo de la mano de obra para las máquinas I y II es
de $20 por hora y que para la inspección es de sólo $18 por hora. Suponga además que se
requieren 30 minutos y 20 minutos para procesar una pieza en las máquinas I y II, respec-
tivamente. El tiempo de inspección en cada una de las dos estaciones es de 10 minutos.
Determine el costo de la mano de obra asociado con una pieza terminada (buena).

 (I - N)-1A = §1.07 1.02 .98 0.93
0.07 1.07 1.03 0.98

0 0 1.07 1.02
0 0 0.07 1.07

¥ § .05 0
.03 0
.05 0
.03 .9

¥ = § .16 .84
.12 .88
.08 .92
.04 .96

¥
 (I - N)-1 = § 1 - .95 0 0

- .07 1 - .9 0
0 0 0 - .95
0 0 - .07 1

¥-1

= §1.07 1.02 .98 0.93
0.07 1.07 1.03 0.98

0 0 1.07 1.02
0 0 0.07 1.07

¥
 N =

s1
i1
s2
i2

§ s1 i1 s2 i2
0 .95 0 0

.07 0 .9 0
0 0 0 .95
0 0 .07 0

 ¥ ,   
A = § J G

.05 0

.03 0

.05 0

.03 .9

¥
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*2. Cuando pido prestado un libro de la biblioteca de la ciudad, trato de devolverlos después
de una semana. Dependiendo del tamaño del libro y de mi tiempo libre, hay 30% de pro-
babilidades de que lo conserve otra semana. Si me lo quedara dos semanas, hay 10% de
probabilidades que me lo quede una semana más. En ninguna condición me lo quedo
más de tres semanas.
(a) Exprese la situación como una cadena de Markov.
(b) Determine el promedio de semanas antes de devolver el libro a la biblioteca.

3. En el Casino del Río, un apostador puede apostar en dólares enteros. Cada apuesta gana
$1 con probabilidad de .4 o pierde $1 con probabilidad de .6. Comenzando con tres dóla-
res, el apostador se retirará si pierde todo el dinero o bien lo duplica.
(a) Exprese el problema como una cadena de Markov.
(b) Determine el promedio de apuestas hasta que el juego termina.
(c) Determine la probabilidad de terminar el juego con $6. De perder los $3.

4. Jim debe avanzar cinco años para completar su doctorado en la Universidad ABC. Sin
embargo le agrada la vida de estudiante y no tiene prisa para obtener su grado. En cual-
quier año académico, hay 50% de probabilidades de que pueda tomarse un año sabático
y 50% de probabilidad de dedicarle tiempo completo a su doctorado. Después de com-
pletar tres años académicos, hay 30% de probabilidades de que Jim pueda dar “marcha
atrás” y simplemente obtenga una maestría, 20% de probabilidades de que se tome libre
el siguiente año pero continuando con el programa de doctorado, y 50% de probabilida-
des de que asista a la escuela a tiempo completo en busca de su doctorado.
(a) Exprese la situación de Jim como una cadena de Markov.
(b) Determine el número esperado de años académicos antes de que la vida de estu-

diante de Jim termine.
(c) Determine la probabilidad de que Jim termine su ciclo académico con sólo una

maestría.
(d) Si la beca de Jim desembolsa $15,000 anuales (pero sólo cuando asiste a la escuela),

¿cuánto deberá pagar antes de que obtenga un grado?
5. Un empleado que ahora tiene 55 años de edad planea retirarse a la edad de 62 pero no

ha descartado la posibilidad de hacerlo antes. Al final de cada año pondera sus opciones
(y actitud con respecto al trabajo). La probabilidad de renunciar después de un año es de
sólo .1, pero parece incrementarse en aproximadamente .01 con cada año más que pasa.
(a) Exprese el problema como una cadena de Markov.
(b) ¿Cuál es la probabilidad de que el empleado permanezca con la compañía hasta que

planee su retiro a los 62 años?
(c) A los 57 años, ¿cuál es la probabilidad de que el empleado renuncie?
(d) A los 58 años, ¿cuál es el número esperado de años antes de que el empleado quede

fuera de la nomina?
6. En el problema 3, conjunto 17.1a,

(a) Determine el número esperado de trimestres hasta que una deuda se liquide o se
pierda como una deuda incobrable.

(b) Determine la probabilidad de que un nuevo préstamo se cancele como deuda inco-
brable. De que se liquide en su totalidad.

(c) Si un préstamo tiene seis meses de antigüedad, determine el número de trimestres
hasta que su estado se resuelva.

7. En un torneo de tenis de individuales, Andre y John están jugando un partido por el cam-
peonato. El partido se gana cuando uno de los jugadores gana tres de cinco “sets”. Las
estadísticas muestran que hay 60% de probabilidades de que Andre gane cualquier set.
(a) Exprese el partido como una cadena de Markov.
(b) En promedio, ¿cuánto durará el partido, y cuál el la probabilidad de que Andre gane

el campeonato?



17.6 Análisis de los estados absorbentes 591

(c) Si el marcador es 1 set a 2 a favor de John, ¿cuál es la probabilidad de que Andre gane?
(d) En el inciso (c), determine el número promedio de sets hasta que el partido termine

e interprete el resultado.
*8. Los estudiantes en U de A han expresado su disgusto por el rápido paso al cual el depar-

tamento de matemáticas está impartiendo el Cal I de un semestre. Para afrontar este pro-
blema, el departamento de matemáticas ahora está ofreciendo  Cal I en 4 módulos. Los
estudiantes establecerán su paso individual para cada módulo y, cuando estén listos,
harán un examen que los llevará al siguiente módulo. Los exámenes se aplican una vez
cada 4 semanas, de modo que un estudiante diligente puede completar los 4 módulos en
un semestre. Después de un par de años con este programa, 20% de los estudiantes com-
pleta el primer módulo a tiempo. Los porcentajes para los módulos del 2 al 4 fueron de
22, 25 y 30%, respectivamente.
(a) Exprese el problema como una cadena de Markov.
(b) En promedio, un estudiante que inició el módulo I al principio del semestre actual

¿será capaz de llevar el módulo II el siguiente semestre? (El Cal I es un prerrequisi-
to para el Cal II).

(c) Un estudiante que haya completado sólo un módulo el semestre anterior ¿será
capaz de terminar el Cal I al final del semestre actual? 

(d) ¿Recomienda aplicar la idea del módulo a otras materias básicas? Explique.
9. En la U de A, la promoción de profesor asistente a profesor asociado requiere el equiva-

lente de cinco puntos (años) de desempeño aceptable. Se realizan revisiones de desem-
peño una vez al año, y el candidato recibe una calificación promedio, una buena califica-
ción o una calificación excelente. Una calificación promedio equivale a estar a prueba, el
candidato no gana puntos hacia la promoción. Una buena calificación equivale a ganar
un punto, y una calificación excelente suma dos puntos. Las estadísticas muestran que en
cualquier año 10% de los candidatos obtienen una calificación promedio y 70% una
buena calificación; el resto obtiene una calificación excelente.
(a) Exprese el problema como una cadena de Markov.
(b) Determine el promedio de años hasta que un nuevo profesor asistente sea promovido.

10. Pfifer and Carraway (2000). Una compañía busca sus clientes por medio de publicidad
enviada por correo. Durante el primer año, la probabilidad de que un cliente realice una
compra es de .5, la cual se reduce a .4 en el año 2, de .3 en el año 3, y de .2 en el año 4. Si
no realiza ninguna compra en cuatro años consecutivos, el cliente es borrado de la lista
de correo. Si hace una compra la cuenta regresa a cero.
(a) Exprese la situación como una cadena de Markov.
(b) Determine el número esperado de años que un cliente nuevo permanecerá en la

lista de correo.
(c) Si un cliente no ha realizado una compra en dos años, determine el número esperado

de años que estará en la lista de correo.
11. Una máquina NC está diseñada para que funcione adecuadamente con voltajes de 108 a

112 volts. Si el voltaje se sale de este intervalo, la máquina se detiene. El regulador de vol-
taje de la máquina puede detectar variaciones en incrementos de un volt. La experiencia
muestra que el voltaje cambia cada 15 minutos. Dentro del intervalo permisible (118 a
112 volts) el voltaje puede subir 1 volt, permanecer igual, o bajar un volt, todos con igua-
les probabilidades.
(a) Exprese la situación como una cadena de Markov.
(b) Determine la probabilidad de que la máquina se detenga a causa de un voltaje bajo.

De un voltaje alto.
(c) ¿Cuál sería el voltaje ideal que haría que la máquina trabaje durante más tiempo?
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12. Considere el problema 4, conjunto 17.1a, que tiene que ver con los pacientes que sufren
de falla de riñón. Determine las siguientes medidas:
(a) Cuántos años puede un paciente permanecer sometido a diálisis.
(b) La longevidad de un paciente que inicia un tratamiento de diálisis.
(c) La esperanza de vida de un paciente que sobrevive al menos un año o más después

de un trasplante.
(d) El número esperado de años antes de que un trasplantado que sobrevivió al menos 1

año regrese a la diálisis o muera.
(e) La calidad de vida para los que sobreviven un año o más después de un trasplante

(presumiblemente, pasar pocos años con diálisis significa una mejor calidad de vida).
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18.1 ¿POR QUÉ ESTUDIAR LAS COLAS?

Esperar que nos atiendan es parte de la vida diaria. Esperamos en los restaurantes, ha-
cemos fila para abordar un avión, y nos formamos en la cola para que nos atiendan en
dependencias oficiales. El fenómeno de esperar no se limita a los seres humanos: los
trabajos esperan para ser procesados, los aviones vuelan en círculos a diferentes alturas
hasta que se les permite aterrizar, y los autos se detienen en los semáforos. Eliminar la
espera por completo no es una opción factible debido a que el costo de instalación y
operación del centro de operación puede ser prohibitivo. Nuestro único recurso es bus-
car el equilibrio entre el costo de ofrecer un servicio y el de esperar a que lo atiendan.
El análisis de las colas es el vehículo para alcanzar esta meta.

El estudio de las colas tiene que ver con la cuantificación del fenómeno de esperar por
medio de medidas de desempeño representativas, tales como longitud promedio de la cola,
tiempo de espera promedio en la cola,y el uso promedio de la instalación.El siguiente ejem-
plo demuestra cómo pueden usarse estas medidas para diseñar una instalación de servicio.

CAPÍTULO 18

Sistemas de colas

Aplicación de la vida real. Estudio de un sistema de transporte 
interno en una planta de manufactura 

En una planta de manufactura se utilizan tres camiones para transportar materiales.
Los camiones esperan en un lote central de estacionamiento hasta que se les solicita. Un
camión que responde a una solicitud viajará a las instalaciones del cliente, transportará
una carga a su destino, y luego regresará al lote central. Los departamentos principales
que utilizan el servicio son el de producción, taller de reparaciones, y el departamento
de mantenimiento. Los usuarios se han quejado por el largo tiempo que esperan a que
se desocupe un camión, en especial el departamento de producción, para solicitar que se
agregue un cuarto camión a la flotilla. Ésta es una aplicación inusual, porque la teoría
de colas se utiliza para demostrar que la causa de los largos retrasos es principalmente
logística, y que con un simple cambio del procedimiento de operación de la flotilla de
camiones no se requiere un cuarto camión. El caso 14 del capítulo 26, en el sitio web,
detalla el estudio.
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Ejemplo 18.1-1

McBurger es un restaurante de comida rápida con tres mostradores de servicio. El gerente desea
agilizar el servicio. Un estudio revela la siguiente relación entre la cantidad de mostradores y el
tiempo de espera para el servicio:

Un examen de estos datos revela un tiempo de espera promedio de 7 minutos en la situación
actual de tres mostradores. Cinco mostradores reducirían la espera a 3 minutos aproximadamente.

Modelo basado en costos. Los resultados del análisis de colas puede incorporarse a un
modelo de optimización de costos que busca minimizar la suma del costo de ofrecer el
servicio y la espera por parte de los clientes. La figura 18.1 ilustra un modelo de costos
típico (en dólares por unidad de tiempo) donde el costo del servicio se incrementa con
el aumento del nivel de servicio (por ejemplo la cantidad de mostradores de servicio).
Al mismo tiempo, el costo de esperar se reduce con el incremento del nivel de servicio.

El obstáculo principal al implementar modelos de costos es la dificultad de de-
terminar el costo de la espera, sobre todo la que experimentan las personas. Este punto
se analiza en la sección 18.9.

CONJUNTO DE PROBLEMAS 18.1A

*1. Suponga que un análisis más a fondo del restaurante McBurger revela los siguientes re-
sultados:

FIGURA 18.1

Modelo de decisión de colas basado
en costos Costo total

Costo de operar la 
instalación de servicio 
por unidad de tiempo

Nivel de servicio 
óptimo

Costo de esperar 
clientes por unidad 
de tiempo

Nivel de servicio

C
os

to

Cantidad de cajeros 1 2 3 4 5 6 7

Tiempo de espera promedio (min) 16.2 10.3 6.9 4.8 2.9 1.9 1.3

Cantidad de cajeros 1 2 3 4 5 6 7

Inactividad (%) 0 8 12 18 29 36 42
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(a) ¿Cuál es la productividad de la operación (expresada como el porcentaje del tiempo
que los empleados están ocupados) cuando el número de cajeros es cinco?

(b) El gerente desea mantener el tiempo de espera promedio en alrededor de 3 minutos
y, al mismo tiempo, mantener la eficiencia de la instalación aproximadamente a
90%. ¿Pueden alcanzarse las dos metas? Explique.

2. Acme Metal Jobshop se encuentra en el proceso de comprar un taladro vertical de usos
múltiples. Dos modelos, A y B, están disponibles con costo de operación por hora de $18
y $25, respectivamente. El modelo A es más lento que el modelo B. El análisis de colas de
máquinas similares muestra que cuando se utiliza A, el número promedio de trabajos en
la cola es 4, el cual es 30% mayor que el tamaño de la cola en B. Un trabajo retrasado re-
presenta un ingreso perdido, el que Acme estima en $10 por trabajo en espera por hora.
¿Cuál modelo debe comprar Acme?

18.2 ELEMENTOS DE UN MODELO DE COLAS

Los actores principales en una situación de colas son el cliente y el servidor. Los clien-
tes llegan a una instalación (servicio) desde de una fuente. Al llegar, un cliente puede
ser atendido de inmediato o esperar en una cola si la instalación está ocupada. Cuando
una instalación completa un servicio, “jala” de forma automática a un cliente que está
esperando en la cola, si lo hay. Si la cola está vacía, la instalación se vuelve ociosa hasta
que llega un nuevo cliente.

Desde el punto de vista del análisis de colas, la llegada de los clientes está repre-
sentada por el tiempo entre llegadas (tiempo entre llegadas sucesivas), y el servicio se
mide por el tiempo de servicio por cliente. Por lo general, los tiempos entre llegadas y
de servicio son probabilísticos (por ejemplo, la operación de una dependencia oficial)
o determinísticos (digamos la llegada de solicitantes para una entrevista de trabajo o
para una cita con un médico).

El tamaño de la cola desempeña un papel en el análisis de colas. Puede ser finito
(como en el área intermedia entre dos máquinas sucesivas), o, para todos los propósi-
tos prácticos, infinita (como en las instalaciones de pedidos por correo).

La disciplina en colas, la cual representa el orden en que se seleccionan los clien-
tes en una cola, es un factor importante en el análisis de modelos de colas. La discipli-
na más común es la de primero en llegar, primero en ser atendido (FCFS, por sus siglas
en inglés). Entre otras disciplinas esta último en llegar primero en ser atendido (LCFS,
por sus siglas en inglés) y la de servicio en orden aleatorio (SIRO, por sus siglas en
inglés). Los clientes también pueden ser seleccionados de entre la cola, con base en algún
orden de prioridad. Por ejemplo, los trabajos urgentes en un taller se procesan antes
que los trabajos regulares.

El comportamiento en colas desempeña un papel en el análisis de líneas de espe-
ra. Los clientes pueden cambiarse de una cola más larga a una más corta para reducir
el tiempo de espera, pueden desistir del todo de hacer cola debido a la larga tardanza
anticipada, o salirse de una cola porque han estado esperando demasiado.

El diseño de la instalación de servicio puede incluir servidores paralelos (por
ejemplo la operación de una dependencia oficial o un banco). Los servidores también
pueden estar dispuestos en serie (a saber, los trabajos procesados en máquinas sucesi-
vas) o estar dispuestos en red (como los ruteadores en una red de computadoras).

La fuente de la cual se generan los clientes puede ser finita o infinita. Una fuente fi-
nita limita la cantidad de clientes que llegan (por ejemplo las máquinas que solicitan el
servicio de un técnico en mantenimiento). Una fuente infinita es, para todo propósito prác-
tico, por siempre abundante (como las llamadas que entran a un conmutador telefónico).
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Las variaciones en los elementos de una situación de colas originan varios mode-
los de colas matemáticos. Este capítulo proporciona ejemplos de dichos modelos. Las
situaciones de colas complejas que no pueden representarse matemáticamente se sue-
len analizar por medio de simulación (vea el capítulo 19).

CONJUNTO DE PROBLEMAS 18.2A

1. En cada una de las siguientes situaciones, identifique al cliente y al servidor:
*(a) Aviones que llegan a un aeropuerto.
*(b) Sitio de taxis que atiende a pasajeros que esperan.

(c) Herramientas verificadas en un taller de maquinado.
(d) Cartas procesadas en una oficina postal.
(e) Inscripción para clases en una universidad.
(f) Casos en cortes legales.
(g) Operación de pagar en un supermercado.

*(h) Operación de un estacionamiento.
2. Para cada una de las situaciones en el problema 1, identifique lo siguiente: (a) la natura-

leza de la fuente solicitante (finita o infinita); (b) la naturaleza de los clientes que llegan
(individualmente o en masa); (c) el tipo del tiempo entre llegadas (probabilístico o deter-
minístico); (d) la definición y el tipo del tiempo de servicio; (f) la capacidad de la cola (fi-
nita o infinita), y (g) disciplina en las colas.

3. Estudie el siguiente sistema e identifique las situaciones de colas asociadas. En cada si-
tuación, defina los clientes, el(los) servidor(es), la disciplina en colas, el tiempo de servi-
cio, la longitud máxima de la cola y la fuente solicitante.

En un taller se reciben órdenes de trabajo para ser procesadas. Cuando las recibe, el
supervisor decide si es un trabajo urgente o regular. Algunas órdenes requieren el uso de
una o de varias máquinas idénticas. Las órdenes restantes se procesan en una línea de
producción de dos etapas, de la cual dos están disponibles. En cada grupo, se asigna una
instalación para manejar los trabajos urgentes.

Los trabajos que llegan a cualquier instalación se procesan en el orden en que lle-
gan. Las órdenes terminadas se envían en cuanto llegan de una zona de envío de capaci-
dad limitada.

Las herramientas afiladas para las diferentes máquinas se abastecen desde un depó-
sito central de herramientas. Cuando una máquina se avería, se solicita una técnico en
mantenimiento del centro de servicio para que la repare. Las máquinas que procesan ór-
denes urgentes reciben prioridades tanto en la adquisición de herramientas nuevas del
depósito como en el servicio de reparación.

4. ¿Cierto o falso?
(a) Un cliente impaciente que espera puede salirse de la cola.
(b) Si se anticipa un largo tiempo de espera, un cliente que llega puede desistir de hacer cola.
(c) Cambiarse de una cola a otra tiene por objeto reducir el tiempo de espera.

5. En cada una de las situaciones descritas en el problema 1, analice la posibilidad de que
los clientes se cambien de cola, desistan de hacer cola o se salgan de una.

18.3 PAPEL DE LA DISTRIBUCIÓN EXPONENCIAL

En la mayoría de las situaciones de colas, las llegadas ocurren al azar.Aleatoriedad sig-
nifica que la ocurrencia de un evento (por ejemplo la llegada de un cliente o la termi-
nación de un servicio) es independiente del tiempo transcurrido desde la ocurrencia
del último evento.
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Los tiempos aleatorios entre llegadas y de servicio se describen cuantitativamen-
te por medio de una distribución exponencial, la cual se define como 

La sección 12.4.3 demuestra que para la distribución exponencial

La definición de E(t) muestra que l es la tasa por unidad de tiempo a la cual se gene-
ran los eventos (llegadas o salidas).

La distribución exponencial describe un fenómeno totalmente aleatorio. Por
ejemplo, si en este momento la hora es 8:20 A.M. y la última llegada fue a las 8:02 A.M.,
la probabilidad de que la siguiente llegada ocurra a las 8:29 es una función sólo del in-
tervalo de las 8:20 a las 8:29, y es totalmente independiente del tiempo que ha transcu-
rrido desde la ocurrencia del último evento (8:02 a 8:20).

La propiedad totalmente aleatoria de la exponencial se conoce como olvido o
falta de memoria. Dado que f(t) es la distribución exponencial del tiempo t, entre even-
tos sucesivos (llegadas), si S es el intervalo desde la ocurrencia del último evento, en-
tonces la propiedad de olvido implica que 

Para comprobar este resultado, observamos que para la exponencial con media

Por lo tanto,

Ejemplo 18.3-1

Una máquina de servicio cuenta con una unidad de respaldo para su reemplazo inmediato si
ocurre una falla. El tiempo para que falle la máquina (o su unidad de respaldo) es exponencial
y ocurre cada 5 horas en promedio. El operador de máquina afirma que ésta “tiene el hábito” de
fallar cada noche alrededor de las 8:30 P.M. Analice la afirmación del operador.

La tasa de fallas promedio de la máquina es fallas por hora. Por lo tanto, la dis-
tribución exponencial del tiempo para una falla es 

f(t) = .2e-.2t,  t 7 0

l =  15 = .2

 = P{t 7 T}

 =
e-l(T+S)

e-lS  = e-lT

 P{t 7 T + S|t 7 S} =  
P{t 7 T + S, t 7 S}

P{t 7 S}
 =  

P{t 7 T + S}
P{t 7 S}

P{t 7 Y} = 1 - P{t 6 Y} = e-lY

1
l ,

P{t 7 T + S| t 7 S} = P{t 7 T}

 P{t … T} = 3
 
T

 0

le-ltdt = 1 - e-lT

E{t} =  1l

f(t) = le-lt,  t 7 0
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Con respecto a la afirmación del operador, sabemos sin pensarlo que no puede ser cierta
porque entra en conflicto con el hecho de que el tiempo entre averías es exponencial y por, con-
siguiente, totalmente aleatorio. La probabilidad de que ocurra una falla a las 8:30 P.M. no puede
usarse para sustentar o refutar la afirmación del operador, porque el valor de tal probabilidad
depende de la hora (con respecto a las 8:30 P.M.) a la cual se calcule. Por ejemplo, si en este mo-
mento son las 8:30 P.M., entonces hay una baja probabilidad de que la afirmación del operador
sea correcta, es decir,

Si la hora en este momento es la 1:00 P.M., entonces la probabilidad de que ocurra una falla a las
8:30 P.M. se incrementa a aproximadamente .777 (¡compruébelo!). Estos dos valores extremos
muestran que la afirmación del operador no es cierta.

CONJUNTO DE PROBLEMAS 18.3A

1. (a) Explique su conocimiento de la relación entre la tasa de llegadas l y el tiempo entre
llegadas promedio. ¿Cuáles son las unidades que describen cada variable?

(b) En cada uno de los siguientes casos, determine la tasa de llegadas promedio por
hora, l, y el tiempo entre llegadas promedio en horas.

*(i) Cada 10 minutos ocurre una llegada.
(ii) Cada 6 minutos ocurren dos llegadas.
(iii) La cantidad de llegadas en un periodo de 30 minutos es de 10.
(iv) El intervalo promedio entre llegadas sucesivas es de .5 horas.

(c) En cada uno de los siguientes casos, determine la tasa de servicio promedio por
hora, m, y el tiempo de servicio promedio en horas.

*(i) Se completa un servicio cada 12 minutos.
(ii) Cada 15 minutos ocurren dos salidas.
(iii) La cantidad de clientes atendidos en un periodo de 30 minutos es de 5.
(iv) El tiempo promedio de servicio es de .3 horas.

2. En el ejemplo 18.3-1, determine lo siguiente:
(a) El promedio de fallas en una semana, suponiendo que el servicio se ofrece las 24

horas del día, 7 días a la semana.
(b) La probabilidad de al menos una falla en un periodo de 24 horas.
(c) La probabilidad de que la siguiente falla no ocurra dentro de 3 horas.
(d) Si no ha ocurrido ninguna falla 3 horas después de la última falla, ¿cuál es la proba-

bilidad de que el tiempo entre fallas sea al menos de 4 horas?
3. El tiempo entre llegadas a la Oficina Estatal de Hacienda es exponencial, con valor

medio de .05 horas. La oficina abre a las 8:00 A.M.
*(a) Escriba la distribución exponencial que describe el tiempo entre llegadas.
*(b) Encuentre la probabilidad de que no lleguen clientes a la oficina alrededor de las

8:15 A.M.
(c) En este momento son las 8:35 A.M. El último cliente llegó a la oficina a la 8:26. ¿Cuál

es la probabilidad de que el siguiente cliente llegue antes de las 8:38 A.M.?, ¿de que
no llegue alrededor de las 8:40 A.M.?

(d) ¿Cuál es el promedio de clientes que llegan entre las 8:10 y las 8:45 A.M.?

pE t 6  10
60 F = 1 - e-.2 A 10

60 B = .03278
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4. Suponga que el tiempo promedio entre fallas de una máquina es exponencial con una
media de 6 horas. Si la máquina ha funcionado sin fallar durante las últimas 3 horas, ¿cuál
es la probabilidad de que siga funcionando sin fallar durante la siguiente hora?, ¿de que
se averíe durante la siguiente .5 hora?

5. El tiempo entre llegadas al salón de juegos en la unión estudiantil es exponencial con una
media de 10 minutos.
(a) ¿Cuál es la tasa de llegadas por hora?
(b) ¿Cuál es la probabilidad de no que lleguen estudiantes al salón de juegos durante los

siguientes 15 minutos?
(c) ¿Cuál es la probabilidad de que al menos un estudiante visite el salón de juegos du-

rante los siguientes 20 minutos?
6. El gerente de un nuevo restaurante de comida rápida desea cuantificar el proceso de lle-

gadas de clientes estimando la fracción de los intervalos de tiempo entre llegadas que
serán (a) de menos de 2 minutos; (b) entre 2 y 3 minutos, y (c) de más de tres minutos.
Las llegadas en restaurantes similares ocurren a razón de 35 clientes por hora. El tiempo
entre llegadas está distribuido exponencialmente.

*7. Ann y Jim, dos empleados en un restaurante de comida rápida, efectúan el siguiente
juego mientras esperan que lleguen clientes: Jim le paga a Ann 2 centavos si el siguiente
cliente no llega dentro de 1 minuto; de lo contrario, Ann le paga a Jim 2 centavos.
Determine la ganancia promedio de Jim en un periodo de 8 horas. El tiempo entre llega-
das es exponencial con media de 1.5 minutos.

8. Suponga que en el problema 7 las reglas del juego son tales que Jim le paga a Ann 2 cen-
tavos si el siguiente cliente llega después de 1.5 minutos, y Ann le paga a Jim una canti-
dad igual si la siguiente llegada ocurre dentro de 1 minuto. Para llegadas dentro del inter-
valo de 1 a 1.5 minutos, el juego es un empate. Determine la ganancia esperada de Jim en
un periodo de 8 horas.

9. En el problema 7, suponga que Ann le paga a Jim 2 centavos si la siguiente llegada ocurre
dentro de 1 minuto, y 3 centavos si el tiempo entre llegadas es entre 1 y 1.5 minutos. Ann
recibe de Jim 5 centavos si el tiempo entre llegadas es entre 1.5 y 2 minutos, y 6 centavos si
es de más de 2 minutos. Determine la ganancia esperada de Ann en un periodo de 8 horas.

*10. Un cliente que llega a un restaurante de comida rápida McBurger dentro de 4 minutos
del cliente inmediatamente anterior recibirá 10% de descuento. Si el tiempo entre llega-
das es de entre 4 y 5 minutos, el descuento es de 6%. Si el tiempo entre llegadas es de
más de 5 minutos, el cliente obtiene 2% de descuento. El tiempo entre llegadas es expo-
nencial con una media de 6 minutos.
(a) Determine la probabilidad de que un cliente que llega reciba 10% de descuento.
(b) Determine el descuento promedio por cliente que llega.

11. Se sabe que el tiempo entre fallas de un refrigerador Kencore es exponencial con valor
medio de 9000 horas (aproximadamente 1 año de operación), y la compañía emite una
garantía de 1 año sobre el refrigerador. ¿Cuáles son las probabilidades de que la repara-
ción de una falla sea cubierta por la garantía?

12. La U de A opera dos líneas de autobuses en el campus: roja y verde. La línea roja presta
servicio al norte del campus, y la verde al sur del campus, con una estación de transferen-
cia que une las dos rutas. Los autobuses verdes llegan al azar (tiempo entre llegadas ex-
ponencial) a la estación de transferencia cada 10 minutos. Los autobuses rojos también lo
hacen al azar cada 7 minutos.
(a) ¿Cuál es la distribución de probabilidad del tiempo de espera de un estudiante que

llega en la línea roja para abordar la línea verde?
(b) ¿Cuál es la distribución de probabilidades del tiempo de espera de un estudiante

que llega en la línea verde para abordar la línea roja?
13. Demuestre que la media y la desviación estándar de la distribución exponencial son iguales.
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18.4 MODELOS DE NACIMIENTO Y MUERTE PUROS (RELACIÓN ENTRE LAS
DISTRIBUCIONES EXPONENCIAL Y DE POISSON)

Esta sección presenta dos situaciones de colas, el modelo de nacimiento puro en el cual
sólo ocurren llegadas, y el modelo de muerte pura en el cual sólo ocurren salidas. Un
ejemplo del modelo de nacimiento puro es la creación de actas de nacimiento de bebés
recién nacidos. El modelo de muerte pura puede demostrarse por medio del retiro
aleatorio de un artículo en existencia en una tienda.

La distribución exponencial se utiliza para describir el tiempo entre llegadas en
el modelo de nacimiento puro y el tiempo entre salidas en el modelo de muerte pura.
Un subproducto del desarrollo de los dos modelos es demostrar la estrecha relación
entre las distribuciones exponencial y la de Poisson, en el sentido de que una distribu-
ción define automáticamente a la otra.

18.4.1 Modelo de nacimiento puro

Defina

p0(t) 5 Probabilidad de que no ocurran llegadas durante un periodo de tiempo t

Dado que el tiempo entre llegadas es exponencial y que la tasa de llegadas es de l
clientes por unidad de tiempo, entonces

Para un intervalo de tiempo suficientemente pequeño h > 0, tenemos

La distribución exponencial se basa en la suposición de que durante h > 0, cuando
mucho puede ocurrir un evento (llegada). Por lo tanto, a medida que h S 0,

Este resultado muestra que la probabilidad de una llegada durante h es directamente
proporcional a h, con la tasa de llegadas, l, como constante de proporcionalidad.

Para derivar la distribución de la cantidad de llegadas durante un periodo t cuan-
do el tiempo entre llegadas es exponencial con media defina

pn(t) 5 Probabilidad de n llegadas durante t

Para un h > 0 suficientemente pequeño,

 p0(t + h) L p0(t)(1 - lh),                       n = 0 

 pn(t + h) L pn(t)(1 - lh) + pn- 1(t)lh,  n 7 0

1
l ,

p1(h) = 1 - p0(h) L lh

p0(h) = e-lh = 1 - lh +  
(lh)2

2!
 - Á = 1 - lh + 0(h2)

 = e-lt

 = 1 - (1 - e-lt)

 = 1 -P{tiempo entre llegadas … t}

 p0(t) = P{tiempo entre llegadas Ú t}
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En la primera ecuación habrá n llegadas durante t 1 h si hay n llegadas durante t y
ninguna llegada durante h, o n 2 1 llegadas durante t y una llegada durante h. No se
permiten todas las demás combinaciones porque, de acuerdo con la distribución expo-
nencial, a lo sumo puede haber una llegada durante un periodo h muy pequeño. La ley
del producto de las probabilidades es aplicable al lado derecho de la ecuación porque
las llegadas son independientes. En cuando a la segunda ecuación, durante t 1 h puede
haber cero llegadas sólo si no hay llegadas durante t y h.

Reacomodando los términos y tomando los límites a medida que h S 0 para ob-
tener la primera derivada de pn(t) con respecto a t, tenemos

La solución de las ecuaciones diferenciales anteriores da

Ésta es una distribución de Poisson con media de llegadas durante t.
El resultado anterior muestra que si el tiempo entre llegadas es exponencial con

media , entonces la cantidad de llegadas durante un periodo específico t es Poisson
con media lt. Lo contrario también funciona.

La siguiente tabla resume las relaciones entre las distribuciones exponencial y de
Poisson, dada la tasa de llegadas l:

1
l

E{n|t} = lt

pn(t) =  
(lt)ne-lt

n!
 ,  n = 0, 1, 2, Á

 pœ
0(t) =  lím 

h:0
 
p0(t - h) - p0(t)

h
 = - lp0(t),                       n = 0

 pœ
n(t) =  lím 

h:0

pn(t + h) - pn(t)

h
 = -lpn(t) + lpn- 1(t),  n 7 0

Ejemplo 18.4-1

En una ciudad grande nacen bebés a razón de uno cada 12 minutos. El tiempo entre nacimientos
sigue una distribución exponencial. Determine lo siguiente:

(a) La cantidad promedio de nacimientos por año.

(b) La probabilidad de que no ocurran nacimientos durante 1 día.

(c) La probabilidad de emitir 50 actas de nacimiento en 3 horas dado que se emitieron
40 actas durante las primeras 2 horas del periodo de 3 horas.

Exponencial Poisson

Variable aleatoria Tiempo entre llegadas 
sucesivas, t

Cantidad de llegadas n, durante 
un periodo de tiempo específico T

Intervalo t Ú 0 n = 0, 1, 2, Á

Función de densidad f(t) = le-lt,  t Ú 0 pn(T) =  
(lT)ne-lT

n!
 ,  n = 0, 1, 2, Á

Valor medio
1
l

  unidades de tiempo lT llegadas durante T

Probabilidad acumulada P{t … A} = 1- e-lA pn…N(T) = p0(T) + p1(T) + Á + pN(T)
P{No llegadas durante el periodo A} P{t 7 A} = e-lA p0(A) = e-lA



602 Capítulo 18 Sistemas de colas

La tasa de natalidad por día se calcula como

Por lo tanto, la cantidad de nacimientos por año en el estado es 

La probabilidad de que no haya nacimientos durante 1 día es 

Otra forma de calcular la misma probabilidad es observar que si no hay ningún nacimiento en
cualquier día equivale a decir que el tiempo entre nacimientos sucesivos es de más de un día. Por
lo tanto podemos utilizar la distribución exponencial para calcular la probabilidad deseada como

Debido a que la distribución de la cantidad de nacimientos es Poisson, la probabilidad de emitir
50 actas de nacimiento en 3 horas, dado que se emitieron 40 actas durante las primeras 2 horas,
equivale a tener 10(5 50 2 40) nacimientos en una hora (5 3 2 2), es decir,

Momento de Excel

Los cálculos asociados con la distribución de Poisson y, de hecho, todas las fórmulas de colas son
tediosas y requieren habilidades de programación para asegurar una precisión razonable.
Podemos utilizar las funciones POISSON, POISSONDIST y EXPONDIST de Excel para calcu-
lar las probabilidades individuales y acumuladas de Poisson y exponencial. Estas funciones tam-
bién se automatizan en excelTables.xls. Por ejemplo, para un nacimiento de 5 bebés por hora, la
probabilidad de exactamente 10 nacimientos en .5 horas se calcula ingresando 2.5 en F16 y 10 en
J16 para obtener la respuesta .000216 en M16. La probabilidad acumulada de cuando mucho 10
nacimientos se da en O16 (5 .999938). Para determinar la probabilidad de que el tiempo entre
nacimientos sea menor que o igual a 18 minutos, use la distribución exponencial ingresando 2.5
en F9 y .3 en J9. La respuesta .527633 aparece en O9.

Momento de TORA/Excel

También podemos utilizar TORA (archivo toraEx18-4.1.txt) o la plantilla excelPoissonQ.xls para
determinar de forma automática todas las probabilidades de Poisson significativas (. 1025 en
TORA y . 1027 en Excel). En ambos casos, los datos de entrada son los mismos. Para el mode-
lo de nacimiento puro del ejemplo 18.4-1, los datos son los siguientes

p10(1) =  
A 60

12 * 1 B10 e-5 * 1

10!
 = .01813

P{t 7 1} = e-120 = 0

p0(1) =  
(120 * 1)0 e-120 * 1

0!
 = e-120 = 0

lt = 120 * 365 = 43,800  nacimientos/año

l =  
24 * 60

12
 = 120  nacimientos/año

Lambda Mu c Límite del sistema Límite de la fuente

5 0 0 infinito infinito

Observe la entrada bajo Lambda lt 5 5 3 1 5 5 nacimientos por día. Observe también que Mu 5 0
identifica el modelo como nacimiento puro.



CONJUNTO DE PROBLEMAS 18.4A

*1. En el ejemplo 18.4-1, suponga que el oficinista que captura la información de las actas de
nacimiento en la computadora normalmente espera hasta que se juntan al menos 5 actas.
Determine la probabilidad de que el oficinista capture un nuevo lote cada hora.

2. Un coleccionista de arte viaja a subastas de arte una vez al mes en promedio. Cada viaje
es seguro que produzca una compra. El tiempo entre viajes está exponencialmente distri-
buido. Determine lo siguiente:
(a) La probabilidad de que se realice una compra en un periodo de 3 meses.
(b) La probabilidad de que se realicen no  más de 8 compras por año.
(c) La probabilidad de que el tiempo entre viajes sucesivos exceda de 1 mes.

3. En un banco, la tasa de llegadas es de 2 clientes por minuto. Determine lo siguiente:
(a) El promedio de llegadas durante 5 minutos.
(b) La probabilidad de que no haya llegadas durante los siguientes .5 minutos.
(c) La probabilidad de que haya al menos una llegada durante los siguientes .5 minutos.
(d) La probabilidad de que el tiempo entre dos llegadas sucesivas sea al menos de 3 minutos.

4. El tiempo entre llegadas en el restaurante L&J es exponencial con media de 5 minutos.
El restaurante abre a las 11:00 A.M. Determine lo siguiente:

*(a) La probabilidad de tener 10 llegadas en el restaurante alrededor de las 11:12 A.M.,
dado que 8 clientes llegaron a las 11:05 A.M.

(b) Las probabilidad de que un nuevo cliente llegue entre las 11:28 y las 11:33 A.M., si el
último cliente llegó a las 11:25 A.M.

5. La biblioteca pública de Springdale recibe nuevos libros de acuerdo con una distribución
de Poisson con media de 25 libros por día. Cada anaquel en la estantería contiene 100 li-
bros. Determine lo siguiente:
(a) El promedio de anaqueles que se llenarán de nuevos libros cada mes (30 días).
(b) La probabilidad de que se requieran más de 10 libreros cada mes, si un librero se

compone de 5 anaqueles.
6. La U de A opera dos líneas de autobuses en el campus: roja y verde. La línea roja presta

servicio al norte del campus y la línea verde presta servicio al sur del campus con una es-
tación de transferencia que conecta las dos líneas. Los autobuses verdes llegan al azar (de
acuerdo con una distribución de Poisson) a la estación de transferencia cada 10 minutos.
Los autobuses rojos también llegan al azar cada 7 minutos.

*(a) ¿Cuál es la probabilidad de que los dos autobuses (rojo y verde) se detengan en la
estación durante un intervalo de 5 minutos?

(b) Un estudiante cuyo dormitorio está cerca de la estación tiene clase en 10 minutos.
Cualquiera de los autobuses lo lleva al edificio del salón de clases. El viaje requiere 5
minutos, después de lo cual el estudiante camina durante aproximadamente 3 minu-
tos para llegar al salón de clase. ¿Cuál es la probabilidad de que el estudiante llegue
a tiempo a clase?

7. Pruebe que la media y la varianza de la distribución de Poisson durante un intervalo t es
igual a lt, donde l es la tasa de llegadas.

8. Derive la distribución de Poisson a partir de las ecuaciones diferenciales del modelo de
nacimiento puro. Sugerencia: La solución de la ecuación diferencial general

es

y = e-•a(t) dte Lb(t)e•a(t) dt + constante

yœ + a(t)y = b(t)

18.4 Modelos de nacimiento y muerte puros 603
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18.4.2 Modelo de muerte pura 

En el modelo de muerte pura, el sistema se inicia con N clientes en el instante 0, sin lle-
gadas nuevas permitidas. Las salidas ocurren a razón de m clientes por unidad de tiem-
po. Para desarrollar las ecuaciones diferenciales de la probabilidad pn(t) de que n clien-
tes permanezcan después de t unidades de tiempo, seguimos los argumentos utilizados
con el modelo de nacimiento puro (sección 18.4-1). Por lo tanto,

A medida que h S 0, obtenemos

La solución de estas ecuaciones da la siguiente  distribución de Poisson truncada:

Ejemplo 18.4-2

Una florería inicia cada semana con 18 docenas de rosas. En promedio, la florería vende 3 doce-
nas al día (una docena a la vez), pero la demanda real sigue una distribución de Poisson. Siempre
que el nivel de las existencias se reduce a 5 docenas, se coloca un nuevo pedido de 18 nuevas do-
cenas para entrega al principio de la siguiente semana. Debido a la naturaleza de la mercancía,
las rosas sobrantes al final de la semana se desechan. Determine lo siguiente:

(a) La probabilidad de colocar un pedido cualquier día de la semana.
(b) El promedio de rosas desechadas al final de la semana.

Debido a que las compras ocurren a razón de m 5 3 docenas por día, la probabilidad de co-
locar un pedido al final del día t es

Los cálculos de pn#5(t) se realizan mejor si se utiliza excelPoissonQ.xls o TORA. Los múltiples
escenarios de TORA pueden ser más convenientes en este caso. Los datos de entrada asociados
en el caso del modelo de muerte pura correspondientes a t 5 1,2,…, y 7 son Lambda 5 0, Mu 5
3t, c 5 1, Límite del sistema 5 18, y Límite de la fuente 5 18. Observe que t debe ser sustituido
numéricamente como se muestra en el archivo toraEx18.4-2.txt.

 = p0(t) + a
5

n= 1
 
(3t)18 -ne-3t

(18 - n)!
 , t = 1, 2, Á , 7

 pn… 5(t) = p0(t) + p1(t) + Á + p5(t)

 p0(t) = 1 - a
N

n- 1
pn(t)

 pn(t) =  
(mt)N-ne-mt

(N - n)!
 , n = 1, 2, Á , N

 pœ
0(t) = mp1(t)

 pœ
n(t) = - mpn(t) + mpn+ 1(t), 0 6 n 6 N

 pœ
N(t) = -mpN(t)

 p0(t + h) = p0(t)(1) + p1(t)mh

 pn(t + h) = pn(t)(1 - mh) + pn+ 1(t)mh, 0 6 n 6 N

 pN(t + h) = pN(t)(1 - mh)
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Los resultados se resumen como sigue:

El promedio de rosas desechadas al final de la semana (t 5 7) es E{n|t 5 7}. Para calcular
este valor necesitamos pn(7), n 5 0, 1,2,…, 18, el cual puede determinarse con el software pro-
porcionado. El resultado es 

CONJUNTO DE PROBLEMAS 18.4B

1. En el ejemplo 18.4-2, use la plantilla excelPoissonQ.xls o TORA para calcular pn(7), n 5
1,2,…, 18, y luego verifique manualmente que estas probabilidades den
docenas.

2. Considere el ejemplo 18.4-2. En cada uno de los siguientes casos, primero escriba la res-
puesta algebraicamente, y luego utilice excelPoissonQ.xls o TORA para dar las respues-
tas numéricas.

*(a) La probabilidad de que las existencias se agoten después de 3 días.
(b) El promedio de docenas de rosas sobrantes al final del segundo día.

*(c) La probabilidad de que se compre al menos una docena al final del cuarto día, si la
última docena se compró al final del tercer día.

(d) La probabilidad de que el tiempo que falta para la siguiente compra es cuando
mucho de un medio día, dado que la última compra se realizó el día anterior.

(e) La probabilidad de que no se realicen compras durante el primer día.
(f) La probabilidad de que no se coloque ningún pedido al final de la semana.

3. La banda de la preparatoria de Springdale va a ofrecer un concierto de beneficio en su
nuevo auditorio de 400 asientos. Las empresas locales compran los boletos en bloques de
10 y los donan a organizaciones juveniles. Los boletos se ponen a la venta para empresas
durante 4 horas sólo un día antes del concierto. El proceso de colocar pedidos de boletos
es Poisson con una media de 10 llamadas por hora. Los (bloques de) boletos que sobran
después de que se cierra la oficina se venden con descuento como “boletos baratos de úl-
tima hora”, una hora antes de que se inicie el concierto. Determine lo siguiente:
(a) La probabilidad de que será posible comprar boletos baratos de última hora.
(b) El promedio de boletos baratos de última hora disponibles.

4. Cada mañana, el refrigerador en un pequeño taller se encuentra abastecido con dos cajas
(24 latas por caja) de refrescos para los 10 empleados del taller. Los empleados pueden
apagar su sed a cualquier hora durante el día de trabajo de 8 horas (8:00 A.M. a 4:00 P.M.)
y se sabe que cada empleado consume aproximadamente 4 latas al día, pero el proceso es
totalmente aleatorio (distribución de Poisson). ¿Cuál es la probabilidad de que un em-
pleado no encuentre un refresco al mediodía (el inicio del periodo del almuerzo)?, ¿justo
antes de que cierre el taller?

*5. Un estudiante recibe un depósito bancario de $100 al mes desde su casa para que cubra
gastos imprevistos. Los retiros de $20 cada uno ocurren al azar durante el mes y están es-
paciados de acuerdo con una distribución exponencial con un valor medio de una sema-
na. Determine la probabilidad de que el estudiante se quede sin dinero para gastos im-
previstos antes del final de la cuarta semana.

E{n|t = 7} = .664

E{n|t = 7} = a
18

n= 0
npn(7) = .664 L  una docena

t(días) 1 2 3 4 5 6 7

mt 3 6 9 12 15 18 21
pn… 5(t) .0000 .0088 .1242 .4240 .7324 .9083 .9755



606 Capítulo 18 Sistemas de colas

6. Se sacan 80 artículos del inventario de acuerdo con la distribución de Poisson a razón de
5 artículos por día. Determine lo siguiente:
(a) La probabilidad de que se saquen 10 artículos durante los 2 primeros días.
(b) La probabilidad de que ya no haya artículos al final de los 4 días.
(c) El promedio de artículos sacados a lo largo de un periodo de 4 días.

7. Un taller mecánico se acaba de surtir de 10 partes de repuesto para la reparación de una
máquina. La reposición de la existencia que regresa el nivel a 10 piezas ocurre cada 7
días. El tiempo entre fallas es exponencial con media de 1 día. Determine la probabilidad
de que la máquina permanezca descompuesta durante 2 días porque no hay partes de re-
puesto disponibles.

8. La demanda de un artículo ocurre de acuerdo con una distribución de Poissson con
media de 3 por día. El nivel de existencia máximo es de 25 artículos, lo cual ocurre cada
lunes inmediatamente después de que se recibe un pedido. El tamaño del pedido depen-
de de la cantidad de unidades sobrantes al final de la semana, el sábado (el negocio está
cerrado los domingos). Determine lo siguiente:
(a) *El tamaño semanal promedio del pedido.
(b) *La probabilidad de escasez al inicio del negocio el viernes.
(c) La probabilidad de que el tamaño del pedido semanal exceda de 10 unidades.

9. Demuestre que la distribución del tiempo entre salidas correspondiente a la Poisson
truncada en el modelo de muerte pura es una distribución exponencial con media de
unidades de tiempo.

10. Derive la distribución de Poisson truncada a partir de las ecuaciones diferenciales del
modelo de muerte pura mediante inducción. [Nota: Vea la sugerencia en el problema 8,
conjunto 18.4a.]

18.5 MODELO DE COLAS GENERAL DE POISSON

Esta sección desarrolla un modelo de colas general que combina tanto llegadas como
salidas con base en la suposición de Poisson, es decir, los tiempos entre llegadas y los
tiempos de servicio siguen la distribución exponencial. El modelo es la base para la de-
rivación de los modelos de Poisson especializados en la sección 18.6.

El desarrollo del modelo generalizado se basa en el comportamiento a largo plazo
o de estado estable de la situación de colas, alcanzado después de que el sistema ha es-
tado en operación durante un tiempo suficientemente largo. Este tipo de análisis con-
trasta con el comportamiento transitorio (o de calentamiento) que prevalece durante el
inicio de la operación del sistema. (Una razón de por qué no se analiza el comporta-
miento transitorio en este capítulo es su complejidad analítica. Otra es que el estudio de
la mayoría de las situaciones de colas ocurre en condiciones de estado estable.)

El modelo general asume que tanto las tasas de entrada como de salida depen-
den del estado; lo que significa que dependen de la cantidad de clientes en la instala-
ción de servicio. Por ejemplo, en una caseta de cobro en una carretera, los encargados
tienden a acelerar el cobro de las cuotas durante las horas pico. Otro ejemplo ocurre en
un taller donde la tasa de descomposturas de las máquinas disminuye a medida que au-
menta el número de máquinas descompuestas (porque sólo las máquinas que están
funcionando son capaces de generar nuevas descomposturas).

Defina

n 5 Cantidad de clientes en el sistema (haciendo cola, además de los que están
siendo atendidos)

ln 5 Tasa de llegadas, si n clientes están en el sistema
mn 5 Tasa de salidas, si n clientes están en el sistema
pn 5 Probabilidad de estado estable de que n clientes estén en el sistema 

1
m
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FIGURA 18.2

Diagrama de transición en colas de Poisson
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El modelo general deriva a pn como una función de ln y mn. Estas probabilidades se utilizan
entonces para determinar las medidas de desempeño del sistema, como la longitud prome-
dio de las colas, el tiempo de espera promedio, y la utilización promedio de la instalación.

Las probabilidades pn se determinan por medio del diagrama de tasa de transición
en la figura 18.2. El sistema de colas está en el estado n cuando el número de clientes en
el sistema es n. Como se explica en la sección 18.3, la probabilidad de que ocurra más de
un evento durante un pequeño intervalo h tiende a cero a medida que h S 0. Esto sig-
nifica que para n . 0, el estado n puede cambiar sólo a dos estados posibles: n 2 1 cuan-
do ocurre una salida a razón de mn, y n 1 1 cuando ocurre una llegada a razón de ln. El
estado 0 sólo puede cambiar al estado 1 cuando una llegada ocurre a razón de l0.
Observe que m0 es indefinida porque no pueden ocurrir salidas si el sistema está vacío.

En condiciones de estado estable, para n . 0, las  tasas de flujo esperadas de en-
trada y salida del estado n deben ser iguales. Con base en el hecho de que el estado n
puede cambiar sólo a los estados n 2 1 y n 11, tenemos

Asimismo,

Igualando las dos tasas, obtenemos la siguiente ecuación de balanceo 

Según la figura 18.2, la ecuación de balanceo asociada con n 5 0 es

Las ecuaciones de balanceo se resuelven recursivamente en función de p0. Para
n 5 0, tenemos

Luego, para n 5 1, tenemos

l0p0 + m2p2 = (l1 + m1)p1

p1 = a l0

m1
 bp0

l0p0 = m1p1

ln- 1pn- 1 + mn+ 1pn+ 1 = (ln + mn)pn,   n = 1, 2, Á

aTasa de flujo de salida
esperada del estado n

b = (ln + mn)pn

aTasa de flujo de entrada
esperada al estado n

b = ln- 1pn- 1 + mn+ 1pn+ 1
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Sustituyendo y simplificando, obtenemos (¡compruébelo!)

Podemos demostrar por medio de inducción que

El valor de p0 se determina con la ecuación

Ejemplo 18.5-1

B&K Groceries opera con tres cajas. El gerente utiliza el siguiente programa para determinar la
cantidad de cajas en operación, según la cantidad de clientes que haya en la línea:

aq
n= 0pn = 1

pn = a  
ln- 1ln- 2 Á l0

mnmn- 1 Á m1
 bp0, n = 1, 2, Á

p2 = a l1l0

m2m1
 bp0

p1 = A l0
m0 Bp0

Los clientes llegan al área de cajas de acuerdo con una distribución de Poisson con tasa
media de 10 clientes por hora. El tiempo promedio en la caja es exponencial con media de 12 mi-
nutos. Determine la probabilidad de estado estable pn de que haya n clientes en el área de cajas.

Con la información del problema, tenemos 

ln 5 l 5 10 clientes por hora, n 5 0, 1,…

Por lo tanto,

El valor de p0 se determina a partir de la ecuación

p0 + p0 e2 + 4 + 8 + 8 + 8 + 8 + 8 A 23 B + 8 A 23 B2 + 8 A 23 B3 + Á f = 1

 pnÚ 7 = A 10
5  B3 A 10

10 B3 A 10
15 Bn- 6p0 = 8 A 23 Bn- 6p0

 p6 = A  10
5  B3 A 10

10 B3p0 = 8p0

 p5 = A 10
5  B3 A 10

10 B2p0 = 8p0

 p4 = A 10
5  B3 A 10

10 Bp0 = 8p0

 p3 = A10
5  B3p0 = 8p0

 p2 = A10
5  B2p0 = 4p0

 p1 = A 10
5  Bp0 = 2p0

 mn = c 60
12 = 5 clientes por hora,  n = 0, 1, 2, 3
2 * 5 = 10 clientes por hora, n = 4, 5, 6
3 * 5 = 15 clientes por hora, n = 7, 8, Á

Cantidad de clientes en la tienda Cantidad de cajas en operación 

1 a 3 1
4 a 6 2

Más de 6 3
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o, de forma equivalente

Utilizando la serie de suma geométrica

obtenemos

Por lo tanto,
Dado p0, ahora podemos determinar pn con n . 0. Por ejemplo, la probabilidad de que sólo una

caja abra se calcula como la probabilidad de que haya cuando mucho tres clientes en el sistema:

Podemos utilizar pn para determinar medidas de desempeño para la situación de B&K. Por
ejemplo,

CONJUNTO DE PROBLEMAS 18.5A

1. En el ejemplo 18.5-1, determine lo siguiente:

(a) La distribución de probabilidades de la cantidad de cajas abiertas.

(b) El promedio de cajas ocupadas.

2. En el modelo de B&K del ejemplo 18.5-1, suponga que el tiempo entre llegadas en el
área de cajas es exponencial con media de 5 minutos y que el tiempo en la caja por clien-
te también es exponencial con media de 10 minutos. Suponga además que B&K agrega
una cuarta caja y que las cajas abren con base en incrementos de dos clientes. Determine
lo siguiente:

(a) Las probabilidades de estado estable, pn para todas las n.

(b) La probabilidad de que se requiera una cuarta caja.

(c) El promedio de cajas ociosas.

*3. En el modelo de B&K del ejemplo 18.5-1, suponga que las tres cajas están siempre abier-
tas y que la operación está configurada de tal manera que el cliente vaya primero a la
caja vacía. Determinar lo siguiente:

(a) La probabilidad de que tres cajas estén en uso.

(b) La probabilidad de que cliente que llega no tenga que esperar.

4. First Bank de Springdale opera cajeros automáticos de un solo carril. Los autos llegan de
acuerdo con una distribución de Poissson a razón de 12 autos por hora. El tiempo por

= 1  caja

+ 01p7 + p8 + Á 2 aCantidad esperada
de cajas ociosas

b = 3p0 + 21p1 + p2 + p32 + 11p4 + p5 + p62
p1 + p2 + p3 = (2 + 4 + 8) A 1

55 B L .255

p0 = 1
55 .

p0e31 + 8 a  
1

1 -  23
 b f = 1

a
q

i= 0
xi =  

1
1 - x

 ,  |x| 6 1

p0E31 + 8 A1 + A 23 B + A 23 B2 + Á B F = 1
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caja necesario para completar la transacción en el cajero es exponencial con media de 6
minutos. El carril tiene espacio para un total de 10 autos. Una vez que el carril está lleno,
los demás autos que llegan buscan el servicio en otra sucursal. Determine lo siguiente:
(a) La probabilidad de que un auto que llegue no pueda utilizar el cajero porque el ca-

rril está lleno.
(b) La probabilidad de que un auto no pueda utilizar el cajero en cuanto llegue.
(c) El promedio de autos en el carril.

5. ¿Alguna vez ha escuchado a alguien repetir el contradictorio comentario: “El lugar está
tan abarrotado que ya nadie va allí”? Este comentario equivale a decir que la oportuni-
dad de desistir se incrementa con el aumento en la cantidad de clientes que buscan un
servicio. Una posible plataforma para modelar esta situación es decir que la tasa de llega-
das al sistema se reduce a medida que la cantidad de clientes se incrementa. De manera
más específica, consideramos el caso simplificado del Club de Pool M&M, donde los
clientes suelen llegar en parejas para “jugar pool”. La tasa de llegadas normal es de 6 pa-
rejas (de personas) por hora. Sin embargo, una vez que la cantidad de parejas en el salón
de pool excede de 8, la tasa de llegadas se reduce a 5 parejas por hora. Se supone que el
proceso de llegadas sigue la distribución de Poisson. Cada pareja juega pool durante un
tiempo exponencial con media de 30 minutos. El salón de pool cuenta con un total de 5
mesas y puede acomodar a más de 12 parejas a la vez. Determine lo siguiente:
(a) La probabilidad de que los clientes comiencen a desistir.
(b) La probabilidad de que todas las mesas estén ocupadas.
(c) El número promedio de tablas en uso.
(d) El promedio de parejas que esperan a que se desocupe un mesa de pool.

*6. Una peluquería atiende a un cliente a la vez y cuenta con tres sillas para los clientes que
esperan. Si el lugar está lleno, los clientes se van a otra parte. Las llegadas ocurren de
acuerdo a una distribución de Poisson con media de 4 por hora. El tiempo para recibir un
corte de pelo es exponencial con media de 15 minutos. Determine lo siguiente:
(a) Las probabilidades de estado estable.
(b) La cantidad esperada de clientes en la peluquería.
(c) La probabilidad de que los clientes se vayan a otra parte porque la peluquería está llena.

7. Considere una situación de colas en un servidor donde las tasas de llegadas y servicio son

Esta situación equivale a reducir la tasa de llegadas e incrementar la tasa de servicio a
medida que se incrementa el número n en el sistema.
(a) Prepare el diagrama de transición, y determine la ecuación de balanceo del sistema.
(b) Determine las probabilidades de estado estable.

8. Considere el modelo de una sola cola, donde se permite sólo un cliente en el sistema. Los
clientes que llegan y encuentran la instalación ocupada nunca regresan. Suponga que la
distribución de las llegadas es Poisson con media l por unidad de tiempo, y que el tiempo
de servicio es exponencial con media de unidades de tiempo.
(a) Prepare el diagrama de transición, y determine las ecuaciones de balanceo.
(b) Determine las probabilidades de estado estable.
(c) Determine el promedio en el sistema.

1
m

mn =  
n

2
 + 5, n = 1, 2, 3, 4

ln = 10 - n, n = 0, 1, 2, 3
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9. La comprobación por medio de inducción para derivar la solución general del modelo
generalizado se aplica como sigue. Considere

Sustituimos pn21 y pn22 en la ecuación diferencial general que implica pn, pn21, y pn22
para derivar la expresión deseada para pn. Verifique este procedimiento.

18.6 COLAS DE POISSON ESPECIALIZADAS

La figura 18.3 ilustra la situación de colas de Poisson especializadas con c servidores
paralelos. Se selecciona un cliente de la cola para iniciar el servicio con el primer servidor
disponible. La tasa de llegadas al sistema es de l clientes por unidad de tiempo. Todos
los servidores paralelos son idénticos, es decir que la tasa de servicio de cualquier ser-
vidor es de m clientes por unidad de tiempo. La cantidad de clientes en el sistema se de-
fine para incluir los que están en el servicio y los que están en la cola.

Una notación conveniente para resumir las características de la situación de colas
de la figura 18.3 se da mediante el siguiente formato:

donde
a 5 Distribución de las llegadas
b 5 Distribución de las salidas (tiempo de servicio)
c 5 Cantidad de servidores paralelos (5 1,2,…, q) 
d 5 Disciplina en las colas 
e 5 Número máximo (finito o infinito) permitido en el sistema (haciendo cola o

en servicio)
f 5 Tamaño de la fuente solicitante (finita o infinita)

(a/b/c):(d/e/f)

pk = q
k- 1

i= 0
a  
li

mi+1
 bp0,   k = 0, 1, 2, Á

FIGURA 18.3

Representación esquemática de un sistema de colas con c servidores paralelos
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La notación estándar para representar las distribuciones de las llegadas y salidas
(símbolos a y b) es

M 5 Distribución markoviana (o de Poisson) de llegadas y salidas (o de forma
equivalente distribución exponencial del tiempo entre llegadas y de servicio)

D 5 Tiempo constante (determinístico)
Ek 5 Distribución Erlang o gama del tiempo (o de forma equivalente, la suma

de distribuciones exponenciales independientes) 
GI 5 Distribución general (genérica) del tiempo entre llegadas 
G 5 Distribución general (genérica) del tiempo de servicio

La notación para la disciplina en colas (símbolo d) incluye

FCFS 5 Primero en llegar, primero en ser servido
LCFS 5 Último en llegar, primero en ser servido
SIRO 5 Servicio en orden aleatorio

GD 5 Disciplina general (es decir, cualquier tipo de disciplina)

Para ilustrar el uso de la notación, el modelo (M/D/10): (GD/20/q) utiliza llega-
das Poisson (o tiempo entre llegadas exponencial), tiempo de servicio constante, y 10
servidores paralelos. La disciplina en colas es GD, y hay un límite de 20 clientes en
todo el sistema. El tamaño de la fuente de donde llegan los clientes es infinito.

Como nota histórica, los primeros tres elementos de la notación (a/b/c) los ideó
D.G. Kendall en 1953, y se conocen en la literatura como la notación de Kendall. En
1966, A.M. Lee agregó los símbolos d y e a la notación. Este autor agregó el último ele-
mento, el símbolo f, en 1968.

Antes de presentar los detalles de las colas de Poisson especializadas, demostra-
mos cómo se pueden derivar las medidas de desempeño de estado estable de la situa-
ción de colas generalizada a partir de las probabilidades de estado estable pn dadas en
la sección 18.5.

18.6.1 Medidas de desempeño de estado estable

Las medidas de desempeño más comúnmente utilizadas en una situación de colas son

Cantidad esperada de clientes en un sistema
Cantidad esperada de clientes en una cola
Tiempo de espera en el sistema
Tiempo de espera anticipado en la cola
Cantidad esperada de servidores ocupados

Recuerde que el sistema incluye tanto la cola como las instalaciones de servicio.

cq =
Wq =
Ws =
Lq =
Ls =
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Demostramos ahora cómo se derivan estas medidas (directa o indirectamente) a
partir de la probabilidad de estado estable de n en el sistema pn como

La relación entre Ls y Ws (también entre Lq y Wq) se conoce como fórmula de
Little y se da como 

Estas relaciones son válidas en condiciones más bien generales. El parámetro lefec es
la tasa de llegadas efectiva al sistema. Es igual a la tasa de llegadas l (nominal) cuando
todos los clientes que llegan pueden unirse al sistema. De lo contrario, si algunos clien-
tes no pueden unirse porque el sistema está lleno (por ejemplo un estacionamiento),
entonces lefec , l. Más adelante demostraremos cómo se determina lefec.

También existe una relación directa entre Ws y Wq. Por definición

Esto se traduce como

Luego podemos relacionar Ls con Lq multiplicando ambos lados de la última
fórmula por lefec, la que junto con la fórmula de Little da

La diferencia entre la cantidad promedio en el sistema, Ls, y la cantidad prome-
dio en la cola, Lq debe ser igual al promedio de servidores ocupados. Por lo tanto,

Se deduce que a Uso de la
instalación

b =
c

c

cq = Ls - Lq =  
lefec

m

Ls = Lq +  
lefec

m

Ws = Wq +  
1
m

a Tiempo de espera
anticipado en el sistema

b = a Tiempo de espera
anticipado en la cola

b + aTiempo de servicio
esperado

b

 Lq = lefecWq

 Ls = lefecWs

 Lq = a
q

n=c+ 1
(n - c)pn

 Ls = a
q

n= 1
npn
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Ejemplo 18.6-1

El estacionamiento para visitantes en el Colegio Ozark se limita a sólo 5 espacios. Los autos que
utilizan estos espacios llegan de acuerdo con una distribución de Poisson a razón de 6 por hora.
El tiempo de estacionamiento está distribuido exponencialmente con una media de 30 minutos.
Los visitantes que no pueden encontrar un espacio vacío pueden esperar temporalmente en el
estacionamiento hasta que un auto estacionado salga. El espacio temporal tiene cabida sólo para
3 autos. Otros que no pueden estacionarse o encontrar un espacio de espera temporal deben irse
a otra parte. Determine lo siguiente:

(a) La probabilidad, pn, de que haya n autos en el sistema.
(b) La tasa de llegadas efectiva de los autos que por lo general utilizan el estacionamiento.
(c) El promedio de autos en el estacionamiento.
(d) El tiempo promedio que un auto espera un espacio de estacionamiento.
(e) El promedio de espacios de estacionamiento ocupados.
(f) La utilización promedio del estacionamiento.

Observamos primero que un espacio de estacionamiento actúa como un servidor, de modo
que el sistema cuenta con un total de c 5 5 servidores paralelos.Asimismo, la capacidad máxima
del sistema es 5 1 3 5 8 autos.

La probabilidad pn puede determinarse como un caso especial del modelo generalizado en
la sección 18.5 por medio de 

De acuerdo con la sección 18.5, obtenemos

El valor de p0 se calcula sustituyendo pn, n 5 1,2,…, 8, en la siguiente ecuación

o

Esto da p0 5 .04812 (¡compruébelo!). Con p0, ahora podemos calcular p1 a p8 como 

p0 + p0 a  
3
1!

 +  
32

2!
 +  

33

3!
 +  

34

4!
 +  

35

5!
 +  

36

5!5
 +  

37

5!52 +  
38

5!53 b = 1

p0 + p1 + Á + p8 = 1

pn = d 3n

n!
 p0, n = 1, 2, 3, 4, 5

3n

5! 5n- 5
 p0, n = 6, 7, 8

 mn = c n A60
30 B = 2n autos/hora, n = 1, 2, 3, 4, 5

5 A60
30 B = 10 autos/hora, n = 6, 7, 8

 ln = 6  autos/hora,  n = 0, 1, 2, Á , 8

La tasa de llegadas efectiva lefec se calcula observando el diagrama esquemático en la figu-
ra 18.4, donde los clientes llegan de la fuente a razón de l autos por hora. Un auto que llega
puede entrar al estacionamiento a la razón lefec o puede irse a otra parte a la razón lperdida. Esto
quiere decir que l 5 lefec 1 lperdida.

n 1 2 3 4 5 6 7 8

pn .14436 .21654 .21654 .16240 .09744 .05847 .03508 .02105
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FIGURA 18.4

Relación entre l, lefec y lperdida

SistemaFuente    efec

   perdida

l l

l

Un auto no podrá entrar al estacionamiento si ya entraron 8. Esto significa que la propor-
ción de autos que no podrán entrar al estacionamiento es p8. Por lo tanto,

El promedio de autos en el estacionamiento (los que esperan que se desocupe un espacio)
es igual a Ls, el promedio en el sistema. Podemos calcular Ls con pn como 

Un auto que espera en el espacio temporal es en realidad un auto que está haciendo cola. Por
lo tanto, su tiempo de espera hasta que encuentra un espacio es Wq. Para determinar Wq usamos 

Por tanto,

El promedio de espacios de estacionamiento ocupados es igual al promedio de servidores
ocupados,

A partir de obtenemos

CONJUNTO DE PROBLEMAS 18.6A

1. En el ejemplo 18.6-1, haga lo siguiente:
*(a) Calcule Lq directamente con la fórmula
(b) Calcule Ws a partir de Lq.

*(c) Calcule el promedio de autos que no podrán entrar al estacionamiento durante un
periodo de 8 horas.

*(d) Demuestre que , el promedio de espacios vacíos es igual ac - (Ls - Lq)

aq
n=c+ 1(n - c)pn.

Uso del lote de estacionamiento =   
cq

c
 =  

2.9368
5

 = .58736 

cq, 

cq = Ls - Lq =  
lefec

m
 =  

5.8737
2

 = 2.9368  espacios

Wq = .53265 -  
1
2

 = .03265  horas

Ws =  
Ls

lefec
 =  

3.1286
5.8737

 = .53265 horas

Wq = Ws -  
1
m

Ls = 0p0 + 1p1 + Á + 8p8 = 3.1286  autos

 lefec = l - lperdida = 6 - .1263 = 5.8737  autos/hora

 l perdida = lp8 = 6 * .02105 = .1263  autos/hora 

a c- 1
n= 0(c - n)pn.
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2. Resuelva el problema 18.6-1 con los siguientes datos: cantidad de espacios de estaciona-
miento 5 6, cantidad de espacios temporales 5 4, l 5 10 autos por hora y tiempo prome-
dio de estacionamiento 5 45 minutos.

18.6.2 Modelos de un solo servidor

Esta sección presenta dos modelos para el caso de un solo servidor (c 5 1). El primer
modelo no limita el número máximo en el sistema, y el segundo supone un límite fini-
to del sistema. Ambos modelos suponen una capacidad infinita de la fuente. Las llega-
das ocurren a razón de l clientes por unidad de tiempo y la tasa de servicio es m clien-
tes por unidad de tiempo.

Los resultados de los dos modelos (y de hecho de todos los modelos restantes en
la sección 18.6) se derivan como casos especiales de los resultados del modelo genera-
lizado de la sección 18.5.

Se utilizará la notación ampliada de Kendall para caracterizar cada situación.
Debido a que las derivaciones de pn en la sección 18.5 y de todas las medidas de de-
sempeño en la sección 18.6.1 son totalmente independientes de una disciplina de colas
específica, se utilizará el símbolo GD (disciplina general) con la notación.

. Utilizando la notación del modelo general, tenemos 

Incluso, lefec 5 l y lperdida 5 0, porque todos los clientes pueden unirse al sistema.

Si la expresión para pn en el modelo generalizado se reduce a

Para determinar el valor de p0 usamos la identidad

La suma de la serie geométrica es siempre que r , 1. Por lo tanto

En consecuencia, la siguiente distribución geométrica da la fórmula general para pn

La derivación matemática de pn impone la condición r , 1, o l , m. Si l $ l, la serie
geométrica diverge, y las probabilidades de estado estable pn no existen. Este resulta-
do tiene un sentido intuitivo, porque a menos que la tasa de servicio sea mayor que la
tasa de llegadas, la longitud de la cola continuará creciendo y no puede alcanzarse
ningún estado estable.

La medida de desempeño Lq se deriva como sigue:

 = (1 - r)r 
d

dr
 a  

1
1 - r

 b =  
r

1 - r

 = (1 - r)r 
d

dr
 a

q

n= 0
rn

 Ls = a
q

n= 0
npn = a

q

n= 0
n(1 - r)rn

pn = (1 - r)rn,  n = 1, 2, Á  (r 6 1)

p0 = 1 - r, r  6   1

A 1
1 - r B ,p0(1 + r + r2 + Á) = 1

pn = rnp0,  n = 0, 1, 2, Á

r =  lm ,

ln = l
mn = m

f , n = 0, 1, 2, Á

(M/M/1):(GD/q/q)
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Debido a que lefec 5 l en la presente condición, las medidas de desempeño restantes
se calculan utilizando las relaciones dadas en la sección 18.6.1. Por lo tanto,

Ejemplo 18.6-2

Automata es una instalación de lavado de autos de una sola bahía. Los autos llegan según una
distribución de Poisson con una media de 4 autos por hora y pueden esperar en el estaciona-
miento de la instalación en la calle si la bahía está ocupada. El tiempo para lavar y limpiar un
auto es exponencial, con una media de 10 minutos. Esto significa que, para todo propósito prác-
tico, no hay ningún límite en el tamaño del sistema. El gerente de la instalación desea determinar
el tamaño del estacionamiento.

 cq = Ls - Lq = r

 Lq = lWq =  
r2

1 - r

 Wq = Ws -  
1
m

 =  
r

m(1 - r)

 Ws =  
Ls

l
 =  

1
m(1 - r)

 =  
1
m - l

Los resultados del modelo se muestran en la figura 18.5. El promedio de autos que esperan en la
cola, Lq es 1.33 autos.

Por lo general, no es aconsejable utilizar Lq como la única base para determinar la cantidad
de espacios de estacionamiento, porque el diseño debe, en cierto sentido, tener en cuenta la lon-
gitud máxima posible de la cola. Por ejemplo, puede ser más razonable diseñar el estaciona-
miento de modo que un auto que llega encuentre un espacio de estacionamiento al menos 90%
de las veces. Para hacer esto, sea S la cantidad de espacios de estacionamiento.Tener S espacios de
estacionamiento equivale a tener S 1 1 espacios en el sistema (cola más bahía). Un auto que
llega encontrará un espacio 90% de las veces si hay cuando mucho S autos en el sistema. Esta
condición es equivalente al siguiente enunciado de probabilidad:

De acuerdo con la figura 18.5, la probabilidad acumulada pn con n 5 5 es .91221. Esto significa
que la condición se satisface con S $ 5 espacios de estacionamiento.

La cantidad de espacios S se determina también por medio de la definición matemática de
pn, es decir,

La suma de la serie geométrica truncada es la cual reduce la condición a 

(1 - rS+ 1) Ú .9

1 - rS + 1

1 - r  ,

(1 - r)(1 + r + r2 + Á + rS) Ú .9

p0 + p1 + Á + pS Ú .9

Lambda Mu c Límite del sistema Límite de la fuente

4 6 1 infinito infinito

Para esta situación tenemos l 5 4 autos por hora, y autos por hora. Como
el sistema puede operar en condiciones de estado estable. Los datos de TORA o

excelPoissonQ.xls para este modelo son
r =  lm 6  1,

m =  60
10 = 6
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La simplificación de la desigualdad produce 

Sacando los logaritmos en ambos lados (y observando que log (x) , 0 para 0 , x , 1, lo cual in-
vierte la dirección de la desigualdad), tenemos.

CONJUNTO DE PROBLEMAS 18.6B

1. En el ejemplo 18.6-2, haga lo siguiente.
(a) Determine la utilización en porcentaje de la bahía de lavado.
(b) Determine la probabilidad de que un auto que llega tenga que esperar en el estacio-

namiento antes de entrar a la bahía de lavado.
(c) Si hay 7 espacios de estacionamiento, determine la probabilidad de que un auto que

llega encuentre un estacionamiento vacío.
(d) ¿Cuántos espacios de estacionamiento deben proporcionarse de modo que un auto

que llega pueda encontrar un espacio de estacionamiento 99% del tiempo?

S Ú  
 ln (.1)

 ln A 46 B  - 1 = 4.679 L 5

rS+ 1 … .1

Scenario 1: (M/M/1):(GD/infinity/infinity)

n Probability pn Cumulative Pn n Probability pn Cumulative Pn

0 0.33333 0.33333 13 0.00171 0.99657

1 0.22222 0.55556 14 0.00114 0.99772
2 0.14815 0.70370 15 0.00076 0.99848
3 0.09877 0.80247 16 0.00051 0.99899
4 0.06584 0.86831 17 0.00034 0.99932
5 0.04390 0.91221 18 0.00023 0.99955

6 0.02926 0.94147 19 0.00015 0.99970
7 0.01951 0.96098 20 0.00010 0.99980
8 0.01301 0.97399 21 0.00007 0.99987
9 0.00867 0.98266 22 0.00004 0.99991
10 0.00578 0.98844 23 0.00003 0.99994

11 0.00385 0.99229 24 0.00002 0.99996
12 0.00257 0.99486 25 0.00001 0.99997

Wq = 0.33333Ws = 0.50000
Lq = 1.33333Ls = 2.00000

Rho/c = 0.66667Lambda eff = 4.00000
Mu = 6.00000Lambda = 4.00000

FIGURA 18.5

Resultados del ejemplo 18.6-2 obtenidos con TORA (archivo toraEx18.6-2.txt)
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*2. John Macko estudia en la U de Ozark. Realiza trabajos peculiares para complementar
sus ingresos. Las solicitudes para que realice un trabajo llegan cada 5 días, pero el tiempo
entre solicitudes es exponencial. El tiempo para terminar un trabajo también es exponen-
cial con media de 4 días.
(a) ¿Cuál es la probabilidad de que John se quede sin trabajos?
(b) Si John gana aproximadamente $50 por trabajo, ¿cuál es su ingreso mensual promedio?
(c) Si al final del semestre John decide subcontratar los trabajos pendientes a $40 cada

uno, ¿cuánto, en promedio, debe esperar que le paguen?
3. Durante años, el detective Columbo, del Departamento de Policía de Fayetteville, ha te-

nido un éxito fenomenal al resolver todos los casos criminales. Es sólo cuestión de tiem-
po antes de que cualquier caso se resuelva. Columbo admite que el tiempo por caso es
“totalmente aleatorio”, pero, en promedio, cada investigación le lleva aproximadamente
una semana y media. Los crímenes en el tranquilo Fayetteville no son muy comunes.
Ocurren al azar a razón de un crimen por mes (4 semanas). El detective Columbo está
solicitando que un asistente comparta la pesada carga de trabajo. Analice la petición de
Columbo, en particular desde la perspectiva de los siguientes puntos:
(a) El promedio de casos en espera de ser investigados.
(b) El porcentaje del tiempo que el detective permanece ocupado.
(c) El tiempo promedio necesario para resolver un caso.

4. Los autos que llegan a la caseta de cobro del túnel Lincoln lo hacen según una distribu-
ción de probabilidades de Poisson, con una media de 90 autos por hora. El tiempo para
cruzar la caseta es exponencial con media de 38 segundos. Los conductores se quejan del
largo tiempo de espera, y las autoridades desean reducir el tiempo de cruce promedio a
30 segundos con la instalación de dispositivos de cobro de cuota automáticos, siempre
que se satisfagan dos condiciones: (1) que el promedio de autos que esperan en este siste-
ma exceda de 5, y (2) que el porcentaje del tiempo ocioso de la caseta con el nuevo dis-
positivo instalado no exceda de 10%. ¿Se puede justificar el nuevo dispositivo?

*5. Un restaurante de comida rápida tiene una ventanilla para servicio en su auto. Los autos
llegan según una distribución de Poisson a razón de dos cada 5 minutos. El espacio en
frente de la ventanilla puede acomodar a lo sumo 10 autos, incluso el que se está atendien-
do. Los demás autos pueden esperar afuera de este espacio si es necesario. El tiempo de
servicio por cliente es exponencial, con una media de 1.5 minutos. Determine lo siguiente:
(a) La probabilidad de que la ventanilla esté ociosa.
(b) La cantidad estimada de clientes que esperan ser atendidos.
(c) El tiempo de espera hasta que un cliente llega a la ventanilla para hacer su pedido.
(d) La probabilidad de que la línea de espera exceda la capacidad de 10 espacios.

6. Los clientes llegan a la ventanilla de servicio en su auto de un banco según una distribución
de Poisson, con una media de 10 por hora. El tiempo de servicio por cliente es exponencial
con una media de 5 minutos. Hay tres espacios en frente de la ventanilla, incluido el auto
que están  atendiendo. Otros autos que llegan se forman afuera de este espacio para 3 autos.
(a) ¿Cuál es la probabilidad de que un auto que llega pueda entrar a un de los 3 espacios?
(b) ¿Cuál es la probabilidad de que un auto que llega espere afuera del espacio designa-

do para tres 3 autos?
(c) ¿Cuánto tiempo se anticipa que espere un cliente que llega antes de iniciar el servicio? 

*(d) ¿Cuántos espacios para autos deben proporcionarse en frente de la ventanilla (in-
cluido el que se está atendiendo) de modo que un auto que llega pueda encontrar un
espacio allí al menos 90% del tiempo?

7. En el escenario (M/M/1):(GD/q/q), dé un argumento convincente de por qué en general
Ls no es igual a Lq 1 1. ¿En qué condición se mantendrá la igualdad?

8. Para el escenario (M/M/1):(GD/q/q), derive la expresión Lq utilizando la definición básica

aq
n= 2(n - 1)pn.
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9. Para el escenario (M/M/1):(GD/q/q), demuestre que
(a) El número esperado en la cola, si la cola no esta vacía es igual a,
(b) El tiempo de espera anticipado en la cola para los que deben esperar es igual a

(M/M/1):(GD/N/ ). Este modelo difiere de (M/M/1):(GD/q/q) en que hay un
límite N en el número en el sistema (longitud máxima de la cola 5 N 2 1). Algunos
ejemplos incluyen situaciones de manufactura en las que una máquina puede tener un
espacio intermedio limitado y una ventanilla de servicio en su coche en un restaurante
de comida rápida. No se permiten nuevas llegadas cuando la cantidad de clientes en el
sistema llega a N. Por lo tanto,

Utilizando el modelo generalizado de la sección 18.5 da

El valor de p0 se determina a partir de la ecuación la cual da

o

Por lo tanto,

El valor de no tiene que ser menor que 1 en este modelo, porque el límite N con-
trola las llegadas al sistema. Esto significa que lefec es la tasa que importa en este caso.
Debido a que los clientes se pierden cuando hay N en el sistema, entonces, como se
muestra en la figura 18.4,

 lefec = l - lperdida = l(1-pN)

 lperdida = lpN

r =  lm

pn = d 11 - r2rn

1 - rN + 1
, r Z 111 - r2rn

1 - rN + 1
, r = 1

t , n = 0, 1, Á , N

p0 = d 1 - r

1 - rN + 1
 , r Z 1

1 - r

1 - rN + 1
 , r = 1

p0 (1 + r + p2 + Á + rN) = 1

a
q

n= 0
pn = 1,

pn = ernp0 n … N
0, n 7 N

r =  lm ,

 mn = m,  n = 0, 1, Á

 ln = el, n = 0, 1, Á , N - 1
0,  n = N, N + 1

q

=1 1
m - l 2.

= 1
(1 - r) .
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En este caso, lefec , m.
La cantidad esperada de clientes en el sistema se calcula como

Cuando (¡compruébelo!). Podemos derivar Ws, Wq y Lq a partir de Ls
utilizando lefec como se muestra en la sección 18.6.1.

El uso de una calculadora de mano para procesar las fórmulas de colas es,en el mejor
de los casos, incómodo (¡las fórmulas se vuelven más complejas en los últimos modelos!)
Se recomienda utilizar TORA o la plantilla excelPoissonQ.xls para manejar estos cálculos.

Ejemplo 18.6-4

Considere la instalación de lavado de autos del ejemplo 18.6-2. Suponga que la instalación cuen-
ta con un total de 4 espacios de estacionamiento. Si el estacionamiento está lleno, los autos que
llegan pueden irse a otras instalaciones. El propietario desea determinar el efecto del limitado
espacio de estacionamiento en la pérdida de clientes frente a la competencia.

En términos de la notación del modelo, el límite en el sistema es N 5 4 1 1 5 5. Los si-
guientes datos permiten obtener los resultados que aparecen en la figura 18.6.

r = 1,  Ls = N
2

 =  
r[1 - (N + 1)rN + NrN+ 1]

(1 - r) (1 - rN+ 1)
 , r Z 1

 =
(1 - r)r

1 - rN+ 1 
d

dr
 a  

1 - rN+ 1

1 - r
 b

 = a  
1 - r

1 - rN+ 1 br d
dr

 a
N

n= 0
rn

 =  
1 - r

1 - rN+ 1 a
N

n= 0
nrn

 Ls = a
N

n= 1
npn

Debido a que el límite en el sistema es N 5 5, la proporción de clientes perdidos es p5 5

.04812, la cual, basada en un día de 24 horas, equivale a perder el negocio de (lp5) 3 24  5 4 3
0.4812 3 24 5 4.62 autos al día. La decisión en cuanto a incrementar el tamaño del lote de esta-
cionamiento debe basarse en el valor del negocio perdido.

Mirando el problema desde un ángulo diferente, el tiempo total esperado en el sistema, Ws
es de .3736 horas, o aproximadamente 22 minutos, por debajo de los 30 minutos del ejemplo
18.6-3, cuando se permite que todos los autos que lleguen se unan a la instalación. Esta reduc-
ción de aproximadamente 25% se asegura a expensas de perder alrededor de 4.8% de todos los
clientes potenciales a causa del limitado espacio de estacionamiento

Lambda Mu c Límite del sistema Límite de la fuente

4 6 1 5 infinito
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CONJUNTO DE PROBLEMAS 18.6C

*1. En el ejemplo 18.6-4, determine lo siguiente:
(a) La probabilidad de que un auto que llegue entre de inmediato a la bahía de lavado.
(b) El tiempo de espera hasta que se inicie el servicio.
(c) La cantidad esperada de espacios de estacionamientos vacíos.
(d) La probabilidad de que todos los espacios de estacionamiento estén ocupados.
(e) La reducción en porcentaje del tiempo de servicio promedio que limitará el tiempo

promedio en el sistema a aproximadamente 10 minutos. (Sugerencia: Utilice el méto-
do de prueba y error con excelPoissonQ.xls o TORA.)

2. Considere la instalación de lavado de autos del ejemplo 18.6-4. Determine la cantidad de
espacios de estacionamiento de modo que el porcentaje de los autos que no puedan en-
contrar un espacio no exceda de 1%.

3. El tiempo que el peluquero Joe Cakes emplea para realizar un corte de pelo es exponen-
cial con una media de 12 minutos. Debido a su popularidad, los clientes suelen llegar (de
acuerdo con una distribución de Poisson) a una razón mayor que la que Joe puede mane-
jar: 6 clientes por hora. Joe en realidad se siente cómodo si la tasa de llegadas se reduce
efectivamente a alrededor de 4 clientes por hora. Para alcanzar esta meta se le ocurrió
proporcionar asientos limitados en el área de espera, de modo que los clientes que aca-
ban de llegar se vayan a otra parte cuando se dan cuenta de que todos los asientos están
ocupados. ¿Cuántos asientos debe proporcionar Joe para alcanzar su meta?

*4. El ensamble final de los generadores eléctricos en Electro se realiza a la razón de Poisson
de 10 generadores por hora. Luego los generadores son transportados por una banda al
departamento de inspección para su revisión final. La banda puede transportar un máxi-
mo de 7 generadores. Un sensor automático detiene al instante la banda una vez que se
llena, lo que evita que el departamento de ensamble final arme más unidades hasta que
haya espacio disponible. El tiempo para inspeccionar los generadores es exponencial, con
una media de 15 minutos.
(a) ¿Cuál es la probabilidad de que el departamento de ensamble final detenga la pro-

ducción?
(b) ¿Cuál es el promedio de generadores sobre la banda transportadora?
(c) El ingeniero de producción afirma que las interrupciones en el departamento de en-

samble pueden reducirse si se incrementa la capacidad de la banda. De hecho, el inge-
niero afirma que la capacidad puede incrementarse al punto en que el departamento de
ensamble opere 95% del tiempo sin interrupciones. ¿Es justificable esta reclamación?

Scenario 1:(M/M/1):(GD/5/infinity)

n Probability pn Cumulative Pn n Probability pn Cumulative Pn

0 0.36541 0.36541 3 0.10827 0.87970

1 0.24361 0.60902 4 0.07218 0.95188
2 0.16241 0.77143 5 0.04812 1.00000

Wq = 0.20695Ws = 0.37362
Lq = 0.78797Ls = 1.42256

Rho/c = 0.66667Lambda eff = 3.80752
Mu = 6.00000Lambda = 4.00000

FIGURA 18.6

Resultados del ejemplo 18.6-4 obtenidos con TORA (archivo toraEx18.6-4.txt) 
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5. Una cafetería puede acomodar un máximo de 50 personas. Los clientes llegan en una co-
rriente Poisson a razón de 10 por hora y son atendidos (uno a la vez) a razón de 12 por hora.
(a) ¿Cuál es la probabilidad de que un cliente que llegue no coma en la cafetería porque

está llena?
(b) Suponga que a tres clientes (con tiempos de llegada aleatorios) les gustaría sentarse

juntos. ¿Cuál es la probabilidad de que se cumpla su deseo? (Suponga que pueden
hacerse arreglos para que se sienten juntos en cuanto haya tres sillas disponibles.)

6. Los pacientes llegan a la clínica de un médico de acuerdo con una distribución de Poisson
a razón de 20 pacientes por hora. La sala de espera no puede acomodar más de 14 pa-
cientes. El tiempo de consulta por paciente es exponencial, con una media de 8 minutos.
(a) ¿Cuál es la probabilidad de que un paciente que llegue no espere?
(b) ¿Cuál es la probabilidad de que un paciente que llegue encuentre un asiento en la sala?
(c) ¿Cuál es el tiempo total esperado que un paciente pasa en la clínica?

7. La probabilidad pn de que haya n clientes en el sistema en un escenario
(M/M/1):(GD/5/q)se dan en la siguiente tabla:

La tasa de llegadas l es de 5 clientes por hora. La tasa de servicio µ es de 8 clientes por
hora. Calcule lo siguiente:

*(a) La probabilidad que un cliente que llega no pueda entrar al sistema.
*(b) La tasa a la cual los clientes que llegan no podrán entrar al sistema.

(c) Número esperado en el sistema.
(d) Tiempo de espera promedio en la cola.

8. Demuestre que cuando r 5 1 para (M/M/1):(GD/N/q), el número esperado en el siste-
ma, Ls, es igual a

9. Demuestre que lefec para (M/M/1):(GD/N/q) puede calcularse aplicando la fórmula.

18.6.3 Modelos de varios servidores

Esta sección considera tres modelos de colas con varios servidores paralelos. Los pri-
meros dos modelos son las versiones de varios servidores de los modelos de la sección
18.6-2. El tercer modelo trata el caso del autoservicio, el cual equivale a tener una can-
tidad infinita de servidores paralelos.

lefec = m(Ls-Lq)

N
2  . 1Sugerencia: 1 + 2 + Á + i =  i1i + 12

2  .2

n 0 1 2 3 4 5

pn .399 .249 .156 .097 .061 .038

Aplicación de la vida real. Personal de ventas por teléfono de Qantas Airways

Para reducir los costos de operación, Qantas Airways buscar dotar de personal a su
oficina principal de reservaciones y ventas por teléfono de forma eficiente, al mismo
tiempo que proporciona un servicio de calidad a sus clientes. Tradicionalmente, las ne-
cesidades de personal se estiman pronosticando las llamadas telefónicas futuras con
base en el incremento histórico del negocio. El aumento de la cantidad de empleados
se calcula luego con base en el incremento promedio proyectado de las llamadas te-
lefónicas, dividido entre el promedio de llamadas que un operador puede manejar.
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Debido a que los cálculos están basados en promedios, la cantidad adicional de em-
pleados contratados no toma en cuenta las fluctuaciones de la demanda durante el día.
En particular, el largo tiempo de espera para el servicio durante horas laborales pico
ha ocasionado quejas de los clientes y en consecuencia pérdida de negocios. El proble-
ma tiene que ver con la determinación de un plan que balancee el número de emplea-
dos contratados y las necesidades de los clientes. La solución utiliza el análisis de colas
(M/M/c) insertado en un modelo de programación entera. Los ahorros a partir del mo-
delo en la oficina de Sydney fueron alrededor de $173 000 en el año fiscal 1975-1976.
Busque los detalles del estudio en el caso 15, capítulo 26, en el sitio web.

(M/M/c):(GD/ / ). Este modelo se ocupa de c servidores paralelos idénticos. La
tasa de llegadas es l y la tasa de servicio por servidor es m. En esta situación lefec 5 l

porque no hay límite en el número presente en el sistema.
El efecto de utilizar c servidores idénticos paralelos es un incremento proporcio-

nal de tasa de servicio de la instalación. En términos del modelo generalizado (sección
18.5), ln y mn se definen por lo tanto como

Así que,

Si y suponiendo que el valor de p0 se determina a partir de
la cual da,

La expresión para Lq se determina como sigue:
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porque lefec 5 l, Ls 5 Lq 1 r. Las medidas Ws y Wq se determinan dividiendo Ls y Lq
entre l.

Ejemplo 18.6-5

Dos compañías de taxis prestan servicio a una comunidad. Cada compañía posee dos taxis, y
ambas comparten el mercado por igual; las llamadas llegan a la oficina de despachos de cada
compañía a una tasa promedio de 8 por hora. El tiempo promedio por viaje es de 12 minutos. Las
llamadas llegan de acuerdo con una distribución de Poisson y el tiempo de viaje es exponencial.
Las dos compañías fueron adquiridas por un inversionista y se consolidarán en una sola oficina
de despachos. Analice la propuesta del nuevo propietario.

Desde el punto de vista de las colas, los taxis son los servidores, y el viaje del taxi es el servi-
cio. Cada compañía puede representarse con el modelo (M/M/2):(GD/q/q) con l 5 8 llamadas

 =  
rc+ 1

(c - 1)!(c - r)2 p0

 =  
rc+ 1

c!c
 p0 

d

d A rc B  aqk= 0
A rc  Bk

 =  
rc+ 1

c!c
 p0a

q

k= 0
k A r
c

 Bk- 1

La figura 18.7 proporciona los resultados con los dos escenarios. Los resultados muestran
que el tiempo de espera para un viaje es de .356 horas (« 21 minutos) en la situación de dos taxis
y de .149 («9 minutos) en la situación consolidada, una notable reducción de más de 50% y una
clara evidencia de que la consolidación de las dos compañías está garantizada.

Comentarios. La conclusión del análisis anterior es que los grupos de servicio siempre propor-
cionan un modo de operación más eficiente. El resultado es cierto incluso si las instalaciones dis-
tintas resultan estar “muy ocupadas” (vea los problemas 2 y 10, conjunto 18.6d).

Escenario Lambda Mu c Límite del sistema Límite de la fuente

1 8 5 2 infinito infinito
2 16 5 4 infinito infinito

Comparative analysis
c Lambda Mu L’da eff p0 Ls Ws Lq Wq

2 8.000 5.000 8.00 0.110 4.444 0.556 2.844 0.356
4 16.000 5.000 16.00 0.027 5.586 0.349 2.386 0.149

FIGURA 18.7

por hora y viajes por taxi por hora. El modelo consolidado es (M/M/4):(GD/q/q),
con l 5 2 3 8 5 16 llamadas por hora y m 5 5 viajes por taxi por hora.

Una medida adecuada para comparar los dos modelos es el tiempo de espera promedio
para un viaje, Wq. La siguiente tabla da los datos de entrada de análisis comparativos.

m =  60
10 = 5

Resultados del ejemplo 18.6-5 obtenidos con TORA (archivo toraEx.18.6-5.txt) 
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CONJUNTO DE PROBLEMAS 18.6D

1. Considere el ejemplo 18.6-5.
(a) Demuestre que la notable reducción del tiempo de espera de más de 50% en el caso

consolidado está asociada con un incremento del porcentaje del tiempo que los ser-
vidores permanecen ocupados.

(b) Determine la cantidad de taxis que la compañía consolidada debe tener para limitar
el tiempo de espera promedio de un viaje a 5 minutos o menos.

*2. En el ejemplo de la compañía de taxis, suponga que el tiempo promedio por viaje es en
realidad de aproximadamente 14.5 minutos, de modo que la utilización para los 2 y
4 taxis se incrementa a más de 90%. ¿Sigue valiendo la pena consolidar las dos compañías
en una? Use el tiempo de espera promedio de un viaje como medida de comparación.

3. Determine el mínimo de servidores paralelos necesarios en cada una de las siguientes si-
tuaciones (llegadas/salidas Poisson) que garantice que la operación de la situación de
colas será estable (es decir, que la longitud de la cola no crezca de forma indefinida):
(a) Los clientes llegan cada 5 minutos y son  atendidos a razón de 10 clientes por hora.
(b) El tiempo entre llegadas promedio es de 2 minutos, y el tiempo de servicio promedio

es de 6 minutos.
(c) La tasa de llegadas es de 30 clientes por hora, y la tasa de servicios por servidor es de

40 clientes por hora.
4. Los clientes llegan al Thrift Bank según una distribución de Poisson, con una media de 45

clientes por hora. Las transacciones por cliente tardan alrededor de 5 minutos y están
distribuidas exponencialmente. El banco desea utilizar una sola línea y varias cajas, simi-
lar a las que se utilizan en aeropuertos y algunas dependencias. El gerente es consciente
de que los clientes pueden irse a otros bancos si perciben que su espera en la línea es “ex-
cesiva”. Por esta razón, el gerente desea limitar el tiempo de espera en la cola a no más
de 30 segundos. ¿Cuántas cajas debe poner en servicio el banco?

*5. El restaurante de comida rápida McBurger opera con 3 cajas. Los clientes llegan, de
acuerdo con una distribución de Poisson, cada 3 minutos y forman una línea para ser
atendidos por la primera caja disponible. El tiempo para completar un pedido está distri-
buido exponencialmente con una media de 5 minutos. La sala de espera en el interior del
restaurante está limitada. Sin embargo, la comida es buena, y los clientes están dispuestos
a esperar afuera del restaurante, si es necesario. Determine el tamaño de la sala de espe-
ra dentro del restaurante (excluidos los de las cajas) de modo que la probabilidad de que
un cliente que llega no espere afuera del restaurante sea al menos de .999.

6. Una pequeña oficina de correos tiene dos ventanillas abiertas. Los clientes de acuerdo con
una distribución de Poisson a razón de 1 cada 3 minutos. Sin embargo, sólo 80% de ellos
busca servicio en las ventanillas. El tiempo de servicio por cliente es exponencial, con una
media de 5 minutos. Todos los clientes que llegan forman una línea y acceden a las venta-
nillas con base en la disciplina de primero en llegar, primero en ser atendido (FCFS).
(a) ¿Cuál es la probabilidad de que un cliente que llega espere en la línea?
(b) ¿Cuál es la probabilidad de que ambas ventanillas estén ociosas?
(c) ¿Cuál es la longitud promedio de la línea de espera?
(d) ¿Sería posible ofrecer un servicio razonable con sólo una ventanilla? Explique.

7. El centro de cómputo de la U de A está equipado con cuatro maxicomputadoras idénti-
cas. La cantidad de usuarios en cualquier momento es de 25. Cada usuario es capaz de
enviar un trabajo desde una terminal cada 15 minutos en promedio, pero el tiempo real
entre envíos es exponencial. Los trabajos que llegan automáticamente se van a la prime-
ra computadora disponible. El tiempo de ejecución por envío es exponencial con una
media de 2 minutos. Calcule lo siguiente:

*(a) La probabilidad de que un trabajo no se ejecute de inmediato inmediatamente des-
pués de enviarlo.

(b) El tiempo promedio hasta que los resultados de un trabajo  se le devuelvan al usuario.

A=  lmc B
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(c) El promedio de trabajos en espera de ser ejecutados.
(d) El porcentaje de tiempo que todo el centro de cómputo está ocioso.

*(e) El promedio de computadoras ociosas.
8. El aeropuerto Drake presta servicios a pasajeros, rurales, suburbanos y en tránsito. La

distribución de las llegadas de cada uno de los tres grupos es Poisson con tasas medias de
15, 10 y 20 pasajeros por hora, respectivamente. El tiempo para documentar un pasajero
es exponencial con media de 6 minutos. Determine la cantidad de mostradores que debe
haber en Drake en cada una de las siguientes condiciones:
(a) El tiempo promedio total para documentar un cliente es de al menos 15 minutos.
(b) El porcentaje de ociosidad de los mostradores no excede de 10%.
(c) La probabilidad de que todos los mostradores estén ociosos no excede de .01.

9. En los Estados Unidos, el uso de una sola fila y varios servidores es común en las oficinas
de correos, en mostradores de documentación de pasajeros en aeropuertos. Sin embargo,
tanto en supermercados como en bancos (especialmente en comunidades pequeñas)
tiende a favorecer la configuración de una línea y un servidor, a pesar del hecho de que
configuración de una línea y varios servidores ofrece una operación más eficiente.
Comente esta observación.

10. Para el modelo (M/M/c):(GD/q/q), Morse (1958, pág. 103) muestra que

Con la observación de que ndica que los servidores están extremadamente ocupa-
dos, use esta información para demostrar que la relación del tiempo de espera promedio
en la cola en el modelo (M/M/c):(GD/q/q) al del modelo (M/M/1):(GD/q/q) tiende a

a medida que Por lo tanto, con c 5 2, el tiempo de espera promedio puede redu-
cirse en un 50%. La conclusión de este ejercicio es que siempre es aconsejable agrupar los
servicios, independientemente de qué tan “sobrecargados” puedan estar los servidores.

r
c  :  1.1

c  

r
c :1

Lq =  
r

c - r

r

c  :  1,

11. En la derivación de pn para el modelo (M/M/c):(GD/q/q), indique cuál parte de la deri-
vación requiere la condición Exponga oralmente el significado de la condición.
¿Qué sucederá si no se satisface la condición?

12. Compruebe que comenzando con la definición
donde es el número promedio de servidores ocupados. Por consiguiente, demuestre que

13. Demuestre que pn para el modelo (M/M/1):(GD/q/q) se puede obtener a partir de la
del modelo (M/M/c):(GD/q/q) con c 5 1.

14. Demuestre que para el modelo (M/M/c):(GD/q/q)

15. Para el modelo (M/M/c):(GD/q/q), demuestre que
(a) La probabilidad de que un cliente esté esperando es

(b) El número promedio en la cola si no está vacía es

(c) El tiempo de espera anticipado en la cola para los clientes que deben esperar es

(M/M/c):(GD/N/ ), c N. El modelo difiere de (M/M/c):(GD/q/q) en que el
límite del sistema es finito e igual a N. Esto significa que el tamaño de la cola es N 2 c.
Las tasas de llegadas y servicio son l y m. La tasa de llegadas efectiva lefec es menor
que l debido al límite del sistema N.
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En términos del modelo generalizado (sección 18.5), ln y mn para el modelo ac-
tual se definen como 

Sustituyendo ln y mn en la expresión general de la sección 18.5 y observando que
obtenemos

donde

Luego calculamos Lq en el caso en que como
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Se puede demostrar que con se reduce a

Para determinar Wq y por consiguiente Ws y Ls, calculamos el valor de lefec como
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Ejemplo 18.6-6

En el problema de la compañía de taxis consolidada del ejemplo 18.6-5, suponga que no pueden
asegurarse nuevos fondos para la compra de más taxis. Se le aconsejó al propietario que una
forma de reducir el tiempo de espera es que la oficina de despachos informe a los nuevos clien-
tes sobre una demora potencial excesiva una vez que la lista de espera llega a ser de 6 clientes. La
expectativa es que estos clientes busquen el servicio en otra parte, lo que a su ver reducirá el
tiempo de espera de los que ya están en la lista de espera. Evalúe la situación.

Limitar la lista de espera a 6 clientes equivale a hacer N 5 6 1 4 5 10 clientes, lo que con-
duce al modelo (M/M/4):(GD/10/q) con l 5 16 clientes por hora y m 5 5 viajes por hora. Los si-
guientes datos de entrada proporcionan los resultados que aparecen en la figura 18.8.

Lambda Mu c Límite del sistema Límite de la fuente

16 5 4 10 Infinito 

FIGURA 18.8

Scenario1: (M/M/4):(GD/10/infinity)

n Probability Cumulative n Probability Cumulative
pn Pn pn Pn

0 0.03121 0.03121 6 0.08726 0.79393

1 0.09986 0.13106 7 0.06981 0.86374
2 0.15977 0.29084 8 0.05584 0.91958
3 0.17043 0.46126 9 0.04468 0.96426
4 0.13634 0.59760 10 0.03574 1.00000

Wq =  0.07481Ws =  0.27481
Lq =  1.15421Ls =  4.23984

Rho/c =  0.80000Lambda eff =  15.42815
Mu =  5.00000Lambda =  16.00000

Resultados del ejemplo 18.6-6 obtenidos con TORA (archivo toraEx18.6-6.txt)

El tiempo promedio de espera, Wq, antes de limitar la capacidad del sistema es de .149 horas
(«9 minutos)(vea la figura 18.7), lo cual es aproximadamente el doble del nuevo promedio .075
horas («4.5 minutos). Esta notable reducción se logra a expensas de perder alrededor de 3.6%
de los clientes potenciales (p10 5 .03574). Sin embargo, este resultado no refleja la pérdida in-
tangible de la buena disposición de los clientes en relación con la operación de la compañía.

CONJUNTO DE PROBLEMAS 18.6E

1. En el ejemplo 18.6-6, determine lo siguiente:
(a) El número esperado de taxis ociosos.
(b) La probabilidad de que un cliente que llama sea el último de la lista.
(c) El límite en la lista de espera si se desea mantener el tiempo de espera en la cola por

debajo de 3 minutos.
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2. En la tienda de Eat & Gas funciona una estación de gasolina de dos bombas. El carril que
conduce a las bombas puede alojar cuando mucho 3 autos (automóviles), excluyendo a los
que se les está dando atención. Los autos que llegan se van a otra parte si el carril está
lleno. La distribución de los autos que llegan es de Poisson con media de 20 por hora. El
tiempo para llenar el tanque y pagar es exponencial con media de 6 minutos. Determine lo
siguiente:
(a) El porcentaje de autos que buscarán servicio en otra parte.
(b) El porcentaje de tiempo que una bomba está en uso.

*(c) La utilización en porcentaje de las dos bombas.
*(d) La probabilidad de que un auto que llega no inicie el servicio de inmediato pero que

encuentre un espacio vacío en el carril.
(e) La capacidad del carril que garantice que, en promedio, no más de 10% de los autos

que llegan se vaya.
(f) La capacidad del carril que garantice que la probabilidad de que ambas bombas

estén ociosas es de .05 o menos.
3. Tres mecánicos atienden un pequeño taller de reparación de motores. A principios de

marzo de cada año, las personas traen sus cañas de timón y podadoras de césped para
servicio y reparación. El taller está dispuesto a aceptar todas las cañas de timón y po-
dadoras que traigan los clientes. Sin embargo, cuando los clientes nuevos ven el piso del
taller tapizado de trabajos en espera, se van  a otra parte para un servicio más rápido. El
piso del taller puede alojar un máximo de 15 podadoras o cañas de timón, excluyendo las
que están en reparación. Los clientes llegan al taller cada 10 minutos en promedio, y a
cada mecánico le lleva un promedio de 30 minutos completar cada trabajo. Tanto los
tiempos entre llegadas como los de servicio son exponenciales. Determine lo siguiente:
(a) El promedio de mecánicos ociosos.
(b) La cantidad de negocios perdidos ante la competencia por día de 10 horas a causa de

la limitada capacidad del taller.
(c) La probabilidad de que el siguiente cliente que llegue será atendido por el taller.
(d) La probabilidad de que al menos un mecánico esté ocioso.
(e) El promedio de cañas de timón o podadoras en espera de servicio.
(f) Un medida de la productividad total del taller.

4. En la U de A, los estudiantes de primer año recién matriculados son muy notorios por-
que llegan a la universidad en sus autos (aun cuando se requiere que la mayoría de ellos
vivan en el campus y puedan utilizar el sistema de tránsito libre de la universidad).
Durante el primer par de semanas del semestre, prevalece el caos vial en el campus por-
que los estudiantes de primer año tratan desesperadamente de encontrar espacios de 
estacionamiento. Con una rara dedicación, los estudiantes esperan pacientemente en los
carriles del estacionamiento a que alguien salga de modo que puedan estacionar sus
autos. Consideremos un escenario específico. El estacionamiento cuenta con 30 espacios
pero también puede acomodar 10 autos más en los carriles. Estos 10 autos adicionales no
pueden estacionarse en los carriles de forma permanente y deben esperar la disponibili-
dad de uno de los 30 espacios de estacionamiento. Los estudiantes de primer año llegan
al estacionamiento de acuerdo con una distribución de Poisson, con una media de 20
autos por hora. El tiempo de estacionamiento por autos promedia 60 minutos, pero en
realidad sigue una distribución exponencial.

*(a) ¿Cuál es el porcentaje de los estudiantes de primer año que se van porque no pue-
den entrar al estacionamiento?

*(b) ¿Cuál es la probabilidad que un auto que llega espere en los carriles?
(c) ¿Cuál es la probabilidad de que un auto que llega ocupe el único espacio de estacio-

namiento que quede en el lote?
*(d) Determine el promedio de espacios de estacionamiento ocupados.
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*(e) Determine el promedio de espacios que está ocupado en los carriles.
(f) Determine cuántos estudiantes de primer año no llegarán a tiempo a clase durante

un periodo de 8 horas porque el estacionamiento está lleno.
5. Verifique la expresión para p0 para el modelo (M/M/c):(GD/N/q) dado que
6. Compruebe la siguiente igualdad para :

donde es el número de servidores ocupado.
7. Verifique la expresión para p0 y Lq para (M/M/c):(GD/N/q) cuando
8. Para (M/M/c):(GD/N/q)con el cual N 5 c, defina ln y mn en función del modelo general

(sección 18.5), luego demuestre que la expresión para pn es

donde

(M/M/ ):(GD/ )—Modelo de autoservicio. En este modelo, las tasas de
llegadas y servicio son l y m, respectivamente, y la cantidad de  servidores es ilimitada
porque el cliente también es el servidor. Un ejemplo típico es realizar la parte escrita
del examen para la licencia de conductor. Las gasolineras de autoservicio y los cajeros
automáticos que operan durante las 24 horas del día no caen dentro de este modelo
porque los servidores en estos casos son en realidad las bombas de gasolina y los
cajeros automáticos.

En términos del modelo general de la sección 18.5, tenemos

Por lo tanto,

Debido a que se desprende que

Por resultado,

la cual es Poisson con media Ls 5 r. Como era de esperarse, Lq y Wq son cero porque
es una instalación de autoservicio.
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Ejemplo 18.6-7

Un inversionista invierte $1000 al mes, en promedio, en el mercado de valores. Debido a que el
inversionista debe esperar una buena oportunidad para “comprar”, el tiempo real de compra es
aleatorio. El inversionista suele conservar los valores durante unos 3 años en promedio pero los
vende al azar cuando se le presenta una buena oportunidad para “vender”. Aunque al inversio-
nista se le suele reconocer como un astuto corredor del mercado de valores, la experiencia pasa-
da indica que alrededor de 25% de los valores declinan a 20% al año, aproximadamente. El 75%
restante aumenta de valor a razón de 12% al año. Estime el capital accionario del inversionista
(a largo plazo) promedio en el mercado de valores.

Esta situación se puede tratar como un modelo (M/M/c):(GD/N/q/q) porque, para todos
los propósitos prácticos, el inversionista no tiene que esperar en línea para comprar o vender sus
valores. El tiempo promedio entre colocaciones de pedidos es de 1 mes, lo que da l 5 12 valores
por año. La tasa de venta de los valores es valor por año. Puede obtener los resultados del
modelo con los siguientes datos de entrada:

m =  13

Dados los valores de l y m, obtenemos

La estimación del valor neto anual promedio (a largo plazo) del inversionista es

CONJUNTO DE PROBLEMAS 18.6F

1. En el ejemplo 18.6-7, calcule lo siguiente:
(a) La probabilidad de que el inversionista venda todos sus valores.
(b) La probabilidad de que el inversionista posea al menos 10 valores.
(c) La posibilidad de que el inversionista posea entre 30 y 40 valores, inclusive.
(d) El capital accionario anual neto del inversionista si sólo 10% de los valores se depre-

cian 30% al año y el 90% restante suben 15% al año.
2. Se requiere que los nuevos conductores aprueben exámenes escritos antes de someterlos

a un examen de manejo en carretera. Estos exámenes suelen ser administrados por el de-
partamento de policía de la ciudad. Los registros en la ciudad de Springdale muestran
que el promedio de exámenes escritos es de 100 por día de ocho horas. El tiempo prome-
dio necesario para completar el examen es aproximadamente de 30 minutos. Sin embar-
go, la llegada real de los conductores que van a realizar el examen y el tiempo que cada
uno emplea en el examen son totalmente aleatorios. Determine lo siguiente:

*(a) La cantidad promedio de sillas que el departamento de policía debe proporcionar en
el salón donde se realizan los exámenes.

*(b) La probabilidad de que la cantidad de conductores que van a realizar el examen no
exceda el promedio de sillas proporcionadas en el salón.

(c) La probabilidad de que no se administren exámenes en cualquier día.
3. Demuestre (utilizando excelPoissonQ.xls o TORA) que con r 5 .1, los valores de Ls, Lq,

Ws y Wq y pn para el modelo (M/M/c):(GD/q/q) pueden estimarse con confiabilidad uti-

(.25Ls * $1000)(1 - .20) + (.75Ls * $1000)(1 + .12) = $63,990

Ls = r =  
l

m
 = 36  valores

Lambda Mu c Límite del sistema Límite de la fuente

12 .3333333 infinito infinito infinito
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lizando las fórmulas menos complicadas del modelo (M/M/q):(GD/q/q) con c tan pe-
queño como 4 servidores.

4. Repita el problema 3 para r 5 9 grande, y demuestre que la misma conclusión es válida
excepto que el valor de c debe ser mayor (al menos 14). A partir de los resultados de los
problemas 3 y 4, ¿a qué conclusión puede llegarse con respecto al uso de (M/M/q):
(GD/q/q) para estimar los resultados del modelo (M/M/c):(GD/q/q)?

18.6.4 Modelo de servicio de máquinas (M/M/R):(GD/K/K), R , K

La jurisdicción de este modelo es un taller con K máquinas. Cuando una máquina
se descompone, se llama a uno de los técnicos en mantenimiento para que la repare.
La tasa de descomposturas por máquina es l descomposturas por unidad de tiempo, y
un técnico reparará las máquinas descompuestas a razón de m máquinas por unidad de
tiempo. Todas las descomposturas y servicios siguen la distribución de Poisson.

La fuente en este modelo es finita porque las máquinas que están funcionando
pueden descomponerse, y por consiguiente puede generar llamadas de servicio. Una vez
que todas las máquinas se descompongan, no podrá haber más llamadas de servicio.

Dada l la tasa de descomposturas por máquina, la tasa de descomposturas de
todo el taller es proporcional a la cantidad de máquinas que están funcionando. En fun-
ción del modelo de colas, tener n máquinas en el sistema significa que n máquinas están
descompuestas, y que la tasa de descomposturas asociada de todo el taller es

En función del modelo generalizado de la sección 18.5, tenemos

A partir del modelo generalizado podemos obtener (¡compruébelo!)

No hay expresión alguna de forma cerrada para Ls y por consiguiente debe calcu-
larse por medio de la siguiente definición básica:

El valor de lefec se calcula como

Utilizando las fórmulas de la sección 18.6.1, podemos calcular las medidas restantes de
desempeño Ws, Wq y Lq.

lefec = E5l1K - n26 = l1K - Ls2
Ls = a

K

n= 0
npn

 p0 = aaR
n= 0
Cn
Krn + a

K

n=R+ 1
Cn
K

 

n! rn

R! Rn-R b-1

 
pn = c CnKrnp0, 0 … n … R

Cn
K

 

n! rn

R! Rn-R  p0, R … n … K

 mn = e nm,             0 … n … R
Rm,             R … n … K

 ln = e 1K - n2l, 0 … n … K
0, n Ú K

ln = (K - n)l,  0 … n … K
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Ejemplo 18.6-8

Toolco opera un taller con 22 máquinas. En promedio, una máquina se descompone cada 2 horas.
Se requiere un promedio de 12 minutos completar una reparación. Tanto el tiempo entre des-
composturas como el tiempo de reparación son exponenciales. A Toolco le interesa determinar
la cantidad de técnicos en reparaciones para mantener el taller funcionando “bien”.

La situación se analiza investigando la productividad de las máquinas como una función
de la cantidad de técnicos, definida como 

Los resultados en esta situación se obtienen utilizando los siguientes datos de entrada: lambda
5 .5, mu 5 5, R 5 1,2,3 o 4, límite del sistema 5 22, y límite de la fuente 5 22. La figura 18.9 pro-
porciona los resultados. La siguiente tabla da la productividad asociada como una función del
número de técnicos en reparaciones.

=
22 - Ls

22
* 100

 a Productividad
de las máquinas

b =
Máquinas disponibles - Máquinas descompuestas

Máquinas disponibles
* 100

Técnicos en reparaciones 1 2 3 4

Productividad de las máquinas (100%) 45.44 80.15 88.79 90.45
Incremento marginal (100%) — 34.71 8.64 1.66

FIGURA 18.9

Resultados del análisis comparativo realizado con TORA para el ejemplo 18.6-8 (archivo toraEx18.6-8.txt) 

Comparative Analysis

c Lambda Mu L’da eff p0 Ls Lq Ws Wq

1 0.500 5.00 4.9980 0.0004 12.0040 11.0044 2.4018 2.2018
2 0.500 5.00 8.8161 0.0564 4.3677 2.6045 0.4954 0.2954
3 0.500 5.00 9.7670 0.1078 2.4660 0.5128 0.2525 0.0525
4 0.500 5.00 9.9500 0.1199 2.1001 0.1102 0.2111 0.0111

Los resultados muestran que con un técnico la productividad es baja (5 45.44%). Si se au-
menta la cantidad de técnicos a dos, la productividad salta 34.71% a 80.15%. Cuando el taller em-
plea tres técnicos, la productividad  se incrementa sólo en aproximadamente de 8.64% a 88.79%,
mientras que los cuatro técnicos incrementarán la productividad en un escaso 1.66% a 90.45%.

Juzgando a partir de estos resultados, se justifica el uso de dos técnicos. El caso de tres no es
tan fuerte ya que eleva la productividad en sólo 8.64%. Tal vez una comparación monetaria
entre el costo de contratar un tercer técnico y el ingreso atribuido al incremento de 8.64% de la
productividad pueda usarse para resolver este punto (vea la sección 18.10 para un análisis de los
modelos de costos).
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CONJUNTO DE PROBLEMAS 18.6G

1. En el ejemplo 18.6-8, haga lo siguiente:

(a) Verifique los valores de lefec dados en la figura 18.9.

*(b) Calcule la cantidad esperada de técnicos ociosos, si R 5 4.

(c) Calcule la probabilidad de que los técnicos estén ociosos, si R 5 3.

*(d) Calcule la probabilidad de que la mayoría (más de la mitad) de los técnicos estén
ociosos, si R 5 3.

2. En el ejemplo 18.6-8, defina y calcule la productividad de los técnicos para R 5 1,2,3, y 4.
Utilice esta información junto con la medida de productividad de la máquina para deci-
dir el número de técnicos que Toolco debe contratar.

3. En los cálculos de la figura 18.9, puede parecer confuso que la tasa promedio de descom-
posturas de máquinas en el taller, lefec, se incrementa con el incremento de R. Explique por
qué debe esperarse el incremento de lefec.

*4. Un operador atiende 5 máquinas automáticas. Después de que cada máquina completa
un lote, el operador debe reiniciarla antes de que se inicie un nuevo lote. El tiempo para
completar un lote es exponencial con media de 45 minutos. El tiempo de preparación
también es exponencial con media de 8 minutos.

(a) Determine el promedio de máquinas en espera de ser preparadas o que se están pre-
parando.

(b) Calcule la probabilidad de que todas las máquinas estén funcionando.

(c) Determine el tiempo promedio que una máquina está detenida.

5. Kleen All es una compañía de servicios que realiza varios trabajos peculiares, como jardi-
nería, poda de árboles y pintura de casas. Los 4 empleados de la compañía salen de la ofi-
cina con la primera asignación del día. Después de completar una asignación, el empleado
llama a la oficina para pedir instrucciones para el siguiente trabajo que se va a realizar. El
tiempo para completar una asignación es exponencial con una media de 45 minutos. El
tiempo de viaje entre los trabajos también es exponencial con una media de 20 minutos.

(a) Determine el promedio de empleados que viajan entre los trabajos.

(b) Calcule la probabilidad de que ningún empleado ande en camino.

*6. Luego de una larga espera, los Newborns fueron recompensados con quíntuples, 2 niños
y 3 niñas, gracias a los maravillosos avances de la medicina. Durante los primeros 5
meses, la vida de los niños consistía en dos estados, despiertos (la mayor parte del tiempo
llorando) y dormidos. De acuerdo con los Newborns, las actividades de los bebés de “des-
pertar-dormir” nunca coinciden. En su lugar, todo el asunto es totalmente aleatorio. De
hecho, la señora Newborn, profesional en estadísticas, cree que el tiempo que cada bebé
llora es exponencial, con una media de 30 minutos. La cantidad de sueño que cada bebé
obtiene también resulta ser exponencial, con media de 2 horas. Determine lo siguiente:

(a) El promedio de bebés despiertos en cualquier momento.

(b) La probabilidad de que todos los bebés estén dormidos.

(c) La probabilidad de que los Newborns no se sientan felices porque haya más bebés
despiertos (y llorando) que dormidos.

7. Verifique la expresión de pn para el modelo (M/M/R):(GD/K/K).

8. Demuestre que la tasa de descomposturas en el taller puede calcularse a partir de la fórmula

donde es el promedio de técnicos ocupados.R

lefec = mR
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9. Verifique los siguientes resultados en el caso especial de un técnico (R 5 1): 1

18.7 (M/G/1):(GD/ / )—FÓRMULA DE POLLACZEK-KHINTCHINE (P-K)

Los modelos de colas en los que las llegadas y salidas no siguen la distribución de
Poisson son complejos. En general, es aconsejable utilizar la simulación como una he-
rramienta alternativa para analizar estas situaciones (vea el capítulo 19).

Esta sección presenta una de las pocas colas no Poisson para la cual hay disponi-
bles resultados analíticos. Se trata del caso en que el tiempo de servicio, t, está repre-
sentado por cualquier distribución de probabilidad con media E{t} y varianza var{t}. Los
resultados del modelo incluyen las medidas de desempeño básicas Ls, Lq, Ws y Wq, así
como también p0. El modelo no proporciona una expresión de forma cerrada para pn
debido a la incontrolabilidad analítica.

Sea l la tasa de llegadas a la instalación de un solo servidor. Dadas E{t} y var{t} de
la distribución del tiempo de servicio y que lE{t} , 1, se puede demostrar por medio
de un análisis de cadena de Markov/probabilidad compleja que 

La probabilidad de que la instalación esté vacía (ociosa) se calcula como 

Dada lefec 5 l, las medidas de desempeño restantes (Lq, Ws y Wq) se derivan a partir
de Ls, como se explica en la sección 18.6.1.

La plantilla excelPKFormula.xls automatiza los cálculos de este modelo.

Ejemplo 18.7-1

En la instalación de lavado de autos Automata del ejemplo 18.6-2, suponga que se instala un sis-
tema nuevo de modo que el tiempo de servicio de todos los autos es constante e igual a 10 mi-
nutos. ¿Cómo afecta el nuevo sistema al funcionamiento de la instalación?

A partir del ejemplo 18.6-2, lefec  5 l 5 4 autos por hora. El tiempo de servicio es constan-
te de modo que hora y var {t} 5 0. Por lo tanto,

 Lq = 1.333 - A46 B = .667 autos

 Ls = 4 A16 B +
42 A A16 B2 + 0 B

2 A1 - 4
6 B = 1.33 autos

E{t} =  10
60 =  16

p0 = 1 - lE{t} = 1 - r

Ls = lE{t} +  
l2(E2{t} + var{t})

2(1 - lE{t})
 ,  lE{t} 6 1

qq

 Ls = K -
11 - p02
r

 p0 = a1 + a
R

n= 1
 

K! rn1K - n2 b-1

 pn =
K! rn1K - n2!  p0
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Es interesante comparar los tiempos de espera con los del caso Poisson en el ejemplo 18.6-2,
(M/M/1):(GD/q/q). Las tasas de llegadas y salidas son las mismas en ambos casos (l 5 4 autos
por hora y autos por hora). No obstante, como se muestra en la tabla siguiente, elm =  1

E{t} = 6

 Wq =
.667

4
= .167 horas

 Ws =
1.333

4
= .333 horas

CONJUNTO DE PROBLEMAS 18.7A

1. En el ejemplo 18.7-1, calcule el porcentaje de tiempo que la instalación está ociosa.
2. Resuelva el ejemplo 18.7-1 suponiendo que la distribución del tiempo de servicio  es

como sigue:
*(a) Uniforme entre 8 y 20 minutos.

(b) Normal con m 5 12 minutos y s 5 3 minutos.
(c) Discreto con valores iguales a 4,8 y 15 minutos y probabilidades de .2, .6 y .2, respec-

tivamente.
3. Layson Roofing Inc. instala techos de tejas en casas nuevas y viejas en Arkansas. Los

clientes potenciales solicitan el servicio al azar a razón de nueve trabajos por mes de 30
días y se les pone en una lista de espera para ser procesados sobre la base de FCFS. Los
tamaños de las casas varían, pero es bastante razonable suponer que las áreas del techo
están uniformemente distribuidas entre 150 y 300 metros cuadrados. Por lo común, la
cuadrilla de trabajo puede completar 75 cuadrados al día. Determine lo siguiente:
(a) Los trabajos de techado pendientes promedio de Layson.
(b) El tiempo promedio que un cliente espera hasta que se completa el trabajo de techado.
(c) Si la cuadrilla de trabajo se incrementa al punto de que pueden completar 150 cuadra-

dos al día, ¿cómo afectará esto al tiempo promedio hasta que se completa un trabajo?
*4. Optica elabora lentes de prescripción de acuerdo con los pedidos de los clientes. Cada

trabajador se especializa en ciertos tipos de lentes. La compañía ha estado experimentan-
do demoras inusuales en el procesamiento de prescripciones bifocales y trifocales. El tra-
bajador a cargo recibe 30 pedidos por día de 8 horas. El tiempo para completar una
prescripción en general está normalmente distribuido, con una media de 12 minutos y
una desviación estándar de 3 minutos. Después de emplear entre 2 y 4 minutos, unifor-
memente distribuidos, para inspeccionar los lentes, el trabajador puede empezar a proce-
sar una nueva prescripción. Determine lo siguiente:
(a) El porcentaje de tiempo que el trabajador está ocioso.
(b) El promedio de prescripciones bifocales y trifocales pendientes en Óptica.
(c) El tiempo promedio hasta que se completa una prescripción.

5. Un producto llega de acuerdo con una distribución de Poisson a razón de uno cada 45
minutos. El producto requiere dos operaciones aleatorias atendidas por un trabajador. La
primera operación utiliza una máquina semiautomática que completa su ciclo en exacta-
mente 28 minutos. La segunda operación realiza ajustes y cambios menores, y su tiempo

(M/M/1):(GD/q/q) (M/D/1):(GD/q/q)

(hr)Ws .500 .333
(hr)Wq .333 .167

tiempo de espera anticipado es menor en el modelo actual. Los resultados tienen sentido porque
un tiempo de servicio constante indica más certeza en la operación de la instalación.
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depende de la condición del producto cuando sale de la operación 1. Específicamente, el
tiempo de la operación 2 es uniforme entre 3 y 6 minutos. Debido a que cada operación
requiere toda la atención del trabajador, no se puede cargar un nuevo producto en la má-
quina semiautomática hasta que el producto actual sale de la operación 2.
(a) Determine la cantidad de productos en espera de ser procesados en la máquina se-

miautomática.
(b) ¿Cuál es el porcentaje de tiempo que el trabajador estará ocioso?
(c) Cuánto tiempo se requiere, en promedio, para que un producto que llega salga de la

operación 2?
6. (M/M/1):(GDq/q). Demuestre que en el caso en que el tiempo es constante, la fórmula

P-K se reduce a

donde m =  1
E{t} y r =  lm = lE{t}.

Ls = r +  
r2

2(1 - r)

7. (M/Em/1):(GD/q/q). Dado que el tiempo de servicio es Erlang con parámetros m y m
(es decir, y , demuestre que la fórmula P-K se reduce a 

8. Demuestre que la fórmula P-K se reduce a LS del modelo (M/M/1):(GD/q/q) cuando el
tiempo de servicio es exponencial con media de unidades de tiempo.

9. En una instalación de servicios con c servidores paralelos, suponga que los clientes según
una distribución de Poisson, con tasa media de l. Los clientes que llegan son asignados a
los servidores (ocupados o desocupados) de una forma estrictamente de rotación.
(a) Determine la distribución de la probabilidad del tiempo entre llegadas.
(b) Suponga en el inciso (a) que los clientes que llegan son asignados al azar a los c ser-

vidores con probabilidades ai, ai $ 0, i 5 1,2,…, c, y a1 1 a2 1 … 1 ac 5 1.
Determine la distribución de la probabilidad del tiempo entre llegadas.

18.8 OTROS MODELOS DE COLAS

Las secciones anteriores se concentraron en el modelo de colas de Poisson. La literatu-
ra sobre colas abunda con otros tipos de colas. En particular, las colas con prioridad de
servicio, las colas en red y las colas no Poisson forman un importante cuerpo de la lite-
ratura de teoría de colas. Estos modelos se encuentran en la mayoría de libros especia-
lizados en la teoría de colas.

18.9 MODELOS DE DECISIÓN EN COLAS

El nivel de servicio en una instalación de colas es una función de la tasa de servicios, m,
y de  la cantidad de servidores paralelos, c. Esta sección presenta dos modelos de deci-
sión para determinar niveles de servicio “adecuado” en sistemas de colas: (1) un mode-
lo de costos, y (2) un modelo de nivel de aspiración. El objetivo es encontrar un balan-
ce entre el nivel de servicio y la espera.

1
m

Ls = mr +  
m(1 + m)r2

2(1 - mr)

var{t} = m
m2)E{t} =  mm



18.9 Modelos de decisión en colas 639

18.9.1 Modelos de costos

Los modelos de costos tratan de balancear dos costos conflictivos:

1. El costo del ofrecimiento del servicio.
2. El costo de la demora al ofrecer el servicio (tiempo de espera del cliente).

Un incremento de un costo provoca automáticamente una reducción del otro, como  se
demostró antes en la figura 18.1.

Si x (5 m o c) representa el nivel de servicio, el modelo de costos se expresa como 

donde

ETC 5 Costo total esperado por unidad de tiempo 
EOC 5 Costo de operación esperado de la instalación por unidad de tiempo
EWC 5 Costo de espera anticipado por unidad de tiempo

Las formas más simples de EOC y EWC son las siguientes funciones lineales:

donde

C1 5 Costo marginal por unidad de x por unidad de tiempo
C2 5 Costo de espera por unidad de tiempo por cliente (en espera)

Los dos ejemplos siguientes ilustran el uso del modelo de costos. El primer ejem-
plo supone x 5 m y el segundo supone x 5 c.

Ejemplo 18.9-1

KeenCo Publishing se encuentra en el proceso de comprar una copiadora comercial de alta ve-
locidad. Los vendedores propusieron cuatro modelos cuyas especificaciones se resumen a conti-
nuación.

EWC(x) = C2Ls

EOC(x) = C1x

ETC(x) = EOC(x) + EWC(x)

Modelo de copiadora Costo de operación ($/h) Velocidad (hojas/min)

1 15 30
2 20 36
3 24 50
4 27 66

Los trabajos llegan a KeenCo en una corriente Poisson a razón de cuatro trabajos por día de 24
horas. El tamaño del trabajo es aleatorio con promedios aproximadamente de 10,000 hojas por
trabajo. Los contratos con los clientes especifican un costo de penalización por entrega retrasa-
da de $80 por trabajos por día. ¿Cuál copiadora debe comprar KeenCo?
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El costo total esperado por día asociado con la copiadora i es 

Los datos del problema dan los valores de C1i. Determinamos Lsi reconociendo que, para
todos los propósitos prácticos, cada copiadora puede ser tratada como un modelo
(M/M/1):(GDq/q). La tasa de llegadas es l 5 4 trabajos/día. La tasa de servicios mi asociada
con el modelo i se calcula como 

 = 24C1i + 80Lsi, i = 1, 2, 3, 4

 = C1i * 24 + C2iLsi

 ETCi = EOCi + EWCi

El cálculo de la tasa de servicios se demuestra para el modelo 1.

Por lo tanto,

Los valores de Lsi calculados por TORA o excelPoissonQ.xls, se dan en la siguiente tabla:

m1 =  
24

5.56
 = 4.32  trabajos/día

Tiempo promedio por trabajo =  
10,000

30
 *  

1
60

 = 5.56 horas

Los costos de los cuatro modelos se calculan como sigue:

El modelo 3 produce el costo mínimo.

CONJUNTO DE PROBLEMAS 18.9A

1. En el ejemplo 18.9-1, haga lo siguiente:
(a) Verifique los valores de m2, m3 y m4 dados en el ejemplo.
(b) Suponga que la penalización de $80 por trabajo por día  se aplica sólo a trabajos

que no “están en proceso” al final del día. ¿Cuál copiadora produce el costo mínimo
total por día?

Modelo i Tasa de servicios mi (trabajos/día)

1 4.32
2 5.18
3 7.20
4 9.50

Modelo i li (Trabajos/día) mi(Trabajos/día) Lsi(Trabajos)

1 4 4.32 12.50
2 4 5.18 3.39
3 4 7.20 1.25
4 4 9.50 0.73

Modelo i ($)EOCi ($)EWCi ($)ETCi

1 360.00 1000.00 1360.00
2 480.00 271.20 751.20
3 576.00 100.00 676.00
4 648.00 58.40 706.40
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*2. Metalco va a contratar a un técnico en mantenimiento para un taller de 10 máquinas. Se
están considerando dos candidatos. El primero puede realizar reparaciones a razón de 
5 máquinas por hora y gana $15 por hora. El segundo, por estar más calificado, recibe 
$20 por hora y puede reparar 8 máquinas por hora. Metalco estima que cada máquina
descompuesta incurrirá en un costo de $50 por hora a causa de la producción perdida.
Suponiendo que las máquinas se descomponen de acuerdo con una distribución de
Poisson con una media de 3 por hora y que el tiempo de reparación es exponencial, ¿cuál
técnico debe ser contratado?

3. B&K Groceries va a abrir una tienda que presumirá de constar con lectores de barras de
“última generación”. El señor Bih, uno de los propietarios de B&K ha limitado las opcio-
nes a dos lectores: El lector A puede procesar 10 artículos por minuto, y el lector B puede
leer 15 artículos por minuto. El costo diario de operación (10 horas) y mantenimiento de
los lectores es de $25 y $35 para los modelos A y B respectivamente. Los clientes que ter-
minan sus compras llegan a la caja de acuerdo con una distribución de Poisson a razón de
10 clientes por hora. Cada carrito lleva entre 25 y 35 artículos, distribuidos de manera
uniforme. El señor Bih estima que el costo promedio por cliente que espera por minuto
es aproximadamente de 20 centavos. ¿Cuál lector debe adquirir B&K? (Sugerencia: El
tiempo de servicio por cliente no es exponencial, sino uniformemente distribuido.)

4. H&I Industry produce una máquina especial con diferentes tasas de producción (piezas
por hora) para satisfacer las especificaciones del cliente. El propietario de un taller está
considerando comprar una de estas máquinas y desea adquirir la de velocidad más econó-
mica (en piezas por hora). Por experiencias pasadas, el propietario estima que los pedidos
de los clientes llegan al taller de acuerdo con una distribución de Poisson a razón de tres
pedidos por hora. Cada pedido promedia 500 piezas. Los contratos entre el propietario y
los clientes especifican una penalización de $100 por pedido retrasado por hora.
(a) Suponiendo que el tiempo de producción real por pedido es exponencial, desarrolle

un modelo de costos general como una m función de la tasa de producción.
*(b) A partir del modelo de costos en (a), determine una expresión para la tasa de pro-

ducción óptima.
*(c) Aplicando los datos del problema, determine la tasa de producción óptima que el

propietario debe obtener de H&I.
5. A un taller llegan trabajos a una taza de distribución de Poisson a razón de 80 trabajos por

semana. Una máquina automática representa el cuello de botella en el taller. Se estima que
un incremento unitario de la  producción de la máquina costará $250 por semana. Los traba-
jos retrasados normalmente originan un negocio perdido, el que se supone es de $500 por
trabajo por semana. Determine la tasa de producción óptima para la máquina automática.

6. Pizza Unlimited vende dos modelos de restaurantes franquiciados. La capacidad del mo-
delo A es de 20 grupos de clientes, la del modelo B es de 30 grupos. El costo mensual de
operación del modelo A es de $12,000 y el del modelo B es de $16,000. Un inversionista
desea montar un restaurante de pizzas estilo buffet que grupos de clientes, cada uno ocu-
pando una mesa, lleguen siguiendo una distribución de Poisson a razón de 25 grupos por
hora. Si todas las mesas están ocupadas, los clientes se irán a otra parte. El modelo A ser-
virá a 26 grupos por hora, el modelo B servirá a 29 grupos por hora. Debido a la varia-
ción de los tamaños de los grupos y de los tipos de órdenes, el tiempo de servicio es expo-
nencial. El inversionista estima que el promedio de negocio perdido por grupo de
clientes por hora es de $15. Se estima que una demora en el servicio de los clientes que
esperan cuesta un promedio de $10 por grupo de clientes por hora.
(a) Desarrolle un modelo de costos apropiado.
(b) Suponiendo que el restaurante estará abierto 10 horas al día, ¿cuál modelo recomen-

daría para el inversionista?
7. Suponga que en el problema 6 el inversionista puede elegir cualquier capacidad de restauran-

te deseada basado en un costo marginal específico por cada unidad de capacidad adicional
solicitada. Derive el modelo de costos general, y defina todos sus componentes y términos.
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8. Second Time Around vende a consignación artículos populares usados. Su operación
puede considerarse como un problema de inventario en el  cual las existencias se repo-
nen y agotan al azar, de acuerdo con una distribución de Poisson con tasas de l y m
artículos por día. Cada unidad de tiempo que el artículo está agotado, Second Time pier-
de $C1 a causa de las oportunidades perdidas, y cada unidad de tiempo que un artículo se
mantiene en existencia, se incurre en un costo de retención de $C2.
(a) Desarrolle una expresión para el costo total esperado por unidad de tiempo.
(b) Determine el valor óptimo de ¿Cuál condición debe imponerse a los valores

relativos de C1 y C2 para que la solución sea consistente con las suposiciones del mo-
delo (M/M/1):(GDq/q)?

Ejemplo 18.9-2

En una instalación de almacén de herramientas manejado por varios empleados, las solicitudes
de cambio de herramientas llegan de acuerdo con una distribución de Poisson a razón de 17.5 so-
licitudes por hora. Cada empleado puede manejar un promedio de 10 solicitudes por hora. El
costo de contratar un empleado en la instalación es de $12 por hora. El costo de la producción
perdida por máquina de espera por hora es aproximadamente de $50. Determine la cantidad óp-
tima de empleados para la instalación.

La situación corresponde a un modelo (M/M/c) en el cual se desea determinar el valor ópti-
mo de c. Por lo tanto, en el modelo de costos general presentado al inicio de esta  sección, con x
5 c, obtenemos el siguiente modelo de costos:

Observe que Ls(c) es una función de la cantidad de empleados (paralelos) en el almacén.

 = 12c + 50Ls(c)

 ETC(c) = C1c + C2Ls(c)

r =  lm .

Utilizamos (M/M/c):(GD/q/q) con l 5 17.5 solicitudes por hora y m 5 10 solicitudes por
hora. El estado estable se alcanza sólo si es decir c $ 2 en este ejemplo. La tabla siguien-
te proporciona los cálculos necesarios para determinar el c óptimo. Los valores Ls(c) (determi-
nados por excelPoissonQ.xls o TORA) muestran que el número óptimo de empleados es 4.

c 7  lm

c (respuestas)Ls(c) ETC ($)(c)

2 7.467 397.35
3 2.217 146.85
4 1.842 140.10
5 1.769 148.45
6 1.754 159.70

CONJUNTO DE PROBLEMAS 18.9B

1. Resuelva el ejemplo 18.9-2, suponiendo que C1 5 $20 y C2 5 $45.
*2. Tasco Oil posee una unidad propulsora de oleoducto que opera de forma continua. El

tiempo entre descomposturas de cada propulsor es exponencial con una media de 20 horas.
El tiempo de reparación es exponencial con una media de 3 horas. En una estación particu-
lar, dos técnicos de mantenimiento atienden 10 propulsores. El salario por hora de cada
técnico es de $18. Se estima que las pérdidas del oleoducto son de $30 por propulsor des-
compuesto por hora.Tasco está estudiando la posibilidad de contratar un técnico adicional.
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(a) ¿Se ahorrarán costos con la contratación de un tercer técnico?
(b) ¿Cuál es pérdida programada en dólares por descompostura cuando la cantidad de

técnicos en servicio es de dos?, ¿de tres?
3. Una compañía renta una línea telefónica de telecomunicaciones de  banda ancha (WATS,

por sus siglas en inglés) por $2000 al mes. La oficina está abierta 200 horas laborales por
mes. Durante el tiempo restante, la línea WATS se utiliza para otros propósitos y no está
disponible para la compañía. El acceso a la línea WATS durante las horas laborales se
amplía a 100 vendedores, cada uno de los cuales puede necesitar la línea en cualquier mo-
mento dos veces en promedio por día de 8 horas con tiempo exponencial entre llamadas.
Un vendedor siempre espera si la línea WATS está ocupada a un costo estimado de 1 cen-
tavo por minuto de espera. Se supone que mientras un vendedor espera una llamada dada
no se presentará la necesidad de hacer llamadas. El costo normal de las llamadas (sin utili-
zar la línea WATS) promedia aproximadamente 50 centavos por minuto, y la duración de
cada llamada es exponencial, con una media de 6 minutos. La compañía está considerando
rentar (al mismo precio) una segunda  línea WATS para mejorar el servicio.
(a) ¿La línea WATS única le está ahorrando dinero a la compañía en comparación con

un sistema sin línea WATS? ¿Qué tanto está ganando o perdiendo la compañía por
mes en comparación con el sistema sin línea WATS?

(b) ¿Debe rentar la compañía una segunda línea WATS? ¿Cuánto ganaría o perdería
sobre el caso de una línea WATS única al rentar una línea más?

*4. Un taller mecánico incluye 20 máquinas y 3 técnicos en reparaciones. Una máquina en
funcionamiento se descompone de acuerdo con una distribución de Poisson. El tiempo
de reparación por máquina es exponencial con una media de 6 minutos. Un  análisis de
colas de la situación muestra un promedio de 57.8 de solicitudes de reparación por día de
8 horas para todo el taller. Suponga que la tasa de producción por máquina es de 25 uni-
dades por hora y que cada unidad producida genera $2 en ingresos. Además, asuma que
el salario de un técnico es de $20 por hora. Compare el costo de contratar los técnicos
con el costo de los ingresos perdidos cuando las máquinas se descomponen.

5. Las condiciones necesarias para que el ETC(c) (definidas antes) para asumir un valor
mínimo con c 5 c* son

Demuestre que estas condiciones se reducen a

Aplique el resultado al ejemplo 18.9-2, y demuestre que el resultado es c* 5 4.

18.9.2 Modelo de nivel de aspiración

La viabilidad del modelo de costos depende de qué tan bien podamos estimar los pará-
metros de costos. En general, estos parámetros son difíciles de estimar, en particular el
asociado con el tiempo de espera de clientes. El modelo de nivel de aspiración mitiga
esta dificultad al trabajar directamente con las medidas de desempeño de la situación
de colas. La idea es determinar un intervalo aceptable para el nivel de servicio (m o c)
especificando límites razonables en las medidas de desempeño conflictivas. Tales lími-
tes son los niveles de aspiración que el tomador de decisiones desea alcanzar.

Ls(c*) - Ls(c* + 1) …  
C1

C2
 … Ls(c* - 1) - Ls(c*)

ETC(c* -1) Ú ETC(c*)  y  ETC(c* + 1) Ú ETC(c*)
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El modelo se aplica al modelo de varios servidores para determinar una cantidad
“aceptable” de servidores, c*, teniendo en cuenta dos medidas de desempeño (conflictivas):

1. El tiempo promedio en el sistema, Ws.
2. El porcentaje de ociosidad de los servidores, X.

El porcentaje de ociosidad se calcula como sigue:

(Vea el problema 12, conjunto 18.6D para la comprobación.)
El problema se reduce a determinar la cantidad de servidores c* de modo que 

Las constantes a y b son los niveles de aspiración especificados por el tomador de de-
cisiones. Por ejemplo, a 5 3 minutos y b 5 10%.

La solución del problema puede determinarse trazando una gráfica de Ws y X
como una función de c, como se muestra en la figura 18.10. Localizando a y b en la grá-
fica, podemos determinar un intervalo aceptable para c*. Si no se pueden satisfacer las
dos condiciones al mismo tiempo, entonces una o ambas deben relajarse antes de que
se pueda encontrar un intervalo factible.

Ejemplo 18.9-3

En el ejemplo 18.9-2, suponga que se desea determinar la cantidad de empleados de modo que
el tiempo de espera hasta que se recibe una herramienta permanezca por debajo de 5 minutos.
Al mismo tiempo, el porcentaje de ociosidad debe estar por debajo de 20%.

Sin pensar, y antes de realizar cualquier cálculo, es inalcanzable un límite de aspiración de 5 mi-
nutos en el tiempo de espera hasta que se recibe una herramienta (es decir, Ws # 5 minutos) porque
de acuerdo con los datos del problema, el tiempo de servicio promedio sólo es de 6 minutos.

La siguiente tabla resumen Ws y X como una función de c:

Ws … a  y  X … b

X =  
c - cq
c

 * 100 =  
c - (Ls -Lq)

c
 * 100 = a1 -  

lefec

cm
 b * 100

FIGURA 18.10

Aplicación de los niveles de aspiración en
la toma de decisiones de colas

Intervalo aceptable de c 

0

WS X X

b

a

WS

c

c 2 3 4 5 6 7 8

(min)Ws 25.4 7.6 6.3 6.1 6.0 6.0 6.0
(%)X 12.5 41.7 56.3 65.0 70.8 75.0 78.0
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Con base en estos resultados debemos, o reducir el tiempo de servicio o reconocer que la causa
del problema es que las herramientas se solicitan a una tasa irrazonablemente alta (l 5 17.5 so-
licitudes por hora). Ésta, sin duda, es el área que hay que atacar. Por ejemplo, nos gustaría inves-
tigar la razón de tan alta demanda de reemplazo de herramientas. ¿Podría ser que el diseño de la
herramienta está defectuoso en sí? O, ¿podría ser que los operadores de las máquinas tratan a
propósito de interrumpir la producción para expresar sus quejas?

CONJUNTO DE PROBLEMAS 18.9C

*1. Un taller utiliza 10 máquinas idénticas. Cada máquina se descompone una vez cada 8
horas en promedio. Se requiere media hora en promedio para reparar una máquina des-
compuesta. Los procesos de descompostura y reparación siguen la distribución de
Poisson. Determine lo siguiente:
(a) La cantidad de técnicos de  mantenimiento necesarios de modo que el número pro-

medio de máquinas descompuestas sea menor que 1.
(b) La cantidad de técnicos en mantenimiento necesarios de modo que el tiempo de de-

mora hasta que se inicie una reparación sea de menos de 10 minutos.
2. En el modelo de costos de la sección 18.9-1, en general es difícil estimar el parámetro de

costo C2 (costo de espera). En consecuencia, puede ser útil calcular el costo C2 implicado
por los niveles de aspiración. Utilizando el modelo de nivel de aspiración para determi-
nar c*, podemos entonces determinar el C2 implicado mediante la siguiente desigualdad:

(Vea el problema 5, conjunto 18.9B, para la derivación.) Aplique el procedimiento al pro-
blema del ejemplo 18.9-2, con c* 5 3 y C1 5 $12.00.
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Ls(c*) - Ls(c* + 1) …  
C1

C2
 … Ls(c* - 1) - Ls(c*)
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19.1 SIMULACIÓN MONTECARLO

Un precursor de la simulación actual es el experimento Montecarlo, un esquema de mo-
delado que estima parámetros estocásticos o determinísticos con base en un muestreo
aleatorio. Algunos ejemplos de aplicaciones Montecarlo incluyen la evaluación de inte-
grales múltiples, la estimación de la constante y la inversión de matrices.

Esta sección utiliza un ejemplo para demostrar la técnica Montecarlo. El objetivo
del ejemplo es enfatizar la naturaleza estadística de la simulación.

Ejemplo 19.1-1

Utilizaremos un muestreo Montecarlo para estimar el área del siguiente círculo:

El radio del círculo es r 5 5 cm, y su centro es (x, y) 5 (1, 2).
El procedimiento para estimar el área requiere encerrar estrechamente el círculo en un cua-

drado cuyo lado sea igual al diámetro del círculo, como se muestra en la figura 19.1. Los puntos
de esquina se determinan a partir de la geometría del cuadrado.

La estimación del área del círculo se basa en un experimento de muestreo que brinda una
oportunidad igual de seleccionar cualquier punto en el cuadrado. Si m de n puntos muestreados
quedan dentro del círculo, entonces

Para asegurarnos de que todos los puntos en el cuadrado son igualmente probables, las
coordenadas x y y de un punto en el cuadrado se representan por medio de las siguientes distri-
buciones uniformes:

 f2(y) =  
1

10
 , - 3 … y … 7

 f1(x) =  
1

10
 , - 4 … x … 6

aÁrea aproximada
del círculo

b =
m

n
 aÁrea del

cuadrado
b =

m

n
 (10 * 10)

(x - 1)2 + (y - 2)2 = 25

p (�  3.14159), 

CAPÍTULO 19

Modelado de simulación
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TABLA 19.1 Una lista breve de números aleatorios 0-1

.0589 .3529 .5869 .3455 .7900 .6307

.6733 .3646 .1281 .4871 .7698 .2346

.4799 .7676 .2867 .8111 .2871 .4220

.9486 .8931 .8216 .8912 .9534 .6991

.6139 .3919 .8261 .4291 .1394 .9745

.5933 .7876 .3866 .2302 .9025 .3428

.9341 .5199 .7125 .5954 .1605 .6037

.1782 .6358 .2108 .5423 .3567 .2569

.3473 .7472 .3575 .4208 .3070 .0546

.5644 .8954 .2926 .6975 .5513 .0305

La determinación de una muestra (x, y) se basa en el uso de números (seudo) aleatorios inde-
pendientes 0-1. La tabla 19.1 incluye una muestra de tales números, los cuales utilizaremos en los
ejemplos de este capítulo. Para el propósito de simulación general, se utilizan operaciones aritméti-
cas especiales para generar números (seudo) aleatorios 0-1, como se demostrará en la sección 19.4.

Se puede usar un par de números aleatorios 0-1, R1 y R2, para generar un punto aleatorio
(x, y) en el cuadrado utilizando las siguientes fórmulas:

Para demostrar la aplicación del procedimiento, consideremos R1 5 .0589 y R2 5 .6733.

Este punto queda dentro del círculo debido a que 

Comentarios. La precisión de la estimación del área se puede mejorar por medio de
experimentos estadísticos comunes.

1. Aumente el tamaño de la muestra, n
2. Use réplicas, N.

(-3.411 - 1)2 + (3.733 - 2)2 = 22.46 6 25

 y = -3 + 10R2 = - 3 + 10 * .6733 = 3.733

 x = - 4 + 10R1 = - 4 + 10 * .0589 = - 3.411

y = - 3 + [7 - (-3)]R2 = - 3 + 10R2

x = - 4 + [6 - (-4)]R1 = - 4 + 10R1

FIGURA 19.1

Estimación Montecarlo del área
de un círculo

(�4, 7) (6, 7)

(�4, �3) (6, �3)

(1, 2)

r �
 5
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El análisis en el ejemplo 19.1-1 plantea dos preguntas con respecto al experimen-
to de simulación:

1. ¿Qué tan grande debe ser la muestra?
2. ¿Cuántas réplicas se requieren?

Hay algunas fórmulas en la teoría estadística para determinar n y N, y dependen de la
naturaleza del experimento de simulación y también del nivel de confianza deseado.
Sin embargo, como en cualquier experimento estadístico, la regla de oro es que los va-
lores altos de n y N producen resultados de simulación más precisos.Al final, el tamaño
de la muestra dependerá del costo asociado con la realización del experimento de si-
mulación. Sin embargo, un tamaño de muestra seleccionado se suele considerar “ade-
cuado” si produce una desviación estándar “relativamente pequeña”.

Es necesario expresar los resultados como un intervalo de confianza para tener
en cuenta la variación aleatoria del resultado del experimento. Si y s son la media y
la raíz cuadrada de la varianza de N réplicas, entonces, con un nivel de confianza a, el
intervalo de confianza del área verdadera A es

El parámetro se determina con las tablas de distribución t dado un nivel de con-
fianza a y N 2 1 grados de libertad (vea la tabla t en el apéndice A o utilice la plantilla
excelStatTable.xls). Observe que N es igual al número de réplicas, el cual es distinto del
tamaño n de la muestra.

Momento de Excel

Los cálculos asociados con cada muestra en el ejemplo 19.1-1 son voluminosos. Se utiliza la plan-
tilla de Excel excelCircle.xls (con macros VBA) para probar el efecto del tamaño de la muestra y
la cantidad de réplicas en la precisión de la estimación. Los datos de entrada incluyen el radio
del círculo; y su centro (cx, cy); el tamaño de la muestra, n; el número de réplicas, N, y el nivel de
confianza a. La entrada Steps en la celda D4 permite ejecutar varias muestras en la misma
ejecución. Por ejemplo, si n 5 30,000 y Steps 5 3, la plantilla producirá de forma automática el
resultado con n 5 30,000, 60,000 y 90,000. Se realizan nuevas estimaciones cada vez que se hace
clic en el botón porque Excel reaviva la semilla del generador de
números aleatorios.

La figura 19.2 resume los resultados de 5 réplicas y los tamaños de muestra de 30,000, 60,000
y 90,000. El área exacta es de 78.54 cm2 y los resultados Monte Carlo muestran que las áreas me-
dias estimadas con los tres tamaños de muestra son ligeramente diferentes.

La figura 16.2 da los intervalos de 95% de confianza para cada n. Por ejemplo, el intervalo
de confianza 78.452 # A # 78.68 corresponde a n 5 90,000, con N 5 5, 5 78.566 cm2, y s 5 .092
cm y t.025,4 5 2.776. En general, para obtener una precisión razonable en la estimación del inter-
valo de confianza, el valor de N debe ser al menos 5.

CONJUNTO DE PROBLEMAS 19.1A

1. En el ejemplo 19.1-1, estime el área del círculo utilizando las primeras dos columnas 
de los números aleatorios 0-1 en la tabla 19.1. (Por conveniencia, repase cada columna de
arriba a abajo, y seleccione primero R1 y luego R2.) ¿Cómo se compara esta estimación
con las dadas en la figura 19.2?

Press to Execute Montecarlo

ta
2 , N- 1

  A -  
s1N ta

2 , N- 1 … A … A +  
s1N ta

2 , N- 1

A
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FIGURA 19.2

Resultados de la estimación Montecarlo del área de un círculo obtenidos con Excel (archivo excelCircle.xls)

2. Suponga que la ecuación de un círculo es

(a) Defina las distribuciones correspondientes f(x) y f(y) y luego demuestre cómo se de-
termina un punto (x, y) de la muestra utilizando el par de aleatorios (0, 1), (R1, R2).

(b) Use la plantilla excelCircle.xls para estimar el área y el intervalo de 95% de confian-
za asociado, dados n 5 100,000 y N 5 10.

3. Use el muestreo Montecarlo para estimar el área del lago que se muestra en la figura 19.3.
Base su estimación en las primeras dos columnas de números aleatorios (0, 1) en la tabla 19.1.

4. Considere el juego en el cual dos participantes, Jan y Jim, se turnan para lanzar al aire una mo-
neda. Si el resultado es cara, Jim obtiene $10 de Jan. De lo contrario, Jan obtiene $10 de Jim.

*(a) ¿Cómo se simula el juego con un experimento Montecarlo?
(b) Ejecute el experimento con 5 réplicas de 10 lanzamientos cada una. Use las primeras

5 columnas de los números aleatorios 0-1 en la tabla 19.1 con cada columna corres-
pondiendo a una réplica.

(x - 3)2 + (y + 2)2 = 16
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FIGURA 19.3

Mapa del lago para el problema 3,
conjunto 19.1A

4

3

2

1

0 1 2 3
Millas

M
ill

as

4 5 6 7

(c) Establezca un intervalo de 95% de confianza para las victorias de Jan.
(d) Compare el intervalo de confianza en (c) con las victorias teóricas esperadas de Jan.

5. Considere la siguiente integral definida:

(a) Desarrolle el experimento Montecarlo para estimar la integral.
(b) Use las primeras cuatro columnas de la tabla 19.1 para evaluar la integral con 4 ré-

plicas, cada una de tamaño 5. Calcule el intervalo de 95% de confianza, y compárelo
con el valor exacto de la integral.

6. Simule cinco ganancias o pérdidas del siguiente juego de “craps”. El jugador lanza dos
dados. Si la suma resultante es 7 u 11, el jugador gana $10. De lo contrario, el jugador
anota la suma resultado (llamada punto) y continúa lanzando los dados hasta que la
suma resultante coincida con el punto anotado, en cuyo caso el jugador gana $10. Si se
obtiene un 7 antes de la coincidencia con el punto, el jugador pierde $10.

*7. El tiempo de espera para recibir un pedido puede ser de 1 o 2 días con probabilidades
iguales. La demanda por día supone los valores 0, 1 y 2 con las probabilidades respectivas
de .2, .7 y .1. Use los números aleatorios de la tabla 19.1 (comenzando con la columna 1)
para estimar la distribución conjunta de la demanda y el tiempo de espera. A partir de la
distribución conjunta, estime la función de densidad de probabilidad de la demanda du-
rante el tiempo de espera. (Sugerencia: La demanda durante el tiempo de espera supone
valores discretos de 0 a 4.)

8. Considere el experimento de la aguja de Buffon. Se traza un plano horizontal con líneas
paralelas con una separación de Dcm entre ellas. Se deja caer una aguja de dcm de longi-
tud (d , D) al azar sobre el plano. El objetivo del experimento es determinar la probabi-
lidad de que cualquiera de los extremos toque o cruce una de las líneas. Defina 

h = Distancia perpendicular del centro de la aguja a una línea (paralela)

L
1

0
x2dx

u 5 Ángulo de inclinación de la aguja con respecto a una línea
(a) Demuestre que la aguja tocará o cruzará una línea sólo si 

(b) Diseñe el experimento Montecarlo, y estime la probabilidad deseada.
(c) Use Excel para obtener 4 réplicas, cada una de tamaño 10 de la probabilidad desea-

da. Determine el intervalo de 95% de confianza para la estimación. Suponga que D
5 20 cm y d 5 10 cm.

h …  
d

2
  sen  u, 0 … h …  

D

2
 , 0 … u … p
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(d) Demuestre que la siguiente fórmula da la probabilidad teórica.

(e) Use el resultado en (c) junto con la fórmula en (d) para estimar p.
9. Diseñe un experimento Montecarlo para estimar el valor de la constante p.

[Sugerencia: Área de un círculo)/(Área de un rectángulo que envuelve estrechamente 
al círculo) 5 p/4.] 

19.2 TIPOS DE SIMULACIÓN

La simulación de este día se basa en la idea del muestreo utilizado con el método
Montecarlo. Difiere en que estudia el comportamiento de sistemas reales como una
función de tiempo. Existen dos tipos distintos de modelos de simulación.

1. Los modelos continuos se ocupan de sistemas cuyo comportamiento cambia conti-
nuamente con el tiempo. Estos modelos suelen utilizar ecuaciones diferenciales
para describir las interacciones entre los diferentes elementos del sistema. Un
ejemplo típico tiene que ver con el estudio de la dinámica de la población mundial.

2. Los modelos discretos tienen que ver principalmente con el estudio de líneas de
espera con el objetivo de determinar medidas como el tiempo de espera prome-
dio y la longitud de la cola. Estas medidas cambian sólo cuando un cliente entra
o sale del sistema. Los instantes en que ocurren los cambios en puntos discretos
específicos del tiempo (eventos de llegada y salida), originan el nombre simulación
de evento discreto.

Este capítulo presenta los fundamentos de la simulación de evento discreto, in-
cluida una descripción de los componentes de un modelo de simulación, la recolección de
estadísticas de simulación y el aspecto estadístico del experimento de simulación.
También pone énfasis en el papel de la computadora y los lenguajes de simulación en
la ejecución de modelos de simulación.

CONJUNTO DE PROBLEMAS 19.2A

1. Categorice las siguientes situaciones como discretas o continuas (o una combinación de
ambas). En cada caso, especifique el objetivo de desarrollar el modelo de simulación.

*(a) Los pedidos de un artículo llegan al azar a un almacén. Un pedido que no puede ser
completado de inmediato con las existencias disponibles debe esperar la llegada de
nuevos envíos.

(b) La población mundial se ve afectada por la disponibilidad de los recursos naturales,
la producción de alimentos y las condiciones ambientales, el nivel educativo, el cui-
dado de la salud y las inversiones de capital.

(c) A una bahía receptora de un almacén automatizado llegan mercancías en tarimas.
Las tarimas se cargan sobre una banda transportadora y se izan mediante un ele-
vador a una transportadora elevada que mueve las tarimas a los corredores. Los 
corredores son atendidos por grúas que recogen las tarimas de la banda y las co-
locan en compartimientos de almacenamiento.

2. Explique por qué estaría de acuerdo o en desacuerdo con el siguiente enunciado:“La ma-
yoría de los modelos de simulación de evento discreto pueden ser considerados en una u
otra forma como sistemas de colas, compuestos de fuentes desde las cuales llegan los clien-
tes, colas donde los clientes pueden esperar, e instalaciones donde se atiende a los clientes”.

p =  
2d
pD
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19.3 ELEMENTOS DE LA SIMULACIÓN DE EVENTO DISCRETO

El objetivo final de la simulación es estimar algunas medidas de desempeño deseables
que describan el comportamiento del sistema simulado. Por ejemplo, en una instala-
ción de servicio, las medidas de desempeño asociadas pueden incluir el tiempo de es-
pera promedio hasta que un cliente es atendido, la longitud promedio de la cola y la
utilización promedio de la instalación de servicio. Esta sección muestra como se reco-
pilan las estadísticas del sistema simulado con base en el concepto de eventos.

19.3.1 Definición genérica de eventos

Todas las simulaciones de eventos discretos describen, directamente o indirectamente,
situaciones de colas en las que los clientes llegan (para servicio), esperan en la cola (si
es necesario) y luego reciben el servicio antes de salir de la instalación de servicio.
Como tal, cualquier simulación de evento discreto, independientemente de la comple-
jidad del sistema que describe, se reduce a tratar con dos eventos básicos: llegadas 
y salidas. El siguiente ejemplo ilustra el uso de los eventos de llegada y salida para
describir un sistema compuesto de colas distintas.

Ejemplo 19.3-1

Metalco Jobshop recibe dos tipos de trabajos: regulares y urgentes. Todos los trabajos se proce-
san en dos máquinas consecutivas con amplias áreas intermedias. Los trabajos urgentes siempre
suponen prioridad preventiva sobre los trabajos regulares.

Esta situación consta de colas en tándem que representan las máquinas.Al principio nos po-
demos inclinar a identificar los eventos de la situación como

A11: Un trabajo regular llega a la máquina 1.
A21: Un trabajo urgente llega a la máquina 1.
D11: Un trabajo regular sale de la máquina 1.
D21: Un trabajo urgente sale de la máquina 1.
Al2: Un trabajo regular llega a la máquina 2.

A22: Un trabajo urgente llega a la máquina 2.
D12: Un trabajo regular sale de la máquina 2.

D22: Un trabajo urgente sale de la máquina 2.

En realidad sólo hay dos eventos: la llegada de un (nuevo) trabajo al taller y la salida de un tra-
bajo (terminado) de una máquina. En primer lugar observe que los eventos D11 y A12 en reali-
dad son los mismos. Lo mismo aplica a D21 y A22. Luego, en la simulación discreta podemos uti-
lizar un evento (llegada o salida) de ambos tipos de trabajos y simplemente “etiquetar” el evento
con un atributo que identifique el tipo de trabajo como regular o urgente. (En este caso pode-
mos pensar en el atributo como un descriptor de identificación personal, y de hecho lo es). Dado
este razonamiento, los eventos del modelo se reducen a (1) una llegada A (al taller), y (2) una sa-
lida D (de una máquina). Las acciones asociadas con el evento de llegada dependen del tipo de
trabajo que llega (urgente o regular) y de la disponibilidad de una máquina. Asimismo, el proce-
samiento del evento de salida dependerá de la máquina y del estatus de los trabajos en espera.

Habiendo definido los eventos básicos de un modelo de simulación, demostramos cómo se
ejecuta el modelo. La figura 19.4 ofrece una representación esquemática de ocurrencias típicas
de eventos en la escala de tiempo de la simulación. Una vez que se han realizado todas las accio-
nes asociadas con un evento existente, la simulación “salta” al siguiente evento cronológico. En
esencia, la ejecución de la simulación ocurre en los instantes en que ocurren los eventos.
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¿Cómo determina la simulación el tiempo de ocurrencia de los eventos? Los eventos de lle-
gada están separados por el tiempo entre llegadas (el intervalo entre llegadas sucesivas) y los
eventos de salida son una función del tiempo de servicio en la instalación. Estos tiempos pueden
ser determinísticos (por ejemplo un tren que llega a una estación cada 5 minutos) o probabilísti-
cos (como la llegada aleatoria de los clientes a un banco). Si el tiempo entre eventos es deter-
minístico, la determinación de sus tiempos de ocurrencia es simple. Si es probabilístico, utilizamos
un procedimiento especial para muestrear de la distribución de probabilidad correspondiente.
Este punto se trata en la siguiente sección.

CONJUNTO DE PROBLEMAS 19.3A

1. Identifique los eventos discretos necesarios para simular la siguiente situación. Llegan
dos tipos de trabajos de dos fuentes diferentes. Ambos tipos se procesan en una sola má-
quina, con prioridad dada a los trabajos de la primera fuente.

2. Llegan trabajos a una tasa constante en un sistema transportador de carrusel. Tres esta-
ciones de servicio están equidistantes entre sí alrededor del carrusel. Si el servidor está
ocioso cuando llega un trabajo a la estación, el trabajo se retira del transportador para
procesarlo. De lo contrario, el trabajo continúa girando en el carrusel hasta que el servi-
dor vuelve a estar disponible. Un trabajo procesado se guarda en un área de envío adya-
cente. Identifique los eventos discretos necesarios para simular esta situación.

3. Los autos llegan a los carriles de una caja de servicio en su coche de un banco, donde
cada carril puede alojar un máximo de cuatro autos. Si los dos carriles están llenos, los
autos que llegan buscan servicio en otra parte. Si en cualquier momento un carril es al
menos dos autos más largo que el otro, el último auto en el carril más largo se pasará a la
última posición del carril más corto. El banco opera la instalación de servicio en su coche
de 8:00 A.M. a 3:00 P.M. cada día laboral. Defina los eventos discretos de la situación.

*4. La cafetería en la escuela primaria Elmdale proporciona un almuerzo de menú fijo de una
sola charola a todos sus alumnos. Los niños llegan a la ventanilla despachadora cada 30
segundos. Se requieren 18 segundos para recibir la charola del almuerzo. Trace el mapa
de los eventos de llegada y salida en la escala de tiempo de los primeros cinco alumnos.

19.3.2 Muestreo de distribuciones de probabilidad

La aleatoriedad de la simulación surge cuanto el intervalo, t, entre eventos sucesivos es
probabilístico. Esta sección presenta tres métodos para generar muestras aleatorias su-
cesivas (t 5 t1, t2, …) de una distribución de probabilidad f(t):

1. Método inverso.
2. Método de convolución.
3. Método de aceptación y rechazo.

FIGURA 19.4

Ejemplo de la ocurrencia de eventos de simulación en la escala de tiempo 

Evento 1 Evento 2 Evento 3 Evento 4 Evento 5

Tiempo
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El método inverso es particularmente adecuado para funciones de densidad de proba-
bilidad analíticamente solubles, como la exponencial y la uniforme. Los otros dos mé-
todos se ocupan de casos más complejos, como el normal y el de Poisson. Los tres
métodos se derivan del uso de números aleatorios 0-1 independientes e idénticamente
distribuidos.

Esta sección presentará sólo los dos primeros métodos. Los detalles del método
de aceptación y rechazo se pueden encontrar en la bibliografía.

Método inverso. Suponga que se desea obtener una muestra aleatoria x de la función
de densidad de probabilidad f(x) (continua o discreta). El método inverso determina
primero la expresión de forma cerrada de la función de densidad acumulada F(x) 5
P{y # x}, donde 0 # F(x) # 1, para todos los valores definidos de y.

Se puede demostrar que la variable aleatoria z 5 F(x) está distribuida de modo
uniforme en el intervalo 0 # z # 1. Con base en este resultado, se determina una mues-
tra aleatoria de f(x) mediante los siguientes pasos (F21 es la inversa de F):

Paso 1. Genere un número aleatorio 0-1, R.
Paso 2. Calcule la muestra deseada x 5 F21 (R).

La figura 19.5 ilustra los procedimientos tanto de una distribución continua como de
una distribución aleatoria discreta.

Ejemplo 19.3-2 (Distribución exponencial) 

La función de densidad de probabilidad exponencial representa el tiempo
entre llegadas t a una instalación con valor medio de La función de densidad acumulada es 

Estableciendo R 5 F(t), podemos resolver t como

t = - a  
1
l

 b  ln  (1 - R)

F(t) =L
t

0
le-lx dx = 1 - e-lt, t 7 0

1
l .
f(t) = le-lt, t 7 0

FIGURA 19.5

Muestreo de una distribución de probabilidad por medio del método inverso

F(x)

1

0

R1

xx1

F(x)

(b)    x discreta(a)    x continua

1

0

R1

xx1
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Por ejemplo, para l 5 4 clientes por hora y R 5 .9, el periodo de tiempo hasta que ocurre la
siguiente llegada es 

Observe que 1n(1 2 R) puede ser reemplazado con 1n(R) porque 1 2 R es el complemento de R.

CONJUNTO DE PROBLEMAS 19.3B

*1. En el ejemplo 19.3-2, suponga que el primer cliente llega en el instante 0. Use los prime-
ros tres números aleatorios de la columna 1 de la tabla 19.1 para generar los tiempos de
llegada de los 3 clientes siguientes, y trace la gráfica de los eventos resultantes en la esca-
la de tiempo.

*2. Distribución uniforme. Suponga que la siguiente distribución uniforme describe el tiem-
po necesario para fabricar una pieza en una máquina:

Determine una expresión para la muestra t, dado el número aleatorio R.
3. En un taller se reciben trabajos al azar. El tiempo entre llegadas es exponencial con

media de 2 horas. El tiempo necesario para procesar un trabajo es uniforme entre 1.1 y 
2 horas. Suponiendo que el primer trabajo llega en el instante 0, determine el tiempo de
llegada y salida de los primeros cinco trabajos mediante los números aleatorios (0, 1) 
de la columna 1 de la tabla 19.1.

4. La demanda de una pieza cara de repuesto de un avión de pasajeros es de 0,1,2 o 3 unida-
des por mes con probabilidades de .2, .3, .4 y .1, respectivamente. El taller de manteni-
miento de la aerolínea inicia la operación con existencias de 5 unidades y regresará el
nivel de las existencias a 5 unidades inmediatamente después que se reduzca a 2 unidades.

*(a) Idee el procedimiento para muestrear la demanda.
(b) ¿Cuántos meses transcurrirán hasta que ocurra la primera reposición? Use valores

sucesivos de R de la primera columna de la tabla 19.1.
5. En una situación de simulación, las unidades de TV se inspeccionan en busca de posibles

defectos. Hay 80% de probabilidades de que una unidad pase la inspección, en cuyo caso
se le envía a empaque. De lo contrario, la unidad se repara. Podemos representar la situa-
ción simbólicamente de dos maneras.

gotoREPARACIÓN/.2, EMPAQUE/.8
gotoEMPAQUE/.8, REPARACIÓN/.2 

Estas dos representaciones parecen equivalentes. No obstante, cuando se aplica una se-
cuencia dada de números aleatorios (0, 1) a las dos representaciones, pueden resultar de-
cisiones diferentes (REPARACIÓN o EMPAQUE). Explique por qué.

6. Un jugador lanza una moneda repetidamente hasta que cae una cara. La retribución aso-
ciada es 2n, donde n es la cantidad de lanzamientos hasta que sale una cara.
(a) Idee el procedimiento de muestreo del juego.
(b) Use los números aleatorios de la columna 1 de la tabla 19.1 para determinar la retri-

bución acumulada después de que salen dos caras.
7. Distribución triangular. En la simulación, la carencia de datos puede hacer imposible de-

terminar la distribución de probabilidad asociada con una actividad de simulación. En la
mayoría de estas situaciones puede ser fácil describir la variable deseada estimando sus
valores mínimos, los más probables y los máximos. Estos tres valores bastan para definir
una distribución triangular, la cual puede utilizarse entonces como una estimación “preli-
minar” de la distribución real.

f(t) =  
1

b -  a
 , a … t … b

t1 = - a  
1
4

 b  ln(1 - .9) = .577  horas = 34.5 minutos
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(a) Desarrolle la fórmula para tomar muestras de la siguiente distribución triangular,
cuyos parámetros respectivos son a, b y c:

(b) Genere tres muestras de una distribución triangular con parámetros (1,3,7) utilizan-
do los primeros tres números aleatorios de la columna 1 de la tabla 19.1.

8. Considere una distribución de probabilidad compuesta de un rectángulo flanqueado por
los lados izquierdo y derecho por triángulos rectángulos simétricos. Los intervalos res-
pectivos del triángulo de la izquierda y del triángulo de la derecha son [a,b], [b, c] y[c,d],
a , b , c , d. Ambos triángulos tienen la misma altura que el rectángulo.
(a) Desarrolle un procedimiento de muestreo.
(b) Determine cinco muestras con (a, b, c, d) 5 (1,2,4,6) utilizando los cinco primeros

números aleatorios de la columna 1 de la tabla 19.1.
*9. Distribución geométrica. Demuestre cómo se puede obtener una muestra aleatoria de la

siguiente distribución geométrica:

El parámetro x es el número (de Bernoulli) de fallas hasta que ocurre un éxito, y p es la
probabilidad de un éxito, 0 , p , 1. Genere cinco muestras para p 5 .6, utilizando los
cinco primeros números aleatorios de la columna 1 de la tabla 19.1.

10. Distribución de Weibull. Demuestre cómo se puede obtener una muestra aleatoria de la
distribución de Weibull con la siguiente función de densidad de probabilidad:

donde a . 0 es el parámetro de forma y b . 0 es el parámetro de escala.

Método de convolución. La idea básica del método de convolución es expresar la
muestra deseada como la suma estadística de otras variables aleatorias fáciles de muestrear.
Típicas entre estas distribuciones están las de Erland y la de Poisson, cuyas muestras
pueden obtenerse con las muestras de la distribución exponencial.

Ejemplo 19.3-3 (Distribución Erlang)

La variable aleatoria m Erlang se define como la suma estándar (convoluciones) de m variables
aleatorias exponenciales independientes e idénticamente distribuidas. Sea y la variable aleatoria
m Erlang; entonces

donde yi, i 5 1, 2,…, m son exponenciales independientes e idénticamente distribuidas con la si-
guiente función de densidad de probabilidad:

f(yi) = le-lyi, yi 7 0, i = 1, 2, Á , m

y = y1 + y2 + Á + ym

f(x) = ab-axa- 1e-(x/b)a, x 7 0

f(x) = p(1 - p)x, x = 0, 1, 2, Á

f(x) = µ 2(x - a)

(b - a)(c - a)
, a … x … b

2(c - x)

(c - b)(c - a)
, b … x … c
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Según el ejemplo 19.3-2, una muestra de la i-ésima distribución exponencial se calcula como

Por lo tanto la muestra m Erlang se calcula como 

Para ilustrar el uso de la fórmula, suponga que m 5 3 y l 5 4 eventos por hora. Los tres prime-
ros números aleatorios de la columna 1 de la tabla 19.1 resultan R1R2R3 5 (.0589) (.6733)(.4799)
5 .0190, los cuales dan

Ejemplo 19.3-4 (Distribución de Poisson)

La sección 18.4.1 muestra que si la distribución del tiempo entre las ocurrencias sucesivas de
eventos es exponencial, entonces la distribución de la cantidad de eventos por unidad de tiempo
es Poisson, y viceversa. Utilizamos la relación para muestrear la distribución de Poisson.

Suponga que la media de la distribución de Poisson es l eventos por unidad de tiempo. Se
desprende que el tiempo entre eventos es exponencial con media de unidades de tiempo. Esto
significa que una muestra n, de Poisson se repetirá durante t unidades de tiempo si, y sólo si,

El Periodo hasta que ocurre el evento n # t , el periodo hasta que ocurre el evento n 1 1 
Esta condición se traduce a

La variable aleatoria ti, i 5 1,2,…, n 1 1, es una muestra de la distribución exponencial con
media . Con el resultado del ejemplo 19.3-3, tenemos

Estas expresiones se reducen a 

 1 Ú e-lt 7 R1, n = 0

 q
n

i= 1
Ri Ú e-lt 7 q

n+ 1

i= 1
Ri, n 7 0

 0 … t 6 - a  
1
l

 b  ln  (R1), n = 0

 - a  
1
l

 b  lnaqn
i= 1
Rib … t 6 - a  

1
l

 b   lnaqn+ 1

i= 1
Rib , n 7 0

1
l

 0 … t 6 t1, n = 0

 t1 + t2 + Á + tn … t 6 t1 + t2 + Á + tn+ 1, n 7 0

1
l

y = -1 14 2 ln(.019) = .991 horas

 = - a  
1
l

 b  ln aqm
i= 1
Rib

 y = - a  
1
l

 b {ln (R1) +  ln(R2) + . . . +  ln(Rm)}

yi = - a  
1
l

 b  ln (Ri), i = 1, 2, Á , m
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Para ilustrar la implementación del proceso de muestreo, supongamos que l 5 4  eventos
por hora. Para obtener una muestra durante un periodo t 5 .5 hora, primero calculamos e2lt 5

.1353. El número aleatorio R1 5 .0589 es menor que e2lt 5 .1353. Por consiguiente, la muestra
correspondiente es n 5 0.

Ejemplo 19.3-5 (Distribución normal)

El teorema del límite central (vea la sección 14.4.4) expresa que la suma (convolución) de n va-
riables aleatorias independientes e idénticamente distribuidas se hace asintóticamente normal a
medida que n se hace lo bastante grande. Utilizamos este resultado para generar muestras de
una distribución normal con media m y desviación estándar s.

Defina

La variable aleatoria es asintóticamente normal de acuerdo con el teorema del límite central.
Dado que el número aleatorio (0,1) uniforme R tiene una medida de y una varianza de , se
desprende que la media y la varianza de x son y , respectivamente. Por lo tanto, una muestra
aleatoria, y, de una distribución normal N(m,s) con media m y desviación estándar s, se calcula a
partir de x como

En la práctica, consideramos que n 5 12 por conveniencia, lo cual reduce la fórmula a

Para ilustrar el uso de este método, supongamos que deseamos generar una muestra de
N(10,2) (media m 5 10 y desviación estándar s 5 2). Sumando los primeros 12 números aleato-
rios de las columnas 1 y 2 de la tabla 19.1, tenemos x 5 6.1094. Por lo tanto y 5 10 1 2(6.1094
26) 5 10.2188.

Fórmula de muestreo normal de Box-Muller. La desventaja del procedimiento
anterior es que requiere generar 12 números aleatorios por muestra normal, lo cual es
computacionalmente ineficiente. Un procedimiento más eficiente utiliza la trans-
formación

Box y Muller (1958) demostraron que x es una N(0,1) estándar. Por lo tanto, y = m 1

sx producirá una muestra de N(m,s). El nuevo procedimiento es más eficiente porque
requiere sólo dos números aleatorios (0,1). En realidad, este método es aún más efi-
ciente de lo que se formuló, porque Box y Muller demostraron que la fórmula dada
produce otra muestra N(0,1) si sen(2pR2) reemplaza a cos(2pR2).

x =  cos(2pR2)3-2 ln(R1) 

y = m + s(x - 6)

y = m + sPx - n
24n

12 Q

n
12

n
2

1
12

1
2

x = R1 + R2 + Á + Rn
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Para ilustrar la aplicación del procedimiento de Box y Muller a la distribución
normal N(10,2), los dos primeros números aleatorios de la columna 1 de la tabla 19.1
producen las siguientes muestras N(0, 1):

Por lo tanto, las muestras N(10,2) correspondientes son

CONJUNTO DE PROBLEMAS 19.3C1

*1. En el ejemplo 19.3-3, calcule una muestra Erlang, si m 5 4 y l 5 5 eventos por hora.
2. En el ejemplo 19.3-4, genere tres muestras Poisson durante un periodo de 2 horas, dado

que la media de la distribución de Poisson es de 5 eventos por hora.
3. En el ejemplo 19.4-5, genere dos muestras desde N(8,1) utilizando tanto el método de

convolución como el de Box-Muller.
4. A Metalco Jobshop llegan trabajos de acuerdo con una distribución de Poisson, con una

media de 6 trabajos por día. Los trabajos se asignan a los cinco centros de maquinado del
taller en una forma estrictamente rotacional. Determine una muestra del intervalo entre
llegadas de trabajos al primer centro de maquinado.

5. Las calificaciones del examen ACT de la clase de estudiante de último año de 1994 en la
prepatoria de Springdale son normales, con una medida de 27 puntos y una desviación
estándar de 3 puntos. Supongamos que sacamos una muestra aleatoria de seis estudiantes
del último año de esa clase. Utilice el método de Box-Muller para determinar la media y
la desviación estándar de la muestra.

*6. El profesor de psicología Yataha está llevando a cabo un experimento de aprendizaje en
el cual se entrenan ratones para que encuentren su camino en un laberinto. La base del
laberinto es un cuadrado. Un ratón entra al laberinto por una de las cuatro esquinas y
debe encontrar su camino a través del laberinto para salir por el mismo punto por donde
entró. El diseño del laberinto es tal que el ratón debe pasar por cada uno de los tres pun-
tos de esquina restantes exactamente una vez antes de que salga. Las múltiples rutas del
laberinto conectan las cuatro esquinas en un estricto orden en el sentido de las maneci-
llas del reloj. El profesor Yataha estima que el tiempo que el ratón emplea para llegar a
un punto de esquina desde otro está distribuido uniformemente entre 10 y 20 segundos,
según la ruta que tome. Desarrolle un procedimiento de muestreo para el tiempo que un
ratón pasa en el laberinto.

7. En el problema 6, suponga que una vez que el ratón sale del laberinto, de inmediato
entra otro ratón. Desarrolle un procedimiento de muestreo para la cantidad de ratones
que salen del laberinto en 5 minutos.

 y2 = 10 + 2(-2.109) = 5.782

 y1 = 10 + 2(-1.103) = 7.794

 x2 = sen(2p * .6733)3-2 ln(.0589) L -2.109

 x1 = cos(2p * .6733)3-2 ln(.0589)  L  -1.103

1Para todos los problemas de este conjunto, utilice los números aleatorios de la tabla 19.1 comenzando con
columna 1.
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8. Binomial negativa. Demuestre cómo se puede determinar una muestra aleatoria a partir
de la binomial negativa cuya distribución es 

donde x es la cantidad de fallas hasta que ocurre el r-ésimo éxito en una secuencia de en-
sayos de Bernoulli independientes y p es la probabilidad de éxito 0 , p , 1. (Sugerencia:
La binomial negativa es la convolución de r muestras geométricas independientes. Vea el
problema 9, conjunto 19.3B.)

19.4 GENERACIÓN DE NÚMEROS ALEATORIOS

Los números aleatorios uniformes (0, 1) desempeñan un papel clave en el muestreo de
distribuciones. Sólo los dispositivos electrónicos pueden generar números aleatorios
(0,1) verdaderos. Sin embargo, debido a que los modelos de simulación se ejecutan en
la computadora, el uso de dispositivos electrónicos para generar números aleatorios es
demasiado lento para este propósito. Además, los dispositivos electrónicos son activa-
dos por leyes de probabilidades, lo que hace imposible duplicar la misma secuencia de
números aleatorios a voluntad. Este punto es importante porque la depuración, la ve-
rificación y la validación del modelo de simulación a menudo requieren la duplicación
de la secuencia de los números aleatorios.

La única forma factible de generar números aleatorios (0,1) para usarlos en una
simulación está basada en operaciones aritméticas. Tales números no son verdadera-
mente aleatorios debido a que toda la secuencia puede generarse con anticipación. Es
por lo tanto más apropiado referirse a ellos como números seudoaleatorios.

La operación aritmética mas común para generar números aleatorios (0,1) es el
método congruencial multiplicativo. Dados los parámetros u0, b, c y m, un número seu-
doaleatorio Rn se puede generar con las fórmulas:

Al valor inicial u0 se le suele conocer como la semilla del generador.
En Law (2007) se pueden encontrar variaciones del método congruencial multi-

plicativo que mejoran la calidad del generador.

Ejemplo 19.4-1

Genere tres números aleatorios basado en el método congruencial multiplicativo aplicando
b 5 9, c 5 5 y m 5 12. La semilla es u0 5 11.

 u3 = (9 * 5 + 5) mod 12 = 2, R3 =  
2

12
= .1667

 u2 = (9 * 8 + 5) mod 12 = 5, R2 =  
5

12
= .4167

 u1 = (9 * 11 + 5) mod 12 = 8, R1 =  
8

12
= .6667

 Rn =  
un

m
 , n = 1, 2, Á

 un = (bun- 1 + c) mod(m), n = 1, 2, Á

f(x) = Cx
r+x- 1pr(1 - p)x, x = 0, 1, 2, Á
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FIGURA 19.6

Números aleatorios obtenidos con Excel para los datos del ejemplo 19.4-1 (archivo excelRN.xls)

Momento de Excel

La plantilla excelRN.xls implementa el método congruencial multiplicativo. La figura 19.6 genera
la secuencia asociada con los parámetros del ejemplo 19.4-1. Observe que la duración del ciclo es
exactamente 4, tras de lo cual la secuencia se repite. El punto aquí es que los valores selecciona-
dos de u0, b, c y m son críticos para determinar la calidad (estadística) del generador y la duración
de su ciclo. Por lo tanto, la implementación “casual” de la fórmula congruencial no se recomienda.
En su lugar debemos utilizar un generador confiable y probado. Todos los programas de compu-
tadora comerciales están equipados con generadores de números aleatorios confiables.

CONJUNTO DE PROBLEMAS 19.4A

*1. Use la plantilla excelRNxis con el siguiente conjunto de parámetros, y compare los resul-
tados con los del ejemplo 19.4-1:

b = 17, c = 111, m = 103, semilla = 7



19.5 Mecánica de la simulación discreta 663

2. Encuentre un generador de números aleatorios en su computadora, y utilícelo para gene-
rar 500 números aleatorios (0,1). Elabore el histograma de los valores resultantes (por
medio de la herramienta histograma de Microsoft, vea la sección 12.5) y convénzase vi-
sualmente de que los números obtenidos siguen razonablemente la distribución (0,1). En
realidad, para probar adecuadamente la secuencia, necesitaría aplicar las siguientes prue-
bas: bondad de ajuste de ji cuadrada (vea la sección 14.6), realice la prueba en busca de
independencia y la prueba de correlación; para los detalles, vea Law (2007).

19.5 MECÁNICA DE LA SIMULACIÓN DISCRETA

Esta sección detalla cómo se reúnen las estadísticas típicas en un modelo de simu-
lación. El vehículo de explicación es un modelo de una sola cola. La sección 19.5.1 uti-
liza un ejemplo numérico para detallar las acciones y cálculos que ocurren en modelo
de simulación de colas de un solo servidor. Debido a los tediosos cálculos que tipifican
la ejecución de un modelo de simulación, la sección 19.5.2 muestra cómo se maneja y
ejecuta el modelo de un solo servidor con la hoja de cálculo de Excel.

19.5.1 Simulación manual de un modelo de un solo servidor

El tiempo entre llegadas de los clientes a la peluquería HairKare es exponencial con
media de 15 minutos. La peluquería es atendida por sólo un peluquero, y se lleva entre
10 y 15 minutos, distribuidos de manera uniforme, para realizar un corte de pelo. Los
clientes son atendidos con base en la disciplina primero en llegar, primero en salir
(FIFO). El objetivo de la simulación es calcular las siguientes medidas de desempeño:

1. La utilización promedio de la peluquería.
2. La cantidad promedio de clientes que esperan.
3. El tiempo promedio que un cliente espera en la cola.

La lógica del modelo de simulación se puede describir en función de las acciones
asociadas con los eventos de llegada y salida del modelo.

Evento de llegada

1. Genere y guarde cronológicamente el tiempo de ocurrencia del siguiente evento
de llegada (5 tiempo de simulación actual 1 tiempo entre llegadas).

2. Si la instalación (peluquero) está ociosa.
a. Inicie el servicio y declare ocupada la instalación.Actualiza las estadísticas de

utilización de la instalación.
b. Genere y guarde cronológicamente el tiempo del evento de salida del cliente

(5 tiempo de simulación actual 1 tiempo de servicio).
3. Si la instalación está ocupada, ponga al cliente en la cola, y actualice las estadísti-

cas de la cola.

Evento de salida

1. Si la cola está vacía, declare ociosa la instalación.Actualice las estadísticas de uti-
lización de la instalación.

2. Si la cola no está vacía
a. Seleccione un cliente de la cola, póngalo en la instalación. Actualice las es-

tadísticas de utilización de instalación y la cola.
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b. Genere y guarde cronológicamente el tiempo de ocurrencia del evento de sa-
lida del cliente (5 tiempo de simulación actual 1 tiempo de servicio).

Según los datos del problema, el tiempo entre llegadas es exponencial con media
de 15 minutos, y el tiempo de servicio es uniforme entre 10 y 15 minutos. Si p y q re-
presentan muestras aleatorias de tiempos entre llegadas y de servicio, entonces, como
se explica en la sección 19.3.2, obtenemos 

Para el objetivo de este ejemplo, utilizamos R de la tabla 19.1, comenzando con la
columna 1. También utilizamos el símbolo T para representar el tiempo del reloj de si-
mulación. Suponemos además que el primer cliente llega en el instante T 5 0 y que la
instalación comienza vacía.

Debido a que los cálculos de simulación suelen ser voluminosos, la simulación se
limita sólo a las primeras 5 llegadas. El ejemplo está diseñado para cubrir todas las si-
tuaciones posibles que pudieran surgir en el curso de la simulación. Más adelante, en la
sección 19.5.2, presentamos la plantilla excelSingleServer.xls que permite experimentar
con el modelo sin tener que realizar manualmente los cálculos.

Llegada del cliente 1 en el instante T 5 0. Genere la llegada del cliente 2 en el
instante

Debido a que la instalación está ociosa en el instante T 5 0, el cliente inicia el servicio
de inmediato. Por lo tanto, el tiempo de salida se calcula como 

La lista cronológica de eventos futuros es por lo tanto

T = 0 + q1 = 0 + (10 + 5 * .6733) = 13.37 minutos

T = 0 + p1 = 0 + [-15 ln(.0589)] = 42.48  minutos

 q = 10 + 5R minutos,    0 …  R …  1

 p = -15  ln(R) minutos, 0 …  R …  1

Tiempo, T Evento 

13.37 Salida del cliente 1
42.48 Llegada del cliente 2

Tiempo, T Evento

42.48 Llegada del cliente 2

Salida del cliente 1 en el instante T 5 13.37. Debido a que la cola está vacía, la
instalación se declara ociosa. Al mismo tiempo, registramos que la instalación ha
estado ocupada entre T 5 0 y T 5 13.37 minutos. La lista actualizada de eventos
futuros es

Llegada del cliente 2 en el instante T 5 42.48.    El cliente 3 llegará en el instante 

T = 42.48 + [-15 ln(.4799)] = 53.49 minutos
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Debido a que la instalación esta ociosa, el cliente 2 inicia el servicio, y la instalación se
declara ocupada. El tiempo de salida es

La lista de eventos futuros se actualiza como

T = 42.48 + (10 + 5 * .9486) = 57.22 minutos

Llegada del cliente 3 en el instante T 5 53.49. El cliente 4 llegará en el instante 

Debido a que actualmente la instalación está ocupada (hasta T 5 57.22), el cliente 3 se
coloca en la cola en el instante T 5 53.49. La lista de eventos futuros actualizada es 

T = 53.49 + [-  15 ln (.6139)] = 60.81 minutos

Salida del cliente 2 en el instante T 5 57.22. El cliente 3 se retira de la cola para
iniciar el servicio. El tiempo de espera es 

El tiempo de salida es

La lista actualizada de eventos futuros es 

T = 57.22 + (10 + 5 *  .5933) = 70.19 minutos

W3 =  57.22 - 53.49 = 3.73 minutos

Tiempo, T Evento

53.49 Llegada del cliente 3
57.22 Salida del cliente 2

Tiempo, T Evento

57.22 Salida del cliente 2
60.81 Llegada del cliente 4

Tiempo, T Evento

60.81 Llegada del cliente 4
70.19 Salida del cliente 3

Llegada del cliente 4 en el instante T 5 60.81. El cliente 5 llegará en el instante

Debido a que la instalación está ocupada hasta T 5 70.19, el cliente 4 se coloca en la
cola. La lista actualizada de eventos futuros es 

T = 60.81 + [-15 ln(.9341)] = 61.83 minutos

Tiempo, T Evento

61.83 Llegada del cliente 5
70.19 Salida del cliente 3
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Llegada del cliente 5 en el instante T5 61.83. La simulación se limita a 5 llegadas, por
consiguiente no se genera la llegada del cliente 6. La instalación sigue ocupada, porque
el cliente se coloca en la cola en el instante T 5 61.83. La lista de eventos actualizada es 

Salida del cliente 3 en el instante T 5 70.19. El cliente 4 se retira de la cola para
iniciar el servicio. El tiempo de espera es 

El tiempo de salida es

La lista actualizada de eventos futuros es 

T = 70.19 + [10 + 5 *  .1782] = 81.08 minutos

W4 =  70.19 - 60.81 = 9.38 minutos

Salida del cliente 4 en el instante T5 81.08. El cliente se retira de la cola para iniciar
el servicio. El tiempo de espera es 

El tiempo de salida es

La lista de eventos actualizada es

T = 81.08 + (10 + 5 * .3473) = 92.82 minutos

W5 =  81.08 - 61.83 = 19.25 minutos

Salida del cliente 5 en el instante T5 92.82. No hay más clientes en el sistema (cola e
instalación) y la simulación termina.

La figura 19.7 resume los cambios de longitud de la cola y la utilización de la ins-
talación como una función del tiempo de simulación.

La longitud de la cola y la utilización de la instalación se conocen como variables
basadas en el tiempo porque su variación es una función del tiempo. En consecuencia,
sus valores promedio se calculan comoa Valor promedio de una

variable basada en el tiempo
b =

Área bajo la curva
Periodo simulado

Tiempo, T Evento

70.19 Salida del cliente 3

Tiempo, T Evento

81.08 Salida del cliente 4

Tiempo, T Evento

92.82 Salida del cliente 5
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FIGURA 19.7

Cambios de la longitud de la cola y de la utilización de instalación como una función del tiempo
de simulación, T

10
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A4�50.34A3�13.37

Implementando esta fórmula con los datos que aparecen en la figura 19.7, obtenemos

El tiempo de espera promedio en la cola es una variable basada en observaciones
cuyo valor se calcula como

El examen de la figura 19.7 revela que el área debajo de la curva de longitud de la cola
en realidad es igual a la suma del tiempo de espera de los tres clientes que se unen a la
cola, es decir,

El tiempo de espera promedio en la cola de todos los clientes se calcula por consi-
guiente como

CONJUNTO DE PROBLEMAS 19.5A

1. Suponga que la peluquería de la sección 19.5.1 es atendida por dos peluqueros en base al
primero en llegar, primero en ser atendido (FCFS). Suponga además que el tiempo para
obtener un corte de pelo está uniformemente distribuido entre 15 y 30 minutos. El tiempo

Wq =  32.36
5 = 6.47 minutos

W1 + W2 + W3 + W4 + W5 = 0 + 0 + 3.73 + 9.38 + 19.25 = 32.36 minutos

aValor promedio de una variable
basada en observaciones

b =
Suma de las observaciones
Cantidad de observaciones

 aUtilización promedio
de la instalación

b =
A3 + A4

92.82
=

63.71
92.82

= .686 peluqueros

 aLongitud promedio
de la cola

b =
A1 + A2

92.82
=

32.36
92.82

= .349 clientes
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entre llegadas de los clientes es exponencial con una media de 10 minutos. Simule manual-
mente el sistema durante 75 unidades de tiempo. Con los resultados de la simulación, deter-
mine el tiempo promedio que un cliente espera en la cola, el promedio de clientes que espe-
ran y la utilización promedio de los peluqueros. Use los números aleatorios de la tabla 19.1.

2. Clasifique las siguientes variables como basadas en observaciones o basadas en el tiempo:

*(a) Tiempo para la falla de un componente electrónico.
*(b) Nivel del inventario de un artículo.

(c) Cantidad de pedido de un artículo de inventario.
(d) Cantidad de artículos defectuosos en un lote.
(e) Tiempo necesario para calificar exámenes.
(f) Cantidad de autos en el lote de estacionamiento de una agencia de renta de autos.

*3. La siguiente tabla representa la variación de la cantidad de clientes que esperan en una
cola como una función del tiempo de simulación.

Tiempo de simulación, T (h) Cantidad de clientes que esperan

0 … T … 3 0
3 6 T … 4 1
4 6 T … 6 2
6 6 T … 7 1
7 6 T … 10 0
10 6 T … 12 2
12 6 T … 18 3
18 6 T … 20 2
20 6 T … 25 1

Tiempo de simulación, T (h) Cant. de servidores ocupados 

0 6 T … 10 0
10 6 T … 20 1
20 6 T … 30 2
30 6 T … 40 0
40 6 T … 60 1
60 6 T … 70 2
70 6 T … 80 3
80 6 T … 90 1
90 6 T … 100 0

Calcule las siguientes medidas de desempeño:
(a) La longitud promedio de la cola.
(b) El tiempo de espera promedio en cola de los que deben esperar.

4. Suponga que la peluquería descrita al inicio de la sección 19.5.1 es atendida por tres pelu-
queros. Suponga, además que la utilización de los servidores (peluqueros) se resume en
la siguiente tabla:
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Determine las siguientes medidas de desempeño:
(a) La utilización promedio de la instalación.
(b) Tiempo promedio que permanece ocupada la instalación.
(c) Tiempo ocioso promedio de instalación.

19.5.2 Simulación basada en una hoja de cálculo del modelo de un solo servidor

Esta sección desarrolla una hoja de cálculo basada en el modelo de un solo servidor. El
objetivo del desarrollo es reforzar las ideas presentadas en la sección 19.5.1. Desde luego,
un modelo de un solo servidor es una situación simple fácil de modelar en un entorno de
hoja de cálculo. Otras situaciones requieren un esfuerzo de modelado más complicado,
una tarea que se facilita con los paquetes de simulación disponibles (vea la sección 19.7).

La presentación en la sección 19.5.1 muestra que el modelo de simulación de la
instalación de un solo servidor requiere dos elementos básicos:

1. Una lista cronológica de los eventos del modelo.
2. Una gráfica que rastree los cambios del uso de la instalación y la longitud de la cola.

Estos dos elementos permanecen esenciales en el desarrollo de un modelo de simula-
ción basado en la hoja de cálculo (en realidad, basado en cualquier computadora). La
diferencia es que la implementación se realiza de modo que sea compatible con el uso
de la computadora. Como en la sección 19.5.1, a los clientes se les atiende en el orden de
llegada (FIFO, primero en llegar, primero en salir).

La figura 19.8 proporciona los resultados obtenidos con excelSingleServer.xls. Los
datos de entrada permiten representar el tiempo entre llegadas y de servicio en una de
cuatro formas: constante, exponencial, uniforme y triangular. La distribución triangular
es útil porque se puede utilizar como una estimación inicial aproximada de cualquier
distribución, simplemente con tres estimaciones a, b y c que representan los valores

FIGURA 19.8

Resultados de un modelo de simulación de un solo servidor obtenido con Excel (archivo excelSingle.xls)
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mínimo, el más probable y el máximo del tiempo. La única otra información necesaria
para controlar la simulación es la duración de la ejecución de la simulación, la cual en este
modelo es especificada por el número de llegadas que se pueden generar en el modelo.

Los cálculos de la hoja de cálculo reservan una fila para cada llegada. Los tiempos
entre llegadas y de servicio de cada llegada se generan con los datos de entrada. Se su-
pone que la primera llegada ocurre en el instante T 5 0. Debido a que la instalación co-
mienza ociosa, el cliente inicia el servicio de inmediato. La hoja de cálculo proporciona
suficiente información para demostrar los cálculos internos dados en la sección 19.5.1.

Se desarrolló otra hoja de cálculo para simular modelos de varios servidores
(excelMultiServer.xls). El diseño de la plantilla se basa en las mismas ideas utilizadas en
caso de un solo servidor. Sin embargo, la determinación del tiempo de salida no es tan
simple y requiere el uso de macros VBA.

CONJUNTO DE PROBLEMAS 19.5B

1. Con los datos de la sección 19.5.1, ejecute el simulador Excel para 10 llegadas y trace la
gráfica de los cambios del uso de la instalación y la longitud de la cola como una función
del tiempo de simulación. Compruebe que las áreas bajo las curvas son iguales a la suma
de los tiempos de servicio y la suma de los tiempos de espera, respectivamente.

2. Simule el modelo M/M/1 para 500 llegadas, con la tasa de llegadas l 5 4 clientes por hora
y la tasa de servicios m 5 6 salidas por hora. Ejecute 5 aplicaciones (refrescando la hoja
de cálculo, oprimiendo F9) y determine un intervalo de 95% de confianza con todas las
medidas de desempeño del modelo. Compare los resultados con los valores teóricos de
estado estable del modelo M/M/1.

3. Cada 15 minutos llegan televisores sobre una banda transportadora para ser inspeccionados
por un solo operador. No están disponibles los datos detallados de la estación de inspección.
Sin embargo, el operador estima emplear 10 minutos “en promedio” para inspeccionar una
unidad. En las peores condiciones, el tiempo de inspección no excede de 13 minutos, y para
ciertas unidades el tiempo de inspección puede ser tan bajo como 9 minutos.
(a) Use el simulador de Excel para simular la inspección de 200 televisores.
(b) Basado en 5 réplicas, estime la cantidad promedio de unidades en espera de ser ins-

peccionadas y el uso promedio de la estación de inspección.

19.6 MÉTODOS PARA REUNIR OBSERVACIONES ESTADÍSTICAS

La simulación es un experimento estadístico y sus resultados deben interpretarse por
medio de herramientas de inferencia estadística apropiadas (por ejemplo, intervalos de
confianza y pruebas de hipótesis). Para realizar esta tarea, un experimento de simu-
lación debe satisfacer tres condiciones:

1. Las observaciones se extraen de distribuciones estacionarias (idénticas).
2. Las observaciones se muestrean a partir de una población normal.
3. Las observaciones son independientes.

En un sentido estricto, el experimento de simulación no satisface ninguna de estas con-
diciones. No obstante, podemos garantizar que estas condiciones permanecen estadís-
ticamente aceptables al restringir la forma de reunir las observaciones.
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En primer lugar consideremos el tema de las distribuciones estacionarias. Los re-
sultados de una simulación son una función de la duración del periodo simulado. El pe-
riodo inicial produce un comportamiento errático conocido en general como periodo
transitorio o de calentamiento. Cuando los resultados de la simulación se estabilizan, el
sistema opera en estado estable. Desafortunadamente, no hay una forma definitiva de
predecir de antemano el punto de inicio del estado estable. Por lo general, una ejecución
más larga de la simulación tiene una mejor probabilidad de alcanzar el estado estable;
es decir que el problema se aborda con un tamaño de muestra suficientemente grande.

Luego consideramos el requerimiento de que las observaciones para la simula-
ción se extraen de una población normal. Este requisito se cumple utilizando el teorema
del límite central (vea la sección 14.4.4) el cual confirma que la distribución del prome-
dio de una muestra es asintóticamente normal, de manera independiente de la pobla-
ción padre. Por consiguiente, el teorema del límite central es la herramienta principal
que utilizamos para satisfacer la suposición de distribución normal.

La tercera condición tiene que ver con la independencia de las observaciones. En
una simulación, una observación se puede basar en una sola ejecución independiente o
en la subdivisión de una sola ejecución en subintervalos donde cada uno representa
una observación. Cada método presenta desventajas y ventajas. El primero alivia la
cuestión de independencia pero tiene la desventaja de incluir el periodo transitorio en
cada observación. En el segundo método, el efecto del periodo transitorio no es tan
pronunciado, pero empeora de manera inherente el tema de la independencia. Como
se explicará más adelante en esta sección, un posible remedio consiste en prolongar el
tiempo de la ejecución de la simulación.

Los métodos más comunes para reunir observaciones en una simulación son 

1. Método de subintervalos.
2. Método de réplica.
3. Método regenerativo (o de ciclos).

Los dos primeros son fáciles de automatizar en todos los lenguajes de simulación am-
pliamente utilizados (vea la sección 19.7). Por otra parte, el tercer método, aun cuando
aborda directamente el tema de la independencia al buscar condiciones iniciales idén-
ticas para las diferentes observaciones, puede ser difícil de implementar en la práctica.

Las secciones 19.6.1 y 19.6.2 presentan los primeros dos métodos. Los detalles del
tercer método se hallan en Law (2007).

19.6.1 Método de subintervalos

La figura 19.9 ilustra la idea del método de subintervalos. Supongamos que la duración
de la simulación es de T unidades de tiempo. El método de subintervalos primero trunca
un periodo transitorio inicial y luego subdivide el resto de la ejecución de la simulación
en n subintervalos (o lotes) iguales. El promedio de una medida de desempeño deseada
(por ejemplo, longitud de la cola o tiempo de espera en la cola) dentro de cada subinter-
valo se utiliza entonces para representar una sola observación. El truncamiento del pe-
riodo transitorio inicial significa que durante ese periodo no se reúnen datos estadísticos.

La ventaja del método de subintervalos es que el efecto de las condiciones tran-
sitorias (no estacionarias) se mitiga, en particular para las observaciones que se reúnen
al final de la ejecución de la simulación. La desventaja es que los lotes sucesivos con
condiciones restrictivas comunes no son necesariamente independientes. El problema
puede aliviarse incrementando el tiempo de cada observación.
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FIGURA 19.9

Recolección de datos de simulación utilizando el método de subintervalos

Lote 1Periodo transitorio Lote 2 Lote n

T
Tiempo de simulación
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Ejemplo 19.6-1

La figura 19.10 muestra el cambio de longitud de la cola en un modelo de una sola cola como
una función del tiempo de simulación. La longitud de la ejecución de la simulación es T 5 35
horas, y la longitud del periodo transitorio es de 5 horas. La base de tiempo para una observación
es de 5 horas, lo que produce n 5 5 observaciones.

Sea la longitud promedio de la cola en el lote i. Debido a que la longitud de la cola es una
variable basada en el tiempo, tenemos

donde Ai es el área bajo la curva de la longitud de la cola asociada con el lote (observación) i, y
t(5 6) es la base de tiempo por lote.

Los datos que aparecen en la figura 19.10 producen las siguientes observaciones:

Qi =  
Ai

t
 , i = 1, 2, Á , 5

Qi

FIGURA 19.10

Cambio de longitud de la cola con el tiempo de simulación en el ejemplo 19.6-1

Periodo
transitorio4

Tiempo de simulación

A1 � 14 A2 � 10 A4 � 6A3 � 11 A5 � 15

3
2
1

255 10 15 20

Longitud
de la cola Q

Lote 1 Lote 2 Lote 3 Lote 4 Lote 5

30 35

Observación i 1 2 3 4 5

Ai 14 10 11 6 15

Qi 2.33 1.67 1.83 1.00 2.50

Media muestral 5 1.87 Desviación estándar muestral 5 .59
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La media y varianza muestrales pueden usarse para calcular un intervalo de confianza, si se
desea. El cálculo de varianza muestral en el ejemplo 19.6-1 se basa en la siguiente fórmula conocida:

Esta fórmula es sólo una aproximación de la desviación estándar verdadera porque ignora el
efecto de la autocorrelación entre los lotes sucesivos. La fórmula exacta se encuentra en Law
(2007).

19.6.2 Método de réplica

En este método cada observación está representada por una ejecución de simulación
independiente en la cual el periodo transitorio se trunca, como se ilustra en la figura
19.11. El cálculo de los promedios de observación para cada lote es el mismo que en el
método de subintervalos. La única diferencia es que la fórmula de la varianza estándar
es aplicable porque los lotes no son independientes.

La ventaja del método de réplica es que a cada ejecución de simulación la con-
trola una corriente de números aleatorios 0-1 distinta, la cual produce observaciones
estadísticamente independientes. La desventaja es que cada observación puede ser in-
fluida por el efecto inicial de las condiciones transitorias. Dicho problema puede ate-
nuarse si se prolonga lo suficiente la duración de la ejecución.

CONJUNTO DE PROBLEMAS 19.6A

1. En el ejemplo 19.6-1, use el método de subintervalos para calcular el tiempo de espera
promedio en la cola para los que deben esperar.

*2. En un modelo de simulación se utiliza el método de subintervalos para calcular prome-
dios de lotes. Se estima que el periodo transitorio es de 100, y cada lote también tiene una
base de tiempo de 100 unidades de tiempo. Aplicando los siguientes datos, los cuales pro-
porcionan los tiempos de espera de los clientes como una función del tiempo de simula-
ción, estime el intervalo de 95% de confianza para el tiempo medio de espera.

s = Ta
n

i= 1
xi

2 - n xq2

n -  1

FIGURA 19.11

Recolección de datos de simulación siguiendo el método de réplica
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19.7 LENGUAJES DE SIMULACIÓN

La ejecución de modelos de simulación implica dos tipos distintos de cálculos: (1) manejo
de archivos que tienen que ver con el almacenamiento y procesamiento cronológicos de
los eventos del modelo, y (2) cálculos aritméticos y de contabilidad asociados con la gene-
ración de muestras aleatorias y recolección de estadísticas del modelo. El primer tipo de
cálculo implica una lógica extensa en el desarrollo del procesamiento de listas, y el segun-
do tipo implica cálculos tediosos que requieren mucho tiempo. La naturaleza de estos
cálculos hace que la computadora sea una herramienta esencial para ejecutar modelos de
simulación y, a su vez, promueve el desarrollo de lenguajes de simulación  especiales para
computadora para realizar estos cálculos de una forma conveniente y eficiente.

Los lenguajes de simulación discretos quedan comprendidos en dos amplias cate-
gorías:

1. Programación del evento
2. Orientado al proceso

En los lenguajes de programación del evento, el usuario detalla las acciones asociadas
con la ocurrencia de cada evento, como en el ejemplo 19.5-1. El rol principal del len-
guaje en este caso es (1) la automatización del muestreo a partir de las distribuciones,
(2) el almacenamiento y recuperación de los eventos en orden cronológico, y (3) la re-
colección de estadísticas del modelo.

Los lenguajes orientados al proceso utilizan bloques o nodos que pueden vincu-
larse entre sí para formar una red que describe los movimiento de transacciones o en-
tidades (es decir, clientes) en el sistema. Por ejemplo, los tres bloques/nodos más pro-
minentes en cualquier lenguaje de simulación orientado al proceso son una fuente de la
cual se crean las transacciones, una cola donde pueden esperar si es necesario, y una
instalación, en la que se realiza el servicio. Cada uno estos bloques/nodos se define con
toda la información necesaria para controlar automáticamente la simulación. Por
ejemplo, una vez que se especifica el tiempo entre llegadas, un programa orientado al
proceso “sabe” de manera automática cuándo ocurrirán los eventos de llegada. De
hecho, cada bloque/nodo del modelo cuenta con instrucciones permanentes que defi-
nen cómo y cuándo se mueven las transacciones en la red de simulación.

Los lenguajes orientados al proceso están controlados internamente por las mis-
mas acciones que se utilizan en los lenguajes de programación de evento. La diferencia
es que estas acciones se automatizan para liberar al usuario de los tediosos detalles de
cálculo y lógicos. En cierto modo podemos considerar a los lenguajes orientados al
proceso como basados en el concepto de entrada y salida del método de la “caja
negra”. Esto en esencia significa que los lenguajes orientados al proceso intercambian
la flexibilidad del modelo por la sencillez y facilidad de uso.

Intervalo de tiempo Tiempos de espera

0–100 10, 20, 13, 14, 8, 15, 6, 8
100–200 12, 30, 10, 14, 16
200–300 15, 17, 20, 22
300–400 10, 20, 30, 15, 25, 31
400–500 15, 17, 20, 14, 13
500–600 25, 30, 15
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Los lenguajes de programación de evento (como SIMSCRIPT, SLAM y SIMAN)
son anticuados y rara vez se utilizan en la práctica. Recientemente, un nuevo lenguaje
llamado DEEDS (Elizandro y Taha, 2008) se basa en el uso de la hoja de cálculo de
Excel para controlar la programación del evento. DEEDS permite la flexibilidad
de modelado de los lenguajes de simulación orientados al evento al mismo tiempo que
logra la naturaleza intuitiva de un lenguaje orientado al proceso.

El paquete comercial predominante orientado al proceso es Arena. Utiliza una
extensa interfaz de usuario para simplificar el proceso de crear un modelo de simula-
ción. También cuenta con capacidades de animación donde pueden observarse visual-
mente los cambios del sistema. Sin embargo, para un profesional experimentado en la
simulación, estas interfaces parecen reducir el desarrollo de un modelo de simulación a
un paso de “cámara lenta”. No sorprende que algunos usuarios  prefieran seguir escri-
biendo modelos de simulación en lenguajes de programación de alto nivel.

CONJUNTO DE PROBLEMAS 19.7A2

1. Los clientes llegan al azar a una oficina de correos atendida por tres empleados con
media de 5 minutos. El tiempo que un empleado pasa con un cliente es exponencial 
con media de 10 minutos. Todos los clientes que llegan hacen cola y esperan al primer
empleado libre disponible. Ejecute un modelo de simulación del sistema durante 480 
minutos para determinar lo siguiente:
(a) El promedio de clientes que esperan en la cola.
(b) El uso promedio de los empleados.
(c) Compare los resultados de la simulación con los del modelo de colas M/M/c (capítu-

lo 18) y con la hoja de cálculo MultiServerSimulator.xls.
2. En una banda transportadora llegan televisores  para ser inspeccionados a una velocidad

constante de 5 unidades por hora. El tiempo de inspección requiere entre 10 y 15 minu-
tos distribuidos uniformemente. La experiencia pasada muestra que 20% de las unidades
deben ser ajustadas y enviadas de nuevo para reinspección. El tiempo de ajuste también
está distribuido uniformemente entre 6 y 8 minutos. Ejecute un modelo de simulación
durante 480 minutos para calcular lo siguiente:
(a) El tiempo promedio que una unidad requiere hasta que pasa la inspección.
(b) El promedio de veces que una unidad debe ser reinspeccionada antes de que salga

del sistema.
3. Un ratón se encuentra atrapado en un laberinto y “desea salir” desesperadamente.

Después de tratar entre 1 y 3 minutos, distribuidos de manera uniforme, hay 30% de pro-
babilidades de que encuentre la ruta correcta. De lo contario, vagará sin rumbo entre 2 y
3 minutos, distribuidos de manera uniforme, y a la larga terminará donde comenzó, sólo
para intentarlo una vez más. El ratón puede “tratar de liberarse” las veces que le plazca,
pero hay un límite para todo. Con tanta energía consumida al intentarlo una y otra vez,
es seguro que el ratón muera si no logra liberarse dentro de un periodo normalmente dis-
tribuido, con una media de 10 minutos y una desviación estándar de 2 minutos. Escriba
un modelo de simulación para estimar la probabilidad de que el ratón se libere. Para 
estimar la probabilidad, suponga que el modelo procesará 100 ratones.

4. En la etapa final de fabricación, un auto que se desplaza sobre un transportador se sitúa
entre dos estaciones de trabajo paralelas para que se le realicen trabajos en los lados iz-

2Resuelva estos problemas con un lenguaje de simulación de su predilección, o un lenguaje de programación
de alto grado.
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quierdo y derecho al mismo tiempo. Los tiempos de operación en los lados izquierdo y
derecho son uniformes entre 15 y 20 minutos, y entre 18 y 22 minutos, respectivamente.
El transportador llega al área de las estaciones cada 20 minutos. Simule el proceso duran-
te 480 minutos para determinar la utilización de las estaciones izquierda y derecha.

5. A una instalación de lavado de autos de una bahía donde el tiempo entre llegadas es ex-
ponencial, los autos llegan con una media de 10 minutos. Los autos que llegan se forman
en un solo carril que tiene espacio a lo sumo para cinco autos. Si el carril está lleno, los
autos que llegan se van a otra parte. Se requieren entre 10 y 15 minutos distribuidos uni-
formemente para lavar un auto. Simule el sistema durante 960 minutos, y estime el tiem-
po que el auto pasa en la instalación.
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20.1 PROBLEMAS NO RESTRINGIDOS

Un punto extremo de una función f(X) define o un máximo o un mínimo de la función.
Matemáticamente, un punto es un máximo si 

para todas las h 5 (h1,…, hj,…, hn) donde |hj| es suficientemente pequeña para todas las j.
Asimismo, X0 es un mínimo si

La figura 20.1 ilustra los máximos y mínimos de una función de una sola variable f(x)
definida en el intervalo a # x # b. Los puntos x1, x2, x3, x4 y x6 son los extremos de f(x),
con x1, x3 y x6 como máximos, y x2 y x4 como mínimos. El valor f(x6) 5 máx[f(x1), f(x3),
f(x6)]es un máximo global o absoluto, y f(x1) y f(x3) son máximos locales o relativos.
Asimismo, f(x4) es un mínimo local y f(x2) es un mínimo global.

Aunque x1 (en la figura 20.1) es un punto máximo (local), difiere de los máximos
locales restantes en que el valor de f correspondiente al menos un punto en la vecindad
de x1 es igual a f(x1). A este respecto, x1 es un máximo débil, en tanto que x3 y x6 son
máximo fuertes. En general, para h como se definió antes, X0 es un máximo débil si
f(X0 1 h) # f(X0) y un máximo fuerte si f(X0 1 h) , f(X0).

En la figura 20.1, la primera derivada (pendiente) de f es igual a cero en todos los
extremos. Esta propiedad también se satisface en puntos de inflexión o silla, como es el
caso de x5. Si un punto con pendiente (gradiente) cero no es un extremo (máximo o mí-
nimo), entonces debe ser un punto de inflexión o silla.

f(X0 + h) Ú f(X0)

f(X0 + h) … f(X0)

X0 = (x1
0, Á , xj

0, Á , xn
0)

CAPÍTULO 20
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FIGURA 20.1

Ejemplos de puntos extremos de una función de una sola variable 

a

f(x)

x1 x2 x3 x4 x5 x6 b x

20.1.1 Condiciones necesarias y suficientes 

Esta sección desarrolla las condiciones necesarias y suficientes para que una función
f(X) de n variables tenga extremos. Se supone que la primera y segunda derivadas par-
ciales de f(X) son continuas para todas las X.

Teorema 20.1-1 Una condición necesaria para que X0 sea un punto extremo de f(X) es que

Debido a que la condición necesaria también se satisface en puntos de inflexión
o silla, es más apropiado referirse a estos puntos obtenidos con la solución de =f(X0) 5
0 como puntos estacionarios. El teorema siguiente establece las condiciones de sufi-
ciencia para que X0 sea un punto extremo.

Teorema 20.1-2 Una condición suficiente para que un punto estacionario X0 sea un

extremo es que la matriz Hessiana H evaluada en X0 satisfaga las siguientes condiciones:

(i) H se define positiva si X0 es un punto mínimo.

(ii) H se define negativa si X0 es un punto máximo.

Ejemplo 20.1-1

Considere la función

f(x1, x2, x3) = x1 + 2x3 + x2 x3 -  x1
2 -  x2

2 - x3
2

§f(X0) = 0
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La condición necesaria =f(X0) 5 0 da 

La solución de estas ecuaciones simultáneas es

Para determinar el tipo de punto estacionario, considere 

Los determinantes menores principales de tienen los valores 2 2, 4 y 2 6, respectivamente.H ƒX0

H ƒ X0
= ¶ 02f

0x1
2

02f

0x10x2

02f

0x10x3

02f

0x20x1

02f

0x2
2

02f

0x20x3

02f

0x30x1

02f

0x30x2

02f

0x3
2

∂
X0

= £ -2 0 0
0 -2 1
0 1 -2

≥
X0 = a1

2
, 

2
3

,  
4
3
b

 
0f

0x3
= 2 + x2 - 2x3 = 0

 
0f

0x2
= x3 - 2x2 = 0

 
0f

0x1
= 1 - 2x1 = 0

Por lo tanto, como se muestra en la sección D.3, se define negativa y repre-
senta un punto máximo.

Por lo común, si es indefinida, X0 debe ser un punto silla. En casos no conclu-
yentes, X0 puede o no ser un extremo, y la condición de suficiencia se hace algo compli-
cada, porque en la expansión de Taylor se deben considerar términos de mayor orden.

La condición de suficiencia establecida por el teorema 20.1-2 aplica funciones de
una sola variable como sigue. Dado que y0 es un punto estacionario, entonces

(i) y0 es un máximo si f 0(y0) , 0.
(ii) y0 es un mínimo si f 0(y0) . 0.

Si f 0(y0) 5 0, deben investigarse las derivadas de mayor orden como lo requiere el si-
guiente teorema.

Teorema 20.1-3 Dado y0, un punto estacionario de f(y), si las primeras (n 2 1) deriva-

das son cero y f n(y0) Z 0, entonces

(i) Si n es impar, y0 es un punto de inflexión.

(ii) Si n es par, entonces y0 es un mínimo si f n(y0) . 0 y un máximo si f n(y0) , 0.

H ƒX0

X0 = A 12 , 23 , 43 BH ƒX0
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FIGURA 20.2

Puntos extremos de f(y) 5 y4 y
g(y) 5 y3

f(y)

0 y

0 y

g(y)y4 y3

Ejemplo 20.1-2

La figura 20.2 muestra las gráficas de las siguientes funciones

Con f(y) 5 y4, f 9(y) 5 4y3 5 0, la cual da el punto estacionario y0 5 0. Ahora 

Por consiguiente, y0 5 0 es un punto mínimo (vea la figura 20.2).
Para g(y) 5 y3, g9(y) 5 3y2 5 0, la cual da y0 5 0, como un punto estacionario. Además

Por consiguiente, y0 5 0 es un punto de inflexión.

CONJUNTO DE PROBLEMAS 20.1A

1. Determine los puntos extremos de las siguientes funciones:
*(a)
*(b)

(c)
(d)
(e)

2. Determine los puntos extremos de las siguientes funciones.
(a)
(b)

3. Verifique que la función

tiene los puntos estacionarios (0,3,1), (0,1,21), (1,2,0), (2,1,1) y (2,3,21). Utilice la condi-
ción de suficiencia para identificar los puntos extremos.

*4. Resuelva las siguientes ecuaciones simultáneas convirtiendo el sistema en una función
objetivo no lineal sin restricciones.

[Sugerencia: mín f 2(x1,x2) ocurre en f 9(x1, x2) 5 0]

 x2 - x1 = 2

 x2 - x1
2 = 0

f(x1, x2, x3) = 2x1x2x3 -  4x1x3 -  2x2x3 + x1
2

 + x2
2

 + x3
2

 -  2x1 -  4x2 + 4x3

f(X) = 2x1
2

 + x2
2

 + x3
2

 + 6(x1 + x2 + x3) + 2x1x2x3

f(X) = x1
3

 + x2
3

 -  3x1x2

f(x) = 6x5
 -  4x3

 + 10
f(x) = (3x -  2)2 (2x -  3)2

f(x) = 4x4
 -  x2

 + 5
f(x) = x4

 + x2

f(x) = x3
 + x

gœ(0) = gœœ(0), g(3)(0) = 6 Z 0

fœ(0) = fœœ(0) = f(3)(0) = 0, f(4)(0) = 24 7 0

 g(y) = y3

 f(y) = y4
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20.1.2 Método de Newton-Raphson

Por lo general, la condición necesaria =f(x) Z 0 puede ser extremadamente no lineal y,
en consecuencia, difícil de resolver. El método de Newton-Raphson es un algoritmo
iterativo para resolver ecuaciones no lineales.

Considere las ecuaciones simultáneas

Sea Xk un punto dado. Luego, mediante la expansión de Taylor,

Por lo tanto, las ecuaciones originales fi(X) 5 0, i 5 1, 2,…, m pueden representarse de
forma aproximada como 

Estas ecuaciones se pueden escribir en notación matricial como

Si Bk es no singular, entonces

La idea del método es iniciar desde un punto inicial X0 y luego utilizar la ecua-
ción anterior para determinar un nuevo punto. El proceso puede o no converger de-
pendiendo de la selección del punto de inicio. La convergencia ocurre cuando dos pun-
tos sucesivos Xk y Xk11, son aproximadamente iguales (dentro de una tolerancia
especificada aceptable).

En la figura 20.3 una interpretación geométrica del método se ilustra mediante
una función de una sola variable. La relación entre xk y xk11 para una función f(x) de una
sola variable se reduce a 

Los términos se pueden acomodar como lo que significa que xk11fœ(xk) =  
f(xk)

xk - xk+ 1

xk+ 1 = xk -   
f(xk)

fœ(xk)

X = Xk -  Bk
-1Ak

Ak + Bk(X -  Xk) = 0

fi(Xk) + §fi(Xk)(X -  Xk) = 0, i = 1, 2, Á , m

fi(X) L  fi(Xk) + §fi(Xk)(X -  Xk), i = 1, 2, Á , m

fi(X) = 0, i = 1, 2, Á , m

se determina a partir de la pendiente de f(x) en xk, donde tan u 5 f9(xk) como lo mues-
tra la figura.

La figura 20.3 demuestra que la convergencia no siempre es posible. Si el punto
inicial es a, el método divergirá. Por lo común, podría requerirse intentar varios puntos
de inicio antes de que se logre la convergencia.

Ejemplo 20.1-3

Para demostrar el uso del método de Newton-Raphson, considere la función 

Para determinar los puntos estacionarios de g(x), tenemos que resolver 

f(x) K gœ(x) = 72x3 - 234x2 + 241x - 78 = 0

g(x) = (3x - 2)2 (2x - 3)2
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FIGURA 20.3

Ilustración del proceso iterativo en el método de Newton-Raphson

f(x)

a bxk xk�1

f(xk)

Tangente a f(x)
en xk

Punto de convergencia
(solución)

u

Por lo tanto, para el método de Newton-Raphson, tenemos

Iniciando con x0 5 10, la siguiente tabla proporciona las iteraciones sucesivas:

 xk+ 1 = xk -  
72x3 - 234x2 + 241x - 78

216x2 - 468x + 24

 fœ(x) = 216x2 - 468x + 241

k xk
f(xk)

fœ(xk)
xk+ 1

0 10.000000 2.978923 7.032108
1 7.032108 1.976429 5.055679
2 5.055679 1.314367 3.741312
3 3.741312 0.871358 2.869995
4 2.869995 0.573547 2.296405
5 2.296405 0.371252 1.925154
6 1.925154 0.230702 1.694452
7 1.694452 0.128999 1.565453
8 1.565453 0.054156 1.511296
9 1.511296 .0108641 1.500432

10 1.500432 .00043131 1.500001
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El método converge a x 5 1.5. En realidad, f(x) tiene tres puntos estacionarios en
y Los dos puntos restantes se determinan intentando diferentes valores

para x0 inicial. De hecho, x0 5 .5 y x0 5 1, deberían dar por resultado los puntos estacionarios
(¡compruébelo!).

Momento de Excel

Se puede utilizar la plantilla excelNewtonRaphson.xls para resolver cualquier ecuación de una
sola variable. Requiere que se ingrese en la celda C3. Para el ejemplo 20.1-3, ingresamos 

La variable x se reemplaza con A3. La plantilla permite establecer un límite de tolerancia D, el
cual especifica la diferencia permisible entre xk y xk11 que señala la terminación de las iteracio-
nes. Se le pide que utilice puntos iniciales diferentes, x0, para que tenga una idea de cómo fun-
ciona el método.

CONJUNTO DE PROBLEMAS 20.1B

1. Use la plantilla NewtonRaphson.xls para resolver el problema 1(c), conjunto 20.1a.
2. Resuelva el problema 2(b), conjunto 20.1a, por medio del método de Newton-Raphson.

20.2 PROBLEMAS RESTRINGIDOS

Esta sección se ocupa de la optimización de funciones continuas restringidas. La sec-
ción 20.2.1 presenta el caso de restricciones de igualdad, y la sección 20.2.2 se ocupa de
las restricciones de desigualdad. La presentación en la sección 20.2.1 se cubre en su
mayor parte en Beightler and Associates (1979, págs. 45-55).

20.2.1 Restricciones de igualdad

Esta sección presenta dos métodos: el Jacobiano y el Lagrangiano. El método
Lagrangiano se puede desarrollar lógicamente a partir del Jacobiano. Esta relación
proporciona una interpretación interesante económica del método Lagrangiano.

Método de derivadas restringidas (Jacobiano) Considere el problema

sujeto a

donde

  g = (g1, g2, Á , gm)T
 X = (x1, x2, Á , xn)

g(X) = 0

Minimizar z = f(X)

=(72*A3¿3-234*A3¿2+241*A3-78)>(216*A3¿2-468*A3+241)

f(x)
f

œ(x)

x =  32 .x =  23 , x =  13
12 
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FIGURA 20.4

Demostración de la idea del
método Jacobiano

B

A C x2 � b

x2

Contorno del valor objetivo 
óptimo restringido

B

f(x1, x2)

f(x1, x2)

Curva 
restringida

Restricción g (X) � x2 � b � 0

x1

x1

Mínimo 
restringido

Mínimo no restringido

x2

b

A C

cf

Las funciones f(X) y g(X), i 5 1, 2,…, m, son dos veces continuamente diferenciables.
La idea de utilizar derivadas restringidas es desarrollar una expresión de forma

cerrada para las primeras derivadas parciales de f(X) en todos los puntos que satisfa-
cen g(X) 5 0. Los puntos estacionarios correspondientes se identifican como los pun-
tos donde estas derivadas parciales se desvanecen. De este modo, las condiciones de
suficiencia presentadas en la sección 20.1 pueden utilizarse para verificar la identidad
de los puntos estacionarios.

Para aclarar el concepto propuesto, considere f(x1, x2) ilustrada en la figura 20.4.
Esta función se tiene que minimizar sujeta a la restricción 

donde b es una constante. En la figura 20.4, la curva designada por los tres puntos A, B

y C representa los valores de f(x1,x2) que satisfacen la restricción dada. El método de
derivadas restringidas define el gradiente de f(x1,x2) en cualquier punto de la curva
ABC. El punto B donde la derivada restringida se desvanece es un punto estacionario
para el problema restringido.

Ahora se desarrolla el método matemáticamente. De acuerdo con el teorema de
Taylor, para X 1 DX en la vecindad factible de X, tenemos 

f(X + ¢X) -  f(X) = §f(X)¢X + O(¢xj
2)

g1(x1, x2) = x2 -  b = 0
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y

A medida que Dxj S 0, las ecuaciones se reducen a 

y

Para factibilidad, debemos tener g(X) 5 0, �g(X) 5 0. Por consiguiente 

Así se obtienen (m 1 1) ecuaciones en (n 1 1) incógnitas, �f(X) y �X. Observe que si
�f(X) es un variable dependiente cuyo valor se determina una vez que se conoce ∂X.
Esto significa que, de hecho, tenemos m ecuaciones en n incógnitas.

Si m . n, al menos (m 2 n) ecuaciones son redundantes. Si se elimina la redun-
dancia, el sistema se reduce a m # n. Si m 5 n la solución es �X 5 0, y X no tiene nin-
guna vecindad factible, lo que significa que el espacio de soluciones se compone de
sólo un punto. El caso restante (m , n) es más elaborado.

Definamos

de modo que

Los vectores Y y Z representan las variables dependientes e independientes, respectiva-
mente. Rescribiendo los vectores gradiente de f y g en función de Y y Z, obtenemos 

Definamos

Jm3m se conoce como la matriz Jacobiana y Cm3m como la matriz de control. Se supo-
ne que la Jacobiana J es no singular. Esto siempre es posible debido a que las m ecua-
ciones dadas son independientes por definición. Los componentes del vector Y deben
seleccionarse por lo tanto, de modo que J sea no singular.

 C = §Zg = £ §Zg1

o
§Zgm

≥ J = §Yg = £ §Yg1

o
§Ygm

≥ §g1Y, Z2 = 1§Yg, §Zg2 §f1Y, Z2 = 1§Yf, §Zf2
Y = (y1, y2, Á , ym) , Z = (z1, z2, Á , zn-m)

X = 1Y, Z2

 §g1X2 0X = 0

 0f1X2 - §f1X2 0X = 0

0g(X) = §g(X) 0X

0  f(X) = §f(X) 0X

g(X + ¢X) -  g(X) = §g(X)¢X + O(¢xj
2)
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El conjunto original de ecuaciones en �f(X) y �X se puede escribir como

y

Dado que J es no singular, se deduce que

Sustituyendo �Y en la ecuación para �f(X) se obtiene �f como una función de �Z, es
decir,

Según esta ecuación, la derivada restringida con respecto al vector independiente Z es

donde =cf es el vector gradiente restringido de f con respecto a Z.. Por lo tanto =cf(Y,Z)
debe ser nulo en los puntos estacionarios.

Las condiciones de suficiencia son similares a las desarrolladas en la sección 20.1.
La matriz Hessiana (restringida) corresponde al vector independiente Z, y los elemen-
tos de la matriz Hessiana deben ser las segundas derivadas restringidas.

Ejemplo 20.2-1

Considere el siguiente problema:

Dado el punto factible X0 5 (1, 2, 3), deseamos estudiar la variación de f(5 �cf) en la vecindad
factible de X0

.
Sean

Por lo tanto,

 §Zf =
0f

0x2
= 6x2

 §Yf = a 0f

0x1
, 

0f

0x3
b = (2x1 + 5x3

2, 10x1x3)

Y = (x1, x3)    y    Z = x2

 g21X2 = x1
2 + 2x1x2 + x3

2 - 14 = 0

 g11X2 = x1x3 + 2x2 + x2
2 - 11 = 0

 f1X2 = x1
2 + 3x2

2 + 5x1x3
2

§c f =
0c f1Y, Z2

0cZ
= §Z 

 

f - §YfJ
-1C

0f(Y, Z) = (§Zf -  §Yf J-1C)0Z

0Y = -J-1C0Z

J0Y = -C0Z

0f(Y, Z) = §Yf0Y + §Zf0Z
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Supongamos que tenemos que estimar �cf en la vecindad factible del punto factible X0 5

(1, 2, 3), dado un pequeño cambio �x2 5 .01 de la variable independiente x2. Tenemos 

De ahí que el valor incremental de f restringida se da como

Especificando el valor de �x2 para la variable independiente x2, los valores factibles de �x1 y �x2
se determinan para las variables dependientes x1 y x3 aplicando la fórmula

Por lo tanto, para �x2 5 .01,

Ahora comparamos el valor de �c f antes calculado con la diferencia f(X0 1 �X) 2 f(X0),
dada �x2 5 .01.

Se obtiene 

o

La cantidad 2 .477 se compara favorablemente con �cf 5 2 46.01�x2 5 2 .4601. La diferencia
entre los dos valores es el resultado de la aproximación lineal al calcular �cf en X0.

f1X0 + 0X2 - f1X02 = - .477

f(X0) = 58, f(X0 + 0X) = 57.523

X0 + 0X = (1 - .0283, 2 + .01, 3 + .025) = (.9717, 2.01, 3.025 )

a0x1

0x3
b = -J-1C 0x2 = a - .0283

.0250
b

0Y = - J-1C 0Z

0c f = 1§Z 

  

f - §YfJ
-1C2 0Z = a6122 - 147, 302a 2.83

-2.50
b b  0x2 = -46.010x2

J-1C = a3 1
6 6

b-1a6
2
b = ¢ 6

12 - 1
12

- 6
12

3
12

≤ a6
2
b L a 2.83

-2.50
b

 C = • 0g1

0x2
0g2

0x2

μ = a2x2 + 2
2x2

b

 J = § 0g1

0x1

0g1

0x3

0g2

0x1

0g2

0x3

¥ = ax3 x1

2x1 + 2x2 2x3
b
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CONJUNTO DE PROBLEMAS 20.2A

1. Considere el ejemplo 20.2-1.
(a) Calcule �cf por medio de los dos métodos presentados, utilizando �x2 5 .001 en lugar

de �x2 5 .01. ¿Se hace el efecto de la aproximación lineal más insignificante con la
reducción del valor de �x2?

*(b) Especifique una relación entre los elementos de �X 5 (�x1, �x2 �x3) en el punto fac-
tible X0 5 (1,2,3) que mantendrá factible al punto X0 1 �X.

(c) Si Y 5 (x2,x3) y Z 5 x1, ¿cuál es el valor de �x1 que producirá el mismo valor de �cf

dado en el ejemplo?

Ejemplo 20.2-2

Este ejemplo ilustra el uso de derivadas restringidas. Considere el problema 

sujeto a

Determinamos los puntos extremos restringidos como sigue. Sean

Por lo tanto,

Por consiguiente,

Las ecuaciones para determinar los puntos estacionarios se dan por lo tanto como 

o

La solución es

X0 L  (.81, .35, .28)

£10 -28 6
1 1 3
5 2 1

≥ £x1

x2

x3

≥ = £0
2
5
≥ g2(X) = 0

 g1(X) = 0

 §cf = 0

 = 10
3  x1 - 28

3  x2 + 2x3

 §c f =
0cf

0cx3
= 2x3 - 12x1, 2x22¢ -2

3
1
3

5
3 -1

3
≤ a3

1
b

 J = a1 1
5 2

b , J-1 = ¢ -2
3

1
3

5
3 -1

3
≤ , C = a3

1
b

 §Yf = a 0f

0x1
, 

0f

0x2
b = 12x1, 2x22, §Z   

f =
0f

0x3
= 2x3

Y = (x1, x2)  y  Z =   x3

g2(X) = 5x1 + 2x2 + x3 - 5 = 0

g1(X) = x1 + x2 + 3x3 - 2 = 0

 Minimizar  f(X) = x1
2 + x2

2 + x3
2
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La identidad de este punto estacionario se verifica mediante la condición de suficiencia.
Dado que x3 es la variable independiente, de =cf se desprende que 

Por el método Jacobiano,

La sustitución da De ahí que, X0 sea el punto mínimo.

Análisis de sensibilidad en el método Jacobiano. El método Jacobiano se puede utilizar
para estudiar el efecto de pequeños cambios en el lado derecho de las restricciones en el
valor óptimo de f. Específicamente, ¿cuál es el efecto de cambiar gi(X) 5 0 a gi(X) 5 �gi

en el valor de f? Este tipo de investigación se llama análisis de sensibilidad y es similar al
realizado en la programación lineal (vea los capítulos 3 y 4). Sin embargo, el análisis de
sensibilidad en programación no lineal es válido sólo en la pequeña proximidad del
punto extremo. El desarrollo será útil al estudiar el método Lagrangiano.

Anteriormente demostramos que 

Dada �g Z 0, entonces

Sustituyendo en la ecuación para �f(Y, Z) se obtiene

donde

como ya antes se definió. La expresión para �f(Y,Z) se puede utilizar para estudiar la
variación de f en la vecindad factible de un punto factible X0 producida por los pe-
queños cambios �g y �Z.

En el punto extremo (de hecho en cualquier punto estacionario) X0 5 (Y0,Z0), el
gradiente restringido =cf debe desvanecerse. Por lo tanto

o

0f

0g
= §Y0

f J-1

0f(Y0, Z0) = §Y0
f J-10g(Y0, Z0)

§cf = §Zf -  §Yf J-1C

0f(Y, Z) = §Yf J-10g + §cf0Z

0Y = J-10g - J-1C0Z

 0g = J0Y + C0Z

 0f1Y, Z2 = §Yf0Y + §Z   

f0Z

0c
2f

0cx3
2 =

460
9

7 0.

§dx1

dx3

dx2

dx3

¥ = -J-1C = ¢ 5
3 

-14
3

≤
0c

2f

0cx3
2 =

10
3

 adx1

dx3
b -

28
3

 adx2

dx3
b + 2 = a10

3
, -

28
3
b §dx1

dx3

dx2

dx3

¥ + 2
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El efecto del pequeño cambio �g en el valor óptimo de f se puede estudiar evaluando la
razón de cambio de f con respecto a g. Por lo común, estas razones se conocen como
coeficientes de sensibilidad.

Ejemplo 20.2-3

Considere el mismo problema del ejemplo 20.2-2. X0 5 (x01,x02,x03) 5 (.81, .35, .28) da el punto
óptimo. Dado Y0 5 (x01, x02), entonces

Por consiguiente 

Esto quiere decir que para �g1 5 1, f se incrementará aproximadamente en .0867.Asimismo, para
�g2 5 1, f se incrementará aproximadamente en .3067.

CONJUNTO DE PROBLEMAS 20.2B

1. Suponga que el ejemplo 20.2-2 se resuelve de la siguiente manera. Primero, utilice las res-
tricciones para expresar x1 y x2 en función de x3; luego utilice las ecuaciones resultantes
para expresar la función objetivo sólo en función de x3. Calculando la derivada de la
nueva función objetivo con respecto a x3, podemos determinar los puntos de máximos y
mínimos.
(a) ¿Sería diferente la derivada de la nueva función objetivo (expresada en función de

x3) de la obtenida por medio del método Jacobiano?
(b) ¿Cómo difiere el método sugerido del método Jacobiano?

2. Aplique el método Jacobiano al ejemplo 20.2-1 seleccionando Y 5 (x2,x3) y Z 5 (x1).
*3. Resuelva por medio del método Jacobiano:

sujeto a

donde C es una constante positiva. Suponga que el lado derecho de la restricción se cam-
bia a C 1 d, donde d es una pequeña cantidad positiva. Determine el cambio correspon-
diente del valor óptimo de f.

4. Resuelva por medio del método Jacobiano:

sujeto a

g(X) = x1x2 -  10 = 0

Minimizar f(X) = 5x1
2

 + x2
2

 + 2x1x2

q
n

i= 1
xi = C

Minimizar  f(X) = a
n

i= 1
 xi

2

a 0f

0g1
, 

0f

0g2
b = §Y0

  fJ-1 = 11.62, .72¢ -2
3

1
3

5
3 -1

3

≤ = 1.0876, .30672
§Y0  f = a 0f

0x1
, 

0f

0x2
b = 12x01, 2x022 = 11.62, .702
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(a) Encuentre el cambio del valor óptimo de f(X) si x1x2 2 9.99 5 0 reemplaza a la res-
tricción.

(b) Encuentre el cambio del valor de f(X) en la vecindad del punto factible (2,5), dado
que x1x2 5 9.99 y �x1 5 .01.

5. Considere el problema:

sujeto a

Aplique el método Jacobiano para hallar �f(X) en la vecindad del punto factible (1, 1, 1).
Suponga que �g1 5 2.01, �g2 5 .02 y �x1 5 .01 se especifican en esta vecindad.

6. Considere el problema

sujeto a

(a) Demuestre que seleccionando x3 y x4 como variables independientes, el método
Jacobiano no proporciona una solución ni establece la razón.

*(b) Resuelva el problema utilizando x1 y x3 como variables independientes, y aplique la
condición de suficiencia para determinar el tipo de punto estacionario resultante.

(c) Determine los coeficientes de sensibilidad, dada la solución en (b).

Método Lagrangiano. En el método Jacobiano, si el vector l representa los coefi-
cientes de sensibilidad, es decir

Por lo tanto,

Esta ecuación satisface las condiciones necesarias para puntos estacionarios porque

se calcula de modo que =c f 5 0. Una forma más conveniente para representar estas
ecuaciones es calcular sus derivadas parciales con respecto a todas las xj. Esto da por
resultado

Las ecuaciones resultantes junto con la ecuaciones de restricción g(X) 5 0 producen
los valores factibles de X y l que satisfacen las condiciones necesarias para los puntos
estacionarios.

0
0xj

 1f - Lg2 = 0, j = 1, 2, Á , n

0f

0g

0f -  L  0g = 0

L = §Y0
J-1 =  

0f

0g

g2(X) = x1 + 2x2 + 5x3 + 6x4 - 15 = 0

g1(X) = x1 + 2x2 + 3x3 + 5x4 - 10 = 0

Minimizar f(X) = x1
2

 + x2
2

 + x3
2

 + x4
2

g2(X) = x1
2 + 5x1x2 + x3

2 - 7 = 0

g1(X) = x1 + x2
2 + 3x2x3 - 5 = 0

Maximizar  f(X) = x1
2

 + 2x2
2

 + 10x3
2

 + 5x1x2
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El procedimiento define el método Lagrangiano para identificar los puntos esta-
cionarios de problemas de optimización con restricciones de igualdad. Sea

La función L se llama función Lagrangiana y los elementos del vector l constituyen
los multiplicadores Lagrange. Por definición, estos multiplicadores tienen la misma in-
terpretación que los coeficientes de sensibilidad del método Jacobiano

Las ecuaciones

proporcionan las condiciones necesarias para determinar los puntos estacionarios de
f(X) sujeta a g(X) 5 0. Existen condiciones de suficiencia para el método Lagrangiano,
pero en general son difíciles de calcular.

Ejemplo 20.2-4

Considere el problema del ejemplo 20.2-2. La función Lagrangiana es 

Resultan las siguientes condiciones necesarias:

La solución de estas ecuaciones simultáneas produce 

Esta solución combina los resultados de los ejemplos 20.2-2 y 20.2-3. Los valores de los multipli-
cadores Lagrange, dados por el vector l, son iguales a los coeficientes de sensibilidad obtenidos
en el ejemplo 20.2-3. El resultado muestra que estos coeficientes son independientes de la selec-
ción específica del vector Y dependiente en el método Jacobiano.

 L = (l1, l2) = (.0870, .3043) 

 X0 = (x1, x2, x3) = (.8043, .3478, .2826)

 
0L
0l2

= - (5x1 + 2x2 + x3 - 5) = 0

 
0L
0l1

= - (x1 + x2 + 3x3 - 2) = 0

 
0L
0x3

= 2x3 - 3l1 - l2 = 0

 
0L
0x2

= 2x2 - l1 - 2l2 = 0

 
0L
0x1

= 2x1 - l1 - 5l2 = 0

L(X, L ) = x1
2

 + x2
2

 + x3
2

 -  l1(x1 + x2 + 3x3 -  2) -  l2(5x1 + 2x2 + x3 -  5)

0L
0L 

= 0,  
0L
0X

= 0

L(X, l ) = f(X) -  L g(X)
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CONJUNTO DE PROBLEMAS 20.2C

1. Resuelva el siguiente problema de programación lineal mediante los métodos Jacobiano
y Lagrangiano:

sujeto a

*2. Determine la solución óptima del problema

sujeto a

Suponga que g1(X) 5 .01 y g2(X) 5 .02. Determine el cambio correspondiente del valor
óptimo de f(X).

3. Resuelva el problema 6, conjunto 20.2b, por medio del método Lagrangiano, y verifique
que los valores de los multiplicadores de Lagrange son los mismos que los coeficientes de
sensibilidad obtenidos en el problema 6, conjunto 20.2b.

20.2.2 Restricciones de desigualdad. Condiciones de Karush-Kuhn-Tucker (KKT)1

Esta sección amplía el método Lagrangiano a problemas con restricciones de desigual-
dad. La contribución principal de la sección es el desarrollo de las condiciones necesa-

rias de Karush-Kuhm-Tucker para determinar los puntos estacionarios. Estas condicio-
nes también son suficientes conforme a ciertas reglas que más adelante se formularán.

Considere el problema

sujeto a

Las restricciones de desigualdad se pueden convertir en ecuaciones por medio de va-
riables de holgura no negativas. Sea la cantidad de holgura agregada a la res-
tricción i-ésima gi(X) # 0 y definamos

S = (S1, S2, Á , Sm)T,  S2 = (S1
2, S2

2, Á , Sm
2 )T

Si
2(Ú 0)

g(X) …  0

Maximizar z = f(X)

 g2(X) = x1 + 5x2 + x3 - 7 = 0

 g1(X) = x1 + x2
2 + x3 - 5 = 0

Minimizar f(X) = x1
2

 + 2x2
2

 + 10x3
2

x1, x2, x3, x4 Ú 0

 g21X2 = 3x1 + x2 + x4 - 9 = 0

 g11X2 = x1 + 2x2 + x3 - 6 = 0

Maximizar f(X) = 5x1 + 3x2

1W. Karush fue el primero en desarrollar las condiciones KKT en 1939 como parte de una tesis de maestría
en la Universidad de Chicago. Las mismas condiciones fueron desarrolladas de forma independiente en 1951
por W. Khun y A. Tucker.
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donde m es el total de restricciones de desigualdad. La función Lagrangiana es por
consiguiente

Dadas las restricciones g(X) # 0, una condición necesaria para optimalidad es que l
sea no negativo (no positivo) para problemas de maximización (minimización). El re-
sultado se justifica observando que el vector lmide la razón de variación de f con res-
pecto a g, es decir,

En el caso de maximización, a medida que se incrementa el lado derecho de la restricción
g(X) # 0 desde 0 hasta el vector �g, el espacio de soluciones se hace menos restringido
y por consiguiente f no puede disminuir, lo que significa que l $ 0. Igualmente para
minimización, a medida que se incrementa el lado derecho de las restricciones, f no puede
incrementarse, lo cual implica que l# 0. Si las restricciones son igualdades,esto es,g(X) 5 0,
entonces l se hace no restringido en cuanto a signo (vea el problema 2, conjunto 20.2d).

Las restricciones en l se mantienen como parte de las condiciones KKT necesa-
rias. Ahora se desarrollarán las condiciones restantes.

Calculando las derivadas parciales de L con respecto a X, S y l, obtenemos

El segundo conjunto de ecuaciones revela los siguientes resultados:

1. Si li Z 0, entonces . Este resultado indica que el recurso correspondiente
está escaso (es decir, agotado por completo).

2. Si entonces li 5 0. Esto indica que el recurso i no está escaso y, por con-
siguiente, no tiene ningún efecto en el valor de

Del segundo y tercer conjuntos de ecuaciones, obtenemos

Esta nueva condición repite en esencia el argumento anterior, porque si li . 0, gi(X) 5
0 o ; y si y li 5 0.

Las condiciones KKT necesarias para problemas de maximización se resumen
como sigue:

 g1X2 … 0

 ligi1X2 = 0,  i = 1, 2, Á , m

 §f1X2 - L§g1X2 = 0

 L Ú 0

gi(X) 6 0, Si
2 7 0, Si

2 = 0

ligi(X) = 0, i = 1, 2, Á , m

f(es decir, li =  0f
0gi

= 0).
Si

2 7 0, 

Si
2 = 0

 
0L
0L

= -1g1X2 + S22 = 0

 
0L
0Si

= -2liSi = 0, i = 1, 2, Á , m

 
0L
0X

= §f1X2 - L§g1X2 = 0

L =  
0f

0g

L(X, S, L ) = f(X) - L Cg(X) + S2 D
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TABLA 20.1 Suficiencia de las condiciones KKT

Sentido de la
Condiciones requeridas

optimización Función objetivo Espacio de soluciones

Maximización Cóncava Conjunto convexo

Minimización Convexa Conjunto convexo

TABLA 20.2 Subconjunto de condiciones KKT suficientes 

Sentido de la
Condiciones requeridas

optimización f(X) gi(X) li

Maximización Cóncava c Convexa
Cóncava
Lineal

Ú 0
… 0

No restringida

11 … i … r21r + 1 … i … p21p + 1 … i … m2
Minimización Convexa c Convexa

Cóncava
Lineal

… 0
Ú 0

No restringida

11 … i … r21r + 1 … i … p21p + 1 … i … m2

Estas condiciones también aplican al caso de minimización, excepto que l debe ser no
positivo (¡compruébelo!). Tanto en maximización como en minimización, los multipli-
cadores de Lagrange correspondientes a restricciones de igualdad no están restringidos
en cuanto a signo.

Suficiencia de las condiciones KKT. Las condiciones KKT necesarias también son
suficientes si la función objetivo y el espacio de soluciones satisfacen las condiciones
que aparecen en la tabla 20.1.

Es más fácil verificar que una función sea convexa o cóncava que demostrar que
un espacio de soluciones es convexo. Por esta razón, ofrecemos un subconjunto de las
condiciones de suficiencia, que, aunque no tan general como los de la Tabla 20.1, son
más fáciles de aplicar en la práctica. Para proporcionar estas condiciones, definimos los
problemas no lineales generalizados como 

sujeto a

El parámetro li es el multiplicador de Lagrange asociado con la restricción i. Las condi-
ciones para establecer la suficiencia de las condiciones KKT se resumen en la tabla 20.2.

L1X, S, L2 = f1X2 - a
r

i= 1
li[gi1X2 + Si

2] - a
p

i= r+ 1
li[gi1X2 - Si

2] - a
m

i=p+ 1
ligi1X2 gi1X2 = 0, i = p + 1, Á , m

 gi1X2 Ú 0, i = r + 1, Á , p

 gi1X2 … 0, i = 1, 2, Á , r

Maximizar o minimizar z = f1X2
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Las condiciones que aparecen en la tabla 20.2 son un subconjunto de las condi-
ciones que aparecen en la tabla 20.1 porque un espacio de soluciones puede ser conve-
xo sin que satisfaga las condiciones que aparecen en la tabla 20.2

La tabla 20.2 es válida porque las condiciones dadas producen una función
Lagrangiana L(X,S,l) en el caso de maximización y convexa L(X,S,l) en el caso de
minimización. Este resultado se verifica observando que si g(x) es convexa, entonces
ligi(x) es convexa si li $ 0 y cóncava si li # 0. Se pueden establecer interpretaciones
similares para todas las condiciones restantes. Observe que una función lineal es tanto
convexa como cóncava.Además, si una función f es cóncava, entonces (2f) es convexa,
y viceversa.

Ejemplo 20.2-5

Considere el siguiente problema de minimización:

sujeto a

Éste es un problema de minimización, de ahí que l # 0. Las condiciones KKT se dan por lo
tanto como 

Estas condiciones se reducen a 

 l3(1 - x1) = 0

 l2(x1 + x3 - 2) = 0

 l1(2x1 + x2 - 5) = 0

 2x3 - l2 + l5 = 0

 2x2 - l1 + l4 = 0

 2x1 - 2l1 - l2 + l3 = 0

 l1, l2, l3, l4, l5 … 0

 g1X2 … 0

 l1g1 = l2g2 = Á = l5g5 = 0

 12x1, 2x2, 2x32 - 1l1, l2, l3, l4, l52• 2 1 0
1 0 1

-1 0 0
0 -1 0
0 0 -1

μ = 0

 1l1, l2, l3, l4, l52 … 0

 g51X2 =   - x3  … 0

 g41X2 = 2  - x2  … 0

 g31X2 = 1 - x1  … 0

 g21X2 = x1 + x3 - 2 … 0

 g11X2 = 2x1 + x2 - 5 … 0

Minimizar  f(X) = x1
2

 + x2
2

 + x3
2
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La solución es x1 5 1, x2 5 2, x3 5 0, l1 5 l2 5 l5 5 0, l3 5 22, l4 5 2 4. Debido a que
tanto f(X) como el espacio de soluciones g(X) # 0 son convexos, L(X,S,l) debe ser convexa, y el
punto estacionario resultante da un mínimo restringido global. Las condiciones KKT son funda-
mentales para el desarrollo de los algoritmos de programación no lineal del capítulo 21.

CONJUNTO DE PROBLEMAS 20.2D

1. Considere el problema:

sujeto a

Demuestre que las condiciones KKT son las mismas que en la sección 20.2.2, excepto que
l # 0.

2. Considere el siguiente problema:

sujeto a

Demuestre que las condiciones KKT son 

3. Escriba las condiciones KKT necesarias para los siguientes problemas.
(a) Maximizar 

sujeto a

(b) Minimizar 
sujeto a

 x1
3 + x2

2 + 4x3
2 Ú 20

 x1
2 - x2

2 + x3
3 … 10

f1X2 = x1
4 + x2

2 + 5x1x2x3

 x1, x2, x3 Ú 0

 5x1
2 - x2

2 - x3 Ú 2

 x1 + x2
2 + x3 = 5

f1X2 = x1
3 - x2

2 + x1x3
2

L sin restricción de signo

 g1X2 = 0

 §f1X2 - L§g1X2 = 0

g1X2 = 0

Maximizar  f(X)

g(X) Ú 0

Maximizar  f(X)

 x1 Ú 1, x2 Ú 2, x3 Ú 0

 x1 + x3 … 2

 2x1 + x2 … 5

 l5x3 = 0

 l4(2 - x2) = 0
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4. Considere el problema

sujeto a

Dado que f(X) es cóncava y gi(X)(i5 1, 2,…, m) es una función lineal, demuestre que las
condiciones KKT necesarias también son suficientes. ¿Es cierto este resultado si gi(X) es
una función no lineal convexa para todas las i? ¿Por qué?

5. Considere el problema

sujeto a

Desarrolle las condiciones KKT, y  proporcione las estipulaciones conforme a las cuales
las condiciones son suficientes.
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g11X2 Ú 0, g21X2 = 0, g31X2 … 0

Maximizar  f(X)

g1X2 = 0

Maximizar  f(X)
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21.1 ALGORITMOS NO RESTRINGIDOS

Esta sección presenta dos tipos de algoritmos para el problema no restringido: de bús-
queda directa y del gradiente.

21.1.1 Método de búsqueda directa

Los métodos de búsqueda directa se aplican sobre todo a funciones de una sola varia-
ble estrictamente unimodales.Aunque el caso parezca trivial, la sección 21.1.2 demues-
tra que la optimización de funciones de una sola variable es clave en el desarrollo del
algoritmo general de múltiples variables.

La idea de los métodos de búsqueda directa es identificar el intervalo de incerti-
dumbre que se sabe incluye el punto de solución óptima. El procedimiento localiza el
óptimo estrechando de manera interactiva el intervalo de incertidumbre a un nivel de
exactitud deseada.

En esta sección se presentan dos algoritmos de búsqueda estrechamente relacio-
nados; el dicótomo y el de la sección dorada. Ambos buscan la maximización de una
función unimodal f(x) a lo largo del intervalo a # x # b que incluye el punto óptimo
x*. Los dos métodos se inician con el intervalo inicial de incertidumbre I0 5 (a,b).

Paso general i. Sea Ii21 5 (xL, xR) el intervalo actual de incertidumbre (en la iteración
0, xL 5 a y xR 5 b). La siguiente tabla muestra cómo se determinan x1 y x2:

CAPÍTULO 21

Algoritmos de programación no lineal

Método dicótomo Método de la sección dorada

x1 =  12 (xR + xL - ¢) x1 = xR - A 15 - 1
2  B(xR - xL)

x2 =  12 (xR + xL + ¢) x2 = xL + A 15 - 1
2  B(xR - xL)

La selección de x1 y x2 garantiza que xL , x1 , x2 , xR.
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FIGURA 21.1

Ilustración del paso general de los métodos de búsqueda, dicótomo y de la sección dorada 

f(x1)

a bxL

Ii�1

Ii

I0

xRx1 x2

f(x2)

(a)

f(x1)

a bxL

Ii�1

Ii

I0

xRx1 x2

f(x2)

(b)

El siguiente intervalo de incertidumbre, Ii, se determina de la siguiente manera:

1. Si f(x1) . f(x2), entonces xL , x* , x2. Sea xR 5 x2 y establezca Ii 5 (xL,x2) [vea
la figura 21.1(a)].

2. Si f(x1) , f(x2), entonces x1 , x* , xR. Sea xL 5 x1 y establezca Ii 5 (x1, xR) [vea
la figura 21.1(b)].

3. Si f(x1) 5 f(x2), entonces x1 , x* , x2. Sea xL 5 x1 y xR 5 x2; establezca Ii 5

(x1,x2).

La manera de determinar x1 y x2 garantiza que Ii11 , Ii, como se demostrará en breve.
El algoritmo termina en la iteración k si Ik # D, donde D es un nivel de exactitud espe-
cificado por el usuario.

En el método dicótomo, los valores x1 y x2 se sitúan simétricamente alrededor del
punto medio del intervalo de incertidumbre actual. Esto significa que 

La aplicación repetida del algoritmo garantiza que la longitud del intervalo de incerti-
dumbre se aproxime a la exactitud deseada, D.

En el método de la sección dorada, la idea es más elaborada. Observamos que cada
intervalo del método dicótomo requiere calcular los dos valores f(x1) y f(x2), pero al final
se descarta uno de ellos. Lo que el método de la sección dorada propone es ahorrar
cálculos al reutilizar el valor desechado en la iteración inmediatamente subsiguiente.

Ii+ 1 = .5(Ii + ¢)
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Definamos

Entonces el intervalo de incertidumbre Ii en la iteración i es igual a (xL, x2) o (x1, xR).
Considere el caso Ii 5 (xL, x2), lo que significa que x1 está incluida en Ii. En la iteración
i 1 1, seleccionamos x2 igual a x1 en la iteración i, lo cual conduce a la siguiente ecuación:

x2(iteración i 1 1) 5 x1(iteración i) 

La sustitución produce

xL 1 a[x2(iteración i) 2 xL] 5 xR 2 a(xR 2 xL)

o

la cual se simplifica como

Esta ecuación da por resultado Se selecciona la raíz positiva

porque
El diseño de los cálculos de la sección dorada garantiza una reducción a en los in-

tervalos de incertidumbre sucesivos, es decir

El método de la sección dorada converge con más rapidez que el método dicótomo por-
que, en éste, el estrechamiento del intervalo de incertidumbre se desacelera apreciable-
mente a medida que I S D. Además, el método de la sección dorada requiere la mitad
de los cálculos porque recicla un conjunto de cálculos de iteración inmediata anterior.

Ejemplo 21.1-1

El valor máximo de f(x) ocurre en x 5 2. La tabla siguiente demuestra los cálculos para las
iteraciones 1 y 2 siguiendo los métodos dicótomo y de la sección dorada, con D 5 .1. Continuando

Maximizar f(x) = e 3x, 0 … x … 2
1
3(-x + 20), 2 … x … 3

 

Ii+ 1 = aIi

0 6 a 6 1.a =  - 1 + 15
2  L .681

a =  - 1 ; 15
2  .

a2 + a - 1 = 0

xL + a[xL + a(xR - xL) - xL] = xR - a(xR - xL)

x1 = xR - a(xR - xL)
x2 = xL + a(xR - xL)

f  0 6 a 6 1
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de la misma manera, a fin de cuentas el intervalo de incertidumbre se estrechará a la tolerancia
D deseada.

Momento de Excel 

La plantilla excelDiGold.xls maneja ambos métodos ingresando la letra X en D5 (dicótomo) o
F5 (sección dorada). Los datos de entrada incluyen f(x), a, b y D. La función f(x) se ingresa en la
celda E3 como 

=IF(C3<=2,3*C3,(-C3+20)/3)

La celda C3 desempeña el papel de x en f(x).
La figura 21.2 compara los dos métodos. El método de la sección dorada requiere menos de la

mitad de las iteraciones del método dicótomo, además la mitad de los cálculos en cada iteración.

CONJUNTO DE PROBLEMAS 21.1A

1. Use la plantilla excelDiGold.xls para resolver el ejemplo 21.1-1 suponiendo que D 5 .01.
Compare la cantidad de cálculos y la exactitud de los resultados con los de la figura 21.2.

2. Determine el máximo de cada una de las siguientes funciones mediante la búsqueda
dicótoma. Suponga que D 5 .05.

(a)

(b)

*(c)

(d)

*(e) f(x) = e4x,   0 … x … 2
4 - x,   2 … x … 4

f(x) = -(x - 3)2,    2 … x … 4

f(x) = x sen px,     1.5 … x … 2.5

f(x) = x cos x,     0 … x … p

f(x) =  
1

|(x - 3)3|
,     2 … x … 4

Método dicótomo Método de la sección dorada

Iteración 1 Iteración 1

I0 = (0, 3) K (xL, xR) I0 = (0, 3) K (xL, xR)

x1 = 0 + .5(3 - 0 - .1) = 1.45, f(x1) = 4.35 x1 = 3 - .618(3 - 0) = 1.146, f(x1) = 3.438

x2 = 0 + .5(3 - 0 + .1) = 1.55, f(x2) = 4.65 x2 = 0 + .618(3 - 0) = 1.854, f(x2) = 5.562

f(x2) 7 f(x1)Q xL = 1.45, I1 = (1.45, 3) f(x2) 7 f(x1)Q xL = 1.146, I1 = (1.146, 3)

Iteración 2 Iteración 2

I1 = (1.45, 3) K (xL, xR) I1 = (1.146, 3) K (xL, xR)

x1 = 1.45 + .5(3 - 1.45 - .1) = 2.175, f(x1) = 5.942 x1 = x2 en iteración 0 = 1.854, f(x1) = 5.562

x2 =  3 +  1.45 +  .1
2 = 2.275, f(x2) = 5.908 x2 = 1.146 + .618(3 - 1.146) = 2.292, f(x2) = 5.903

f(x1) 7 f(x2)Q xR = 2.275, I2 = (1.45, 2.275) f(x2) 7 f(x1)Q xL = 1.854, I2 = (1.854, 3)
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FIGURA 21.2

Resultados de los métodos dicótomo y de la sección dorada aplicados al ejemplo 21.1-1 
obtenidos con Excel (archivo excelDiGold.xls)

21.1.2 Método del gradiente 

Esta sección desarrolla un método para optimizar dos veces funciones continuamente
diferenciables, llamado método del ascenso más pronunciado (o de mayor pendiente).
La idea es generar puntos sucesivos en la dirección del gradiente de la función.1 La ter-

1El método de Newton-Raphson en la sección 20.1.2 también es un método de gradiente que localiza el óp-
timo de forma directa resolviendo las ecuaciones de condiciones necesarias.
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minación del método de gradiente se da en el punto donde el vector gradiente se vuel-
ve nulo. Ésta es la única condición necesaria para la optimalidad.

Suponga que f(X) se maximiza. Sea X0 el punto inicial desde donde se inicia el
procedimiento, y defina =f(Xk) como el gradiente de f en el punto Xk. La idea es de-

terminar una ruta particular p a lo largo de la cual se maximice en un punto dado.
Este resultado se logra si se seleccionan los puntos sucesivos Xk y Xk11 de modo que

donde rk es el tamaño  del paso óptimo en Xk.
El tamaño del paso se determina de modo que el siguiente punto Xk11 conduzca al

mejoramiento máximo de f. Esto equivale a determinar r 5 rk que maximiza la función

Debido a que h(r) es una función de una sola variable, se puede utilizar el método de
búsqueda de la sección 21.1.1 para determinar el óptimo, siempre que h(r) sea unimodal.

El procedimiento propuesto termina cuando dos puntos de prueba sucesivos Xk
y Xk11 son aproximadamente iguales. Esto equivale a tener rk=f(Xk) « 0, o de forma
equivalente =f(Xk) « 0.

Ejemplo 21.1-2

Considere el siguiente problema:

El óptimo exacto ocurre en .
El gradiente de f es

La naturaleza cuadrática de la función indica que los gradientes en dos puntos sucesivos son or-
togonales (perpendiculares entre sí).

Supongamos que comenzamos en el punto inicial X0 5 (1,1). La figura 21.3 muestra los
puntos de solución sucesivos.

Iteración 1

El siguiente punto X1 se obtiene considerando 

Por lo tanto ,

El tamaño óptimo del paso se obtiene aplicando las condiciones clásicas necesarias expuestas en
el capítulo 20 (también se pueden utilizar los algoritmos de búsqueda dados en la sección 21.1.1
para determinar el óptimo). El valor máximo de h(r) es , el cual da el siguiente punto de
solución .X1 = A 12, 1B r1 =  14

h(r) = f(1 - 2r, 1) = - 2(1 - 2r)2 + 2(1 - 2r) + 4

X = (1, 1) + r(-2, 0) = (1 - 2r, 1)

§f(X0) = (-2, 0)

§f(X) = (4 - 4x1 - 2x2, 6 - 2x1 - 4x2)

(x*1, x*2) = A 13, 43 BMaximizar f(x1, x2) = 4x1 + 6x2 - 2x1
2 - 2x1x2 - 2x2

2

h(r) = f[Xk + r§f(Xk)]

Xk+ 1 = Xk + rk§f(Xk)

0f
0p
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FIGURA 21.3

Maximización de por el método del ascenso más pronunciadof(x1, x2) = 4x1 + 6x2 - 2x1
2 - 2x1x2 - 2x2

2

x2

f(X) � 4x1 � 6x2 � 2x1
2 � 2x1x2 � 2x2

2

x1

X2

Óptimo
2

1

1 2

X1
X0

3
2

3
2

1
2

1
2

Iteración 2

Por lo tanto,

Iteración 3

Por consiguiente,

Iteración 4

Por lo tanto, r4 =  14   y X4 = A 38 , 21
16 B . h(r) = - 18 (5 + r)2 +  21

16 (5 + r) +  39
32

 X = A 38, 54 B + r A0, 14 B = A 38, 5 + r
4  B §f(X3) = A0, 14 B

r3 =  14  y  X3 = A 38, 54 B . h(r) = -   12 (1 - r)2 +  34 (1 - r) +  35
8

 X = A 12, 54 B + r A- 12, 0B = A 1 - r
2 , 54 B §f(X2) = A- 12, 0 B

r2 =  14   y  X2 = A 12, 54 B . h(r) = - 2(1 + r)2 + 5(1 + r) +  32

 X = A 12, 1 B + r(0, 1) = A 12, 1 + r B §f(X1) = (0, 1)
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Iteración 5

Se obtiene

Iteración 6

El proceso se puede terminar en este punto porque =f(X5) « 0. El punto aproximado máximo lo
da X5 5 (.3438, 1.3125). El óptimo exacto es X* 5 (.3333, 1.3333).

CONJUNTO DE PROBLEMAS 21.1B

*1. Demuestre que, por lo común, cuando se aplica el método de Newton-Raphson (sección
20.1.2) a una función cuadrática estrictamente cóncava convergerá en exactamente un
paso. Aplique el método a la maximización de 

2. Realice cinco iteraciones para cada uno de los siguientes problemas con el método del
descenso (ascenso) más pronunciado. Suponga que X0 5 0 en cada caso.

(a) mín 
(b) máx 

donde

(c)

21.2 ALGORITMOS RESTRINGIDOS

El problema de programación no lineal general restringido se define como 

sujeto a

Las condiciones de no negatividad X $ 0, son parte de las restricciones. Incluso, al
menos una de las funciones f(X) y g(X) es no lineal, y todas las funciones son conti-
nuamente diferenciables.

g(X) … 0

Maximizar (o minimizar) z = f(X)

mín f1X2 = x1 - x2 + x1 

2 - x1x2

 A = £ -5 -3 -1
2

-3 -2 0
-1

2 0 -1
2

≥ c = (1, 3, 5)

f(X) = cX + XTAX
f(X) = mín  f(X) = (x2 - x1

2)2 + (1 - x1)

f(X) = 4x1 + 6x2 - 2x1
2 - 2x1x2 - 2x2

2

§f(X5) = A0, 1
16 B

r5 =  14   y  X5 = A 11
32, 21

16 B . h(r) = -   1
32 (3 - r)2 +  11

64 (3 - r) +  567
128

 X = A 38, 21
16 B + r A- 18, 0 B = A 3 - r

8 ,  21
16 B §f(X4) = A- 18, 0 B
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El comportamiento errático de las funciones no lineales impide el desarrollo de
un solo algoritmo para el modelo no lineal general. Quizás el resultado más general
aplicable al problema sean las condiciones KKT (sección 20.2.2). La tabla 20.2 muestra
que las condiciones sólo son necesarias, a menos que f(X) y g(X) sean funciones de
buen comportamiento.

Esta sección presenta varios algoritmos que se pueden clasificar en general como
métodos indirectos y directos. Los métodos indirectos resuelven el problema no lineal
valiéndose de uno o más programas lineales derivados del programa original. Los mé-
todos directos se valen del programa original.

Los algoritmos indirectos presentados en esta sección incluyen las programacio-
nes separable, cuadrática y estocástica. Los algoritmos directos incluyen el método de
combinación lineal y un breve análisis del algoritmo SUMT, la técnica de maximiza-
ción secuencial  sin restricciones. En la lista de referencias al final del capítulo se hallan
otras importantes técnicas no lineales.

21.2.1 Programación separable

Una función f(x1, x2,…, xn) es separable si se puede expresar como la suma de n fun-
ciones de una sola variable f1(x1), f2(x2),…, fn(xn), es decir,

Por ejemplo, cualquier función lineal es separable. Por otra parte, la función

no es separable.
Algunas funciones no lineales (convolucionadas) se pueden hacer separables

mediante sustituciones apropiadas. Considere, por ejemplo, el caso de maximizar z 5

x1x2. Sea y 5 x1x2, entonces ln y 5 ln x1 1 ln x2, y el problema separable es 

sujeto a

La sustitución asume que x1 y x2 son variables positivas porque la función logarítmica
es indefinida con valores no positivos. Podemos tener en cuenta el caso en que x1 y x2
pueden asumir valores cero por medio de las aproximaciones

Las constantes d1 y d2 son valores positivos muy pequeños.
Esta sección muestra cómo se puede obtener una solución aproximada de cual-

quier problema separable utilizando aproximación lineal y el método simplex de pro-
gramación lineal. La función de una sola variable puede ser representada por una fun-
ción lineal definida por intervalos por medio de programación entera combinada
(capítulo 9). Suponga que f(x) se representa de forma aproximada en el intervalo [a,b],

 w2 = x2 + d2 7 0

 w1 = x1 + d1 7 0

ln y = ln x1 + ln x2

Maximizar z = y

h(x1, x2, x3) = x1
2 + x1 sen (x2 + x3) + x2e

x3

f(x1, x1, Á , xn) = f1(x1) + f2(x2) + . . . + fn(xn)
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y se define ak, k 5 1, 2,…, K, como el punto de ruptura k-ésimo sobre el eje x de modo
que a1 , a2 , … , ak. Los puntos a1 y aK coinciden con los puntos extremos a y b del
intervalo designado. Por lo tanto, f(x) se representa de forma aproximada como

Los pesos no negativos wk deben satisfacer la condición

La programación entera combinada (o mixta) garantiza la validez de la aproxi-
mación al imponer dos condiciones adicionales:

1. A lo sumo dos wk son positivos.
2. Si wk es positivo, entonces sólo un wk21 o wk11 adyacente puede asumir un valor

positivo.

Para demostrar cómo se satisfacen estas condiciones, considere el problema separable 

sujeto a

Este problema se puede representar de forma aproximada por medio de un programa
entero combinado como sigue. Sean2

Entonces el problema combinado equivalente es

sujeto a

j = 1, 2, Á , n 0 … wj1 … yj1,

i = 1, 2, Á , m a
n

j= 1
a
Kj

k= 1
gjk1ajk2wjk … bi,

Maximizar (o minimizar) z = a
n

j= 1
a
Kj

k= 1
fj(ajk)wjk

ajk = punto de ruptura k de la variable xj
wjk = peso con punto de ruptura k de la variable xj

fk = 1, 2, Á , Kj, j = 1, 2, Á , n

a
n

j= 1
gij(xj) … bi, i = 1, 2, Á , m

Maximizar (o minimizar) z = a
n

j= 1
fj(xj)

a
K

k= 1
wk = 1, wk Ú 0, k = 1, 2, . . . , K

 x = a
K

k= 1
akwk

 f(x) L a
K

k= 1
f(ak)wk

2Es más preciso reemplazar el índice k con kj de modo que corresponda de forma única a la variable j. En
este instante vamos a renunciar a la precisión matemática en favor de una notación más simple.
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Las variables en el problema de aproximación son wjk y yjk.
La formulación muestra cómo se puede resolver cualquier problema separable,

en principio, mediante programación entera combinada. La dificultad es que las res-
tricciones se incrementan con rapidez con la cantidad de puntos de ruptura. En par-
ticular, la factibilidad computacional del procedimiento es cuestionable porque no hay
códigos de computadora consistentemente confiables para resolver grandes problemas
de programación entera combinados.

Otro método para resolver el modelo de aproximación es el método simplex
regular (capítulo 3) utilizando una base restringida. En este caso se eliminan las res-
tricciones adicionales que implican yjk. La base restringida modifica la condición de
optimalidad del método simplex al seleccionar la variable de entrada wj con la mejor
(zjk 2 cjk) que no viole el requisito de adyacencia de las variables w con valores positi-
vos. El proceso se repite hasta que se satisfaga la condición de optimalidad o hasta que
sea imposible satisfacer la condición de base restringida, lo que ocurra primero.

El método de programación entera combinada da un óptimo global al problema
aproximado, en tanto que el método de base restringida sólo puede garantizar un ópti-
mo local. Además, en los dos métodos, la solución aproximada puede no ser factible
para el problema original, en cuyo caso quizá sea necesario refinar la aproximación
incrementando la cantidad de puntos de ruptura.

Ejemplo 21.2-1

Considere el problema

sujeto a

La solución óptima exacta de este problema, obtenida por AMPL o Solver, es x1 5 0, x2 5

2.1232, y z* 5 20.25. Para demostrar cómo se utiliza el método de aproximación, considere las
funciones separables

 g2(x2) = 2x2
2

 g1(x1) = 3x1

 f2(x2) = x2
4

 f1(x1) = x1

x1, x2 Ú 0

3x1 + 2x2
2 … 9

Maximizar  z = x1 + x2
4

k = 1, 2, Á , Kj, j = 1, 2, Á , n yjk = 10, 12, j = 1, 2, Á , n a
Kj

k= 1
wjk = 1,

j = 1, 2, Á , n a
Kj- 1

k= 1
yjk = 1,

j = 1, 2, Á , n 0 … wjKj … yj,Kj- 1,

k = 2, 3, Á , Kj -  1,  j = 1, 2, Á , n 0 … wjk … yj,k- 1 + yjk,
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La variable x1 no es aproximada porque las funciones f1(x1) y g1(x1) ya son lineales.
Considerando f2(x2) y g2(x2), suponemos cuatro puntos de ruptura a2k 5 0,1,2 y 3 para k 5 1,2,3
y 4, respectivamente. Dado que x2 # 3, entonces 

Por lo tanto

Asimismo,

El problema de aproximación es por lo tanto 

sujeto a

Los valores de w2k, k 5 1,2,3,4, deben satisfacer la condición de base restringida.
La tabla simplex inicial (con las columnas reacomodadas para proporcionar una solución

inicial) se da como 

 x1 Ú 0, w2k Ú 0, k = 1, 2, 3, 4

 w21 + w22 + w23 + w24 = 1

 3x1 + 2w22 + 8w23 + 18w24 … 9

Maximizar  z = x1 + w22 + 16w23 + 81w24

g2(x2) L 2w22 + 8w23 + 18w24

 L 0w21 + 1w22 + 16w23 + 81w24 = w22 + 16w23 + 81w24

 f2(x2) L w21f2(a21) + w22f2(a22) + w23f2(a23) + w24f2(a24)

La variable s1 ($ 0) es una holgura. (El problema resultó tener una solución inicial obvia. En ge-
neral se pueden utilizar variables artificiales, sección 3.4.)

En la fila z, w24 es la variable de entrada. Debido a que w21 en este momento es básico y
positivo, la condición de base restringida dicta que debe salir antes de que w24 pueda entrar a la
solución. Sin embargo, de acuerdo con la condición de factibilidad, s1 debe ser la variable de salida,
lo que significa que w24 no puede entrar a la solución. La siguiente mejor variable de entrada,
w23, requiere que w21 salga de la solución básica, una condición que da la casualidad de ser
satisfecha por la condición de factibilidad. La nueva tabla es por tanto

Básica x1 w22 w23 w24 s1 w21 Solución

z -1 -1 -16 -81 0 0 0

s1 3 2 8 18 1 0 9

w21 0 1 1 1 0 1 1

Básica x1 w22 w23 w24 s1 w21 Solución

z -1 15 0 -65 0 16 16

s1 3 -6 0 10 1 -8 1
w23 0 1 1 1 0 1 1

k a2k f2(a2k) = a2k
4 g2(a2k) = 2a2k

2

1 0 0 0
2 1 1 2
3 2 16 8
4 3 81 18
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Luego,w24 es la variable de entrada, lo cual es admisible porque w23 es positivo. El método
simplex muestra que s1 saldrá. Entonces,

La tabla muestra que w21 y w22 son candidatas para la variable de entrada. La variable w21 no
está adyacente a la básica w23 o w24, por consiguiente no puede volverse básica. Asimismo,w22
no puede entrar porque w24 no puede salir. En consecuencia, la última tabla es la solución de
base mejor restringida para el problema aproximado.

La solución óptima al problema original es

El valor x2 5 2.1 es aproximadamente igual al valor óptimo verdadero (5 2.12132).

Programación separable convexa. Un caso de programación separable ocurre
cuando gij(xj) es convexa para todas las i y j, lo cual garantiza un espacio de soluciones
convexo. Además, si fj(xj) es convexa (minimización) o cóncava (maximización) para
todas las j, entonces el problema tiene un óptimo global (vea la tabla 20.2, sección
20.2.2). En tales condiciones, se puede utilizar la siguiente aproximación simplificada.

Considere un problema de minimización y sea fj(xj) como se muestra en la figura 21.4.
Los puntos de ruptura de la función fj(xj) son xj 5 ajk, k 5 0, 1,…, Kj. Si xjk define el incre-
mento de la variable xj en el intervalo (aj,k21, ajk), k 5 1,2,…, Kj y si rjk es el coeficiente de
cambio correspondiente (pendiente del segmento de línea) en el mismo intervalo. Entonces

 0 … xjk … ajk - aj,k- 1, k = 1, 2, Á , Kj

 xj = a
Kj

k= 1
xjk

 fj1xj2 L a
Kj

k= 1
rjkxjk + fj1aj02

 z = 0 + 2.14 = 19.45

 x2 L 2w23 + 3w24 = 2 A 9
10B + 3 A 1

10 B = 2.1

 x1 = 0

FIGURA 21.4

Aproximación lineal por segmentos de una
función convexa

fj(xj)

aj0 aj1 aj2 aj3 xj

Básica x1 w22 w23 w24 s1 w21 Solución

z 37
2 -24 0 0 13

2 -36 22 12

w24 3
10 - 6

10 0 1 1
10 - 8

10   1
10

w23 - 3
10

16
10 1 0 - 1

10
18
10

9
10
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El hecho de que fj(xj) sea convexa garantiza que rj1 , rj2 … , rjk. Esto significa que en el
problema de minimización la variable xjp es más atractiva que jjq con p , q. En consecuen-
cia, xjp siempre alcanzará su límite máximo antes de que xjq pueda asumir un valor positivo.

Las funciones de restricción convexas gij(xj) se representan de forma aproximada
en esencia de la misma manera. Sea rijk la pendiente del k-ésimo segmento de línea co-
rrespondiente a gj(xj). Se deduce que

El problema completo es por consiguiente

sujeto a

donde

El problema de maximización se trata en esencia del mismo modo. En este caso,
rj1 . rj2 . … . rjK, lo que significa que, para p , q, la variable xjp siempre alcanzará su
valor máximo antes de que xjq asuma un valor positivo (vea el problema 7, conjunto
21.2a, para la comprobación).

El nuevo problema se puede resolver con el método simplex con variables de
cota superior (sección 7.3). El concepto de base restringida no se requiere porque la
convexidad (concavidad) de las funciones garantiza la selección correcta de las varia-
bles básicas.

Ejemplo 21.2-2

Considere el problema

sujeto a

 x2 Ú 3.5

 x1  Ú 2.1

  x1 + 2x2
2 … 32

 3x1
4 + x2 … 243

Maximizar z = x1 - x2

 rijk =  
gij(ajk) - gij(aj, k- 1)

ajk - aj, k- 1

 rjk =  
fj(ajk) - fj(aj, k- 1)

ajk - aj, k- 1

 0 … xjk … ajk - aj,k- 1, k = 1, 2, Á , Kj, j = 1, 2, Á , n

 a
n

j= 1
aaKj
k= 1
rijkxjk + gij1aj02b … bi, i = 1, 2, Á , m

Minimizar z = a
n

j= 1
aaKj
k= 1
rjkxjk + fj1aj02b

gij(xj) L a
Kj

k= 1
rijkxjk + gij(aj0)
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Las funciones separables de este problema son

Estas funciones satisfacen la condición de convexidad requerida para los problemas de minimi-
zación. Las funciones f1(x1), f2(x2), g12(x2) y g21(x1) ya son lineales.

Los intervalos de las variables x1 y x2 (estimados con las restricciones) son a # x1 # 3 y 0 #
x2 # 4. Sean K1 5 3 y K2 5 4. Las pendientes correspondientes a las funciones separables se de-
terminan como sigue.

Para j = 1,

 g21(x1) = x1,      g22(x2) = 2x2
2

 g11(x1) = 3x1
4,    g12(x2) = x2

 f1(x1) = x1,        f2(x2) = -x2

Para j 5 2,

El problema completo se convierte entonces en

sujeto a

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

x1, x2 Ú 0

 0 … x2k … 1, k = 1, 2, 3, 4

0 … x1k … 1, k = 1, 2, 3

x21 + x22 + x23 + x24 - x2    = 0

x11 + x12 + x13 - x1       = 0

 x2 Ú 3.5

 x1 Ú 2.1

 x1 + 2x21 + 6x22 + 10x23 + 14x24 … 32

 3x11 + 45x12 + 195x13 + x2 … 243

Maximizar  z = x1 - x2

k a1k g11(a1k) = 3a1k
4 r11k x1k

0 0 0 — —
1 1 3 3 x11

2 2 48 45 x12

3 3 243 195 x13

k a2k g22(a2k) = 2a2k
2 r22k x2k

0 0 0 — —
1 1 2 2 x21

2 2 8 6 x22

3 3 18 10 x23

4 4 32 14 x24
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Las restricciones 5 y 6 son necesarias para mantener la relación entre las variables originales y las
nuevas. La solución óptima es

Momento de AMPL

El modelado con AMPL del problema no lineal original del ejemplo 21.2-2 es muy parecido al
de los problemas lineales. La obtención de la solución es un asunto totalmente diferente debido
al comportamiento “impredecible” de las funciones no lineales. El archivo amplEx21.2-2.txt pro-
porciona el modelo. El modelo se explica en el apéndice C en el sitio web (vea la figura C.17).

CONJUNTO DE PROBLEMAS 21.2A

1. Aproxime el siguiente problema como un programa combinado entero.

sujeto a

*2. Repita el problema 1 siguiendo el método de base restringida. Luego determine la solu-
ción óptima.

3. Considere el problema

sujeto a

Aproxime el problema como un programa lineal para usarlo con el método de base res-
tringida.

*4. Demuestre cómo se puede hacer separable el siguiente problema.

sujeto a

5. Demuestre cómo se puede hacer separable el siguiente problema.

Minimizar z = e2x1 +x2
2

+ (x3 - 2)2

x1, x2x3 Ú 0

x1x2 + x2 + x1x3 … 10

Maximizar  z = x1x2 + x3 + x1x3

x1, x2, x3 Ú 0

x1
2 + x2 + x3 … 4

Maximizar  z = x1x2x3

 x1, x2 Ú 0

x1
2 + x2 … 3

Maximizar z = e-x1 + x1 + (x2 + 1)2

z = - .52, x1 = 2.98, x2 = 3.5, x11 = x12 = 1, x13 = .98, x21 = x22 = x23 = 1, x24 = .5
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sujeto a

6. Demuestre cómo se puede hacer separable el siguiente problema.

sujeto a

x4 no restringida en cuanto a signo

7. Demuestre que en la programación convexa separable nunca es óptimo tener xki . 0
cuando xk21,i no se encuentra en su cota superior.

8. Resuelva como un problema de programación convexa separable.

sujeto a

x2 no restringida en cuanto a signo 

9. Resuelva lo siguiente como un problema de programación convexa distinto

sujeto a

21.2.2 Programación cuadrática 

Un modelo de programación cuadrática se define como

sujeto a

donde

 b = 1b1, b2, Á , bm2T C = 1c1, c2, Á , cn2 X = 1x1, x2, Á , xn2T
AX … b, X Ú 0

Maximizar z =  CX +  XTDX

x1, x2 Ú 0

6x1 + 3(x2 + 1)2 … 12

Minimizar  z = (x1 - 2)2 + 4(x2 - 6)2

 x1, x3 Ú 0

  |x1 + x2| … 0

 x1
2 + x2 + x3

2 … 4

Minimizar z = x1
4 + x2 + x3

2

 x1, x2, x3 Ú 0

x1 + x2x3 + x3 … 10

Maximizar z = ex1x2 + x2
2x3 + x4

x1, x2x3 Ú 0

x1 + x2 + x3 … 6
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La función XTDX define una forma cuadrática (vea la sección D.3 en el sitio
web). Se supone que la matriz D es simétrica y definida negativa, es decir que z es es-
trictamente cóncava. Las restricciones son lineales, lo que garantiza un espacio de so-
luciones convexo.

La solución de este problema se basa en las condiciones KKT necesarias. Estas
condiciones (como se muestra en la tabla 20.2, sección 20.2.2) también son suficientes
porque z es cóncava y el espacio de soluciones es un conjunto convexo.

El problema de programación cuadrática se tratará para el caso de maximiza-
ción. La conversión a minimización es simple. El problema puede escribirse como 

sujeto a

Sean

los multiplicadores de Lagrange correspondientes a las restricciones AX 2 b # 0 y 2X
# 0, respectivamente. La aplicación de las condiciones KKT produce 

Ahora

  §G1X2 = a A
-I
b §z =  C + 2XTD

-X … 0

AX … b

mjxj = 0,  j = 1, 2, Á , n

liabi - a
n

j= 1
aijxjb = 0, i = 1, 2, Á , m

§z - (L T, UT)§G(X) =  0

L Ú 0, U Ú 0

U = (m1, m2, . . . , mn)
T

L = (l1, l2, . . . , lm)T

G1X2 = a A
�I
bX - ab

0
b  … 0

Maximizar z =  CX +  XTDX

 D = £d11 Á d1n

o o o
dn1 Á dnn

≥
 A = £ a11 Á a1n

o o o
am1 Á amn

≥
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Sean S 5 b 2 AX $ 0 las variables de holgura de las restricciones. Las condiciones se
reducen a

Debido a que DT 5 D, la transpuesta del primer conjunto de ecuaciones puede escri-
birse como

Por consiguiente, las condiciones necesarias pueden combinarse como 

Excepto para las condiciones mjxj 5 0 5 liSi, las ecuaciones restantes son lineales en X,
l, U y S. Por lo tanto, el problema equivale a resolver un conjunto de ecuaciones li-
neales con las condiciones adicionales mjxj 5 0 5 liSi.

La solución del sistema se obtiene con la fase I del método de dos fases (sección
3.4.2) con las restricciones agregadas liSi 5 0 y mixj 5 0. Esto significa que li y si no
pueden ser positivas al mismo tiempo, ni tampoco mj y xj. Ésta es la misma idea de base
restringida que se utilizó en la sección 21.2.1.

La fase I hace que todas las variables artificiales sean iguales a cero siempre que
el problema tenga un espacio de soluciones factible.

Ejemplo 21.2-3

Considere el problema

sujeto a

Este problema puede ponerse en la siguiente forma matricial:

Maximizar z = 14, 62ax1

x2
b + 1x1, x22a -2 -1

-1 -2
b ax1

x2
b

x1, x2 Ú 0

x1 + 2x2 … 2

Maximizar  z = 4x1 + 6x2 - 2x1
2 - 2x1x2 - 2x2

2

L , U,  X,  S Ú 0

mjxj = 0 = liSi,    para todas las i y j

a -2D AT -I 0
A 0 0 I

b §X
L

U
S

¥ = aCT

b
b

-2DX + ATL - U = CT

L , U,  X,  S Ú 0

mjxj = 0 = liSi para todas las i y j

AX + S =  b

-2XTD + LTA - UT = C
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sujeto a

Las condiciones KKT se dan como 

La tabla inicial correspondiente a la fase 1 se obtiene introduciendo las variables artificiales R1 y
R2 y actualizando la fila objetivo.

£4 2 1 -1 0 0
2 4 2 0 -1 0
1 2 0 0 0 1

≥ ¶x1

x2

l1

m1

m2

s1

∂ = £4
6
2
≥ , m1x1 = m2x2 = l1s1 = 0

x1, x2 Ú 0

 11, 22ax1

x2
b … 2

Iteración 1. La variable de entrada más promisoria x1 puede hacerse básica porque m1 5 0.

Iteración 2. La variable de entrada más promisoria x2 puede hacerse básica porque m2 5 0.

Básica x1 x2 l1 m1 m2 R1 R2 s1 Solución

r 6 6 3 -1 -1 0 0 0 10

R1 4 2 1 -1 0 1 0 0 4
R2 2 4 2 0 -1 0 1 0 6
s1 1 2 0 0 0 0 0 1 2

Básica x1 x2 l1 m1 m2 R1 R2 s1 Solución

R 0 3 3
2

1
2

-1 -3
2

0 0 4

x1 1 1
2

1
4 -1

4
0 1

4
0 0 1

R2 0 3 3
2

1
2

-1 -1
2

1 0 4

s1 0 3
2 -1

4
1
4

0 -1
4

0 1 1

Básica x1 x2 l1 m1 m2 R1 R2 s1 Solución

r 0 0 2 0 -1 -1 0 -2 2

x1 1 0 1
3 -1

3
0 1

3
0 -1

3
2
3

R1 0 0 2 0 -1 0 1 -2 2
x1 0 1 -1

6
1
6

0 -1
6

0 2
3

2
3
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Iteración 3. El multiplicador l1 puede hacerse básico porque s1 5 0.

La última tabla da la solución factible óptima . El valor óptimo asociado
de z 5 4.16.

Momento de Solver

La plantilla de Solver, excelQP.xls, resuelve el ejemplo 21.2-3. Los datos se ingresan de una ma-
nera similar a la programación lineal (vea la sección 2.3.1). La diferencia principal radica en la
forma de ingresar las funciones no lineales. Específicamente, la función objetivo no lineal se in-
gresa en la celda destino D5 como

=4*B10+6*C10-2*B10^2-2*B10*C10-2*C10^2

Las celdas que cambian son B10:C10[K (x1, x2)]. Observe que las celdas B5:C5 no se utilizan para
nada en el modelo. Por legibilidad, ingresamos el símbolo NL para indicar que la restricción aso-
ciada es no lineal.También podemos especificar la no negatividad de las variables o en el cuadro
de diálogo Options o agregando restricciones explícitas de no negatividad.

CONJUNTO DE PROBLEMAS 21.2B

*1. Considere el problema

sujeto a

Demuestre que z es estrictamente cóncava, y luego resuelva el problema utilizando el al-
goritmo de programación cuadrática.

*2. Considere el problema:

Minimizar  z = 2x1
2 + 2x2

2 + 3x3
2 + 2x1x2 + 2x2x3 + x1 - 3x2 - 5x3

x1, x2 Ú 0

 2x1 + 3x2 … 4

 x1 + x2 … 1

Maximizar  z = 6x1 + 3x2 - 4x1x2 - 2x1
2 - 3x2

2

(x*1 =  13, x*2 =  56 )

Básica x1 x2 l1 m1 m2 R1 R2 s1 Solución

r 0 0 0 0 0 -1 -1 0 0

x1 1 0 0 -1
3

1
6

1
3 -1

6
0 1

3

l1 0 0 1 0 -1
2

0 1
2

-1 1

x2 0 1 0 1
6 - 1

12 -1
6

1
12

1
2

5
6
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sujeto a

Demuestre que z es estrictamente convexa, y luego resuélvala con el algoritmo de progra-
mación cuadrática.

21.2.3 Programación estocástica

La programación estocástica maneja situaciones en las que los parámetros de las res-
tricciones son variables aleatorias y las restricciones se llevan a cabo con una probabi-
lidad mínima. Matemáticamente, el problema se define como

sujeto a

Los parámetros aij y bi son variables aleatorias, y la restricción i se lleva a cabo con una
probabilidad mínima de 1 2 ai, 0 , ai , 1.

Se consideran tres casos:

1. Sólo aij es aleatoria para todas las i y j.
2. Sólo bi es aleatoria para todas las i.
3. Tanto aij como bi son aleatorias para todas las i y j.

En los tres casos se supone que los parámetros están normalmente distribuidos con
medias y varianzas conocidas.

Caso 1. Cada aij está normalmente distribuida con media E{aij}, varianza var{aij} y
cov{aij, ai’j’} de aij y ai’j’.

Considere

Defina

La variable aleatoria hi está normalmente distribuida con 

 var5hi6 = XTDiX

 E5hi6 = a
n

j= 1
E5aij6xj

hi = a
n

j= 1
aijxj

Pean
j= 1
aijxj … bi f Ú 1 - ai

Pean
j= 1
aijxj … bi f Ú 1 - ai, i = 1, 2, Á , m, xj Ú 0, para todas las j

Maximizar z = a
n

j= 1
cjxj

x1, x2, x3 Ú 0

 3x1 + 2x2 + x3 … 6

 x1 + x2 + x3 Ú 1
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donde

Ahora

Si F es la FDA de la función de distribución normal estándar, se deduce que

Sea el valor normal estándar de modo que 

Entonces el enunciado P{hi # bi} ≥ 1 2 ai se cumple, si, y sólo si,

Esta produce la siguiente restricción determinística no lineal:

Para el caso especial en que los parámetros aij son independientes, cov{aij, ai’j’}
5 0, y la última restricción se reduce a

Esta restricción puede ponerse en la forma de programación lineal separable (sección
21.2.1) mediante la sustitución 

Por lo tanto, la restricción original es equivalente a 

a
n

j= 1
E5aij6xj + Kaiyi … bi

yi = Aanj= 1
var{aij}xj

2, para todas las i

a
n

j= 1
E{aij}xj + KaiCanj= 1

var{aij}xj
2 … bi

a
n

j= 1
E{aij}xj + Kai2XTDiX … bi

bi - E5hi62var5hi6 Ú Kai

F(Kai) = 1 - ai

Kai

P5hi … bi6 = F£bi - E5hi62var5hi6 ≥
P5hi … bi6 = Pe hi - E5hi62var5hi6 …

bi - E5hi62var5hi6 f Ú 1 - ai

 = £ var5ai16
o

cov5ain, ai16 
Á
o

Á
 

cov5ai1, ain6
o

var5ain6 ≥ Di = Matriz de covarianza i = ésima

 X = 1x1, Á , xn2T
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y

Caso 2. Sólo bi es normal con media E{bi} y varianza var{bi}.
Considere la restricción estocástica

Como en el caso 1,

Esto puede mantenerse cierto sólo si 

Por lo tanto, la restricción estocástica es equivalente a la restricción lineal determinística

Caso 3. Todas las aij y bi son variables normales aleatorias.
Considere la restricción

Ésta puede escribirse 

Debido a que todas las aij y bi son normales, también es normal.
Esto demuestra que la estocástica se reduce a la situación del caso 1 y se trata de una
manera similar.

Ejemplo 21.2-4

Considere el problema de estocástica

Maximizar  z = 5x1 + 6x2 + 3x3

an

j= 1aijxj - bi

a
n

j= 1
aijxj - bi … 0

a
n

j= 1
aijxj … bi

a
n

j= 1
aijxj … E{bi} + Kai3var{bi}

a
n

j= 1
aijxj - E5bi6
2var{bi}

… Kai

Pc bi - E5bi62var{bi}
Ú
a
n

j= 1
aijxj - E5bi6
2var{bi}

s Ú ai

Pebi Ú a
n

j= 1
aijxj f Ú ai

a
n

j= 1
var5aij6xj2 - yi

2 = 0
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sujeto a

Suponga que los parámetros a1jj, j 5 1,2,3, son variables aleatorias independientes y normalmen-
te distribuidas con las siguientes medias y varianzas:

El parámetro b2 está normalmente distribuido con media 7 y varianza 9.
De las tablas normales estándar en el apéndice B (o excelStatTables.xls),

Para la primera restricción, la restricción determinística equivalente es 

y para la segunda restricción 

El problema resultante puede resolverse como un programa no lineal (utilizando AMPL o
Solver), o convertirse en un programa separable como sigue:

El problema se vuelve 

sujeto a

El problema puede resolverse mediante programación separable. Incluso, puede utilizarse el
archivo excelCCP.xls para resolver el problema no lineal de forma directa.

CONJUNTO DE PROBLEMAS 21.2C

*1. Convierta el siguiente problema estocástico en un modelo determinístico equivalente 

Maximizar z = x1 + 2x2 + 5x3

 x1, x2, x3, y Ú 0

5x1 + x2 + 6x3 … 10.855

25x1
2 + 16x2

2 + 4x3
2 - y2 = 0

x1 + 3x2 + 9x3 + 1.645y … 8

Maximizar  z = 5x1 + 6x2 + 3x3

y2 = 25x1
2 + 16x2

2 + 4x3
2

5x1 + x2 + 6x3 … 7 + 1.285(3) = 10.855

x1 + 3x2 + 9x3 + 1.645325x1
2 + 16x2

2 + 4x3
2 … 8

Ka1
= K.05 L 1.645,    Ka2

= K.10 L 1.285

 var5a116 = 25, var5a126 = 16, var5a136 = 4

 E5a116 = 1, E5a126 = 3, E5a136 = 9

 x1, x2, x3 Ú 0

 P55x1 + x2 + 6x3 … b26 Ú .10

 P5a11x1 + a12x2 + a13x3 … 86 Ú .95
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sujeto a

Suponga que a1 y a3 son variables aleatorias independientes y normalmente distri-
buidas con medias E{a1} 5 2 y E{a3} 5 5 y varianzas var{a1} 5 9 y var{a3} 5 16, y b2 está
normalmente distribuida con media 15 y varianza 25.

2. Considere el siguiente modelo de programación estocástica:

sujeto a

Los parámetros a2 y a3 son variables aleatorias independientes y normalmente distribui-
das con medias de 5 y 2, y varianza de 16 y 25, respectivamente. Convierta el problema en
una forma de programación de programación separable (determinística).

21.2.4 Método de combinaciones lineales

Este método tiene que ver con el siguiente problema en el cual todas las restricciones
son lineales:

sujeto a

El procedimiento se basa en el método del ascenso más pronunciado (gradiente) (sec-
ción 21.1.2). Sin embargo, la dirección especificada por el vector gradiente puede no dar
una solución factible para el problema restringido. Además, el vector gradiente no ne-
cesariamente será nulo en el punto óptimo (restringido). Por tanto el método del ascen-
so más pronunciado debe modificarse para manejar el caso restringido.

Sea Xk el punto de prueba factible en la iteración k. La función objetivo f(X)
puede ampliarse en la proximidad de Xk, mediante la serie de Taylor. Esto da

El procedimiento requiere determinar un punto factible X 5X* de modo que f(X) se ma-
ximice sujeta a la restricciones (lineales) del problema. Debido a que f(Xk) 2 =f(Xk)Xk es
una constante, el problema X* se reduce a resolver el siguiente programa lineal:

sujeto a

AX … b, X Ú 0

Maximizar wk1X2 = §f1Xk2X
f1X2 L f1Xk2 + §f1Xk21X - Xk2 = 1f1Xk2 - §f1Xk2Xk2 + §f1Xk2X

AX … b, X Ú 0

Maximizar z = f1X2

x1, x2, x3 Ú 0

P5x1
2 + a2x2

3 + a31x3 … 106 Ú 0.9

Maximizar  z = x1 + x2
2 + x3

x1, x2, x3 Ú 0

P57x1 + 5x2 + x3 … b26 Ú 0.1

P5a1x1 + 3x2 + a3x3 … 106 Ú 0.9
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Dado que wk se construye a partir del gradiente de f(X) en Xk, se puede tener
una mejor solución si y sólo si wk(X*) . wk(Xk). De acuerdo con la expansión de
Taylor, la condición no garantiza que f(X*) . f(Xk) a menos que X* se encuentre veci-
na a Xk. Sin embargo, dado que wk(X*) . wk(Xk), debe existir un punto Xk11 en el
segmento de línea (Xk, X*) de modo que f(Xk11) . f(Xk). El objetivo es determinar
Xk11. Defina

Esto significa que Xk11 es una combinación lineal de Xk y X*. Debido que Xk y X* son
dos puntos factibles en un espacio de soluciones convexo, Xk11 también es factible. En
términos del método del ascenso más pronunciado (sección 21.1.2), el parámetro r re-
presenta el tamaño del paso.

El punto Xk11 se determina de modo que f(X) se maximice. Debido a que Xk11
es una función sólo de r, Xk11 se determina maximizando 

El procedimiento se repite hasta que, en la iteración k-ésima, se tenga wk(X*) #
wk(Xk). En este punto ya son posibles más mejoras y el proceso termina con Xk como
el mejor punto de solución.

Los problemas de programación lineal generados en las iteraciones sucesivas di-
fieren sólo en los coeficientes de la función objetivo. Por tanto los procedimientos de
análisis postóptimo presentados en la sección 4.5 pueden utilizarse para realizar cálcu-
los de forma eficiente.

Ejemplo 21.2-5

Considere la programación cuadrática del ejemplo 21.2-3.

sujeto a

Sea el punto inicial, el cual es factible. Ahora

Iteración 1

El programa lineal asociado maximiza wi 5 x1 1 3x2 sujeta a las restricciones del problema ori-
ginal. Esto da la solución óptima X* 5 (0,1). Los valores de w1 en X0 y X* son iguales a 2 y 3, res-
pectivamente. Por consiguiente, un nuevo punto de prueba se determina como 

X1 = A12, 12 B + r C10, 12 - A12, 12 B D = A1 - r
2 , 1 + r

2 B
§f(X0) = (1, 3)

§f1X2 = 14 - 4x1 - 2x2, 6 - 2x1 - 4x22X0 = A12, 12 B ,  x1, x2 Ú 0

 x1 + 2x2 … 2

Maximizar  f(X) = 4x1 + 6x2 - 2x1
2 - 2x1x2 - 2x2

2

h1r2 = f1Xk + r1X* - Xk22

Xk+ 1 = 11 - r2Xk + rX* = Xk + r1X* - Xk2, 0 6 r … 1
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La maximización de

produce r1 5 1. Por lo tanto X1 5 (0,1) con f(X1) 5 4.

Iteración 2

La función objetivo correspondiente es w2 5 2x1 1 2x2. La solución óptima de este problema
produce X* 5 (2,0). Debido a que los valores de w2 en X1 y X* son 2 y 4, respectivamente, se
puede determinar un nuevo punto de prueba. Entonces

La maximización de

.

produce Por lo tanto con 

Iteración 3

La función objetivo correspondiente es w3 5 x1 1 2x2. La solución óptima de este problema pro-
duce las soluciones alternativas X* 5 (0,1) y X* 5 (2,0). El valor de w3 para ambos puntos es
igual a su valor en X2. En consecuencia no son posibles más mejoras. La solución óptima aproxi-
mada es con f(X2) « 4.16. Da la casualidad de que ésta es la solución óptima exacta.

CONJUNTO DE PROBLEMAS 21.2D

1. Resuelva el siguiente problema mediante el método de combinaciones lineales.

sujeto a

21.2.5 Algoritmo SUMT

En esta sección se presenta un método de gradiente más general. Se supone que la fun-
ción objetivo f(X) es cóncava y cada función de restricción gi(X) es convexa. Más aún,
el espacio de soluciones debe tener un interior. Esto descarta el uso tanto implícito
como explícito de las restricciones de igualdad.

 x1, x2 Ú 0

 5x1 - 3x2 … 5

 3x1 + x2 … 3

Minimizar f(X) = x1
3 + x2

3 - 3x1x2

X2 = A 13, 56 B
§f1X22 = 11, 22

f(X2) L 4.16.X2 = A13, 56 Br2 = 1
6.

h1r2 = f12r, 1 - r2
X2 = 10, 12 + r[12, 02 - 10, 12] = 12r, 1 - r2

§f1X12 = 12, 22
h1r2 = f A1 - r

2 , 1 + r
2 B



Bibliografía 727

El algoritmo SUMT (Técnica de Maximización Secuencial No restringida, por
sus siglas en inglés) se basa en la transformación del problema restringido a un proble-
ma no restringido equivalente. El procedimiento es más o menos semejante al método
de multiplicadores de Lagrange. El problema transformado se puede resolver entonces
siguiendo el método del ascenso más pronunciado (sección 21.1.2).

Para aclarar este concepto consideremos la nueva función

donde t es un parámetro no negativo. El segundo signo de suma tiene en cuenta las res-
tricciones de no negatividad, las cuales deben ponerse en la forma 2 xj # 0 para que
sean consistentes con las restricciones originales. Debido a que gi(X) es convexa,
es cóncava. Esto significa que p(X, t) es cóncava en X. Por consiguiente, p(X,t) posee
un máximo único. La optimización del problema restringido original es equivalente a
la optimización de p(X,t).

El algoritmo se inicia seleccionando arbitrariamente un valor no negativo inicial
para t. Se selecciona un punto inicial X0 como la primera solución de prueba. Este
punto debe ser un punto interior; es decir, no debe quedar en los límites del espacio de
soluciones. Dado el valor de t, se utiliza el método del ascenso más pronunciado para
determinar la solución óptima correspondiente (máxima) de p(X,t).

El nuevo punto de solución siempre será un punto interior, porque si el punto de
solución está cerca de los límites, al menos una de las funciones o adquirirá
un valor negativo muy grande. Debido a que el objetivo es maximizar p(X,t), tales pun-
tos de solución se descartan de forma automática. El resultado principal es que los puntos
de solución sucesivos siempre serán puntos interiores. Por consiguiente, el problema
siempre puede tratarse como un caso no restringido.

Una vez que se obtiene la solución óptima correspondiente a un valor dado de t,
se genera un nuevo valor de t, y el proceso de optimización (con el método del ascenso
más pronunciado) se repite. Si t9 es el valor actual de t, el siguiente valor, t 0, debe selec-
cionarse de modo que 0 , t 0 , t9.

El algoritmo SUMT termina cuando, con dos valores sucesivos de t, los valores
óptimos correspondientes de X obtenidos maximizando p(X,t) son aproximadamente
los mismos. En este punto, más pruebas producirán poca mejora.

La implementación real de SUMT implica más detalles de los que aquí se pre-
sentaron. Específicamente, la selección de un valor inicial de t es un factor importante
que puede afectar la velocidad de convergencia. Además, la determinación de un
punto interior inicial puede requerir técnicas especiales. Estos detalles se hallan en
Fiacco y McCormick (1968).
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APÉNDICE A

Tablas estadísticas1

1La hoja de cálculo excelStatTable.xls reemplaza a las tablas estadísticas (impresas) de 12 distribuciones co-
munes, incluidas las presentadas en este apéndice.

TABLA A.1 Función de distribución normal 

F(z) =  
122p

 L
z

- q
e- A12B t2dt

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
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TABLA A.1 Continuación 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9998
4.0 0.99997
5.0 0.9999997
6.0 0.999999999

Fuente: Miller, I., y J. Freund, Probability and Statistics for Engineers, Prentice-Hall Upper Saddle River, NJ, 1985.

TABLA A.2 Valores de (t estudiantil)ta,y

v a = 0.10 a = 0.05 a = 0.025 a = 0.01 a = 0.005 v

1 3.078 6.314 12.706 31.821 63.657 1
2 1.886 2.920 4.303 6.965 9.925 2
3 1.638 2.353 3.182 4.541 5.841 3
4 1.533 2.132 2.776 3.747 4.604 4

5 1.476 2.015 2.571 3.365 4.032 5
6 1.440 1.943 2.447 3.143 3.707 6
7 1.415 1.895 2.365 2.998 3.499 7
8 1.397 1.860 2.306 2.896 3.355 8
9 1.383 1.833 2.262 2.821 3.250 9

10 1.372 1.812 2.228 2.764 3.169 10

11 1.363 1.796 2.201 2.718 3.106 11
12 1.356 1.782 2.179 2.681 3.055 12
13 1.350 1.771 2.160 2.650 3.012 13
14 1.345 1.761 2.145 2.624 2.977 14
15 1.341 1.753 2.131 2.602 2.947 15

16 1.337 1.746 2.120 2.583 2.921 16
17 1.333 1.740 2.110 2.567 2.898 17
18 1.330 1.734 2.101 2.552 2.878 18
19 1.328 1.729 2.093 2.539 2.861 19
20 1.325 1.725 2.086 2.528 2.845 20
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TABLA A.2 Continuación

v a = 0.10 a = 0.05 a = 0.025 a = 0.01 a = 0.005 v

21 1.323 1.721 2.080 2.518 2.831 21
22 1.321 1.717 2.074 2.508 2.819 22
23 1.319 1.714 2.069 2.500 2.807 23
24 1.318 1.711 2.064 2.492 2.797 24
25 1.316 1.708 2.060 2.485 2.787 25

26 1.315 1.706 2.056 2.479 2.779 26
27 1.314 1.703 2.052 2.473 2.771 27
28 1.313 1.701 2.048 2.467 2.763 28
29 1.311 1.699 2.045 2.462 2.756 29
Inf. 1.282 1.645 1.960 2.326 2.576 inf.

Fuente: Compendiada con el permiso de Macmillan Publishing Co. Inc., de Statistical Methods for
Research Workers, 14a. ed. de R.A. Fisher. Derechos reservados © 1970 Universidad de Adelaida.

TABLA A.3 Valores de (Valores de ji cuadrada)Xa,y
2

v a = 0.995 a = 0.99 a = 0.975 a = 0.95 a = 0.05 a = 0.025 a = 0.01 a = 0.005 v

1 0.0000393 0.000157 0.000982 0.00393 3.841 5.024 6.635 7.879 1
2 0.0100 0.0201 0.0506 0.103 5.991 7.378 9.210 10.597 2
3 0.0717 0.115 0.216 0.352 7.815 9.348 11.345 12.838 3
4 0.207 0.297 0.484 0.711 9.488 11.143 13.277 14.860 4
5 0.412 0.554 0.831 1.145 11.070 12.832 15.056 16.750 5
6 0.676 0.872 1.237 1.635 12.592 14.449 16.812 18.548 6
7 0.989 1.239 1.690 2.167 14.067 16.013 18.475 20.278 7
8 1.344 1.646 2.180 2.733 15.507 17.535 20.090 21.955 8
9 1.735 2.088 2.700 3.325 16.919 19.023 21.666 23.589 9

10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188 10
11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757 11
12 3.074 3.571 4.404 5.226 21.026 23.337 26.217 28.300 12
13 3.565 4.107 5.009 5.892 22.362 24.736 27.688 29.819 13
14 4.075 4.660 5.629 6.571 23.685 26.119 29.141 31.319 14
15 4.601 5.229 6.262 7.261 24.996 27.488 30.578 32.801 15
16 5.142 5.812 6.908 7.962 26.296 28.845 32.000 34.267 16
17 5.697 6.408 7.564 8.672 27.587 30.191 33.409 35.718 17
18 6.265 7.015 8.231 9.390 28.869 31.526 34.805 37.156 18
19 6.844 7.633 8.907 10.117 30.144 32.852 36.191 38.582 19
20 7.434 8.260 9.591 10.851 31.410 34.170 37.566 39.997 20
21 8.034 8.897 10.283 11.591 32.671 35.479 38.932 41.401 21
22 8.643 9.542 10.982 12.338 33.924 36.781 40.289 42.796 22
23 9.260 10.196 11.689 13.091 35.172 38.076 41.638 44.181 23
24 9.886 10.856 12.401 13.484 36.415 39.364 42.980 45.558 24
25 10.520 11.524 13.120 14.611 37.652 40.646 44.314 46.928 25
26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290 26
27 11.808 12.879 14.573 16.151 40.113 43.194 46.963 49.645 27
28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50.993 28
29 13.121 14.256 16.047 17.708 42.557 45.772 49.588 52.336 29
30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672 30

Fuente: La tabla está basada en la tabla 8 de Biometrika Tables for Statisticians, vol. 1, con permiso de los fiduciarios de Biometrika.
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CAPÍTULO 1

Conjunto 1.2a

4. (c) 17 minutos
5. (a) Alternativas de Jim: Lanzar una curva o una bola rápida.

Alternativas de Joe: Prepararse para lanzar una curva o una bola rápida.
(b) Joe desea incrementar su promedio de bateo.

Jim desea reducir el promedio de bateo de Joe.

CAPÍTULO 2

Conjunto 2.1a

1. (a)
(c)
(e)

3. M1 no utilizada 5 4 toneladas/día

Conjunto 2.2a

1. (a y e) Vea la figura B1.
2. (a y d) Vea la figura B2.

.5x1 - .5x2 Ú 0
x1 - x2 … 0
-x1 + x2 Ú 1

APÉNDICE B

Respuestas parciales
a problemas seleccionados1

1Los problemas resueltos en este apéndice aparecen en el texto marcados con un asterisco (*).
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5. Sean

x1 5 Cantidad de unidades de A

x2 5 Cantidad de unidades de B

Maximizar z 5 20x1 1 50x2 sujeto a M

Óptima: (x1,x2) 5 (80, 20), z 5 $2,600
7. Sean

x1 5 Dólares invertidos en A

x2 5 Dólares invertidos en B

Maximizar z 5 .05x1 1 .08x2 sujeto a 

Óptima: (x1,x2) 5 (2500, 2500) z 5 $325
14. Sean

x1 5 Toneladas de C1 por hora 

x2 5 Toneladas de C2 por hora 

Maximizar z 5 12000x1 1 9000x2 sujeto a

Óptima: (x1,x2) 5 (5.13, 10.26), z 5 153.846 lb 

(a) Relación óptima de C1:C2 5 .5 
(b) La relación óptima es la misma, pero la generación de vapor se incrementará

en 7692 lb/h.

-200x1 + 100x2 … 0, 2.1x1 + .9x2 … 20, x1, x2 Ú 0

x1 - .5x2 Ú 0, x1 + x2 … 5000, x1, x2 Ú 0

.75x1 - .25x2 Ú 0, .5x1 - .5x2 Ú 0, 

x1 … 100, x1, x2 Ú 0

- .2x1 + .8x2 … 0, 2x1 + 4x2 … 240

(a)

(e)

0�2 2

2

4

6

4

x1

x2

FIGURA B.1

(d) (a)

0�1 1

1

2

3

2

x2

x1

FIGURA B.2
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18. Sean

x1 5 Cantidad de unidades de HiFi1 

x2 5 Cantidad de unidades de HiFi2 

Minimizar z 5 1267.2 – (15x1 1 15x2) sujeto a

Óptima: (x1, x2) 5 (50.88, 31.68), z 5 28. 8 min ociosos.

Conjunto 2.2b

1. (a) Vea la figura B.3
5. Sean

x1 5 Miles de barriles/día de Irán

x2 5 Miles de barriles/día de Dubai 

Minimizar z 5 x1 1 x2 sujeto a

Óptima: x1 5 55, x2 5 30, z 5 85

.15x1 + .1x2 Ú 8, x1, x2 Ú 0

.25x1 + .6x2 Ú 30, .1x1 + .15x2 Ú 10

- .6x1 + .4x2 … 0, .2x1 + .1x2 Ú 14

4x1 + 6x2 … 422.4, x1, x2 Ú 0

6x1 + 4x2 … 432, 5x1 + 5x2 … 412.8

x2

x12

z 
�

 4
x 1

 �
 2

x 2
 �

 8

�4

FIGURA B.3



736 Apéndice B Respuestas parciales a problemas seleccionados

7. Sean

x1 5 Relación de la aleación A de desecho

x2 5 Relación de la aleación B de desecho 

Minimizar z 5 100x1 1 80x2 sujeto a

Óptima: x1 5 .33, x2 5 .67, z 5 $86.667

Conjunto 2.4a

2. Sean

xi 5 Dólares invertidos en el proyecto i, i 5 1, 2, 3, 4

yj 5 Dólares invertidos en el banco en el año j, j 5 1, 2, 3, 4

Maximizar z 5 y5 sujeto a

Solución óptima:

5. Sean xiA 5 cantidad invertida en el año i con el plan A, i 5 1,2,3
xiB 5 cantidad invertida en el año i con el plan B, i 5 1,2,3

Maximizar z 5 3x2B 1 1.7x3A sujeto a

Solución óptima: Invertir $100,000 en el plan A en el año 1 y $170,000 en el plan
B en el año 2. El problema tiene dos soluciones óptimas alternativas.

xiA, xiB Ú 0, i = 1, 2, 3

- 3x1B - 1.7x2A + x3A = 0 (al inicio del año 3)

- 1.7x1A + x2A + x2B = 0 (al inicio del año 2)

x1A + x1B … 100 (al inicio del año 1)

z = $53, 628.73 al inicio del año 5

y1 = 0, y2 = 0, y3 = $6800, y4 = $33, 642

x1 = 0, x2 = $10, 000, x3 = $6000, x4 = 0

x1, x2, x3, x4, y1, y2, y3, y4, y5 Ú 0

1.2x1 + 1.3x2 + .8x3 + .95x4 + 1.065y4 - y5 = 0

1.8x1 + 1.5x2 + 1.9x3 + 1.8x4 + 1.065y3 - y4 = 0

.3x1 + .2x2 + .8x3 + .6x4 + 1.065y2 - y3 = 0

.5x1 + .6x2 - x3 + .4x4 + 1.065y1 - y2 = 0

x1 + x2 + x4 + y1 … 10, 000

.03 … .04x1 + .03x2 … .07, x1 + x2 = 1, x1, x2 Ú 0

.03 … .06x1 + .03x2 … .06, .03 … .03x1 + .06x2 … .05
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Conjunto 2.4b

3. Sea xj 5 cantidad de unidades del producto j, j 5 1, 2, 3

Maximizar z 5 30x1 1 20x2 1 50x3 sujeto a 

Solución óptima: x1 5 324.32, x2 5 216.22, x3 5 540.54, z 5 $41,081.08 

7. Sean xij 5 Cantidad producida por la operación i en el mes j, i 5 1, 2, j 5 1, 2, 3

Iij 5 Inventario de entrada de la operación i en el mes j, i 5 1, 2, j 5 1, 2, 3 

Óptima: x11 5 1333.33 unidades, x13 5 216.67, x21 5 1250 unidades, x23 5 300 uni-
dades, z 5 $39.720.

Conjunto 2.4c

1. Sea xi(yi) 5 Cantidad de autobuses en turnos de 8 horas (12 horas) que inician en
el periodo i.

Todas las variables son no negativas

x4 + x5 + y3 + y4 + y5 Ú 12, x5 + x6 + y4 + y5 + y6 Ú 4

x2 + x3 + y1 + y2 + y3 Ú 10, x3 + x4 + y2 + y3 + y4 Ú 7, 

x1 + x6 + y1 + y5 + y6 Ú 4, x1 + x2 + y1 + y2 + y6 Ú 8, 

Minimizar z = 2a
6

i= 1
xi + 3.5a

6

i= 1
yi  sujeto a

c2j = 15, 18, 16 para j =  1, 2, 3

c1j = 10, 12, 11 para j =  1, 2, 3

dj = 500, 450, 600 para j = 1, 2, 3

I1, 0 = I2, 0 = 0, todas las variables Ú 0

x1j + I1, j- 1 = x2j + I1j, x2j + I2, j- 1 = dj + I2j, j = 1, 2, 3

.8x21 … 1000, .8x22 … 850, .8x23 … 700

.6x11 … 800, .6x12 … 700, .6x13 … 550

Minimizar z = a
3

j= 1
(c1jx1j + c2jx2j + .2I1j + .4I2j) sujeto a

x1, x2, x3 Ú 0

x1 Ú 200, x2 Ú 200, x3 Ú 150

5x2 - 2x3 = 0

2x1 - 3x2 = 0

x1 + .5x2 + .33x3 … 1500

4x1 +   2x2 +     7x3 … 6000

2x1 +   3x2 +     5x3 … 4000
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Solución x1 5 4, x2 5 4, x4 5 2, x5 5 4, y3 5 6, todas las demás 5 0.
z 5 49. Total de autobuses 5 20. En el caso del turno de 8 horas, cantidad
de autobuses 5 26 y comparable z 5 2 3 26 5 52. Por lo tanto, el turno de
(8 horas 1 12 horas) es mejor.

5. Sea xi 5 Cantidad de estudiantes que inician en el periodo i (i 5 1 a las 8:01 A.M.,
i 5 9 a las 4:01 P.M.)
Minimizar z 5 x1 1 x2 1 x3 1 x4 1 x6 1 x7 1 x8 1 x9 sujeto a

x5 5 0, todas las demás variables son no negativas

Solución: Contratar 2 para la 8:01, 1 para las 10:01, 3 para las 11:01, y 3 para las
2:01. Total 5 9 estudiantes

Conjunto 2.4d

3. Sean
xij 5 Parte del proyecto i que se completa en el año j

sujeto a

Conjunto 2.4e

2. Sea xs 5 lb de tornillos/paquete, xb 5 libras de pernos/paquete, xn 5 lb de tuer-
cas/paquete, xw 5 lb de rondanas/paquete 

A 1
10 Bxb … xn, A 1

50 Bxb … xw

y Ú 1, xs Ú .1y, xb Ú .25y, xn … .15y, xw … .1y

y = xs + xb + xn + xw

Minimizar z = 1.1xs + 1.5xb + A 70
80 Bxn + A 20

30 Bxw sujeto a

x33 = .387, x34 = .346, x43 = 1, z = $523, 750

Óptima: x11 = .6, x12 = .4, x24 = .255, x25 = .025, x32 = .267, 

toda xij Ú 0

8x24 + 15x34 + 1.2x44 … 7, 8x25 + 15x35 … 7

5x13 + 8x23 + 15x33 + 1.2x43 … 7

5x11 + 15x31 … 3, 5x12 + 8x22 + 15x32 … 6

.25 … x31 + x32 + x33 + x34 + x35 … 1

.25 … x22 + x23 + x24 … 1

x11 + x12 + x13 = 1, x43 + x44 + x25 = 1

+ .15(4x31 + 3x32 + 2x33 + x34) + .02(2x43 + x44)

Maximizar z = .05(4x11 + 3x12 + 2x13) + .07(3x22 + 2x23 + x24)

x6 + x7 Ú 3, x6 + x7 + x8 Ú 3, x7 + x8 + x9 Ú 3

x2 + x3 + x4 Ú 4, x3 + x4 Ú 4, x4 + x6 Ú 3, 

x1 Ú 2, x1 + x2 Ú 2, x1 + x2 + x3 Ú 3, 
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Todas las variables son no negativas
Solución z 5 $1.12, y 5 1, xs 5 .5, xb 5 .25, xn 5 .15, xw 5 .1.

5. Sea xA 5 A barriles de crudo/día, xB 5 B barriles de crudo/día, xr 5 barriles de ga-
solina regular/día, xp 5 barriles de gasolina premium/día, xj 5 barriles de gaso-
lina para avión/día.

Conjunto 2.4f

5. _________ _________ ___________________ ___________________
__________ ___________ ______ _________ _________ _________
_______________________ __________________ __________ ______
_____________________________________2.2 minutos________________

Sean gi, yi y ri las duraciones de las luces verde, amarilla y roja para los autos que
se salen de la carretera i. Todas las unidades están en segundos. Los autos no
avanzan con la luz amarilla.

Solución: seg, seg, seg. Ingreso de la caseta de cobro

CAPÍTULO 3

Conjunto 3.1a

1. 2 toneladas/día y 1 tonelada/día de las materias primas Ml y M2, respectivamente.
4. Sea xij 5 unidades del producto i producido en la máquina j.

Maximizar z 5 10(x1 1 x12) 1 15(x21 1 x22) sujeto a

si, xij Ú 0, con todas las i y j

x12 + x22 + s4 = 250

x11 + x21 + s3 = 200

-x11 - x21 + x12 + x22 + s2 = 5

x11 + x21 - x12 - x22 + s1 = 5

= $58.04/hr
g3 = 33.4g2 = 43.6g1 = 25

g1 + g2 + g3 + 3 * 10 … 2.2 * 60, g1 Ú 25,  g2 Ú 25,  g3 Ú 25

(500/3600)g1 + (600/3600)g2 + (400/3600)g3 … (510/3600)(2.2 * 60 - 3 * 10)

maximizar z = 3(500/3600)g1 + 4(600/3600)g2 + 5(400/3600)g3 sujeto a

ƒƒ
ƒy3ƒg3ƒr3ƒ
ƒr2ƒy2ƒg2ƒr2ƒ
ƒr1ƒy1ƒg1ƒ

xp = 435.29 barriles/día,  xj =  400 barriles/día,  sp
- = 264.71

Solución: z = $21, 852.94, xA = 1176.47 barriles/día, xB = 1058.82, xr = 500 barriles/día

xr + sr
- - sr

+ = 500, xp + sp
- - sp

+ = 700, xj + sj
- - sj

+ = 400, Todas las variables Ú 0

xA … 2500, xB … 3000, xr = .2xA + .25xB, xp = .1xA + .3xB, xj = .25xA + .1xB

- (30xA + 40xB) sujeto a

- (10sr
- + 15sp

- + 20sj
- + 2sr

+ + 3sp
+ + 4sj

+)

Maximizar z = 50(xr - sr
+) + 70(xp - sp

+) + 120(xj - sj
+)
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Conjunto 3.1b

3. Sea xj 5 unidades de producto j, j 5 1, 2, 3 

sujeto a

Solución óptima: x2 5 65 unidades, 5 15 unidades, todas las demás 5 0, z 5 $325.

Conjunto 3.2a

1. (c) 
(e) Los puntos de esquina (x1 5 0, x2 5 3) y (x1 5 6 y x2 5 0) son no factibles.

3. Las soluciones básicas no factibles son como sigue:

Conjunto 3.3a

3. (a) Sólo (A, B) representan iteraciones simplex sucesivas porque los puntos de
esquina A y B son adyacentes. En todos los demás pares, los puntos de esquina
asociados son no adyacentes.
(b) (i) Sí, (ii) No, C e I son no adyacentes. (iii). No, la ruta regresa al punto de es-
quina anterior, A.

5. (a) x3 entra con el valor 1, z 5 3 en el punto de esquina D.

Conjunto 3.3b

3.

(x2, x4) = (3, -13), (x3, x4) = (6, -16)

(x1, x4) = (6, -4), (x2, x3) = (16, -26)

(x1, x2) = A 26
3  , - 43 B , (x1, x3) = (8, -2)

x1 =  67 , x2 =  12
7  , z =  48

7  .

x1, x2, x3, x4
-, x4

+, x5
-, x5

+ Ú 0

x1 + x2 + 2x3 + x5
- - x5

+ = 65

2x1 + x2 + 2x3 + x4
- - x4

+ = 80

Maximizar z = 2x1 + 5x2 + 3x3 - 15x4
+ - 10x5

+

Nueva variable básica x1 x2 x3 x4

Valor 1.5 1 0 .8
Variable de salida x7 x7 x8 x4

6. (b) x2, x5 y x6 pueden incrementar el valor de z. Si x2 entra, x8 sale y Dz 5 5 3 4 5
20. Si x5 entra, x1 sale y Dz 5 0 porque x5 es igual a 0 en la nueva solución. Si x6
entra, ninguna variable sale porque todos los coeficientes de restricción de x6 son
menores que o iguales a cero, Dz 5 q porque x6 puede incrementarse a un valor
infinito sin provocar no factibilidad.

9. El segundo mejor valor de z 5 20 ocurre cuando s2 se hace básica.
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Conjunto 3.4a

3. (a)
(b)

6. La tabla de inicio es
Minimizar z = (3M - 4)x1 + (M - 1)x2 = 3M
Minimizar z = (8M - 4)x1 + (6M - 1)x2 - Ms2 - Ms3 = 10M

Conjunto 3.4b

1. Siempre minimice la suma de las variables artificiales porque la suma representa
la cantidad no factible en el problema.

7. Cualquier variable no básica con coeficientes objetivo no cero al final de la Fase I
no puede hacerse positiva en la Fase II porque ello significará que el valor objeti-
vo óptimo en la Fase I será positivo, es decir, una solución no factible en la fase I.

Conjunto 3.5a

1. (a)
(b) 1 en A, 1 en B, C4

2 5 6 en C, y 1 en D.

Conjunto 3.5b

1. Solución óptima básica alternativa: , (0, 5, 0), . Solución óptima
alternativa no básica.

, .

Conjunto 3.5c

2. (a) El espacio de soluciones no está acotado en la dirección de x2.
(b) El valor objetivo no está acotado porque cada unidad de incremento en x2

incrementa z en 10.

Conjunto 3.5d

1. Lo máximo que se puede producir son 275 unidades.

Conjunto 3.6a

2. Sean
x1 5 Cantidad de sombreros tipo 1 por día.
x2 5 Cantidad de sombreros tipo 2 por día. 

a1 + a2 + a3 = 1, 0 … ai … 1, i = 1, 2, 3Aa3, 5a2 + 4a3, 
10
3  a1 +  13 a3B A1, 4, 13 BA0, 0, 10

3 B
A: B: C: D.

Básica x1 x2 x3 x4 Solución

z -1 -12 0 0 -8

x3 1 1 1 0 4
x4 1 4 0 1 8
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Maximizar z 5 8x1 1 5x2 sujeto a 

(a) Vea la figura B.4: x1 5 100, x2 5 200, z 5 $1800 en el punto B.
(b) $4 por sombrero tipo 2 en el intervalo (200,500).
(c) Ningún cambio porque el precio dual es de $0 por unidad en el intervalo (100,q).
(d) $1 por unidad en el intervalo (100, 400). Incremento máximo 5 200 de tipo 2.

Conjunto 3.6b

3. (a)

(b) Nueva La solución no cambia.

Conjunto 3.6c

2. (a) Sí, porque el ingreso adicional por min 5 $1 (hasta por 10 minutos de tiempo
extra) excede el costo adicional de $.83/min.

(b) El ingreso adicional es de $2/min (por hasta 400 min de tiempo extra) 5 $240
por 2 horas. Costo adicional por 2 horas 5 $110. Ingreso neto 5 $130.

(c) No, su precio dual es cero porque el recurso ya es abundante.
(d) D1 5 10 min. Precio dual 5 $1/min para D1 # 10, x1 5 0, x2 5 105, x3 5 230,

ingreso neto 5 ($1350 1 $1 3 10 min) 2 ( 3 10 min) 5 $1353.33.
(e) D2 5 215. Precio dual 5 $2/min con D2 $ 220. Reducción del ingreso 5

$30. Reducción del costo 5 $7.50. No se recomienda.

6. Sean
x1 5 minutos de radio, x2 5 minutos de TV, x3 5 anuncios en el periódico

$40
60

c1
c2 = 1.

0 …  
c1
c2

 … 2.

x1, x2 Ú 0

x1 … 150, x2 … 200

2x1 + x2 … 400

0

100

100

200

300

400

x2

x1

A � (0, 200)
B � (100, 200) óptima
C � (150, 200)
D � (150, 100)
E � (150, 0)
F � (0, 400)

A B
C

D

E

F

200FIGURA B.4
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Maximizar z 5 x1 1 50x2 1 10x3 sujeto a 

(a) x1 5 59.09 min, x2 5 29.55 min, x3 5 5 anuncios en periódico, z 5 1561.36.
(b) Con TORA, z 5 1 .158s1 1 2.879S2 1 0s3 1 1.364s4 5 156.364. Los precios

duales de las restricciones respectivas son .158, 2 2.879, 0 y 1.36. El límite in-
ferior impuesto a los anuncios en periódicos puede reducirse porque su pre-
cio dual es negativo (5 2 2.879). No hay ninguna ventaja al incrementar el
límite superior de los minutos de radio porque su precio dual es cero (el lí-
mite actual ya es abundante).

(c) Con TORA, x1 5 59.9091 1 .00606D1 $ 0, x3 5 5, s3 5 340.90909 1 .00606D1
$ 0, x2 5 29.54545 1 .00303D1 $ 5. Por lo tanto, el precio dual 5 .158 en el
intervalo 2 97.50 # D1 # 56,250. Se recomienda un incremento de 50% en
el presupuesto (D1 5 $5000) porque el precio dual es positivo.

11. (a) Escaso: Recurso del resistor y capacitor; abundante: recurso del chip.

(b) Los valores por unidad de resistor, capacitor y chips son $1.25, $.25 y $0.
(e) Cambiar D3 5 350 2 800 5 2 450 queda afuera del intervalo de factibilidad

D3 $ 2 400. Por consiguiente el problema debe ser resuelto de nuevo.

13. (b) Solución es factible para todas las Para ,
factibilidad confirmada. Para

factibilidad no confirmada. Para el cambio queda afuera de los intervalos
de D1 y D2.

Conjunto 3.6d

2. (a) x1 5 latas de A1, x2 5 latas de A2, x3 5 latas de BK.

Maximizar z 5 80x1 1 70x2 1 60x3 sujeto a

(b) Con TORA, el costo reducido por lata de BK 5 10. El precio debe incre-
mentarse más de 10 centavos.

(c) d1 5 d2 5 d3 5 25 centavos. Con TORA, los costos reducidos de las varia-
bles no básicas son 

La solución no cambia.

s3: 1.67 - .17d2 + .17d1 Ú 0,  satisfecha

s1: 73.33 + .67d2 + .33d1 Ú 0, satisfecha

x3: 10 + d2 - d3 Ú 0, satisfecha

Óptima: x1 = 166.67, x2 = 333.33, x3 = 0, z = 36666.67.

x1 + x2 + x3 … 500, x1 Ú 100, 4x1 - 2x2 - 2x3 … 0

¢ 7 6, 
r1 + r2 =  ¢

3  7 1Q3 … ¢ 6 6¢
3  … 1Qr1 + r2 =

0 6 ¢ … 3¢ 7 0.x1 = x2 = 2 +  ¢
3

s1, S2, s3, s4 Ú 0

x1 + s3 = 400, - x1 + 2x2 + s4 = 0, x1, x2, x3 Ú 0, 

15x1 + 300x2 + 50x3 + s1 = 10, 000, x3 - S2 = 5, 
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5. (a) xi 5 unidades de motor i, i 5 1, 2, 3, 4.
Maximizar z 5 60x1 1 40x2 + 25x3 + 30x4, sujeto a

Óptima: x1 5 500, x2 5 500, x3 5 375, x4 = 0, z = $59,375
(b) Con TORA, 8.75 1 d2 $ 0. El precio del motor tipo 2 se puede reducir hasta

en $8.75.
(c) , , , . Con TORA,

La solución no cambia, pero z se reducirá en 25%.
(d) Costo reducido de x4 5 7.5. El precio aumenta más de $7.50.

Conjunto 3.6e

5. El precio dual para la restricción de inversión x1A + x1B # 100 es de $5.10 por
dólar invertido para cualquier cantidad de inversión.

9. (a) El precio dual de la materia prima A es de $10.27. El costo de $12.00 por lb
excede el ingreso esperado. Por consiguiente, no se recomienda la compra de
materia prima adicional.

(b) El precio dual de la materia prima B es de $0. El recurso ya es abundante y
no se justifica ninguna compra adicional.

CAPÍTULO 4

Conjunto 4.1a

2. Sean y1, y2 y y3 las variables duales.
Maximizar w5 3y1 1 5y2 1 4y3 sujeto a

4. (c) Sean y1 y y2 las variables duales.
Minimizar z 5 5y1 1 6y2 sujeto a

5. La restricción dual asociada con las variables artificiales es Matemáti-
camente, lo cual equivale a que y2 no esté restringida.

Conjunto 4.2a

1. (a) no está definida
(e) V2A = (-14 -32)

AV1

M:qQ y Ú -q, 
y2 Ú -M.

y1, y2 irrestrictas

2y1 + 3y2 = 1, y1 - y2 = 1

y1 Ú 0, y2 … 0, y3 irrestrictas

y1 + 2y2 + 3y3 … 15, 2y1 - 4y2 + y3 … 12

s3:  8.75 - 1.25d3 + d2 Ú 0, satisfecha

s2:  10 - 2d3 + d1 Ú 0, satisfecha

s1:  6.25 + .25d3 Ú 0, satisfecha

x4:  7.5 + 1.5d3 - d4 Ú 0, satisfecha

d4 = - $7.50d3 = - $6.25d2 = - $10d1 = - $15

x3 … 800, x4 … 750, x1, x2, x3, x4 Ú 0

8x1 + 5x2 + 4x3 + 6x4 … 8000, x1 … 500, x2 … 500, 
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Conjunto 4.2b

1. (a)

Conjunto 4.2c

3. Sean y1 y y2 las variables duales.
Minimizar w5 30y1 1 40y2 sujeto a

Solución: y1 5 5, y2 5 0,w5 150

6. Sean y1 y y2 las variables duales.
Minimizar w5 3y1 1 4y2 sujeto a

y2 irrestricta 

Solución y1 5 3, y2 5 21,w5 5 
8. (a) (x1, x2) 5 (3,0), z 5 15; (y1,y2) 5 (3,1),w5 14. Intervalo (14,15)
9. (a) La solución dual no es factible; de ahí que no puede ser óptima aun cuando

z 5 w 5 17.

Conjunto 4.2d

2. (a) Factibilidad::
Optimalidad: Costos reducidos de (x1, x3) 5 (0,2) 1 óptima.

4.

(x2, x4) = (3, 15)Q factible.

y1 + 2y2 Ú 1, 2y1 - y2 Ú 5, y1 Ú 3

y1 Ú -M(Q y1 irrestricta), y2 Ú 0

y1 + y2 Ú 5, 5y1 - 5y2 Ú 2, 2y1 - 6y2 Ú 3

Inversa = • 1
4 -1

2 0 0

-1
8

3
4 0 0

3
8 -5

4 1 0
1
8 -3

4 0 1

μ

Básica x1 x2 x3 x4 x5 Solución

z 0 0 -2
5 -1

5
0 12

5

x1 1 0 -3
5

1
5

0 3
5

x2 0 1 4
5 -3

5
0 6

5

x5 0 0 -1 1 1 0

La solución es óptima y factible.
7. Valor objetivo: A partir de la primal, z 5 c1x1 1 c2x2 y desde la dual w 5 b2y1 1

b2y2 1 b3y3, b1 5 4, b2 5 8, c1 5 2, c2 5 5 1 z 5 w 5 34.
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Conjunto 4.3a

2. (a) Sean (x1, x2, x3, x4) 5 unidades diarias SC320, SC325, SC340 y SC370
Maximizar z 5 9.4x1 1 10.8x2 1 8.75x3 + 7.8x4 sujeto a

(b) Sólo se puede incrementar la capacidad del estañado porque su precio dual
es positivo (5 .4944).

(c) Los precios duales correspondientes a las cotas inferiores son # 0 (2.6847,
21.361, 0 y 25.3003), lo que significa que las cotas tienen un efecto adverso
en la rentabilidad.

(d) El precio dual del estañado es de $.4944/min válido en el intervalo (8920,
10201.72), el cual corresponde a un incremento máximo de la capacidad de
sólo 6.26%.

Conjunto 4.3b

2. El nuevo camión de bomberos es rentable debido a su costo reducido 5 22.
3. Las piezas PP3 y PP4 no forman parte de la solución óptima. Los costos reduci-

dos actuales son .1429 y 1.1429. Por consiguiente, la tasa de deterioro del ingreso
por unidad es de $.1429 para PP3 y de $1.1429 para PP4.

Conjunto 4.4a

1. (b) No, porque el punto E es factible, y el simplex dual debe permanecer no fac-
tible hasta que se alcance el óptimo.

4. (c) Agregue la restricción artificial x1 # M. El problema no tiene una solución
factible.

Conjunto 4.5a

4. Sea Q la cantidad de alimento semanal en lb (5 5200,9600,15000,20000,26000,
32000,38000,42000, correspondientes a las semanas 1,2,…, y 8). Solución óptima:
Piedra caliza (calcio) 5 .028Q, maíz 5 .649Q y soya .323Q. Costo 5.81221Q.

Conjunto 4.5b

1. (a) La restricción adicional es redundante.

Conjunto 4.5c

2. (a) Nuevos valores duales La solución actual permanece óptima.

(c) Nuevos valores duales . Nueva

solución: x1 5 2, x2 5 2, x3 5 4, z 5 14.

=  A- 18 , 11
4  , 0, 0 B . z - .125s1 + 2.75s2 = 13.5

=  ( 12 , 0, 0, 0).

x1 Ú 100, x2 Ú 100, x3 Ú 100, x4 Ú 100

5x1 + 5x2 + 5x3 + 5x4 … 4500

3.2x1 + 2.5x2 + 3.6x3 + 5.5x4 … 4700

20.4x1 + 24.6x2 + 17.7x3 + 26.5x4 … 9600

10.5x1 + 9.3x2 + 11.6x3 + 8.2x4 … 4800
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Conjunto 4.5d

1. Para y1 5 1, y2 5 2, y y3 5 0, p $ 42.86%.
3. (a) Costo reducido de los camiones de bomberos 5 3y1 1 2y2 1 4y3 2 5 5 2 . 0.

Los camiones de bomberos no son rentables.

CAPÍTULO 5

Conjunto 5.1a

4. Asigne un costo muy alto, M, a la ruta de Detroit al destino ficticio.
6. (a y b) Use M 5 10,000. La solución se muestra en negritas. Costo total 5 $49,710.

p

100 (y1 + 3y2 + y3) - 3 Ú 0.

1 2 3 Oferta

Planta 1
600 700 400

25 25

Planta 2
320 300 350

23 17 40

Planta 3
500 480 450

25 5 30

Excedente 
en planta 4

1000 1000 M

13 13

Demanda 36 42 30

(c) Costo excedente en la ciudad 1 5 $13,000.
9. La solución (en millones de galones) se muestra en negritas. En el área 2 habrá

un faltante de 2 millones de galones. Costo total 5 $304,000.

A1 A2 A3 Oferta

Refinería 1
12 18 M

4 2 6

Refinería 2
30 10 8

4 1 5

Refinería 3
20 25 12

6 6

Ficticia
M 50 50

2 2
Demanda 4 8 7



748 Apéndice B Respuestas parciales a problemas seleccionados

Conjunto 5.2a

2. Costo total 5 $804. El problema tiene soluciones óptimas alternativas.

Servicio de afilado

Día Nuevas Durante la noche a 2 días a 3 días Desechadas

lunes 24 0 6 18 0
martes 12 12 0 0 0
miércoles 2 14 0 0 0
jueves 0 0 20 0 0
viernes 0 14 0 0 4
sábado 0 2 0 0 12
domingo 0 0 0 0 22

Periodo Capacidad Cantidad producida Entrega

1 500 500 400 para el (periodo) 1 y 100 para el 2 
2 600 600 200 para el 2, 220 en el 3 y 180 para el 4
3 200 200 200 para el 3
4 300 200 200 para el 4

5. Costo total 5 $190,040. El problema tiene soluciones óptimas alternativas.

Conjunto 5.3a

1. (a) Noroeste: costo 5 $42. Costo mínimo 5 $37. Vogel: costo 5 $37.

Conjunto 5.3b

5. (a) Costo 5 $1475. (b) c12 $ 3, c13 $ 8, c23 $ 13, c31 $ 7.

Conjunto 5.4a

5. Use el código (ciudad, fecha) para definir las filas y columnas del problema de
asignación. Ejemplo: La asignación (D.3)-(A.7) significa salir de Dallas el 3 de enero
y regresar de Atlanta el 7 de junio a un costo de $400. La solución se muestra en
negritas. Costo 5 $1180. El problema tiene soluciones óptimas alternativas.

(A, 7) (A, 12) (A, 21) (A, 28)

(D, 3) 400 300 300 280

(D, 10) 300 400 300 300

(D, 17) 300 300 400 300

(D, 25) 300 300 300 400

6. Asignación óptima: I-d, II-c, III-a, IV-b.
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CAPÍTULO 6

Conjunto 6.1a

1. Para la red (i): (a) 1-3-4-2. (b) 1-5-4-3-1. (c y d) Vea la figura B.5.
5. Nombre los cuadrados en secuencia como A, B,…, H comenzando en el cuadrado

superior izquierdo en la primera fila. Cada cuadrado es un nodo con los cuadra-
dos adyacentes conectados por arcos. Cada uno de los nodos D y E tiene el máxi-
mo de arcos que emanan y por consiguiente deben ser reemplazados con los dos
números que tienen más números no adyacentes, sea saber, los números 1 y 8.
Este problema tiene más de una solución. Vea la figura B6.

Conjunto 6.2a

2. (a) 1-2, 2-5, 5-6, 6-4, 4-3. Longitud total 5 12 millas.
5. Alta presión: 1-2-3-4-6. Baja presión: 1-5-7 y 5-9-8.

Conjunto 6.3a

1. Compre un auto nuevo en los años 1 y 4. Costo total 5 $8900. Vea la figura B.7.
4. Para el arco (i,vi) 2 (i 1 1, vi+1), defina p(q) 5 valor (número del artículo i). So-

lución: Seleccione una unidad de cada uno de los artículos 1 y 2. Valor total 5
$80. Vea la figura B.8.

1

3 4

5

Árbol

1

3 4

2

5

Árbol de expansión

FIGURA B.5

7 1 8

3 5

4 6

2

FIGURA B.6

1 3 4 6
3800 4800

4100

5300

FIGURA B.7

1, 5 2, 5

2, 3

2, 1

3, 5

3, 2

3, 3 End

3, 0

3, 1

0(0) 0(0)

0(0) 0(0)

0(0)

0(0)

0(0)

0(0)

50(1)

70(1)

30(1)

50(1)

60(2)

FIGURA B.8
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Conjunto 6.3b

1. (c) Elimine todos los nodos excepto 4, 5, 6, 7 y 8. Distancia más corta 5 8 aso-
ciada con las rutas 4-5-6-8 y 4-6-8.

Conjunto 6.3c

1. (a) 5-4-2-1, distancia 5 12.
4. La figura B.9 resume la solución. Cada arco tiene longitud unitaria. Las flechas

indican las rutas en una dirección. Solución del ejemplo: Bob a Joe: Bob-Kay-
Rae-Kim-Joe. Máximo de contactos 5 4.

Conjunto 6.3d

1. (a) El lado derecho de las ecuaciones correspondientes a los nodos 1 y 5 son 1 y
21, respectivamente, todos los demás 5 0. Solución óptima: 1-3-5 o 1-3-4-5,
distancia 5 90.

Conjunto 6.4a

1. Corte 1: 1-2, 1-4, 3-4, 3-5, capacidad 5 60.

Conjunto 6.4b

1. (a) Capacidades excedentes: arco (2-3) 5 40, arco (2-5) 5 10, arco (4-3) 5 5.
(b) Nodo 2: 20 unidades, nodo 3: 30 unidades, nodo 4: 20 unidades.
(c) No, porque no hay capacidad excedente en el nodo 1.

7. El máximo de tareas es 4. Rif-3, Mai-1, Ben-2, Kim-5. Ken no tiene tarea alguna.

Conjunto 6.5a

3. Vea la figura B.10.

Conjunto 6.5b

1. Ruta crítica: 1-3-4-5-6-7. Duración 5 19.

Bob

2

Joe

1

Jim

4

Kim

6

Rae

5

Kay

3FIGURA B.9
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Conjunto 6.5c

3. (a) 10. (b) 5. (c) 0.
5. (a) Ruta crítica: 1-3-6, duración 5 45 días.

(b) A, D y E.
(c) Cada una de las actividades C, D y G se demorarán 5 días. E no se verá afectada.
(d) Equipo mínimo 5 2 unidades.

CAPÍTULO 7

Conjunto 7.1a

2. Los puntos (1,0) y (0,2) están en Q, pero l(1,0) 1 (1 2 l)(0,2) 5 (l, 2 2 2l) no
quedan en Q para 0 , l , 1.

Conjunto 7.1b

2. (b) Solución única con x1 . 1 y 0 , x2 , 1. Vea la figura B.11.
(d) Una infinitud de soluciones.
(f) Ninguna solución.

3. (a) Base porque det B 5 24.
(d) No es una base porque una base debe incluir exactamente 3 vectores inde-

pendientes.

Cavar

C
av

ar
 II A

ceroII

Acero Conc. Conc. Conc. Conc.
1 2 4 5 7 9 10

Cavar

III

Cavar

IV
3 6 8

I I I II III IV

A
cero

III

A
cero

IV

FIGURA B.10

�2 �1 1

1

2

3

2 3

P2

P1

b

x1 � 1, 0 � x2 � 1

FIGURA B.11
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Conjunto 7.1c

1.
B-1 = a .3 - .2

.1 .1
b

Básica x1 x2 x3 x4 Solución

z 1.5 - .5 0 0 21.5

x3 0 .5 1 0 2
x4 .5 0 0 1 1.5

La solución es factible pero no óptima.
4. Óptima z 5 34.

Maximizar z 5 2x1 1 5x2 sujeto a x1 # 4, x2 # 6, x1 1 x2 # 8, x1, x2 $ 0

Conjunto 7.2a

1. (a) P1 debe salir.
(b) B 5 (P2, P4) es una base factible.

2. Para el vector básico XB, tenemos 

7. El número de puntos extremos adyacentes es n 2 m, suponiendo que no hay
degeneración.

10. En el caso de degeneración, la cantidad de puntos extremos es menor que la de
soluciones básicas, de lo contrario son iguales.

11. (a) nueva vieja xj.

(b) nueva vieja xj.

Conjunto 7.2b

2. (b) 

Conjunto 7.3a

2.

Conjunto 7.4a

2.

Conjunto 7.4b

5. Método 1: (bl, b2, b3) 5 (4, 6, 8) 1 valor objetivo dual 5 34.

Método 2: (cl, c2) 5 (2, 5) 1 valor objetivo primal 5 34.

6. Minimizar w 5 Yb sujeto a YA 5 C, Y no restringida.

Maximizar w = Yb sujeto aYA … c, Y Ú 0.

(x1, x2, x3, x4, x5, x6) = (0, 1, .75, 1, 0, 1), z = 22.

(x1, x2, x3) = (1.5, 2, 0), z = 5.

xj =  ba

xj =  1
a

{zj - cj} = cBB-1B - cB = cBI - cB = cB - cB = 0
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Conjunto 7.5a

1.
2. (a)

-2
7 … t … 1

5. La base permanece ópti-
ma en el intervalo 0 # t # 1.

Conjunto 7.5b

1. (a)
2. En t 5 0 (x1,x2,x3) 5 (0.4, 1.8, 1). Permanece básica en el intervalo 0 # t # 1.5.

Ninguna solución factible con t . 1.5.

CAPÍTULO 8

Conjunto 8.1a

1. : Minimizar
3. Sea x1 5 Cantidad de estudiantes del primer año en el estado, x2 5 estudiantes de

primer año de fuera del estado, x3 5 estudiantes de primer año internacionales.

Todas las variables son no negativas.
5. Sea xj 5 Cantidad de corridas de producción en el turno j, j 5 1, 2, 3.

Conjunto 8.2a

1. Función objetivo:
Solución: xp 5 .0201, xf 5. 0457, xs 5 .0582, xg 5 2 centavos, 5 1.45
El impuesto sobre la gasolina se queda a $1.45 millones del objetivo.

4. x1 5 lb de piedra caliza/día, x2 5 libra de maíz/día, x3 5 lb de soya/día.
Función objetivo: Minimizar z = s1

- + s2
+ + s3

- + s4
- + s5

+

Minimizar z = s1
- + s2

- + s3
- + s4

+ + s5
+

4 … x1 … 5, 10 … x2 … 20, 3 … x3 … 20

Minimizar z = s1
- + s1

+, sujeto a -100x1 + 40x2 - 80x3 + s1
- - s1

+ = 0, 

.125x1 - .05x2 - .556x3 + s4
- - s4

+ = 0, - .2x1 + .8x2 - .2x3 + s5
- - s5

+ = 0

2x1 + x2 - 2x3 + s2
- - s2

+ = 0, - .1x1 - .1x2 + .9x3 + s3
- - s3

+ = 0, 

Gi: Minimizar si
-, i = 1, 2, . . . , 5, sujeto a x1 + x2 + x3 + s1

- - s1
+ = 1200, 

s5
+, 55xp + 3.5xf + 5.5xs - .0675xg + s5

- - s5
+ = 0.G5

t1 = 10, B1 = (P2, P3, P4)

{zj - cj}j= 1, 4, 5 = (4 -  3t2  -  3t
2

2  , 1 - t2, 2 -  t2 +  t
2

2  ).

Solución básica Intervalo aplicable de t

(x2, x3, x6) = (5, 30, 10) 0 … t …  13
(x2, x3, x1) = ( 25

4  , 90
4 , 5) 1

3 … t …  52
(x2, x4, x1) = ( 52 , 15, 20) 5

2 … t … q
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Solución: xl 5 166.08 lb, x2 5 2778.56 lb, x3 5 3055.36 lb, z 5 0. El problema tiene
soluciones óptimas alternativas. Todos los objetivos se satisfacen, pero los objeti-
vos 3 y 4 se sobresatisfacen.

7. xj 5 Cantidad de unidades del producto j, j 5 1, 2.
Asigne un peso relativamente alto a las restricciones de cuota.
Función objetivo:
Solución:
Las cuotas de producción se pueden satisfacer con 100 minutos de tiempo extra
para la máquina 1 y 120 minutos de tiempo extra para la máquina 2.

Conjunto 8.2b

2. Solución de G1 xp 5 .01745, xf 5 .0457, xs 5 .0582, xg 5 21.33,
5 19.33, todas las demás 5 0. Los objetivos G1, G2 y G3 satisfacen, G4 no.

Problema G4: Las mismas restricciones que G1 más
Solución de G4: Todas las
demás variables 5 0. El objetivo de G5 no se satisface.
Problema G5: Igual que G4 más
Solución de G5: Igual que G4, lo que significa que el objetivo 5 no se puede satis-
facer

CAPÍTULO 9

Conjunto 9.1a

3. xij 5 Cantidad de botellas de tipo i asignadas al individuo j, donde i 5 1 (llena), 2
(medio llena), 3 (vacía).
Restricciones:

Todas las xij son enteros no negativos.
Solución: Use una función objetivo ficticia.

x11 + x21 + x31 = 7, x12 + x22 + x32 = 7, x13 + x23 + x33 = 7

x11 + .5x21 = 3.5, x12 + .5x22 = 3.5, x13 + .5x23 = 3.5

x11 + x12 + x13 = 7, x21 + x22 + x23 = 7, x31 + x32 + x33 = 7

(s5
+ = 1.45).

s4
+ = 0.

xp = .0201, xf = .0457, xs = .0582, xg = 2, s5
+ = 1.45.

s1
- = 0, s2

- = 0, s3
- = 0.

s4
+

x1 = 80, x2 = 60, s3
+ = 100 minutos, s4

+ = 120 minutos.
Minimizar z = 100s1

- + 100s2
- + s3

+ + s4
+

Cantidad de botellas asignadas al individuo

Estado 1 2 3

Llena 1 3 3
Medio llena 5 1 1
Vacía 1 3 3

6. y 5 Suma original de dinero, xj 5 Cantidad tomada en la noche j, j 5 1, 2, 3.
x4 5 Cantidad entregada a cada marinero por el primer oficial.
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Minimizar z 5 y sujeto a 3x1 2 y 5 2, x1 1 3x2 2 y 5 2, x1 1 x2 1 3x3 2 y 5 2, y
2 x1 2 x2 2 x3 2 3x4 5 1. Todas las variables son enteros no negativos.

Solución: y 5 79 1 81n, n 5 0, 1, 2,… y mínima 5 79.
10. Lado 1: 5, 6 y 8 (27 minutos). Lado 2: 1, 2, 3, 4 y 7 (28 minutos). El problema tiene

soluciones óptimas alternativas.
12. xij 5 1 si el estudiante i selecciona el curso j, y cero de lo contrario,cij 5 calificación de

preferencia asociada, Cj 5 capacidad del curso j. Maximizar sujeto a

Solución: Curso 1:estudiantes (2, 4, 9), 2: (2, 8), 3: (5, 6, 7, 9), 4: (4, 5, 7, 10), 5: (1, 3,
8, 10), 6: (1, 3). Calificación total 5 1775.

Conjunto 9.1b

1. Sea xj 5 1 si se selecciona la ruta j y 0 si no es así. Distancia total de la ruta ABC,
1, 2, 3, 4, ABC) 5 10 1 32 1 4 1 15 1 9 5 80 millas.

Minimizar z 5 80x1 1 50x2 1 70x3 1 52x4 1 60x5 1 44x6 sujeto a

Solución: Seleccione las rutas (1, 4, 2) y (1, 3, 5), z 5 104. El cliente 1 debe ser sal-
tado en una de las dos rutas.

2. Solución: el comité de 3 miembros se forma con los individuos a, d y f. El pro-
blema tiene soluciones óptimas alternativas.

7. xt 5 1 si se selecciona el transmisor t, 0 si no es así, xc 5 1 si se sirve a la comuni-
dad c, 0 si no es así, ct 5 costo del transmisor t. Sc 5 conjunto de transmisores que
sirven a la comunidad c, Pj 5 población de la comunidad j.

Maximizar sujeto a

Solución: Construir los transmisores 2, 4, 5, 6 y 7. Se sirve a todas las comunidades
excepto a la 1.

Conjunto 9.1c

2. Sea xj 5 cantidad de artefactos producidos en la máquina j, j 5 1, 2, 3. yj 5 1 si se
utiliza la máquina j y 0 si no es así. Minimizar z 5 2x1 1 10x2 1 5x3 1 300y1 1

100y2 1 200y3 sujeto a x1 1 x2 1 x3 $ 2000, x1 2 600y1 # 0, x2 2 800y2 # 0, x3 2

1200y3 # 0, x1, x2, x3 $ 500 y enteros, y1, y2, y3 5 (0, 1).
Solución: x1 5 600, x2 5 500, x3 5 900, z 5 $11,300.

a
tHSc

xt Ú xc, c = 1, 2, Á , 15, a
7

t= 1
ctxt … 15

z = a
15

c= 1
Pcxc

x1 + x2 + x5 Ú 1, x2 + x3 + x4 + x6 Ú 1, xj = (0, 1), para todas las j.

x1 + x3 + x5 + x6 Ú 1, x1 + x3 + x4 + x5 Ú 1, x1 + x2 + x4 + x6 Ú 1, 

a
6

j= 1
xij = 2, i = 1, 2, Á , 10, a

10

i= 1
xij … Cj, j = 1, 2, Á , 6

z = a
10

i= 1
a

6

j= 1
cijxij
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3. Solución: El sitio 1 se asigna a los destinos 1 y 2, y el sitio 2 se asigna a los destinos
3 y 4, z 5 18.

10. xe 5 cantidad de boletos (sencillos) de Eastern, xu 5 cantidad de boletos de US
Air, xc = cantidad de boletos de Continental. e1 y e2 son variables binarias, u y c
son enteros no negativos. Maximizar z 5 1000(xe 1 1.5xu 1 1.8xc 1 5e1 1 5e2 1

10u 1 7c) sujeto a e1 # xe/2, e2 # xe/6, u # xu/6 y c # xc/5, xe 1 xu 1 xc 5 12.

Solución: Compre 2 boletos en Eastern y 10 boletos en Continental. Bonificación
5 39,000 millas.

Conjunto 9.1d

1. Sea xij 5 Cantidad entera asignada al cuadrado (i,j). Use una función objetivo fic-
ticia con todos los coeficientes cero.

Restricciones:

Solución:

Soluciones alternativas: Intercambie las filas 1 y 3 o las columnas 1 y 3.

3. xj 5 Cantidad de unidades diarias del producto j.

Maximizar z 5 25x1 1 30x2 1 22x3 sujeto a 

Solución. Producir 26 unidades del producto 1, 3 del producto 2, ninguna del pro-
ducto 3, y utilizar la ubicación 2.

12. Defina , , z y w binarias.0 … v … 1v = zw, v … z, v … w, v Ú z + w - 1

x1, x2, x3 Ú 0 y entero

a3x1 + 4x2 + 5x3 … 100
4x1 + 3x2 + 6x3 … 100

b  o a 3x1 + 4x2 + 5x3 … 90
4x1 + 3x2 + 6x3 … 120

b

2 9 4
7 5 3
6 1 8

xij = 1, 2, . . . , 9, para todas las i y j

(x11 Ú x31 + 1 o x11 … x31 - 1), (x21 Ú x31 + 1 o x21 … x31 - 1), 

(x12 Ú x13 + 1 o x12 … x13 - 1), (x11 Ú x21 + 1 o x11 … x21 - 1), 

(x11 Ú x12 + 1 o x11 … x12 - 1), (x11 Ú x13 + 1 o x11 … x13 - 1), 

x11 + x22 + x33 = 15, x31 + x22 + x13 = 15, 

a
3

j= 1
xij = 15, i = 1, 2, 3, a

3

i= 1
xij = 15, j = 1, 2, 3, 
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Conjunto 9.2a2

2. (a)
(b)

3. (a)
(d)

9. PLE equivalente 0-1:

Maximizar 

sujeto a .

Todas las variables son binarias.

Solución: z 5 50, y12 5 1, y21 5 1, todas las demás 5 0. De forma equivalente,
x1 5 2, x2 5 1. La versión 0-1 requirió 41 nodos. La original requiere 29.

Conjunto 9.2b

1. (a) Corte legítimo porque pasa por un punto entero y no elimina a ningún punto
entero factible. Puede verificar este resultado trazando el corte en el espacio
de soluciones de programación lineal.

2. (a) Solución entera óptima: (x1, x2, x3) 5 (2, 1, 6), z 5 26.

Solución redondeada: (x1, x2, x3) 5 (3, 1, 6) — no factible.

CAPÍTULO 10

Conjunto 10.2A

6. Maximizar ) ( ),
La demanda será cero en t 5 53. Por lo tanto, la búsqueda se puede limitar al in-
tervalo (10,53). Inicie la búsqueda en t 5 10%.

Conjunto 10.3C

4. Represente un cromosoma con una cadena de diez elementos binarios generados
al azar de modo que la carta i 5 0(1) signifique que pertenece a la pila 1 (2).

Aptitud 5 |36 — suma de cartas en la pila 1| 1 |36 2 producto de cartas en la pila 2|.

Iteración 0:

P1: 1011011010, Pile 1: (2, 5, 8, 10), Pile 2: (1, 3, 4, 6, 7, 9),

P2: 0011011111, P3: 0100110101, P4: 11001101111

z = |36 - 25| + |36 - 4536| = 11 + 4500 = 4511

10 … t … 6053 - 100(t/100)z = 15(t/100

15y11 + 30y12 + 12y21 + 24y22 + 7y31 + 14y32 + 28y33 … 43

z = 18y11 + 36y12 + 14y21 + 28y22 + 8y31 + 16y32 + 32y33

z = 10.5, x1 = .5, x2 = 2.
z = 7.25, x1 = 1.75, x2 = 1.

 z = 12, x1 = 0, x2 = 3.
z = 6, x1 = 2, x2 = 0.

2Use el módulo de programación entera de TORA para generar el árbol de ramificación y acotamiento.
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CAPÍTULO 11

Conjunto 11.1a

3. Cada sitio (más el hotel) representa una ciudad. La tarifa del taxi entre ubicacio-
nes representa la distancia.

Conjunto 11.2a

1. (a) PL para cota inferior:

Minimizar z 5 2r1 + 2r2 1 2r3 1 2r4 1 2 r5

sujeto a

todas las ri no negativas

(b) Tanto amplAssign.txt como amplLP.txt dan una cota inferior de 695 millas.
La solución del modelo de asignación incluye subrecorridos (1-4-1, 2-5-3-2),
por lo que no es óptima.

6. (a) Cada proyecto representa una ciudad. La tabla siguiente da el número de
distintos empleados que entran a y salen de la oficina del gerente cuando se
cambia del proyecto i al proyecto j (es decir la cantidad de “x” que no empa-
rejan entre la columna i y la columna j). El objetivo es encontrar un “recorri-
do” a través de todos los proyectos que minimice el tráfico total.

r4 + r5 … 190

r3 + r4 … 160, r3 + r5 … 185

r2 + r3 … 80, r2 + r4 … 110, r2 + r5 … 130

r1 + r2 … 120, r1 + r3 … 220, r1 + r4 … 150, r1 + r5 … 210

1 2 3 4 5 6

1 4 4 6 6 5
2 4 6 4 6 3
3 4 6 4 8 7
4 6 4 4 6 5
5 6 6 8 6 5
6 5 3 7 5 5

(b) Cota inferior obtenida con solutionAssign.txt es 26. Aun cuando la cota infe-
rior resultó ser exactamente igual al recorrido mínimo verdadero, la solución
de asignación asociada incluye subrecorridos; es decir, 1-3-1, 2-4-5-6-2. El re-
corrido óptimo obtenido con amplCut.txt es 1-2-6-5-4-3-1.

Conjunto 11.3a

3. Vea la figura B.12.
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Conjunto 12.1a

1. Solución: Distancia más corta 5 21 millas. Ruta 1-3-5-7.

Conjunto 12.2a

3. Solución: Distancia más corta 5 17. Ruta: 1-2-3-5-7.

Conjunto 12.3a

2. (a) Solución: Valor 5 120. (m1, m2, m3) = (0, 0, 3), (0, 4, 1), (0, 2, 2) o (0, 6, 0).
5. Solución: Puntos totales 5 250. Seleccione 2 cursos a partir de I, 3 de II, 4 a partir

de III y 1 de IV.
7. Sea xj 5 1 si se acepta la solicitud j, y 0 si no. El modelo de la mochila equivalente es 

Maximizar z 5 78x1 1 64x2 1 68x3 1 62x4 1 85x5 sujeto a

Solución: Aceptar todas excepto la primera solicitud. Valor 5 279.

Conjunto 12.3b

1. (a) Solución: Contratar 6 para la semana 1, contratar 1 para la semana 2, despedir
2 para la semana 3, contratar 3 para la semana 4 y contratar 2 para la semana 5.

7x1 + 4x2 + 6x3 + 5x4 + 8x5 … 23, xj = (0, 1), j = 1, 2, . . . , 5

z � 26
(1�3�1)
(2�4�2)
(5�6�5)

x31 � 0 x13 � 0

x65 � 0 x56 � 0

1

5

3

3

2

4 3

Agotado

en

por z

Agotado

en

por z

z � 26
(1�2�4�3�1)

(5�6�5)

z � 26
(1�5�6�2�

4�3�1)

FIGURA B.12

CAPÍTULO 12
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3. Solución: Rentar 7 autos en la semana 1, devolver 3 por la semana 2, rentar 4 para
la semana 3, y ninguna acción durante la semana 4.

Conjunto 12.3c

2. Decisiones para los siguientes 4 años: Conservar, conservar, reemplazar, conser-
var. Costo total 5 $458.

Conjunto 12.3d

3. (a) Sean xi y yi la cantidad de ovejas conservadas y vendidas al final del periodo
i, y defina zi 5 xi 1 yi.

CAPÍTULO 13

Conjunto 13.3a

2. (a) Costo total por semana 5 $51.50
(b) Costo total por semana 5 $50.20, y* 5 239.05 lb.

4. (a) Seleccionar la política 1 porque su costo por día es de $2.17 en contraste con
$2.50 para la política 2.

(b) Política óptima: Pedir 100 unidades siempre que el nivel del inventario se re-
duzca a 10 unidades.

Conjunto 13.3b

2. Política óptima: Pedir 500 unidades siempre que el nivel del inventario se reduz-
ca a 130 unidades. Costo por día 5 $258.50.

4. No  hay ventaja alguna si TCU1(ym) # TCU2(q), lo cual se traduce en ninguna
ventaja si el factor de descuento no excede de .9344%.

Conjunto 13.3c

1. Solución obtenida con AMPL/Solver: (y1, y2, y3, y4, y5) 5 (4.42, 6.87, 4.12, 7.2, 5.8),
costo 5 $568.12,

4. Restricción:

Solución obtenida con Solver/AMPL: (y1, y2, y3, y4) 5 (155.3, 118.82, 74.36,
90.09), costo 5 $54.71.

Conjunto 13.4a

1. (a) 500 unidades requeridas al inicio de los periodos 1, 4, 7 y 10.

a
4

i= 1
 

365Di
yi

… 150.

fi1zi2 = máx5piyi + fi+ 112zi - 2yi26, i = 1, 2, Á , n - 1
yi…zi

fn1zn2 = máx
yn=zn
5pnyn6
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Conjunto 13.4b

3. Producir 173 unidades en el periodo 1, 180 en el periodo 2, 240 en el periodo 3,
110 en el periodo 4 y 203 en el periodo 5.

Conjunto 13.4c

1. (a) No, porque el inventario no debe mantenerse innecesariamente al final del
horizonte.
(b) (i)

(ii)

2. (a) Costo total 5 $33.

Conjunto 13.4d

1. Utilizar el inventario inicial para satisfacer toda la demanda del periodo 1 y 4
unidades del periodo 2, y así se reduce la demanda en los cuatro periodos a 0, 22,
90 y 67, respectivamente.
Solución óptima: Pedir 112 unidades en el periodo 2 y 67 unidades en el periodo
4. Costo total 5 $632.

Conjunto 13.4e

1. Solución: Producir 210 unidades en enero, 255 en abril, 210 en julio y 165 en octubre.

CAPÍTULO 14

Conjunto 14.1a

1. (a) .15 y .25, respectivamente. (b) .571. (c) .821.
2.
3.

Conjunto 14.1b

3.
4. Sea p 5 probabilidad de que Liz gane. La probabilidad de que John gane es 3p, la

cual es igual a la probabilidad de que Jim gane. La probabilidad de que Ann gane
es 6p. Debido a que uno de los cuatro gana, p 1 3p 1 3p 1 3p 1 6p 5 1.

(a)

(b)

(c) 6
13 .

7
13 .

3
13 .

5
32 .

n 7 253.
n Ú 23.

z1 = 7, z2 = 0, z3 = 6, z4 = 0.

5 … z1 … 12, 0 … z2 … 7, 0 … z3 … 4; x1 = 0, 0 … x2 … 7, 0 … x3 … 4.
0 … z1 … 5, 1 … z2 … 5, 0 … z3 … 4; x1 = 4, 1 … x2 … 6, 0 … x3 … 4.
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Conjunto 14.1c

3. (a) .375. (b) .6.
7. .9545.

Conjunto 14.2a

2. (a) .
3. P{Demanda $ 1100} 5 .3.

Conjunto 14.3a

3. (a) P{50 # ejemplares vendidos # 70} 5 .6667.
(b) Cantidad esperada de ejemplares no vendidos 5 2.67
(c) Utilidad neta esperada 5 $22.33

Conjunto 14.3b

1. Media 5 3.667, varianza 5 1.556.

Conjunto 14.3c

1. (a)

(b) No, porque , ).

Conjunto 14.4a

1.
2. .0547.

Conjunto 14.4b

1. .8646.
2. (a) .

(b) .

Conjunto 14.4c

1. llegadas/min.

Conjunto 14.4d

2. .001435.

P{t … 5 seg} = .63.l = 12

P{n Ú (2 + 1)}; P{n Ú 3}; 1
P{n = 0} = 0

A  12 B10.

x2) Z P(x1)P(x2P(x1

P(x2 = 3) = .4.
P(x1 = 1) = P(x2 = 1) = .4, P(x1 = 2) = P(x2 = 2) = .2, P(x1 = 3) =

K = 20
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CAPÍTULO 15

Conjunto 15.1a

1. Pesos para A, B y C 5 (.44214, .25184, .30602).

Conjunto 15.1b

2. CR . .1 para todas las matrices excepto A. (wS,wJ,wM) = (.331, .292, .377). Se-
leccionar Maisa.

4. Todas las matrices son consistentes. (wH,wp)  5 (.502, .498). Seleccionar H.

Conjunto 15.2a

2. (a) Vea la figura B.13.
(b) EV(maíz) 5 —$8250, EV(soya) 5 $250. Seleccionar la soya.

6. (a) Vea la figura B.14.
(b) EV(juego) 5 — $.025. No participar en el juego.

Maíz

Soya

U

S

D

U

S

D

.25

.30

.45

.25

.30

.45

$30,000

�$35,000

$0

$10,000

�$5000

$0

FIGURA B.13

Juegan

No juegan

.125(HHH)

.125(HHT)

.125(HTH)

$3.50

$1.15

$.90

�$1.20

$1.15

�$1.20

�$1.20

�$3.30

$0

.125(HTT)

.125(THH)

.125(THT)

.125(TTH)

.125(TTT)

FIGURA B.14
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12. Ciclo de mantenimiento óptimo 5 8 años. Costo por año 5 $397.50.
15. Tasa de producción óptima 5 49 piezas por día.
19. El nivel debe estar entre 99 y 151 galones.

Conjunto 15.2b

2. Sea z el evento de tener un artículo defectuoso en una muestra de tamaño 5.
Respuesta:

4. (a) Ingreso esperado si usted publica el libro 5 $196, 000.
Ingreso esperado si utiliza un editor 5 $163,000.

(b) Si la encuesta predice éxito, publique usted el libro, de lo contrario acuda a
un editor.

7. (b) Envíe el lote a B si ambos artículos están defectuosos, de lo contrario envíe-
lo a A.

Conjunto 15.2c

1. (a) Valor esperado 5 $5, por consiguiente no hay ventaja alguna.
(b) Para 0 # x , 10, U(x) 5 0, y para x 5 10, U(x) 5 100.
(c) Participe en el juego.

2. Lotería: U(x) 5 100 — 100p, con U(2$1, 250,000) 5 0 y U($900,000) 5 100.

Conjunto 15.3a

1. (a) Todos los métodos: Estudiar toda la noche (acción a1).
(b) Todos los métodos: Seleccionar las acciones a2 o a3.

Conjunto 15.4a

2. (a) Solución de punto de silla en (2, 3). Valor del juego 5 4.
3. (a)

Conjunto 15.4b

1. Cada jugador debe combinar las estrategias 50-50. Valor del juego 5 0.
2. Matriz de retribución de la policía:

2 6 v 6 4.

P{A|z} = .6097, P{B|z} = .3903.

100%A 50% -50%BA 100%B

A 100 50 0

B 0 30 100

Estrategia de la policía: Combinar las estrategias 100% A y 100% B al 50-50.
Estrategia de Robin: Combinar las estrategias A y B al 50-50. Valor del juego 5
$50 (5 multa esperada pagada por Robin).
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Conjunto 15.4c

1. (a) Matriz de retribuciones para el equipo 1:

AB AC AD BC BD CD

AB 1 0 0 0 0 -1

AC 0 1 0 0 -1 0

AD 0 0 1 -1 0 0

BC 0 0 -1 1 0 0

BD 0 -1 0 0 1 0

CD -1 0 0 0 0 1

Estrategias óptimas de ambos equipos: Combinar AB y CD al 50-50. Valor
del juego 5 0.

2. (a) (m, n) 5 (Regimientos en el Lugar 1, regimientos en el lugar 2). Cada lugar
tiene una retribución de 1 si ganó y de 2 1 si perdió. Por ejemplo, la estrate-
gia de Blotto (1,1) contra la del enemigo (0,3) ganará el lugar 1 y perderá el
lugar 2, con una retribución neta de 1 1 (21). Matriz de retribuciones para
el coronel Blotto:

3, 0 2, 1 1, 2 0, 3

2, 0 -1 -1 0 0

1, 1 0 -1 -1 0

0, 2 0 0 -1 -1

Estrategia óptima de Blotto: Blotto combina las estrategias (2-0) y (1-2) al
50-50 y el enemigo combina las estrategias (3-0) y (1-2) al 50-50. Valor del
juego 5 25, y Blotto pierde. El problema tiene soluciones óptimas alternativas.

CAPÍTULO 16

Conjunto 16.1a

1. (a) Pedir 1000 unidades siempre que el nivel del inventario se reduzca a 537 uni-
dades.

Conjunto 16.1b

2. Solución: y* 5 317.82 galones, R* 5 46.82 galones.

3. Solución: y* 5 316.85 galones, R* 5 58.73 galones. En el ejemplo 14.1-2, y* 5 319.44
galones, R* 5 93.61 galones. La cantidad de pedido no cambia como en el ejemplo
14.1-2 pero R* es menor porque la fdp de la demanda tiene una varianza menor.
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Conjunto 16.2a

3.
6. 32 abrigos.

Conjunto 16.2b

1. Pedir 9 2 x si x , 4.53, de lo contrario no pedir.

Conjunto 16.3a

2. Pedir 4.61 2 x si x , 4.61, de lo contrario no pedir.

CAPÍTULO 17

Conjunto 17.1a

2. S1. Patrulla en vigilancia
S2: Patrulla respondiendo a una llamada
S3: Patrulla en la escena de la llamada
S4: Aprehensión realizada
S5. Transporte a la estación de policía

.43 … p … .82

Conjunto 17.2a

2. Probabilidades iniciales:

S1 S2 S3 S4 S5

S1 0.4 0.6 0 0 0

S2 0.1 0.3 0.6 0 0

S3 0.1 0 0.5 0.4 0

S4 0.4 0 0 0 0.6

S5 1 0 0 0 0

S1 S2 S3 S4 S5

0 0 1 0 0

S1 S2 S3 S4 S5

S1 0.4 0.6 0 0 0

S2 0.1 0.3 0.6 0 0

S3 0.1 0 0.5 0.4 0

S4 0.4 0 0 0 0.6

S5 1 0 0 0 0

Cadena de Markov de entrada:
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Matriz de transición de salida (2 pasos o 2 patrullajes) ( )P2

S1 S2 S3 S4 S5

S1 0.22 0.42 0.36 0 0

S2 0.13 0.15 0.48 0.24 0

S3 0.25 0.06 0.25 0.2 0.24

S4 0.76 0.24 0 0 0

S5 0.4 0.6 0 0 0

Estado Absoluta ( 2 pasos)

S1 0.25
S2 0.06
S3 0.25
S4 0.2
S5 0.24

Probabilidades absolutas de 2 pasos 5 (0 0 1 0 0)P2

P{aprehensión, S4, en 2 patrullajes} 5 .2 

Conjunto 17.3a

1. (a) Utilizando excelMarkovChains.xls, la cadena es periódica con periodo de 3.
(b) Los estados 1, 2 y 3 son transitorios, el estado 4 es absorbente.

Conjunto 17.4a

1. (a) Cadena de Markov de entrada:

S C R

S 0.8 0.2 0

C 0.3 0.5 0.2

R 0.1 0.1 0.8

Probabilidades de estado estable:

Resultados de salida

  p1 + p2 + p3 = 1
(p1, p2, p3) = (p1, p2, p3)P

Estado Estado estable Tiempo de regreso medio

S 0.50 2.0
C 0.25 4.0
R 0.25 4.0

Ingresos esperados 5 2 3 .5 1 1.6 3 .25 1 .4 3 .25 5 $1,500
(b) Los días soleados regresarán cada mSS 5 2 días, es decir dos días sin sol.
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5. (a) Cadena de Markov de entrada:

nunca a veces siempre

Nunca 0.95 0.04 0.01

A veces 0.06 0.9 0.04

siempre 0 0.1 0.9

(b)

44.12% nunca, 36.76% a veces, 19.11% siempre
(c) Impuestos recaudados esperados/año 5 .12($5000 3 .3676 1 12,000 3 .1911) 3

70,000,000 5 $34,711,641,097.07

Conjunto 17.5a

1. (a) Probabilidades iniciales:

1 2 3 4 5

1 0 0 0 0

Estado Absoluto (3 pasos) Estado estable

1 .07407 .214286
2 .2963 .214286
3 .2963 .214286
4 .25926 .142857
5 .07407 .214286

Cadena de Markov de entrada:
1 2 3 4 5

0 .3333 .3333 .3333 0

.3333 0 .3333 0 .3333

.3333 .3333 0 0 .3333

.5 0 0 0 .5

0 .3333 .3333 .3333 0

Resultados de salida

Estado Estado estable Tiempo de regreso medio

nunca 0.441175 2.2666728
a veces 0.367646 2.7200089
siempre 0.191176 5.2307892
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(I - N)-1 Mu

1 2 3 5

1 2 1 1 .6667 4.6666

2 1 1.625 .875 .3333 3.8333

3 1 .875 1.625 .3333 3.8333

4 1 .5 .5 1.3333 3.3333

A B C

A .75 .1 .15

B .2 .75 .05

C .125 .125 .75

5. (a) Cadena de Markov de entrada:

A: 39.5%, B: 30.7%, C: 29.8%

A S B, 9.14 años 
A S C: 8.23 años 

(I - N)-1 Mu

A C B

A 5.71429 3.42857 A 9.14286

C 2.85714 5.71429 C 8.57143

1 2 C

A 5.88235 2.35294 A 8.23529

B 4.70588 5.88235 B 1.5882

(b)

(b)
(c)
(d) m15 = 4.6666.
p5 = .214286
a5 = .07407

Estado Estado estable

A .394737
B .307018
C .298246
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Conservo el libro 1.33 semanas en promedio.

8. (a)

(b)

(I - N)-1 Mu

1 2 3 lib

1 1 0.3 .03 1 1.33

2 0 1 .01 2 1.1

3 0 0 1 3 1

Matriz P:
1 2 3 4 F

1 0.2 0.8 0 0 0

2 0 0.22 0.78 0 0

3 0 0 0.25 0.75 0

4 0 0 0 0.3 0.7

F 0 0 0 0 1

(I - N)-1 Mu

1 2 3 4 F

1 1.25 1.282 1.333 1.429 1 5.29

2 0 1.282 1.333 1.429 2 4.04

3 0 0 1.333 1.429 3 2.76

4 0 0 0 1.429 4 1.43

(b)

Conjunto 17.6a

2. (a) Estados: 1 semana, 2 semanas, 3 semanas, biblioteca

Matriz P:

1 2 3 lib

1 0 0.3 0 0.7

2 0 0 0.1 0.9

3 0 0 0 1

lib 0 0 0 1
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(c) Para poder llevar el Cal II, el estudiante debe terminar en 16 semanas (4 transi-
ciones) o menos. Promedio de transiciones necesarias 5 5.29. Por consiguiente,
un estudiante promedio no será capaz de terminar el Cal I a tiempo.

(d) No, de acuerdo con la respuesta en (c).

CAPÍTULO 18

Conjunto 18.1a

1. (a) Productividad 5 71%.
(b) Los dos requisitos no pueden satisfacerse al mismo tiempo.

Conjunto 18.2a

1.

Conjunto 18.3a

1. (b) (i) l 5 6 llegadas por hora, tiempo entre llegadas promedio 5 horas.
(c) (i) m 5 5 servicios por hora, tiempo de servicio promedio 5 .2 horas.

3. (a)
(b)

7. La retribución de Jim es de 2 centavos con probabilidad P{t # 1} 5 .4866 y — 2
centavos con probabilidad P{t $ 1} 5 .5134. En 8 horas, Jim le paga a Ann 5
17.15 centavos.

10. (a) P{t # 4 minutos} 5 .4866.
(b) Porcentaje de descuento promedio 5 6.208.

Conjunto 18.4a

1.

4. (a) 

6. (a)

Conjunto 18.4b

2. (a)
(c) pn… 17(t = 1) = .9502.
p0(t = 3) = .00532.

Combinados l =  1
10 +  17 , p2(t = 5) = .219.

p2(t = 7) = .24167.

pnÚ 5(1 hora) = .55951.

PE t 7  15
60 F = .00674.

f(t) = 20e-20t, t 7 0.

1
6

Situación Cliente Servidor

(a) Avión Pista de despegue
(b) Pasajero Taxi
(h) Auto Espacio de estacionamiento
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5.
8. (a) Tamaño de pedido promedio = 25 — 7.11 = 17.89 artículos.

(b)

Conjunto 18.5a

3. (a)
(b)

6. (a)
(b) Cantidad esperada en el taller 5 2 clientes.
(c)

Conjunto 18.6a

1. (a)

(b) lperdida 5 .1263 autos por hora. Número promedio perdido en 8 horas 5 1.01
carros.

(c)Cantidad de espacios vacíos 5 c 2 (Ls 2 Lq) 5 

Conjunto 18.6b

2. (a)
(b) Ingreso mensual promedio
(c) Pago esperado

5. (a)
(b)
(c) .25 min.
(d)

6. (d) El número de espacios es al menos de 13.

Conjunto 18.6c

1. (a)
(b)
(c) Cantidad esperada de espacios vacíos 5 4 2 Lq 5 3.212.
(d) .
(e) Una reducción de 40% disminuye Ws a aproximadamente 9.6 minutos (m 5 10

autos/h).

4. (a)
(b) Lq 5 6.34 generadores.
(c) La probabilidad de encontrar un espacio vacío no puede exceder de .4 inde-

pendientemente de la capacidad de la banda. Esto significa que la mejor uti-
lización del departamento de ensamble es del 60%.

p8 = .6.

p5 = .04812

Wq = .207 horas.

p0 = .3654.

pnÚ 11 = .0036.
Wq = 2
Lq = .9 autos.

p0 = .4.

=  $40 * Lq = $128.
=  $50 * mt = $375.

p0 = .2.

c -  a
8

n= 0
npn + a

8

n=c+1
(n - c)pn.

Lq = 1p6 + 2p7 + 3p8 = .1917 carros.

p4 = .2.

pj = .2, j = 0, 1, 2, 3, 4.

pn… 2 = .5555.
pnÚ 3 = .4445.

p0(t = 4) = .00069.

p0(4) = .37116.
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7. (a)
(b) lperdida 5 lp5 5 .19 clientes por hora.

Conjunto 18.6d

2. Para c 5 2, Wq 5 3.446 horas y para c 5 4, Wq 5 1.681 horas, una mejora de más
de 51%.

5. Sea K la cantidad de espacios en la sala de espera. Aplicando TORA, p0 1 p1 1

… 1 pK+2 $ .999 produce K $ 10.

7. (a) 
(e) Promedio de computadoras ociosas 5 .667 computadoras.

Conjunto 18.6e

2. (c) Utilización 5 81.8%.
(d)

4. (a)
(b)
(d) Cantidad esperada de espacios ocupados 5 Ls 2 Lq 5 20.043 2 .046 « 20.
(f) Probabilidad de no encontrar un espacio de estacionamiento 5 1 2 pn#29 5

.02467. La cantidad de estudiantes que pueden estacionarse en un periodo de
8 horas es aproximadamente de 4.

Conjunto 18.6f

2. (a) Aproximadamente 7 asientos.
(b)

Conjunto 18.6g

1. (b) Promedio de mecánicos ociosos 5 2.01.
(d) P(2 o 3 servidores ociosos) 5 p0 1 p1 5 .34492.

4. (a) LS 5 1.25 máquinas.
(b)
(c) Ws 5 .25 horas.

6. l 5 2 llamadas por hora por bebé, m 5 .5 bebés por hora, R 5 5, K 5 5.
(a) Cantidad de bebés despiertos 5 5 2 Ls 5 1 bebé.
(b) .
(c)

Conjunto 18.7a

2. (a) E{t} 5 14 minutos y var{t} 5 12 minutos2. Ls 5 7.8672 carros.

pn… 2 = .05792.
p5 = .32768

p0 = .33342.

pnÚ 8 = .2911.

p30 + p31 + Á + p39 = .02453.
p40 = .00014.

p2 + p3 + p4 = .545.

pnÚ 4 = .65772.

1 - p5 = .962.
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4. l 5 .0625 prescripciones por minuto, E{t} 5 15 minutos, var{t} 5 9.33 minutos2.
(a)
(b) Lq 5 7.3 prescripciones
(c) Ws 5 132.17 minutos 

Conjunto 18.9a

2. Use (M/M/1):(GD/10/10). El costo por hora es de $431.50 para el técnico 1 y de
$386.50 con el técnico 2.

4. (b)

(c) Tasa de producción óptima 5 2725 piezas por hora.

Conjunto 18.9b

2. (a) El costo por hora es de $86.4 con dos técnicos y de $94.80 con tres.
(b) Pérdida por descompostura 5 $30 3 Ws 5 $121.11 con dos técnicos y de

$94.62 con tres.

4. Tasa de descomposturas por máquina, l 5 .36125 por hora, m 5 10 por hora. El
modelo (M/M/3):(GD/20/20) resulta Ls 5 .70529 máquinas. Ingreso perdido 5
$36.60 y el costo de tres técnicos 5 $60.

Conjunto 18.9c

1. (a) Números de técnicos en reparaciones $ 5.
(b) Número de técnicos en reparaciones $ 4.

CAPÍTULO 19

Conjunto 19.1a

4. (a) P(H) = P{T} = .5. Si 0 # R # .5, Jim obtiene $10.00. Si .5 , R # 1, Jan obtie-
ne $10.00.

7. Muestreo del tiempo de espera: Si 0 # R # .5, L 5 1 día. Si .5 , R # 1, L 5 2 días.
Demanda por día: Si 0 # R # .2, demanda 5 0 unidades. Si .2 , R # .9, demanda
5 1 unidad. Si .9 , R # 1, demanda 5 2 unidades. Use una R para muestrear L.
Si L 5 1, use otra R para muestrear la demanda de un día, de lo contrario si L 5 2,
use una R para generar la demanda del día 1 y luego otra R para generar la
demanda del día 2.

Conjunto 19.2a

1. (a) Discreta.

m = l + Cc2lc1

p0 = .0625.
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0

18 48 78 108 138

30 60 90 120

A1

D1 D2 D3 D4 D5

A2 A3 A4 A5
FIGURA B.15

Cliente R t (hr) Tiempo de llegada

1 — — 0
2 0.0589 0.015176 0.015176
3 0.6733 0.279678 0.294855
4 0.4799 0.163434 0.458288

2. t = a + (b - a)R.

Conjunto 19.3c

1.
6.

Conjunto 19.4a

1. En el ejemplo 16.4-1, longitud del ciclo 5 4. Con los nuevos parámetros el ciclado
no fue evidente después de que se generaron 50 números aleatorios. La conclu-
sión es que la juiciosa selección de los parámetros es importante.

Conjunto 19.5a

2. (a) Basado en observaciones.
(b) Basado en el tiempo.

3. (a) 1.48 clientes.
(b) 7.4 horas.

t = x1 + x2 + x3 + x4, donde xi = 10 + 10Ri, i = 1, 2, 3, 4.
y = - 1

10  ln(.0589 * .6733 * .4799 * .9486) = .401 horas.

4. (a) 0 … R 6 .2 : d = 0, .2 … R 6 .5 : d = 1, .5 … R 6 .9 : d = 2, .9 … R … 1 : d = 3.

9. Si 0 … R … p, entonces x = 0, de lo contrario x = aentero máximo …   ln (1 - R)
 ln q  b .

Conjunto 19.3a

4. Vea la figura B.15.

Conjunto 19.3b

1. clientes por hora.t = - 1
l  ln (1 - R), l = 4
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Conjunto 19.6a

2. Intervalo de confianza: 15.07 # m # 23.27.

CAPÍTULO 20

Conjunto 20.1a

1. (a) Sin puntos estacionarios.
(b) Mínimo en x 5 0.
(e) Punto de inflexión en x 5 0, mínimo en x 5 .63 y máximo en x 5 2.63.

4. (x1, x2) 5 (21, 1) o (2,4).

Conjunto 20.2a

1. (b) 

Conjunto 20.2b

3. Condiciones necesarias: La solución es

6. (b) Solución la cual es un punto mínimo.

Conjunto 20.2c

2. Puntos mínimos: (x1, x2, x3) 5 (214.4, 4.56, 2 1.44) y (4.4, .44, .44).

CAPÍTULO 21

Conjunto 21.1a

2. (c) x 5 2.5, logrado con D 5 .000001.
(e) x 5 2, logrado con D 5 .000001.

Conjunto 21.1b

1. De acuerdo con la expansión de Taylor =f(X) 5 =f(X0) 1 H(X 2 X0). La hes-
siana H es independiente de X porque f(X) es cuadrática. Además, la expansión
dada es exacta porque las derivadas de mayor orden son cero. Por consiguiente
=f(X) 5 0 representa X 5 X0 2 H21=f(X0). Debido a que X satisface =f(X) 5 0,
X debe ser óptima independientemente de la elección de la X0 inicial.

Conjunto 21.2a

2. Solución óptima: x1 5 0, x2 5 3, z 5 17.
4. Sea Entonces,wj = xj + 1, j = 1, 2, 3, v1 = w1w2, v2 = w1w3.

(x1, x2, x3, x4) = a - 5
74 , -10

74 , 155
74  , 60

74 b , 

xi = 2n C, i = 1, 2, Á , n. 0f = 2d2n C2 -n.

2axi -  xn
2

xi
 b = 0, i = 1, 2, Á , n - 1.

(0x1, 0x2) = (2.83, -2.5) 0x2
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ln v2 5 ln w1 2 ln w3 5 0, todas las variables son no negativas.

Conjunto 21.2b

1. Solución: x1 5 1, x2 5 0, z 5 4.
2. Solución: x1 = 0, x2 5 .4, x3 5 .7, z 5 2 2.35.

Conjunto 21.2c

1.

x1, x2, x3, y Ú 0
7x1 + 5x2 + x3 … 12
9x1

2 + 16x3
2 - y2 = 0

sujeto a 2x1 + 3x2 + 5x3 + 1.28y … 10
Maximizar z = x1 + 2x2 + 5x3

sujeto a v1 + v2 - 2w1 - w2 … 9,  ln v1 -  ln w1 -  ln w2 = 0, 

Maximizar z = v1 + v2 - 2w1 - w2 + 1
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A
Acertijo Sudoku como programación lineal

entera, 320
Actividad crítica en CPM

definición, 252
determinación de, 254

Algoritmo
aditivo, 336
de Barrier, 134. Vea también Algoritmo de

punto interior
de búsqueda, dicótomo, 699
de descomposición, 22.22-27 
de Dijkstra, 221-224. Vea también Algoritmo

de Floyd
de Floyd, 225-228. Vea también algoritmo de

Dijkstra
de Kamarkar. Vea Algoritmo de punto

interior
de punto interior, E.29-39
definición, 5
simplex generalizado, 164-165

Algoritmo de búsqueda tabú, 358-361
aplicación a TSP, 416-419
aplicación de PLE, 376-381

criterio de aspiración, 361
intensificación y diversificación, 361
lista tabú, 358
periodo de tenencia tabú, 358

Algoritmo de ramificación y acotamiento
agente viajero, 358 (TSP), 395-428
programación entera, 336-340

Algoritmo de recocido simulado, 365-371
aplicación a TSP, 420-422
aplicación de PLE, 382-386
condición de aceptación, 366
programa de temperatura, 366

Algoritmo del árbol de expansión mínima,
212-214

restringida, 363
Algoritmo del plano de corte

PLE (programación lineal entera), 344-348
TSP (agente viajero), 395-396

Algoritmo genético, 371-376
aplicación a la PLE, 386-391
aplicación al TSP, 423-426
códigos genéticos, 371
cruce, 371, 372
mutación, 371

Índice1

1Los números de página con prefijos se refieren a los capítulos y apéndices disponibles en el sitio web. Por ejemplo
22.3-7 se refiere a las páginas 3 a 7 del capítulo 22, y C.4-8 a las páginas 4 a 8 del apéndice C.
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Algoritmo simplex.
condición de factibilidad, 80, 85, 276
condición de optimalidad, 80, 85, 132, 276
operaciones en filas de Gauss-Jordan, 80, 85
pasos de, 85, 278
relaciones, 80
variable de entrada, 80, 276
variable de salida, 80, 276

Algoritmo simplex generalizado, 164-165
Algoritmo simplex primal. Vea Métodos de

algoritmo simplex
Algoritmo SUMT, 726
Algoritmos de programación entera

agente viajero
plano de corte, 410, 411
ramificación y acotamiento, 407-409

enumeración implícita. Vea Algoritmo aditivo
plano de corte, 344-348, 410-411
ramificación y acotamiento, 336-340

acotamiento, 338, 341
ramificación, 337, 341
sondeo, 338, 341

Algoritmos de programación no lineal,
699-727

Almacenamiento (de combustible), 13, 26.2-9
Alternativa óptima en PL, 102
AMPL, 31-34, 130, C.1-40

análisis de sensibilidad en PL, 108, 129-130
archivos de entrada

hoja de cálculo, C.23
lectura, C.16
tabla, C.18

archivos de salida
hoja de cálculo, C.23
impresión, C.17
tabla, C.21

comandos interactivos, C.24
componentes de, C2
conjuntos, C.3

indexados, C.14
subconjuntos, C.13-14

ejecución del modelo AMPL, C.26
expresión matemática, C.11-13
modelo algebraico, C3-10
modelo largo, C.1
modelos de ejemplo

capítulo 2, C.28
capítulo 5, C.28.30
capítulo 6, C.30-34
capítulo 8, C.37-38
capítulo 9, C.37-38
capítulo 13, C.38-40
capítulo 21, C.39-40

Análisis de casos
agente viajero

formación de imágenes de alta resolución
en Australia, 395

árboles de decisión
límites de reservación en hoteles,

26.54-56
colas

personal de ventas por teléfono en Qantas,
26.62-67

sistema de transporte interno, 26.59-61 
heurística

almacenamiento de combustible, 26.2-9
generación de petición de líneas en FedEx,

351
programación de eventos comerciales,

26.12-16
inventario

cadena de abasto de Dell, 26.56-58
modelo de asignación

programación de eventos comerciales,
26.48-50

PJA (Proceso de jerarquía analítica)
diseño de una instalación de manufactura

integrada por computadora (CIM),
26.51-54

probabilidades de Bayes
evaluación de Casey, 26.36-41

programación de metas
diseño de una instalación de manufactura

integrada por computadora, 26.41-48
hospital Monte Sinaí, 26.26-30

programación dinámica
corte de troncos en Weyerhauser,

26.41-48
programación entera

hospital Monte Sinaí, 26.26-30
organización de rutas marítimas, 26.20-26
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personal de ventas por teléfono en Qantas,
26.62-67

programación lineal
almacenamiento de combustible, 26.2-9
producción de válvulas cardiacas, 26, 9-12

ruta más corta
ahorro de dólares federales para viáticos,

26.16-19
sistema de transporte interno, 26.59-61
teoría de juegos

partidos de la Copa Ryder, 26.54-56
transportación

organización de rutas marítimas, 26.20-26
vidrio de construcción PFG, 26.30-36

Análisis de regresión, 23.6-8
utilizando programación matemática, 64, 305

Análisis de sensibilidad en
Método Jacobiano, 689
programación dinámica, 438 
programación lineal. Vea Programación lineal

Análisis postóptimo, 165-173. Vea también
Programación paramétrica

Aplicaciones de OR, seleccionadas. Vea Análisis
de casos

Árbol
de decisiones, 523-525
definición de, 210

Árbol de expansión
definición de, 210
solución básica en red capacitada, 22.9

Arte de modelado, 6
Atributo en una simulación, 654

B

Balanceo del modelo de transporte, 177-178
Base, 270
Base restringida, 709, 717

representación vectorial de, 270-271
restringida, 709-711

Bayes, probabilidades de, 492, 529-533
Bordes en el espacio de soluciones en PL, 78
Box-Mueller, método, 659
Bucle (o ciclo) en una red, 210
Búsqueda codiciosa, heurística, 352-356

C

Cadena de Markov ergódica, 578
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Markov
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Corte fraccionario, 346

Cortes en flujo máximo en la red, 235



782 Índice

problema del agente viajero, 395-396
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Karush-Khun-Tucker (KKT), condiciones,

694-695
Kendall, notación de 612
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condicional, 491
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colocación de rótulos cartográficos, 364
coloreado de mapas, 369
programación de horarios, 368
secuenciación de trabajos, 359, 367, 374

Método
congruencial multiplicativo para obtener

números aleatorios, 661
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conversión a incapacitada, 22.9
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MRP (planeación de requerimiento de
materiales), 471

Muestreo a partir de distribuciones de
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plano de corte, 410-411

algoritmos heurísticos
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restricción dual, 156-158
variables duales, 154-155. Vea también

Precio dual
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combinado, 316
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solución de enumeración exhaustiva,
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Razón insuficiente, principio de, 537
Recursividad hacia adelante, en programación
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Reducciones de precios, en el inventario, 465-468
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Revisiones periódicas de inventario, 458
Riesgo, tipos de, 535
Rotación de la aguja, experimento, 496
Ruta crítica, 252
Ruta, en redes, 210

S
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Tabla estadística de Chi (ji) cuadrada, 731
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diseño de, 142

Tablas estadísticas, 729
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Técnica del promedio móvil, 23.1-3
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Teoría de juegos, suma cero, 541-547
punto de silla, 543
solución óptima

gráfica, 545-547
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valor del juego, 543
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de espera en modelos EOQ, 461
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medio de retorno. Vea Cadenas de Markov

Toma de decisiones, tipos de, 535
certidumbre, 513-520
colas, E.30-33
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riesgo, 523-536
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Transpuesta de una matriz, D.3
TSP. Vea Problema del agente viajero

V

Valor
de un juego, 543
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definición de
unitario de un recurso. Vea Precio dual

Valor esperado, definición, 495
de variables aleatorias conjuntas, 497-498

VAM. Vea Método de aproximación de Vogel
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artificial en el método simplex, 89. Vea
también Método M

basada en el tiempo en simulación, 666
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667
básica, 74, 270
de exceso, 70
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valor óptimo de la 144-146
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implementar los diferentes algoritmos de programación lineal (simplex, simplex dual, simplex 
revisado y de punto interior) en códigos comerciales, con el in de incrementar la velocidad de 
cómputo y la precisión necesarias para resolver problemas muy grandes. 

• El nuevo capítulo 10 cubre la heurística y la metaheurística diseñadas para obtener buenas soluciones 
aproximadas a problemas de programación entera y combinatoria. 

• El nuevo capítulo 11, dedicado al importante problema del agente viajero, incluye varias aplicaciones 
y el desarrollo de algoritmos de solución heurísticos y exactos.

• Todos los algoritmos de los capítulos 10 y 11 se codiicaron en Excel para una agradable experimen-
tación interactiva con los modelos.

• En todos los capítulos se agregaron numerosos problemas nuevos.

• También se actualizó el sotware TORA. 

Para mayor información, visite:
pearsoneducacion.net/taha
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