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Preface

The purpose of this book is to supply a collection of problems in quan-
tum computing and quantum information together with their detailed so-
lutions which will prove to be valuable to graduate students as well as to
research workers in these fields. All the important concepts and topics such
as quantum gates and quantum circuits, quantum channels, entanglement,
teleportation, Bell states, Bell inequality, Schmidt decomposition, quantum
Fourier transform, magic gate, von Neumann entropy, quantum channels,
quantum cryptography, quantum error correction, coherent states, coherent
Bell states, squeezed states, POVM measurement, beam splitter, homodyne
detection and Kerr Hamilton operator are included. The topics range in
difficulty from elementary to advanced. Almost all problems are solved
in detail and most of the problems are self-contained. All relevant defi-
nitions are given. Students can learn important principles and strategies
required for problem solving. Teachers will also find this text useful as a
supplement, since important concepts and techniques are developed in the
problems. The book can also be used as a text or a supplement for linear
and multilinear algebra or matrix theory. Each chapter also includes sup-
plementary problems.

Most chapters also include programming problems in Maxima and Symbol-
icC++.

The material was tested in our lectures given around the world.
Any useful suggestions and comments are welcome.

The International School for Scientific Computing (ISSC) provides certifi-
cate courses for this subject. Please contact the first author if you want
to do this course. More quantum computing exercises can be found on the
web page given below.

e-mail addresses of the authors:

whsteebQuj.ac.za
steebwilli@gmail.com
yorick.hardy@wits.ac.za
yorickhardy@gmail.com

Home page of the authors: http://issc.uj.ac.za
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Notation

0
N
0

+

QOFRFBONZ

RTL

(Cn

H

i

wy, := exp(2mi/n)
ACB

ANB

AUB

empty set

natural numbers

natural numbers including 0
integers

rational numbers

real numbers

nonnegative real numbers

complex numbers

n-dimensional Euclidean space
n-dimensional complex linear space
Hilbert space

V-1

n-th root of unity n € N

real part of the complex number z
imaginary part of the complex number z
subset A of set B

the intersection of the sets A and B
the union of the sets A and B
composition of two mappings (f o g)(z) = f(g(x))
column vector in C"

transpose of x (row vector)

vector product in R?

norm

scalar product (inner product) in C"
scalar product in Hilbert space
vector product

direct sum of matrices A and B
Kronecker product of matrices A and B
tensor product of elements f and g
of Hilbert spaces

determinant of a square matrix A
trace of a square matrix A

rank of matrix A

transpose of matrix A

conjugate of matrix A

conjugate transpose of matrix A
conjugate transpose of matrix A
(notation used in physics)

xi



xii  Notation

I, n X n unit matrix

1 unit operator

U unitary operator, unitary matrix

II projection operator, projection matrix

P permutation matrix

o1, 02, O3 Pauli spin matrices

S1, Sa, S3 spin matrices for spin s = 1/2,1,3/2,2,...

P density operator, density matrix

[A,B]:= AB — BA commutator for square matrices A and B

[A,B]+ := AB+ BA anticommutator for square matrices A and B

0 Kronecker delta with d;;, =1 for j =k
and 0, =0 for j # k

E; elementary matrices with 1 at jk and 0 otherwise

A eigenvalue

€ real parameter

H Hamilton function

H Hamilton operator

{10),]1),...,jln—=1)} arbitrary orthonormal basis for C™

|®T), |®7), [TT),|¥~)  Bell states in C*

h h/2m with h the Planck constant

t time

w frequency

k wave vector

r space coordinates

p momentum

b, bt Bose annihilation and creation operators

[n) number states, Fock states n =0,1,2,...

18) coherent state, 8 € C

|) squeezed state, ( € C

D(p) displacement operator, § € C

S(¢) one-mode squeezing operator, ¢ € C

5 squeezing parameter

¢, cf Fermi annihilation and creation operators

E electric field

B magnetic induction

P electric polarization

The Pauli spin matrices are used extensively in the book. They are given

by
(0 1 (0 =1 (10
g1 i — 1 0 5 g9 = i 0 5 g3 i— 0 —1 .

The spin—% matrix Sy, Sp, S3 are given by S; = %01, So = %O’Q, Ss = %O’g.



Notation xiii

The Dirac gamma matrices are given by
N=-02Q01, Y2=02Q03 Y3=02803 Y1=03Q .

The concept of a Hilbert space will be used throughout the book. A Hilbert
space is a set, H of elements, or vectors, (f,g,h,...) which satisfies the
following conditions (1) -- (5).

(1) If f and g belong to H, then there is a unique element of H, denoted
by f + g, the operation of addition (4) being invertible, commutative and
associative.

(2) If ¢ is a complex number, then for any f in H, there is an element cf of
‘H; and the multiplication of vectors by complex numbers thereby defined
satisfies the distributive conditions

c(f +g)=cf +cg, (c1+e)f=cif teof.

(3) Hilbert spaces H possess a zero element, 0, characterized by the prop-
erty that 0 4+ f = f for all vectors f in H.

(4) For each pair of vectors f, g in H, there is a complex number (f|g),
termed the inner product or scalar product, of f with g, such that

(flg) = (gl f)

(flg+h) = (flg) + (f|h)
(fleg) = ¢(flg)

and

(fIf) = 0.

Equality in the last formula occurs only if f = 0. The scalar product defines
the norm || f[| = (ff)"/*.

(5) If { f } is a sequence in H satisfying the Cauchy condition that

as m and n tend independently to infinity, then there is a unique element
f of H such that ||f, — f]]| = 0 as n — oo.

Let B ={¢, : n € I} be an orthonormal basis in the Hilbert space H. I
is the countable index set. Then

D) (Djlor) = 5k



xiv  Notation

2 N\ =D fle)e

feHr jel

(3) N (Flg) =D (Fle)gls))
f9€H jel

(4) N (fe)=0]| = f=0
¢;€B

B N\ AP =D Ko
feH jel

Let f,g € H. Then we have the inequalities

[(F <A1 Ngl
I1f+gll <[ Fl1+ gl

and the equality

1F + gl +11f = glI* = 20117 + llgl®).

We will also use the so-called Dirac notation. Let H be a Hilbert space and
H. be the dual space endowed with a multiplication law of the form

where ¢ € C and ¢ € H. The inner product can be viewed as a bilinear
form (duality)
(:]") : HixH—=>C

such that the linear maps
(@l = (oY), (| Ho o> H
) = ¢ = (oY), |) + H—H,

where prime denotes the space of linear continuous functionals on the cor-
responding space, are monomorphisms. The vectors (¢| and |¢) are called
bra and ket vectors, respectively. The ket vector |¢) is uniquely determined
by a vector ¢ € H, therefore we can write |¢) € H.



Part 1

Finite-Dimensional
Hilbert Spaces
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Chapter 1

Qubits

1.1 Introduction

A single qubit is a two-state system, such as a two-level atom. The states
(kets) |h) and |v) of the horizontal and vertical polarization of a photon can
also be considered as a two-state system. Another example is the relative
phase and intensity of a single photon in two arms of an interferometer.
The underlying Hilbert space for the qubit is C2. An arbitrary orthonormal
basis for C? is denoted by {|0), |1) }, where (scalar product)

o) =y =1, (1) = 10) =0.

Any pure quantum state |¢) (qubit) of this system can be written, up to a
phase, as a superposition (linear combination of the states)

[¥) = al0) +8I1), la*+]8° =1, a,BeC.

The classical boolean states, 0 and 1, can be represented by a fixed pair of
orthonormal states of the qubit. The standard basis in C? is given by

and the Hadamard basis in C? is given by

-1 51

3



4 Problems and Solutions

Up to an overall phase an arbitrary normalized state in C? can be written
as
e'? cos(6)
V) = ( sin(f) /-
For any orthonormal basis {|0),[1)} in C? we have
0)(0] + [1)(1] = I2

where o is the 2 x 2 identity matrix. The 2 x 2 matrices

[0)(of,  [1)(1]
are projection matrices with

|0)(0[1){1] = 0.

Furthermore
(10) (1 + [1)(0))? = [1)(1] + [0){0] = L.

Given two normalized states [¢), |¢) in C2, then 0 < |[(1|¢)|? < 1 provides
a probability. Let |¢) € C? and normalized. Then

p=[¥){¥]

is a density matrix (pure state). We have

p? = ) (l) (Wl = [¥) (W] = p.

If the qubit represents a mized state one uses a two-dimensional density
matriz p for its representation. We therefore express one qubit as

(12 + ni101 + ngooo + TL30'3)

| —

1
p25(12+n'0)5

where n € R3,
n-n=ni+n;+ni<l

and o = (01,09, 03) denote the Pauli spin matrices

0 1 0 —i 10
n=(1a) (0 0) =00 )

For pure states we have n-n =1 and p = |¢)(¢0|. The Pauli spin matrices
are hermitian and unitary and admit the eigenvalues +1 and —1.
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1.2 Solved Problems

Problem 1. Any normalized state (qubit) in C? can be written as

(g), 0, BEC, |of + |82 =1.

Find a parameter representation (i) if the underlying field is the set of real
numbers (ii) if the underlying field is the set of complex numbers.

Solution 1. (i) Using a = cos(f), 8 = sin(f) and the identity cos?(6) +
sin?() = 1 for all € R we have

cos(0)
sin(9) ) -
With the map 8 — 6 + 7/2 we can construct the orthonormal basis
cos(6) cos(f+m/2)\ [ —sin(6)
sin(6) J’ sin(0+m/2) ) \ cos(9) )’
(ii) We have as a representation
e'? cos(#)
sin(#)
where 6, ¢ € R and e*?e~" = 1.
Problem 2. Consider the normalized states in C? (61,60 € [0,27))
cos(61) cos ()
sin(6) )’ sin(fy) ) -

Find the condition on 6; and 65 such that the vector
cos(61) n cos(62)
Sin(@l) sin(92)

Solution 2. From the condition that the vector

(ot contn))

is normalized.

is normalized we obtain (sin(6;) +sin(62))? + (cos(#1) +cos(62))? = 1. Thus

1 1
sin(6y) sin(f2) + cos(#y) cos(62) = -5 = cos(fy — 03) = —3



6 Problems and Solutions
Therefore, 1 — 03 = 27/3 or 0 — 03 = 47/3.

Problem 3. Let {]0),|1)} be an orthonormal basis in the Hilbert space
R? and A :=[0)(0] + |1)(1]. Consider the three cases

ow=(g).  m=(})

om0 w-5()

o (3). ()
Find the matrix representation of A in these bases.

Solution 3. We find

(10 00\ (10

® A‘(o 0>+<0 1)_(0 1>

. 1/1 1\ 1/1 -1 10

(i) A_2<1 1)+2<—1 1)‘(0 1)
+

-, _ cos?(0) cos(#) sin(6) sin?() — cos(0) sin(0)
(iif) A (cos(@) sin(6) sin?(#) ) ( — cos(6) sin(6) cos?(6) >

(5 %)

For all three cases A = I, where I is the 2 X 2 unit matrix. Obviously, the
third case contains the first two as special cases. This is the completeness
relation.

Problem 4. Let {|0),|1) } be an orthonormal basis in the Hilbert space
C2. The NOT operation (unitary operator) is defined as

0) = (1), [1) = 0).

(i) Find the unitary operator Uyor which implements the NOT operation
with respect to the basis { ]0), |1) }.
(ii) Consider the standard basis

0-() 0-()

Find the matrix representation of Uy for this basis.
(iii) Consider the Hadamard basis

-5 w-n ()
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Find the matrix representation of Uy for this basis.

Solution 4. (i) Obviously, Unor = |0)(1] + |1){0] since (0|0) = (1]1) =1
and (0[]1) = (1]|0) = 0.
(ii) For the standard basis we find

0 1
Unor = (1 0)-

(iii) For the Hadamard basis we find

1 0
Unor = (0 _1>-

Thus we see that the respective matrix representations for the two bases
are different.

Problem 5. Let |0), |1) be an orthonormal basis in C2. The Walsh-
Hadamard transform is a 1-qubit operation, denoted by H, and performs
the linear transform

0) = —=(10) +[1)), 1) = \%(I@ = 1)

1
V2
(i) Find the unitary operator Uy which implements H with respect to the
basis { |0), |1) }.

(ii) Find the inverse of this operator.
(iii) Consider the standard basis

in C2. Find the matrix representation of Uy for this basis.
(iv) Consider the Hadamard basis

1 1 1 1
O=—(,], m=—1
m=7(1) w=7(4)
in C2. Find the matrix representation of Uy for this basis.

Solution 5. (i) Obviously,
1 1

Un = E(I(D + [1){0] + ﬁ(|0> — )
1 1
= EIOWOI + (1) + \ﬁ|1>(<0| - (1]).
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(ii) The operator Uy is unitary and the inverse is given by Uy = Uf =Un,
where * denotes the adjoint.
(iii) For the standard basis we find

-t 1)

(iv) For the Hadamard basis we find

1 /1 1
=71 4)
We see that the matrix representations for each of the two bases are the
same.

Problem 6. The Hadamard operator on one qubit can be written as

Un = %((I@ + )01+ (10) = [1)){1])-

Calculate the states Ug|0) and Ug|1). Calculate Uy Up.

Solution 6. We obtain the normalized states

1 1
V2 V2
Since (0]|0) = (1]1) = 1 and (0|1) = (1]0) = 0 we obtain

Unl0) = —=(10) + (1)),  Unl[1l) = —=(10) — [1)).

UnUn = |0)(0[ + [1)(1] = I

where T is the identity operator (2 X 2 unit matrix).

Problem 7. Let 01, 02, 03 be the Pauli spin matrices and I5 be the 2 x 2
unit matrix. Consider the Hilbert space C? and the linear operator (2 x 2
matrix)

3
1
IM(n) := 3 I, + E n;0;
i=1

where n := (ny,n2,n3) (n; € R) is a unit vector, i.e. n3 +n3 + n% = 1.
(i) Describe the properties of II(n), i.e. find IIf(n), tr(II(n)) and T1?(n).
(ii) Find the vector (¢,0 € R)

o (455
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Solution 7. (i) For the Pauli matrices we have 0’1[ =01, U; = 09, og = 03.

Thus II(n) = I (n). Since tr(oy) = tr(og) = tr(o3) = 0, tr(I3) = 2, and the

trace operation is linear, we obtain tr(Il(n)) = 1. Since 0? = 03 =03 = I

and
[01,02]+ =02, [02,03]4 =02, [03,01]+ =02

where [A, B]; := AB + BA denotes the anticommutator, the expression

3 3
1 1
:ZIQ+§anO'j+ZZannko'jo—k
simplifies to
H2(n):112+1§3:n-0-+1§:n2-1'2
4 2j:1 77 4j:1 7

Using n? +n3 +n3 = 1 we obtain I1?(n) = II(n). Thus II(n) is a projection
matrix.

(i) We find

0 e?cos(0)\ _ 1 ((1+ng)e™ cos(f) + (n1 — inz) sin(0)
¢ ( sin(0) ) 2 ((nl +ing)e’ cos(0) + (1 — n3)si (9)) ’

Problem 8. The qubit trine is defined by the following states

o) =10 ) = —510) = 2. o) = —2i0) + L)

where {]0), 1) } is an orthonormal basis. Find the probabilities

[(olwon)?, [(Wrl2)?,  [(waltbo)]?.

Solution 8. Using (0|0) = 1, (1]1) =1 and (0|1) = 0 we find
1 1 1
(Wolvn)P = 7. k)l = 7, [{w2luo))® = 7.

Problem 9. The kets |h) and |v) are states of horizontal and vertical
polarization, respectively. Consider the normalized states

9) = —5 (1h) + VE)
[92) = —5 (1R) — V3lu))
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) = R

61) = %(—vw V262 )

62) = %(—vw V33
1

63) = = (<18 + V).

Give an interpretation of these states.

Solution 9. Since (hlh) = (v

v) =1 and (v|h) = (h|v) = 0 we find

1 1 1
rlge) = =5, (hilds) =5, (¥alvs) = —3.
Since the solution to cos(a) = —1/2is given by a = 120° (27/3) or o = 240°
(47 /3) we find that the first three states [11), [1)2), |1)3) correspond to states
of linear polarization separated by 120° (27/3). We find the scalar product

-5

The states |¢1) and |¢2) correspond to elliptic polarization and the third
state |¢3) corresponds to linear polarization.

e'? cos(f)
) = < sin(f)
be a normalized state in the Hilbert space C2?, where ¢,0 € R. Find the
density matrix p := [1) (1], tr(p) and p%.

(¢1]¢2)

Problem 10. Let

Solution 10. Since
(¥ = (7' cos(8),sin(9))
we obtain the 2 x 2 density matrix

_ _ cos?( e’ sin() cos(6)
p =)= (e"¢ sin(6) cos(6) sin®(6) > '

Since cos?(#) + sin?(f) = 1 we obtain that tr(p) = 1. With (¢|¢) = 1 we
obtain p* = (|¢))(¥])* = [V)(LI¥)(¥] = [¥)(¥| = p. Thus we have a pure

state.

Problem 11. Given the Hamilton operator H = hwo.
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(i) Find the solution

(1)) = e~ /P y(t = 0))

of the Schridinger equation

od A
ih-o ) = Hl)

with the initial conditions

(ii) Find the probability |(¢(t = 0)|(t))|?.
(iii) The solution of the Heisenberg equation of motion

doy

ih
Nt

= [USvﬁ](t)

is given by A
Jg(t) _ eth/hO'3€7th/h

where o3(t = 0) = 03. Calculate o3(t).
(iv) Show that ((t = 0)|os(t)|1(t = 0)) = (P(t)]os](1)).

Solution 11. (i) The solution of the Schrodinger equation is given by
[$(t)) = exp(—iHt/h)|3(t = 0)).
Since 0} = I we find the unitary matrix

exp(—im/sz(t):( cos(w?) "'Sin(‘*’”).

—isin(wt)  cos(wt)

Thus the normalized state at time ¢ is

sy =u () = (%)

(i) We find the probability |(1(t = 0)]1(¢))|* = cos?(wt).
(iii) Since the commutators are given by

[O’g,H] = hw[ag,al] = 2ih,{,d0'27 [UQ,H] = hw[ag,al] = —27;77,0.)0’3
we obtain the linear system of matrix-valued differential equations

d
%2 _ —2wos(t)
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with the initial conditions o3(t = 0) = o3 and o2(t = 0) = 09. Here we used
the Heisenberg equation of motion for o2 to obtain the second differential
equation. The solution of this system of matrix-valued linear differential
equations is given by

o3(t) = o3 cos(2wt) + o9 sin(2wt)

o2(t) = 09 cos(2wt) — o3 sin(2wt).

(iv) We find
(¥t = 0)|os(t)[4(t = 0)) = cos(2wt)

and
((t)|os)i(t)) = cos?(wt) — sin?(wt) = cos(2wt).

Problem 12. Consider a Mach-Zehnder interferometer in which the
beam pair spans a two-dimensional Hilbert space with orthonormal basis
{0}, |1) }. The state vectors |0) and |1) can be considered as orthonormal
wave packets that move in two given directions defined by the geometry of
the interferometer. We may represent mirrors, beam splitters and relative
Up phase shifts by the unitary matrices

0 1 1 /1 1 ex 0
ou=(V0) v=75 (0 4) e (5 V)

respectively. Consider the density matrix
pin = 10)(0|
where {]0), |1) } denotes the standard basis. Using this basis find
pout = UpUntUpUppin ULULUT UL,
Give an interpretation of the result.

Solution 12. Since

= 1001= (5 ) 00 = (5 1)

1

UgUpnUpUp = 5 <

and ) )

eX+1 ex —1
—eX 41 —eix —1
we obtain

1 (1+cos(x) isin(x) )

Pout =5\ 4 sin(x) 1 —cos(x)
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This yields the intensity along |0) as I o< 1 + cos(x). Thus the relative Up
phase x could be observed in the output signal of the interferometer.

Problem 13. Let {|0),|1)} be an orthonormal basis in C2.
(i) Find the commutator [|0)(1],|1){0]].

(ii) Find the operators exp(t|0)(1|) and exp(¢|1)(0]).

(iii) Find the operator exp(¢]0)(1]) exp(¢|1)(0]).

(iv) Find the operator exp(t(|0)(1] + |1)(0])).

(v) Ts exp(t(]0) (1] + |1)(0])) = exp(t0){1]) exp(]1)(0])?

Solution 13. (i) We have

[I0><1I, [1){O0] | = [0){0] — [1)(1]

since (0]0) = (1|1) =1 and (0|1) = (1|0) = 0. We see that the commutator
is nonzero.
(ii) Since (0]1) = (1|0) = 0 we find

exp(t0)(1]) :Z (10)(1])? = I, + t|0)(1].
O

Analogously

o}

exp(t[1)(0]) :Z (J1)(0)? = Iy + t[1)(0|.
0

(iii) Multiplying the results found above we obtain
exp(t[0) (1]) exp(t[1)(0]) = Iz + ¢(|0) (1] + [1){0]) + ¢*[0)(0].
(iv) Since (]0)(1] 4+ |1)(0])? = I, we obtain

s > t2]+1
exp(t[0)(1] 4 ¢[1)(0]) Z ,12+Z 270 (0) (1] + [1)(0])
j= O

= h( )Iz + sinh(#)(|0) (1] + [1){0])-

(v) Clearly when t # 0 we have

exp(£(|0) (1] + [1)(0])) 7 exp(¢[0)(1]) exp(¢|1)(0]).

Problem 14. Consider the unitary matrix for the NOT gate

0 1
Unor = (1 0)-
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Show that we can find a unitary matrix V such that V2 = Uyor. Thus V
would be the square root NOT gate. What are the eigenvalues of V7

Solution 14. We find the unitary matrix
1144 11—
V=3 <1i 1+i)'
Obviously —V is also a square root. The eigenvalues of V" are 1 and ¢. The

eigenvalues of —V are —1 and —i. Note that the eigenvalues of Uyor are
1 and —1 and V1 = +1, /=1 = +i.

Problem 15. Let 01,035,053 be the Pauli spin matrices. Let n be a unit
vector in R3. We define the operator

Yi=n-o= Nn101 + Noog + N303.

(i) Calculate the matrix 2. From this result and the fact that X is hermi-
tian show that X is unitary. Find the eigenvalues of 3.

(i) Let
=)

Calculate the state X|1) and the probability |{1|S[)|2.

Solution 15. (i) Using n? + n3 +n2 =1, 03 = 0 = 0% = I and
0102 + 0201 =02, 0103+ 0301 =02, 0203+ 0302 =02
we obtain
2 = (101 + ngoy + nzos)?
= (n% + n% + n%)lg

+ning (o102 + 0201) + ning(o3o1 + 0103) + nans(o203 + 0302)
=1I.

Since ¥ is hermitian, i.e. ¥ = ¥* and 2 = I, we find that ¥ is a unitary
matrix with ¥ = X~!. Since ¥ is hermitian and unitary the eigenvalues
A1, A2 can only be +1. Since tr(X) = 0 = A1 + A2 we obtain that the
eigenvalues are +1 and —1.

(ii) We find
Sle) = (?) + (S) + g (é) .

It follows that |(1|X]y)|? = n3.
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Problem 16. Let n be a unit vector in R?, o = (01, 09, 03) and
n-o :=nj01 + N0 + N303.

(i) Find the unitary matrix exp(ifn - o), where 6 € R.
(ii) Find the normalized state

exp(ifn - o) (é) :

Solution 16. (i) Since

3
00 = 5jk12 +1 E €jke0Y¢
=1

where €123 = €231 — €312 = 1, €321 = €213 — €132 = —1land 0 Otherwise, we
obtain

exp(ifn - o) = Iz cos(f) + i(n - o) sin(6)
_ (cos(@) +ingsin(f) i(ny — ing)sin(6) )
i(n1 +ing)sin(f) cos(d) — ingsin(f) / °

Note that we could also use (n- )% = I to find the result.
(ii) Using (i) we find the state

et ) () = (o0 L))

Problem 17. Consider the Hamilton operator

FIZM(O a)
a 1

where av > 0. Find « where the energy gap between the two energy levels
is the smallest.

Solution 17. From the eigenvalue equation we find E? — hwE = h2w?a?.
Consequently

Eola) = hw(l —V1+a2), Ei(a)=h(l+1+a2).

Thus
Ei(a) — Ey(a) = 2hwv1 + a2,
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Therefore the shortest energy gap is for a = 0.
Problem 18. Consider the Hamilton operator

FIZHMU3+AO’1:<M A >

A —hw

where A > 0. R
(i) Find the eigenvalues and the normalized eigenvectors of H.
(ii) Use the Cayley-Hamilton theorem to calculate exp(—iHt/h).

Solution 18. (i) From det(H — EI,) = 0 we find the two eigenvalues
Ei = +Vh2w? + A2
We set E := v/h2w? + A2. Then from the eigenvalue equation
(5 ) ()= ()
A —hw Us T\ ug

for the eigenvalue F = F we find Aug = (E—hw)uy. Thus the eigenvector

is given by
A
(&%)

A2+(1E—hw)2 (EAhw)'

Analogously we find for the eigenvalue E_ = —FE the normalized eigenvec-
tor

After normalization we have

e ()
A2+ (E+hw)2 \—E—-hw)’
(ii) Since F4 # E_ and Ey = E, E_ = —E we have to solve the system of

equations
e—zEt/ﬁ = ¢ + ClE, ezEt/h =cy— C]_E

for ¢y and ¢;. Then

67iﬁt/h=0012+81ﬁ= (Co+C17?w A )

ClA Co — clhw
The solution of the system of equations is given by

e~ Bt/ _ giBt/h _iin(Et/h
co = cos(Et/h), ¢ = 2 - é / )
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Thus

—ifit)n _ [ cos(Et/h) —isin(Et/h)hw/E —isin(Et/h)A/E
€ - ( —isin(Et/h)A/E cos(Et/h) +isin(Et/h)hw/E) '

Obviously, exp(—iHt/h) is a unitary matrix.

Problem 19. Consider the Pauli spin matrices o1, 02, 03. Can one find
an « € R such that exp(iaos)o; exp(—iaos) = 09?

Solution 19. We have

) ) 0 62104
exp(iaos)o exp(—iaos) = (egm 0 > .

Thus we have to solve the equations exp(2ia) = —i, exp(—2ia) = i. For

a € [0,27) we obtain o = 37 /4.

Problem 20. Let n and m be a unit vectors in R?, o = (01, 09, 03) and
n-o:=njoy + No02 + N303.

Calculate the commutator n- o, m- .

Solution 20. We find

[h-o,m- o] =2i((noms — man3)o1 + (n3my — mgni)os
+(n1mo — ming)os)

=2ilnxm)- o

where x denotes the vector product. The vector n X m is perpendicular to
the plane spanned by the vectors n and m.

Problem 21. Let [¢1) and |¢2) be two normalized states in a Hilbert
space H. A distance d with 0 < d < 7/2 can be defined as

cos(d) := |(¢1|2) ]2

Let H = C? and consider the normalized states
1 1 1 1
Find d.

Solution 21.  Since (11]1)2) = 0 we have cos?(d) = 0 and therefore
d=m/2.
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Problem 22. Let p; and ps be density matrices in the same Hilbert
space. The Bures distance between the two density matrices is defined as

Dg(p1,p2) := \/2(1 - tr((p1/2p2p%/2)1/2))_

Consider the density matrices

(1 0 _(1/2 0
Pr=\o o) r2=1 9 1/2
acting in the Hilbert space C2. Find the Bures distance.
2 (10
P1 =p1= 0 0
/2 1/2 1/2 0
P1/ P2P1/ = ( (/) 0) .

Thus Dp(p1,p2) = 1/2(1 —1/v/2).

Problem 23. (i) Consider the Hilbert space C2. Show that

1(1 —i 1/1 i
HS_2(i 1)7 HA_Q(—Z' 1)

are projection matrices.
(ii) Decompose the Hilbert space into sub-Hilbert spaces using the result
from (i).

Solution 22. Since

we obtain

Solution 23. (i) We have
g =M%, MOF=1g, Tlx=1II%, O} =1,

and IIg + 114 = Io, IIgll4 = 0.
(ii) Consider the normalized state

Then

_ (€ sin(f) —icos(0) _( €®sin(0) +icos(0)
Ts|y) = <iei¢ sin(#) + cos(6) > > Haly) = <iei¢ sin(9) + cos(&))

with ([IToIIg|) = 0.
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Problem 24. Let o1, 02, 03 be the Pauli spin matrices. Consider the
normalized state in C?

(€ cos(0) . 0
1/)—( sin(6) ) = " = (e Pcos(d) sin(0)).

Find the vector v = (v vz v3)T in R? with

v =¢torp, vy =Yooy, vz =yYrosy.
Is the vector v normalized?
Solution 24. Utilizing that

e e =2cos(¢), ie'? —ie ' = —2sin(¢),

cos(#) sin(f) = = sin(26), cos?(6) — sin?(0) = cos(26)

[N

we obtain

vy = Y* 019 = cos(¢) sin(20)
vy = P¥ o9t = — sin(¢) sin(26)
vz =" o31) = cos(26).

The vector
vy cos(¢) sin(26)
v=| w2 | =| —sin(¢)sin(20)
U3 cos(26)

is normalized, i.e. ||v|? = 1.

Problem 25. (i) Consider the symmetric matrix over R

hit hio
H =
(hm h22)

([ cos(0)
= (%50 )
Calculate the variance Vi (1)) := (¢|H? b)) — ((xb|H|1b))?.
(ii) Consider the Hadamard matrix

m= )

and the normalized state
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and the normalized state
_ (cos(9)
W)= (m(e)) '

Calculate the variance V(1) := (|H?|vb) — ({(4p|H|b))? and discuss the
dependence on 6.

Solution 25. (i) We find
(Y| H?|9b) = h3, cos®(0) + h2, sin?(0) 4+ h2, 4+ 2h12(hiy + hao) cos(6) sin(h)
and

(| H )2 = h2, cos*(0) + h3ysin®(0) + 2h11has cos?(6) sin®(6)
+4hi1h1a 0083(0) sin(@) + 4hoshio COS(@) Sin3 (9)

Thus

Vi (J9)) = (b3, + h3y — 2h11has) sin®(0) cos®(6) + hiy(1 — 4 cos () sin®(0))
+2h12h11 sin(6) cos(0) (1 — 2 cos?(6))
+2h12ho sin(f) cos(h) (1 — 2sin(h)).

(ii) Using that H? = I, we have

Vir(8) = (01D l) — ((IHI)? = 1~ 3 (cos(26) + sin(20))?
= %(1 — sin(46)).
For 8 = 0 we have V(1) = 1/2. The minimum value is 0, for example for
6 = w/8. The maximum value is 1, for example for § = 37/8.
Problem 26. Let cf, ¢ be Fermi creation and annihilation operators with
el dy =cledect =T

and (cf) = 0, ¢ = 0, where I is the identity operator and 0 the zero
operator. Consider the Hamilton operator

H= ﬁwl(ech + e_i‘bc) + hwacte

and the basis |0), ct]0). The dual basis is (0], (0|c. Find the matrix repre-
sentation of H and the eigenvalues of the matrix.

Solution 26. We obtain

HI|0) = hwie™cf|0)
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Hct0) = hwie™|0) + hwsct|0).

Hence we obtain the matrix representation of H

0 hwle*”’
hwl 6i¢ ha}g )

The eigenvalues are given by
hw 1 7

Problem 27. Let o1, 02, 03 be the Pauli spin matrices and Is the 2 x 2
identity matrix. Find the eigenvalues and normalized eigenvectors of the
Hamilton operator

H= 80]2 + hw0'3 + Alﬂ'l —+ AQUQ

where ¢y > 0. Are the normalized eigenvectors orthonormal to each other?

Solution 27. In matrix form we have the (hermitian) 2 x 2 matrix

- go+hw Ay —ilAy
o A1+iA2 8077?&) ’

From
det(H — EL) = (e + hw — E)(e — hw — E) — (A1 +iA)(Ay —iAy) =0
we obtain the characteristic equation
E? —2e0F + ¢ = h2w? + A2 + AZ,

Thus the two eigenvalues E, E_ are

E:t :Z:'(]Zl: \/h%ﬂ +A% +A§

Let S := \/h?w? + A? + A3. For the eigenvector of E; we have to solve
g0 + hw Al - ZAQ V1 - E U1
Al + iAQ o — hw (%] o (%]

(80 + hw)vl + (Al — iAQ)’UQ =F v = (E() + S)Ul
(Al + iAQ)’Ul + (80 — hw)'UQ = (50 + 5)1)2.

or
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We can set v; = S + Aw. Thus vo = Ay +iAs. After normalizing we have
the eigenvector

1 <S+hw>
VS + )2+ A2 AZ \ A1 +ihy )

Analogously for E_ we obtain the normalized eigenvector

1 <A1—iA2>
VS +hw)+ AT+ AZ\ —S—Tw /-

Obviously the two eigenvectors are orthonormal to each other, i.e. the
scalar product vanishes. The eigenvectors do not depend on ¢.

Problem 28. Let A and B be n x n hermitian matrices. Let [¢) be a
normalized state in the Hilbert space C". Then we have the inequality

(AA)(AB) > (4, B])|

IV
N —

where

AA:=/(A?) — (A2,  AB:=/(B?)— (B)2
and
(A) == (WlAly),  (B):= (Y|Bly).

Consider the hermitian spin-% matrices

1(0 1 1(0 —i 1
51_2<1 o)’ S2_2<z‘ 0)’ 5=

Let A=S; and B = S,. Find states |)) such that

(AA)(AB) =,

[([4, B])|

i.e. the inequality given above should be an equality.

Solution 28. For the commutator we find [S1, Sa] = iS5. Now

1
S1=83=8= 1k

We set
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with ¢1¢f + coch = 1 (normalization). Thus we have for the right-hand side

of the equality
Ll o« (1 0 et 1 o 9
1 (ci 02)<0 1> (02)‘4“’17"2

where we set ¢ = 11€'?1, cg = roe’®2. Now we have

1 1

AS] = <Z_[2> — <Sl>2 = 5\/1 — (CTCQ + 0103)2
1 1

ASy = ([(712) = (82)2 = 54/1 - (165 — ciea)?.

Thus for the left-hand side we find

SHIA, B = Z1(lissls) =

(AS1)(ASy) = \f\/l (c1c5)? — (cfc2)? \[\/1 2rirs cos(2(¢1 — ¢2)).

Thus the condition from the equality is

1 1
——=1/1—2r#rZ cos(2(¢1 — ¢2)) = ~|r] — 73]
2\/5\/ 113 cos(2(¢1 — ¢2)) 4|7“1 T2

Problem 29. Consider a d-dimensional Hilbert space with two orthonor-
mal bases

[b11), |b12), ... |b1a) € B4
b21), |boa), ... |bog) € Bo.
The two bases are said to be mutually unbiased bases if
1
Vd

for all j,k = 1,...,d and (]) denotes the scalar product in the Hilbert
space. Consider the Hilbert space Ma(C) of 2 x 2 matrices over C, where
the scalar product is defined as

|(b2;|b1r)| =

(A|B) = tr(AB*), A, B € My(C).

Thus d = dim(M3(C)) = 4. The standard basis in this Hilbert space is
given by

1 0 0 1 0 0 0 0
E11=<0 0)7 E12=<0 0>7 E21=<1 0>7 E22=<0 1)-
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Let Uy be the Hadamard matrix

1 /1 1 .
UH—\@<1 _1>, Uy = Un.
Show that the matrices Ejk (4, k=1,2)
Ej=UnpEpUfy, j.k=1,2

and the standard basis form mutually unbiased bases.

Solution 29. Straightforward calculations yield

~ " 1/1 1
Enw=UgEnUg = < ( )

2\1 1
- L 1(1 1
Ei1o=UnErUp = 3 <1 _1>
- o1 /1 1
Ey =UpgEnUp = 3 <1 1>

~ o1/ 1 -1
Eo =UpExUpn = - ( ) .

It follows that 1

|tI‘(E1jE2k)| = 5 for all ],k = 1,2
Thus we have mutually unbiased bases. Apply the vec-operator to the
matrices E;, and Ej, (j,k = 1,2) to find mutually unbiased bases in the
Hilbert space C*.

Problem 30. Let 29 = ct. We define a linear bijection, h, between R*
and H(2), the set of complex 2 x 2 hermitian matrices, by

To + 21 {EQ—’L'I'3>

o, L1,T2,T3) — .
(07 1,42, 3) (.’L'Q"‘ng xo — T1

We denote the matrix on the right hand side by H.

(i) Show that the matrix can be written as a linear combination of the Pauli
spin matrices and the identity matrix Is.

(ii) Find the inverse map.

(iii) Calculate the determinant of the 2 x 2 hermitian matrix H. Discuss.

Solution 30. (i) We have H = xols + 103 + x201 + 2302.
(ii) Consider (a,b € R)

a c\ _(®x+mT1 T2—1T3
¢ b)) \xo+irs zo—71 /)
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Comparing the entries we obtain

a+b a—2>b c+c* c—c
€r1 = To = X .
9 ’ 1 2 5 2 3 2%

o =
(iii) We obtain
det(H) = x3 — 23 — 23 — 3.

This is the Lorentz metric. Let U be a unitary 2 x 2 matrix. Then
det(UHU™) = det(H).

Programming Problems

Problem 1. Consider the unary gates (2 x 2 unitary matrices)

0 1 1 1 1
N‘(1 0)’ H_2(1 —1)’
1 0 1 0
V:(O em/Q)a W:(O e1'7r/4)
and the normalized state
1 1
w=7(1):

Calculate the state NHVW|i) and the expectation value (| NHVW ).

Solution 1. Applying the Maxima program

/* unary.mac */

N: matrix([0,1],[1,0]);

H: matrix([1/sqrt(2),1/sqrt(2)],[1/sqrt(2),-1/\sqrt(2)1);
V: matrix([1,0], [0,exp(%ix¥%pi/2)]);

W: matrix([1,0], [0,exp(%i*%pi/4)]1);

psi: matrix([1/sqrt(2)], [1/sqrt(2)]1);

psiT: matrix([1/sqrt(2),1/sqrt(2)]1);

R1: N . H. V . W; Rl: ratsimp(R1);

R2: R1 . psi; R2: ratsimp(R2);

R3: psiT . R2; R3: ratsimp(R3);

we find the unitary matrix

1 1 _ei37'r/4
NHVW—\/§<1 ei37r/4 )
the normalized state

1 1— e1'37'r/4
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and

WINHVWI) = .

Problem 2. Consider the Pauli spin matrix ¢; and the normalized state

in C? ®
cos(60
v = (o))
Calculate the variance

Vo, (v) = (Wlot i) — (¢lon]1))?

and discuss the dependence on 6

Solution 2. The following Maxima program

/* Variancesigl */

sigl: matrix([0,1],[1,0]);

sig2: matrix([0,-%il, [%i,0]1);

sig3: matrix([1,0],[0,-11);

psi: matrix([cos(theta)], [sin(theta)]);

psiT: transpose(psi);

Vsl: psiT . (sigl . sigl) . psi - (psiT . sigl . psi)~2;
Vsl: trigsimp(Vsl);

D1: diff(Vsl,theta);

list: solve(D1=0,theta);

thetal: rhs(part(list,1));

theta2: rhs(part(list,2));

theta3: rhs(part(list,3));

theta4: rhs(part(list,4));

r11l: subst(thetal,theta,Vsl); ri12: subst(theta2,theta,Vsl);
r13: subst(theta3,theta,Vsl); ri14: subst(theta4,theta,Vsl);

provides

Vou (¥) := (]of[v) — (($lo1|1))* = 1+ 4(cos* (0) — cos*(0)).

Differentiation with respect to 8 and solving the resulting equation provides
that the variance is 1 for § = 0 and 6 = /2. The variance is 0 for § = /4
and 0 = 37 /4.

Problem 3. Find the eigenvalues and normalized eigenvectors of the

Hamilton operator R
. H 1 /1 1
K=—=— .
hw V2 ( 1 -1 )

Solution 3. The Maxima program
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/* Hamiltonl.mac */

H: matrix([1,1],[1,-11)/sqrt(2);
list: eigenvectors(H);

pl: part(list,1);

pil: part(pl,1);

laml: part(pll,1);

lam2: part(pl1,2);

p2: part(list,2);

vl: part(p2,1); vi: part(vi,1);
v2: part(p2,2); v2: part(v2,1);
v2T: transpose(v2);

scalar: vl . v2T;

scalar: ratsimp(scalar);

provides the eigenvalues A\ = —1, Ay = 1 with the corresponding (nonnor-
malized) eigenvectors

we () ()

The two eigenvectors are orthogonal to each other, i.e. scalar=0.

1.3 Supplementary Problems

Problem 1. Consider the map f : C2 — R3 defined by

sin(26) cos(¢)
: cos (0) sin sin
£ (i) | e

Are the vectors in C2 and R3 normalized? Consider the four normalized
vectors in C2?

500 w(h) B0) )
i) wm\-1) mli) m\-i)
Find the vectors in R3.

Problem 2. (i) Let z1,22,23 € R and o1, og, o3 be the Pauli spin
matrices. Show that

ei(z1o1+z200twsos) cos(r) Iy + Z‘M(xlo—l + x909 + 2303)
T

_ <cos(r) +izgsin(r)/r iz — izo)sin(r)/r )

i(x1 + ixg) sin(r)/r  cos(r) — ixg sin(r)/r
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where r := /2% + 23 + 23

(ii) Let y1,y2,y3 € R and
X 1= z101 + 2202 + 2303, Y 1= y101 + y202 + y303.

Consider the maps

Z1 Y1
Xeox=[x |, Yeoy=| v
zs3 Ys

Let x -y := 21y1 + Z2y2 + x3y3 (scalar product). Show that
1
X y= §tr(XY).
(iii) Show that
T2Y3 — T3Y2

7
—§[X7Y] S XXY=| T3y1 — T1Y3
T1Y2 — T2Y1

Problem 3. Let H be a 2 x 2 hermitian matrix. Consider the normalized
state "
[ €"®cos(h)
="y )
in the Hilbert space C?. Assume that
(| H|p) = hwcos(¢)sin(26),  (P|H?|p) = h*w?.

Reconstruct the hermitian matrix H from these three assumptions. Note
that

cos(f) sin(f) = = sin(26), €'® = cos(¢)+isin(p), e~ '? = cos(p)—isin(e).

N |

Show that H = hwoy.

Problem 4. Let A, B be n x n matrices over C. Let v be a normalized
(column) vector in C™. Let (A) := v*Av and (B) := v*Bv. We have the
identity

AB=(A—- (A)1,)(B— (B)I,) + A(B) + B(A) — (A)(B)I,.

We approximate AB as AB = A(B) + B(A) — (A)(B)I,.
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(i) Let n = 2 and

1 1
A=o0y, B=o0y, v=— .
' ’ ﬂ(1>

Find AB and A(B) + B(A) — (A)(B)I2 and the distance (Frobenius norm)
between the two matrices.
(ii) Let n = 2 and

1 1
A—Ul, B—O’Q, V\/§<_l>

Find AB and A(B) + B{A) — (A)(B)I5 and the distance (Frobenius norm)
between the two matrices.
(iii) Consider the case

A=o01, B=o0y v= (Zi:((g)))

Find AB and A(B) + B(A) — (A)(B)I, and the distance (Frobenius norm)
between the two matrices.

Problem 5. Let o € R. Show that the vectors

e e (30) s e ()

form an orthonormal basis in C2. Find viv], vovl, vivi.

Problem 6. Let 01, 02, 03 be the Pauli spin matrices. Show that

1

I
T2

1
(I +05), Tl = 5(12 —0j)

(j = 1,2,3) are projection matrices. Find the vectors

1 1 1 1
m, — LT — .
V2 (1) V2 (1)
Are the vectors normalized?

Problem 7. Given two arbitrary normalized states |¢) and |¢) in C2.
Find a 2 x 2 unitary matrix U such that |¢) = Ul|¢), i.e. U must be
expressed in terms of the components of the states |1) and ¢). Since U is
unitary we have U~! = U*.
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Problem 8. Let A, B be 2 x 2 hermitian matrices and
_ (cos(6)
V) = (sin(9)> ‘
Find the minima of the function

f(0) = [|AB — A(p|Bly) — (V[A[¢) B + (| Al) (¢ Bl¢) 2|

where ||.|| denotes the norm.

Problem 9. Let |0), |1) be an orthonormal basis in C? and 29, 201, 210,
z11 be complex numbers. Calculate

exp(z000) (0] + 201(0) (1] + 210|1) (0] + 211[1)(1]).
Then set

Z00 = —z'hwl, Z01 — —Z210 = —ihwg, Z11 = —ihwg.



Chapter 2

Kronecker Product and
Tensor Product

2.1 Introduction

Let H1 and Hs be two Hilbert spaces and ‘H be a third Hilbert space defined
in terms of H; and Hy with the following specifications. For each pair of
vectors f1, fo in Hp, Ha, respectively, there are vectors in H denoted by
f1® fo and g1 ® go, respectively such that

(f1 ® folg1 @ g2) = (f1lg1) 3 (f2]92) 2,

where (f1|g1) is the scalar product in the Hilbert space H;. The vector
f1 ® fa is called the tensor product of the vectors fi; and fo. The Hilbert
space H consists of the linear combinations of the vectors f; ® fo together
with the strong limits of their Cauchy sequences. We term H the tensor
product of H; and Hy and denote it by H1®@Hsy. Given abasis { |¢;) : i € [}
in the Hilbert #; and a basis { |¢;) : j € J} in the Hilbert space Hs we
can construct a basis

{lga) @) iel, jel}

in the product Hilbert space. The tensor product is associative and dis-
tributive. If A; and As are linear operators in H; and Hs, respectively, we
define the operator A; ® Ay in Hy ® Ho by the formula

(A1 ® A2)(f1 ® f2) = (ALf1) ® (Aa2fa).

31
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Ay ® A, is called the tensor product of A; and As,. Similarly we can define
the tensor product of n Hilbert spaces.

For the finite-dimensional Hilbert spaces C™ and R™ the tensor product is
realized by the Kronecker product.

Let A be an m x n matrix and B be an r x s matrix. The Kronecker product
of A and B is defined as the (m - r) x (n-s) matrix

anB algB alnB

a21B a22B N agnB
A® B := . . . .

amiB am2B ... amnB

We have the following properties.
1) If v; (j =1,...,n) is an orthonormal basis in C”, then

Vi ® Vg, (j,k:L,TL)

is an orthonormal basis in C".

2) If A, B are normal matrices, then A ® B is a normal matrix.

3) If A, B are hermitian matrices, then A ® B is a hermitian matrix.
4) If A, B are unitary matrices, then A ® B is a unitary matrix.

5

)
)

) If A, B are projection matrices, then A ® B is a projection matrix.
6) If A, B are nilpotent matrices, then A ® B is a nilpotent matrix.
)
)

7) If P,, P, are permutation matrices, then P, ® P; is a permutation matrix.
8) If A and B are invertible, then A ® B is invertible with

(Ao B '=A"1teB "

Let A, B, C, D be matrices and assume that the matrix products AC' and
BD exist. Then

(A® B)(C® B) = (AC) ® (BD).

Let A be an m X m matrix and B be an n x n matrix. The underlying field
is C. Let I, I, be the m x m and n X n unit matrix, respectively. Then

tr(A® B) = tr(A)tr(B)

and
tr(A® I, + I, ® B) =ntr(A) + mtr(B).
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2.2 Solved Problems
Problem 1. (i) Let

o= (o). loab= ().

Thus the set { |¢1), |¢2) } forms a basis in C? (the standard basis). Calcu-
late the vectors in C*

[01) @ 1), |d1) @ [@2), |d2) @ [P1), |d2) @ |P2)

and interpret the result.

(ii) Consider the Pauli matrices o1 and o3. Find 01 ® 03 and 03 ® o1 and
discuss. Both o; and o3 are hermitian. Are o1 ® 03 and 03 ® o1 hermitian?
Both o7 and o3 are unitary. Is 01 ® o3 and o3 ® o1 unitary?

Solution 1. (i) We obtain

1) @ [¢1) = : |f1) @ |p2) =

—_ o O OO O

|p2) @ |#1) = ) |p2) @ |p2) =

_— o o O o O = O

0

Thus we find the standard basis in C* from the standard basis in C2.
(ii) We obtain

0 0 1 0
0 0 0 -1
a®o=11 o o o
0 -1 0 0
and
01 0 0
10 0 0
7BOO=10 9 o0 -1
00 -1 0

We note that 01 ® 03 # 03 ®01. 01 ® 03 and 03 ® o1 are hermitian. o1 Q o3
and o3 ® o1 are unitary.

Problem 2. Given the orthonormal basis

o= (“ay ) = (S )
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in the Hilbert space C?. Use this basis to find a basis in C*.

Solution 2. A basis in C* is given by

() @ 1), [¥1) @ [h),  [h2) @ [th1),  [th2) @ [4b2) }

where j,k,m,n=1,2.

Problem 3. A system of n-qubits can be represented by a finite-dimensional
Hilbert space over the complex numbers of dimension 2™. A state |¢)) of
the system is a superposition of the basic states

1
W)= Y g lit) @ li2) @ @ ).

J1:J2,--:Jn=0

In a short cut notation this state is written as

1

‘1/}> = Z Ciijo.dn |.j1.j2 .- ,]n>

J1,J25e-5Jn=0

Consider as a special case the state

(100) +01) +[10) +|11))

N | =

9) = 5(0@l0) +o) @ [1)+1) @ 0)+1)© 1)) =

in the Hilbert space H = C* (n = 2). Can this state be written as a product
state?

Solution 3. Yes, the state can be written as product state. We have
1

\/§(|O>+|1>)'

—=(0)+ 1) @

Problem 4. The single-bit Walsh-Hadamard transform is the unitary
map W given by

1 1
V2 V2
The n-bit Walsh-Hadamard transform W,, is defined as

W(0) = —=(0) + 1)), W) = —=(10) = [1)).

Wy =WeWe---W (n — times).
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Consider n = 2. Find the normalized state W2(]0) ® |0)).

Solution 4. We have
W2(|0) ® 10)) = (W @ W)(|0) ® |0)) = W|0) @ W|0).

Thus 1
W2(10) ®10)) = 5 ((10) + 1)) ® (|0) + [1))).

Finally
1
W2(10) ®10)) = 5(10) ®[0) +10) @ [1) + [1) @ [0) + [1) @ [1)).
W5 generates a linear combination of all states. This also applies to W,.
Problem 5. Consider the spin matrix S for spin—%
1 1/0 1
Sl = 50’1 = 5 (1 0>

with the eigenvalues 1/2 and —1/2 and the corresponding normalized eigen-
vectors

1 /1 1 1

e1/225 1/ e—l/zzﬁ 1)

Do the four vectors

1 1
ﬁ(el/Q Reipte_y;@e_2), E(QI/Q Reip—e_1;De_q2),

1 1
ﬁ(el/Z ®e_i/2te_ 12 @eq)), 5(91/2 Re_i1/p —e_1/2Deq/2)
form a basis in C*? Prove or disprove.
Solution 5. We obtain the Bell basis
1 0 1 0
1 0 1 1 1 0 1 -1
V)= — , Vo= — , V3= — , V4= —
1 7210 2 VAR 3 VAR 4 AR
1 0 -1 0

which forms an orthonormal basis in C*

Problem 6. Let A be an arbitrary n X n matrix over C. Show that

exp(A® I,) =exp(A) ® I,. (1)
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Solution 6. Using the expansion

— (A® I,)"

exp(A® I,) = 7

k=0

1 1 1
In®ln+ﬁ(A®In)+§(A®In)2+§(A®In)3+--~
and (A® I,)* = A* ® I,,, k € N we find identity (1).

Problem 7. Let A, B be arbitrary n x n matrices over C. Let I,, be the
n X n unit matrix. Show that

exp(A® I, + I, ® B) = exp(A) ® exp(B).

Solution 7. The proof of this identity relies on [A ® I, I, ® B] = 0,2
and

(A® L) (I,®B) = (A"®L,)([,®B)=A"®B°, rseN.

Thus

> (A®I,+ I, ® B)
exp(A® I, +1,®B)= (4@ + @ B)

i=0 J
ZZ'<1€> (A® 1) (I, ® B 7"
j:Ok:OJ'
S L (Y (g g
“S i) wes
7=0 k=0
= Zﬁ ®<Zk!>
=0 k=0
=exp(4) ® exp(B

Problem 8. Let A and B be arbitrary n x n matrices over C. Prove or
disprove the equation

eA®B = eA (9 eB.

Solution 8. Obviously this is not true in general. For example, let
A=B=1,. Then
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and

ed el =eln @eln £ eln2,

Problem 9. Let A be an m X m normal matrix and B be an n X n normal
matrix. The underlying field is C. The eigenvalues and eigenvectors of A
are given by A1, A2, ..., A\, and uy, ug, ..., u,,. The eigenvalues and
eigenvectors of B are given by 1, pa, ..., i, and vy, va, ..., v,. Let €,
€2 and €3 be real parameters. Find the eigenvalues and eigenvectors of the
matrix

€1A®B+€2A®In+€3[m®3.

Solution 9. Let x € C™ and y € C". Then we have

(A® B)(x®Yy) = (Ax) ® (By),

(AR L)(x®y) = (Ax)®Vy, (Im ® B)(x®Yy) =x® (By).

Thus the eigenvectors of the matrix are
u; ® v, j=12,....m k=12 ...,n.

The corresponding eigenvalues are given by €1\, + €a; + €311k

Problem 10. Let A, B be n x n matrices over C. The n x n matrices
form a vector space. A scalar product can be defined as

(A, B) :=tr(AB").
This provides a Hilbert space. The scalar product implies a norm
[A]* = (A4, 4) = tr(A4").

This norm is called the Hilbert-Schmidt norm.
(i) Consider the Dirac matrices

10 0 0 0 0 0 1
o1 0 o o 0o 10
=t 0 -1 0> MTTlo -1 0 0

00 0 -1 1 0 0 0

Calculate the scalar product (yg,71). Discuss.
(ii) Let U be a unitary n x n matrix. Find the scalar product (UA,UB).
(iii) Let C, D be m x m matrices over C. Find (A ® C, B ® D).

Solution 10. (i) We find (v9,71) = tr(y07yf) = 0. Thus v and 7y, are
orthogonal to each other.
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(ii) Since
tr(UA(UB)*) = tr(UAB*U*) = tr(U*UAB”*) = tr(AB*)
where we used the cyclic invariance for matrices, we find that
(UA,UB) = (A, B).

Thus the scalar product is invariant under unitary transformations.
(iii) Since
tr((A® C)(B® D)") =tr((A® C)(B* © D)) = tr((AB*) © (CD"))
=tr(AB")tr(CD")

we find (A® C, B® D) = (A, B)(C, D).

Problem 11. Let T be the 4 x 4 matrix

3
T := 12®12+th0j®0'j

j=1

where o5, j = 1,2,3 are the Pauli spin matrices and —1 < ¢; < +1,
j =1,2,3. Find the matrix T?.

Solution 11. We have

3 3 3
T2:IQ®IQ+2 E tjaj®aj+ E E tjtkUjO'k@JjO'k.
J=1 j=1k=1
Since
0109 :iUg, 0201 :—i03, 0'20'322.0'17
0302:—i01, 0301 :i0'2, 0103:—i02

and 07 = Iy, 03 = I, a§ = I, we find

3 3
Z IfjthjO'k(X)O'jO'k = LRI, Zt?—2(t1t20’3®0’3+t2t30’1®O’1+t3t10’2®0’2).
jk=1 j=1

Therefore

3
T°=(LeL) |1+ t
j=1

+2(t1 — t2t3)0'1 ® o1+ 2(t2 — tgtl)O'g X o9 + 2(t3 — t1t2)03 (24 3.
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Problem 12. Let {|0), |1), ..., |[n — 1) } be an orthonormal basis in the
Hilbert space C™. Is
1 n—2
¥) = —= D@l +1)+[n—-1)©0)

independent of the chosen orthonormal basis? Prove or disprove.

Solution 12. Consider the special case R?. Let

Thus
0
=005 (0) ()5,
Now let
=5 (0) w-5()
Then

1
= () (e () -5

Thus, |1) depends on the chosen basis.

Problem 13. In the product Hilbert space C* 22 C2 ® C? the Bell states
are given by

o) = %um o)+ e, |07 = %um ©10) — (1) @ [1),
o) = %qm o)+ o), )= \%um 1) - [1) @ |0)

and form an orthonormal basis in C*. Here, {|0), [1)} is an arbitrary
orthonormal basis in the Hilbert space C2. Let

0) = (ef;f();()@) .= (—ecizss(iél)(ﬁ)) .
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(i) Find [®1), |®@7), |TT), [¥~) for this basis.
(ii) Consider the special case when ¢ = 0 and 6 = 0.

Solution 13. (i) We obtain

e2i¢ 2% cos(26)
1 0 _ 1 e'? sin(26)
y = ,
|27) = V2 0 ’ [27) V2 | €?sin(26) |’
1 — cos(26)
—e2% sin(26) 0
1 e’ cos(20) _ 1 et
= . = .
wT) = V2 e'? cos(20) ’ e7) V2 —ei?
sin(26) 0

(ii) If we choose ¢ = 0 and 6 = 0 which simply means we choose the
standard basis for |0) and |1) (i.e. |0) = (1 0)T and |1) = (0 1)T), we find
that the Bell states take the form

1 1
1 {0 I S |
oty = , Ty = — ,
== ==
1 -1
0 0
1 (1 1 (1
Uty = , Ty =
=21 =5 o
0 0

Problem 14. Let H4 and Hp be two p-dimensional Hilbert spaces over
C, where p is a prime number. Let

{1004, [Da,-- s [e=1)at, {10z 5, [(p=1)5}

be orthonormal bases in these Hilbert spaces. We define the states
aby L =
[¢(a, b)) == (I, ® X*Z )% jz:(:) i) a®li)s
in the Hilbert space H4 ® Hp, where a,b € {0,1,...,p—1}. Thep xp
matrices X and Z are defined as

X|j)=j+1modp),  Z|j)=wilj), j=0,1,...,p

with a complex primitive pth root w of 1 and {0),|1),...,|p — 1) } is the
orthonormal basis given above for the Hilbert space Hp. Calculate the
states [1(0,0)) and |¢(1,1)).
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Solution 14. Since
XO:ZOZIpa Ip|j>A:|j>Aa I;D|]>B: |]>B
we obtain
1 224
[1(0,0)) = — ) [i)a®@lj)B-
2
Using

(I, ® XZ)(|j)a @ |i)B=1j)a ® (X Z|j)B) = i) a ® W X|j) B
=1j)a ®W!|jp + 1modp)
=w![j)a ® |jp + 1 mod p)

we find

p—1
ho(1,1)) = \}ﬁ j}_joij ® | + Lmod p).

The states |[¢(a,b)) are maximally entangled states in the Hilbert space
HaRQHB.

Problem 15. Consider the Pauli matrices o1 and o9 and the GHZ state

w=2((5)=(0)=(5)+(D)=(3)=(?)):

(i) Show that |¢) is an eigenvector of the operator o9 ® o9 ® o1. What is
the eigenvalue?
(ii) Is

2= () () (0) = (1) = (1) = (V)
an eigenvector of oy ® gy ® 017

A C)- (-0 = ()- () =()-(3)

Thus
0)

oo~ o (3 or (3 on
be()on () on (1)
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5
—

Consequently, the eigenvalue is —1.
(ii) We find using the calculation from (i)

1 o (1 1 1 0 0 0
— = | ¢
e =25 (= () () () (> () ()
Thus, in general |@) is not an eigenvector of o3 ® o2 ® 01, for example if
¢ =m/4.
Problem 16. Consider the three-qubit GHZ state

1

[¥) = —=(10) ©10) @ 0) + [1) @ [1) @ [1))

S

2

with the standard basis

Let o1, 02 be the Pauli spin matrices.
(i) Calculate the expectation values

(Yl(o2 @ o2 @ 02)|1h), (Pl(01 ® 01 ® 02)[1h),

(Yllor @ o @ o)), (Pl(oa® o1 @ 01)]).

(ii) Calculate the expectation values

(Pl(o1 @ 02 @ 02)[1h),  (Y[(02 ® 01 @ 02)|¢)),
(Yloe @ o2 @ 01)|), (Pl(o1 ® o1 ® a1)]eh).

Solution 16. (i) We find
(Yl(o2 ® 02 @ 02)[9h) =0, (Y[(01 ® 01 ® 02)[1h) = 0,

(W(o1 @ @01)[Y) =0, (Y|(o2 ® 01 ®01)[th) = 0.
(ii) We obtain

Wl(o1® o2 @ o2)|th) = =1,  (Pl(o2 ® 01 @ 02)|¢) = —1,
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(Wl(o2 @ o2 @ a1)[Yh) = =1,  (P|(o1 ® o1 ® 01)[h) = 1.

Problem 17. Consider the Bell state
_ 1 1 0 0 1
=7 ()= (5)- () 0))
Let n, m be unit vectors in R3. Calculate the expectation value

E(n,m) = (¥7|n-0)@ (m-o)[¥7).

Solution 17. Straightforward calculation yields
E(n,m) = —ny3m;—ngmge—nzms = —n-m = —|n|-/m| cos(¢) = — cos(fmn)

since |m| = |n| = 1. We write cos(fmn) instead of cos(f) in order to
indicate that 6y, m is the angle between the quantization directions m and
n.

Problem 18. Let A, As, ..., A, and By, Bs, ..., B, be two sets
of 4 x 4 matrices over C. Assume that A;B, = BiA; for all j, k with
j=12,...,mand k =1,2,...,n. Find two such sets of matrices using

the Kronecker product of 2 x 2 matrices.

Solution 18. If A; = C; ® I, By, = Io ® Dy, where C}, Dy, are arbitrary
2 X 2 matrices we have

[4;, By] = [C; @ I2, 1o ® Dy] = C; ® Dy, — C @ Dy, = 04

for all j, k.

Problem 19. Let A, B be n X n hermitian matrices over C and
H =hw(A® B)

be a Hamilton operator, where 7 is the Planck constant and w the frequency.
The Heisenberg equation of motion for the operator B ® A is given by

L dB® A)

7 = [B® A, H|(t).

(i) Assume that [A, B] = 0,,. Simplify the Heisenberg equation of motion
using this condition.

(ii) Assume that [A, B];+ = 0,, Simplify the Heisenberg equation of motion
using this condition. Give an example for such matrices.
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(iii) Assume that [A, B]4+ = I,,. Simplify the Heisenberg equation of motion
using this condition. Give an example for such matrices.

Solution 19. (i) We have

[B® A, H|(t) = hw[B ® A, A® B](t)
hw((B® A)(A® B) — (A® B)(B® A))(t)
hw((BA) ® (AB) — (AB) @ (BA))(t).

In general, (AB) ® (BA) # (BA) ® (AB). If [A, B] = 0,, we find

d(B ® A)

ik = 0,2.
(3 dt n2

Thus B ® A is a constant of motion.
(ii) From [A, B]4+ = 0,, we have AB = —BA. Thus we also have

d(B @ A)

ih 7 = 0,2
in this case. An example are the Pauli spin matrices. For example, let
A =0y and B = 03. Then [A4, B]; = 0. Another example is given by

Fermi operators. They have the matrix representation (j =1,2,...,N)

§ 1
0420—3®"'®0—3® —

) 20'+>®I2®...®12

1
CJ:0'3®..®0'3®<20'_>®I2.®I2

where o and o_ appears in the j-th place and where o = 01 + 102,
o_ =01 —i03. We have [c,JQ,cJ]Jr = 6,1 and [ck, j]+ = [ex, ¢j]+ = 0.
(iii) Since BA = —AB + I,, we find

d(B® A)

ih i

= hw(l, ® (AB) — (AB) ® I,)(t).

Problem 20. The four Bell states with spin J (J =1/2,1,3/2,2,...) are
given by

1 2J
|B1) = NoIES ];) k) @ [k)

1 2J
| Ba) = NAES kzzo(_l)k|k> ® |k)
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2J

1
—— > k@2 —k)
V2T +14

27
1
— ~D*|E) @ |20 — k).
e D @ 2 -
For J = 1/2 we obtain the standard Bell basis in C*. Note that for J = 1/2
the four Bell states form an orthonormal basis in C*. Show that for spin
J =1 the Bell states are linearly dependent.

|Bs) =

|Bs) =

Solution 20. For J =1 the Bell states are

|B1) = %(I@ @0+ D)) +2)®(2)
| B2) = %uw ®0) - H)e1) +[2) ©[2))

|B3) = %um ®2)+ )@ |1)+[2) ®[0))
|Ba) = %uw ®2) =) @ 1) +[2) @10)).

Let ¢1,¢o,c3,c4 € C. Then the equation

61|Bl> + 62|BQ> + 63|Bg> + C4|B4> =0

provides the solution co = —cy, c3 = —c1, ¢4 = ¢ with ¢y arbitrary. Thus
the four states are not linearly independent. We also have
(BB =3, (BiBi)=3,  (BilBa=-3,
3 3 3
(BalBa) = —%,  (BalBi) =%,  (BalBi)= .
3 3 3

Problem 21. Consider the state in C*

1
|?/’> = Z Cj1j2|jl> Y ‘]2>

J1,52=0

where
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where det(S) = 1, det(T') = 1. This means that S and T are elements of
the Lie group SL(2,C). Let

1 1
Y djjplin) @ 1i2) = (S®T) D ¢jiili) @ |ia)-

J1,j2=0 J1,j2=0
Show that
dood11 — do1dio = cooci1 — Co1€10- (1)

Owing to (1) the quantity cooc11 — co1c10 is called an invariant.

Solution 21. Since

s11t11 S11ti2 Si2t11 Si2ti2

| s11t21 S11te2  S12t21 Si2t2o
ST =

So1t11  So1ti2  Sooti1 Sootia

821t21  So1tas  S2of21  S22l22

we have
s11t11 811t12 S12t11 812812
811t21 S11t22 S12t21 S12t22
(S®T) ) = coo +co1 +cC10 +c11
S21t11 S21t12 Sa2t11 Soot12
S21t21 So1t22 Sa2t21 Sooton
Thus

doo = coos11t11 + co1S11t12 + cro812t11 + c11812t12
do1 = coos11t21 + corS11t22 + cro812t21 + c11812t22
d1o = coos21t11 + corS21t12 + C1o822t11 + Cc11822t12
d11 = coos21t21 + co1821t22 + 1082221 + C11522%22.

From det(S) = 1 and det(T) = 1 it follows that s11822 — $12521 = 1 and
t11t22 - t12t21 = 1. Thus

511822t11t22 + S12521t12t21 — S11S522t 12821 — S12521t11t22 = 1.

Using this result we obtain (1).

Problem 22. Let I3 be the 2 x 2 identity matrix and let o1, 02 and o3
be the Pauli spin matrices.

(i) Let A be an m x m matrix over C and B be an n x n matrix over C.
Find all solutions for m, n, A and B satisfying

1 1 1 1
512®I2+50’1®0’1+502®02+503®03:A®B.
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(ii) Let C, D, E, and F be 2 x 2 matrices over C. Find all solutions for C,
D, E and F satisfying

1 1 1 1
§IQ®I2+§0'1®0'1+§0'2®0'2+503®0'3=C®D+E®F.

(iii) Find the set stabilized by S = {01 ® Iz, I ® 07 } i.e. find
{ueC'|VAeS: Au=u}.

Solution 22. (i) Straightforward calculation yields

1 1 1 1
LRI+ -01Q0+ -0aR03+ 03 R03 =

=AR®B.
2 2 2 2 @

oS O o
O = O O
OO = O
— o O O

Since A ® B is an mn X mn matrix we have mn = 4. For m = n = 2 we

consider
(a1 a2 o b1 by
a=(omn) e )

Thus we have a1b; = 1, a1by = 0 and a4bs = 1. Consequently a; # 0 and
by # 0, so that a;by # 0. Thus m = n = 2 does not yield a solution.

For m =1 and n = 4 we find the solution
1 0 0
a € C/{0}.

—_ o O O

0 0 1

alO0O 1 O

0 0 O

For m = 4 and n = 1 we find the solution
1 0 0 O

A== B=(b), beC/{0}

0 010
01 0 0"
0 0 01

(ii) Clearly C and F, and D and F must be linearly independent, otherwise
we would have the case m = n = 2 discussed in (a) which has no solution.

Let
C ( c1 Co ) 7 P (61 €9 ) .
c3 4 €3 €4

We have to satisfy the equations

1
ClD+€1F=(O 8), CQD+€2F:<(1) 8),
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1
63D+63F(8 0), C4D+€4F(8 ?)

It follows that {D,F} should be a basis for the 2 x 2 matrices over C,
however the span of {D, F'} is a two dimensional space whereas the 2 x 2
matrices over C forms a four dimensional space. Thus we have a contradic-
tion. There are no solutions.

(iii) Thus the vector u must simultaneously be an eigenvector of o1 ® I and
I; ® o1 with eigenvalue 1. The eigenspace corresponding to the eigenvalue
1 from o7 ® I yields

s () (6) o ()= )

where «a, 8 € C. We must now satisfy

1

(L ® o1 )u=all ® o) (i) ® (O> + Bl @ o) G) ® ((1))
= (1) () ()2 )

=u

so that o = 8. Thus
1 1 1 0
u—a(1>®<0)+a<1)®(1>, a e C.

Problem 23. Let N > 1. Consider the Hilbert space C2". The (N+1)
Dicke states are defined by

IN/2,6 — N/2) := (0)®- - ®[0)®]|1) ® - ® |1) +permutations)

L N—¢

1

/NCZ
where £ =0,1,..., N and
NCy = NIJ(0(N —0)).

Write down the Dicke states for N = 2 and N = 3. Which of the states are
entangled?

Solution 23. For N = 2 we have the three states in the Hilbert space C*

L-1) =) 1), [1,0)= %(\0> ® 1) + 1) ®10)), [1,1) =]0) ®10).
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The first and the last states are product states. The second state is a Bell
state and fully entangled. For N = 3 we find the four states in the Hilbert
space C8

-p=-mame
3-3- %<|o>®|1>®|1>+|1>®|0>®\1>+|1>®|1>®|0>>
33— OO I+ e e 0+ 1) @0 @0)
2 h-msl0 e,

Obviously the first and last states are product states. The other two states
are entangled.

Problem 24. Can we find 2 x 2 matrices A, B, C with det(4) = 1,
det(B) =1 and det(C) = 1 such that

(A®B®C’)

Sl

w

OO RO~ H=O
Sl

— O OO OO oo

On the left-hand side we have the W state and on the right-hand side we
have the GHZ state.

Solution 24. Let

A= i %12 s det(A) = a11022 — A12021 = 1
a1 Aa22

etc. Thus the condition yields 8 equations and we have the three constraints
ai1az — ai2a21 =1, bi1bas — b12bar =1,  c11¢22 — c12c01 = 1.
There is no solution for this system.

Problem 25. Consider the vector

1
=5(1 0110 1" ecs.
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Find a Schmidt decomposition of v over C® = C? @ C3 and over C% =
C? @ C2.

Solution 25. Over C? @ C? we have
1

—11®(1)+10®(1)—1 Nello

AU O ARV A U AECASVAREA
which is trivially a Schmidt decomposition of v. Thus, over C?> ® C3, v has
Schmidt rank 1. Over C? ® C2? we have

L ®(1)+1 | ®(1)+1 0 ®(0)
V== - Z ]
2 0 0 2 0 1 2 1 1

Identifying C* with the columns of a matrix and C? with the rows of a
matrix, we rearrange v to yield the matrix

1

1 0
A:2 1 1
0 1

which has the singular value decomposition

4 1 1

Lod AV 0N (ko)
— | = L 2 V2
A=l 0 o 3 )(xL G-

o v/ N0 0 AR

From the singular value decomposition we obtain the Schmidt decomposi-
tion

51w 03 (4) 5 0)

Thus, over C? ® C2, v has Schmidt rank 2.

N =
O =

Problem 26. Let A be an m X m hermitian matrix and let B be an
n X n hermitian matrix. Then A ® B, A® I,,, I,, ® B are also hermitian
matrices, where I,,, is the m x m identity matrix. Let €1, €2 and e3 be real
parameters. Consider the Hamilton operator

H=lw(ctA® B+ e2A® I,, + €31, ® B).

The partition function Z(B) is given by Z(8) = tr(exp(—FH)), where H
is the (hermitian) Hamilton operator and tr denotes the trace. From the
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partition function we obtain the Helmholtz free energy, entropy and specific
heat.

(i) Calculate Z(B) for the Hamilton operator given above.

(ii) Consider the special case that n = m = 2 and A, B are any of the Pauli
spin matrices o1, 03, 03.

Solution 26. Since A is an m x m matrix we can find a m x m unitary
matrix Uy such that A = U% AU, is a diagonal matrix. We set diag(A) =
(A1, A2, ..., Am). Analogously for the n X n hermitian matrix B we find a

n X n hermitian matrix Ug such that B = Uy BUp is a diagonal matrix. We
set diag(B) = (1, pi2, - - - ). Since A and B are hermitian the diagonal
elements of A and B are real. Since Uy and Upg are unitary matrices we
find that Us ® Up is also a unitary matrix and (Us ® Ug)* = U} @ Uj.
Now we find
tr(e M) = tr((U @ Up)e P (Us @ Up))
— tre—ﬁ(UZ(@UE)H(UA@UB)
—Bhw(e1 (U4 AUA)®(U S BUR)+€e2 (UL AU A)®I+e3(Im® (UL BUR))

—Bhw(e1 AR B+e2 AQI +e31m®B)

=tre

=tre
m n

:E E e~ Bhw(erdjupteadjtespn)
j=1k=1

This calculation can be extended straightforward to the matrix
A1®A2®A3+A1®I’n2 ®In3 +In1 ®A2®In3 +In1 ®In2 ®A3

and so on, where Ay, As, As are ni; X ni, ng X ng, ng X ng matrices,
respectively.

(ii) The eigenvalues of any Pauli spin matrix are +1 and —1. Thus for any
combination 0; ® o), for A® B we find

Z(B) = e P2 cosh(Bhw(ey 4 €3)) + €12 cosh(Shw(es — €3)).

Problem 27. (i) Let {|0), |1), ..., [n — 1) } be an orthonormal basis in
Cr. Is

n—1
1
== el
Vi =
independent of the chosen orthonormal basis?

(ii) Find the density matrix |¢)(¢)].
(iii) Consider the linear operator

nlnl

Z > " (Iik) = ki) (k| — (k3])

=0 k=0
] k#j
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where we used the short-cut notation |jk) = |j) ® |k). Calculate IT* and
I12. What is the use of this operator?

Solution 27. (i) Let {|®0),|¢1),---,|¢n—1) } be an orthonormal basis in
C™. Then we have the expansion for the state |j)

n—1

) =D (ilow)|on)-

k=0

Thus [¢)) can be written as

1 n—1 n—1 n—1

|¢>*% 2 <<I§<]|¢k |Px) ) <§ (Jlpu)|b1) ))
1 1n—-1
7 Z

n—1

(Brl7) (Tl | Px) @ 1)

§=0 k=0 1=0
n—1
TZ Z Nl | o) @ e
k=0 1=0 \ j=0
where we used (j|¢r) = (¢x|7). Note that for the sum

n—1
Z Il
7=0

we cannot apply Parseval’s relation. Parseval’s relation would apply to

1

(Drl)(Dild) = (Prl|d1) = Ona -

n

<.
Il
o

Thus the Bell state |¢) is dependent on the chosen basis. However, if
all scalar products (j|¢y) are real numbers then |¢) is independent of the
chosen basis.
(ii) We have

n—1ln—1 n—1ln—1

)l = = >0 S (1) © ) (k@ (k) = - >0 3 i)kl @ i)k

7=0 k=0 ] 0 k=0

(iii) Clearly, IT* = II. Furthermore

ZZZZW@ (kgD (G| = ki) ([lm) — |ml))({Im] — (ml])

] 0 j#k 1=0 l#m
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n—1 n—1
7=0 j#k 1=0 l#m
=1L

Thus II is a projection matrix. It projects onto the space spanned by

{\1@(|jk)|kj>) ke {01, n—1}, k>j}.

Problem 28. Let H4 and Hp be two finite-dimensional Hilbert spaces.
The Schmidt rank of a linear operator L : Ha ® Hp — Ha ® Hp over
Ha @ Hp is the smallest non-negative integer Sch(L,H 4, Hp) such that L

can be written as
Sch(L,H 4, H5)

L= > Lja®Ljp
j=1
where L 4 : Ha — Ha and L; g : Hp — Hp are linear operators.

Let {|0),|1)} denote an orthonormal basis in C?. Find the Schmidt rank
Sch(Ucnor,C?,C?%) and Sch(Usw ap, C?, C?) where

Ucnor = [00)(00] + [01)(01] + [11)(10] + [10)(11]
Usw ap = 00)(00] + |10)(01] + |01)(10] + |11)(11].

Solution 28. We note that
Ucnor = |0)(0]| ® I + [1){1| ® Unor
where Uyor := 0)(1]| +]1)(0]. In other words
0 < Sch(Ucnor, C?,C?) < 2.
Now suppose Ucnyor can be written as the product A ® B where

A= a0|0)(0[ + a1{0) (1] + a2|1)(0] + as[1)(1|
B :=00/0) (0] + b1[0) (1] + ba[1) (0] + b3[1)(1].

This yields the conditions agbg = 1, agb; = 0 and azb; = 1. These equations
are inconsistent, i.e.

Sch(Uenor, (CQ, (CQ) # 1.

Thus
SCh(UCNOT, (C2, (Cg) = 2.
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The operator Ugw 4 p has the eigenvalue 1 (three times) with corresponding
orthonormal eigenvectors

L
V2

and the eigenvalue —1 with corresponding eigenvector %(ml} — [10)).
Defining

{|oo>711>, <|01>+1o>>}

61} i= =00 + [10)), I3} i= —=(101) — [10))
we find that

Uswap := [00)(00] + |¢1)(d1]| — |#2)(¢2| + [11)(11]

where {|00), |¢1), |#2),|11)} forms an orthonormal basis in C*. In this basis
Usw ap is the diagonal matrix

1 0 0 O
01 0 O
Uswap = 00 -1 0
0O 0 0 1

Clearly, the matrices

[00)€00], [11)(11], [¢1)(¢1] and |p2){(¢s
are linearly independent. Thus Sch(Usyy ap, C?,C?) = 4.

Problem 29. The operator-Schmidt decomposition of a linear operator @)
acting in the product Hilbert space H = H; ® Hs of two finite-dimensional
Hilbert spaces (dim(#1) = m, dim(H2) = n) with #; = C™ and Ho = C"
can be constructed as follows. Let X, Y be d x d matrices over C. Then
we can define a scalar product or inner product (X,Y) := tr(XY™). Using
this inner product we can define an orthonormal set of d x d matrices
{X; :j=1,2,...,d*} which satisfies the condition

(Xj, Xi) = tr(X; Xy) = 6k

Thus we can write the matrix () as

77L2 n2

Q:ZZCjkAj®Bk

j=1k=1

where {A; : j = 1,2,....m*} and {By : k = 1,2,...,n%} are fixed
orthonormal bases of m x m and n x n matrices in the Hilbert spaces C™
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and C™ respectively, and c;;, are complex coefficients. Thus C' = (¢;x), with
j=1,2,...,m?and k = 1,2,...,n? is an m? x n? matrix. The singular
value decomposition theorem states that the matrix C can be written as

cC=U%Vv"

where U is an m? x m? unitary matrix, V is an n? x n? unitary matrix and

¥ is an m? x n? diagonal matrix. The matrix ¥ is of the form
S1 ... 0
0 Sp2
Y= "
0 0
0 0

It is assumed that C, U and V are calculated in orthonormal bases, for
example the standard basis. Thus we obtain

2 2 2

Q= UjeseVirAj @ By
1 k=1 1

3
3
3

o~
Il

<.
Il

2

where s; is the /-th diagonal entry of the m? x n? diagonal matrix X.

Defining
TVL2 7L2
H( = ZUﬂAj’ Kg = ZngBk
j=1 k=1
where £ = 1,2,...,n? we find the operator-Schmidt decomposition
n2
Q=Y siH @K,
=1

(i) Consider the CNOT gate

1000
0100
Uonor=|q4 o o 1
00 1 0

Find the operator-Schmidt decomposition of Ucoyor.
(ii) Consider the SWAP operator

Uswap =

o O O
o= O o
oo = O
— o O O
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Find the operator-Schmidt decomposition of Ugyw ap.
(iii) Let

7= (ﬂfz ® I +iy/po1 ® Ul) (mfz ® Io +iy/pos ® 03)

where 01, 02 and o3 are the Pauli spin matrices. Find the operator-Schmidt
decomposition of Z.

Solution 29. (i) We have
1 0 1 0 0 0 0 1
vesor=(o 6) 2 (0 1)+ (0 V)= (3 o)
10 0 0
—(0 0)@]2"-(0 1)@0’1.

1
Uswap = 5(12®12+01®01+02®02+03®03).

(ii) We have

(iii) We have

Z = (1-p) L& L+pe2@oa++/p(1 - p) | (¢™/101) @ o1 + (€7 a3) @ 03] .

Programming Problems

Problem 1. Consider the Hadamard basis in C2

a3 (1) -5 (L)

Apply the Kronecker product to find a basis in C*.

Solution 1. The following Maxima program

/* hadamardbasis.mac */

vl: matrix([1/sqrt(2)], [1/sqrt(2)]1);
v1T: transpose(vl);

v2: matrix([1/sqrt(2)], [-1/sqrt(2)]1);
v2T: transpose(v2);

rl: viT . vi;

r2: viT . v2;

r3: v2T . v2;
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vivl: kronecker_product(vi,vl);
viv2: kronecker_product(vl,v2);
v2vl: kronecker_product(v2,vl);
v2v2: kronecker_product(v2,v2);
viviT: transpose(vivl);

v1v2T: transpose(viv2);

v2viT: transpose(v2vl);

v2v2T: transpose(v2v2);

rd: viviT . v2v2T;

provides the orthonormal basis

1 1 1 1

DN | =
— =
[N}
—

[N}
|
—
[N}
|
—

Problem 2. Let S;, Sa, S3 be the spin matrices for spin—%

1/0 1 1/0 —i 1/1 0
51_2<1 0)’ S2_2<2’ 0)’ S3_2<0 —1>'
Consider the Hamilton operators

H= =51 ®51+5 1S5+ 5 ® 53

K = =851 ®85+ 85 ® 853+ 539

= gz

Find the eigenvalues and eigenvectors of H and K.

Solution 2. Applying the Maxima program

/* eigenS1S2S3.mac */

I2: matrix([1,0],[0,1]1);

S1: matrix([0,1/2],[1/2,01);
S2: matrix([0,-%i/2],[%i/2,0]);
S$3: matrix([1/2,0],[0,-1/2]);
T1: kronecker_product(S1,S1);
T2: kronecker_product(S2,S2);
T3: kronecker_product(S3,S3);
H: T1 + T2 + T3;

EH: eigenvectors(H);

X1: kronecker_product(S1,S2);
X2: kronecker_product(S2,S3);
X3: kronecker_product(S3,51);
K: X1 + X2 + X3;

EK: eigenvectors(K);

o7
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we find for H the eigenvalues

3 1
~1 (%), 5 (3%)
with the corresponding eigenvectors
0 1 0 0
1 o) 1 ft) (o
V2 i-1/ ol v2l1]’ 0
0 0 0 1
and for K the eigenvalues
3 1
~1 (1x), 1 (3%)
with the corresponding eigenvectors
1 1 0 0
11 -1 1 0 1 1 1 0
2 —j V2100 V2 O‘ V2 1 1
) ) —3

Problem 3. Let M be a 2 x 2 matrix and M7 the transpose. Let |0), |1)
be the standard basis in C2. Show that

(M @ I)(0) ®[0) +[1) @ |1)) = (2 @ MT)(|0) © |0) + [1) @ [1)).

Solution 3. The following Maxima program will do the job

/* M22.mac */

bl: matrix([1],[0]); b2: matrix([0],[1]);
bibl: kronecker_product(bl,bl); b2b2: kronecker_product(b2,b2);
I12: matrix([1,0]1,[0,11);

M: matrix([mi1,m12], [m21,m22]);

MT: matrix([m11,m21], [m12,m22]);

T1: kronecker_product(M,I2);

T2: kronecker_product(I2,MT);

R1: T1 . bilbl + T1 . b2b2;

R2: T2 . blbl + T2 . b2b2;

F: R1 - R2;

Do we find the same result if we select the orthonormal basis

() ()
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2.3 Supplementary Problems

Problem 1. Consider the standard basis in the vector space of 2 x 2
matrices

1 0 0 1 0 0 0 0
E00_<0 0>7 EOl_(O 0>7 Elo_(l 0>7 E11_(0 1>

and the mutually unbiased basis

_ (10 _ 101
,LLO*\/i 0 1 I ,LLl— 2 1 0 ’

_ 1 (0 — _ L1 0
2="5\i o) "= 5\0 —1)

Express the Bell matriz

1o o0 1
L o1 1 o0
3_501—10
10 0 -1

with the basis given by p; ® u (4,k =0,1,2,3).

Problem 2. The following states form an orthonormal basis in the Hilbert
space C3

=L (o] W= (1) =L
va\y) 0) V2o
These states play a role for the m-mesons. Show that the states
[T @), rT)®lrT)
1 + 0 0 + 1 0 - - 0
ﬁ(\7f>®\7f>+l7f>®|7r ) ﬁ(lﬂ>®lﬂ>+lﬁ>®lﬂ>)
%(Iﬂﬂ ® [7°) = |7%) ® |77T)), \%(IW*) ®[r7) —In7) @ 7)),

1 _ _
E(M ®|r7) —|n7) ®|x°))

Q) @) +lrh) @ n7) + I77) @ |7 T)),

Sl

6
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1 _ _
ﬁ(mﬂ ®|r7) + ) @ |rT) — [7°) @ |x°))

form an orthonormal basis in the Hilbert space C?. Which of these states
are entangled?

Problem 3. Let vy, vy, v3 be elements of C2. Find the conditions on
V1, Vo, V3 such that

ViQVa®Vy=V3RQVy&QVy.

Problem 4. Let 01, 02, 03 be the Pauli spin matrices. Consider the 8 x 8
matrices
K=0,Q0®03, S=01Q01Q01.

Note that the matrices K and S are unitary and hermitian. Show that
[K, S] = 0g. Show that

M= (s+5), M= (IS5
are projection matrices and II;II; = Og. Show that

= 3 (s~ K), = (s +K)
are projection matrices.

Problem 5. Let 01, 02, 03 be the Pauli spin matrices. We have

0109 :idg, 0203 :i()'l7 0301 :’L'O'g

and
0901 = —103, 0302 = —101, 0103 = —103.
Show that
[01 ® 01,02 ® 03] = 04
and

[0'1 ® 01,03 0'3} = Q4.

Problem 6. Can the Z, Fourier matrix

1 1 1 1
1 ¢+ -1 —i
1 -1 1 -1
1 — -1 1
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be written as the Kronecker product of two 2 x 2 unitary matrices?

Problem 7. Let |a), |b) be normalized states in C" and X, Y be n x n
matrices over C. Show that

({al @ (PN((X @ In)(In @ Y))(la) @ [b)) = {a| X]a)(b]Y]b).

Note that
(la) ®16))" = {a| ® (b].

Problem 8. (i) Consider the standard basis

in C2. Calculate
1
mole B+ als (9 o).

(ii) Consider the orthonormal basis
[ cos(0) [ sin(6)
0) = (sin(ﬁ)) D= (—COS(G)

10)(0] ® I + |1)(1] ® (? é) .

in C2. Calculate

Discuss.
Problem 9. Consider the states in C2
[ cos(0) [ sin(6)
1) = (sin(@)) » Ie) = (—cos(@)

which form an orthonormal basis in C2. Find

(1] @ (al)(oj @ L2 + 2 @ 0) ([Yh1) @ [4h2)),  j=1,2,3

and discuss the dependence on 6.

Problem 10. Consider the four Bell states

1) = 7(|0>®|0>+|1>®|1>)
|p2) = 7(|0>®|1>+|1>®|0>)
|¢p3) = 7(I0> ® 1) = 1) ®]0))
|pa) = (|0> ®0) - ) @|1)

S\
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and the three 4 x 4 matrices
Tj::Uj®IQ+IQ®Uj, 7=1,2,3.

Calculate
Tyldw), j=1.23 k=1234

Which of these expressions is an eigenvalue equation? Calculate

(x| Tjlr)-

Problem 11. Let A be an m x m and B be an n X n matrix. Study the
conditions on A and B such that

AI,+I,®B)v=0-0=0

where v # 0, i.e. we have an eigenvalue problem with eigenvalue 0. As a
consequence we have

det(A® I, + I, ® B) = 0.

Note that
tr(A® I, + I, ® B) = ntr(A) + mtr(B).

Study first the case with m =n = 2 and A and B the Pauli spin matrices.

Problem 12. Given the hermitian matrices of the three dipole operators

L [0 10 L [0 =i 0 10 0
Li=— (10 1), La=—1|i 0 —i|, ZLzy=[0 0 o0
V2\o 1 0 V2 o i o 00 —1

and the hermitian matrices of five quadrupole operators

0 0 1 0 0 —i
Wi={(0 0 0], Wy=10 0 0],
100 i 0 0
1 0o 1 0 1 0 —i 0
Vi=—|1 0 -1}, Vo=—17 0 1|,
V2 0 -1 0 V2 —1i
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Show that multiplying these eight hermitian matrices by ¢ we obtain a basis
for the semi-simple Lie algebra su(3). Consider the Hamilton operator

H = r0Qo® Qo+ k1(Vi @ Vi + Vo @ Vi) + ka(W1 @ Wy + Wa @ Wa).

Find the eigenvalues and eigenvectors of H.

e (2) =)

Problem 13. Let

and
2
u= Z L jajs Wiy @ Wi, @ Wjig = W1 @ Wa2 @ Wa + Wa ® Wi ® Wy
Ji,j2,33=1

=0 00110 0 07"

i.e. t1oo = 1, 917 = 1 and all other coefficients are equal to 0. Can the
vector u € C® be written as the Kronecker product of a vector in C? and a
vector in C*? Consider both cases C? @ C* and C* ® C2.

Problem 14. Let o1, 09, o3 be the Pauli spin matrices. Consider the
Hamilton operator

H = hw1o1 ® 01 + hweoo ® 09 + hwsos ® o3
acting in the Hilbert space C*. Show that

emt/h(ol ® Ig)e_mt/h = (01 ® I1) cos(wat) cos(wst)
+(I2 ® o1) sin(wat) sin(wst)
—(02 ® 03) cos(wat) sin(wst)
+ (03 ® 09) sin(wat) cos(wst)

/(5o @ I)e M = (55 ® I,) cos(wst) cos(wit)
+(I2 ® 02) sin(wst) sin(w; t)
—(03 ® 01) cos(wst) sin(wqt)
+(01 ® o3) sin(wst) cos(w1 t)

et (g0 @ I)e H/h = (03 @ L) cos(wit) cos(wat)
+(I2 ® 03) sin(wi t) sin(wat)
—(01 ® 03) cos(wyt) sin(wat)
+(02 ® 01) sin(ws t) cos(wat).
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Problem 15. Let Sy, S, S3 be the spin—% matrices

1(0 1 10 —i 1/1 0
51_2(1 0)’ S2_2(i 0)’ S3_2<0 -1

Solve the eigenvalue problem for the Hamilton operator

ﬁ:hcdl(Sl®SQ®53+S3®31®SQ+SQ®S3®51)
+hwa (S35 LRI+ 1o ®S3R I + Ir ® I, ® S3).



Chapter 3

Matrix Properties

3.1 Introduction

For finite-dimensional quantum systems finding the norm, eigenvalues, eigen-
vectors, Schmidt rank and inverse (if it exists) of square matrices is impor-
tant. Let A be an n x n matrix over C. Then we can define the sup-norm

Al = Sup [ Ax]|

where || Ax|| denotes the Euclidean norm in C™. The Hilbert-Schmidt norm
of a square matrix A is defined as

1A] == (tr(AA"))"/?

where tr denotes the trace.
Let A be an n x n matrix over C. Then the eigenvalue equation is defined

as
Ax = Ax

where A € C is the eigenvalue and x € C" with x # 0 is a corresponding
eigenvector. It follows that x*A* = Ax*.

The most important function in quantum computing is the exponential
function of a square matrix A defined by

e AJ A k
exp(4) := Z o = klglgo <I + k:) .

=07

65
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An n x n matrix over C is called normal if

A*A = AA".
Let A be an n x n normal matrix over C with eigenvalues Ay, ..., A, and
corresponding pairwise orthonormal eigenvectors v; (j = 1,...,n). Then

the matrix A can be written as (spectral decomposition)

n
J— . . *
A= E /\jv]vj.
=1

Note that

" .
v;vi, j=L....n

are projection matrices, i.e. (v;vi)(v;v}) = v;v],
vivj=1for j =k and vivy =0 for j # k.

(vjvi)* = v;vj and

Consider an n x n matrix A over C and the polynomial
p(A) =det(4A — AI,)
with the characteristic equation
p(A) = 0.

The Cayley-Hamilton theorem states that substituting the matrix A in the
characteristic polynomial results in the n X n zero matrix, i.e.

Decompositions of square matrices such as the singular value decomposi-
tion, spectral decomposition, polar decomposition and Schur decomposition
are necessary in quantum computing. Any unitary 2" x 2™ matrix U can
be decomposed as

U— Uy 0 c S Us 0
0 U, -S C 0 Uy
where Uy, Us, Us, Uy are 271 x 27~ ! unitary matrices and C and S are the
27~1 x 27~1 diagonal matrices

C = diag(cos(aq),cos(az), . . ., cos(agn /2)),

S = diag(sin(aq ), sin(az), . . ., sin(agn /2))

where a; € R. This decomposition is called cosine-sine decomposition.
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3.2 Solved Problems

Problem 1. Consider the hermitian 4 x 4 matrix (Hamilton operator)

A hw
H:7(0'1®0'1—0'2®0'2)

where w is the frequency. Find the norm of H, i.e.

|H| == sup ||Hx|, xeC*
[Ix||=1

Solution 1. There are two methods to find the norm of H. In the
first method we use the Lagrange multiplier method where the constraint

|x|| = 1 can be written as #? + x3 + 23 + 23 = 1. Since
0 0 01 0 0 0 -1
0 0 1 0 01 O
NEN=Ng 10 0] P25 0 10 o0
10 0 O -1 0 0 O
we have
0 0 0 1
- 0 0 0O
H = e 0 0 0 O
1 0 0 O

Let x = (21,2, 23,74)7 € C*. We maximize
Fx) = | Hx|® = Mo + a3 +af +af — 1)

where A is the Lagrange multiplier. To find the extrema we solve the four
equations

ﬁ =2h%w%x — 201 =0
3I1

of

673;‘2 = —2>\x2 =0

of

87'{[;3 = 72)\1'3 =0

ﬁ =2h%wW?xy — 2034 =0
(9$4

together with the constraint 2% + 23 + 23 + 23 = 1. The four equations can
be written in the matrix form

Bw2—X 0 0 0 1 0
0 -2 0 0 z2 | [0
0 0 =X 0 z3 | |0
0 0 0 hA2w?-—)\ T4 0
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If \=0then o1 = 24 = 0 and HHXH = 0, which is a minimum. If A # 0
then 3 = 3 = 0 and 22 + 22 = 1 so that |Hx| = hw, which is the
maximum. Thus we find ||H|| = hw. In the second method we calculate
the positive definite matrix H*H and find the square root of the largest
eigenvalue of H*H. Since H* = H we find the positive semi-definite

H*H = h?w?

SO O =
S O OO
o O OO
_ o O o

Thus the maximum eigenvalue is h2w? (twice degenerate) and ||H|| = fw.

Problem 2. Let H be a hermitian n x n matrix (Hamilton operator) with
eigenvalues Ey, F1, ..., E,_1 with corresponding normalized eigenvectors
[¥o), Y1)y -y [Yn—1). The quantum correlation function of two n x n
hermitian matrices A and B is given by

Qn(t) == %<¢k|(A(t)B — AB(t) + BA(t) - BO)A)w), k=0,1,...,n—1

where
A(t) = eth/hAe—th/h7 B(t) = otHt/h g —iHt/h

Note that Qg (t) is real valued. Find Q(t) using the properties

n—1

ARy = By N ) (| = I

J=0

Solution 2. Since
(Vi A(t) Bl ZeEk DR (oo | Al ) (5] Bl
(Y| AB(t)[1hr) Ze“E “ER 4y, | Al ) (5] Blabr)
7=0

(| BA(t)|1hr) ZeEﬂ BRR (| Bls) (5] Alor)

(| B(t) Al ZeEk DR | Bl ) (5] Alor)
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and utilizing the identity '™ — e =% = 2isin(a) yields

n—1

Qi(t) =i sin((B;—Ex)t/h) (5] Alwe) (Vi Bleg) — (] Aly) (5] Blex)) -

Jj=0

Problem 3. (i) Let A and B be two n x n matrices over C. If there
exists a non-singular n x n matrix X such that A = XBX ! then A and
B are said to be similar matrices. Show that the spectra (eigenvalues) of
two similar matrices are equal.

(ii) Let A and B be n x n matrices over C. Show that the matrices AB
and BA have the same set of eigenvalues.

Solution 3. (i) We have
det(A — \I,,) =det(XBX ' — XAI,X ') = det(X(B — A,,)X 1)
= det(X)det(B — A,,)det(X ') = det(B — \I,,).
(ii) Consider first the case that A is invertible. Then we have
AB = A(BA)A™L.

Thus AB and BA are similar and therefore have the same set of eigenvalues.
If A is singular we apply the continuity argument: Consider the matrix
A+el,. We choose 6 > 0 such that A+ e€l, is invertible for all ¢, 0 < € < 4.
Thus (A+e€l,)B and B(A+€l,,) have the same set of eigenvalues for every
e € (0,0). We equate their characteristic polynomials to obtain

det(AI, — (A+€l,)B) =det(\, — B(A+¢€l,)), 0<e<?i.
Since both sides are analytic functions of € we find by letting € — 0T that

det(A, — AB) = det(\],, — BA).

Problem 4. Consider a square non-singular matrix A over C. The polar
decomposition theorem states that A can be written as

A=UP

where U is a unitary matrix and P is a positive definite matrix. Thus P is
hermitian. Show that A has a unique polar decomposition.

Solution 4. Since A is invertible, so are A* and A*A. The positive square
root P of A*A is also invertible. Set U := AP~!. Then U is invertible and

U*U =P lA*AP ' =pip2p~t =7
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so that U is unitary. Since P is invertible, it is obvious that AP~! is the
only possible choice for U.

Problem 5. Let A and B be n X n hermitian matrices. Suppose that

A% =1,, B?Z=1, (1)

and
[A,Bly =AB+BA =0, (2)
where 0,, is the n x n zero matrix. Let x € C" be normalized, i.e. ||x|| = 1.

Here x is considered as a column vector.
(i) Show that
(x*Ax)? + (x*Bx)? < 1. (3)

(ii) Give an example for the matrices A and B.
Solution 5. (i) Let a,b € R and let 72 := a? + b2. The matrix
C=aA+bB
is again hermitian. Then
C? = a’A® + abAB + baBA + b* B>
Using the properties (1) and (2) we find
C? = ad’IL, + 0L, = r’I,.
Therefore (x*C?x) = r? and —r < a(x*Ax) + b(x*Bx) < r. Let
a=x"Ax, b=x"Bx

then a? + b%> <7 or r2 < r. This implies r < 1 and r? < 1 from which (3)
follows.

(i) An example is A = o1 and B = o3 since 02 = I, 03 = I and
0109 + 0201 = 02.

Problem 6. Let K be an n X n skew-hermitian matrix K = —K* with
eigenvalues 1, ..., uy, (counted according to multiplicity) and the corre-
sponding normalized eigenvectors uy, ..., u,, where ujuy = 0 for k # j.
Then K can be written as

n
— . ¥
K= E pjuiu;
j=1
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and wjujuguy = 0 for k # j and j,k = 1,2,...,n. Note that the n x n
matrices ujuj} are projection matrices and

J
n
* J—
E uu; = I,.
j=1

(i) Calculate exp(K).

(ii) Every n X n unitary matrix can be written as U = exp(K), where K is
a skew-hermitian matrix. Find U from a given K.

(iii) Use the result from (ii) to find for a given U a possible K.

(iv) Apply the result from (ii) and (iii) to the unitary 2 x 2 matrix

[ cos(6) sin(0)
(o) = <sin(0) Cos(0)> ’

(v) Apply the result from (ii) and (iii) to the 2 x 2 unitary matrix

B cos(f) —e?sin(6)
V(0. ¢) = (e—i¢ sin(@)  cos(f) ) '

(vi) Every hermitian matrix H can be written as H = iK, where K is a
skew-hermitian matrix. Find H for the examples given above.

Solution 6. (i) Using the properties of the n X n matrix u;uj we find

n n
exp(K) = exp Z,ujujuj = Z eI ujuj.
j=1 j=1
(ii) From U = exp(K) we find
U= Z e ujuj
j=1
where u; (j =1,2,...,n) are the normalized eigenvectors of U.
(iii) The matrix K is given by
K= In(\;)uu;

j=1

where \; (j =1,2,...,n) are the eigenvalues of U and u; are the normalized

eigenvectors of U. Note that the eigenvalues of U are of the form exp(ic)
with a € R. Thus we have In(e!®) = ia.
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(iv) The eigenvalues of the matrix U(#) are e? and e~* with the corre-
sponding normalized eigenvectors

w () w5

K (6) = In(¢)uyu; +ln(e)uzus — ’;(Z ‘1’>_’29(_12 i):(_oa g)

(v) For the matrix V (6, ¢) the eigenvalues are e~ and e with the corre-

sponding normalized eigenvectors

L) )

0 —feit
K(0,6) = In(e=)uyus + In(e’ )“2“2<eei¢ 8 )

Thus

(vi) For U(#) we find the matrix

. 0 1
29(_1 O)'

For V (0, ¢) we find the matrix
0  —ife®
b= 0 )°

Problem 7. Let A and B be n X n hermitian matrices. Suppose that

A*=4, B’=B (1)

and
[A,B]y = AB+ BA =0, (2)
where 0,, is the n X n zero matrix. Let x € C™ be normalized, i.e. ||x|| = 1.

Here x is considered as a column vector. Show that

(x*Ax)? + (x*Bx)? < 1. (3)

Solution 7. For an arbitrary n x n hermitian matrix M we have

0< (x*"(M — (x*Mx)I,,)*x) = (x*(M? = 2(x* Mx)M + (x* Mx)?I,)x)
= (x*M?x) — 2(x*Mx)? + (x*Mx)? = (x* M?x) — (x* Mx)?.
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Thus
0 < (x*M?x) — (x*Mx)? or (x*Mx)? < (x*M?*x).

Thus for A = M we have using (1)
(x*Ax)? < x*Ax

and therefore 0 < (x*Ax) < 1. Similarly 0 < (x*Bx) < 1. Let a,b € R,
r?2:=a?+b% and C := aA + bB. Then

C? =a®A? + V*B* + abAB + baBA.
Using (1) and (2) we arrive at C? = a?A + b>B. Thus
(x*Cx)? < (x*C?*x) < a® + b2

Let a := (x*Ax), b := (x*Bx) then (x*Cx) = a? + b?> = r? and therefore
(r?)? < r? which implies that r* < 1 and thus (3) follows.

Problem 8. Let A, B be n X n matrices over C. Assume that

[Av [A7B]] = [Bv [A’ BH = 0p. (1)

Show that
eAB = ¢AeBem3l4B (2a)
eA+TB _ B oA +3[AB] (2b)

Hint. Use the technique of parameter differentiation. Consider the matrix-
valued function

f(e) _ 65AeeB

where € is a real parameter and calculate the derivative df /de.
Solution 8. If we differentiate f(e) with respect to ¢ we find

;ll _ AeeAeeB + GEAGEBB _ (A+ eeABefeA)f(e)
€

since e“4e~4 = [,,. Owing to (1) we have

e““Be 4 = B+ ¢[A, B].
Thus we obtain the linear matrix-valued differential equation

daf

= ((A+B)+ A, B)f(e).
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Since the matrix A + B commutes with [A, B] we may treat A + B and
[A, B] as ordinary commuting variables and integrate this linear differential
equation with the initial conditions f(0) = I,,. We find

fle) = e€(A+B)+(e?/2)[A,B] _ e(A+B) (¢*/2)[A,B]
since A+ B commutes with [A, B]. If we set ¢ = 1 and multiply both sides

by e~4Bl/2 then (2a) follows. Likewise we can prove the second form of
the identity (2b).

Problem 9. Let A be an n x n matrix. Assume that the inverse matrix
of A exists. The inverse matrix can be calculated as follows (Csanky’s
algorithm). Let

p(x) := det(xl, — A) (1)

where I, is the n X n unit matrix. The roots are, by definition, the eigen-
values A1, Aa, ..., A, of A. We write

plx) =a" +cz" P+ ety (2)

where ¢, = (—=1)"det(A). Since A is nonsingular we have ¢, # 0 and vice
versa. The Cayley-Hamilton theorem states that

p(A) = A" 4 AV e 1At e, =0, (3)

Multiplying this equation with A~! we obtain

1
Al = — (A" A2 ey ). (4)

—Cp,

If we have the coefficients ¢; we can calculate the inverse matrix A. Let

Then the s; and c; satisfy the following n X n lower triangular system of
linear equations

1 0 0 N 0 C1 —S1
S1 2 0 ... 0 Co —82
So S1 3 0 cs | — | —s3
Spn—1 Spn—2 ... S1 n Cp, —Sn

Since
tr(AF) = X \E =,
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we find s for £k = 1,2,...,n. Thus we can solve the linear equation for
¢;. Finally, using (4) we obtain the inverse matrix of A. Apply Csanky’s
algorithm to the 4 x 4 permutation matrix

01 00

0 010

U_0001

1 0 0 O

Solution 9. Since

0010 0 0 0 1
o |0 0 0 1 3 |1 0 00
U_100O’U_0100
01 00 0 010

and U* = I, we find
tr(U) =0=s1, tr(U%)=0=sy, tr(U%)=0=s3, tr(U*) =4=s,.

We obtain the system of linear equations

10 0 0 c1 0
0 2 00 2| [ O
0 0 3 0 es] | O
0 0 0 4 Cyq —4
with the solution ¢; =0, ¢co =0, ¢c3 = 0, ¢4 = —1. Thus the inverse matrix
of U is given by
0 0 01
1_,3_|1 0 0 0
ve=ut= 01 0 0
0 010

Problem 10. Let

0 1 _ 0 0 1/1 0
+ . — —
(o) =(10) am=3(o D)

(i) Let € € R. Find the matrices e/, e/, ef(/"+77),
(ii) Let r € R. Show that

eT(J++J_) = eJ_ tanh(r) €2J3 ln(cosh(r))eJ+ tanh(r) )
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Solution 10. (i) Using the expansion for an n x n matrix A

and

(ii) Since
o2 In(cosh(r)) _ [ cosh(r) 0
0 1/ cosh(r) J’

1/ cosh(r) +tanh(r) sinh(r) = cosh(r) and using the results from (i) we find
the identity.

Problem 11. The Heisenberg commutation relation can be written as
[p. 4] = —ihI
where p := —ihd/0q and I is the identity operator. Let a, f € R and
U(a) = exp(iap),  V(B) = exp(if9).
Then using the Baker-Campbell-Hausdorff formula we find
U(a)V(B) = exp(iaB)V (B)U ().

This is called the Weyl representation of Heisenberg’s commutation relation.
Can we find finite-dimensional n x n unitary matrices U (U # I,,) and V
(V # I,) such that

UV =wVU

withweC,w"=17

Solution 11. Such matrices can be found, namely the permutation matrix

010 0

0 0 1 0
U :=

0 00 1

—
o
o
o
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and the diagonal matrix

1 0 0 ... 0

0 w 0 ... 0
V=0 0 w? 0

0 0 O w1

Problem 12. Let U be the n X n unitary matrix

0 1 0

0 01 0
U :=

0 00 1

1 00 0

and V be the n x n unitary diagonal matrix (w € C)

10 0 0
0 w 0 0
ve=|0 0 w? 0
00 0 .. wil

where w™ =1 (w # 1). Then the set of matrices
{UVF i k=0,1,2,...,n—1}

provide a basis in the Hilbert space for all n x n matrices with the scalar
product

1
(A, B) := —tr(AB")
n
for n x n matrices A and B. Write down the basis for n = 2.

Solution 12. For n = 2 we have the combinations

(U, k) € {(0,0), (0,1), (1,0), (1,1) }.

This yields the orthonormal basis (where w = —1)

L (10 (01 (10 (0 1
2=\o 1) *7\10) 7o -1)> 727 \1 o )
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Problem 13. An n x n circulant matriz C' is given by

Co C1 Cy ... Cp—1

Cn—1 Co C1 ... Cp-2

C:=]| -2 Cr-1 C ... Cp-3
C1 C2o c3 ... Co

For example, the permutation matrix

010 ... 0
0 01 0
e
0 0 0 ... 1
10 0 ... 0

is a circulant matrix. It is also called the n xn primary permutation matrix.
(i) Let C' and P be the matrices given above. Let

f()\) = Cp + Cl>\ + -+ Cnfl)\n_l.

Show that C' = f(P).
(ii) Show that C' is a normal matriz, that is C*C = CC*.
(iii) Show that the eigenvalues of C are f(w*), k =0,1,...,n— 1, where w
is the nth primitive root of unity.
(iv) Show that

det(C) = f(W°) flw') - flw" ).
(v) Show that F*CF is a diagonal matrix, where F' is the unitary matrix
with (4, k)-entry equal to

1

%w(jil)(kil), ]7I€ = 1,...,TL.

Solution 13. (i) Direct calculation of
J(P)=colp +c1P+ P2+ 4y PPE

yields the matrix C, where I,, is the n x n unit matrix. Notice that P2,
P3, ..., P! are permutation matrices.

(ii) We have PP* = P*P. If two n x n matrices A and B commute, then
g(A) and h(B) commute, where g and h are polynomials. Thus C is a
normal matrix.

(iii) The characteristic polynomial of P is

det(M, = P) = A" — 1= [J(A = w").
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Thus the eigenvalues of P and P7? are, respectively, w® and w’*, where
k=0,1,...,n— 1. It follows that the eigenvalues of C' = f(P) are f(w"),
k=0,1,...,n—1.

(iv) Using the result from (iii) we find

det(C) = ]:[ Fwh).
k=0

(v) For each k =0,1,...,n— 1, let
Xy = (1, wk,(UQk, o ’w(n—l)k)T
where T denotes the transpose. If follows that

Pxj, = (WF,w?, ... L wn Dk DT = whxy

and
Cxp = f(P)xy, = f(w*)xs.

Thus the vectors xj, are the eigenvectors of P and C corresponding to the
respective eigenvalues w* and f(w¥), k =0,1,...,n — 1. Since

n—1 n—1 .
(50 = x5 = St = S {0 77

=0 =0 nj=k
we find that
1 1 1
—Xg, ——=X1, ..., ——Xp_
\/ﬁ 05 \/ﬁ 1, 5 \/’Tl 1

is an orthonormal basis in the Hilbert space C™. Thus we obtain the unitary
matrix

1 1 1 ... 1
1 w w? - w1t
F= 1 1 W? w?t .. w2(n=1)
N
i wn'—l w2(’;i—1) o w(n—l.)(n—l)

such that
F*CF = diag(f(wo),f(wl), .. .,f(w"‘l)).

The matrix F' is unitary and is called the Fourier matriz.

Problem 14. An n X n matrix A is called a Hadamard matriz if each
entry of A is 1 or —1 and if the rows or columns of A are orthogonal, i.e.

AAT =nl, or ATA=nl,.
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Note that AAT = nI, and AT A = nl,, are equivalent. Hadamard matrices
H,, of order 2™ can be generated recursively by defining

_ 1 1 _ Hn—l Hn—l
m-(i ) w=(in )
for n > 2. Show that the eigenvalues of H,, are given by +2"/2 and —2"/2
each of multiplicity 27 1.

Solution 14. We use induction on n. The case n = 1 is obvious. Now
for n > 2 we have

A — anl —Ain—1
n—1 M+ Hn—l

=det((A — Hy—1)(A + Hy—1) — H._)).

det(\[ — Hp)=|""_
Thus

det(N — H,,) =det(\1 — 2H>_,)
=det(\ — V2H,,_1) det(\ + V2H,,_,).

This shows that each eigenvalue u of H,,_; generates two eigenvalues ++/2p
of H,. The assertion then follows by the induction hypothesis, for H, 1
has eigenvalues +2(~1)/2 and —2("=1/2 each of multiplicity 2" 2.

Problem 15. Let U be an n X n unitary matrix. Then U can be written
as
U = Vdiag(A1, Aa, ..., \p) V™

where A1, Ao, ..., A, are the eigenvalues of U and V is an n X n unitary
matrix. Let
0 1
U= (1 O) |
Find the decomposition for U given above.

Solution 15. The eigenvalues of U are +1 and —1. Thus we have

U = Vdiag(l,-1)V*

-5 1)

Therefore V = V*. The columns of V' are the eigenvectors of U.

with
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Problem 16. An n x n hermitian matrix A over the complex numbers is
called positive semidefinite (written as A > 0), if

x*Ax >0 for all x € C".

Show that for every A > 0, there exists a unique B > 0 so that B2 = A.

Solution 16. Let A = U*diag(\1,. .., \,)U, where U is unitary. We take
B = U*diag(\)%,..., A/2)U.

Then the matrix B is positive semidefinite and B%? = A since U*U = I,,.
To show the uniqueness, suppose that C' is an n X n positive semidefinite
matrix satisfying C? = A. Since the eigenvalues of C are the nonnegative
square roots of the eigenvalues of A, we can write

C = Vdiag(\\/%, ... /2 v~
for some unitary matrix V. Then the identity C2 = A = B? yields
Tdiag(A1, ..., ) = diag(Ay, ..., )T
where T' = UV. This yields ¢z A\, = A\jtj,. Thus
tihy!? = A Pt

Hence
Tdiag(\/2,..., AL/2) = diag(\L/2, ... AV2)T.

Since T' = UV it follows that B = C.

Problem 17. An n X n matrix A over the complex numbers is said to
be normal if it commutes with its conjugate transpose A*A = AA*. The
matrix A can be written .
A= "\E;
j=1

where )\; € C are the eigenvalues of A and E; are n X n matrices satisfying
E} =FE; = Ej, E;Ey =0, if j #k, > B =1,
j=1

Let n = 2. Consider the NOT gate

A:(? é)
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Find the decomposition of A given above.

Solution 17. The eigenvalues of A are given by Ay = +1, Ay = —1. The
matrices E; are constructed from the normalized eigenvectors of A. The
normalized eigenvectors of A are given by

1(1> 1(1>
Vi = —— s Vo = — .
ERVZAN! RS
Thus

. 1/1 1 | 1 -1
E1V1V12<1 1)7 E2V2V22<_1 1>

Problem 18. Let X be an n x n matrix over C with X2 = I,,, where I,
is the n x n identity matrix. Let z € C.

(i) Show that e*X = I,, cosh(z) + X sinh(z).

(ii) Let z = i, where a € R. Simplify the result from (i).

Solution 18. (i) We have

1

2K

zX._OC(ZX)k_OOszk_ L 950
e ._kz o _k I —In—&-zX—FﬁzX—F
—0 =0

Since X? = I,, we have

2! 4! 3! 5!
= I,, cosh(z) + X sinh(z).

1 1 1 1
X =1, <1+22+z4+-~-) +X <z+z3—|—25+~~~>
(ii) Since cosh(ia) = cos(a), sinh(ia) = isin(a) we obtain
e X = I, cos(a) +iX sin(a).
Problem 19. Let 01, 02 be the Pauli spin matrices.

(i) Consider

V =exp(i(n/4)01), W = exp(i(m/4)02).

ves(i1) weg(ho)

V = exp(i(n/A)or), W = expli(n/4)o)

Show that

(ii) Let
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be two unitary 2 x 2 matrices. Calculate the matrices V*o3V, W*o3W.
Solution 19. (i) Using 07 = I, 03 = I, we find

V =1, cos(n/4) + ioy sin(n/4) = —(Ig +i01) = L <1 ‘ )
V2 Vo i 1
and
L. 1 . 1 1 1
W =1, cos(n/4) +iogsin(n/4) = —=(Iz +i0c2) = — .

(ii) We have

1 1
V*osV = ( ) o3 <I2 + 01)
\f \f V2T V2
1 ) )
= 503 + 50301 — 50103 + 5010301
= —09

and

1 1
—03 + =0302 — —0203 + —020309
2 2 2

"?Wg o) e (G5t 7500)

1-

Problem 20. Find the matrices

e(iﬂ'/4)0‘2 7(i7r/4)02’ e(i7r/4)02 7(2’7‘[‘/4)0’2.

g1€ o3e
Use the technique of parameter differentiation
fle) =e“201e 2

with f(e =0) = o3.

Solution 20. Differentiation of f with respect to € and using [o2,01] =
—2i03 yields

d
di —2ie2g3e” 72
with df (e = 0)/de = —2io3. The second derivative and using [o2, 03] = 2i0;
yields
da?f

ez =4f(e).
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The solution of this second order linear differential equation with constant
coefficients is
f(€) = Cy cosh(2¢) + Cy sinh(2e¢).

Inserting the initial values provides
f(e) = cosh(2¢)o1 — isinh(2¢)os.

Since € = im/4 we have cosh(ir/2) = cos(n/2) = 0 and sinh(in/2) =
isin(7/2) = 4. Thus f(e =in/4) =03 or

6(2’71'/4)020_167(1'77/4)0'2 = 03.
Analogously we find e(i™/9o2gge=(in/Ho2 — 5,
Problem 21. Let

V = exp(i(m/4)or) @exp(i(m/4)or), W = exp(i(m/4)o2) @exp(i(r/4)0s).

Calculate V*(o3 ® 03)V and W*(o3 @ o3)W.

Solution 21. We have

V(03 ® 03)V = (exp(—i(7/4)o1 )03 exp(i(m/4)o1))
®(exp(—i(m/4)o1)os exp(i(m/4)o1))
=092 K 09.

Analogously W*(o3 ® 03)W =01 ® 071.

Problem 22. Let X be an n x n matrix over C. Assume that X2 = I,.
Let Y be an arbitrary n x n matrix over C. Let z € C.

(i) Calculate exp(2X)Y exp(—zX) using the Baker-Campbell-Hausdorff for-
mula

2 3

eXye X =V 4 2[X,Y] + = [X,[X,Y]] + 3'[

51 X, [ X, [X, Y]] +

(ii) Calculate exp(zX)Y exp(—2zX) by first calculating exp(2X) and exp(—2zX)
and then doing the matrix multiplication. Compare the two methods.

Solution 22. (i) Using X2 = I,, we find for the first three commutators

[X, [X,YH = [X,XY —YX} = Q(Y—XYX)
[X’ [X7 [va]” :22[Xv Y}
(X [X X X Y] = 2° (Y - XY X).
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If the number of X’s in the commutator is even (say m, m > 2) we have
(X, [X,...[X,Y]..]=2""(Y - XY X).

If the number of X’s in the commutator is odd (say m, m > 3) we have

(X, [X,...[X,Y]..]=2""}[X,Y].
Thus
2122 234 2223
zX —zX __
e“*Ye —Y(1+ o1 + o +~-->+[X7Y]<z+ 3 +>
2122 234
_XYX( TR +>

Consequently

e*XYe *X =Y cosh?(z) + [X,Y]sinh(z) cosh(z) — XY X sinh?(z).

(ii) Using the expansion

and X2 = I,, we have
e*X = I, cosh(z) + X sinh(z), e *X =T, cosh(z) — X sinh(z2).
Matrix multiplication yields

e*XYe X =Y cosh?(z) 4 [X, Y]sinh(2) cosh(z) — XY X sinh?(2).

Problem 23. The definition of the Lie group SU(2) is
SU(2):={A : Aa?2x2complex matrix, det(A) =1, AA*=A"A=1,}.

In the name SU(2), the S stands for special and refers to the condition
det(A) = 1 and the U stands for unitary and refers to the conditions AA* =
A*A = I,. Show that SU(2) can also be defined as

SU(2) :={xols +ix" o : (xo,x)T € R, 23 + ||Ix|> =1}

where o = (01702,03)T are the Pauli spin matrices. Here x©

XTo02 + X303.

o = 1x101 +

Solution 23. Let A be any 2 x 2 complex matrix. Then A can be written
as
A=aol, +ia’o
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with a = (a1, az,a3)’ € C3. Thus we have

AA* = (aply +ia’ o) (agl, —ia’ o)
= |ao|?Is + iagal o — iapal o +a’al, +i(axa)lo

= (lao|® + ||a||*)I2 + i(dga — apa + a x a) o
where we used that o} = o; for j =1,2,3. It follows that
AA* =1, & |ag/* + ||al|* =1, @pa—apa+axa=0.

First, suppose that a # 0. Since a x a is orthogonal to both a and a, the

equation @pa — apa + a X a = 0 can only be satisfied if a x a = 0. That is,

only if a and & are parallel. Since a and a have the same length, this is the

case only if @ = e~2"a for some real number #. This can be written as
e~a=¢""a

which says that x = e~ W0

a x a=0 gives

a is real. Substituting a = e'x into apga — apa +

eapx — e Papx = 0.
This forces ag = ez for some real xy. If a = 0, we may still choose 6 so
, y

that ag = e"?xy. We have shown that
AA* =1, & A=Yzl +ixT o)
for some (g, x)T € R* with |x¢|? + ||x]|> = 1 and some @ € R. Since
det(A) = det(e (zo I, + ixT - 7))
= (2] + 27 + 23 + 28)
_ 210

we have that det(A) = 1 if and only if ¢’ = 1. If e = —1, we can absorb
the —1 into the vector (zg,x)7.

Problem 24. Let A, B be two n X n matrices over C. We introduce the

scalar product

tr(AB*) 1

——~ = —tr(AB").
tr(I,) n i )

The Lie group SU(N) is defined by the complex n x n matrices U

(A, B) :=

SU(N):={U : U'U =UU" =1, , det(U) =1}.

The dimension is N2 — 1. The semi-simple Lie algebra su(N) is defined by
the n x n matrices X

su(N) ={X : X*=-X, tr(X)=0}.
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(i) Let U € SU(N). Calculate the scalar product (U, U).

(ii) Let A be an arbitrary complex nxn matrix. Let U € SU(N). Calculate
the scalar product (UA, UA).

(iii) Consider the Lie algebra su(2). Provide a basis. The elements of the
basis should be orthogonal to each other with respect to the scalar product
given above. Calculate the commutator of these matrices.

Solution 24. (i) We have
1
(U.U) = —a(UU") =1

where we used that U* = U~ L.
(ii) We obtain

(UA,UA) = %tr(UA(UA)*) - %tr(UAA*U*) = %tr(AA*) = (A, A)

where we used the cyclic invariance of the trace.
(iii) We are looking for three linear independent 2 x 2 matrices which are
traceless and skew-hermitian matrices. A choice is

(i 0 (0 -1 (0 i
=0 =) 27=\1 o) B7\i o)

The matrices are also orthogonal to each other using the scalar product
given above. For the commutators we find

[T1,72] = =273, [13,7T1] = =272, [72,73] = —271.

Problem 25. Let H be an n X n matrix which depends on n real pa-
rameters €1, €,..., €,, where we assume that we can differentiate H with
respect to all €’s. Let 8 > 0 and Z(p) := tr(exp(—S8H)).

(i) Show that

B
ie—ﬁH = _/ dTe(T—ﬂ)Haje—TH_ (1)
an 0 aej
(ii) Show that
0 0
— 7 =— — He PH Y
Je; o (36j ‘ )

Solution 25. (i) We set

f(ﬁ7 S en) = eﬁHie_ﬁH.
aej
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It follows that

of o _ o (a _
— HePH BH pH & (Y -pH )
86je +e 35( e )

op O¢;
Since
3( 0 ﬂH) _ 0 <3 6H> __ 9 gy -sn
0B \ O¢; Oe; \ OB O¢;
- gi ren ai e
we obtain

of _ _ pu0H s
66 8ej
with the initial value f(0,€1,...,€,) = 0. Integrating provides

B
f(fgvelv--~7fn) - 7/0 6THg£je'erT-

Multiplying by exp(—FH) yields identity (1).
(ii) We have

B) B B
&Z] a7tr(exp( BH)) = <6Gjexp(—ﬂH))

(/ dre™ HaH TH)
6,

oH
— —BH
n ﬂtl‘ (6 86]‘)

where we used the result from (i) and the cyclic invariance of the trace.

Problem 26. To calculate exp(A) we can also use the Cayley-Hamilton
theorem and the Putzer method. Using the Cayley-Hamilton theorem we
can write

fA) =an 1 A" a0 A" 2 4 A + A+ aol, (1)

where the complex numbers ag, a1, ..., a,_1 are determined as follows:
Let

r(A) = AN Ly oA 2 N )+ ag
which is the right-hand side of (1) with A7 replaced by M (j =0,1,...,n—

1). For each distinct eigenvalue \; of the matrix A, we consider the equation

f) =7(A). (2)
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If A\; is an eigenvalue of multiplicity %, for £ > 1, then we consider also the
following equations

f/()\)|)\:)\J _ 7,1/()\)|>\:)\j , e ’f(k?—l)()\)‘A:/\; — ’I"(k_l)()\) N .

Any unitary matrix U can be written as U = exp(iK), where K is hermi-
tian. Apply this method to find K for the Hadamard gate

1 /1 1
=71 4)
Solution 26. The hermitian 2 x 2 matrix K is given by

K:(a b), a,ceR, beC.
b ¢

Then we find the condition on a, b and ¢ such that e’ = Uy. The eigen-
values of 1K are given by

i(a+c)
2

1 =
Mo = :I:i\/2ac—&2—c2 — 4bb.

We set in the following

A=) — o= \/Zac—a2—62—4b5.
To apply the method given above we have
T’(/\) = Oél)\ +ag = f()\) = 6)\.

Thus we obtain the two equations e = a3 A1 + ag, €’ = a1 g + ag. It

follows that
eM — et2 e*2 )\ — eM )y

VD VL S P W
We have the condition

eiKzaliK+a0[2:(ia1a+aO i01b >:1<1 1)

a1 =

i1 b e+ ag

We obtain the four equations

1 1 1 oD 1
—, —, —, toab=—.
V2 V2 V2 T
From the last two equations we find that b = b, i.e. b is real. From the first
two equations we find ag = —iay (a+ ¢)/2 and therefore, using the last two
equations, ¢ = a — 2b. Thus

iaga + ag a1 b _ (ionb  iagd
iy b taic+ag ) \iab —ionb )

e+ ag = e+ oy = — i b =
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From the eigenvalues of X we find e’ — e?2 = 2 and

A = /2ac — a2 — 2 — 462 = 21/2ib.

Furthermore A\; = i(a — b) + v/2ib, Ay = i(a — b) — /2ib. Thus we arrive at
the equation

ei(afb)+\/§ib - ei(afb)f\/iib —9

It follows that ie*(*~?) sin(y/2b) = 1 and therefore
i cos(a — b) sin(v/2b) — sin(a — b) sin(v/2b) = 1

with a solution

T T 1 T 1
b= ——, a=—-(3+—], c=a—-2b==(3-—).
2v/2 2( \/§> 2( ﬂ)

Then the matrix K is given by

e=s (T ) =5 (6 0) 5 ().

We note that the second matrix on the right-hand side is the Hadamard
gate again.

Problem 27. Let A, B, Co, ..., Cp, ... be n x n matrices over C. The
Zassenhaus formula is given by

exp(A + B) = exp(A) exp(B) exp(Cs) - - - exp(Chy) - - -

The left-hand side is called the disentangled form and the right hand side
is called the undisentangled form. Find Cy, Cs, ..., using the comparison
method. In the comparison method the disentangled and undisentangled
form are expanded in terms of an ordering scalar o and matrix coefficients
of equal powers of o are compared. From

exp(a(A + B)) = exp(ad) exp(aB) exp(a’Cy) exp(a’Cs) - - -

we obtain
> aF A > aotrit2ra+3ra+..
CA+B= Y AT BT
k! rolrylralrg!. .-
k=0 T0,71,72,73,...=0

(i) Find the matrices Cy and Cs.
(ii) Assume that [A,[A, B]] = 0, and [B,[4, B]] = 0,. What conclusion
can we draw for the Zassenhaus formula?
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Solution 27. (i) For a? we have the decompositions (rg,71,72) = (2,0,0),
(1,1,0), (0,2,0), (0,0,1). Thus we obtain
(A+ B)? = A2 + 2AB + B? 4 205.

Thus it follows that )
CQ = _5 [A, B]

For o we obtain
(A+ B)* = A*> + 3A?B + 3AB? + B + 6ACy + 6BC» + 6C3.

Using Cs given above we obtain

1 1
(ii) Since [B,[A, B]] = 0, and [A4, [A, B]] = 0,, we find that C3 = Cy =

---=0. Thus

exp(a(A + B)) = exp(aA) exp(aB) exp(—a?[A, B]/2).

Problem 28. Let H be a hermitian n X n matrix. Show that exp(H) is
a positive definite matrix.

Solution 28. If H is hermitian then H?, H?3 etc are hermitian and also
exp(H). Let A\; (j = 1,2,...,n) be the real eigenvalues of H since H is
hermitian. Then e (j = 1,2,...,n) are the real eigenvalues of exp(H) and
obviously e* > 0 for (j = 1,2,...,n). Thus exp(H) is a positive definite
matrix.

Problem 29. Let 01, 02, 03 be the Pauli spin matrices. Does the set of

4 x 4 matrices { I ® I3,01 ® 01,—02 ® 09,03 ® o3 } form a group under
matrix multiplication?

Solution 29. We have

0109 = iO‘3, 0201 = —2'0'37 0203 = iO’l,
0302:i01, O'30'1=i0’2, U10’3=—i0’2.
Thus
(01 ®01)(—02 ® 02) = —(0102) ® (0102) = 03 ® 03
(=02 ® 03)(03 ® 03) = —(0203) ® (0203) = 01 ® 71

(03 ® 03)(0'1 ® 0'1) = (0’30’1) ® (030’1) = —02 ® g9.
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The neutral element is Is ® I>. Each element is its own inverse. Thus the
set forms a group under matrix multiplication.

Problem 30. The spin matrices for spin-2 particles (for example graviton)
are given by

0 2 0 0 0
120%00
J1:§0\/60\/60,
0 0 V6 0 2
0 0 0 2 0
0 -2 0 0 0
1'20_\/600
Jo==]0 vV6 0 —vV6 0 |,
210 o V6 0 -2
0 0 0 2 0
200 0 0
010 0 0
Js=]10 0 0 0 0
00 0 -1 0
000 0 =2

(i) Show that the matrices are hermitian.

(i) Find the eigenvalues and eigenvectors of these matrices.
(i

(

iii) Calculate the commutation relations.
iv) Are the matrices unitary?

Solution 30. (i) Obviously the matrices are hermitian, i.e.
Ji = Ju, Jy = Ja, J3 = Js.

(ii) The eigenvalues of J; are —2, 2, —1, 1, 0 with the corresponding nor-
malized eigenvectors

1 1 1
-2 2 ~1
1 1 1
w=-|Vv6|, w=-|Vv6|, w==| 0],
S ) 4 21
1 1 1
1 1
1 0
w=-|0 ,u5=£ —V2/V3
-1 8 0
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The eigenvectors form an orthonormal basis in C. The eigenvalues of J»
are 2, 1, 0, —1, —2 with the corresponding normalized eigenvectors

1 1
—2i 2i L
R R TR | N Y B
SRV SV i TR L N I I
2i 1 .
1 1
1 1
w=1 0 3| a)ys
S B VN
~1 1

The eigenvalues of J3 are 2, 1, 0, —1, —2 with the corresponding eigenvec-
tors (standard basis)

Ug = us =

OO O+ O
o= O O O
= O O OO

0
0
usz — 1 s uy =
0
0

c
=
\
cCoocor

(iii) The commutation relations are [Jy, Jo| = iJ5, [Ja, J3] = iJ1, [J3, J1] =
1J.
(iv) No the matrices are not unitary. Note that

det(J1) = det(J2) = det(J3) =0
owing to the eigenvalue 0.

Problem 31. Two orthonormal bases in an n-dimensional complex Hilbert
space

{lw) - j=1,2,...,n}, {Ivj) :5=12,...,n}

are called mutually unbiased if the inner products (scalar products) be-
tween all possible pairs of vectors taken from distinct bases have the same
magnitude 1/4/n, i.e.

1
|<uj|vk>|:% forall j,ke{l,2,...,n}.

(i) Find such bases for the Hilbert space C2.
(ii) Find such bases for the Hilbert space C3.
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Solution 31. (i) As the first bases we select the standard basis

1) G

For the second basis we could select

) w(h))
tvali) 7))

Applying a unitary matrix to these two sets provide other such sets.
(ii) An example is the standard basis

or

1 0 0
o, (t]., (o
0 0 1

and

1 ) —1 L [ (F1+iv3)/2
— 1], = (a+v3r|. | (1-iv3)2
va\1) V3\a-va)2) V3 1

Applying a unitary matrix to these two sets provide other such sets.

Problem 32. Find a 4 x 4 matrix A such that —4 = A~1 = AT = A*.

Solution 32. Let 05 be the 2 x 2 zero matrix. We find

0 0 0 -1

A= ( 02 —iUg) _ 0 0 1 0
71'0'2 02 - 0 -1 0 0

10 0 O

This matrix plays a role for the charge conjugation in the Dirac equation.

Problem 33. Consider the spin matrices for a spin-1 particle

L [0 10 L (0 =i 0 10 0
Si=—1[10 1], So=—|i 0 —i], S35=[(0 0 o0
V2o 1 0 V2\o i o 00 -1

and the unit vector n = (sin(f) cos(¢) sin()sin(¢) cos()). We define
the scalar product

n-S:= nlsl + TLQSQ + TL353.



Matriz Properties 95

Consider the Hamilton operator
H = hw(n-8S).

(i) Calculate the Hamilton operator H. Ts the Hamilton operator H her-
mitian?

(i) Calculate the trace of H.

(iii) Find the eigenvalues and normalized eigenvectors of H.

(iv) Do the eigenvectors form a basis in the Hilbert space C3?

Solution 33. (i) The Hamilton operator is given by

) cos() sin(0)e™? /v/2 0
H = hw | sin(0)e’®/v/2 0 sin(0)e~/v/2
0 sin(0)e*® //2 —cos(0)

Since exp(i¢) = exp(—i¢) the Hamilton operator is hermitian. Thus the
eigenvalues must be real.

(ii) The trace of H is 0. Thus the sum of the three eigenvalues of H must
be 0.

(iii) The eigenvalues of H are hw, 0, —lw. The corresponding normalized
eigenvectors are

(14 cos(6))e~/2 —sin(f)e**/\/2 (1 — cos(0))e™/2
sin(6) \/5 , cos(#) , —sin(H)/ﬂ
(1 —cos(0))e’® /2 sin(0)e*® //2 (1 + cos(0))e’® /2

(iv) The Hamilton operator is hermitian and the three eigenvalues are dif-
ferent. Thus the normalized eigenvectors form an orthonormal basis in the
Hilbert space C3.

Problem 34. Consider a complex Hilbert space H and |¢1), |¢2) € H. Let
c1,co € C. An antilinear operator K in this Hilbert space H is characterized
by

K(c1][¢1) + 2|d2)) = 1 K][¢1) + 3 K|¢o).

A comb is an antilinear operator K with zero expectation value for all states
|t) of a certain complex Hilbert space H. This means

(Y[K[p) = (W|LC|Y) = (SIL[Y7) =0

for all states |¢)) € H, where L is a linear operator and C' is the complex
conjugation.

(i) Consider the two-dimensional Hilbert space H = C?. Find a unitary
2 x 2 matrix such that (|UC|¢) = 0.
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(ii) Consider the Pauli spin matrices with og = I3, 01, 02, 03. Find

3 3
>O> @louCle)g™ (o, Clv)

pn=0v=0

where g"" = diag(—1,1,0,1).
Solution 34. (i) We find U = o3 since

oo = wloal®) = v v) (9 5 ) (4F) =0

(ii) We have

3 3
>N WlouClb) g (Wl Clib) = = ($lool™)? + (blor[v7)* + (Wos|e*)?

pn=0rv=0
=0.

Problem 35. Consider the Hilbert space C?. Let |j) (j = 1,...,d) be
an orthonormal basis in C?. Then a d x d matrix A acting in C% can be

written as p
A= Z ajk|j)(k
J,k=1

with aj, € C. Obviously A depends on the underlying orthonormal basis.
If we have the standard basis, then A reduces to the matrix A = (a;,). We

can associate a vector |¢4) in the Hilbert space C% with the matrix A via

d

[a) = Z ajkli) ® |k).

k=1

(i) Let d = 2 and consider the standard basis

Find A and [|¢4).
(ii) Let d = 2 and consider the Hadamard basis

w50 =5 (0)

Find A and |¢4).
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Solution 35. (i) We have
A= an[1) (1] + a12|1)(2] + a21(2) (1] + a22[2)(2
o aill 0 0 a12 0 0 0 0 o ai; a2
(o o)+ ) (o) (0 )= (2 )
and

|’(/)A> = a11|1> & |1> + a12|1) (9 ‘2) + 0,21|2> & |1> + a22|2> & |2>

a1 0 0 0 a11

o 0 a12 0 0 _ | @12
- 0 + 0 + any T 0 o a1
0 0 0 a22 a22

(ii) We have

A=an|1)(1] + a12[1)(2] + a21]2) (1] + a22(2)(2|

O D A N 4 e A Loy, L 1 -1
o1 1 2712\ 1 -1 27t -1 -1 272\ -1 1

. } a1l + a1z + ag1 + a2 ai; — aiz + Az — a2
a11 + a2 —ag1 —age ai; — aiz — a1 + a2

2

and

[YA) = a11]1) @ [1) + a12]1) @ [2) + a21|2) @ [1) + a2(2) @ [2)
1 1 1 1
1 1 -1 1 1 1 -1
1T 02| + 021 [ 4 + 5922 |
1 -1 -1 1

a1 +aiz + agy + as

1 [ a11 — a1z + a21 — az

2 | a1 +a12 —az1 —aze
a11 — G12 — a21 + 22

= 5a1

2

Extend to d = 3 and consider the orthonormal basis

L (1 0 A
H=—7=(0], 2)={1], B)=—2
V2 |4 0 V2 |

Find A and |14). Describe the connection of the map A + [i4) with the
vec-operator.

Problem 36. Let s be a spin with a fixed total angular momentum
quantum number

s€{1/2,1,3/2,2,...}.
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The (normalized) eigenstates of z3-angular momentum |s, m) form a ladder
with

m=-s,—s+1,...,s—1,s.
The eigenstates |s,m) form an orthonormal basis in a 2s + 1 dimensional
Hilbert space. For example if s = 1/2 we have the two states |1/2, —1/2),
[1/2,1/2) and can identify

11/2,1/2) ((1)) 11/2,—1/2) s (?)

Thus we have the Hilbert space C2. For s = 1 we have the three states
[1,-1), |1,0), |1,1) and can identify

0 0 1
1,-1)—~ (0], [L,LO)—~ (1], [L,I)—|[O
1 0 0

A spin coherent state |s, 0, ¢) for s =1/2,1,3/2,... can be given by

s, 0, ¢) = Z Grm) )S'm)!(cos(9/2))s+m(sin(@/?))s_me_“”ﬂs,m).

(i) Find [1/2,6, ¢) and write it as a vector in C2.

(i) Find |1,6, ¢) and write it as a vector in C3.

(iii) For a given s find the scalar product (s, m|s, 8, ®).
Solution 36. (i) We obtain

11/2,6, ¢) = sin(0/2)e**/2|1/2, —1/2) + cos(8/2)e~¢/2|1/2,1/2).

Thus o
120,00 (e ).
(ii) For s = 1 we obtain
sin?(0/2)e'|1, —1) + V2 cos(0/2) sin(0/2)[1, 0) + cos(6/2)e~**|1,1).
Thus we the state in C3

cos?(0/2)e®
11,6, 6) — | V2cos(0/2)sin(0/2)
sin?(0/2)e'?

(iil) Since (s, m'|s,m) = §,,/ m we obtain

<s,m|s,9,¢>:\/ : B (cos(0/2)) ™ (sin(8/2))~ e,

s+ m)l(s —m)!
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Problem 37. Let n > 1 and {|0)),]|1),...,|n)} be an orthonormal basis
in C"*t. Consider the linear operators ((n + 1) x (n + 1) matrices)

an =Y Vili=DGlL al =Y VER)(k-1].
j=1 k=1
Find the commutator [a,,al]. Note that

SO0 = L.
£=0

Solution 37. We have

ZZ\f\fIJ—l (j]k) —H-Zk\k—l k-1

j=1k=1

alan =YY VEVGIk) (k= 1] — 1)(j] = ZJ\J

k=1 j=1

Thus [ay,al] = anal, — al ap, = Ly 1 — (n 4+ 1)|n)(n].

Problem 38. Let z € C. Consider the spin-1 matrix

Calculate exp(zS2). Then substitute z = —iwt.
Solution 38. Since S5 = 93, S5 = 52 etc we obtain

3,5 2 4
exp(z52) = I3 + S (z—&-?)'—i-f)‘-&- >+52 (2' +4+-~->
= I3 + Sy sinh(z) + S3(cosh(z) — 1).
With z = —iwt we obtain

exp(—iwtSy) = I3 — isin(wt) Sy + (cos(wt) — 1)S53.

Since
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we end up with

1+ (cos(wt) —1)/2 —sin(wt)/vV2  (—cos(wt) +1)/2
exp(—iwtSy) = — sin(wt)/V/2 cos(wt) — sin(wt)/v/2
(—cos(wt)+1)/2  sin(wt)/v2 14 (cos(wt) —1)/2

Problem 39. Consider the Hilbert space Ms(C) of all 2 x 2 matrices over
C with scalar product

(A, B) :=tr(AB*), A, B € My(C).

The standard basis is

1 0 0 1 0 O 0 O
Ell—(o 0>7 E12—(0 0>7 E21—(1 0>7 E22—(0 1)-

A mutually unbiased basis is

1 1 (1 o) 1 1 (o 1)
= —=00= —(= 9 - - 9
Ho \/50 NAUR! 2 5 1 0

NCIEG

1 1 <O —i) 1 1

= —09 = —= . y = —09q = —=
- N AR He V20T R

(i) Express the Hadamard matrix

=)

with this mutually unbiased basis.
(ii) Express the Bell matrix

|
2
|

10 0 1
L fo1 1 0
3_501—10
10 0 -1

with the basis (sixteen dimensional) given by p; ® px, (4,k =0,1,2,3).

Solution 39. (i) We have the expansion

3

> (A )

b
|

with
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Hence A = pq + ps.
(ii) We have the expansion

3 3
B=> " (B, u; @ pk)(uj @ ).
=0 k=0

The only nonzero expansion coefficients are
<Baﬂ3®M0>:\/§7 <Bvﬂl®ul>:\/§

Hence
B =V2u3 ® po + V21 ® py.

Problem 40. Two orthonormal bases in an n-dimensional complex Hilbert

space
{haj) : j=1,2,...,n}, {Ivj) :7=1,2,...,n}

are called mutually unbiased if inner products (scalar products) between all
possible pairs of vectors taken from distinct bases have the same magnitude

1/+/n, ie.

1
|<uj|v;€>|=% forall j,ke{1,2,...,n}.

(i) Find such bases for the Hilbert space C2. Start of with the standard

baSiS
u; = Ug =
0 ’ ’

(ii) Find such bases for the Hilbert space C3. Start of with the standard
basis

1 0 0
u; = 0 ’ ug = 1 s us — 0
0 0 1

(iii) Find such bases for the Hilbert space C* using the result from C? and
the Kronecker product.

Solution 40. (i) For the second basis we could select

s w50

Another selection would be

w (D) sl
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(ii) A possible solution is

(1 1/V3 1/V3
vi=z 1], vo=|—-i/2—1/2v3) |, vs=| i/2-1/(2V3)
3 \1 i/2—1/(2V/3) —i/2 —1/(2V/3)

Problem 41. (i) Let A, B be n x n matrices over C such that 4% = I,,
and B? = I,,. Furthermore assume that

[A,B]y =AB+ BA=0,
i.e. the anticommutator vanishes. Let o, 8 € C. Calculate e*A+88 using

QO ATBB _ i (aA+ ﬁB)j.

=

(ii) Consider the case that n =2 and

a = —iwt, A03<(1) 01>

. 0 1
ﬁ:—ZAt/h, B:0'1:<1 O)
(iii) Consider the case that n = 8 and
Ck:—iwt7 A:Ug®0'3®03

BZ—Z'At/FL, B=01®0 ®o07.

Solution 41. (i) Since BA = —AB we have
(@A +BB)* = (a® + B)°Lp, (aA+ BB)’ = (a® + %)(aA + BB).
Thus in general we have for positive n
(@A + BB)" = (o + BH)™V?I, for n even

and
(A + BB)" = (o + 2)"/?71 for n odd

Thus we have the expansion

e*ATAB — 1, (1 4 %(oﬂ + 8% + %(02 +5%)? + l'(ozz +8%)°+--)

HaA+BB)(1+ (0 + %)+ gi(a® 4 B 4o ).

b=
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This can be summed up to

aA+BB _ . 2 g2y, CA+BB 3 32
e = I, cosh(y/a? + 82) + ——ssinh(v/a? + 2).
/OZ2+52

(ii) We have
it
Va2 + 52 = /-2 — A2 /2 = %\/ hPw? + A2

We set E := Vh2w? + A2. Tt follows that

aA+ BB hwA+AB  (-hw/E -AJE
a4 32 E "\ -A/E  hw )

aA+ B 573 [ —isin(Et/h)hw  —isin(Et/h)A/E
sinh(v/a® + 5?) = (—z’sin(Et/h)A/E i sin(Et/h)ho )

and
QO ABB _ cos(Et/h) — isin(Et/h)hw/E —isin(Et/h)A/E

o —isin(Et/h)A/E cos(Et/h) + isin(Et/h)hw/E ) °
Problem 42. Let H be an n X n hermitian matrix and A, ..., A, be the

eigenvalues with the pairwise orthogonal normalized eigenvectors vy, ...,

v,. Then we can write
n
H = E )\@V@VZ.
=1

Let

* * * * .
P=1,—vjv; = vpvp + Vv + viv], j#k.

(i) What is the condition on the eigenvalues of H such that PHP* = H.
(ii) Find P2.

Solution 42. (i) Note that P is hermitian. Utilizing v;v; = dg; we find
by straightforward calculation

PHP* = Z)\gww + Ak = Aj)vivi 4+ (Aj = M) viv.

Thus A\; = Ag.
(ii) We obtain P? = I,,.
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Problem 43. Consider the orthogonal group O(n,R) C R"*" with the
linear product (v, w € O(n,R))

(v, w) := tr(vTw).

The orthogonal projection II(g) : R**™ — T,0(n) is given by

(o) = 5 (0~ 90"g).

=) =0 )

Find the orthogonal projection.

(ii) Let n =2 and
(0 1 _fa b
9=\t o) "T\e a)

Find the orthogonal projection.

(i) Let n = 2 and

Solution 43. (i) We have
w2 -0 DG E D)0 )
(if) We have

(<Z Z><_01 (1J> <Z 2) (-01 (1)>)
(a_(;—d aid)'

(750 0 (50 =0

Consider the case that

Note that

Problem 44. Let n > 1 and m > 1. Consider the T' = (¢;, . ;,, order-m
tensor of size (n X -+ x n) (m-times), (j1,...,4m = 1,...,n). One defines
the operator on v € C" written as

n n
(TVmil)k = Z e Z tka...jmva .. .’Ujm7 k= 17. Lo, n.

J2=1 Jm=1
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The (E—) eigenvector of T are the fixed points (up to scaling) of this
operator
Tv™ ! =\v where v #0.

Let m = 3, n = 2 with t190 = 1, t31; = 1 and all other entries are 0. Solve
the eigenvalue problem.

Solution 44. We obtain

(TV2>1 = a1221}g = ’U% = )\’Ul, (TV2)2 = aguv% = U% = )\’UQ
Now A = 0 is not a solution, since v? = v3 = 0 implies v; = vy = 0. If
A # 0, then v # 0 and ve # 0. We also have v = v3.

Problem 45. Starting from Mazwell’s equations in vacuum

1 OE 0B
0725’ Curl(E) = —E,

and Kramer’s vector F := E +icB, F* := E — icB show that the photon is
a spin-1 particle.

curl(B) = div(E) =0, div(B) =0

Solution 45. Using Kramer’s vector we can write
i OF i OF*

curl(F) = , curl(F*) = TR
c

o div(F) =0, div(F*)=0.

Let

+1 if jk€ are an even permutation of the integers 123
€jre = § —1 if jkf are an odd permutation of the integers 123 .
0  otherwise

Since
3 3 P 3.3 5
(curlF); = Z Zejkg%Fg =- Z Z aTkasze

we can write

we find
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For fixed k, —ieyje is a 3 X 3 matrix, Si(; ). The equation for F then takes

the form ;
1 OF
~ F — (P - S F = - —
(kg_lpk5k> (p-S) prn

Using the definition of €;;¢, we obtain the representation for the 3 x 3

matrices
0 0 0 1 0 -1 0
S1=¢]l0 0 —-1], S,=i 0 0, S3=¢[1 0 O
01 0 -1 0 O 0O 0 O
The commutators are [Sy,S2] = iS3, [S2, 53] = iS1, [S5,51] = iS2. We
have S x S =4S and

S? 452 + 82 =213

where I3 is the 3 x 3 identity matrix. Thus Maxwell’s equations describe a
particle of spin-1.

Programming Problems

Problem 1. Let 01, 03, o3 be the Pauli spin matrices. Find the eigen-
values and eigenvectors of the 8 x 8 hermitian matrix

H:(01®Ul+02®02+0’3®03)®01.

The 8 x 8 hermitian matrix can be written as a direct sum

0 -1 0 2
0 1 10 2 0 0 1
H_<1 0)@ 0 2 0 -1 EB(1 0)‘

2 0

-1 0

Solution 1. Thus the eigenvalues can be calculated from the two 2 x 2
matrices and the 4 x 4 matrix. Applying the Maxima program

/* directsum.mac */

sigl: matrix([0,1],[1,0]);

sig2: matrix([0,-%il, [%i,01);

sig3: matrix([1,0],[0,-11);

sigll: kronecker_product(sigl,sigl);
sig22: kronecker_product(sig2,sig2);
si1g33: kronecker_product(sig3,sig3);
S: sigll + sig22 + sig33;

H: kronecker_product(S,sigl);
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eigenvectors(H);
D: matrix([0,-1,0,2],[-1,0,2,0],[0,2,0,-1],[2,0,-1,0]);
eigenvectors(D);

we find the eigenvalues —1 (3 times), +1 (3 times), +3 (1 times), —3 (1
times) of the matrix H. The eigenvalues of the 4 x 4 matrix are —1, 1, —3,

3 and the eigenvectors are

1 1

-1 1

Problegn % Let I,, be the n x n identity matrix. An invertible matrix
X € C" " gatisfies the Yang-Baxter equation if

If X satisfies the Yang-Baxter equation, then X* satisfies the Yang-Baxter
equation. If X satisfies the Yang-Baxter equation, then X ! satisfies the

Yang-Baxter equation. If X satisfies the Yang-Baxter equation and @ €
C"™*"™ is an arbitrary invertible matrix. Then

X=QeQXQoQ)™!

also satisfies the Yang-Baxter equation. Show that

1 0 01

(A+d) [0 1 10
X = 2 0 -1 1 0
-1 0 0 1

satisfies the Yang-Baxter equation with n = 2.

Solution 2. The following Maxima program provides the proof

/* YBBell.mac */

I2: matrix([1,0]1,[0,1]1);

X: ((1+%i)/2)*matrix([1,0,0,1],[0,1,1,0],[0,-1,1,0],[-1,0,0,1]1);
T1: kronecker_product(X,I2);

T2: kronecker_product(I2,X);

F: (T1 . T2 .T1) - (T2 . T1 . T2);
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3.3 Supplementary Problems

Problem 1. Let o1, 02, o3 be the Pauli spin matrices. Consider the
sixteen 4 x 4 matrices

0 0
Iig, F1:<g; o?)’ FQZ(gz gz),

o 02 g3 o 02 —iUg o —03 02
Fg_(O’g 02>’ F4_(i0’3 02 >’ F5—<02 0'3)’

1.
Tlus) = i@y =TuL), v =1,2,3,4,5.

Show that
r,r,+o.,r, =265,,14

[0y, Tpa ] = 206,07, — 23,
[F[u,u]vr[)\,a]] = QZ'(SM)\F[,,’U] — 22'(5,,)\1_‘[“’0] + 22'(51,0-F[l,$)\] — QZ'(SMUF[V})\].

Do the 16 matrices form an orthonormal basis in the Hilbert space of the
4 x 4 matrices?

Problem 2. Consider the 2° x 25 matrices

A=L I, Q01 Qo3 R 03
B=LQLRo o303
C=03803®03R03R 03.

Find A2, B2, C?, [A, B], [B,C], [C, A], [A, B]+, [B,C]+, [C, A..
Problem 3. Let A be an n x n matrix over C and f : C — C be analytic

in a region D containing the spectrum of A. Then the matrix f(A) can be
defined as the Cauchy integral formula

_ 1 —1
f(A) = Gy 6D(an —A)" f(2)dz.
Let
0 0 1
A=10 1 0
1 0 O

with the spectrum +1 (twice) and —1. Find exp(A) applying the Cauchy
integral formula.
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Problem 4. Let o > 0 and A be an n x n matrix over C. Show that

oA = L[ emod(A — AL)"LdA
27'(' C

where C' is the contour in the complex A plane which encloses all eigenvalues

of the matrix A. Let
0 1
=(00)

Calculate the right-hand side.

Problem 5. Show that the vector is normalized in R*

cos(fy)
sin(61) cos(6s)
sin(6) sin(62) cos(f3)
sin(61) sin(6s) sin(f3)

Problem 6. Show that the equation of a hyperplane passing through the
points x1, X2, ..., X, in R™ can be given in the form

X X1 X9 o+ Xp

Apply it to n = 4 with (Bell basis)

1 1 0 0
1 0 1 0 1 1 1 1

X1 = —= X9 = —= X3 = —= X4 = —=
1 \/i 0 ) 2 \/5 0 s &3 \/i 1 ) 4 5 -1
1 -1 0 0

Problem 7. Let o1, 02, o3 be the Pauli spin matrices.
(i) Show that the matrices

1 1 .
5([2+O'j), 5(.[2—0]‘), ]:1,2,3

are projection matrices.
(ii) Show that the matrices

1 1
§(I4+O'j®0'k)7 5(-[4_0']'@07@)7 jvk:1a273

are projection matrices.
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(iii) Show that the matrices
1 1 _
5(18+0j®0k®04)5 5(18_0j®0k®0£)7 Jak7£:17273

are projection matrices.
(iv) Let U be an n x n unitary and hermitian matrix. Show that
1
2

nM=-(1,-0)
is a projection matrix. Show that II ® II is a projection matrix.

Problem 8. Consider the matrices

A= B=

o~ O

1
0
1

O = O
— O
o = O
_ O =

Write down all six 3 x 3 permutation matrices with

1
Po=1|o0 , Py =
0

O = O
= o O
= o O
o = O
o O =

Find the permutation matrices in this set such that PjAPjT = A. Find the
permutation matrices in this set such that PjBPjT = B.

Problem 9. Consider the 4 x 4 matrix

-1/2 1/2 12 1/2
/2 —1/2 1/2  1/2
1/2 12 -1/2 1/2
12 1/2  1/2 —1/2

A:

Find the eigenvalues of A without calculating the eigenvalues. Utilize the
information from A2, tr(A) and that the matrix A is symmetric over R.
Then find the eigenvalues of A® A and A® I, + [, ® A.

Problem 10. Find the eigenvalues and normalized eigenvectors of the
Hamilton operator (16 x 16 hermitian matrix)

H:hw1(03®03®12®12—|—Ig®[2®03®03)+hw2(01®01®01®01).

Problem 11. Consider the Hamilton operator

I;[ = hu.)l(O'g ®I2 +IQ ®0’3) +thJ20'1 X o1 +hw302 X 02.
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Find the eigenvalues and normalized eigenvectors of H.

Problem 12. Let n > 2 and w = ¢2™/™. Consider the n x n matrices

0 0 1

, B 10 0
D=diag(lw --- w"™7), T'=]. . o
0O ... 1 0

So I' is a permutation matrix with I' = I,,. Furthermore D™ = I,,. Find
the commutator [D,T].

Problem 13. Let vg, vy, vy, vs be an orthonormal basis in the Hilbert
space C*. Show that the vectors

1 1
ug = 5(vo +vitvatvs), u= §(V0 Vit vz =),

1 1
u = §(V0+V1 —Vvy—vV3), uz= §(V0 — Vi —Va+V3)

also form an orthonormal basis in C%.

Problem 14. Let x € R. Are the vectors

1 0 0 0
V1 = r Vg = 1 V3 = O Vy = O
x2 |’ 2r |’ 2 |’ 0
28 32 6x 6

linearly independent? Find Gram’s matriz
G=(vivk), j.k=123/4
and its determinant.
Problem 15. Let
0= ()
Find all 2 x 2 matrices A, B such that v*ABv = (v*Av)(v*Bv).

Problem 16. Consider the symmetric binary matrices

01 0
01 0

—_ O =
S = O

1
0
1
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Find the eigenvalues and eigenvectors of A and B. Find the eigenvalues
and eigenvectors of the anti-commutator [A, B];. Discuss.

Problem 17. Find all n x n matrices A and B such that

eA ®eB = €A®B.

Problem 18. Consider the 2 x 2 elementary matrices

10 0 0 0 1 0 0
E11=<0 0>7 E22=<0 1>7 E12=(0 0>7 E21:(1 0>

with the commutator [Ejs, Fo1] = E11 — Eas. Let 6 € R. Show that
exp (—G(Elg —+ Egl)) =
exp(— tanh(0) E12) exp(In(cosh(#))(Ea2 — E11)) exp(— tanh(0) Eay).
Problem 19. Let p € C, S the spin (S = 0,1/2,1,3/2,2,...) and |0),

1), ..., |2S) be the standard basis in C25*1. The Bloch coherent states |i1)
are defined by

1/2
W= o SZ( o)l

Show that

1/2
(ul = 1+|M|2 SZ( (25 — p)! ) (1 )¥(p.

Show that (completeness relation)

1+2$/ d’p
T Jo (L4 |p?)?

|} (el = Tos41

where d?p = d(R(1))(d(S()). Show that the scalar product of two Bloch
coherent states is given as

(1 +v* )
T RS+ DS

{vlp) =

Let S =1/2. Show that

) = s (0) + 1)),

(14 [ul?)
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Problem 20. (i) Let A, B be n x n matrices over C and C = A + B.
Show that (Trotter formula)

n
e” 7% = lim (e_TA/"e_TB/") , T>0.
n—oo

(ii) Let A, B be n x n matrices. Show that using exponential theory such
that

exp(T7(A+ B)) = exp(TA/2) exp(7B) exp(74/2) + O(T3).

Problem 21. Let s =1/2,1,3/2,2,... be the spin and let m = —s, —s +
1,...,8 — 1,s. The simple Lie algebra su(2) has generators {S3,S,,S5_}
with commutation relations

[S+a S—] =283, [S3aS:ﬁ:} =+5.

Given a finite-dimensional module with highest weight s the action of Ss,
S_, St on the weight basis is

Ss|s,m) =m|s,m) eigenvalue equation

Sils,m)y=+/(s —m)(s+m+1)|s,m +1)

S_|s,m)=+/(s +m)(s —m+1)|s,m — 1).

Study the eigenvalue problem of the Hamilton operators
Hy = hw(S1 ® S1 + 52 ® So + 53 ® S3)

Hy = hw(S1 @ Sz + So ® S3 4+ 53 ® S1)
with the basis

{|s,m1) ®|s,ma) : mj =—s,—s+1,...,s — 1,855 =1,2}.

Problem 22. Consider C® = C? @ C? ® C2? and

WWy=—(1 -1 1 -1 1 -1 1 -1)"

V8

Find the Schmidt decomposition.

Problem 23. Consider the four Bell states

1 0

1 0 1 1
|¢1>:E BE Wﬁzﬁ 1]

1 0
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0 1

1 1 1 0

|¢3> - \/§ -1 ) |¢4> - \/§ 0

0 -1
and the Pauli spin matrices o1, 02, o3. Find
(Yjlor ® oelth;)

for j =1,2,3,4 and k,¢ = 1,2,3. Apply Computer Algebra.

Problem 24. Consider the normalized (column) vector v € C™ and the
n X n matrix M = I, — 2vv*, where I, is the n X n identity matrix. Show
that the matrix is hermitian and unitary.

Problem 25. Let c]i, cg, c1, co be Fermi creation and annihilation oper-
ators, respectively. Let o € R. Show that

U(a)= exp(ia(c{cz + cgcl))
=TI +isin(a)(cley + cher) 4 (cos(a) — 1)(Ny + Ny — 2N, Ny)

where Nl = cJ{cl, NQ = 0302. First show that

(CICQ + 6201)2 = Nl + NQ — 2N1N2

(CICQ + c;cl)?’ = cicz + cgcl

(CJ{CQ + 6261)4 = Nl + NQ — 2N1N2.

Show that Nl + Ng - 2N1N2 is a projection operator.
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Density Operators

4.1 Introduction

A density operator p or density matrix is a positive semidefinite operator on
a Hilbert space with unit trace. An operator is positive semidefinite if it is
hermitian and none of its (necessarily real) eigenvalues are less than zero.
The state of a quantum-mechanical system is characterized by a density
operator p with tr(p) = 1. The expectation value of an observable A (self-
adjoint operator, hermitian matrix), determined in an experiment as the
average value (A) is given by

(A) := tr(Ap).

A density matrix or density operator is used in quantum theory to describe
the statistical state of a quantum system. If we have a pure state |¢)) in a
Hilbert space then

p = )Yl
defines a density matrix with ({(¢|¢)) = 1)

PP = [) (W) (W] = [$) (W] = p.

For a mized state we have the spectral representation

p=> pjltb;) (]

Jj=1

115
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where p; > 0 for j =1,2,...,n,

D py=1 and (;[vr) = 6.

j=1

Then for the expectation value of a hermitian operator A in the Hilbert
space we have

tr(pA) = p;(w;|Algy).

=1
Let M be an arbitrary nonzero n X n matrix over C. Then

_ MM*
P~ ()
is a density matrix.
If p1 and p, are density matrices, then p; ® p2, p1 @ p2 are density matrices.
If p1, p2 are pure states, then p; ® ps and p; @ p2 are pure states.
If p is an n x n density matrix and U is an n x n unitary matrix (U~ = U*),
then UpU™ is a density matrix.
The eigenvalues of an n x n density matrix which is a pure state are 1 and
0 (n — 1 times), since p? = p, tr(p) = 1 and p* = p.
Consider a quantum system of spin-1/2 particles. The density matrix de-
scribing the spin degree of freedom is a 2 X 2 matrix which can be written
as

(I + nio1 + neos + n3o3)

DN | =

pm) = 5(Ir o) =

where o1, 09, 03 denote the Pauli spin matrices and |n| < 1. For |n| =1
the density matrix describes a pure state, whereas for |n| < 1 one has a
mixed state. The density matrix p is thus uniquely determined by a point
of the unit sphere |n| < 1.

The variance of an observable A and a density operator p in a Hilbert space
‘H is defined as

V(p, A) i= tr(pA?) — (tr(pA))*.

Let |¢)) be a normalized state in the Hilbert space H. If p = |[¢) (3] (pure
state) we obtain

V() (], A) = (Y| A%y) — (] Ajp).
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4.2 Solved Problems

Problem 1. Is the 2 x 2 matrix

(12 —1/2
P=\-12 12
a density matrix? If so is it a pure state? If so find the normalized state in
C? that provides this density matrix.

Solution 1. We find that tr(p) = 1 and the matrix is hermitian over C.
The eigenvalues of p are 0 and 1. Thus p is a density matrix and a pure

state. The state )
1
w=75(4)

is a normalized state that provides the density matrix p = |)(¥].

Problem 2. Let
_( cos(9)
W) - <€i¢ bln(e)) ) 07 ¢ eR.

be a normalized state in C2. Does p := [1) (1| define a density matrix?

Solution 2. We find the 2 x 2 matrix for p
B B cos(0) e~ cos() sin()
p=lv)Yl = (ei‘Zs cos(0) sin(6) sin?(6) ’

Now p = p*, tr(p) = cos?(#) + sin?(d) = 1 and p? = p. Hence we have a
density matrix (pure state).

Problem 3. Let r > 0. Is the 2 x 2 matrix

1 (1 + 1 cos(6) rsm(e)e—w)

P=39\ rsin(0)ei® 1—rcos(6)

a density matrix? What are the conditions on r, 8, ¢?

Solution 3. We have that tr(p) = 1 and the matrix is hermitian. Thus
the eigenvalues are real. The eigenvalues are given by

1 1
Moo=+ -1
1255 %5
Thus the condition that p is density matrix is 7 < 1. There is no condition

on ¢ and 6.
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Problem 4. Let oy, 03 and o3 be the Pauli spin matrices. Let o =
(01,092,03) and r € R? with r? < 1. Consider the 2 x 2 matrix (density
matrix)

1
p = §(Ig+r~0')

where r- o := 1101 + 1209 + r303. Let n be an arbitrary unit length vector
in R, i.e. n2 =n? +nZ +n? = 1. Calculate tr((n- o)p) i.e. we calculate

the expectation value of n - . Give an interpretation of the result.

Solution 4. We have

tr((n-o)p) =tr <(n . U)%(Ig +r- o’)) = %tr(n o+ (m-o)(r-o))

3
1 1
= itr((n . 0')(1‘ . 0')) = itr .Zl nirjo0;0;
)=

1 3 3
= itr <Z nirib) = Zniri =n-r.
i=1 i=1

The vector r can be thought of as an expectation value of spin polarization,
and it can be obtained by measuring n - o along each direction e, es and
es.

Problem 5. Let A be a nonzero n x n matrix over C. Then tr(AA*) > 0.
Consider the map

Aoy o A"

VYO

(i) Show that p is a density matrix.
(ii) Show that p is invariant under the map A — AU, where U isan n X n
unitary matrix.
(iii) Is AA* = A*A in general? A matrix is called a normal matriz if
AA* = A*A.
(iv) Consider the map

Iso=p?

Solution 5. (i) Since A is a nonzero matrix we find that AA* is nonzero
and tr(AA*) # 0. The matrix p is positive-semidefinite and tr(p) = 1.
(ii) We set A’ = AU. Thus we have

A'A™ (AU)(AU)* AUU*A* AA*

PP = @A) T (AU ADT)  w(ADT AT (A4
=p
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where we used that UU* = [.
(iii) In general we have AA* # A*A. For example, let

01 . (00
a=(0) = (V0)
. (10 c, (00

AA_<0 0), AA_(O 1).

Thus AA* # A*A. However, we have tr(AA*) = tr(A*A).
(iv) From (iii) it follows that in general we have p # o.

Then

Problem 6. Find a normalized state |¢) in the Hilbert space C? such
that we have the density matrix

9061~ 3 (B Tl +o0).

Solution 6. We have to solve

L1+1/v2  1/V2
|¢><¢:2< 1/\/@ 1—/1N§>'

We obtain the normalized state

(V2+1)/(2v2)

|9) =
(V2-1)/(2v2)

Problem 7. Consider the 2 x 2 matrix

p= (o Vi)

i) Is the matrix a density matrix?
ii) If so do we have a pure state or a mixed state?
iii) Find the eigenvalues of p.

iv) Find tr(o1p), where oy is the first Pauli spin matrix.

S~~~ —~

Solution 7. (i) We have tr(p) = 1 and the matrix is hermitian. Further-
more the eigenvalues are nonnegative. Thus we have a density matrix.

(ii) Since p? # p we have a mixed state.

(iii) The eigenvalues are A\; = (2 4+ v/3)/4, A2 = (2 — +/3)/4 which also
indicate the state is mixed.
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(iv) We obtain

tr(o1p) = %cos((b).

Problem 8. (i) The Hilbert-Schmidt distance between any two density
operators p; and ps is given by the Frobenius-Hilbert-Schmidt norm of their
differences

Dus(p1, p2) = Vtr((p1 — p2)?).

(10 (0 0
Pr=V\o o) = \o 1)

Calculate Dgs(p1, p2)-
(ii) The Bures distance in the space of mixed quantum states described by
the density matrices p; and po is defined as

Let

B(p1,p2) \/2 1= tx((py* papy/?)1/2)).

) )

Calculate the Bures distance Dg(p1, p2)-
(iii) Let p, o be two density operators acting in the same finite dimensional
Hilbert space. The trace distance between p and o is defined as

Let

D(p,0) := 5tr (Vo — 7)o~ ).

Let
/2 0 0 1/2 /2 0 0 0
o 00 o o 00 o
P={ o o0 o> 2o 00 o
1/2 0 0 1/2 0 0 0 1/2

Find the trace distance.

Solution 8. (i) Since

e (4 51

we find Dgs(p1,p2) = 1/V8.

(ii) Since
12 12 (3/8 0
Pr P2P1 = ( 0 1/8
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we find

Dp(p1,p2) = | 2\[2_\/\5/3_1

(iii) We have

O O OO
O O OO
O O O~

Thus

(p" =" )(p—0)=

o O OO
o O OO
~ O O O

It follows that D(p,0) = 1/2.

Problem 9. Consider the linear operator (4 x 4 matrix) in the Hilbert

space C* .
p= 71 =)l +e(]0) ®]0)({0] ®{0])

where € is a real parameter with € € [0, 1] and the state

Does p define a density matrix?

Solution 9. We find the diagonal matrix for p

(1—€)/d+e 0 0 0

B 0 (1—¢)/4 0 0

P= 0 0 (1—e)/4 0
0 0 0 (1-¢)/4

Thus p = p*, tr(p) = 1, and (x|p|x) > 0, for all x € C*.

The last property

follows since all entries on the diagonal are non-negative. Thus p defines a

density matrix.

Problem 10. A mixed state is a statistical mixture of pure states, i.e.
the state is described by pairs of probabilities and pure states. Given a
mixture { (p1, [¢1));- -, (Dn, [¥n)) } we define its density matriz to be the

positive hermitian matrix

p=> pjltb) (]

Jj=1
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where the pure states |1;) are normalized (i.e. (;|¢;) = 1), and p; > 0
forj=1,2,....,nwithpy +p2+---+p, = L.
(i) Find the probability that measurement in the orthonormal basis

{1k1)s s [kn)}

will yield |k;).
(ii) Find the density matrix py when the mixture is transformed according
to the unitary matrix U.

Solution 10. (i) From the probability distribution of states in the mix-
ture we have for the probability P(k;) of measuring the state |k;) (j =
1,2,...,n)

n

P(k) = pilkilen® = ok o) (Wlk;) = (kjlplk;).
=1

=1

(ii) After applying the transform U to the states in the mixture we have
the new mixture { (p1,U|¥1)), ..., (Pn, Ulthn)) }, with the density matrix

pu = > iU (WU = U [ > pjlb) (| | U* =UpU™.
j=1

Jj=1

Problem 11. (i) The Bell state

1
=—(0)®]0)+]1)®|1
%) \/Q(|> 0) +[1) @ 1))
has the density matrix

1 0 0 1
_1]0 0 00
P=310 00 0
1 0 0 1

Show that p can be written as linear combination of the matrices Agy =
HL® L), Ay = (01 ®01), Aaa = 3(02 ® 02) and Az = (03 @ 03).
(ii) The Werner state is described by the density matrix

(1-2)/4 0 0 0
B 0 (1+2)/4  —z/2 0
pw = 0 —2/2  (L+x)/4 0

0 0 0 (1-2)/4
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where x € [0,1]. Show that py can also be written as linear combination
of the operators given in (i).

Solution 11. (i) We find the linear combination
1 1 1 1

=-A —Ai1 — =A —Ass.

p 5400 + g1 = 52 + 5133

(ii) We obtain the linear combination

1 x T T
= “Aoo — =M1 — = Aoy — = Ass.
PwW B 00 5 11 B) 22 B) 33

Problem 12. Suppose we expand a density matrix for V qubits in terms
of Kronecker products of Pauli spin matrices

1 3 3 3
p=— Cjojr...in-1050 @04y & -+ - Q@045 _,
N
jo=0371=0 Jn-1=0

where oy = Is.
(i) What is condition on the expansion coefficients if we impose p* = p?

(ii) What is the condition on the expansion coefficients if we impose tr(p) =
17
(iii) Calculate tr(pog, @ ok, @ -+ @ Tppy_,)-

Solution 12. (i) Since 01 = 0}, 02 = 03, 03 = 034 and I, = IS we find
that the expansion coefficients are real.
(ii) Since tr(A ® B) = tr(A)tr(B) for square matrices A and B and

tI‘(O’l) = tI‘(Ug) = tI‘(O’g) = O, tI‘(IQ) =2

we find Cp0...0 = 1.
(iii) Since tr(o102) = 0, tr(ogo3) = 0, tr(oso1) = 0 we find

tr(pok, @ Oky ® -+ @ Oy _1) = Choky..kn_1-

Problem 13. Let A and B be a pair of qubits and let the density matrix
of the pair be p4p, which may be pure or mixed. We define the spin flipped
density matrixz to be

pap = (02 ® 02)pap(02 @ 02)

where the asterisk denotes complex conjugation and transpose in the stan-
dard basis

{10 @0), l0)@[1), [Helo), [Hhe()}
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and

0 —1
0’2:(2, O)

Since both pap and pap are positive operators, it follows that the prod-
uct pappap, though non-hermitian, also has only real and non-negative
eigenvalues. Consider the Bell state

1
) = \ﬁ(l(J) @10+ ) ®|1)

and p := [1)(¢|. Find the eigenvalues of pappap.

Solution 13. Since

1 0 0 1
110 0 0 O
1 0 0 1
we have p* = p. Furthermore
0 0 0 -1
0 01 0
28%2=1 5 10 0
-1 0 0 O

Thus p = p and pp = p with eigenvalues 1, 0, 0, 0. The tangle of the density
matrix p4p is defined as

Tap = [max { p1 — p2 — i3 — pia, 0}]?

where f1; are the square root of the eigenvalues of pappap ordered in de-
creasing order. For the special case in which the state of AB is pure, the
matrix pappap has only one non-zero eigenvalue. One can show that

TAB = 4det(pA)

where p4 is the density matrix of qubit A, that is, the trace of psp over
qubit B.

Problem 14. Consider the density matrix

1
r=5 (Iz+r-0)
where r- o := 1101 +re09 + 1303 and r? < 1. Consider the four normalized
vectors aj, ag, as, a4 in R?

1 1 ~1 ~1
ay=— [ -1

1
= — 1 9 aa3:7 1 ’ = 5
V31 V31 V31 V31

aj
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such that

aTak =

4 1_{ 1 forj=k
J

553"“_5 T\ —1/3forj #k -

We have
4

4
Zajzo, gzajaleg
j=1 Jj=1
Such a quartet of vectors consists of the vectors pointing from the center
of a cube to nonadjacent corners. These four vectors can be viewed as
the normal vectors for the faces of the tetrahedron that is defined by the
other four corners of the cube. Owing to the conditions the four vectors are

normalized. Each such quartets of a;’s defines a positive operator-valued
measure for minimal four-state tomography owing to

1
ZPjZIQ, Pj::1(12+aj~0').

(i) Show that p; := (P;) = tr(Pjp) = 1 (1+a; -r).
(ii) Given p; for j = 1,2,3,4 find the density matrix p.

Solution 14. (i) Since tr(o1) = tr(oz) = tr(os) = 0 we have
(P} =tx(Pyp) = (s + 25 0) (I 7))
étr(fg +aj-o+r-o+(aj-o)(r-o)) = étr(]z +(a;-o)(r-o))

= L+ (8 1))

8

(ii) Since
Isr = §Za]aT
4]_:1 J

the vector r is obtained as

4
%Z (aj-r)a 32% (14+a;-r aj:?)ijaj

j=1 j=1
where we used Z?Zl a; = 0. From a; - 0 = 4P; — I and substituting r
from above yields the density matrix

4

4
1
pZGleij_IQ :Z<PJ>(6P] —IQ): 5([2"‘1‘0')
i=

Jj=1
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It follows that p; is restricted to the range 0 < p; < 1/2 and the probabili-
ties p; obey the inequalities

=
W =

4
3412
2
SE p; = 12 <
i=1

The upper bound is reached by all pure states, p = p? and r?> = 1. The
lower bound is reached for the completely mixed state, p = %I o and r2 = 0.

Problem 15. Let |0), |1) be the standard basis in C2. Consider the

mixed states (3 A (3 A
S T4 i D QR T
s {30+ 2m feg { o -3m

9 16
A0} + I

Find the density matrices. Discuss.

and

Solution 15. In the first case we have

1925 12/25\  1( 9/25 —12/25) _(9/25 0
p1_2(12/25 16/25>+ (12/25 16/25>_< 0 16/25)'

2

In the second case we have

_310+E00_9/250
P2=55 0 o) T2s\o 1)7\ 0o 16/25)
Thus these two different mixed states correspond to the same density matrix
and thus they are indistinguishable.

Problem 16. Let p; and p be n x n density matrices. Let A; denote
the eigenvalues of p; — pg with corresponding orthonormal eigenvectors |¢;)
where j =1,2,...,n.

(i) Find the difference |D; — Dsy| between the probability distributions
D; and D5 for the measurement of the mixtures p; and ps in the basis

{161), - [¢n) }-

(ii) Show that measurement in the basis {|¢1),...,|¢,) } maximizes the
difference | Dy — Ds].
Hint. Use Schur’s theorem. For any hermitian matrix A, let

aip = az = - 2ap
be the non increasing diagonal entries of A and

> e > > i
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the non increasing eigenvalues of A. Then for 1 <k <n

k k
Z Hj 2 Z a;
j=1 j=1

where equality holds for k = n.

Solution 16. (i) We write p; and po in the basis {|¢1),...,|¢n) }. In
this basis we have

j=1 j=1

1Dy = Da| =Y [{dslp1ld;) — (bslp2ld)] = > 1(bsl(o1— p2)|é)| = Z [Ajl-

(ii) Let U be an arbitrary unitary transform (change of basis). We define
P :=UpU* and Q := UpyU*. The matrix P — @ is hermitian. Let

q12q2 22 (pn

denote the non decreasing diagonal entries of P — @ in the {|¢1),..., |¢n) }
basis and
v =2 > 1/2 > Un

be the non decreasing eigenvalues (i.e. A;) of P — Q. Consider the differ-
ence |D} — D}| between the probability distributions D] and D) for the
measurement of the mixtures p; and ps in the basis {U|¢1),...,Uldn) }

1D} = Dy = (i [U*prU|g;) — (61U p2U ;)|

j=1
Z| 0;1Pl¢;) — (0;1Ql¢;)| = Z |g;]-
Jj=1 Jj=1

Since tr(P — Q) = tr(P) — tr(Q) =1—-1=0 and

tr(P) = tx(Q) = Y ((¢51PI¢;) — (¢51Ql9;)) an

j=1
we have forall 1 <k <n
k n

doa|=| > 4

j=1 j=k+1

We conclude from the triangle inequality that

n k
Z|Qj‘ >2 ZQJ
j=1

j=1
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where equality holds for some 1 < ky < n. Similarly

n k
Z |Vj| 2 2 Zl/j .
j=1 j=1

From Schur’s theorem we have

n ko ko n
IS DI
j=1 j=1 j=1 j=1

Thus

n

Z|Vj| =|D1 — Ds| > |D} — Dy| = Z|Qj|-
=1 =1

Problem 17. Let 01, 02, 03 be the Pauli spin matrices.

(i) Is the 4 x 4 matrix p = $(I> ® I + 01 ® 01) a density matrix?

(ii) Ts the 4 x 4 matrix p = %(14 —01®01 — 03 ® 09 — 03 ® 03) a density
matrix?

Solution 17. (i) We have tr(p) = 1 and p is hermitian. The eigenvalues
of pare 1/2, 1/2, 0, 0. Thus the matrix p is a density matrix (mixed state).
(i) Obviously we have p* = p, tr(p) = 1. Furthermore the matrix is positive
semidefinite. We have p? = p. Thus p is a density matrix. We have a pure
state. The density matrix is given by

0 0 0 0
o 12 —1/2 0
P=1o0 -1/2 1/2 o0

0 0 0 0

Problem 18. Consider the eight Gell-Mann matrices

01 0 0 —i 0 1 0 0
Gi=[10 0], Go=|i 0 0], Gs=[0 -1 0],
00 0 0 0 0 0 0 0
00 1 00 —i 00 0
Gi=|0 0 0], Gs=[0 0 0], Ge=[0 0 1],
1 00 i 0 0 01 0
00 0 L [1 0 0
G.=|0 0 —i|, Gs=—|0 1 0 |.

0 i 0 V3\o 0 -2
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They all have trace 0 and they are hermitian.
(i) Find the anticommutation relations for these matrices.
(ii) Consider the matrix

8
1
P = g IS+\/§anGj

Jj=1

where n; € R. What is the condition on the vector n = (nq ny ... ng
such that p is a density matrix for a pure state?

Solution 18. (i) We obtain for the anticommutators

8
4
[Gj,Gk]Jr = §§jkI3 +2 E deGg
/=1

where the nonzero components of the completely symmetric tensor d;, are

1 1
di1s = daog = dzg = —dsss = —=, dyss = dsss = dees = drg = ———
118 228 338 888 \/§ 448 558 668 778 2\/?:

1
dias = dis7 = —daa7 = dase = dz4a = d3zs5 = —dzee = —d377 = 3

(ii) The conditions for a density matriz p of a pure state are

*

pt=p, pP=p, tr(p)=1
Imposing these conditions we obtain for the vector n that

T

n=n nn=1, nxn=n

where

8
(a*b)j = \/g Z djkgakbe.

k,e=1

Problem 19. Let p denote the density matrix (mixed state)

_1/1 0
P=35\0 1

in C2. Find a pure state |¥) € C? ® C? such that the reduced density
matrix found by taking the partial trace over the second system (C?) is p.
In other words purify the density matrix p to obtain a pure state |¥).
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Solution 19. We begin with the Schmidt decomposition of |¥) over the
Hilbert space C? @ C?

Sch(|¥),C2,C?)

W= > VA els)

where A; and Ay are the eigenvalues of p and |¢);) and |i)2) are the cor-
responding orthonormal eigenvectors of p. The states |¢1) and |¢2) in C?
are also orthonormal. The eigenvalues and eigenvectors of p are given by
)\1 = AQ = 1/2 and

w=(g). =(}).

Thus the spectral decomposition of p is given by

p=;<(1)>(1 o)+;<(1))(0 1).

o) = =) @lon+ 5 (1) elen)

where (¢1|d1) = (¢2|d2) = 1 and (¢1]¢2) = (¢2|¢1) = 0. Thus we could
take |¥) as one of the Bell states

Hence

1 1 0 0
Ao} o] fr]
alo) o) w1 Bl

1 -1 0 0

but not a product state.

Problem 20. Let r € [0,1]. Consider the density matrix
p=r|®THST]+ (1 —r)[00)(00]
where |®T) is the Bell state

1

[@7) = —=(100) + [11)).

Sl

2

Calculate the eigenvalues of p.

Solution 20. The matrix representation of p is

1—r/2 0 0 r/2

B 0 00 0
P= 0 00 0
r/2 0 0 r/2



Density Operators 131

The characteristic equation is
r r r r
((1=53) =) NN (5-4) = 5003 =0
Thus two eigenvalues are 0 (A = 0, A3 = 0) with the corresponding eigen-
vectors

0 0
1 0
w=1, us = | 4
0 0

The characteristic equation reduces to

(-5 )G -
with the eigenvalues

1 1
)\1’4:§i§ 1—}—27‘(7‘—1).
If » = 0 the eigenvalues reduce to 1 and 0. If » = 1 the eigenvalues also
reduce to 1 and 0.

Problem 21. Let p(l) (j = 1,2,...,n) be density matrices in a finite-

dimensional Hilbert space H;. Let pg ) (j =1,2,...,n) be density matrices
in a finite-dimensional Hilbert space Ho. Show that the convexr combination

n

p= Z)\jpjl)(@p(z) A20, S =1
j=1

is also a density matrix.

Solution 21. We have

n

1 2 1
(S el ) = S ol

—Z)\tr (1) Ytr(p 2) Z/\J
:1.
Obviously p > 0, since pgl) >0, p§2) >0and A; >0forj=1,2,...,n.

Problem 22. Given the Schridinger equation

9 .
ih— 1) = HI).
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Find the time-evolution of the density matrix

n

p(t) ==Y [P (&) () (1)].

j=1

Solution 22. From the Schrédinger equation we find
5.9 1) O) () i
~in S 0 (0] = (O ()AL

Thus
% _ ; ((Zh2en) woen+wo o) (o))

- 1,@ (AR ) @O - ) (WO 01H))

m>

p(t) = p(t)H)

,p(1)].

:%(
1
:%[

unp

Note that the equation of motion for p(t) differs from the Heisenberg equa-
tion of motion by a minus sign. Since p(t) is constructed from state vectors
it is not an observable like other hermitian operators, so there is no reason
to expect that its time-evolution will be the same. The solution to the
equation of motion is given by

p(t) = efz‘flt/hp(o)eif[t/h.

Problem 23. Consider the Hamilton operator

H(t) = =30 - B(t) = —3(1Bi(t) + 02Ba(t) + 03 Ba (1))

where v denotes the gyromagnetic ratio and B(t) denotes the time-dependent
magnetic induction. The time-evolution of the density matrix p(t) obeys
the von Neumann equation

n 20 _ (i1(s), p(e)

and the time-dependent expectation value of the spin vector is given by

(1)) = tr(op(t))
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or, written in components

(o1(8)) = tr(o1p(t)),  (02(1)) = tr(o2p(t)),  (o3(t)) = tr(osp(t)).

It follows that the Bloch vector n(t) pertaining to p(t) is related to the spin
vector as follows

or, written in components

ni(t) = (o1()),  na(t) = {oa(t)), na(t) = (o3(t)).

Find the time-evolution of n(t).

Solution 23. We have
dnj de (t) dp(t)
P A =t P
dt < dt \%at

where j = 1,2, 3. Inserting the right-hand side of the von Neumann equa-
tion, using the cyclic invariance of the trace

tr(XYZ) =tr(ZXY) =tr(YZX)
and the properties o109 = i03, 0203 = 101, 0301 = i09, we obtain

d Y
() = 7n(t) x B(?)

where x denotes the vector product.

Problem 24. Consider the state

V) = <eiiossi(n€()9))

in the Hilbert space C?, where ¢,0 € R. Let p(t = 0) = p(0) = [¢) ()| be
a density matrix at time ¢ = 0. Given the Hamilton operator H = hwoy.
Solve the von Neumann equation to find p(¢).

Solution 24. We obtain for the density matrix at time ¢t =0

p(0) = |0 (u] = (¢ ngi;gzgnw) < @ngg;m<9>) |

S

Now
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Since .
GiHt/h _ iwtoy _ cos(wt) isin(wt)
isin(wt)  cos(wt)

it follows that

where

Ut) = ( cos(wt) isin(wf)) .

isin(wt) cos(wt)

Problem 25. Consider the Hilbert space C™. Let p be a density matrix,
i.e. p > 0and tr(p) = 1. The mean value of an observable A (hermitian
n X n matrix) is given by

(A) = tr(pA).

If the density p is unknown, then it may be determined using n? mean values
(A®)Y (k= 1,2,...,n?) obtained from measurement if the set {A®)} is a
basis in the space of all hermitian n x n matrices.

(i) Let n = 2,

and tr(pA) = 0, tr(pA?) = 1, tr(pA3) = 0, tr(pA*) = 1. Find the density
matrix.
(ii) Let n = 2 and tr(ple) = 1, tr(po1) = —1, tr(poa) = 0, tr(pos) = 0.
Find p.

Solution 25. (i) Note that 02 = Iy, 03 = 09, 05 = I;. The density

matrix is
1—€¢ 0
p—< 0 6), e €[0,1].

(ii) The 2 x 2 matrices I, 01, 02, 03 form an orthogonal basis in the Hilbert
space of the 2 x 2 matrices with scalar product (X,Y) = tr(XY™*). The

density matrix is
(12 —1)2
P=\-1/2 1/2 )

Problem 26. Let |0), |1) be the standard basis in C2. Consider the
entangled state

W)= =0y @11 - 1) @ o)



Density Operators 135

with the density matrix p = |¢)(¢|. Find the reduced density matrix p;.
Discuss.

Solution 26. We obtain
1 1/1 0
o= g00l+ wan =3 (5 9)

Thus we have mixed state.

Problem 27. Consider a mixture of 25% of the pure state (1,0)7, 25%

of the pure state (0,1)7 and 50% of the pure state %(1, 1)T described by

the density matrix

p:i<é)(1 o)+i(?)(o 1)+;¢1§G)\}§(1 1).

Find the spectral representation of p. Use the spectral representation of p to
find another mixture of pure states with the same (measurement) statistical
properties as p.

Solution 27. The density matrix takes the form

(21
P=1\1 2
with the eigenvalues A\ = 3/4 and Ay = 1/4 with the corresponding nor-
malized eigenvectors

wu(l) w-a()

Applying the spectral theorem p can be written as

15 ()0 e is () g0

Consequently p can be realized by a mixture of 75% of the state (1,1)”/v/2
and 25% of the state (1, —1)7/v/2.

Problem 28. Consider the Hilbert space C". Let p be a density matrix
in this Hilbert space and H and K be two hermitian n X n matrices. One
defines (H) := tr(pH), (H?) := tr(pH?) and analogously for K. Let

AH = J{H2) — (H)?, AK:= /(K2 — (K)2.
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Then we have the uncertainty relation

1 .
(AH)(AK) 2 5 |G[H, K])|-
Let
1 1 0 0 01 0 0 4 0
p:§OOO,H:120,K:—iOO
0 0 1 0 0 O 0 0 O

Show that the uncertainty relation becomes an equality for the given p, H
and K.

Solution 28. Note that p is a mixed state since p® # p. Straightforward
calculations yield

(Hy=0, (K)=0, (H) =, (K%)=

and the commutator of H and K is given by

—2 2 0
H K= 2 2 o
0 0 0

Thus |(i[H, K])| = 1/2 and the equality follows.

Programming Problems

Problem 1. Consider the matrix

P= <\/§36/’i/4 ﬁi/Z)M)'

Check that the matrix is a density matrix. Is it a pure or mixed state?
Apply computer algebra. Find tr(oqp).

Solution 1. The following Maxima program will do the job

/* densitycheck.mac */

load("nchrpl");

rho: matrix([3/4,sqrt(2)*exp(-%i*phi) /4], [sqrt(2)*exp(%i*phi)/4,1/41);
rhoT: transpose(rho); rhoTC: conjugate(rhoT);

tr: mattrace(rho);

E: eigenvalues(rho);

el: first(first(E)); e2: second(first(E));
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if (rho=rhoTC and tr=1 and e1>0 and e2>0)

then print("matrix is density matrix")

else print("matrix is not a density matrix");

rho2: rho . rho;

if (rho2=rho and tr=1 and rho=rhoTC) then print("pure state")
else print("not a pure state");

sigl: matrix([0,1],[1,0]);

trsigl: mattrace(rho . sigl);

The matrix is a density matrix and a mixed state. The two eigenvalues are
(24+/3)/4, (2 — v/3)/4. We find tr(oy1p) = % cos(¢).

Problem 2. Consider the density matrix

_1(1
P=5\ -1 1
and let A be an 2 x 2 real symmetric matrix. Assume that tr(pA4) = —1,
tr(pA2) = 1. Reconstruct the matrix from this information.

Solution 2. Utilizing the Maxima program

/* densityl.mac */

load("nchrpl");

rho: matrix([1/2,-1/2]1,[-1/2,1/2]);

A: matrix([al1l,a12],[a12,a22]);

A2: A . A;

rl: mattrace(rho . A); rl: ratsimp(rl);
r2: mattrace(rho . A2); r2: ratsimp(r2);
solve([r1+1=0,r2-1=0], [all,al12,a22]);

. T 1+7r
A_<1+r r )

with r an arbitrary real constant.

we obtain

Problem 3. Let S be the set of unit vectors in the Hilbert space C™.
Let u e S. A function p(u) from S to R is called a generalized probability
measure if the following two conditions hold: (i) for u € S, 0 < p(u) <1,
(ii) if uy, ..., u, form an orthonormal basis in the Hilbert space C", then

Z;‘L:1 p(u;) = 1.
Let n > 3. Then any generalized probability measure p on C™ has the form

p(p) = tr(puu®)

for a uniquely defined density matrix p (Gleason 1957).
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(i) Consider the Hilbert space C3, the orthonormal basis

1 (! (1) 1 (!
u = —= , U2 , U3 =——=
V2 1 0 V2 1
and the density matrix
1 1 1 1
1 1 1

Find p(u1), p(az), p(uas).
(ii) Consider the Hilbert space C*, the orthonormal basis

et et
1 0 1 0
u; \/§ 0 ) Uz = ﬂ 0 )
el —el?
0 0
1 | e* 1 et
us = V2 eld | Uy = 2 | - it
0 0
and the density matrix
11 1 1
I I |
P=3l1 111
1 1 1 1

Find /L(ul)? :LL(UQ); ILL(Ug), ,U,(II4).

Solution 3. Applying the Maxima program

/* Gleason.mac */

load("nchrpl");

ul: matrix([1],[0],[1])/sqrt(2); ulT: transpose(ul);

u2: matrix([0],[1],[0]); u2T: transpose(u2);

u3: matrix([1],[0],[-1]1)/sqrt(2); u3T: transpose(ul);
rho: matrix([1,1,1],[1,1,1],[1,1,1])/3;

muul: mattrace(rho . ul . ulT);

muu2: mattrace(rho . u2 . u2T);

muu3: mattrace(rho . u3 . u3T);

vl: matrix([exp(%i*phi)], [0], [0], [exp(%i*phi)])/sqrt(2);
v1iT: transpose(vl); v1TC: conjugate(viT);

v2: matrix([exp(%i*phi)], [0], [0], [exp(%i*phi)])/sqrt(2);
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v2T: transpose(v2); v2TC: conjugate(v2T);

v3: matrix([0], [exp(%i*phi)], [exp(%i*phi)], [0])/sqrt(2);

v3T: transpose(v3); v3TC: conjugate(v3T);

v4: matrix([0], [exp(%i*phi)], [exp(%i*phi)], [0])/sqrt(2);

v4T: transpose(v4); v4TC: conjugate(v4T);

rho4: matrix([1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1]1)/4;

muvl: mattrace(rho4 . vl . viTC); muv2: mattrace(rho4 . v2 . v2TC);
muv3: mattrace(rho4 . v3 . v3TC); muv4d: mattrace(rho4 . v4 . v4TC);

we find for (i) p(uy) = 2/3, p(uz) = 1/3, p(us) = 0 and for (ii) we find
,u(ul) = 1/27 /1,(112) = 1/27 /L(llg) = 1/27 :U’(u4) = 1/2'

4.3 Supplementary Problems

Problem 1. Consider a spin-1 system. Any pure state can be parametrized,
with a suitable choice of its phase as

eéa sin(#) cos(¢)
1) = [ ¢ sin(0) sin()
cos(0)

where 0 < 0,¢ < 7/2 and 0 < o, 8 < 27. Find the density matrix p =
[¢) (3| and tr(pSi), where S is the spin-1 matrix

1
S=— 1o
V21

o = O

1
0
1
Note that the density matrix depends on all four parameters.

Problem 2. Let 0g, 01, 02, o3 be the Pauli spin matrices, where og = I
is the 2 x 2 unit matrix and let

v=(v; vy w3 )T
be a vector in R? with ||v| < 1.
(i) Show that py, = %(00 + v101 + Vo092 + v303) is a density matrix.
(ii) Is p = (o0 ® 00 + 23:1 vj0; ® 0;) a density matrix?
(iif) Ts
1 3
p=3(00@00 @00+ ) vjo; ©0;@0;)

23
j=1

a density matrix? Extend the result to n Kronecker products.
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Problem 3. Let |0), |1), ..., |n) be an orthonormal basis in C"*1. Are
the states
o) = —=10) @[0) + —= En 17 @ 17)
0/ \/5 V2n = J J
1 1 n
=@ [0) - — @)
)= 751002 10— =31 e L

normalized? Are the state orthogonal to each other? Is

p = ([t0)(ol) © (1) (¢1])

a density matrix?

Problem 4. Consider the Pauli spin matrices o1 and o2. Let p be a 2 x 2
density matrix with tr(poy) = 1, tr(poz) = 0. Reconstruct the density
matrix p from this information. Show that

_1/11
P=5\1 1)

Problem 5. Let H; and H> be two Hilbert spaces and H; ® Ho be the
product Hilbert space. Let p be a density operators of the Hilbert space
Hi @ Hso. Show that if one of the reduced density operators try,(p) = p1
or try, (p) = p2 is pure, then p = p1 ® pa. If both p; and po are pure, then
p is pure too.

Problem 6. Find a normalized state |¢) in the Hilbert space C? such
that we have the density matrix

)0l =3 (B + o1+ ot oa))



Chapter 5

Trace and Partial Trace

5.1 Introduction

Let H be the finite dimensional Hilbert space C™ with an orthonormal basis
{l¢;) : j=1,2,...,n}. Let A be a linear operator (n X n matrix) acting
in this Hilbert space. Then the trace of A is defined as

n

tr(4) = (d51Alg;) -

j=1

The trace is independent of the chosen orthonormal basis. For the trace we
have cyclic invariance. Let A, B, C be n x n matrices over C. Then

tr(AB) = tr(BA)
and (cyclic invariance)
tr(ABC) = tr(CAB) = tr(BCA).

The trace of an n x n matrix A is the sum of the eigenvalues counting
multiplicities. The eigenvalues of A can be reconstructed from

tr(A) =AM+ X4+ Ay
tr(A%) =AT + A3+ + A2

Er(A™) = AT 4 AL 4 -+ A

141
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If |¢) is a normalized state in C", then

tr(|y)(¥]) = 1.

For any n x n matrix over C we have the identity
det(exp(A4)) = exp(tr(A)).

Let A be an n x n matrix over C and B be an m x m matrix over C. Then
tr(A® B) = tr(A)tr(B).

The calculation of the partial trace plays a central role in quantum com-
puting. Suppose a finite dimensional quantum system Sap is a system
composed of two subsystems S4 and Sp. The finite dimensional Hilbert
space H of Sap is given by the tensor product of the individual Hilbert
spaces Ha ® Hp. Let Ny := dim(Ha) and Np := dim(Hpg). Let pap
be the density matrix of S4p. Using the partial trace we can define the
density operators p4 and pp in the subspaces H4 and Hp as follows

Np
pa=trp(pag) = Z(IA ® (¢51)paB(Ia @ |9;))
and
Na
pB = tra(pap) = Z((%l ® Ip)pas([¥;) ® Ip))

where I 4 is the identity operator in H 4, Ip is the identity operator in Hp
and

|¢j), (1=1,2,...,NpB)
is an orthonormal basis in H g and
[v;), (j=1,2,...,Na)

is an orthonormal basis in H 4. For example we could select the standard
bases in the two finite dimensional Hilbert spaces H4 and Hp.

The partial trace can also be calculated as follows. Consider a bipartite
state

n—1n-1 n—1n—1 n—1ln—1
) =D D eplik) =D > enld@lky, DD epei =1
7=0 k=0 7=0 k=0 J=0 k=0

in the finite-dimensional Hilbert space H = C"™ ® C™. We can define the

n X n matrix
Ay = cji, jk=0,1,...,n— 1.

Then we have (prove it)

pa = trp(p) = tre([v)(¥]) = AAT.
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5.2 Solved Problems

Problem 1. Consider the Pauli spin matrix o1. Calculate the trace of o
with respect to the standard basis. Calculate the trace of o; with respect
to the Hadamard basis

() a )
i) w1
Solution 1. Obviously for the standard basis we find tr(o1) = 0. Since

e (D) e o w(2)-

we also obtain (as expected since the trace is independent of the chosen
orthonormal basis) for the Hadamard basis the result 0. In the Hadamard
basis we have the Pauli spin matrix 3.

Problem 2. Consider the hermitian matrix

()

Find tr(H) and tr(H?) and then the eigenvalues from this information.

Solution 2. Since tr(H) = 0, tr(H?) =2 and A\; + Ay = 0, A2 + \2 =2
we obtain the eigenvalues Ay = 1, Ao = —1.

Problem 3. Consider the entangled state in C*
0

a=5(()+(0)-()= () -

and the density matrix p = |¢)(¢|. Find p; = tra(p), p2 = tri(p) ie.
calculate the partial trace.

Solution 3. We have

1
(] \/5(0 1 1 0).
Thus
0 0 0 0
1{0o 1 -1 0
P=3510 -1 1 o0
0 0 0 0
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1 1 0 0 1 0
()G v) (oo )
1 0 1
(0 1)= (o)

we find the density matrix (mixed state)

1(1 0
Pr=r=51o0 1)

Problem 4. Consider the 4 x 4 matrix (density matriz)

Using the basis

and the basis

lu)(u| = (uyur),  jk=1,...,4

in the product Hilbert space Ha ® Hp = C*, where H4 = Hp = C2.
(i) Calculate tr4(Ju)(u|), where the basis is given by

(e (o

and I denotes the 2 x 2 unit matrix.
(ii) Find the partial trace trp(|u)(u|), where the basis is given by

wofl) we(t)

Solution 4. (i) Since

10 00
1 0 1 0 00
(0)®12_ 00|l (1)@’]2_ 10

0 0 0 1

we find, using the transpose of these matrices on the left-hand side of |u)(u,

that
0
0
0
1

U1U]  UIU2  UTUZ ULUg

trA(|u><u|)(1 00 0) ualin Utz U2l U2t
0 U3up U3U2 UIU3 U3U4

UgU]  U4U2  ULUZ  UgUyg

1
0
0
0
U1 UL U2 ulﬂg U Ug 0
0
1
0

oS o= O

i 0 0 1 0 UaU1 UU2 UU3 UU4
UUp  UIUz  UUZ  U3U4
ULUL  UgU  UgUZ  Ugly
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Using matrix multiplication and matrix addition we obtain

_ [ wiur +uzuz Uiz + U3y
tra(ju)(ul) = <U2u1 T Uz ugz + u4u4) '

(ii) Since
10 0 0
wo()-(38) we()-(3
0 0 01

we find

Uil Ul w3z Uty
UgUy  UgUz  UU3  UlUg
Uy U3U2 UU3 U3U4
UgU]  UgU2  U4US  UgUg

aah= (g ) |

o O
N——

ULU] UITU2  UITUZ ULUg

01 0 0 UgU|] UgUz UUZ UgUyg
+(0 0 0 1> Ug’al UgfLQ ’U,3’l_1,3 U3ﬂ4
UgU]  UgU2  UgU3  UgUyg

O = O O
—_— oo 0 S~

SO = O

e OO O

Using matrix multiplication and matrix addition yields

_ UTUL + U2U2  ULUS3 + UUy
trp(lu)(uf) = (u3u1 + Uglia  uzlgz + u4u4> .

We see that tra(|u)(ul) # trp(Ju)(u|). However

tr (tra(ju)(ul)) = tr (trp(ju)(ul)), det (tra(ju)(ul)) = det (trp(ju)(ul)).

Problem 5. Consider the 9 x 9 matrix (density matrix)
lu)(u| = (u;tr), Gjk=1,...,9.

Find the partial trace trcs(|u)(u|), where the basis is given by

1 0 0
0| ®Is, 1| ®Is, 0]|®Is
0 0 1

and I3 denotes the 3 x 3 unit matrix.
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Solution 5. We have

1 0 0 0 0 O
01 0 0 0 O
0 0 1 0 0 O
1 0 0 O 0 1 0 0
0O)l®Iz3=]0 0 0], 1|]®I3=]10 1 0
0 0 0 O 0 0 0 1
0 0 O 0 0 O
0 0 O 0 0 O
0 0 O 0 0 O
and

0 0 O

0 0 O

0 0 0

0 0 0 O

0l ®Ig=]10 0 0

1 0 0 O

1 0 0

0 1 0

0 0 1

The respective transposes of the above matrices are given by

—
o
o
o
o
o
e}
o
o

(100)®Is=(0 1 0 0 0 0O O O O
001 00 0O0O0OTOUO
0001 00 O0O0TOUO

010)®Is=[0 0 0 01 0 O O O
0000 O01O0O0O0
0000O0OT1TUO0SFUO

0o0l)®Is=10 0 0 0O OO O 1 O
0000 O0O0O0OTO0T1

Taking this basis we find

tra(ju)(ul) =

ULU + UaUg + UrUy  UU2 + U4Us + UrU  UIUS3 + Usle + UTlUo
UsU] + UsUg + USU7 Ul + UsUs + UsUS  UUg + Uslg + Uglg
U3U + UgUyg + UgU7 U3UZ + UgUs + UgUg U3US3 + UgUg + UIUY

Problem 6. (i) Consider the Bell state

1

) = —=(100) +[11)).

Sl

2
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Hence cop = 11 = 1/v/2, co1 = ¢10 = 0. Find pa.

(ii) Under a unitary transformation U, V' (U and V are n X n unitary matri-
ces) the matrix A is changed to A — UT AV, where T denotes the transpose.
Apply the transformation to AAT. Calculate the Wigner function tr(AAT)2.

Solution 6. (i) Since cop = 11 = 1/v/2, co1 = c19 = 0, we find the matrix

1
A:<\/§ 0)
o L)
V2

Thus we obtain the density matrix (mixed state)

Lo
pA:AAT=<5 IR
2

For the other three Bell states we find the same result.
(ii) We have

AAT = (UTAVY(VIATUTT) = UTAATUTT
since VIV = VV1 = [,,. Furthermore, tr(AAT)? stays invariant under the

transformation since UTUTT = (UTU)T = I,.

Problem 7. Let {]0), |1),...,|d — 1)} be an orthonormal basis in the
Hilbert space C¢. The discrete Wigner operator is defined as

A d—1d—1 o
A(g,p) := Z Z d2g,r+s €XD (idp(r - s)) |r)(s]

r=0 s=0

where ¢ and p take integer values from 0 to d — 1 and d,,,,, denotes the
Kronecker delta. The arithmetic in the subscript is modulo N arithmetic,
i.e. 2¢ mod d and (r + s) mod d. The (p,q) pairs constitute the discrete
phase space. For a state described by the density matrix p the discrete
Wigner function is defined as

1 ~
W(p.q) = Str(pA).
Let p = |0)(0|. Calculate W (p,q).

Solution 7. Since (0|r) = do, we obtain

d—1
W(p, Q) = étr <|O> 25211,5 €xp <i§3ps) <S|> .

s=0
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To calculate the trace we have

! <<k0> di:l(SQq’sexp (—i%ps) <s|k>> :

0 s=0

d

IS

W(p,q) =

=
Il

Using (k|0) = dxo and (s|k) = 05, we arrive at

1
W(p,q) = E52q,0-

Problem 8. For a bipartite state with subsystems 1 and 2 described by
the joint density matrix the joint Wigner function is given by

1 N N
W(q1,q2,p1,p2) == ﬁtf(p(lz) (A1(g1,p1) ® Aa(ga, p2)))

where the Wigner operators are given by

d—1d—1 o
)= 3 v (2= 5) ) e

r=0 s=0

and
d—1d—1 o
2(q2, p2) Zz5zq2,r+s exp (ldpz(r— S)) r)(s|.
r=0 s=0

Wigner functions describing a subsystem are obtained by summing the joint
Wigner functions in the corresponding set of the respective variables, e.g.

d—1 d—1

W(qi,p1) = W(q1,p1,q2,p2)
q2=0p2=0
d—1 d—1

W(g2,p2) = W(q1,p1,42,p2).
q1=0p1=0

Consider the EPR state

d—1
1
= — k) ® |k).
¥) 7 ];)I ) @ k)
Let p = |¢){(¢|. Find W(q1, g2, p1,p2). Discuss.
Solution 8. Straightforward calculation yields the Wigner function

1
W(QlaQ27p17p2) d2 5(117(1261917 —p2
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The Wigner function given above shows the connection with the EPR state
for continuous-variable teleportation

(g1 — q2) ® 8(p1 + p2)

where ¢ denotes the Dirac delta function.

Problem 9. The trace of an m x m matrix A over C is defined as

trm(A) = (b}, ; Abp, ;)
j=1
where { b, 1, B2, - -, by } is an orthonormal basis for C™. The partial

traces of an mn x mn matrix C over C are defined as

tr n(C) =Y (b} @ 1) C (b ; @ 1)
j=1
tr2,,(C) =Y (Im @b}, 1) C (Iy @ by )
k=1
where { by 1, bn2, ..., byn } is an orthonormal basis for C™ and I,,, and

I,, denote the m x m and n x n identity matrices respectively. Let B be an
n X n matrix over C.

(i) Show that the above definition of tr,,(A) is independent of the choice
of orthonormal basis { by, 1, bm.2s - -5 Brm -

(ii) Show that

0 (C) = try (tr), ,,(C))  and  trpn(C) = try, (t25,,,(C)) -

(iii) Use your favourite orthonormal basis for C? to calculate

0 1 1 0

0 1 1 2 1 0 O 1
tr§’2(<1 0)@(3 4)> and trg’2 10 0 -1
01 -1 o0

Solution 9. (i) Let { ¢1, ¢2, ..., ¢m } be an orthonormal basis for C™.
Expanding each of the by, ; in terms of the ¢; and vice versa yields

bj = Gibmjbr, ¢ = bl dbui
k=1

k=1
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where we require

by, bmk= Y bl dudidib ke, = Z b, i uBsbm i (o)

u,v=1 uw,v=1
—Zcb L T

so that orthonormality holds. It follows that

moom m

> drAdr = Z Z ®5.bm. b}, jADY, 1 Bib
k=1 k=1

m

> ¢zbm,jbfn,l¢k> b, ;Abp,

1 \k=1

M D
M3 H

l

<.
Il
-

3

I
NE

8105, ;Ab

~

Il
—

Il
—

I
NE
&

4Abm7j = tI‘m(A)

)]

.
Il
i

(ii) We have

'Mﬁ

try, (tr1

m,n

(@)=

b, <Zb*,€®l b,k®In)>bn,j

k=1

=1

(Il ® b;,j)(brn,k: ® In)c(bm,k Y In)(Il ® bn,j)

NE

<

Il
-
=~

Il
N

-
NE

(b1 @by, ;) C (b i © b 5)

=+ .
Il
—_
B
Il
—_

3
—~

Q
3

T'm
where the last equivalence follows from taking the trace of C' using the basis
{bm;®b,r : j€{1,2,... . m}ke{l,2,...,n}}.

The result try,, (C) = trm, (tr2, ,(C)) follows similarly.
(iii) Using any basis, for example the standard basis

()]
(140G 2)-(00)

we find
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and
01 1 o0
g2 |10 0 1 _(02)
22110 0 -1 \2 0
01 -1 0

Problem 10. Consider the GHZ state in the Hilbert space C® (C® =
C?eC?®C?)

o= 75 ((0) 2 (o) = (6) (1) = (1) (7))

Then the density matrix is given by the 8 x 8 matrix

o

1
p=|GHZWGHZ| = -

SO oo o oo

O OO0 oo
SOOI OO
S OO oo oo

OO OO o oo

DO DODOoO OO
S oo oo o oo
— OO OO oo

0

(i) Calculate the partial trace pap = tro(p) with the basis

wofl) we(t)

(ii) Calculate the partial trace pa = trp(pap) with the basis

(i) we(t)

Solution 10. (i) We have

~~

net=(ne(y)) o (e (5))+ (1= (7)) o (1= (V))
1 00 0 0000
710000+;0000
210 0 0 0 210 0 0 0
0000 00 0 1
1 00 0
~1{0 0 0 0
~210 0 0 0
00 0 1
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(i) We find

pa=trp(pas)

(e (5)) pae (2 (3)) (12 (5)) oao (2 (1))
i

Programming Problems

Problem 1. Consider the hermitian matrix
0 0 1
A= 0 0 O
-3 0 0

Find the eigenvalues of A utilizing

tr(A) = A\ 4+ Xa+ A3, tr(A%) = AT A2 H A, tr(A3) = AT H A3 D

Solution 1. The following Maxima program will do the job

/* traceeigen.mac */

load("nchrpl");

A: matrix([0,0,%il, [0,0,0],[-%i,0,0]);

rl: mattrace(A); r2: mattrace(A . A); r3: mattrace(A . A . A);

solve ([x1+x2+x3-r1=0,x1*x1+x2*x2+x3*x3-1r2=0,
x1*xx1*x1+x2%x2%x2+x3%x3%*x3-r3=0] , [x1,x2,x3]);

The eigenvalues are A\; = —1, Ay =0, A3 = +1.

Problem 2. Consider the 6 x 6 matrix A = (a;;). Calculate the partial

trace with the basis
1 0
<O>®137 <1)®I3~

Calculate the partial trace with the basis

1 0 0
O ®12, 1 ®IQ, 0 ®12
0 0 1
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Apply computer algebra.

Solution 2. The following Maxima program will do the job.

/* partialtrace.mac */

load("nchrpl");

A: matrix([all,al12,a13,a14,a15,a16], [a21,a22,a23,a24,a25,a26],
[a31,a32,a33,a34,a35,a36] , [a41,a42,a43,ad44,ad5,ad6],
[a51,a52,a53,a54,a55,a46], [a61,a62,a63,a64,a65,a66]);

I2: matrix([1,0]1,[0,1]1);

I3: matrix([1,0,0],[0,1,0],[0,0,11);

vl: matrix([1],[0]); v2: matrix([0],[1]);

ul: matrix([1],[0],[0]); u2: matrix([0], [1],[0]);

u3: matrix([0],[0],[1]);

bl: kronecker_product(v1l,I3); biT: transpose(bl);

b2: kronecker_product(v2,I3); b2T: transpose(b2);

ptrAl: biT . A . bl + b2T . A . b2;

cl: kronecker_product(ul,I2); ci1T: transpose(cl);

c2: kronecker_product(u2,I2); c2T: transpose(c2);

c3: kronecker_product(u3,I2); c3T: transpose(c3);

ptrA2: ciT . A . cl + c2T . A. c2 + c3T . A. c3;

The output is the 3 x 3 matrix for the first basis

[ a44 + all a4db + al2 a46 + al3 ]
[ ab4 + a21 abb + a22 a46 + a23 ]
[ a64 + a31 ab5 + a32 a66 + a33 ]

for the first two-dimensional basis and the 2 x 2 matrix

[ ab5 + a33 + all a46 + a34 + al2 ]
[ a65 + a43 + a21 a66 + ad44d + a22 ]

for the second three dimensional basis.

5.3 Supplementary Problems
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Problem 1. Let c1,c2,c3 € C and |e1|? + |ca|? + |c3]? = 1. Show that

el ac/V2 oag/V2 o ad
ciea/V2 ea?/2 /2 cach/V2
ciea/V2  |eal/2 ea?/2 eacy/V2

cies  ches/V2 cses/V2 Jesl?
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is a density matrix. Taking the partial trace we obtain

p ler? + Jeal?/2  (e163 + cach) /V2
P\ (e +e3es)/V2 JesPHel?/2 )

Show that p, is a density matrix. Discuss.
Problem 2. Consider the finite dimensional Hilbert spaces H; = C™

and Hy = C"2. Let Q1 be an n; X nq matrix and Qg be an ng X ny matrix.
Let p; be a density matrix in C"* and py be a density matrix. Show that

tr((Q1 ® Q2)(p1 @ p2)) = tr(Q1p1)tr(Q2p2)-

Problem 3. Consider the finite-dimensional Hilbert spaces H; = C™
and Ho = C™2. Let H; ® Ha be the product Hilbert space. Let |¢) and |¢)
be states in the product Hilbert space H1 ® Ho. Show that if

trae, ([¢) (Y1) = trae, (9)(¢])

then there exists a unitary matrix U acting in the Hilbert space Hs such
that

) = (In, ®U)|¢)
where [,,, is the identity matrix in the Hilbert space H;.

Problem 4. Consider the finite dimensional Hilbert spaces H; = C™
and Hy = C"2. Let v, u be normalized vectors in the product Hilbert
space C™ ® C™2. Show that if

try (vv®) = try (uu®)
then there exists a ny X ny unitary matrix U such that

v = (I, ®U)u.

Problem 5. Consider the product Hilbert space £2(Ng) ® C25*1, where
s=1/2,1,3/2,2,... is the spin. Find the partial trace over C2+1,



Chapter 6

Boolean Functions and
Quantum Gates

6.1 Introduction

A truth table (or function table) is a tabular description of a combinational
circuit (such as an AND gate, OR gate, NAND gate) listing all possible
states of the input variables together with a statement of the output vari-
able(s) for each of those possible states. The truth table for the AND gate,
OR gate, XOR gate and NOT gate are

AND OR XOR
0100 010(0 010(0 NOT
01140 01141 0j1]1 011
11040 11041 11011 140
11141 111 11140

The NAND gate is an AND gate followed by a NOT gate. The NOR gate
is an OR gate followed by a NOT gate. Both are universal gates, i.e. all
other gates can be built from these gates.

A boolean function f on n variables is a mapping {0,1}" into {0,1}. Let
xz; € {0,1} for j =1,...,n. We set x = (1,22,...,2,). In the following
- denotes the AND operation, + denotes the OR operation, @& the XOR
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operation and ~ is the NOT operation. For n = 1 we have the four boolean
functions

filz) =0, folz) =1, f3(z)=2, fa(z)=2.
The last two are of course reversible.

Let X = {0,1} and z; € X. A boolean function f with n input variables,
1, ..., Tnp and n output variables, y1, ..., y, is a function f : X" — X"
obeying

f(z1,..cyxn) = (Y1, 3 Yn)-

Here (z1,...,2,) € X" is called the input vector and (y1,...,y,) € X™ is
called the output vector. An m-input and n-output boolean function f is
reversible if it maps each input vector to a unique output vector, i.e. the
map is a bijection.

Quantum gates are described by unitary operators. In the finite dimen-
sional Hilbert space C% we have d x d unitary matrices. We describe
how 27*+1 x 27+ unitary matrices can be associated with a non-reversible
boolean function f and how 2" x 2" unitary matrices can be associated
with reversible boolean functions f. Finally the associated Hamilton oper-
ator has to be constructed.

Reversible gates are gates that function in both directions. CMOS imple-
mentations of such gates have been designed. A special pass transistor
logic family has been applied: reversible MOS. Many different reversible
logic gates are candidates as universal building blocks. The Feynman gate,
the controlled NOT gate, the Fredkin gate can be implemented. They dis-
sipate very little energy. Owing to their use of reversible truth tables, they
are even candidates for zero-power computing. Circuit synthesis takes ad-
vantage of mathematical group theory. Algorithms have been developed
for the synthesis of arbitrary reversible circuits. A reversible logic gate has
a corresponding quantum version, whose properties are completely defined
by the truth table for the classical version.

Reversible circuits are applicable to nanotechnolgy, quantum and opti-
cal computing as well as reducing power in CMOS implementations. In
adiabatic circuits, current is restricted to flow across devices with low
voltage drop and the energy stored on their capacitors is recycled. One
uses reversible energy recovery gates capable of realizing the functions
{AND, OR} or {NAND, NOR}.
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6.2 Solved Problems
Problem 1. The Feynman gate is a 2 input/2 output gate given by

/ /
Ty =1, Ty =1T1DTs.

(i) Give the truth table for the Feynman gate.

(ii) Show that copying can be implemented using the Feynman gate.

(iii) Show that the complement can be implemented using the Feynman
gate.

(iv) Is the Feynman gate invertible?

Solution 1. (i) The truth table is

x| xo || 2} | T
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

(ii) Setting x5 = 0, we have z, = x1 & 0 = z1. Thus we have a copy.

(iii) Setting z2 = 1, we have 24 = 1 & 1 = Z;. Thus we generated the
complement.

(iv) From the truth table we see that the transformation is invertible. The
inverse transformation can be found as follows. Since x1 @ 1 = 0 we have

! /
2Dy =21 D1 D2 =03 22 = 20.

/ !/ /
Thus z1 = x|, x2 = ] ® x5.

Problem 2. Consider the 3-input/3-output gate given by
Ty =1z, Th=11DT2, TH =171 DT2D T3

Give the truth table. Is the transformation invertible?

Solution 2. The truth table is given by

8
i
&
¥
8
w
8
]
8
o~
8
Y

[EEG S o e i e
= —_0 O =M= OO
—F O R ORORO
=== =0 O OO
cCoOR R R EFEROO
—OoO O, OR RO
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From the truth table we see that the transformation is invertible, i.e. we
have a 1 — 1 map. The inverse transformation is given by

/ / / / / /
Ty =Ty, T2 =T DTy x3=2I]DTyDT3.

Problem 3. Consider the 3-input/3-output gate given by
! ! !

Ty =11, Ty=x1Dx2, T5=2x3D (x1"T2).
Give the truth table. Is the gate invertible?

Solution 3. The truth table is given by

x| @2 | a3 || ) | h | 2f
0 00 0 0 0
0 0 1 0 0 1
Ooj1]0]0]1]oO0
0 1 1 0 1 1
10|01 |1]0
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 0 0

From the truth table we see that the map is invertible, i.e. we have a 1-1
map. The inverse transformation is given by

Ty =1

o =1} ® )

vy =3 @ () - (w1 © 23))

where we used that + ® ¢ = 0.

Problem 4. For reversible gates the following boolean expression plays
an important role

(@11 - a22) @ (a12 - a21)

where a1, a12, a21,a22 € {0,1}. It could be considered as the determinant
of the 2 x 2 binary matrix

a1l a2

a21  G22

Discuss. Find the inverse of the matrix when it exists.
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Solution 4. The inverse exists iff (a11 - a22) @ (a12 - a21) = 1. The inverse
is given by

since
a1 a2 a2 A12 _
az1 22 a1 A
@ (a12 - az21) (a11-a12) ® (@12 - a11)
@ (ag - az1) .

((an - ap2)

(a21 : a22) (azl : (112) S (an : a22)

Problem 5. Consider a two input gate (z,y) / two output gate (z',y")
given by

¥=a-20b-yDdec, y=d z@b -ydc
where a,b,a’,b' ¢,/ € {0,1}.
(i) Let a=0,b=1,d’ = 1,0 =0 and ¢ = ¢ = 0. Find the output (z',y’)
for all possible inputs (z,y). Is the transformation invertible?
(ii) Let a = 1,b=1,a’ = 1,b' =1 and ¢ = ¢ = 0. Find the output (z’, ")
for all possible inputs (z,y). Is the transformation invertible?

Solution 5. (i) We have
2=0-201-y®0, Y =120 -yd0.

Thus
=00y®0=uy, Y =20000 ==z

The truth table follows as

T y :L‘/ y/
00010
0|1} 10
110 011
171171

Therefore the transformation is invertible.
(if) We have
r=1-201-y®0, y=1-201-y®0.
Thus
¥=20ye0=ady, Y =2Dyd0=ady.
The truth table follows as
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~

x|y | x|y
0]0] O] O
011 1 1
110 1 1
111 010

Therefore the transformation is not invertible.
Problem 6. Consider the Toffoli gate
T:{0,1}*> - {0,1}*,  T(a,b,c) = (a,b,(a-b) & c)
and the Fredkin gate
F:{0,1}® = {0,1}3, F(a,b,c):=(a,a-b+a-c,a-c+a-b)

where a is the NOT operation, + is the OR operation, - is the AND oper-
ation and @ is the XOR operation.

1. Express NOT(a) exclusively in terms of the TOFFOLI gate.

2. Express NOT(a) exclusively in terms of the FREDKIN gate.
3. Express AND(a,b) exclusively in terms of the TOFFOLI gate.
4. Express AND(a,b) exclusively in terms of the FREDKIN gate.
5. Express OR(a,b) exclusively in terms of the TOFFOLI gate.

6. Express OR(a,b) exclusively in terms of the FREDKIN gate.
7. Show that the TOFFOLI gate is invertible.

8. Show that the FREDKIN gate is invertible.

Thus the TOFFOLI and FREDKIN gates are each universal and reversible
(invertible).

Solution 6. (1) We have NOT(a) = BIT3(T(a,a,1)), where BIT3(a, b, c) =
c¢. This follows from T'(a,a,1) = (a,a,a ® 1).

(2) NOT(a) = BIT3(F(a,1,0)).
(3) AND(a,b) = BIT3(T(a,b,0)).

(4) AND(a,b) = BIT3(F(a,0,b)).
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(5) We can use
OR(a,b) = NOT(AND(NOT(a), NOT())))

and simply expand NOT and AND in terms of TOFFOLI gate. Noting
that

T(a,b,1) = (a,b,(a-b) ®1) = (a,b,a-b=(a,b,a+b)
we implement the OR operation as
OR(a,b) = BIT3(T(NOT(a), NOT(b),1))
= BIT3(T(BIT3(T(a,a,1)), BIT3(T(b,b,1)),1)).

(6) We can use
OR(a,b) = NOT(AND(NOT(a), NOT(b)))

and simply expand NOT and AN D in terms of the FREDKIN gate. Noting
that
F(a,b,1)=(a,a-b+a-1l,a-1+a-b)=(a,b+a,a+Db)

we implement the OR operation as
OR(a,b) = BIT3(F(a,b,1)).
(7) We have T~*(a,b,c) = T(a,b,c) since the XOR () is invertible if we

remember at least one of the arguments. In other words
T(T(a,b,c))=T(a,b,(a-b)®c)
=(a,b,(a-b)® ((a-b) ®c))
—(a,b, ((a-b) @ (a-b)) ® <)
= (a,b,c).
(8) We have F~1(a,b,c) = F(a,b, c) since the swap operation on two bits is

its own inverse, and the FREDKIN gate swaps the last two bits whenever
the first argument is 0. In other words

F(F(a,b,c))=F(a,a-b+a-c,a-c+a-b)
=(a,a-(a-b+a-c)+a-(a-c+a-b),a-(a-c+a-b)
+a-(a-b+a-c))
=(a,a-b+a-ba-c+a-c)

= (a,b,c).
Problem 7. A generalized Toffoli gate T(x1,x2,..., &y, Tyy1) is a gate
that maps a boolean pattern (x1,x2,...,Zn, Tpt1) tO

(1,22, Ty Tppg1 D (X1 -T2+ ...~ Ty))
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where @ is the XOR operation and - the AND operation. Show that the
generalized Toffoli gate includes the NOT gate, CNOT gate and the original
Toffoli gate.

Solution 7. The NOT gate is given by T(1,a), where a € {0,1}. The
CNOT-gate is given by T(a,b), where a,b € {0,1}. The original Toffoli
gate is given by T(a,b,c).

Problem 8. The Fredkin gate F(x1,xo,x3) has 3 inputs (z1, z2, 23) and
three outputs (y1, y2,ys). It maps boolean patterns
(l’l, Z2, 'I3) — (Ila zs3, IZ)

if and only if 1 = 1, otherwise it passes the boolean pattern unchanged.
Give the truth table.

Solution 8. We have

L1 | T2 | X3 || Y1 | Y2 | Y3
0 0 0 0 0 0
001 0011
0|10 0110
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1
Problem 9. The generalized Fredkin gate F(x1, 22, ..., Tn, Tnt1, Tnta) 18
the mapping of the boolean pattern
(1,22, Ty Tna1, Tnaz) = (T1, T2, .-, T, Tpto, Tntl)

if and only if the boolean product z1 - 2o ... -z, =1 (- is the bitwise AND
operation), otherwise the boolean pattern passes unchanged. Let n = 2
and (z1,z2,23,24) = (1,1,0,1). Find the output.

Solution 9. Since z1 - x5 = 1, we find

T1 | T2 | T3 | T4 || Y1 | Y2 | Y3 | Y4
1 1 0 1 1 1 1 0

Problem 10. Is the gate (a,b,c € {0,1})

(a,b,¢) = (a,a-b®c,a-cdb)
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reversible?

Solution 10. Weset x =a,y=a-b@cand z =a-¢c®b. We find the
truth table

a|lblc|xz|y]| =z
00|00 ]0O]O
Ol0|1]0]|1]1
0Ol1{0]0]|0]1
Oj(1|1fo0f1]0
110(0]1]0]1
1101 1]1]1
11170} 1(1]0
11171} 1(0]0

Thus from the truth table we see that the gate is reversible.

Problem 11. Show that one Fredkin gate
(a,b,c) > (a,a-b+a-c,a-c+a-b)
is sufficient to implement the XOR gate. Assume that either b or ¢ are
available.
Solution 11. Choosing b = ¢ (equivalently ¢ = b) we find that the Fredkin
gate yields
(a,b,¢) = (a,@a-b+a-b,a-c+a-¢)=(a,a®b,adc).

Thus we can apply the Fredkin gate to (a,b,b) and use the second bit to
obtain a @ b or equivalently apply the Fredkin gate to (a,¢,c) and use the
third bit to obtain a @ c.

Problem 12. Consider the 2 x 2 identity matrix and the Pauli spin
matrices o1, 09, 03 using the following notation

1 0
GOOZTOOZIQZ(O 1>’
0 1
00127'012012(1 0)7
1 0
010 =T10 = 03 = 0 -1/’
(0 =
011 =02 = i 0 )
(0 1
T11 =109 = 1 0 .
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Let n be a positive integer. If v, w € Z3 with

U1 w1
v = , w =

Un Wn,

and
= (:v) € Z%”
we define
Ob = Oypyw; & Opyuwy @ -+ & Oy,

and

Tb = Torw; @ Togws @ @ Tow, -

Thus we can associate a bit string b with each o}, and vice versa.
(i) Let n = 3 and

Op, =01 ® 0301, ob, =12 ®0o3®0;.

Find the corresponding bit strings b; and by for the given oy, and op,.
Then XOR the two bit strings and find the corresponding op,. Calculate
the matrix product op, op,. Discuss.

Solution 12. (i) We obtain the vectors

— O R OO
—_— O OO~k O

The XOR operation provides the bit string

OO = O OO

with the corresponding 8 x 8 matrix
Oby; =01 Q@12 ® Iy

which is op, = ob,0b,-
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Problem 13. Let # € {0,1} and |0), |1) be the standard basis in C2.
Consider the boolean function f(z) = 7. Find a 4 x 4 permutation matrix
P such that b,

[2) ©10) = |2) @ | f(x)) = |x) @ [T).

Solution 13. We have to satisfy

1 0
0 1
Pl =hen - P|0] =]
0 0
0 0
0 0
P el))=melt) = P| =],
0 1
A solution is
0 0 0 1
1 0 0 O
P= 01 00
0 010

Problem 14. Consider the reversible gate (Feynman gate)
r1 — X1, To — 1 D 22.

The inverse function is given by (x1,22) — (21,21 @ x2). Let |0), |1) be
the standard basis in the Hilbert space C2. Find the unitary matrix which
implements (x1, 22 € {0,1})

|z1) ® |@2) = |21) ® |21 B 22).

Solution 14. We have
|0) ® [0) = [0) ®1[0), [0)® [1) — |0) ® [1)

D el0)=[1)e|1), [1)o(1)—1)@0).

This provides the 4 x 4 permutation matrix

“(v)e (o)

0

S o O
— o O O
O = O O

1
0
0
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which is the CNOT-gate and & denotes the direct sum.

Problem 15. Let x1,25 € {0,1} and & be the XOR operation. Then
(x1,22) — (1 ® 1,21 ® x2)
is a 2-bit reversible gate since
(0,0) — (1,0), (0,1)+~—(1,1), (1,0)+~ (0,1), (1,1)+ (0,0).

Let |0), |1) be the standard basis in C2. Find the 4 x 4 permutation matrix
P such that

P(|lz1) @ |z2)) = [21 1) @ |21 © 22).

Solution 15. We calculate the Kronecker products of the vectors. This
provides the four equations for P

1 0 0 0
0 0 1 0
PO_l’PO_O’
0 0 0 1
0 0 0 1
0 1 0 0
Pl_O’PO_O
0 0 1 0

Consequently we obtain the 4 x 4 permutation matrix

O = O O
— o O O
o o= O
o O O

with the eigenvalues +1, —1, +i, —i.

Problem 16. Given the 4 x 4 permutation matrix

O = OO
oS O O
= O O O
OO = O

with the eigenvalues +1, —1, +i, —i. Find the corresponding boolean
function.
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Solution 16. Since the matrix has 4 = 22 rows, the function f : {0,1}2 —
{0,1}? has two arguments. The first column (i.e. the column numbered 0)
has a 1 in the third row (the row numbered 2) for which b=*(0) = (0,0)
and b=1(2) = (1,0). Thus (0,0) — (1,0). From the second column (0,1) —
(0,0). The third column provides (1,0) — (1,1) and the fourth column
(1,1) = (0,1). Thus we have the map

(0,0) — (1,0), (0,1) — (0,0), (1,0) — (1,1), (1,1) — (0,1).

The right hand side provides the boolean expression

f(x1,22) = (FT1 -T2+ 21 - T2, 1 - T2 + 21 - x2) = (T2, 21).

Problem 17. Given the boolean function f(x1,2z2) = x1 - Zz. Thus the
map is (21, 22,y € {0,1})

|z1) ® |72) ® [y) = [71) @ |[22) ® |y © (21 - Z2))
with
0) ®10) ®0) = [0) ® |0) ® [0), |0) ®[0) ®[1) — [0) ® |0) ® [1)

0) @ [1) @[0) = |0) @ [1) @[0), [0)@[1)®[1) = [0)@[1) @[1)
1) ©[0)@[0) = 1) @[0) @[1), [1)@0)® 1) = [1) @[0) @10)
DHel)e|0)=Hel)e0), Hell)el)=[1)all)ell).

Find the 8 x 8 permutation matrix for this map.

Solution 17. The map leads to the 8 x 8 permutation matrix

0 1
Uf—f469(1 O)EBIQ

where @ denotes the direct sum and I, is the n x n identity matrix.

Programming Problems
Problem 1. Consider the reversible 3-input/3-output gate given by

/
T3 =21 D3
/
To =21 D X2

zh= (21 22) B (21 - 23) & (22 - 23).
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The inverse is given by
Ty =2 - xh - ah + ool + 2l 2l
- =2
To=ah -y ah oy wy+ah-ay
Y Y T A /
r3 = - xhH - xh + ) -y + b xh.

Give an implementation in C++ utilizing the bitset class.

Solution 1. In the bitset class & is the AND operation, | the OR opera-
tion, ~ the XOR operation and ~ the NOT operation.

// reversiblegate.cpp
#include <iostream>
#include <string>
#include <bitset>
using namespace std;

int main(void)

{

bitset<1> x1(string("1"));
bitset<1> x2(string("0"));
bitset<1> x3(string("1"));

cout << "x1 = " << x1 << endl;
cout << "x2 = " << x2 << endl;
cout << "x3 = " << x3 << endl;

bitset<1> xlp; bitset<1> x2p; bitset<1> x3p;
x1p = x17x3; x2p = x17x2;
x3p = (x1 & x2)°(x1 & x3)"(x2 & x3);

cout << "xlp = " << x1p << endl;
cout << "x2p = " << x2p << endl;
cout << "x3p = " << x3p << endl;

x1 = (x1p & x2p & ("x3p)) | (("x1p) & x3p) | (("x2p) & x3p);
x2 = (("x1p) & x2p & ("x3p)) | (x1p & x3p) | (("x2p) & x3p);
x3 = (xlp & ("x2p) & ("x3p)) | ("x1p & x3p) | (x2p & x3p);

cout << "x1 = " << x1 << endl;
cout << "x2 = " << x2 << endl;
cout << "x3 = " << x3 << endl;
return O;

}

Problem 2. Given the boolean function f(z1,x2) = x1 - Zo. Thus the
map is (x17x27y € {Oﬂ 1})

|z1) ® |72) @ [Y) = |71) ® |T2) ® |y © (1 - T2))
with
10) ® [0) ® [0) — [0) ®[0) ® [0), |0)®[0) @ [1) — |0) ® |0) ® [1)
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0) @ [1) ®]0) = [0) @[1) @0), [0) @ 1) @[1) = |0) @ [1) @ 1)
1) ©[0)@[0) = 1) @[0) @[1), [1)@]0)® 1) = [1) ©[0) @10)
Hel)el0)—he)[0), [Hell)el)=[1)ell)ell).

This leads to the 8 x 8 permutation matrix

0 1

where @ denotes the direct sum and I, is the n x n identity matrix. Give
a C+-+ implementation of this map.

Solution 2. The function main first finds the permutation matrix imple-
menting the example: f(z1,z2) = 21 - To. Then the map (truth table) is
printed. Finally we recreate the map from the permutation matrix, which
is the reversible map

9(x1,m2,23) = (21,72, (71 T2) ©x3) = (21, T2, 71 T2 T3 +T1 - T3+ T2 T3).
The program counts from 0, i.e. xg. The C++ program is

// quantumgates.cpp
#include <bitset>
#include <iostream>
#include <list>
#include <map>

#include <vector>
#include "symbolicc++.h"
using namespace std;

const int n=3;

// a class to provide ordering of bitsets
// so that they can be used in maps
template <const size_t n> class cmpbst
{
public:

bool operator() (const bitset<n> &bl,const bitset<n> &b2)

{

size_t 1i;

for(i=0;i<n;++i) if(b1[i] '= b2[i]) return (b1[i] < b2[il);

return false;

}
};

// for a given reversible boolean map, find the corresponding
// permutation matrix
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template <const size_t n>

Symbolic permutation(const map<bitset<n>,bitset<n>,cmpbst<n> > &m)
{

unsigned int N = (1 << n);

Symbolic P = Symbolic("P",N,N)*0;

typename map<bitset<n>, bitset<n> >::const_iterator i;
for(i=m.begin();i!=m.end () ;++i)

P(i->second.to_ulong(),i->first.to_ulong()) = 1;
return P;

}

// simplifies a sum of products form using resolution the
// products are represented by bitsets and the sum is the
// list of bitsets
template <const size_t n>
list<pair<bitset<n>,bitset<n> > > simplify(const list<bitset<n> > &s)
{
bool change = true;
// a list which indicates whether bitsets were used in resolution
// or need to be copied to the next round
list<bool> copy;
list<bool>::iterator cil, ci2;
// each bitset is stored with a mask which indicates which bits
// may be used for resolution, once a bit is used it will be masked
list<pair<bitset<n>,bitset<n> > > r, tl, t2, *tpl=&tl, *tp2=&t2, *tpp;
typename list<bitset<n> >::const_iterator 1i;
typename list<pair<bitset<n>, bitset<n> > >::const_iterator 1lpil, 1lpiZ2;
for(li=s.begin();li!=s.end() ;++1i)
{
t1.push_back(make_pair (*1i,bitset<n>()));
// initially all bitsets propagate
copy.push_back(true) ;
}
while(!tpl->empty())
{
// track whether resolution has been applied
// if no change is recorded, we are done
change = false;
for (1pil=tpl->begin(),cil=copy.begin();1lpil!=tpl->end();++lpil,++cil)
{
// search for a second bitset which differs from this bitset
// in exactly one place (taking into account the masks)
for(lpi2=1pil,ci2=cil;1pi2!=tpl->end() ;++1lpi2,++ci2)
{
// only compare if the masks are the same
if (lpil->second==1pi2->second)
{
// XOR finds the differing bits which are then masked
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bitset<n> diff = ((lpil->first ~ 1lpi2->first) & ~lpil->second);
// only one bit differs so apply resolution
if (diff.count ()==1)
{
// mask the bit which has been used
tp2->push_back(make_pair(lpil->first,lpil->second | diff));
change = true;
// these bitsets have been used in resolution, don’t copy them
*cil = xci2 = false;
}
}
}
if (*cil) r.push_back(*1pil);
}
// reset the variables for the next application of resolution
tpp = tpl; tpl = tp2; tp2 = tpp; tp2->clear();
copy.clear(); copy.resize(tpl->size(),true);
}
r.unique();
return r;

}

// find a symbolic expression for a given boolean map
template <const size_t n>
Symbolic expression(const map<bitset<n>,bitset<n>,cmpbst<n> > &m)
{

size_t j, k;

Symbolic S("S",n), NOT("NOT"), x("x",n);

vector<list<bitset<n> > > terms(n);

vector<list<pair<bitset<n>, bitset<n> > > > simplified(n);
typename map<bitset<n>,bitset<n> >::const_iterator i;

typename list<pair<bitset<n>,bitset<n> > >::iterator 1i;

// for each y_j, record all values of x_1,...,x_n such that y_j=1
for(i=m.begin();i!=m.end () ;++i)

for(j=0;j<n;++j) if(i->second[j]) terms[j].push_back(i->first);
// construct each symbolic expression for y_j

for(j=0;j<n;++j)

{

S(j) = 0;

// find a smaller set of terms

simplified[j] = simplify(terms([j]);

for(li=simplified[j].begin();li!=simplified[j].end();++1i)

{

Symbolic P = 1;
for (k=0;k<n;++k)
if (11i->second[k])
{

// this is the usual construction of a product for the
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// sum of products form generated from a truth table
if (1i->first[k]) P *= x(k); else P *= NOT[x(k)];
}
S(j) += P;
}
}
return S;

}

// determine the reversible boolean map from a permutation matrix

template <const size_t n>
map<bitset<n>,bitset<n>,cmpbst<n> > booleanmap(const Symbolic &permutation)
{

size_t i, j;

map<bitset<n>, bitset<n>, cmpbst<n> > m;

for (i=0;i<(1<<n) ;++i)

for(j=0;j<(1<<n) ;++j)
if (permutation(i,j)!=0) m[bitset<n>(j)] = bitset<n>(i);
return m;

}

// reverse the contents of a bitset
template <const int n> bitset<n> reverse(const bitset<n> &b)
{

size_t i;

bitset<n> r;

for(i=0;i<n;++i) r[n-i-1] = b[i];

return r;

}

int main(void)
{
int i1, i2, i3;
bitset<3> a, b;
map<bitset<3>, bitset<3>, cmpbst<3> > f, g;
map<bitset<3>, bitset<3>, cmpbst<3> >::const_iterator ij;
Symbolic P;
for(il=0;i1<2;++i1)
for(i2=0;i2<2;++i2)
for(i3=0;1i3<2;++i3)
{
a[0] = b[0] = i1; a[1] = b[1] = i2; a[2] = i3;

b[2] = a[2]"(al0] & ('a[11));
flal] = b;
}

permutation(f); cout << P << endl;
booleanmap<3>(P) ;
or(i=g.begin();i!=g.end();++i)

P
g
£
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cout << reverse<3>(i->first) << " -> " << reverse<3>(i->second) << endl;
cout << expression(f) << endl;
return O;
}
The output is
[1000000 0]
[0000O0100]
[001 0000 0]
[00010000]
[0O000100 0]
[01 00000 0]
[000000O010]
[0O00000O0O0 1]
000 -> 000
001 -> 001
010 -> 010
011 -> 011
100 -> 101
101 -> 100
110 -> 110
111 —> 111
[ x0 ]
[ x1 ]

[x0*NOT [x1] *NOT [x2] +NOT [x0] *x2+x1*x2]

6.3 Supplementary Problems

Problem 1. Given the reversible gate as truth table

r1 | ma | z3 || f1| fo ] f3
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

Show that

f[1=T1 2o -23+21-Ta- T3+ 21 -T2 T3+ 21 2273
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fo=71 T2 23+T1 22 T3+ 1 -To T3+ 21 -T2 T3

f3=71-T2 T3 +T1 22 T3+ X1 T2 Ty +T1 -T2 T3.

Problem 2. Let 21,22 € {0,1} and @ be the XOR operation. Then
(x1,22) — (1 ® 1,21 & 22)
is a 2-bit reversible gate since
(0,0) — (1,0), (0,1)+(1,1), (1,0)+ (0,1), (1,1)+ (0,0).

Let |0), |1) be the standard basis in C2. Find the 4 x 4 permutation matrix
P such that
P(lz1) ® [22)) = |21 1) @ |21 & 72).

Problem 3. The Toffoli gate T(x1,x2,x3) has 3 inputs (x1, z2,23) and
three outputs (y1, y2,ys) and is given by
(71,20, 23) = (21, 22,23 D (21 - 22))

where x1, 29,235 € {0,1}, ® is the XOR operation and - the AND operation.
Show that the truth table is given by

Ty | T2 | T3 || Y1 | Y2 | Y3
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Problem 4. Consider the 3-input/3-output gate given by
=11 @13, THh=21DT2, 4= (T1 72) D (71 73)D (T2 73).

Give the truth table. Show that the gate is invertible. Find the inverse
function.



Chapter 7

Unitary Transforms and
Quantum Gates

7.1 Introduction

Quantum gates are realised as unitary operators. Let H denote a Hilbert
space. A linear operator U in a Hilbert space is unitary if

Us=U""

In other words, U is unitary if and only if U is invertible and U~! = U*.
An equivalent form of definition is: U is unitary iff

({Ux,Uy) = (x,y), forall x,ye®H.

Thus we have
U'U=0U*=1

where * denotes the adjoint and I is the identity operator. The composite
of two unitary operators is again unitary.

Here we consider m X n unitary matrices. If Uy, Us are n X n unitary
matrices, then U;U; is an n X n unitary matrix. The n x n unitary matrices
form a group under matrix multiplication. All the eigenvalues of a unitary
matrix have absolute value equal to 1, i.e. |A| = 1. Thus |det(U)| = 1.

175
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All n x n unitary matrices form a group under matrix multiplication. An
important subgroup are all n X n unitary matrices with det(U) = 1. If
det(U1) = 1 and det(Uz) = 1, then det(U;Uz) = 1. Another important
subgroup are all n x n permutation matrices. A number of quantum gates
are given as permutation matrices such as

0 0
0 0
0 1l Uswap =
1 0

OO O
o= O O
o o = O
— O O O

If K is a hermitian matrix, then exp(iK) is a unitary matrix. Thus if H
is a hermitian matrix describing the Hamilton operator we find that the
exponential function

exp(—iHt/h)

is a unitary matrix. Let A be an arbitrary n x n matrix over C. Then
Uexp(A)U* = exp(UAU™).

If U and V are unitary, then U ® V and U & V are unitary, where ® is the
Kronecker product and ¢ the direct sum.
The square roots of a unitary matrix are not necessarily unitary matrices

again.
Let v be a normalized state in C". Then Uv is a normalized state.
Let vy, vo, ..., v, be an orthonormal basis in C". Then

V=(vi va ... v,)

is a unitary matrix. Let |A\;| = 1. Then

n
— . . *
U= E )\ijvj
j=1

is a unitary matrix.
An important unitary matrix is the Fourier matriz given by

1 1 1 - 1
1 w w? . wnl
F— Ll w2 w? oo WD)
7
1wl 2=l (=D)(n-1)

where w™ = 1.
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7.2 Solved Problems

Problem 1. Let U be a 2 x 2 unitary matrix and I3 be the 2 x 2 identity
matrix. Is the 4 x 4 matrix

0 0 el 0
V(a)—(o 1>®U—i—(0 O)@Ig, aeR

unitary?

Solution 1. Yes, V(«) is unitary. Since

0 0 el 0 _ el* 0 0 0y (0 O
0 1 0 0/ L0 o 0 1) \0 0
and UU* = I, we obtain

V(a)V*(a) = <8 (1)) ® I+ <é 8) R =1 I.

Problem 2. (i) Let

1 4+ 0 0
1 0 i 1
M: V210 0 i -1
1 =i 0 0
Is the matrix M unitary? In quantum computing M is called the magic
gate.
(ii) Let
1 1 1 1 0
=i ) =)
and
10 0 0
0 0 01
Uenor2= 14 o0 1 o
01 00

Show that the matrix M can be written as
M =Ucnor2(lo @ Un)(Us @ Ug).

(iii) Let SO(4) be the special orthogonal Lie group. Let SU(2) be the
special unitary Lie group. Show that for every real orthogonal matrix U €
SO(4), the matrix MUM ~! is the Kronecker product of two 2-dimensional
special unitary matrices, i.e.

MUM™ € SU((2) ® SU(2).
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Solution 2. (i) Since MM* = I we find that M is unitary.
(ii) We obtain

11 9 90
1000\ [V V2 100 0
o000 1) — 00 0 i 0 0
- 1 1 :
0010 0 0 %5 00 i 0
0100 0 o L _1J\0oo0o0 -1
Vi V2

(iii) We show that for every A® B € SU(2) ® SU(2), we have
M~ (A® B)M € SO(4).

Now every matrix A € SU(2) can be written as R.(«)Ry(0)R.(5) for some
a, 5,0 € R, where

[ cos(0/2) sin(0/2) (e 0
Ry (0) = (—sin(9/2) cos(6/2) )’ R.(a) = 0 ee/2 )
Therefore any matrix A® B € SU(2) ® SU(2) can be written as a product
of the matrices of the form V ® I or I ® V, where V is either R,(6) or

R.(a). Next we have to show that M ~1(V ® I;)M and M~ (I ® V)M are
in SO(4). We have

cos(6/2) 0 0 —sin(6/2)
e | o S
sin(0/2) 0 0 cos(6/2)
co§(a/2) sin(a/2) 0 0
MR © )M = | Slnéa/2) COS((()%/Q) COS((()X/Q) - sinO(Oz/Q)
0 0 sin(a/2)  cos(a/2)

We have similar equations for the cases of Io ® R, () and I, ® R.(«). Since
the mapping
A®B— M Y(A® B)M

is one-to-one (invertible) and the Lie groups SU(2) ® SU(2) and SO(4)
have the same topological dimension, we conclude that the mapping is an
isomorphism between these two Lie groups.

Problem 3. (i) Let A := |0)(0| —|1)(1] in the Hilbert space C2. Calculate

U AUR|0), U AUR|1)

where Uy is the Walsh-Hadamard transform. The unitary transform Uy is
defined by

Unlk) = S=(0) + (1), ke {01,
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(i) Calculate
(Ug @ Un)Ucnor(Un @ Un)|j, k)

where |, k) = |j) ® |k) with j,k € {0,1}, and the answer is in the form of
a ket |m,n) with m,n € {0,1}. The unitary transform

Ucnor == 10)(0| ® I + |1){(1] ® Unor
is the controlled NOT operation and the unitary transform
Unor = [0)(1] + [1){0]

is the NOT operation.

Solution 3. (i) Let j € {0,1}. Then

Unt AU|j) = %UHA<|0> +(—1)Y)) = %Umm +(—1)*))
- %UHW +(=1)7)1) = [5)

where j := 1 — j. In other words Uy AUg = Unor.
(ii) Straightforward calculation yields

(Un @ Un)Ucnor(Un ® Un )|, k)

= 5 (U @ Un)Uonor ((10) + (~17[1)) @ (10} + (~1)*]1))

= 5 U @ U)(100) + (~1)4101) + (<17 |11) + (~1)**]10))

= S(Un @ UR)(0) @ (10} + (~1H1) + (=1)11) (1) + (~1)*]0)))
= U @ U)(0) ® (0) + (~11) + (~1F 1) & (10) + (~1)"|1))
= U @ Um)(0) + (~1P*511)) © (10) + (~1)*]1))

=j Dk k)

where @ is the XOR operation. In other words we have the controlled NOT
operation, where the control qubit is the second qubit and the target qubit
is the first qubit.

Problem 4. Consider the linear operator (Hamilton operator)
H = ihw(|0) (1] — [1){0])

operating in the Hilbert space C?, where { |0), [1) } is an orthonormal basis
in C? and w is a real parameter (frequency).
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(i) Is H self-adjoint?

(i) Find the eigenvalues and corresponding normalized eigenvectors of H.
(iii) Find the unitary matrix U(t) := exp(—iHt/h). Find the values of ¢
such that U(t) performs the NOT operation

U@ =15,  U@)) —10).
(iv) Calculate U(t = 7/4w) and (U(t = 7/4w))?.

Solution 4. (i) The adjoint of an operator can be obtained by simply
swapping the labels of the corresponding bra and ket vectors in the sum,
and taking the complex conjugate of all complex coefficients. Thus

H* = ihw(|1){0] — |0)(1]) = —ifw(|1)(0] — [0)(1]) = H
i.e. H is self-adjoint. We can determine H* as follows. Let
H" = a00|0> <0| + a01\0><1| + a10\1><0| + a11\1><1|, oo, Ap1,aA10,a11 € C.
The bra vector corresponding to the ket Hl|y) is (y|H*. We require that
(H*y|z) = (y|Hz) for all |z) = x0|0) + z1]1) and |y) = yol0) + y1|1). We
find
H|z) = ihw(z1]0) — xo[1))
H*|y) = (yoaoo + y1a01)[0) + (Yoaio + yra11)[1)
(y|Hz) =ihw(z170 — Zol1)
(H*y|r) = z0(Yodoo + Y1ao1) + =1(Yolio + Y1a11)-
Since (H*y|z) = (y|Hx) for all |x) and |y), we obtain
ihwyo = (Yoaio + Yiar), —ihwyt = (Yooo + Y1do1) -
Consequently agg = 0, ag1 = ihw, a1g = —ihw, a11 = 0.
(ii) The eigenvalue equation for H is
H(a|0) + b|1)) = A(a|0) + b|1)).

Thus we have the two equations —ifwa = b, ihwb = Aa. If A = 0 we have
a =0 and b = 0. Therefore we only have to consider A # 0. Obviously we
may assume b # 0 (thus a # 0). We obtain

thwa
o

Hence ib*> = —ia? so that b = 4ia. Using |a|> + |b]*> = 1 we find |a| = %
We obtain the eigenvalues and corresponding orthonormal eigenvectors

A=—

1 . 1 .
A= —Tw, ﬁ(\@ +il1)),  Ae=hw, ﬁum — 1)
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(iii) We find H™ (n € N) by observing that
H? = (ho)*([0)(0[+1)(1]) = (hw)?L,  H® = (hw)*H,  H* = (hw)'I.
Thus
I _ (hw)"*H n odd
Tl (w)"I;  neven’
Since U (t) := exp(—iHt/h) we have

U(t) =§: (_%.)'jHj = i (_%;.t)_% e Ly 7(_2.‘.“)2#11{
s 1S (1w

JZ::O D SR S

= cos(wt)Iy — i sin(wt)H

hw
= cos(wt) (|0)(0] + [1)(1]) + sin(wt)(|0) (1] = [1){0]).

For the NOT operation we use U(t = 7/2w) = |0)(1| — [1){(0]. The unitary
transforms U ((2k 4+ 1)7/2w), k € Ny implement the NOT operation.
(iv) We have

1 1
ﬁuw —[1){0l + E(W + )|

Ut = 7 /dw)?> = U(t = /2w) = [0)(1] — |1)(0].

Ut =7/4w) =

Thus we find (U(t = 7/4w))? = U(t = m/2w), i.e. U(t = 7/4w) acts as the
square root of the NOT operation. Traditionally in quantum computation
we use Unor = |0)(1]+1]1)(0|. In this case for the v NOT operation we use

U, or = 51+ D00 + 1)1 + (1~ )(0){1] + 1) o).

Problem 5. Consider the Hilbert space C". Let ey, es, ..., e, be the
standard basis in C", S,, be the symmetric group of order n! and U, be the
unitary matrix on ®"C" such that

Ua’(el R ® en) = ea(l) R ® eo(n)

where o € S,,. We define the matrix (“antisymmetrization operator”) in
the Hilbert space ™ C" by

1
T, := o Z sgn(o)Uy

T oES,
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where sgn is the signature of the permutation ¢ € S,,. The matrices 11,
are projection matrices. Find II; and II3.

Solution 5. (i) For n = 2 we have the unitary matrices

1 0 1 0 0 1 0 1
U11,22=<O 1)®(0 1)7 U12,21=<1 O)®(1 O)

and therefore

1 0 0o -1

1 1 0 1 -1 0

I, = §(U11,22 —Uyz21) = 3l o 21 1 o
-1 0 0 1

Problem 6. (i) Let 01, 09, 03 be the Pauli spin matrices. Find
Riz(a) := exp(—ia(o] ® 1)), Ryy(a) == exp(—ia(oe ® I2))

where o € R and I3 denotes the 2 x 2 unit matrix.
(ii) Consider the special case Ri,(a = m/2) and Riy(o = 7/4). Calculate
the matrix Ry, (7/2)R1y(m/4). Discuss.

Solution 6. (i) We have

exp(—ia(oy ® I3)) := i M
k=0
Since 07 = I we have (07 ® I3)? = I, ® I. Thus we find
exp(—ia(oy ® 1)) = (I ® Iy) cos o + e~ /%(, @ I) sin(a)
where we used exp(—in/2) = —i. Analogously, we find

exp(—ia(oy ® Iy)) = (I ® 1) cos(a) + e/ (0y @ 1) sin(a)

since (0'2 &® 12)2 = IQ ® IQ.
(ii) Since sin(mw/2) = 1, cos(n/2) = 0 we arrive at

le 7T/2) = 67i7r/2(0'1 ® IQ)

—~

From sin(7/4) = v/2/2, cos(n/4) = V/2/2 it follows that

—~

= i67”/ o
Ryy(m/4) = (I ® 1)+ 7 2oy @ I).

Sl



Unitary Transforms and Quantum Gates 183

Thus
e*iﬂ'/Z e*iﬂ'/Z

vz ekl

where we used that o109 = io3. Therefore

Rua(7/2) Ry (m/4) = (03 ® I)

ef’iﬂ'/Q

Ria(m/2) Ry (v/4) = =

(01 4+03)® 1

where

A= 04)

is the Walsh-Hadamard gate. All the single operations are in the Lie
group SU(2) whose determinant is +1, while the determinant of the Walsh-
Hadamard gate is —1. Thus the overall phase is unavoidable.

Problem 7. Consider the Hilbert space C2". Let {|0), [1), ...,[2"—1)}
be an orthonormal basis in this Hilbert space. We define the linear operator
;e
U, = — e 2mkI/2" kY () 1
QFT \/27 JZ:(:) kZ:O &) (] (1)

This transform is called the quantum Fourier transform . Show that Ugpr
is unitary. In other words show that Ug FTU&‘2 pp = Ion, where we use the
completeness relation

2" —1
I =Y i)l
=0
Thus Is» is the 2™ x 2™ unit matrix.

Solution 7. From the definition (1) we find

2" —12"—-1

* 1 i2wkj /2™
UQFT:\/? Z Z e'2mhi/2 |7) (K|

7=0 k=0
where * denotes the adjoint. Therefore

2"—12"—-12"-12"-1

UartUber =57 30 90 3 O €28/ ) k1) m

j=0 k=0 1=0 m=0

1 2m_12m 1271
_ ei27r(kjflcm)/2" |j><m|

n
j=0 k=0 m=0
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We have for j = m, ¢27(ki=km)/2" — 1 Thus for j,m =0,1,...,2" — 1

2" —1

Z (eiQ‘n'(jfm)/Qn)k _ 2n’ j=m
k=0

2" -1 1 — ei2m(j—m)

i2r(j—m)/2"\k _ _ ;
’;) (e )" = 1_ eizn(G—m)/2n 0, j#m.

Thus
2m—1

UorrUgpr = Z 7)(j] = Ian.
=0

Problem 8. Apply the quantum Fourier transform to the state in the
Hilbert space C8

—_

7
=) " cos(2mj/8)]j)
7=0

where the quantum Fourier transform is given by

Ugrr = QWZZ e BTRI/B k) (4],

7=0 k=0

[\D

Weuse {|j) : j=0,1,...,7} as an orthonormal basis in the Hilbert space
C8, where |7) = [111) = |[1) ® |1) ® |1).

Solution 8. We use Euler’s identity €' = cos(#) + isin(f) and

N—1
Z eiQﬂ'k(nfm)/N = Népm.
k=0
Thus we have
7 1T
AR —i2mkj/8 1 i2n(1—k)j/8 | —i2n(1+k)j/8
x(k)—Ze J1% cos(2mj/8) = 22( ISt e J )
=0 7=0
(5k1 + 0x7)

and

Ugrry Zcos (2m5/8)17) = Z 7(\1> +17)).

j 0 k::O
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Problem 9. Let
on 1971

Uiai= X % (-0 ) Wl 1)

j=0 k=0

U;r 4 is called the inversion about average operator. Show that Uy, is uni-
tary. In other words show that Uy U, = Ian.
Hint: Use the completeness relation

2" —1

> 1)) = Ian.
=0

Solution 9. From (1) we find

2" —-12"-1

Uia= X 3 (0~ 0n ) 101 = U

j=0 k=0

Thus

2" —1
. 2 2 .
UraUfa =Uls= > (Qn - 6]’]9) <2n - 5zm) k) (3 lm) ({]

7,k,l,m=0

=S (Z-a) (Z-a)ma

7,k,1=0

where we used that (j|m) = 0;,,. Furthermore, we find

on_1 2" —1
9 9 4 2 2
> <2n - 5jk> (2,, - 5lj> =) (2271 — Ok gy ~ Ol t 5ﬂ<5lj>

Jj=0 7=0
1 on_1
4 2 2
= on —gn g T O =0 Y o
=0 j=0
= Olk-
Therefore
o1
UraUia = Y 1){i] = Ion.
=0

Problem 10. Let {]0),]1) } be an orthonormal basis in the two-dimensional
Hilbert space C? and

1

Unlk) == —= (10) + (=1)*[1)), k€ {0,1}

S

2
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Ups(g) :=[00)(00] + [01)(01] + [10)(10] + €™ |11)(11]|
Ucnor := |00)(00] + |01)(01] 4 [10)(11] + |11)(10].
(i) From these definitions show that UgUg = I5.

(ii) Calculate

(I @ Un)Ups(x)(I2 ® Un)|ab)
and (I @ Uy )Ucnor (I2 @ U)|ab), where a,b € {0,1}. What is the use of
these transforms?

Solution 10. (i) An arbitrary state in the Hilbert space C? can be written
as

[¥) := al0) +b]1)
where a,b € C and |a|? + |b]? = 1. We find

UnUsl) = Un = (al0) + af1) + o) = BI1) = 5 (2a[0) + 2]1)
=al0) + b|1).

Thus, UHUH = IQ.
(ii) We find

(I  Unt)Ups(ny (1o @ Unr ) ab) = (I> @ UH>Ups<w>%\a> ® (0) + (~1)°[1))

=(L®Uy) Y@ (]0) 4+ (—1)**b|1)

=
—la
V2
Slaaeb)
=—|a,a
2 )
where a ® b = a + b (modulo 2) is the XOR operation. We obtain

(I: @ Un)Ucnor(I2 @ Ug)|ab) = (I @ Un)Ucnor

| (2®Un)—la)
T ) (I ®@Ug)—=|a)
1

= (I ® Un)—=la) @ (=1)"(|0) + (=1)°[1))

1
e 10+ (=1)"[1))

(10) + =
(1) + (=1°%0)) a=

S-Sk

la) ®
la) ®

[\)

— (—1)""]ab).

The first computation is Uonor, the second is Upg(x)-

Problem 11. The XOR gate is given by

Uxor(Im) @ n)) = |m) @ [m ®n)
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where m,n € {0,1} and @ denotes addition modulo 2. The transformation
has the following properties: (a) it is unitary and thus reversible, (b) it is
hermitian, (¢) m & n = 0 if and only if m = n. The first index denotes
the state of the control qubit and the second index denotes the state of the
target qubit.

A generalized quantum XOR gate (GXOR gate) acts on two d-dimensional
quantum systems (d > 2). In analogy with qubits one calls these two
systems qudits. The basis states |m) of each qudit are labeled by elements
in the ring Z4 which we denote by the numbers, m = 0,1,...,d — 1, with
the usual rules for addition and multiplication modulo d. We define two
operators

Ucxori(lm) @ |n)) :=|m) @ |m @& n)

and

Usxorz(Im) @ |n)) = |m) @ |m © n)
where m ©n := (m — n) modulo d. Discuss the properties of these two
operators.

Solution 11. For Ugxopr1 we find that the operator is unitary but not
hermitian for d > 2. Therefore it is no longer its own inverse. We have to
obtain the inverse of the Ugxogr1 gate by iteration, i.e.

-1 _ rrd—1 1t
Ucxor = Ugxor =Ugxor1 # Ucxora.

For the operator Ugxore we find that in the special case for d = 2 it
reduces to the XOR-gate. Furthermore, the operator is unitary, hermitian
and m ©n = 0 modulo d if and only if m = n.

Problem 12. Given an orthonormal basis in CV denoted by

|¢0>? |¢1>7' L] |¢N—1>'

(i) Show that
N—2

U:= |Pr) (Prs1| + [dN—1) (Do

0

b
I

is a unitary matrix. Find tr(U).

(i) Find U™.

(iii) Does U depend on the chosen basis? Prove or disprove.

Hint. Consider N = 2, the standard basis (1,0)7, (0,1)7 and the basis
11,7, (1, -7

\/i ) ) \/5 ) *

(iv) Show that the set

{v,u?,...,UN}
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forms a commutative group (abelian group) under matrix multiplication.
The set is a subgroup of the group of all permutation matrices.

(v) Assume that the set given above is the standard basis. Show that the
unitary matrix U is given by the permutation matrix

01 0 ... 0
001 ... 0
0 0 O 1
1 00 0

Solution 12. (i) Since (¢;|¢r) = 0% we have

N-2 N-2
Ur= (Z [P} (Pr+1]| + ¢N-1><¢0) (Z |Prot1)(Pr| + |¢0><¢N—1|>

k=0 k=0

N—
= Z Yokl = In.
k=0

Obviously we have tr(U) = 0 since the terms |¢){¢x| do not appear in the
sum (i.e. we calculate the trace in the basis { |¢g), ..., |dn-1) }).

(ii) We notice that U maps |¢x) to |¢r—1). Applying this N times and using
modulo N arithmetic we obtain (i.e. UYN maps |¢1) to |ox_n))

UN = Iy.
(iii) For the standard basis in C2 { (1,0)7, (0,1) } we obtain

0 1
Ustd—(l 0)

For the basis in C? { %(17 nT, %(1, —1)T'} we obtain the Pauli spin ma-
trix o3. Obviously the two unitary matrices are different. Of course there

is a unitary matrix V such that Ugq = V" losV.
(iv) Since Uy = Iy = U° we have that

U Ut U‘}—‘rt U‘}—‘rt mod N

Thus the set of matrices {U, U2, ..., U™} forms an abelian group under ma-
trix multiplication, because {0,1,..., N — 1} forms a group under addition
modulo N. The two groups are isomorphic.

(v) Let e; denote the element of the standard basis in C™ with a 1 in the
jth position (numbered from 0) and 0 in all other positions. Then U is

given by
N—2

T T
U= E ere, 1 +en_1€;.
k=0
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In the product exef, , e denotes the row and e}, ; denotes the column in
the matrix U. Thus we obtain the matrix described above.

Problem 13. (i) Let 01, 03 and o3 be the Pauli spin matrices and I be
the 2 X 2 unit matrix. Find

(0—3 ® o3 Qo3 ®O'3)(O'1 Qo1 R Iy ®IQ)(O’3 X o3 Q o3 ®0’3),

(03R03Q03R03)(la ®01®01®I)(03®03 03 03),
(0’3 Ro3R®o3® 0'3)(]2 R ®o ® 0'1)(0'3 ®o3®03& 0'3).

(ii) Replace o1 by o2 in the expressions given above and calculate the
expressions.
(iii) Given the one-dimensional XY -model with open boundary conditions

N/2—-1 14 1 N/z
. gl 7
Hxy = - § (201,j01,j+1 + 202,j02,j+1) - /\‘ Z 3.7
j=—N/2+1 =N/

where the parameter )\ is the intensity of the magnetic field applied in the
z-direction and the parameter v determines the degree of anisotropy of the
spin-spin interaction, which is restricted to the xy-plane in spin space. Find

N/2 N/2
H o3 | Hxy H 73,5
j=—N/2+1 j=—N/2+1
Solution 13. (i) Since 03 = Iy and 030103 = —0 we find for the first

expression

(03@03R03R003)(01001 @ 1®1)(03Q03R03R03) =01 Q01 QLR Is.
Analogously, we find

(03R@03R03R03)([2Q01 Q01 Q1) (050038038 03) =L Q0 Qo1 I

(O'3®U3®0'3®U3)(IQ®IQ®O'1 @O’l)(0'3®0'3®0'3®0'3) =LbL®IHh®Ro Qoy.

(ii) Replacing o1 by o9 and using 030903 = —o9 yields
(03@03R03R03)(02®02Q01LRQ15) (050038038 03) =02R02R[, R[5

(03R03R03203)([2®@02002@13)(03R03R03R03) =1, Q02Q02R I
(03®03R003203)(I2 @1, Q02002)(03R03R03®03) =L@ Q02® 0.
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(iii) Using the results from (i) and (ii) and extending from N = 4 to arbi-
trary N, we find

N/2 N/2
H o3, | Hxy H o3 | = Hxy.
J=—N/2+1 J=—N/2+1

From (i) and (iii) we find that the Hamilton operator Hxy is invariant
under this transformation.

Problem 14. (i) Consider the product state |D) ® |P), where |D) is
a state to describe a m-qubit data register and |P) is a state to describe
an n-qubit program register. Let G be a unitary operator acting on this

product state
|D) ® |P) = G(ID) @ |P)).

The unitary operator is implemented as follows. A unitary operator U
acting on the m-qubits of the data register, is said to be implemented by
this gate array if there exists a state |Py) of the program register such that

G(ID) ® |Py)) = (U|D)) @ | Py)

for all states |D) of the data register and some state |P/;) of the program
register. Show that |P/;) does not depend on |D).

(ii) Suppose distinct (up to a global phase) unitary operators Uy, ..., Un
are implemented by some programmable quantum gate array. Show that
the corresponding programs |P;), ..., |Py) are mutually orthogonal.

Solution 14. (i) Consider
G(ID) @ |P)) = (UID1)) @ |P),  G(ID2) ®|P)) = (U|D2)) © |P).

Taking the scalar product of these two equations and using GTG = I,
UtU =T and (P|P) = 1 we find

(D1|D2) = (D1| Do) (Py|Py).

If (D1|D3) # 0 we find (P{|Py) = 1. Thus |P]) = |Pj). Consequently, there
is no |D) dependence of |P[;). What happens for (D;|D3) =07

(ii) Suppose that |P) and |@Q) are programs which implement unitary op-
erators U, and U, which are distinct up to global phase changes. Then for
an arbitrary data state |D) we have

G(ID) ® |P)) = (Up|D)) ® |P')

G(ID) ®1Q)) = (U,|1D) ® Q')
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where |P’) and |Q’) are states of the program register. Taking the scalar
product of these two equations and using G'G = I, (D|D) = 1 we obtain

(QIP) = (Q'|P")(D|UJU,|D).
Suppose that (Q'|P’) # 0. Then we have

(Q[P)
(Q'[P")

The left-hand side of this equation has no |D) dependence. Thus we have
U 1LUp = cI for some complex number c. It follows that we can only have
<P’|Q ) # 0 if U, and U, are the same up to a global phase. However we
assumed that this is not the case and therefore (Q'|P’) = 0. Hence

(@QIP) = 0.

This means the states |Q) and |P) are orthogonal.

= (D|UJU,|D).

Problem 15. Consider three two-dimensional Hilbert spaces H1, Ho and
Hs. Consider the normalized product state

1 1 1
= ZZZCJMJ ® k) @ |€)

§=0 k=0 £=0

in the product Hilbert space Hi ® Ho ® Hs. Let Uy, Us, Us be unitary
operators acting in these Hilbert spaces. By the First Fundamental Theo-
rem of invariant theory applied to Uy, Us, Us, any polynomial in c¢;i, which
is invariant under the action on |¢) of the local unitary transformation
U1 ® U ® Us is a sum of homogeneous polynomials of even degree (say 2r).
For 7 =1 we have

1 1 1
) *
0102 c]lklelcjlkgl(l)€02(1)
1=0 k1=0 £, =0

where o7 and o9 are permutations of 1. We denote by e the identity per-
mutation. For r = 2 we have

1 1 1 1 1 1
= E E E E E E . . * *
P€71¢T2 (C) - ] CJlklflCjzkﬂzc]lkgl(l)KQ(Dngk01(2)€a2(2)'

(i) Calculate the invariants.
(ii) Describe the connection with the partial traces

pri=tra([V) (D), p2 = tran([9) (), p3 = traa(|) (¥])



192  Problems and Solutions

of the density operator p := |)(¢].

Solution 15. (i) Obviously for the case r = 1 (degree 2) we only have
the identity permutation, i.e. o1 = 09 = e with e(1) = 1, e(2) = 2. Thus
we find only one invariant, namely

1
ZCJMCM (Wly) =1

£=0

MH
M-

Il
=]
el
Il
o

J

which is the normalization condition. For the case r = 2 (degree 4) we
find four linearly independent quartic invariants since e(1) = 1, e(2) = 2,
o(1) =2, 0(2) = 1. Thus

11 1 1 1
2
L= =220 2 D D kG CiakataChakaty = (V1Y)

<
Iy
Il
o
b
2
Il
=
~
S
I
=}
.
M
I
=
Cx
M
Il
<
)
M
Il
<

I, = PGU(C) = E E § : § :C]1k151 ylkllgcj2k242 ijgll

§1=0 k1 =0 £1=0 j2=0 ko=0 £2=0

1 1
. . * *
I3 = Pye(c) = E E E Cirk1 0 Cjy kgty Cizkals Claky 0
J1=0k1=02£1;=0 j2=0 k2=0 £2=0
1 1
I4 - - C]lkl‘el Cj1k2€26]2k72€26j2k71€1 .
1=0 k1 =0 £, =0 jo=0 k=0 £3=0

(ii) We find the invariants I = (pg) I3 = tr(p3), Iy = tr(p?).

Problem 16. Consider two Hilbert spaces H ey and Hsys and the product
state

[¥) = («|079) + B[17°9)) @ [0°%)

in the Hilbert space H,eq @ Hsys, Where reg stands for register and sys for
system. Consider the swap operation (swap gate)

Usnan(@l07°9) + B17°9)) @ [0°0°)) = [07°9) ® (a]0°%) + BI1°0%)).

Discuss the operation on physical grounds.

Solution 16. Creating such a superposition could violate conservation
laws (for example charge) and in this case is forbidden by superselection
rules.

Problem 17. The Toffoli gate is the unitary operator acting as
Urla,b,c) =la,b,a-b+c) =a) @ |b) ®|b+ c)
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in the Hilbert space C® where a,b,c € {0, 1} and ab denotes the AND
operation of a and b. The addition + is modulo 2.

(i) Find the truth table.

(ii) Find the matrix representation for the standard basis.

The Toffoli gate is an extension of the CNOT gate.

Solution 17. (i) We have the truth table

a b cl|la b ab+c
0 0 00 O 0
0 0 1]0 O 1
0 1 00 1 0
0 1 1]0 1 1
1 0 01 O 0
1 0 141 0 1
1 1 01 1 1
1 1 11 1 0

(ii) The matrix representation of the Toffoli gate is given by the 8 x 8

permutation matrix
0 1
Is @ (1 0)

where @ denotes the direct sum.

Problem 18. The Fredkin gate is the unitary operator acting as
Urle,x,y) = |c,cx + ¢y, cx + cy)

in the Hilbert space C®, where ¢, z,y € {0, 1}.
(i) Consider the cases ¢ =0 and ¢ = 1.
(ii) Find the matrix representation for the standard basis.

Solution 18. (i) For ¢ =0 we have ¢ = 1. Therefore
cx=0, cx=z, cy=0, cy=y.

Thus
Ur|0,z,y) = [0,y, ).

For ¢ = 1 we have ¢ = 0. Therefore cx = x, éx =0, cy =y, ¢y = 0. Thus
UF‘17$7y> = |1,x,y>

Consequently c is a control bit. If ¢ = 0 then x and y swap around. If c =1
then z and y stay the same.
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(ii) The matrix representation of the Fredkin gate is given by the 8 x 8
permutation matrix
(1)@ Unor ® Is

where @ denotes the direct sum.

Problem 19. Consider the 8 x 8 matrix
eia
Ula) ==L Lol+ic1Q®01®0
(@) \/Q( 2 @12 ® I3 1® 01 ®o1)
where a € R.
(i) Show that U(«) is unitary.
(ii) Consider the standard basis |0), |1) and the product state

|w>=|¢>®¢>®|¢>z(‘f)®<?>®(§).

Calculate the state Ult).
(iii) Consider U(a = 0) and the unitary 8 x 8 diagonal matrix

V =diag(e®?/2, 1, 1, 1, 1, 1, 1, e 3%/2),

Calculate the state VU (a = 0)1)).
(iv) Calculate the state U(a = 0)VU (a = 0)|¢)).

|
(V) Let [&) = [H o[l &) =Ne|1)e]1). Calculate the
probabilities

{€1lU(a = 0)VU(a = 0)[¥)[%, (&|U(a =0)VU(a = 0)[9)*.

Solution 19. (i) Since of = 01 we have

—i

U*(Oé) = 6\@ (I2 ®IQ ®I2 7210'1 X o1 ®O’1).
Since 0} = I we obtain
1
U (a)U(a) = 5(1’2 RLIL+LRLRIL) =Ll =Is.
Thus U is a unitary matrix.
(if) We find
et .
Ula)ly) = \/5(]2 @LRL+ioi®o@o)(| )| @|l)
eia
= ® ® +iT)® ®
\/Q(M [helh+ineneln)
eia

(Ihelhelh+e™ el e|1).

5

2
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This is the GHZ state.
(iii) We find

VU(@=0)[¢) == )|l +ie2 el t)e|1)

[\]

=—=(cosB/2)(| @l el +inHeln )
—isin(3¢/2)([ ) @ [ L) @ [1) =i @1 @[ 1))

>

(iv) Using the result from (iii) we find

Ula = 0)VU(a = 0)}) = icos(5 )| He| N8l 1) —isin( o)l He| ol ).
(v) We obtain for the probabilities

(€U (0 = VU (o = 0)}8) = sin®(30/2) = 5 — 1 cos(30)
and

(U0 = VU (0 = 0)[4)/* = co(36/2) = § + 5 cos(30).

Draw |(&1|U(a = 0)VU(a = 0)[)|* and [(&2|U(a = 0)VU (e = 0)[9))|* as
functions of ¢.

Problem 20. A quantum 2-torus is based on a C*-algebra A generated
by the elements U; and Us with the relations

Ut =Uy, Us =U; Y, U Uy = 2UsUy

where z is a fixed complex unit. The algebra A will be commutative if
and only if z = 1, and in this case it describes the classical 2-torus. If z
is different from 1 then A describes a purely quantum object. This space
is called a quantum torus. A non commutative d-torus T is a C*-algebra
generated by d-unitaries Uy, Us, ..., Uy subject to the relations

Uange%w“‘*UgUa, a,8=1,2,....d

where 6 = (0,p) is a skew-symmetric matrix with real entries. Consider
the C*-algebra given by the 2 x 2 matrices.

(i) Let
n=(10) w=(4)

Can we find z € C such that U Uy = zUUy ?
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1 1 1 0 1
050 (1))

Can we find z € C such that UyUy = zUsU; ?

(ii) Let

Solution 20. (i) Since

-1 0 1 0
U1U2=(0 1>, U2U1=<0 _1>

we have U;Uy = €Uy U;.
(ii) Since
1 1 1 1 /1 -1
we= () w50 )
we cannot find z € C such that UyUs = zUsU;, but we find the unitary
matrix
0 1 .
7 = <1 0> = {0y
such that U Uy = ZUU;.
Problem 21. Let a € R. Find the unitary matrix

U(a) = exp(—ia(o; ® 01 + 02 ® 02 + 03 ® 03)).

Solution 21. Since
[01 ® 01,00 ®02] =04, [01®01,03®03] =04, [02® 02,03 03]=04
we can write
U(a) = exp(—ia(o1 ® 01)) exp(—ia(os ® 02)) exp(—ia(o3 @ 03)).
It follows that

Ula) = (cos®(a)—isin®(a))I4—isin(a) cos(a)e'® (01 @01+ 02202 +03003).

Problem 22. The Hadamard gate is defined by

Unlo) = Z=(0) + 1), Unlt) = (0} ~ 1)
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and the CNOT gate is defined as
Uonor(la) ® b)) = |a) © [a ® b)
where a,b € {0,1} and @ is the XOR operation. Calculate the state
Uonor(Un @ 1)(10) ©10)),  Ucnor(Un @ I)(|0) @ |1))
Ucnvor(Uu @ I)(|1) ®10)), Ucnor(Um @ I)(|1) ® |1))

and discuss.

Solution 22. We obtain

Uonor(Un ® I)(|0) ©10)) = (|0> ®[0)+[1) @ 1))

%\

Ucnor(Un @ 1)(|0) @ [1)) = (|O>®\1>+|1>®|0>)

%\

Uonor(Un @ I)(]1) ©10)) = (|0> ®0) —[1) @ 1))

%\

Uonor(Un @ I)(]1) © 1)) = *(|0> @ 1) = 1) ®0).

Nia

These are the Bell states. Thus we generated the Bell states (which are
maximally entangled) from non-entangled states.

Problem 23. Consider the unitary 2 x 2 matrix

=l )

Calculate the logarithm of U, i.e. log(U) using

1
log(U) = /0 (U — L)(tU — L) + L) tdt

to find B given by U = exp(B). This equation can be applied if the matrix
U has no eigenvalues on R~ (the closed negative real axis). Set B = iK.
Find K.

Solution 23. The eigenvalues of U are given by

1 1

—(1+4), A= —=(1—1i).

\/5( ) 2 \/5( )

Thus the condition to apply the equation is satisfied. We consider first
the general case U = (u;x) and then simplify to w1 = ug2 = 1/v/2 and
uU21 = —Uig2 = 1/ﬁ We obtain

_ 1+ t(un — 1) tu12
WU —T)+ 1= ( tugs 1+ t(ug — 1))

A=



198 Problems and Solutions

and
det(t(U — L) + Io) = d(t) = 1 + t(=2 + tr(U)) + t*(1 — tr(U) + det(V)).
Let X =det(U) — tr(U) + 1. Then

(U = YU - L) + L)' = —— (

d(t) u21 tX +ugp —1

tX +upp —1 U12 )
With u1; = ugs = 1/V/2, uz; = —uja = 1/4/2 we obtain
d(t) =1+ t(-2+V2) +t3(2 - V2)

and X = det(U) — tr(U) + 1 = 2 — v/2. Thus the matrix takes the form

1 (2-VE) +1VE- )
d(t)( 1/V2 t2-vV2)+1/vV2-1)"
Since
1L —iarcan 22 - V2)t +v2 -2 1— il
|, = g e ( V2 )0‘*[4
and ) .
t s
|, @ = s
we obtain

B= <7r34 _76/4)’ K=-ib= (i?r/él Z'770/4>'

Problem 24. Let {|0),|1),...,|n — 1)} be an orthonormal basis in the
Hilbert space C™.
(i) Is the linear operator

n—1

Zy =y exp(2mij/n)|j) (|

Jj=0

unitary?
(ii) Can the operator Z,, be expressed as the exponent of a hermitian op-
erator?

Solution 24. (i) Since

n—1

Zy =" exp(=2mij/n)|5){j]

Jj=0
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we find Z, Z) = I. Therefore Z,, is unitary. .
(ii) Since Zy, is unitary we can find a hermitian operator, say K, such that
Z, = exp(iK). We obviously find

n—1
Z, = exp(2mif/n), 0 := ZJ\J><]|
=0

The operator 6 is the SU(2) phase operator.

Problem 25. The four Bell states are given by

%) = %uw o)+ e, |o7) = %um ®0) - 1) @ [1))
W = (0 e )+ D ®0), [ = —=(0)® 1) — 1) ® o).

V2 V2
Show that the Bell states can be transformed to each other under local
unitary transformations (i.e. the Kronecker product U ® V of two unitary
2 x 2 matrices U and V). Hint. Consider the Pauli spin matrices and the
2 x 2 identity matrix.

Solution 25. We find

[¢07) = (I2 @ 03)|¢™) = (03 ® I2)[97)
[pF) = (Ia @ 01)|¢T) = (01 @ L)|o")
[07) = (I ® (—ioy))|¢T) = (iog ® I5)|¢7).

Problem 26. Consider the unitary matrix

V =

= o O
O~ O
S O =

Find the hermitian matrix K such that V = exp(iK).

Solution 26. The matrix V is also hermitian. We calculate the eigenval-
ues and normalized eigenvectors of V. From the normalized eigenvectors
we construct a unitary matrix W such that W*VW is a diagonal matrix.
Then

WVW = WKW — W KW _ il

where L = W*KW. Since W*VW is a diagonal matrix L is also a diagonal
matrix. Thus (W*VW);; = €. Finally we find K from K = WLW*.
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Now the eigenvalues of V are given by Ay = 1, Ao = 1, A3 = —1 with the
corresponding normalized eigenvectors

0 1 1
11, —
Va1 V2o

This leads to the unitary (orthogonal) matrix

0 1/vV2 1/V2
W=|1 0 0
0 1/vV2 —1/v2
Thus we obtain the diagonal matrix
1 0 0 '
WVWw=[0 1 0 |=¢k
00 -1

From W*VW = exp(iL) we find the equations 1 = 11, 1 = ¢¥22 -1 =
e*ss. The solution is £11 = 99 = 0, l33 = 7. Hence we obtain the hermitian
matrix

- 1 0 -1
K=WLW* = 3 0 0 0
-1 0 1

Problem 27. Let U be an nXn unitary matrix. Show that if the bipartite
states [1), |¢) € C" @ C™ satisfy |¢) = (U & I,,)|t)), then the ranks of the
corresponding reduced density matrices satisfy

r(pl) = r(p?),  r(pY) > r(ph).

Solution 27. We consider the Schmidt decomposition of the state |i))
) =S YN @l A >0, s < min(n,m)
j=1

where s is the number of non vanishing terms in the Schmidt decomposition.
We write the unitary operator as

U= Il
j=1
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where |p;) € C". Then we find that
pr =D, et =Up U = L) (gl
j=1 j=1

Thus r(p‘f) < s. The second inequality follows from the fact that for any

bipartite state r(p1) = 7(p2).

Problem 28. Consider the 4 x 4 hermitian matrix
R:=01®0+02Q09+ 03 R 03

and the Hamilton operator

H(t) = —hw(t)R
Let
1 (T
¢ = */ w(t)dt
2 Jo
and
T . 1 T
U(T) = exp —i/ H(t)dt/h | = exp | —5 / w(t)dt | R
0 0
=exp(—ipR).
Calculate U(T') and express it using the swap gate
1 0 0 0
0 010
USU) - O 1 O 0
0 0 01

Solution 28. Note that Uy, = I4 + R. We have

) 1 . 1 ;
U(T)=e "8 = Ze*w(aa +R)+ Ze*i’*“f’(LL - R)

=’ (cos(2¢)l4 - %sin(2¢)(l4 + R))
= €' (cos(2¢) Iy — isin(2¢)Usy ).

Problem 29. Consider the Bell basis in the form

1 0 0 —i
1[0 11 1| —i 1o
Y22 W IRVOR W2l IRV B RRVOR
—i 0 0 1
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From the Bell states we form the matrix

1 0 0 —

1 0 1 —i 0
B*ﬁ 0 —i 1 0
- 0 0 1

(i) Show that B is unitary. Calculate B2, B%, B*,..., B® and show that B*
(k=1,2...,8) form a group under matrix multiplication.
(ii) Let 71 and 74 the Dirac gamma matrices

00 0 —i 10 0 0
(o0 =i o (o1 0 o
Mm=to i 0o o) "“loo -1 o0
i 0 0 0 00 0 -1

Calculate exp(7my471/4) and show that exp(mysv1/4) = B.
(iii) Let T» = B and

T, = exp(—inly ® 03/4), T3 = exp(—ino3 ® [2/4).

Calculate T1 and T3 ShOW that T1T2T1 = T2T1T27 T3T2T3 = T2T3T2 and
TT3 = T3T1, i.e. we have a braid like relation.

Solution 29. (i) We have B*B = I,. Thus B* = B~! and B is unitary.
We define

0 0 01
0 010
N= 01 00
10 0 0

Thus N2 = I, and we can write B = %(14 —iN). We find

1
B?*= 2( 41— iN)(Iy —iN) = —iN
1 1
B3=—(I; —iN)(—iN) = ———=(I; + iN
\/5(41)(1) \/5(41)
B*=B?B? = (—iN)(—iN) = —1I,
B°=-B
B%=-B?=iN
1
B"=-B3= —(I; +iN
\@(4 )

B=B*B*=1,.
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(ii) We have

0 0 0 —i
10 0 =i 0] _ . 5o
W=y o0 o |7 1N = B~
- 0 0 0

Thus 1471 = —iN and (yv471)? = — 1y, (yam1)® = iN, (yay1)* = 1. Using
this result we find

1

exp(mysy1/4) = Iy cos(mw/4) — iNsin(n/4) = 7

(I, —iN) = B.

(iii) Using that exp(—im/2) = —i we find

Lo —i —i 0
T3T2T3*ﬁ 0 —i i 0

- 0 0 —i

1 0 — — 0

TelsTy = V2l o —i i o0
-t 0 0 1

Thus ToT3T5 = T3T5T5. Analogously we find 11151, = T511T5. Obviously
T1T5 =TT} since T and T3 are diagonal matrices.

Problem 30. Consider the swap gate

10 0 0

00 10

Uswap = 01 00

00 0 1

Can the swap gate be written as
10 0 O
. 01 0 O 1
Uswap = R 00 -1 0 R
00 0 1

where R is an orthogonal matrix?

Solution 30. The matrix Usyqp is not only unitary but also hermitian
with eigenvalues +1, +1, +1, —1. To construct the matrix R we just find
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the normalized eigenvectors of U. This yields

1 0 0 0
ol e |0 1/V2 1/V2 0
R=R"=1=], 1/vV2 —1/vV2 0
0 0 0 1
Problem 31. Letd > 2and |0), |1), ..., |d—1) be an orthonormal basis
in the Hilbert space C%. Let [¢), |¢) be two normalized states in C?. Let
d—1
S= > (UKD ® (kD).
4,k=0

Show that S(|1)) ® |¢)) = |¢) ® ). Thus S is a swap operator.

Solution 31. We have

d—1
Sy @)= > (1) k) @ (k) 1) (14) @ [4))
7,k=0
d—1 d—1
=D k)Gl @ 1k) = Y Gl Ele) (k) @ [5))
7,k=0 7,k=0
=1¢) ® [9).

Problem 32. Let 01, 02, 03 be the Pauli spin matrices and
0j1=1® QLR OLKY &I

where o7 is a the j position (counting from left to right) and j = 1,2, ..., N.

Analogously we have 0,2 and ;3. Let

9
0j4+ =041 + 7;0'j72.
Consider the unitary matrix
= exp Z Xj0j,4+0j,—
Find UU‘jJU*, (](7']‘7,(]*7 UO'j)gU*.

Solution 32. We obtain

UU’jwlU*ZGZXjO'jnL, UO’jny*:672XjO'j,,, UO’jng*:ijg.
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Problem 33. Let o1, o3 be the Pauli spin matrices and

1
IT= 5(12 +03) ® .

Show that II is a projection matrix. Show that the 4 x 4 matrix
1 1
U= 5(-[2 + 03) ®I2 + 5([2 — 0'3) X o1
is unitary.
Solution 33. We have II = IT* and II?> = II and
0 1
v (0 0).
Thus U = U*, U? = I, and U is unitary.

Problem 34. The vectors

1 1 0 1 1
vi=— (0], vo=|1], v3=—11 0
1= 5 X 2 . 3 v\

form an orthonormal basis in the Hilbert space C3. Find the unitary ma-
trices U12, U23, U31 such that U12V1 = Vg, U23V2 = V3, U31V3 = Vi. Then
calculate Us1UssUj2 and the matrix V = A viv] + Aavavi + A3vsvi, where
the complex numbers i, Ao, Az satisfy )\1X1 =1, )\2X2 =1, )\3X3 = 1.
Show that the matrix is unitary.

Solution 34. We obtain

0 1 0 0 1/vV2 1/V2
Uo=|1/V2 0 1/V2 |, Ux=|1 0 0 )
1/vV2 0 —1/V2 0 —1/vV2 1/V2
Us1 :IQ@(—l).

ObViOU.Sly U31U23U12 = 13. Now

e 0 A
v=2210](1 0 D+xf1]o 1 0)+Z2( 0 |1 0o -1).
2 \1 0 2\ 1

It follows that
A1+ A3 0 Al — A3

V=§ 0 2o 0
AM—A3 0 A+ A3
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and VV* = I3, i.e. the matrix V is unitary.

Problem 35. Let ¢ € R. Consider the 4 x 4 matrix

0 1 0 0
0 01 0
AD=19 o 0 1
e 0 0 0

(i) Is the matrix unitary?

(ii) Find the eigenvalues and normalized eigenvectors of A(¢).

(iii) Can the matrix be written as the Kronecker product of two 2 x 2
matrices?

Solution 35. (i) Yes. We have A(¢)A*(¢) = I4.
(ii) The eigenvalues are €'/t —eit/4 _jeid/4 i®/4 with the corresponding
normalized eigenvectors

1 1 1 1
1 jete/4 1 _ele/4 1| —jeie/4 1 etd/4
) _ei®/2 Y ei0/2 g | —eit/2 |0 g | eio/2
_jeBis/4 _e3i0/4 je3i0/4 e3id/4

(iii) No.

Problem 36. (i) Let A be an n x n matrix over C and II be an m x m
projection matrix. Let z € C. Calculate exp(z(A ® II)).

(ii) Let A1, Ay be n x n matrices over C. Let IIy, IIs be m x m projection
matrices with II1II; = 0. Calculate exp(z(A4; @ II; + Ay @ I1)).

(iii) Use the result from (ii) to find the unitary matrix U(t) = exp(—iHt/h),
where H = hw(A; @ Ty + Ay ® IIp) and we assume that A; and As are
hermitian matrices.

(iv) Apply the result of (iii) to

1/1 1 1 1 -1
A1:O'1, H12<1 1)7 A2:J37 ]-_-[22(_1 1>

Solution 36. (i) We find exp(2(A® 1)) = I,, @ I,, + (e*4 — I,,) ® 1L
(ii) We obtain

exp(2(A; @111 + Ay ®1Lp)) = I, ® Iy + (¥4 — I,,) @ Iy + (42 — I,,) ® I,

(iil) Since U(t) = exp(—iwt(A; @ II; + Az ® II3)) with z = —iwt we obtain
the unitary matrix

U(t) =1, ® I, + (e — [) @ + (e~ 2 — [,)) @ .
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(iv) With m =n =2, A; = 01 and Ay = o3 we find the unitary matrix
U(t) =L+ (e_iwwl — 12) ® I + (G_Mtg3 — .[2) ® 5.

With exp(zo1) = cosh(z) Iz + sinh(z)oq, exp(zos) = cosh(z)I5 + sinh(z)os
and z = —iwt and sinh(—iwt) = —isin(wt), cosh(—iwt) = cos(wt) we obtain

U(t) =1 ® Iy + (I3 cos(wt) — ioy sin(wt) — I) ® I
+(I5 cos(wt) — iozsin(wt) — I3) @ I,.

Programming Problems

Problem 1. Given the standard basis e, es, es, e4 in C*. Consider the
unitary matrices

1 0 0 O
01 0 0

Ucnor = 00 0 1| Ve =Up® 1
0 0 1 0

where Uy is the Hadamard gate

1 1 1
=71 )
Show that UcnorVue;, (7 = 1,2,3,4) will provide the Bell states.

Solution 1. The Maxima program will do the job

/* BellUnitary.mac */

el: matrix([1],[0],[0],[0]); e2: matrix([0], [1],[0],[0]);
e3: matrix([0],[0],[1],[0]); e4: matrix([0],[0],[0],[1]);
UCNOT: matrix([1,0,0,0],[0,1,0,0],[0,0,0,11,[0,0,1,01);
UH: matrix([1/sqrt(2),1/sqrt(2)],[1/sqrt(2),-1/sqrt(2)]);
I2: matrix([1,0],[0,11);

KUHI2: kronecker_product(UH,I2);

bl: UCNOT . KUHI2 . el; b2: UCNOT . KUHI2 . e2;

b3: UCNOT . KUHI2 . e3; b4: UCNOT . KUHI2 . e4;

The output is

1 0 0 1

1 [o 11 1|1 1[0
2lol vl vl-1] =l o
1 0 0 -1
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Problem 2. Consider the normalized vector in C*

1 . ‘)T'

Show that U = I, — 2vv* is a unitary matrix. Find the eigenvalues of U.

Solution 2. The following Maxima program will do the job.

/* unitary.mac */

v: (1/2)*matrix([%i], [-%il, (411, [-%1i1);

vT: transpose(v); vIC: conjugate(vT);

I14: matrix([1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,11);

U: I4-2+(v . vIC); UT: transpose(U); UTC: conjugate(UT);
R: U . UTC;

eigenvalues(U);

The eigenvalues are —1 (1 times) and +1 (3 times).

7.3 Supplementary Problems

Problem 1. (i) Let ¢ € R. Show that the matrix

a0 =5 )

hermitian and unitary. Find the eigenvalues and normalized eigenvectors
of A(¢). Let Iy be the 2 x 2 unit matrix. Find the eigenvalues of A(¢) ® I.

Problem 2. Let U be a unitary and hermitian n x n matrix. Show that

1 1
n,=-(I,+0U), I_-=-(,-0U)
2 2
are projection matrices. Show that II . I1I_ = 0,,.

Problem 3. Find all the square roots of the 2 x 2 identity matrix. For
example the Pauli spin matrices o1, 03, o3 are solutions.



Chapter 8

Entropy

8.1 Introduction

For any density operator (where (1;]9,) = d;x)
p= Y NN A =0, DN =1
j=1

the von Neumann entropy is defined as

S(p) :== —tr(plog(p))
or equivalently
S(p) == Ajlog(A))
j=1
with
0log(0) =0, 1log(1) = 0.

Thus the von Neumann entropy is equal to the Shannon entropy of the
eigenvalues. We have S(p) > 0 with equality iff p is a pure state, i.e.
p = |){(1)|. Furthermore we have the inequality

$(p) < log(n)

209
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where n is the dimension of p. We find equality iff
1
p=—I
n

where [ is the identity operator. The entropy is unchanged under unitary
transformation

S(UpU") = S(p).

For a joint system AB we have

S(pap) < S(pa) + S(ps)-

For density operators p and o we have the quantum relative entropy

S(pllo) = tr(plog(p)) - tr(plog(e)).
We have Klein’s inequality
S(plle) = 0

with equality iff p = o.

Let A, B be n X n hermitian matrices acting in the Hilbert space C™.
Assume that the eigenvalues of A are pairwise different and analogously
for B. Then the normalized eigenvectors |a;) (j =1,...,n) of A form an
orthonormal basis in C™ and analogously for B the normalized eigenvectors
|8;) ( =1,...,n) form an orthonormal basis in C". Let |¢)) be a normalized
state in C™. Then there are n possible outcomes for measurements of each
observable and the probabilities p;(4, [¢)), p;(B,|¥)) (j = 1,...,n) are
given by

pi(A|9) = [(@lap?, (B, [) = [(¥]8;) .
Let H\,)(X) be the Shannon information entropy

Hygy(X) == pi(X, 1) In(p; (X, [v)))
j=1
corresponding to the probability distribution {p;(X,[¢¥))} (j = 1,...,n).
The (Maassen-Uffink) entropic uncertainty relation is given by

Hyy)(A) + Hyy)(B) 2 —21In( max  |{a;]54)[) >
Note that the right-hand side does not involve the state [¢).
The (Landau-Pollak) uncertainty relation states that

arccos(y/ Pa) + arccos(y/Pg) > arccos(lgl%)in [{a;|Bk)])

where
Py = max p;(A4,|¢)),  Pp:= max p;(B,[)).

1<j<n 1<j<n
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8.2 Solved Problems

Problem 1. (i) Consider the density matrix (pure state)

1/1 1 1 1\ 1
=— = — — (1 1).
=31 1)=3 () B0 Y
Find the von Neumann entropy S(p) = —tr(plog,(p)).
(ii) Consider the density matrix (mixed state)

(12 0
P=\ o 1/2)
Find the von Neumann entropy S(p) = —tr(plog,(p)).

Solution 1. (i) The eigenvalues of p are 0 and 1. Hence S(p) = 0.
(ii) Since logy(1/2) = —1 we obtain S(p) = 1. Note that p describes a
mixed state.

Problem 2. Let W be a positive semidefinite n x n matrix over C with
tr(W) = 1. Let Ay, Ag,..., A, be the eigenvalues (which obviously are real
and nonnegative) and wy, wa, ..., W, be the corresponding normalized
eigenvectors of W. We can assume that the normalized eigenvectors form
an orthonormal basis in C". If eigenvalues are degenerate and the cor-
responding normalized eigenvectors are not orthogonal we can apply the
Gram-Schmidt algorithm. Calculate tr(W In(W)).

Solution 2. Let U be a unitary matrix such that U 'WU is a diag-
onal matrix. Note that U~! = U*. Obviously the unitary matrix U is
constructed from the normalized eigenvectors of W. Then we have

tr(WIn W) = tr(U Y (W In(W))U) = tr(U ' WUU (In(W))U)
=tr(U'WU In(U'WU)).

The diagonal elements of U~ 'WU are the nonnegative real eigenvalues of
W. Consequently

tr(WIn(W)) = > A;In())).
j=1
Note that 0 - In(0) = 0 if an eigenvalue of W is 0.

Problem 3. Let W be a positive semidefinite n x n matrix over C with
tr(W) = 1. Let A1, Mg, ..., A, be the eigenvalues (which obviously are real
and nonnegative) and wy, wa, ..., W, be the corresponding normalized
eigenvectors (column vectors) of W. We can assume that the normalized
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eigenvectors form an orthonormal basis in C™. If eigenvalues are degenerate
and the corresponding normalized eigenvectors are not orthogonal we can
apply the Gram-Schmidt algorithm. Let W be a positive definite n x n ma-
trix over C with tr(W) =1. Let Ay, )\2, ..., An be the eigenvalues (which
obviously are real and positive) and wy, WQ, ..., Wy, be the corresponding

normalized eigenvectors of W. We can assume that the normalized eigen-
vectors form an orthonormal basis in C™. If eigenvalues are degenerate
and the corresponding eigenvectors are not orthogonal we can apply the
Gram-Schmidt algorithm. Calculate

tr(W In(W)).

What happens if we allow the matrix W to be positive semidefinite?

Solution 3. Let U be “a unitary matrix such that U-'WU is a diag-
onal matrix. Note that U~ = U*. Obviously the unitary matrix U is
constructed from the normalized eigenvectors of W. Then we have

tr(W In(W)) = tr(U (W n(W))U) = tr(U*WUU " (In W)U)
tr(U'WU In(U~'WU)) = te(U"WU In(Wp))

where WD =U" WU is a diagonal matrix. Using the spectral representa-

tion of W
W = Z )\joW
j=1

we obtain
Wln Z Aj tr(U jw;)ﬁln(WD)).
Since
ﬁ—ZWge(, ﬁ*zzekﬁlz
=1 k=1
where {e; : k=1,2,...,n} is the standard basis in C" we obtain
(W In(W)) = Ajtr(U " (w;w})U In(Wp))

<.
I
—

> A jtr(enwi(wiwh)Weel In(Wp)).
1/4=1

-
M=

k

<.
Il
—
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To calculate the trace we use the standard basis {e; : j = 1,2,...,n}.
Thus

j(eferwi(wywh)weel In(Wp)e,)

NE
NE
M=
M=

tr(W In(W)) =

1

<
Il
Ja
Eol
Il
—
~
[
—

T

X (0 Wi (wyw ) Weel In(Wp)e,)

NE
NE
M=
NE

<
Il
—
Eol
Il
—
~
Il
—
5
Il
—_

(Wi (wyw)weel In(Wp)ey)

-
NE
Fj:

<
I
—
Eol
Il
—
~
Il
—

Aj (Wi (W w5 )Weder In(Ag))

-
NE
M=

<
I
—
Eond
I
—
~
I
—

X (W7 (wyw ) In(Ar)).

o
\E

<

I
—
£

Il
-

Consequently

Wln Z Z Aj(Wew;) (Wiwg) In(Ag).

j=1k=1

Note that wyw; = (wiwy)*. Can the condition on W be extended to

positive semidefinite, i.e. some of the eigenvalues of W could be zero?
Assume that one eigenvalue of W is 0, say A, = 0. Thus we should have

Z)\W wiw;)w, = w,Ww, =0

in order to apply 0-1n0 = 0. This is in general not true. Consider, for
example the density matrices

W<1(/)2 1(/)2)’ W((l) 8)'

Problem 4. The relative entropy of entanglement for bipartite states (say,
A and B), where the quantum state is described by the density matrix W,
is defined as N
E,(W) := min S(||¥)
webD
where D is the set of all convex combinations of separable density matrices
(ie. W=W4 ® Wg) and

S(W[W) = te(W (logy (W) — logy(W))) = tr(W logy (W) — W log,(W))
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is the quantum relative entropy. Let Wmm denote the separable state that
minimizes the relative entropy. Thus to calculate E,.(W) is to find the state
Wonin. Consider the Bell state

|@7) = (|0>®|0>+|1>®|1>)

%\

and thus W = |®T)(®T|. Let
W = 2(10) (0] + [1)(1]) ® 2(0){0] + 1) )
Calculate S(W||W)

Solution 4. Using the standard basis in C* we obtain the density matrices

100 1
1{o 00 0
W:@ﬂ@ﬂzi 00 0 0
100 1

and 1
W=-1I
1

where I is the 4 x 4 identity matrix. To calculate tr(W logy(W)) and
tr(Wlog,(W)) we need the eigenvalues and normalized eigenvectors of W

and W. For the density matrix W we find the eigenvalues \; = 1, Ay =0,
A3 = 0, Ay = 0 with the corresponding normalized eigenvectors

1 1 0 0
wi=— 2], w2 O, wa= L], wa= |
1= \/5 0 ) 2 — \/i 0 ) 3 — 0 ’ 4 — 1
1 -1 0 0
Thus we find A
tr(W logy (W)) = > Ajlogy(A;) = 0
where we used 0logy(0) = 0 and 1logy(1) = 0. For W we obtain the

eigenvalues \; = 1/4, Ay = 1/4, A3 = 1/4, A, = 1/4 and the corresponding
normalized eigenvectors (standard basis)

1 0 0 0
~ 0 ~ 1 ~ 0 ~ 0
Wl_ 0 b W2: O I W3: 1 ’ W4_ O
0 0 0 1
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Since
4 4
(I/Vlog2 ZZ)\J wiw;) (W wk)logz(/\k)
j=1k=1
and
* 1 * 0 * 0 * 1
wiw; = —, wiwy=0, wiwz3=0, wiwy=—
1W1 1W2 13 1 W4 \/§

V2
1

W;X’i’l = W;WQ = 0, W;{’VV;), = 0, W;\X’;L = —

V2! V2
wiwy =0, wiwa=1 wijws=0, wiwy=0
wiywi; =0, wiwy=0, wiywg=1 wiwy=0

we obtain tr(W logg(W)) = —2. Consequently, S(WHW) =2.

Problem 5. Let p4p be a density matrix defined on a (N x N )-dimensional
Hilbert space H ® H. The classical information capacity is defined as

C(p) :=logy(N) + S(pp) — S(pan)

where pp is the reduced quantum state obtained by pp = tra(pap) and
S(p) is the von Neumann entropy of a quantum state (density matrix)
S(p) = —tr(plogy(p)). Consider the Bell state

1
ﬁ(l()) ®[0) + 1) @ |1)).

Calculate the density matrix p4p, the reduced density matrix pp and then
the classical information capacity.

) =

Solution 5. We find the density matrix (pure state)

0 1
0 0
0 0
0 1

OO OO

1

1
PAB = |¢><¢| = ) 8
1

Thus we obtain the density matrix (mixed state)

(12 0
PE=\ 0 1/2)
With N =2 and S(pap) = 0 it follows that

C(p) = logy(N) + S(p) — S(pan) = 2.
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Problem 6. The quantum relative entropy between two density operators
p and o is defined by

Sy(pllo) = tr(plogy(p) — plog, (o)) = —Su(p) — tr(plog,(c)).

Here Sy, is the von Neumann entropy where the log is taken with the base
b. Show that Sy(p||o) > 0. This inequality is known as Klein’s inequality.

Solution 6. Consider the term plog, (o) where p and o are density oper-
ators on a finite-dimensional Hilbert space of dimension n. Let A; and |¢;)
be the corresponding eigenvalues and (orthonormal) eigenstates of p. Sim-
ilarly, let pug and |tx) be the corresponding eigenvalues and (orthonormal)
eigenstates of 0. Thus we have

plog, (o ZA |05)(9;] (Zlogbuk|¢k><¢k|>

k=1

= Z A5 Logy (111) (651461) 165 (-

J,k=1

Taking the trace using the basis {|¢), k =1,2,...,n} yields

tr(plogy (o Z X; (1ogy (1)) (b5 100n) (Ul 65) (k)

7,k,l=1

> A (log, (1)) b5 lw) (Vx| 65)

i k=

= > Aj(log, (1)) 51w |-
k=

Thus we obtain

Su(pllo) ZA logy, (A Z A (logy (1) (& 1von) |2

jk 1
72)\ logb Z)\ logb (H ,U ¢J|¢k>2>
= Z Ajlog,(Aj) — Z Ajlog, (v5)
Jj=1 j=1

where
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If v; = 0 for some j where A; # 0 then Sg(p|lo) > 0 trivially. We assume
v; = 0 if and only if A; = 0. Since

S =3 sl =37 Heslon)® = 1
k=1 k=1 j=1

we find that

n

0<y; <1, a::Zngl.
j=1

We assume that the )\; are ordered in non-decreasing order and m < n is
chosen such that A; = 0 iff j > m. We determine the maximum value of

D Ajlogy(zy), Y wj=a
j=1 j=1

which can be formulated as a Lagrange multiplier problem. Thus we find
the critical points of the function

flan,. . zm) = Nlogy(z;) =0 [ >z -«
j=1 j=1

where 6 is the Lagrange multiplier. We obtain

of N 0
8a;j Zj ln(b) ’

Since 0f/0x; = 0f/0xy, = 0 for the critical points we have, since A; # 0
and A, # 0, zx = A\px;/A;. Inserting z;, # 0 into the constraint yields

J _
ij—xk+zrkmk—a
Jj=1 Jj=1

J#k

Thus zj, = a)y, since 337 Aj = 1. Since Y27, Ajlog,(z;) is unbounded
from below we have a maximum. Consequently

n

Sy(pllo) Z)\ logy, (A Z/\ logy (v;)
j=1

> Z Ajlog, (A \jlog, (@)
1

—logb( ) >0
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since 0 < o < 1.

Problem 7. Show that for the quantum relative entropy

So(pllo) = tr(plogy(p) — plogy(a)) = =Su(p) — tr(plogy(o))

the equality

Su(pllpa @ pB) = Sp(pa) + Sp(ps) — Sp(p)
holds.

Solution 7. From o = p4 ® pp we find that the eigenvalues of o are
the products of eigenvalues Ay ; of p4 and Ap of pg. The corresponding
(orthonormal) eigenstates are ¢4 ;) ® |¢p k) composed of the orthonormal
eigenstates of p4 and pp corresponding to A4 ; and Ap . Consequently

Su(pllpa @ p) = —Sp(p) — tr(plogy(pa ® ps))
=—5(p) — tra (trp (plogy(pa ® pp)))

=—Su(p) —tra | pa Y _logy(Aa;)da;)(da,l

j=1

—trp (PB Zlogb()\B,k)|¢B,k><¢B,k|>

= Si(pa) + So(p5) — Sulp).

From Klein’s inequality, S(p|lpa ® pp) > 0, we obtain the property of
subadditivity for the von Neumann entropy

Sp(p) < Sp(pa) + Sp(pB)-

Problem 8. An n x n density matrix p is a positive semidefinite matrix
such that tr(p) = 1. The nonnegative eigenvalues of p are the probabilities
of the physical states described by the corresponding eigenvectors. The
entropy of the statistical state described by the density matrix p is defined
by

S(p) :== —tr(pIn(p)).

For the n x n hermitian matrix H (Hamilton operator) the statistical av-
erage of the energy F is defined by

E :=tr(Hp).

Let
¥(p) = tr(Hp) — tr(pln(p)).
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(i) Show that In(tr(e)) = max { tr(Hp) + S(p) }.
(ii) Show that —S(p) = max { tr(Hp) — In(tr(e)) }.

Solution 8. (i) For every n x n hermitian matrix @, and for each € € R
in a neighbourhood of 0, consider the differentiable function

fle) = (e P pe’?).

Since €@ is a unitary matrix and the trace is invariant under unitary
transformation we have

f(e) = tr(He™ " pe’?) — tr(pIn(p)).
By the extremum condition it follows that

df (0)

5 = w(QIH, p)) =0
where [, ] denotes the commutator. Since @ is arbitrary, we conclude that
[H,p] = 0,, and therefore e/ and p also commute. Using tr(p) = 1, we

obtain

tr(Hp) + S(p) = tr(p(In(e™) — In(p)))
=In(tr(e™)) — tr(p(In(tr(e™)) + In(p) — In(e™))).

Since e and p commute, it follows that
tr(Hp) + S(p) = In(tr(e)) — tr(ef pe ™ In(tr(e) pe™H)).
Setting C := tr(ef)peH we obtain
In(tr(ef)) — tr(e® pe 7 In(tr(ef ) pe H)) =

In(tr(ef)) — (tref!)~1tr(e” (CIn(C) — C + 1,)).

Since zIn(z) —x + 1 > 0 for > 0, we conclude that the last expression is
less than or equal to In(tr(e?)) and equality occurs only if C = I,,. This

means
8H

P ey
If p = efl /tr(ef!) we find that (e /tr(ef)) = In(tr(ef)).
(ii) Since
tr((H + kI,)p) — In(tr(ef*n)) = tr(Hp) — In(tr(e)), keR

we may assume that tr(e’) = 1. Following an argument similar to the one
in (i) we can show that the maximum of tr(Hp) — In(tr(ef?)) for hermitian



220 Problems and Solutions

matrices H occurs when [H,p] = 0,. Thus [p,e"] = 0,. Since tr(p) —
tr(efl) = 0,,, we have
—tr(Hp) + tr(pln(p)) = tr(e pe™ In(pe™ ) — tr(ef pe™H) + tr(e')
=tr(e(ZIn(2) - Z + I,,))
>0

where Z := pe~H. Hence the maximum occurs when H = In(p).

Problem 9. Consider the normalized states |¢), K = 0,1,...,N — 1
in the Hilbert space CV. A positive operator valued measure is specified
by a decomposition of the identity matrix I into M positive semidefinite

matrices P,,, i.e.
M—1
IN = § Pm-
m=0

The mutual information is defined by

N—-1M-1

=0 m—=0 Pn-D-m

where P := (¥n|Pm|tn) are the joint probabilities and

M—-1

N-1
Pn. = Z Pnm, Pom = Z Pnm
m=0 n=0

are their marginals. Let M = N =2 and

1/1 1 11 -1
P°_2<1 1)’ P1_2<—1 1>

w=—5(4). w=(1).

Find pnm, pn., p.m and then I.

Solution 9. Straightforward calculation yields

Poo = (Yo|Poltbo) = 0, p1o = (V1| Polpr) = %
3
po1 = (Yol P1ltbo) = 1, P11 = (V1| P1l1) = 5
Thus
1 3

Po. = 17 b1 = 17 bo= 75> pba1=3



Entropy 221

and I = 0.

Problem 10. The Kullback-Leibler distance between two probability
mass functions

W= (W1,...,Wn), w = (W1,...,W,)

is defined by
D(w||w) Z wj log ( )
Show that the Kullback-Leibler dlstance between two mixtures densities

n n .
Swify, > Wil
=1 =1

has the upper bound

Y owifill Y_@if; | < D(w|w) +ng D)
j=1 j=1
with equality if and only if

wifi  wif;

. = i
Yimwifi Y wf

for all j.

Solution 10. Utilizing the log-sum inequality we have

= L > 1 ij>
fi ifil = fill J
;wy i ll j;wj J / ng j | log (Ej T,

S Srm(2)
_ijlog( >+ij/fjlog <f3>

D(w || w) —&—ij fJHfJ

Problem 11. Let A, B be n x n hermitian matrices acting in the Hilbert
space C™. Assume that the eigenvalues of A are pairwise different and
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analogously for B. Then the normalized eigenvectors |a;) (j =1,...,n) of
A form an orthonormal basis in C™ and analogously for B the normalized
eigenvectors |B;) (j = 1,...,n) form an orthonormal basis in C". Let
|t)) be a normalized state in C™. Then there are n possible outcomes for
measurements of each observable and the probabilities p; (A, [¢)), p; (B, |¥))
(j =1,...,n) are given by

pi(A 1) = [(lay)?,  pi(B, [v)) = [(v6;)1*.

Let H)y)(X) be the Shannon information entropy

Hiyy(X) == =Y p; (X, [)) In(p; (X, [$)))

Jj=1

corresponding to the probability distribution {p,;(X,|¥)} (j = 1,...,n).
The (Maassen-Uffink) entropic uncertainty relation is given by

Hyy)(A) + Hyy)(B) 2 —2In( max [{ay]5x)]) > 0.

Note that the right-hand side does not involve the state |1).

Let
(01 (10 _(cos(8)
A=o1= <1 0)’ B=os= (0 —1>’ ) = <sin(0)>'
Calculate the left and right-hand side of the entropic uncertainty relation.
Is the entropic uncertainty relation tight for this case?

Solution 11. (i) The eigenvalues and eigenvectors of A = o7 are given

> 1 /1 1 1
A= (1) e =75 ()

The eigenvalues and eigenvectors of B = o3 are given by

= (3). soe (1)

Thus

1 1
{aa|Br)| = 7 [(a1|B2)| = 7

and the right-hand side of the inequality becomes

(azlBi)l = —=,  [{az2|fa)| =

|-
Sl

2l s [(oyl0]) = ~21n (5 ) = n(2)
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Now
P14, 99) = () ? = 5] cos(6) + sin(@)]? = 5 (1 + sin(26))
pa(A. 1)) = l{az 9)|? = 3 cos(8) — sin(8)|? = 3 (1 ~ sin(26)

and

Thus

_ %(1 + sin(26)) In(1 + sin(26)) —

H\yy(B) = — cos®(6) In(cos®(0)) — sin®(6) In(sin*(0)

Hyyy(A)=In(2) (1 —sin(260)) In(1 — sin(20))

1
2
)
Note that with § = 0 the left-hand side reduces to In(2), i.e. we have an
equality.

Programming Problems

Problem 1. Consider the density matrix

5/12 1/6 1/6
p=1| 1/6 1/6 1/6
1/6 1/6 5/12

Show that we have a mixed state. Find the von Neumann entropy.

Solution 1. We evaluate p? and show that p? # p. Then we calculate
the eigenvalues and the von Neumann entropy.

/* mixed.mac */

rho: matrix([5/12,1/6,1/6]1,[1/6,1/6,1/6],[1/6,1/6,5/12]);
rho2: rho . rho;

if rho=rho2 then print("pure state")

else print("mixed state");

R: eigenvalues(rho);

R: part(R,1);

x1: part(R,1); x2: part(R,2); x3: part(R,3);
if x1>0 then t1: x1;

if x2>0 then t2: x2;

if x3>0 then t3: x3;

t: —tlxlog(tl)-t2*log(t2)-t3*log(t3);

t: ratsimp(t);
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The eigenvalues are

4’ 24 24

1 9++V57 9—-+v57

Problem 2. Consider the two 3 x 3 hermitian matrices

0 0 — 10 0
Ki=|0 0 0], K;=[0 0 0
¢t 0 O 00 -1

and the normalized state in C3

Find the left and right-hand side of the entropic inequality.

Solution 2. The eigenvalues of K; are —1, 0 +1 we the corresponding
normalized eigenvectors

1 1 0 1 1
ki1 = E 0 ’ k12 = 1 ’ ki3 = ﬁ 0
—1 0 1

The eigenvalues of K5 are —1, 0 +1 we the corresponding normalized eigen-
vectors

1 0 0
kor=(0], kaao=|1], k=10
0 0 1

Now we apply the Maxima program

/* entropic.mac */

k11: matrix([1],[0], [-%i])/sqrt(2);

k11T: transpose(kll); k11TC: conjugate(k11iT);
k12: matrix([0], [1],[0]);

k12T: transpose(k12); k12TC: conjugate(k12T);
k13: matrix([1],[0], [%i])/sqrt(2);

k13T: transpose(k13); k13TC: conjugate(k13T);
k21: matrix([1], [0],[0]);

k21T: transpose(k21); k21TC: conjugate(k21T);
k22: matrix([0], [1],[0]);

k22T: transpose(k22); k22TC: conjugate(k22T);
k23: matrix([0],[0],[11);

k23T: transpose(k23); k23TC: conjugate(k23T);
sc1121: abs(k11TC . k21); scl1122: abs(k11TC . k22);
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sc1123: abs(k11TC . k23); sc1221: abs(k12TC . k21);

sc1222: abs(k12TC . k22); sc1223: abs(k12TC . k23);

sc1321: abs(k13TC . k21); sc1322: abs(k13TC . k22);

sc1323: abs(k13TC . k23);

m: max(scl1121,sc1122,s¢c1123,sc1221,sc1222,

sc1223,sc1321,s¢c1322,5c1323);

psi: matrix([1],[1], [11)/sqrt(3);

psiT: transpose(psi); psiTC: conjugate(psiT);

pll: (abs(psiTC . k11))°2;

pl2: (abs(psiTC . k12))"°2;

pl13: (abs(psiTC . k13))"2;

p21: (abs(psiTC . k21))°2;

p22: (abs(psiTC . k22))°2;

p23: (abs(psiTC . k23))°2;

LHS: -plixlog(pl1)-p12+log(pl12)-p13*log(p13)-p21*log(p21)
-p22*log(p22) -p23*log(p23) ;

RHS: -2xlog(m);

The output 0 for the right-hand side which is obvious since K; and K
have a common eigenvector, namely (0 1 0). For the left-hand side we find

21og(3).

8.3 Supplementary Problems

Problem 1. Consider the Hilbert space C™. Let A, B be two hermitian
n x n matrices (observable). Assume that A and B have non-degenerate
eigenvalues with the corresponding normalized eigenvectors |a1), |as), ...,
|an) and |b1), |b2), ..., |bn), respectively. The entropic uncertainty relation
is an inequality given by

S(a) +5(8) = San)

where

n

Seay == D 1Wla)* n(|(¥lay)*),  Sm) = ZI W[b;)* In(| () [b;)[),

j=1

and S(4p) is a positive constant which gives the lower bound of the right-
hand side of the inequality. Consider the Hilbert space C2. Let

A=0y, B=oy, |w>=(‘;§’§((33>-
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Find S(A), S(B) and S(A) + S(B).

Problem 2. Consider the Hilbert space C™ and |¢)) € C". Let A and
B n x n hermitian matrices (observable) with non-degenerate eigenvalues
and corresponding normalized eigenvectors |u;), |v;) (j = 1,...,n). The
entropic uncertainty relation is an inequality of the form

Sy + Sy > San

where
Seay = = X [(lug)[* (| (@) ), Z (o) 2 In(|(]v;)[2)
=1 =

and Sy p is a positive constant providing the lower bound of the right-hand
side of the inequality. Let

0 1 1 0

and

Calculate S(4) and S(p).

Problem 3. Consider the 4 x 4 spin matrix

0 —iv3 0 0

g _L[ivd 0 -2 0
279 o 2i 0 —iV3

0 0 W3 0

the normalized entangled vector

1
1 1
—1

Find the left and right-hand side of the entropic inequality.
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Measurement

9.1 Introduction

In quantum measurement models we consider what kind of measurements
can be made on quantum systems as well as how to determine the probabil-
ity that a measurement yields a given result. The effect that measurement
has on the state of a quantum system is also important.

The pure states of a quantum system, S, are described by normalized vec-
tors |[¢)) which are elements of a Hilbert space H that describes S. The
pure states of a quantum mechanical system are rays in a Hilbert space H
(i.e., unit vectors with an arbitrary phase). The concept of a state as a
ray in a Hilbert space leads to the probability interpretation in quantum
mechanics. Given a physical system in the state 1, the probability that it
is in the state |x) is

(Wl

Obviously
0 <[l <1.

While the phase of a vector |¢)) has no physical significance, the relative
phase of two vectors does. Consider the Schrédinger equation with time
independent H

L d 5
ih— [(t) = HI$(1))

227
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and the initial state |¢(¢ = 0)). Then

[4(t)) = exp(=iHt/R)|(t = 0))

and
(W (0) e /M3 (0))[?

is the probability to find the state |¢(¢)) in the initial state [1/(0)).
A positive operator-valued measure (POVM) is a collection
{E; :j=1,2,...,n}

of nonnegative (positive semi-definite) operators, satisfying

Ej=1

n
=1

J
where I is the identity operator. In other words a partition of unity (iden-
tity operator) by nonnegative operators is called a positive operator-valued

measure (POVM). When a state |¢)) is subjected to such a POVM, outcome
j occurs with probability

p(j) = (VIE; ).
For example consider a qubit system

_ b
V2

Since (0|0) = (1|]1) = 1 and (0]1) = (1]0) = 0 we find

Ey =10)(0, Ex=[1){1], ) (10) +11))-

p(1) = (Y| Er[Y) = % p(2) = (Y| Ea|t)) = %

Measurement can be generalized in the sense that an ancilla system (in a
well defined state), identified by the Hilbert space H4, is introduced and
allowed to interact with the quantum system identified by the Hilbert space
H. The ancilla system is subsequently measured, which may disturb the
original system.
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9.2 Solved Problems

Problem 1. Consider the state

1 2 1 2
:00—|—\/>11 EO®0+\/>1®1
[¥) \/§|> 5111) \/§|>\> AL
and the product state |¢) = [11) = [1) ® |1). Find p := |(¢[e)]?, i.e. the
probability of finding |¢) in the state |¢).

Solution 1. Since (11]00) = 0 and (11|11) = 1 we obtain p = 2/3.

Problem 2. Consider the hermitian matrix (Hamilton operator)
H = hwS

where Sp is the 3 x 3 spin-1 matrix

1

S, = —
Ve

o= o
==
o= o

(i) Calculate exp(—iHt/h).
(ii) Consider the normalized vector in C?

[¥(0)) = —=

Calculate |1h(t)) = exp(—iHt/h)[1(0)).
(iii) Find the probability of finding 4 (t) in the initial state (0), i.e.

[{w(®)](0))]*.
Solution 2. (i) We have
1 1 01 1 01 0
Si=-10 2 0], SB=—|[10 1]=85.
2\1 0 1 v2\o 1 0
Using this result we find
N ) 1
exp(—iHt/h) = I — % sin(wt)A +  (cos(wt) — 1)A°
% cos(wt) + 3 —% sin(wt) 4 cos(wt) — %
= —% sin(wt) cos(wt) —% sin(wt)
1 cos(wt) — 1 —% sin(wt) 1 cos(wt) + 1
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(ii) We obtain

[(t)) = exp(—iHt/h)|(0)) = 7 cos(wt) — iv/2sin(wt)

) cos(wt) — ﬁ sin(wt)
cos(wt) — ﬁ sin(wt)
(iii) We find the probability

() [(0))]? = $|3 cos(wt) — i2v/2sin(wt)|? = 1 — ésinQ(wt).

Problem 3. Consider the states (standard basis)

in the Hilbert space C? and the Bell state

1

V2
in the Hilbert space C*. Let (a, 3 € R)

|¥) (10) @ [1) = 1) ©10))

|la) := cos(a)|0) +sin(a)[1),  |B) := cos(B)|0) + sin(5)[1)
be states in C2. Find the probability
pla, B) = |({a] ® (B)])[-
Discuss p as a function of a and 8.
Solution 3. Since (0[0) = (1]1) = 1, (0[1) = (1]0) = 0 it follows that
(Ol@ Do) @ 1) =1, ((A[eO)(1) ©[0) =1.
We find

pla ) = 5 (cos(a) sin(B) — sin(a) cos($))".

Using a trigonometric identity we arrive at
1 .5
pla,8) = 5 sin’(a - B).

Thus p(a, 8) < 1/2 for all a, A since sin?(¢) < 1 for all ¢ € R. For example,
if « =8 we have p=0. If « — 8 =7/2 we have p = 1/2.
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Problem 4. Consider the normalized entangled state
1 1

Y V2

and (0| ® Iz, where I5 is the 2 x 2 unit matrix. Find ((0| ® I3)|¢). Discuss.

|¥) (101) = [10)) = —=(10) @ [1) — [1) ©0))

Solution 4. Since (0|0) =1, (0|1) = 0 and I2|1) = |1), we obtain
1
V2

The first system is measured with probability 1/2 and the system collapses
to the state |1) (partial measurement).

(0] @ I)[¢) = —=[1).

Problem 5. Let {|0), |1)} denote an orthonormal basis in C2. In other
words
(0]1) = (1jo) =0,  (0]0) = (1]1) = 1.

(i) Show that for o, 8 € R,
A = a|0){0] + B[1)(1]

is an observable. Describe the measurement outcomes and associated prob-
abilities when measuring the first qubit of the two qubit system described
by

1

where the measurement is described by A.

(ii) Let |¢) be the state of the system after the measurement in (i). Describe
the measurement outcomes and associated probabilities when measuring
the second qubit of A.

(10) @10) + 1) @ [1))

Solution 5. (i) To show that A is an observable it suffices to show that
A* = A. Using

(10){0))* = (0[*|0)* = |0)(0,  (|0){1])* = (1[*|0)* = |1)(0],
([10)™ = (0[*[1)* = [0)(1], (J1)(AN)* = (1[*[1)" = [1)(1]
we find that

A = (2]0)(0] + BI1){1)" = (al0)(0D)" + (BIL)(1])" = a[0)(0] + BI1)(1]
= a|0)(0] + B[1)(1] = A

since @ = « for o € R. Since we work in C2, A has two eigenvalues. From

A10) = (a]0){0] + £[1)(1)[0) = [0){0]0) + B[1){1]0) = a|0)



232 Problems and Solutions

and
A1) = (a]0)(0] + B1)(1)[1) = «|0)(0[1) + B|1){1[1) = B|1)

the two eigenvalues (i.e. measurement outcomes) are « and § with corre-
sponding orthonormal eigenstates |0) and |1). Thus for measuring the first
qubit we consider the observable A ® I, with eigenvalues « (eigenstates
|0) ® |0) and |0) ® |1)) and S (eigenstates |1) ® |0) and |1) ® |1)). This is
not the only choice for the corresponding eigenstates, but is a convenient
one. It will be useful to calculate some scalar products in advance

ﬂ@®WHW@=«N®@DJﬂ®®H>ID®m»

1
=5 (010} @ (0[1) — (O[1) @ (010)) =

(WWNUYW%=§? OU®WDW@=—$§ (I @[1)*|$) =0

We need to consider two possibilities, namely o = § and « # S.
For a = [ there is only one measurement outcome: «. The corresponding
projection operator onto the eigenspace is determined from the eigenstates

1L, := (]0) ® [0))(|0) ® |0))" + (|0) ®[1))(|0) @ [1))*

+(11) @ 10)(11) ® |0))" + (|1) ® [1))(|1) ® [1)

= |0)(0[ @ [0){0] 4 [0)(0] @ [1){1] + [1) (1] @ [0){
=L®Lh=1

*

)
Of + 1)1 @ [1)(1]

P

i.e. the identity operator. The probability of obtaining the measurement
outcome « is

Pa = [Hal)|* = [ll)|* = ww>——«m®w\<u®amw

1 1
—-—(-2)=1
- (3)
The state after measurement is the projected state II,|¢) = I|¢) = |¢)
which when normalized yields |¢) = |¢) since (¢|p) = 1.

a # [B: Measurement outcome a: The corresponding projection operator
onto the eigenspace is determined from the eigenstates

I, := (|0) ® [0))(|0) ©[0))* + (|0) ® [1))(|0) @ [1))*
|
|

g

= [0){0] ©[0)(0] + [0){0] & [1)(1]
= |0){0[ ® I2.
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Note that

aly) = 7(I0><0\®12)(|0>®|1> 1) ©10))

= —=(10)(010)) @ [1) — ([0){0]1)) ® [0) = —=[0) @ [1).
V2 f
The probability of obtaining the measurement outcome « is

= [a|)I* = (Malt)) o) = (10) @ 1)) =

\[(<0|®<1I)\f

The state after measurement is the projected state I, |¢) = %\0) ® |1)
which when normalized yields

Maly) _ Mal)
M)~ /pa

Measurement outcome 3: The corresponding projection onto the eigenspace
is determined from the eigenstates

g := (]1) @ [0)(I11) @10)" + (1) @ [D)) (1) @ [1))*
= D ® L.

|6) = =10) @1).

Note that IIg|y) = f%|1> ®10). The probability of obtaining the measure-
ment outcome J is

1
ps = s = 5.

The state after measurement is the projected state

1
Ig|y) = EID ®10)
which when normalized yields
Hgly)  Hal)
= —|1 0
S T v A

(ii) For measuring the second qubit we consider the observable I> ® A with
eigenvalues o (eigenstates [0) ®]0) and |1) ®0)) and 3 (eigenstates |0) @ |1)
and |1) ®|1)). This is not the only choice for the corresponding eigenstates,
but is a convenient one. The measurement of the second qubit depends on
the results of the first measurement. Thus we need to consider three cases
a = 3, and the two outcomes o and 5 when o # 3.

a = : We have

9) = ) = 7(\0> ® 1) = 1) ®0)).
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There is only one measurement outcome: «. The corresponding projection
onto the eigenspace is determined from the eigenstates

I, :=(|0) ®10))(|0) ® [0))" + (|1) ® [0))(]1) @ |0))*

+(10) ® [1))(10) ® [1))* + (11) ® [1))([1) ® |1)

= 10){0] ®[0){0] + [1){1]  [0){0] + [0){0] & [1){
=Lelh=1

*

)
1+ (A @ [1)(1]

i.e. the identity operator. As above, the probability of the measurement
outcome a is py o = 1.

a # : First measurement outcome was a: We have |¢) = |0) ® [1).
Measurement outcome «:: The corresponding projection onto the eigenspace
is determined from the eigenstates

a0 = (10) ©10))(|0) @ [0))" + (|1) @ 10))([1) ©0))" = I> @ |0){0].

Note that II,|¢) = 0. The probability of obtaining the measurement out-
come « is Py, = 0.

Measurement outcome 3: The corresponding projection onto the eigenspace
is determined from the eigenstates

Iy =1, ®|1)(1].

Note that II, glg) = |0) ® [1) = |¢). The probability of obtaining the
measurement outcome f3 is p, g = 1.
First measurement outcome was g: We have

|¢) = —[1) @10).

Measurement outcome a:: The corresponding projection onto the eigenspace
is determined from the eigenstates

Hga=1L® |0><0|

Note that II,|¢) = —|1) ® |0) = |#). The probability of obtaining the
measurement outcome « is pg o = 1.

Measurement outcome [3: The corresponding projection operator onto the
eigenspace is determined from the eigenstates

gp =L@ 1)1

Note that IIg g|¢) = 0. The probability of obtaining the measurement out-
come (3 is pg g = 0.

Tabulating the probabilities for o # 8 we find
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Outcomes o, o a, 8 B, o 8,58
Probability | paPaa =0 | PaPas = 5 | PsPsa = & | PaPs.s =0

Consequently, for a # (3, the probability that the two measurement out-
comes are the same is 0 (impossible) and the probability that the two
measurement outcomes are different is 1 (certain).

Problem 6. Assume that Alice operates a device that prepares a quan-
tum system and Bob does subsequent measurement on the system and
records the results. The preparation device indicates the state the system
is prepared in. A preparation readout event j, where j = 1,2,...,m of the
preparation device is associated with a linear non-negative definite operator
A; acting on the state space of the system. The operators A; need not be
orthogonal to each other. The measurement device has a readout event k,
where k = 1,2,...,n that shows the result of the measurement. A mea-
surement device is associated with a measurement device operator I'y, which
is also linear and non-negative definite. For a von Neumann measurement
this operator would be a pure state projector. Let

A::ZAj, F::ZFk.
j=1 k=1
Give an interpretation of the following probabilities
. o tI‘(Aij)
p(j, k) = W (1)
N tI‘(AJF)
- tr(AFk)
p(k) = W (3)
N tI‘(Aij-)
_ (A T)

Solution 6. Expression (1) is the probability associated with a particular
point (j, k) in the sample space. Expression (2) is the probability that, if
an experiment chosen at random has a recorded combined event, this event
includes preparation event j. Expression (3) is the probability that the
recorded combined event includes the measurement event k. Expression
(4) is the probability that, if the recorded combined event includes event j,
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it also includes event k. Thus it is the probability that the event recorded by
Bob is the detection of the state corresponding to I'y if the state prepared
by Alice in the experiment corresponds to A;. This expression can be used
for prediction. To calculate the required probability from the operator A;
associated with the preparation event j, every possible operator I'j, must
be known, that is, the mathematical description of the operation of the
measuring device must be known. Analogously, (5) is the probability that
the state prepared by Alice corresponds to A; if the event recorded by Bob
is the detection of the state corresponding to I'y,. This expression can be
used for retrodiction if I';, and all the A; operators of the preparation device
are known.

Problem 7. Let A be an n x n hermitian matrix. Then the eigenvalues
Aj, 5 =1,2,...,n are real. Assume that all eigenvalues are distinct. The
matrix A can be written as (spectral representation)

A=>"NP, Pyi= ) uy (1)
j=1

where |u;) are the normalized eigenvectors of A with eigenvalue \;. For
the projectors P; we have P; Py, = 0, P;. Every observable A defines a pro-
jective measurement. A state |¢) in C™ subject to projective measurement
by observable (1) goes into the state

Pjly)

([P5]9)
with probability

p(7) = (WIPjl) = (lug) (uglep) = [(lu;) .

The eigenvalues \; are registered as the measured value. If the system is
subjected to the same measurement immediately after a projective mea-
surement, the same outcome occurs with certainty. The expectation of the
measured value is

(A) =D Apl) = WIAI).

(i) Let

Find the spectral representation of A.

(ii) Let
0= (1)
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Calculate the probabilities corresponding to the eigenvalues A\; and Ay of A

(M) = (@I [¥),  p(A2) = (@], [¢).

Solution 7. (i) The eigenvalues of A are A; = 1 and Ay = —1. The
corresponding eigenvectors are

WD) web()

Py = tutl =3 (F)a-o=3 (1 )
eerami=(aa=1(2 )

with I = 13,\1 +P)\2 and A = 13,\1 — P)\z.
(ii) We have

=g () (D=5 (020)
ra=3(% D5 () =55 (1))

PO = WP = 5, p(h) = (Pl = 5.

Thus

Thus

Problem 8. Let (0 € R)

P(0) := e”|0){0] + e~ [1)(1] = e (|0){0] + e ™**[1)(1])

denote the phase change transform on a single qubit.
(i) Calculate (¢ € R)

s(6.0 =P (5 - 5 ) var (5 ) U0

(ii) Determine the probability that the state |s(6, ¢)) is in the state
(@) |0), (b)) [1),  (c) [s(¢",¢")).

The real parameters 6 and ¢ can be interpreted as spherical co-ordinates
which define any qubit on the unit sphere called the Bloch sphere.
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Solution 8. (i) We have
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(cos(0/2)]0) + isin(6/2)[1))

m\e

‘s (e”

|
9]
ISP
/~

cos(6/2)]0) + e'% sm(e/2)|1>)

(52 (cos(6/2)]0) + € sin(6/2)[1)) -

I
D
M:}

The most general state of a single qubit is described by three real parame-
ters 0,¢,0 € R
€' (cos(0/2)[0) + e sin(6/2)|1)) .

The parameter o represents the global phase, and can be ignored since it
cannot be detected in the measurement model. The same applies to the
global phase exp(i(m/4 — ¢/2)) in the derivation. Thus 6 and ¢ can be used
to define any single qubit |s(6, ¢)).

(ii) For the probabilities (a) we have

[{015(8; 9))[* = cos®(6/2).

For the probability (b) we have
[(1]5(0, ¢))[* = sin®(0/2).
For the probability |(s(¢’,¢)|s(d,$))|> we find
[(5(6', 8150, ) = |cos(8/2) cos(®'2)e+#'~9) + sin(6/2) sin( /2)e @)
where we used (0]0) = (1]1) = 1 and (0[1) = (1]0) = 0. Tt follows that
[(s(6',")[5(6, 0))[* =

cos®((¢' — ¢)/2) cos((0" — 0)/2) +sin?((¢' — ¢)/2) cos® (0" +6)/2).
If ¢ =6 and ¢’ = ¢ we find 1 for the probability.
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Problem 9. Consider the finite-dimensional Hilbert space C™ with n > 2.
Consider an orthonormal basis

{10}, 1), ... ,|In—1)}.

Let E be any projector in it, and E; := |j)(j|, where j = 0,1,...,n — 1.
Let the probability of obtaining 1 when measuring E be P(E). Then

P(I)=1, 0<P(E)<1, P(0)=0, E;E,=6;E;.

P(Eo+E1+--+ En1) = P(Ey) + P(Er) + -+ P(Eyp—1). (1)

A state s is determined by the function P(F) which satisfies (1). Gleason’s
theorem states that for any P(E) which satisfies (1) there exists a density

matrix p such that
P(E) = tr(pE).

In other words, s is described by the density matrix p. Show that Gleason’s
theorem does not hold in two-dimensional Hilbert spaces.

Solution 9. In the two-dimensional Hilbert space consider the eigenvalue
equation
(0 n)jm) = |m)

where o - n := oyn; + 0gany + 03n3, n is the unit vector in R? (||ln|| = 1)
with the parameter representation

n := (sin(#) cos(¢), sin(f) sin(¢), cos(d))

where 0 < 6 <m, 0 < ¢ <27 and

= (e )

The projector onto |m) is given by

2(0/2) e sin(f
Erm = ) (m| = (522 iir{(e)) 251n2(2/2() )) =E0,9)

since cos(6/2)sin(6/2) = § sin(¢). Equation (1) holds with
P(Em + E-m) = P(Em) + P(E_) = P(I) = 1, EmE_pm = 0.

It is not difficult to find probability distribution functions Py, = P(0,¢)
such that no density matrix p exists. An example is
cos3(0)

5

PO,6)= 5+
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Problem 10. Consider the two qubits in the Hilbert space C2
1) == cos(01/2)|0) + sin(6; /2)e|1)

1)) := cos(H2/2)|0) + sin(hy/2)e'?2|1).

(i) Find the product state |¢0) = |11) ® [h2) in C*.
(ii) Consider the qutrit state in the Hilbert space C3

9) = (|0> +1) +12)).

%\

To encode the state |11) ® |¢p2) we use the state |¢) and perform projec-
tive measurements on the state |¢) ® (J¢1) ® [12)) given by the projection
operators Py, Py, P>, Ps acting in the Hilbert space C? @ C*

Fo:=0)(0] @ (]1) @ [0)(1] @ (0])
+H{Al @ (10) @ [1){0] @ (1]) + [2){2] @ (1) @ [1){1] @ (1])
Pr:=10){(0] @ (10) @ [1){0] @ (1)
+H (A (1) @ {1 @ (1)) +[2)(2] @ (|0) @ [0)(0] @ {0])
=10)(0 @ (|1) @ [1)(1] @ (1])
+1){A[ @ (10) @10){0] @ (0]) + [2)(2] @ (|1) @ [0) (1] © (0])
Py:=10){0] @ (10) @ 10){0]  (0[)
+H1) (A @ (1) @[0) (1] @ (0]) + [2)(2| @ (|0) @ [1)(0] @ (1]).

Find the probability po = (6] @ () Po(l6) @ ).

g

Solution 10. (i) We have

V) = 1) @ [¢2) ‘
= cos(0;/2) cos(2/2)]0) @ |0) + sin(h;/2)e’* cos(f2/2)|1) @ |0)
+ cos(61/2) sin(63/2)e'?2|0) @ [1) + sin(61 /2)e™®* sin(6;/2)e'?|1) @ [1).

(ii) Using (i) we have
Bo(lg) @ [¢) = \[\0> @ sin(f1/2)e"* cos(02/2)|1) @ |0)

\[|1> ® cos(61/2) sin(62/2)e"2(0) ® |1)

ﬁ|2> @ sin(f; /2)e'®1 sin(fy/2)e'2 (1) @ |1).

Then

(¢l @ (@) Po(l) @ [¥) = *Sln(91/2) "1 cos(62/2) (¥ (1) ® |0))
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2 cos(6/2) sin(B/2)"* (410 @ 1))
+% sin(61/2)e™ sin(62/2)e% (] (1) ® [1)).

Since

(@[(I11) ®10)) = 6_#1 sin(61/2) cos(62/2)
(¥[(10) ® 1)) = 67"’2 cos(61/2) sin(62/2)
([(11) ®[1)) = e™*¥*e™"*2 sin(6:1/2) sin(02/2)

we obtain the probability

(1 — cos®(61/2) cos®(02/2))

Wl =

(9l @ (WD) Po(ld) @ [¢)) =

where we used sin?(«) + cos?(a) = 1.

Problem 11. Let B be an observable with k£ possible measurement out-
comes (b;)

k k
B=) bll;, > I;=I
j=1 j=1

where II; denotes mutually orthogonal projection operators. The measure-
ment of a system described by the density operator p yields the following
orthogonal measurement:

1. The outcome (eigenvalue) b; is obtained with probability

p(b;) = tr(IL;p) = tr(1L;pll;)

where we used the cyclic invariance of the trace and I13 = II;.

2. The expectation value (average measurement value) is given by tr(pB).
3. The state of the system after measurement is in the measured state of
the system (i.e. the system is projected onto the state corresponding to the
measurement outcome)

P 11 pll;
T opby)
Discuss orthogonal measurement of the W state

0 00O O0OO0OTO0ODTO O
011 01 0O00O0
011 01000
110 0 0000 0O
WWI=310 1101 0 0 0
0O 00O O0OOTO0ODTP O
0O 00O O0OO0OTO0ODTF O
000 0O O0O0OTO0DTFO
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with respect to the observable B given by the diagonal matrix

diag(0,1,0,0,0,0,0,0)+2diag(0,0, 1,0,0,0,0,0) + 3diag(0, 0,0,0, 1,0, 0, 0).

Solution 11. The measurement outcomes are by = 0, by = 1, bg = 2,
by = 3 (eigenvalues) with corresponding projection operators

I, = dlag(lv 0,0,1,0,1,1, 1)3 Iy = dlag(07 1,0,0,0,0,0, O)a
Tl = diag(0,0,1,0,0,0,0,0), Iy = diag(0,0,0,0,1,0,0,0).

The probability of the outcome by = 1 is given by
1
D2 = tr(HQWHQ) = g
Similarly p; = 0 and p3 = py = % However, the density operators

p1 = —diag(0,1,1,0,1,0,0,0)

W =

00000000
02101000
01201000

~1lo 00000 0 0

P2=5610 1102 0 0 0
00000000
00000000
00000000

yield the same probabilities for the measurement outcomes with respect
to the measurement B. For the measurement outcome b, the state of the
system becomes diag(0,1,0,0,0,0,0,0), for bs diag(0,0,1,0,0,0,0,0) and
for by diag(0,0,0,0,1,0,0,0). It is not possible to obtain the measurement
outcome by.

Problem 12. Measurement can be generalized in the sense that an ancilla
system (in a well defined state), identified by the Hilbert space H4, is
introduced and allowed to interact with the quantum system identified by
the Hilbert space H. The ancilla system is subsequently measured, which
may disturb the original system. Let p be a density operator on H and B
an observable on H 4 with k£ possible measurement outcomes

k k
B=) bll;, > I;=1I
j=1 j=1
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where II; denotes mutually orthogonal projection operators. Thus I ® B
is an observable on the product Hilbert space H ® Ha. Let |b) be a nor-
malized eigenvector of B, and consequently an eigenvector of only one of
the II;. The generalized measurement of a system described by the density
operator p yields the following

1. The system p is extended with the ancilla in the normalized pure state
|b) which gives the density operator p ® |b)(b|.

2. The two systems interact via a unitary operator U, i.e. the system is
transformed according to U(p ® |b){(b|)U*.

3. The outcome b; is obtained with probability

p(b;) = tr((I @ T1;)U (p @ [b) (b)) U™ (I @ I1)).
4. The expectation value (average measurement value) is given by
(U (p @ [B) BT (I © B)).

5. The state of the system after measurement is in the measured state of
the system (i.e. the system is projected onto the state corresponding to the
measurement outcome)
5y, = L)V (p ® [B){B)U (I T1;)
! p(b;)
6. The state of the original system after discarding the ancilla system is
given by

pbj = tI"HA (Ubj )
Let ¢ denote an orthonormal basis for H 4 of normalized eigenvectors of
B, and so |b) € ¢p. Thus we write the unitary operator U as

U= > Upo i)k
l7),1k} s

Describe generalized measurement in terms of the operators Uj;, where
19); k) € éB-

Solution 12. We find that the constraint UU* = U*U = [ yields

U= Y UpUm@ )Gl ml = Y UpUjm @ k) (m]
\j),|k>,|l>,\m)€¢3 ‘j>’|k>7‘m>€¢3

and

vUt= > UpUp, @) km)i = > Upl @ i)
‘j>7|k>7‘l>1|7”‘>e¢3 |J>7‘k>a|l>e¢3

=1



244  Problems and Solutions

Equating to I we find
Z UjxUjm = Okm 1, Z UjrUjy, = 05l
l7i)EdB k)€

Consequently we find

(I @11;)U(p & [b) (U (I @ I1;)

= (I ®11) > UnbpUsy @ [m)(n| | (I®11))
m),In) €6

= > (UnbpUyy) @ (I |m) (n|11).

Im),|n)€dn
Applying the definition of pj; yields
1 *
Po; = Z mUmbPUmb
Im) €5, I |m)=|m) * 7

where

p(bj) = tr Z UnbpUpmp
|m)€dp,IT;|m)=|m)

When the b; are non-degenerate we find
p(b;) = tr (UnmppUpy) -
Thus for a given |b) the measurement is described by the operators U,,; for

|m) € ¢p.

Problem 13. Assuming that the b; are non-degenerate (i.e. that mea-
surement yields maximal information) and that |j) is the eigenvector of II;
(for the eigenvalue 1) we have k operators U, where m = 1,2,...,k and
the generalized measurement

1ZU*

2. The outcome b; is obtained with probability
p(bs) = tr (U;pU7) -

3. The state of the system p after the measurement outcome b; is given by

1
oy, = —— U, pU*.
7 op(by) T
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Consider the Hilbert space . = C? and the ancilla Hilbert space H4 = C2.
We construct a generalized measurement described by «, 5 € C

Uo = al0){0[ + BI1)(1],  Ur = a|1)(1] + BJ0)(0]

where {|0),[1)} forms an orthonormal basis in C? and |a|? + |B]? = 1.
Construct the generalized measurement for Uy and Uj.

Solution 13. We have

UsUo + UtUs = (@[0){0] + BI1){(1])([0) (0] + BI1)(1])
+(@1) (1] + B0y (0)) (| 1) (1] + B]0)(O])
=10){0] + [1)(1] = I.

For « = 0 or 8 = 0, Uy and U; describe an orthogonal measurement. To
construct the unitary operator

U == Uno ® [0){0] + Uor ® [0)(1] + U1o ® [1){0] + Ur1 @ [1)(1]
we use the commutators given by
[Uo, Ug] = [Un, Uy] = [Uo, U] = [Uo, Ur] = 0z

and set UO() = Uo, U()1 = []1*7 U10 = Ul, U11 = —Uak to Satisfy that U
is unitary. One orthogonal measurement that implements the generalized
measurement is described by the projection operators

Iy = [0)(0, T = [1)(1
and the corresponding observable
B = —1H1 + 1H2

Thus the generalized measurement of p, a density operator on #H, may
proceed as follows:

1. Perform U on the density matrix p ® |0)(0].

2. Measure the ancillary system with respect to the observable B.

Problem 14. (i) Consider the finite-dimensional Hilbert space C9. A
symmetric informatically complete positive operator valued measure (SIC-
POVM) consists of d outcomes that are subnormalized projection matrices
II; onto pure states

1
I = ~1v;) (]
for j,k=1,...,d? such that

o 1+do
| (x| = ax1
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Consider the case d = 2. Show that the normalized vectors

o 3+ f)/ﬁ )
N (TENET
W A \/:,;)/ ° )
el f3 - V36
277/4
) = ﬁ)/ 6)
(3+ \/3)/6
17r/4
[Vg) = —v9) /6)
\/ﬁ)/ﬁ

satisfy this condition.
(ii) Consider the matrices o1, —iog, o3. Find o1|¢1), —ioa|i1), oslir).
(iii) Let d = 2 and

Sq =

d
Z Jel)e wmuij%mwwwmm® ((j]® (k| + (k| @ ()

k>j=1

Sl

where |1), |2) denotes the standard basis in C2, i.e.

Show that
d2

> () ® i) (sl © (W) = ==

j=1

Solution 14. (i) Since

(V(3+V3)/6)2=1/2+3/6, (\/(3—+3)/6)%=1/2—3/6,

\/(3+ \/§)/6\/(3— V3)/6 =1/V6

we find that the condition is satisfied.

(11) We obtain O'1|1,ZJ1> = |1/)3>, 7750’2|1,ZJ1> = |1/)4>, (73‘1[}1> = ‘1/}2> Thus using
the Pauli spin matrices we can generate |12), |t3), |t4) from |i)7).
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(iii) We obtain

1 0 0 0
g [0 1/2 1/2 0
27 lo 1/2 1/2 0

0 O 0 1

Can one find a SIC-POVM in C* using the states from (i) and the Kronecker
product?

Problem 15. Let o1, 02, 03 be the Pauli spin matrices. Consider the
2 X 2 matrix over the complex numbers

1
H(n) = 5 IQ + an()'j

where n := (ny,n2,n3) (n; € R) is a unit vector, i.e. n? +n3 + n% = 1.
(i) Describe the property of II(n), i.e. find IT*(n), tr(Il(n)) and I1?(n),
where tr denotes the trace. The trace is the sum of the diagonal elements

of a square matrix.
(i) Find the vector
e’ cos(0)
11(n) < sin(6) '

Discuss.

Solution 15. (i) For the Pauli matrices we have of = o1, 05 = 09,

o4 = 03. Thus II(n) = II*(n). Since tr(o;) = tr(oz) = tr(os) = 0 and the

trace operation is linear, we obtain tr(IL(n)) = 1. Since 0? = 03 =03 = I

and for the anti-commutators

0102 + 0201 =03, 0203+ 0302 =02, 0301+ 0103 =02

the expression

2

3
H2(n) = i I+ anaj Ig + = anaj + = Zannkajak
j=1

] 1k=1
simplifies to
1. 1< 1<,
H2(n) = ZIZ + 5 an(fj —+ Z anfg.
Jj=1 Jj=1
Using n? 4+ n3 + n3 = 1 we obtain I1?(n) = II(n).
(ii) We find

e?cos(0)\ _ 1 ((1+ng)e™ cos(f) + (n1 — inz) sin(0)
[I(n ( sin(0) ) =3 ((n1 +ing)ei® cos(6) + (1 — ng) si (9)) :
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Programming Problems

Problem 1. Let |0), |1) be the standard basis in C2. Consider the Bell

state
_ 1

¥) 7

where A refers to Alice and B refers to Bob. Let

H0:|0><0|:((1) 8) H1:1><1':(8 (1)>

be two projection matrices with IIpII; = 05. Measurement of the first qubit
(Alice) provides

(10)4®[0)5 +|1)a ®|1)5)

L
V2

Hence the post-measurement state |¢) is given by

p1(0) = (1T © 1) (o @ 12)18) = —=((0] @ (0)) 7= (10) [0)) = 3.

1
|¢) = o2 (0) (o & I2)[¢) = 10) @ [0) =

oo o+

This state is not entangled. The measurement of qubit two (Bob) will then
result with certainty in the same result

p2(0) = (¢[(J2 @ Ilp)* (12 ® o) |¢p) = 1.

Give a Maxima implementation of this calculation.

Solution 1. Owing to the structure of the vectors and matrices the
conjugate complex operation could be avoided.

/* AliceBob.mac */

el: matrix([1,0]); elT: transpose(el);

e2: matrix([0,1]); e2T: transpose(e2);

psi: (kronecker_product(el,el) + kronecker_product(e2,e2))/sqrt(2);

psiT: transpose(psi);

I2: matrix([1,0],[0,1]);

PiO: matrix([1,0],[0,0]); PiOT: transpose(PiO);

Pil: matrix([0,0],[0,1]); PilT: transpose(Pil);

pl0: psiT . transpose(kronecker_product(Pi0,I2))
. kronecker_product(Pi0,I2) . psi;

phi: (kronecker_product(Pi0,I2) . psi)/sqrt(pl0);

phiT: transpose(phi);

p20: phiT . transpose(kronecker_product(I2,Pi0))
. kronecker_product(I2,Pi0) . phi;
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Problem 2. Consider the standard basis |0), |1), the Bell state

1

[¥) = —(10) @10) + 1) @ [1)).

Sl

2

and the projection matrices
1 1
Hazi(12701)7 Hb:i(12+03).

Find
(|(Hy @ ) [1).

Solution 2. A Maxima implementation is

/* POVM.mac */

e0: matrix([1],[0]1);

el: matrix([0],[1]);

I2: matrix([1,0],[0,11);

sigl: matrix([0,1],[1,0]);

sig2: matrix([0,-%il, [%i,01);

sig3: matrix([1,0],[0,-11);

psi: (kronecker_product(e0,e0)+kronecker_product(el,el))/sqrt(2);
psiT: transpose(psi);

Pia: (I2 + sigl)/2;

Pib: (I2 - sig3)/2;

R: psiT . kronecker_product(Pia,Pib) . psi;

The output is 1/4.

9.3 Supplementary Problems

249

Problem 1. Let H be a hermitian n x n matrix describing the Hamilton
operator and acting in the Hilbert space C™. Let A, B be n x n hermitian

matrices and [1)) € C™. One defines (quantum correlation function)

Q(l¥)) = %(z/fl(A(t)B — AB(t) + BA(t) — B(t)A)|4)
where Alt) = eiﬁt/hAefth/ﬁ’ B(t) = oiHt/h go—iHt/h
(i) Let

H=hwoy, A=o0y, B=os3, |¢>:((s:?§((g)))

Find Q(|1).
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(ii) Let .
H=lwoy®0y, A=01®01, B=o0o3®03,
cos(¢1)
) = sin(¢1) cos(gz)
~ | sin(¢q) sin(¢p2) cos(gs) |
sin(¢1) sin(¢s2) sin(¢s)
Find Q(|¢)).

Problem 2. Consider

|¢1>:i2 (D’ 1h2) = % (_11>

and the Bell matrix

O = = O
ol ~o
—
|OO>—*

—_
v

Find

U(ln) ®@[¥2)), (1] @ @)U (1) @¢b2)), (1] @ (2))U(|¢1) @ [¢h2))

2
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Entanglement

10.1 Introduction

Entanglement is the characteristic trait of quantum mechanics which en-
forces its entire departure from classical lines of thought. Let H; and Hs
be two finite-dimensional Hilbert spaces and let |[¢)) € H; ® Ha. Then |))
is said to be disentangled, separable or a product state if there exist states
|th1) € Hq and |1)2) € Ha such that

) = [1h1) ® |1h2)
otherwise |1} is said to be entangled . For example the normalized state in
(C4
1
L)yt
211 2 \1 V2 \ 1
1

is a product state. For example, a polarization entangled state is
1
V2

where H denotes horizontal polarization and V vertical polarization. This
is one of the Bell states.

(H)®|V) +e?|V) @ |H))

251
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Let |0), |1) be an orthonormal basis in C?. One defines the four Bell states
as

") = —(|0>®|0>+|1>®|1>> 97) = —=(10) ® 0) — [1) ® [1)),

7

3

1 1
E(IO>®I1>+|1>®|0>)7 v >=ﬁ(|0>®ll>—ll>®|0>)-

If we select the standard basis for |0), |1), then we have

o) =

1 1 0 0
o) o) 2 fr] 1
Glo) o] wml) B

1 —1 0 0

The Bell states are fully entangled. They also form an orthonormal basis
in C*.

A density operator is said to be separable if there exists m € N and density
operators py j, p2,; (j =1,...,m) such that

m m
p= ijpl,j @ p2,j, ij =1, p; €[0,1].
j=1 j=1

There are several measures of entanglement, for example the von Neumann
entropy, the tangle and the Schmidt number. An entanglement measure F
has to satisfy several requirements. For example, if the density matrix p is
separable then

E(p) =0.

The entanglement of a maximally entangled state of two n-dimensional
systems should be given by log(n). There should be no increase in entan-
glement under LOCC, i.e. local operations to the density matrix p and
classically communicating cannot increase the entanglement of p. The en-
tanglement measure should be a convex function.

Consider the Hilbert space H = C™ and the product Hilbert space H ® H.
Let A be an arbitrary n x n matrix over C and I, the n x n identity matrix.
Consider the following definition. A normalized vector ) € H ® H is called
mazximally entangled, if its reduced density matrix is maximally mixed, i.e.
a multiple of I,

(YI(A @ L)) = dim(H) " tr(A).
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10.2 Solved Problems

Problem 1. Consider the Hilbert space C? ® C2 =2 C* and the unitary
2 X 2 matrix

_ [ cos(8/2) e "sin(0/2)
U(o, ) '_<_ei¢sin(9/2) cos(6/2) )

Show that the state in C*

(U(B1,61) @ U (62, 62)

o O O

is not entangled.

Solution 1. We have

(U(917¢1) ®U(92,¢2)> =U(01, 1) (é) @ U(ba, o) (é) .

oo o

Problem 2. Can the Bell state
1 1
V2 V2

in the Hilbert space C* be written as a product state?

(101) = [10)) = —=(|0) @ [1) — [1) ©0))

Solution 2. This state cannot be written as product state. Assume that
1
V2

where |co|? + |c1]? = 1 and |dg|? + |d1|?> = 1. Then we obtain the system of
four equations

(col0)+c1[1))@(do|0)+di[1)) = —=(|0)®[1)=[1)®|0)),  co,¢1,do,dr € C

Codo = O, Cod1 = Cldo = — Cldl =0.

1 1
V2’ V2
This set of equations admits no solution. Thus the Bell state cannot be
written as a product state. The Bell state is entangled.

Problem 3. Let |0), |1) be an arbitrary orthonormal basis. Can the state
in C*

1 1 1
) = —=10) ®10) + ﬁ|0> ® 1)+ %|1> ®10) + ﬁIU ® 1)

S
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be written as a product state?

Solution 3. From (¢1]0) + ¢c2|1)) ® (d1]0) + dz2|1)) = |¢b) we obtain the
two conditions 1

%, C1d162d2 = g

Consequently we have a contradiction and the state |¢)) cannot be written
as a product state.

cidycady =

Problem 4. Consider the Hilbert space C? ® C? and the unitary 2 x 2

matrix
. cos(0/2) e~ sin(0/2)
U(o,¢) := (_ei¢ sin(0/2)  cos(6/2) ) '

Show that the state

(U(Gl, ¢1) @ U(62, ¢2)) %

= O O

is entangled.

Solution 4. We use the fact that the vector ($1,$2,$3,$4)T € C*is
separable if and only if x124 = zox3. We obtain
U(61,¢1)(1,0)" @ U(6a, 2)(1,0)" + U(61,61)(0,1)" @ U(62, ¢2)(0,1)"

cos(61/2) cos(f2/2) + e~ (@1+92) sin (6, /2) sin(hy/2)
cos(f2/2)e™ " sin(6; /2) — cos(61/2)e"* sin(6/2/2)
cos(fy/2)e 2 sin(62/2) — cos(fs/2)ei*t sin(6; /2)
cos(01/2) cos(682,/2) + €'1+92) sin(fy /2) sin(05,/2)

Hence z124 # 2223 and the state is entangled.

Problem 5. Consider the state
1 . . )
[¥) =510y ®10) + e'110) @ [1) 4 €'2[1) @ 0) + €'?*[1) @ [1)).

(i) Let ¢3 = @1 + ¢2. Is the state |¢)) a product state?
(ii) Let ¢3 = ¢1 + @2 + 7. Is the state |¢) a product state?

Solution 5. (i) We have a product state, i.e.

L (0) + e [1)) @

1 ido
- 50+ e,

Sl
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(ii) We do not have a product state we have a maximally entangled state.

Problem 6. Can we find 2 x 2 matrices S; and S5 such that

won((e()-5() o
1
Solution 6. From (1) we find
1
(5 ()= (=(2) -
1

Thus

_ o0 O

1) (2
5§1)5§1)

1
i)
S21 821

Or |
).

— o O

Thus we have the four conditions

1) (2 1 1) (2 1) (2 1) (2 1
DL B0 o - L

851 S8 =
21 °21 \/i

which are not compatible. Thus no S; and S exist such that (1) is satisfied.

Problem 7. In the Hilbert space C* we can test whether a state is
entangled or not by calculating the von Neumann entropy.
(i) Consider the Hilbert space H4 ® Hp, where Hy = Hp = C? and the

state
1

1| —
) =3
1

Calculate the density matrices using the partial trace

pa =ty ([0)WD),  pp = tra, (V) ()
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and
—tr(palogy(pa)), —tr(pp logy(pB))

where —tr(pa log,(pa)) denotes the von Neumann entropy.
(ii) Consider the Bell state

Calculate pa := try, (|)(¥]), —tr(palogy(pa)).
(iii) Consider the state

1
1

o= gonem | 0| = Jeemgs (1) e g5 ()
1

where U; and Us are unitary matrices acting on C2. Calculate

pa = try, ([0)(0]),  —tr(palogy(pa))-
(iv) Consider the state
1
1 0
) == E(Ul ®U2) |
1

where U; and Us, are unitary matrices acting on C2. Calculate

pa =ty ([0)(0]),  —tr(palogy(pa))-

Solution 7. (i) We choose the standard basis in C? to calculate the trace.
For the density matrix p we find

1 -1 -1 1
B T S T R

1 -1 -1 1

Therefore

pa=(p 1) e owwi( 1)e(s)
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(5 Ve vww(y Ve ()
1 0 0 0
(o 0% o)l ?)+(8 LI
0 0 0 1
:;<—11 11>'

Analogously

IR TS AU N T AN WA RS
PE=g -1 1) a1 1) 72\t 1 )
In this case, pa = pp. We diagonalise p4. The eigenvalues are 0 and
1 with corresponding orthonormal eigenvectors %(17 )T and %(1, -7

—tr(pAIng(pA)):_tr<;<i >(8 (1)> (1 —11>
30 )G ()
() ) ()

respectively. Thus

where 0log,(0) = 0 and 1log,(1) = 0. Hence the state [1)) is not entangled.
(ii) We choose the standard basis in C? to calculate the trace. We have

1 -1
1
p=lowl=5| g

o O o o
_ O O

Thus
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Therefore

~upatontoa) = -t (5 (5 1 )ew (5 (5 1)) =1

where log,(1/2) = —1. The Bell state |¢) is entangled.

(iii) We choose the basis
1 0
(o) (5))

to calculate the partial trace. We have

1 -1 -1 1
-1 1 1 -1
-1 1 1 -1

1 -1 -1 1

1 1 -1 1 -1 " "
:Z(U1®U2) (<_1 1 >®(_1 1 >> (U @ U3).
Therefore

pa=(o V)@ 0wl (g 9)ou (o)
+((1) ‘1)>®(<o 1>U5>|w><w(é ?)®U2<?>
:31“(—11 _11>U1*®((1 0)<_11 _11) (é»
+iU1<j1 _11)U1*®<(0 1)<_11 _11> (2))

U1<_11 11>U1*+iU1<_11 11>Ui‘

1 -1, .
U1<1 1>U1'

We diagonalise p4. The eigenvaluesTare 0 and 1 with corql:esponding or-
thonormal eigenvectors \%Ul (1 1) and %Ul (1 —1)", respectively.
Thus

1 1 1 (0 0 1 1 .
—tr(pAlogz(PA))Z—U"(QUl(1 —1)U1 (0 1>U1<1 —1>U1
1 1 1 N 0 0 (1 =1 «
><2U1(1 _1)U110g2<0 1)Ul(1 1)Ul>
0 0
——tr(o O)—O.

9)wl= 10 & U) W © U3)

1
T4
1
T2
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(iv) We choose the basis

ORI

to calculate the partial trace. We have

OO =

V)l = (U @ 0)

o O oo

-1

\ 1
Ui paly = (0 1) ®(1 0)

and therefore

o O =
o O OO

Thus
. . 1 1 0 "
pa = Ul(UTpaly)Uy = iUl 0 1 Ur.

0 6) ()}

to calculate the trace. Thus

We choose the basis

—tr(palogy(pa)) = —tr <;U1 <(1) ?) U7 log,(1/2)Uy (é (1)> Uf)

— —tr <;U1 <1°g251/2) 1og2?1/2)) U{") =1

where we used the cyclic invariance of the trace, log,(1/2) = —1 and that
U, is a unitary matrix, i.e. U3 U = Is.

Problem 8. Let H4 and Hp be two finite-dimensional Hilbert spaces
over C. Let |¢) denote a pure state in the Hilbert space Ha ® Hp. Let
{|0),|1)} denote an orthonormal basis in C2. The Schmidt number (also
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called the Schmidt rank) of |¢) € Ha ® Hp over Ha ® Hp is the smallest
non-negative integer Sch(|v), H 4, Hp) such that |¢)) can be written as

Sch(|¥),Ha,HB)

Wy= > [W)a®¥)s

j=1
where |1/Jj>A € Ha and ‘1/}j>3 € Hp. Let

min(dy,d2)

) = Z Ali)a®d)s

be the Schmidt decomposition of 1)) over Hy ® Hp, where dy and do are
the dimensions of the subsystems. Then the Schmidt number is the number
of non-zero A;. The /\? are the eigenvalues of the matrix trg(|1)(¥]). A
separable state has Schmidt number 1 and an entangled state has Schmidt
number greater than 1.

Let f:{0,1}2 — {0,1} be a boolean function. We define the state

W=y 3 (1Ol o b, 1)
a,be{0,1}

For f we select the AND, OR and XOR operations. The AND, OR and
XOR operations are given by

a b | AND(a,b) | OR(a,b) | XOR(a,b)
0 O 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Find the Schmidt numbers of [anp), [Yor) and |¢xor) over C? @ C2.

Solution 8. From (1) we obtain

%((*1)°‘°|00> + (=12 H01) + (=1)°[10) + (=1)' " [11))

- %(\om +101) +[10) — [11))

W}AND> =

where - denotes the AND operation. Analogously we find for the OR and
XOR operations

[Yor) = 5 (00) ~[01) ~ |10) - 1)

[9x0m) = 5 100) ~ [01) ~ [10) + [11)).
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Next we take the partial trace of | anp){¥anp|. We obtain

trp(|[vanp)(Wanp|) = T2 @ (0))|Yanp)(Wanp|(I2 @ |0))
+(I2 @ (1)) [Yanp)(Yanp|(l2 @ 1))
= (210)(0] + 211)(1))

1
=—I.
512

In the above calculation we used the fact that
(I @ (O])]ab)ed|(I> ® [0)) + (I ® (1])|ab){cd|(Lz © [1)) = Spala)(c]

where 54 denotes the Kronecker delta and |ab) = |a) ® |b). Similarly we
find

tre(|Yor)(Yor|) = 312

(xom) (xon)) = 5(0)(0] = 0)(1] = (0] + 1)1
= 5(10) ~ [)({0] — (1)

Clearly the eigenvalues of trg(|vanp){(¥anp|) and trg(|Yor)(Vor|) are
L Thus
2

Sch(|vanp),C* C?*) =2,  Sch(|¢or), C*, C?) = 2.
The eigenvalues of trg(|Y)xor)(¢¥xor|) are 0 and 1. Thus
Sch(|¢Yxor), C%,C?) = 1.
We note that [éxor) = 5(10) — 1)) ® (10) — |1)).

Problem 9. One particularly interesting state in quantum computing
is the Greenberger-Horne-Zeilinger state (GHZ state). This state of three
qubits acts in the Hilbert space C® and is given by

=5 (6)e () () + (D)= ()= ()]

(i) Find the density matrix p = [¢)(¢)].

(ii) Let 09 = I3, 01, 02 and o3 be the Pauli spin matrices, where I is the
2 x 2 unit matrix. Show that p can be written as a linear combination in
terms of Kronecker products of Pauli matrices (including o), i.e.

3

1 3 3
P=53 Z Z Z Cjr,j2,ja 01 @ Ojy @ 0y

J1=072=0 j3=0
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Solution 9. (i) We find the dual state

(| =—=(10000001).

Sl

Thus

)

I

o |
_— O OO0 OO o
O OO OO o oo
SO OO O OO
(vl en i en B an B e Mien M e M an)
(el el e I e B e Mes M e M e
OO IDO OO OO
SO OO O OO
— O OO0 Oo oo

(ii) We find

1
P:§(I2®12®12+12®03®03+03®Ig®03+03®03®Ig

+01Q01Q01 —01 Q02 Q02 —02 @01 Q02— 02 Q02 01)
with Ig = IQ & 12 X 12.
Problem 10. Consider a symmetric matrix A over R

ail1 a2 a3 G4
A= Q12 G222 (23 A24
a1z ag3 asz as4
a14 QA24 (A34 Q44

and the Bell basis

1 1
110 1 0
Pty = — 7 P )= — ,
=71 @) =71 g
1 -1
0 0
1 1 1 1
gty = — , U~ =
=51 =5l
0 0

The Bell basis forms an orthonormal basis in R4. Let A denote the matrix
A in the Bell basis. What is the condition on the entries a;; such that the
matrix A is diagonal in the Bell basis?
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Solution 10. Obviously we have a;; = aj; i.e. the matrix A is also
symmetric. Straightforward calculation yields

~ 1

ajl = (CD+)TA<D+ = 5(0,11 + 2a14 + CL44)
~ _ 1

a12 = (<D+)TA<D = 5(@11 — a44)

- 1
a1z = (‘I)+)TA‘I’+ = —(a12 + a13 + ag4 + as4)

2
~ _ 1
a4 = (‘I)+)TA‘I’ = §(a12 —a13 + 24 — a34)
~ \T _ 1
dgo = (7))  AP™ = §(a11 — 2014 + a44)
~ _ 1
g3 = (® )TA‘I’+ = §(a12 + a13 — a4 — a23)
- _ _ 1
oy = (®7)TAY™ = 5(@12 — a3 — az4 + azyq)
- 1
ass = (UHTAVT = 5(022 + 2a23 + as3)
- _ 1
dga = (VH)TAV™ = §(a22 —as3)
- _ _ 1
agg = () AV = 5(022 — 2a3 + ass).

The condition that the matrix A should be diagonal leads to
aj; —agq =0, aze —azz =0

and a12 = a13 = a4 = azq = 0 with the entries a14 and as3 arbitrary. Thus
the matrix A has the form

aiy 0 0 a14

o 0 22 Q23 0
A= 0 23 Q22 0
ag 0 0 an

Problem 11. Consider a bipartite qutrit system H,4 = Hp = C? with
an arbitrary orthonormal basis { |0), |1}, |2) } in H 4 and H g, respectively.
(i) Find the antisymmetric subspace H_ on H @ Hp.

(ii) Find an arbitrary antisymmetric state on H®".

Solution 11. (i) The antisymmetric subspace H_ on H 4 @ Hp is defined
as

H_ :=spanc{|01) —|10), |12) —|21), |20) — |02) } C Ha ® Hp.
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(ii) An antisymmetric state on H®™ is given by

2 2

|’(/)> = Z Z aj17j27~~-7jn;7€1,k27-~;7€n|j1a'~-ajn§k17~-~,k7L>

jlvj?v---yjnzOk17k27---7kn,:0
where
1 n 2 n
g1 Gosegnikka,kn = (\/ﬁ) E bil:i2)~-7in I | Cimjmbkm
i1 i2smrin =0 m=1

and e is the Levi-Civita symbol, i.e. €, = 1 for (4,j,k) = (1,2, 3) and its
even permutations, and —1 for odd permutations and 0 otherwise.

Problem 12. Let o5 be the second Pauli spin matrix. Then

0 0 0 -1
0 —i 0 —i 0 01 O
Uz@”‘(i O>®(i 0)‘ 0 10 0
-1 0 0 O
Find the normalized state (v € R)
1
; 0 ; 1 1
1Y02Q@02 — LiY02Q02
o= ((0) )
0
Is the state entangled? Discuss.
Solution 12. Straightforward calculations provide
iyo2R02 1 2 1 - 1 3
e =1,(1 - 517 +4|7 - ')+ZO’2®O’2(’Y*§’Y +--)

=1, cos(y) + 02 ® o2(isin(y))

Consequently

cos(7)
0

1
0
0 0
0 —isin(y)

ei'yo’g Roo

If v = 7/4, then the state is entangled and if v = 0 the state is not entangled
(a product state).
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Problem 13. Consider the density matrix (Werner state) in C*

1—
4

where [¢T) = %(1,070, 1)T is the Bell state, and 0 < r < 1.

(i) Find tr(p,) and the eigenvalues of p,,.

(ii) Determine the concurrence

pu = rl¢T) ST + —— 1,

C(pw) = Inax{/\1 — )\2 — )\3 — )\4, 0}

where A1 > Ao > A3 > A4 are the eigenvalues of p,,.

Solution 13. (i) We have

(147)/4 0 0 r/2

3 0 (1-7r)/4 0 0

Puw = 0 0 (1—7)/4 0
r/2 0 0 (1+7r)/4

Thus tr(p,) = 1. The eigenvalues of p,, are (14+7r)/4+17/2 = (14 3r)/4
and (1 — r)/4 with multiplicity 3.
(ii) From (i) it follows that

AM—d—ds—M=01+3r)/4-31-r)/4=3r—-1)/2.
The concurrence is
C(pw) = max{(3r — 1)/2,0}.
If r = 0 we have C(p,,) = 0 and if 7 = 1 then C(p,) = 1. For r = 5 we
find C(py) = 5.

Problem 14. Let p be a density matrix over C2 ® C? = C*. We define
the entanglement of formation as

| {pwolos)
E = i ‘St 2 : :
(p) ,in JZ::O p;S(tree(|v;) (W)

where {pg, |¥x)} indicates that the minimum should be taken over all mix-
tures which realize p. |{pg, |¢k)}| is the number of pure states comprising
the mixture and

S(o) = —tr(ology (o))

is the von Neumann entropy. The minimum is taken over all mixtures

{(po, [¥0)), (p1, Y1), .-}
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which realize p where the cardinality of the set is obviously determined by
the mixture and is finite. We can calculate E(p) from

1+ /1-C(p)?
b= (L)

where
C(p) == max{\/)\l Ve — s — )\4,0}
is the concurrence, A\ > Ao > A3 > A4 are the eigenvalues of
p(o2 ® 02)p™ (02 ® 02)

and
h(p) := —plogy(p) — (1 —p)logy(1 — p)
is the Shannon entropy. Find E(p) for the Werner state

1 1
pu = 216MBH % (167067 | + W)+ ) W) = 166 1Ly
where [¢T) = %(1,0,0, )T is a Bell state.

Solution 14. We have

3 0 0 2
_1J1o 100
Pe=%10 0 1 0
2 0 0 3
Hence
Puw = (02 @ 02)py, (02 @ 02) = pu
where
0 0 0 -1
0 01 0
202=1 9 10 0
-1 0 0 O
Thus
13 0 0 12
1 0 1 0 O
* f— 2—7
pw(02®02)pw(02®02)—/’w—64 0 01 0
12 0 0 13

1

1 1 .
t1> o2 and gz. The concurrence is

. 25
The eigenvalues are &7,
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This result is consistent with solution 11 when r = 3. Thus Ef(p) = 0.1176.

Problem 15. Let Ha4 and Hp denote two finite-dimensional Hilbert
spaces. Consider the Hamilton operator

H=X,0Xp

where the linear operator X, = Xgl acts on H4 and the linear operator
Xp = Xz" acts on Hp. Consequently H = H~!. Let |¢)) € Ha ® Hp.
The von Neumann entropy is given by

E(|)) := —tra(palogs(pa))
where pa = trp(|[¢0)(1]). The entanglement capability of H is defined as

E(H) := I(t
(H) e (t)]t=0

where
dE (exp(—iHt)[1(0)))

I(t) := 7

is the state entanglement rate.
(i) Show that

D(t) = itra (trp (I, [0) (] 10g(p1)))

where [, | denotes the commutator.
(ii) Show that an upper bound on I'(t)|;— is given by T'(t)];—o < 1.9123.

Solution 15. Let pap(t) := [¥(¢)){(¥(t)| and pa(t) := tre(pap(t)). We
have

pap(t) = exp(—iHt)pap(0) exp(iHt)

and the time evolution of pap(t) (von Neumann equation) is given by

9220 _ 141 0]
Thus doalt
Z%() = tI‘B[E[, PAB(t)}-

It follows that

d d
P(t) = - tra(palogy(pa)) = —tra(paloga(pa))

dpa d dpa
= —tra (dt logy(pa) + PAZ 10g2(PA>> = —trpa (dt logy(pa)

= itra (trp[H, pap]loga(pa))
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since p
tra (pAchflog2(pA)> =0.

Let
Sch(]#(0)))

pOY = X VAl © )

be a Schmidt decomposition of |1(0)) over H4 @ Hp, where \; > 0 with

Sch(l¢(0)))

Yooy =1

=1

and {|¢1),..., |¢sch(|¢(0)>)> LAlm), .., |77$ch(|w(0)))> } are orthonormal sets
of states. Sch(]1(0))) denotes the Schmidt rank of |¢(0)) over H4 ® Hp.

Thus

Sch(|1(0)))
trp ([ﬁ,pAB(O)])z Y. ITo [H pan(0 )]I®|m>

Jj=1
ch(|+(0)))
= Z I® (nj|[Xa® Xp,pap(0)] I @ |n;)

Jj=1
ch(|¥(0))) Sch(|¥(0)))

= Z Z m<nn|XB|nm>XA|¢m><¢n|

Sch(\l/) 0))) SCh(lw(0 ?)

- Z Z VA G (D | X 4 (0| X 510

Sch(\w(0)>) Sch(\w(o)))

= Z Z \/m<nn|XB|nm>[XAy|¢m><¢n”

m=1 n=1
where we used the result

Sch([¢(0))) Sch(]$(0)))

paB(0) = Z Z VAmAR([0m) @ [1m)) (dn] @ (n])-
m=1 n=1

Since
Sch(|y(0))) Sch(|y(0)))
pa(0) = D Nlo)ail, loga(pa(0) = D logy(Ajles)(¢;])
Jj=1 j=1
we find

L(t)]1—0 = itra(trp[H, par(0)]logy pa(0))
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Seh(|(0))) A
=i Y {®ltrp[H, pap(0)]logs(pa(0))é;)
j=1
Sch([1(0))) Sch(|(0)))

— Z Z V Am AR 10go A (00 | X B|Mm) (0n| X a|dm)

Sch(|¢(0)>) Sch( |w(0 )

Sch(\¢(0)>) Sch(lw(0)>)

=1 Z Z mlogg nnIXB|77m><¢n‘XA|¢m>
=1 n=1

Sch(]%(0))) Sch(|4(0)))

gZ zm

Sch(\w 0))) Sch(WJ(O)))

= Z Z o+ ) 1| X 5 1) [ (| X )|

X\/ ATL >\7n
Am + An Am 4+ Ay

Sch(|+(0))) Sch(]v(0)))
< Z Z A+ A 00| X B 1) [ (D] X ||

xng;i Ve 1—xlog2< )

ze(

<2 max \/z 1—x10g2<1 >
-

z€(0,1)
~1.9123

|| X B |1 ) [[{Pn| X 4| )

An
log, P

A'rL
1Og2 T

where we used

Sch([4(0)}) Sch(|$(0)))

S S A0l X s na)[(a] X aldm)]

m=1 n=1
Sch(]$(0))) Sch(]¢(0)))

< ) > 1l X5 0m) [ (Sn] X aldm)| <1
m=1 n=1
since X3 =1 and X3 = I.

Problem 16. Consider the Hamilton operator
ﬁ:ulal ® o1+ pg02 ® 09, p, p2 € R

where o1 and o, are Pauli spin matrices.
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(i) Calculate the eigenvalues and eigenvectors of H. Are the eigenvectors
entangled?
(i) Let |¢) € C*. The von Neumann entropy is given by

E([¢)) == —tr(palogy(pa))

where p4 = trea (|¢)(¥]). The entanglement capability of H is defined as

E(H) := e, L'(t)[t—o

where
dE (exp(—iHt)[1(0)))
dt

I(t) :=

is the state entanglement rate. Show that E(H) = a(u1 + pz2), where

a =2 max \/m%( i )

z€(0,1) 1—=x

Solution 16. (i) The matrix representation of the Hamilton operator H
is given by

0 0 0 M1 — M2
- 0 0 p1 + po 0
0 H1 + po 0 0
M1 — U2 0 0 0

The eigenvalues are p; — po with corresponding eigenvector

6) = Z5(1.0.0.1)"
o — p1 with corresponding eigenvector
67) = 5(1,0,0,-1)"
V2
11 + pe with corresponding eigenvector
v = 50,1107

and —u, — py with corresponding eigenvector

_ 1
WJ > = \ﬁ(O,l,*l,O)T.
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Clearly all four eigenvectors are entangled (Bell basis).
(ii) Consider

0
Womac) = | _; Y1
mar) =\ T —ap
0
0 0
. 1(1 . 1 1
:(\/%*Z\/].*l’o)i 1 +(\/%+Z\/1*$0)§ 1
0 0

where zg € (0, 1) satisfies

T
a =2vy/zo(1 — x0)log, (1 —Ox()) .

Now we have
0
cos(t(p1 + p2)) — V1 — o sin(t(pn + p2))

—i (v@osin(t(u1 + p2)) + VI = xg cos(t(u1 + p2)))
0

eXp(_iﬁt) |wmaz> =

Defining
a1 == \/xg cos(t(pr + p2)) — V1 — zosin(t(p + p2))
as = \/xosin(t(p1 + p2)) + V1 — xo cos(t(p1 + p2))

and
Pmaz(t) = exp(—iHt) [Ymaz) (Ymaz| exp(iHT)
we find
0 02 0 0 )
=[5 58] - (5 )
0 0 0 0
Thus

d
P(t) =~ (a3 logy(a}) + a3 logs(a3)

day 2 da das 2 4y 202
= (40, 81 Ty Tdaz—C] In(2) > dt
<a1 b7 0g2(a1>+1n(2)a1 gt + 4ag i Ogg(a2)+ln(2)a2 dt)

= 4pajas(logy(ay /az))

=4u (\/.’Eo(l — ) cos(2tu) + %(23@0 -1) sin(2t,u)>

o (\/JTOCOS(QW) - MSin(Ztu))
82 Vo sin(2tp) + /1T — 2 cos(2tp)
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where pu = p1 + puo and we used that a; and ao satisfy the system of linear
differential equations with constant coefficients

daq das

— = —as, —= =aj.
dt 2 dt !

Since H is asymptotically equivalent to (1 + p2)o1 ® o1 and

E((p1 + p2)or @ 01) < (1 + p2)a

and using
T(0) = i+ p2)2/aalT oz (12 ) = i + )
we find E(H) = opuy + piz).
Problem 17. Consider the orthonormal basis {|0),|1),...,|n — 1)} in

the Hilbert space C™. We assume in the following that this is the standard
basis. Consider the states (coherent states)

n—1 1/2 n—1
18) = <1 - Z xk) 0) + Z Ve k)
k=1 k=1

where ¢y, € [0,27), 0 < z; < 1 and with the constraints

The Lebesgue measure is given by

| n—1
du(B) = (%’)‘—1 [T dzjdo;.
j=1

(i) Let n = 4. Then the state |3) is given by

(1 — 1 — T2 —563)1/2
\/Z1el
|5> = ! i

\/I2€

\/:7361’%
Show that this state is normalized.
(ii) Calculate the density matrix p = |5)(8].
(iii) Show that the coherent states |3) satisfy

/ du(B)18) (] = I
Q
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where dp(8) is the uniform measure given above and 2 the domain for ¢;
(j =1,2,3) and x (k = 1,2, 3) described above. I is the 4 x 4 unit matrix.
This equation is called the resolution of identity and a coherent state must
satisfy this condition.

(iv) Find the reduced density matrix from |3) and a condition for entan-
glement.

Solution 17. (i) Taking the scalar product we have
BIB) =1 —21 — 22 —23) + 71 + 22 + 3 = 1.

Thus the state is normalized.
(ii) We find the 4 x 4 matrix

p=18){Bl =

d? d\/ﬂe_m’1 dme_i¢2 al\/:c?e_id’3
d/T1e'® 21 \/ﬂ\/@ei(%—@) \/E\/Eei(aﬁl—qbs)
d\/@ewz \/ﬂ\/@ei(%—m) To \/@\/@ei(%—%)
d\/gews \/@\/ﬂei(%—%) \/973\/97261'(%—%) T3

where d := (1 — z; — x5 — x3)/2.
(iil) Since

[0 [T LT[ dodost = o

and
1 1—223 1—222—123 1
/ / dl’gdl’gdl’l = =
113:0 12220 121:0 6
1 1—13 1— —X2—I3 1
/ / / dIgdl‘le‘lxl = —
x3=0 Jx2=0 x1=0 24
1 17[E3 17{E275E3 1
/ / / dl’gdl’gdiﬂll’g = —
x3=0 Jx2=0 x1=0 24
—I3 1— To2—XI3 1
dzsdzod =—
/ /2j / T3ATX2AX1T3 = 21
we find (1).

(iv) Let [0)4, [1)4, |2)4, |3)4 be the standard basis in C* and |0)2, |1)2 be the
standard basis in C2. Then we can write |0)4 = [0)2®|0)2, [1)4 = [0)2®]1)a,
[2)4 = [1)2 ®]0)2 and [3)4 = |1)2 ® |1)2 with the coefficients

coo = (1—z1 — 22 — 963)1/2, Co1 = \/xlei¢1
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i i
10 = /7262, 11 = /T3e'

which leads to the 2 x 2 matrix

C= <(1 so o a e ag) /o > .

\/Eewz \/Eews
The reduced density matrix is
cot — l-zy—z3 dx/ﬁe_’% + \/ﬂ\/aTgei¢1€_i¢3
dy/T2e%? + /1 [Tz~ 01el? Ty + T3

where d := (1 — z1 — x5 — x3)'/2. We obtain

det(C’CT) = x3d® + z129 — 2\/x1xox3d Cos(pr + Pg — ¢3).
The state |3) is not entangled if det(CTC) = 0.

Problem 18. Consider the pure state
|¢) := a|00) + B[11)

in the Hilbert space C? ® C?, where o, 8 € C and |a|?> + |3%] = 1. Let
p = |[1){(1p| be the corresponding density matrix.

(i) Find —tr(p; logy(p1)), where py := trez(p).
(i) Let p be a density matrix for a disentangled state on C?> ® C2. Find the
fidelity (also called Uhlmann’s transition probability)

2
Fo.) = |ery/ Vo] -
(iii) Show that the minimum over p of the modified Bures metric

DB(ﬂ?ﬁ) =2- 2]:(p7ﬁ)

is given by 4|al?(1 — |a]?) at o = |a|?]00)(00| + |B|?|11)(11]. The Bures
metric is defined as

Dpures(p, p) := 2 = 2+/ F(p, p).
(iv) Compare the result in (iii) with the result from (i).
Solution 18. (i) We find that
p = |al*00)(00] + |B[*11) (11| + B]00) (11| + Sa|11)(00].
Taking the partial trace over the first qubit in C? yields

p1 = trcz(p) = |al*0){0] + |B*[1)(1].
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Thus

—~tr(pylogy(p1)) = —lal*logy(Jaf?) — (1 - |af?) logy (1 — [af?).

(ii) Since p is a pure state we have \/p = p and

Fo.) = [1ry/ Vi) = [’

= [/ TN = [iry/ Tl
= [wlpl)] (r(e)? = |elal)],
(iii) From (ii) we have
Dis(p,0) = 2~ 2F(p,0) = 2 — 21{o})].
For o = |a|?]00)(00] + |B]?|11)(11] we find
D(p.0) =2~ 2(ja'| + |81") = 2 2(Ja*| + (1~ a*)*) = 4Jaf(1 — |af).

Obviously o is not entangled. For |a|?> = 0 or |a]? = 1 it is immediately
clear that we have a minimum. Thus consider 0 < |a|? < 1. Now let v be
any fixed density matrix in C* and A € [0, 1]. Thus the convex function

oA =Xdo+(1-ANv

is also a density matrix. It follows that

£ Do), =2 Awloly) + (1= Nl

dA A=1

=2 [\l + 181 + (1= Nl |

B { “9(jaf* + |8 — (lvle)) faf* + |81* > 0
L2(jaf* + |8 — (Bl laft + 181" <0

= —3(jaf" + 181" — (Wlvl))

——9((Jof? + |82 — 20aPI81 — (Wlv]e))

— 2(~ 20| + 1 - (lv])

where we used that (|v|y) is real. If v is sufficiently close to p = |[¢){(¥)]
then

1= (Wlv]y) < 2la?|6
and Dp(p,o(N)) is increasing around o. Thus we have found the minimum
glaf (1~ |af).
(iv) For || € [0,1] we find

4la*(1 = |af*) < —[af*log, o — (1 — [af*) logy (1 — |af?).
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Problem 19. The two-point Hubbard model with cyclic boundary condi-
tions is given by

H = t(c},ear + ] ooy + chrerr + ¢} e1y) + Unagnay + nagnay)

where
N 1= C}TCJT7 n;| = C;¢Cj¢, j = 1, 2.

The Fermi operators C;T,C;» 15CitaClL obey the anti-commutation relations
[C}J’Ckv“/]"' = 000’ jk[’ [C},tﬂ CL,U’]'F = [Cjﬂvckﬂ']-i- =0.

EI commutes with the total number operator N , and the total spin operator
S, in the z direction

2 2
g 1
N = Z (cjpein + Cucii) Sz ) Z C1Git — Jicﬂi)
j=1 j=1

We consider the subspace with two electrons, N = 2 and S, = 0. A basis
for 2 particles with total spin 0 is

|s1) := CITCIJO% |sa) := CITCEL‘O>, |s3) :== c;TCL|O>, |s4) := c;Tc;¢|O>

where (0]0) = 1. R
(i) Find the matrix representation of H in this basis.
(ii) Can the matrix representation of H be written in the form

H=4,0L+1® A,

where A; and As are 2 x 2 matrices and I5 is the 2 x 2 identity matrix?

Solution 19. (i) Applying H to the basis gives

Hls1) =t|ss) + t]ss) + Ulsy)
Hlsy) =t|s1) + t]s4)
H|ss) =t]s1) + t|s4)
H|sys) = t|s) + t]sz) + Ulsa).

Identifying |s;) with elements e; of the standard basis in C* yields the
matrix representation of H

U
A t
t
0

+ O O <+

0
t
t
U

+ O O =+
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(ii) Suppose a Hamilton operator K can be written as K = A; @ Iy + I, ® As
where Ay, Ay € M? and I, is the 2 x 2 identity matrix. Then we have

exp(—iK7/h) = exp(—it A1 /h @ I, —itIy /h @ As)
=exp(—iTA1/h) ® exp(—iTAs/h).
In this case separable states remain separable under time evolution in the

model, and entangled states remain entangled under time evolution in the
model. For the matrix representation of H, however we have

A . 0 1
H = tVNOT ®I2 +t12 ®VNOT +d1ag(U7O70a U), VNOT = (1 0) .

The diagonal matrix diag(U,0,0,U) cannot be written in the form 4; ®
Iy +15® As. Thus we conclude that almost all initial separable states evolve
into entangled states under the time evolution of the model.

Problem 20. Find the matrix representation of the two-point Hubbard
model in the basis

1 1
{\/E(CLCITW + C;¢C;¢|O>)7 E(CLCLTM + C;WIHO»’
Loy — e e 100), == (ch b0y — b, cf o))
\/Q Cl\LClT CziCQT y \/Q CLLCQT C2¢01T .

Solution 20. The two-point Hubbard model admits a discrete symmetry
under the change 1 — 2, 2 — 1. Thus we have a finite group with two
elements. We obtain two irreducible representations. The group-theoretical
reduction leads to the two invariant subspaces

1 1
{ T tchicho + chyehion. Zs(elychyo + dhyeljon |

1 1
{ T5telichaio) = cyedylon. T (elychio) - dhyclyion }.

These four states can be considered as the Bell states. In the Bell basis the
matrix representation of the Hubbard model is given by

U 2 0 0
2% 0 0 0| (U 2\ _(0 0
0 0 0 0 _<2t 0>@<0 U)
000U

where @ denotes the direct sum.
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Problem 21. The two-point Hubbard model with cyclic boundary con-
ditions is given by

H = t(c},ear + ¢l ooy + chrerr + cfye1y) + Unapnay + nagnay).

Find the time evolution of the initial state
1
[¥(0)) = —5(elgel, = ehredy)I0)
under the two-point Hubbard model. When is the state |¢(7)) entangled?

Solution 21. Solving the Schrédinger equation

(7)) = ()

we find |1(7)) = e~U7/"4(0)). Consequently, the condition for separabil-
ity is given by
T
exp (—2zﬁU) =0.

This equation cannot be satisfied. Thus |¢(7)) is entangled for all 7.

Problem 22. An arbitrary pure state in the Hilbert space C* can be

written as
cos(63)

) = sin(f3) cos(fg)et?s
| sin(63) sin(fy) cos(6; )ei®z
sin(63) sin(fy) sin(6; e’
where 0, € [0,7/2], and ¢, € [0,27) for k= 1,2,3.
(i) Find values for 0 and ¢y, (k = 1,2, 3) so that we obtain the unentangled

state (product state)
1
0] _ /1 1
a={o)= ()2 a)
0

(ii) Find values for 6y and ¢ (k = 1,2,3) so that we obtain the entangled
(Bell) state

8) =75

_— o O =

Solution 22. (i) We obtain the unentangled state by setting 5 = 0,
02:0and01:0.
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(ii) We obtain the Bell state by setting 03 = w/4, 03 = 7/2, ; = 7/2 and
¢3 = g2 = ¢1 =0.

Problem 23. A completely entangled state |¥4B) of an (N x N)-
dimensional Hilbert space H ® H can be written as

(AP = \/» Z i) @ )

where {|¢;) : K =0,1,...,N — 1} is a orthonormal basis of the Hilbert
space H. We define the linear operators (unitary depolarizers)

N—-1

Uj = €N 4 00 ) (Ve k mod N
=0

where 5,k =0,1,...,N — 1.
(i) Calculate

1N

Z

1
Up XUy, Ntf(Uij/sz)

=
i

_]:O 0

where X is an arbitrary linear operator defined on the Hilbert space H.
(ii) Discuss the set

{1W7) = (U @ Is)|W*P) : jk=0,1,...,N -1},

Solution 23. (i) We obtain

2
=2

—1
U XU, = (tx(X))I
0

1
N

<.
Il
<
=~
Il

where [ is the identity operator in H. We obtain

1
Ntr(Uijsz) = 0jedkm-

(ii) The set is an orthonormal basis of the Hilbert space H ® H.

Problem 24. Consider the GHZ state (Greenberger-Horne-Zeilinger state)

|GHZ) = —=(]0) @ |0) ® [0) + |1) @ [1) @ 1))

7
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and the W state

1
ﬁ<|0> ®0) @ 1) +10) @ [1) ©[0) +[1) @ [0) @ |0)).

(i) Calculate the states

W) =

(V20|@ Lo L)GHZ), (V21,9 (0|® I,)|GHZ)

V2L, @ I, ® (0))|GHZ), (V2(1|® I, ® I,)|GHZ)
(V2L @ (1|® L)GHZ), (V2I,® 1, ® (1)|GHZ)

and discuss.
(iii) Calculate

(ﬁ«n 91 ®12> W), (gm (0| ®12> W),

V3
(\/512 ® L ® <0|> W), (V31| ® I ® L)|W),

(V3L @ (1| @ L)|W), (V3L Lo (1)|W)

and discuss.

Solution 24. (i) We find
(V2(0|® I, ® L)|GHZ) = 0) ® 0), (vV2I,® (0| ® IL)|GHZ) = |0) @ |0)

(V2L @ L ® (0|GHZ) =0) ®[0), (V2(1|® L ® L)|GHZ) =|1) & |1)
(V2L @ (1|9 L)|GHZ) = 1)@ 1), (V2L oL (1))|GHZ) = 1) ® |1).

Thus all the two-particle states are not entangled after measurement of the
third state, although the |GHZ) state is entangled. The |GHZ) state is
usually referred to as maximally entangled in several senses, e.g. it violates
Bell inequalities maximally. However, from the result above we find that
the state is maximally fragile, i.e. if one particle is lost or projected onto
the computational basis { [0}, |1) }, then all entanglement is destroyed.

(ii) We find
V3
(\/§<0|®fz®f2> W) = \7(\0>®\ )+ 1) ®10))
V3
(\/512@)(0@[2) W) = 7(\0>®‘1>+|1>®|0>)

<ﬁ12®12®<0l>W> <(0)® 1) + 1) @ o).

V2

%\
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Thus in this case the projected states are (maximally) entangled (Bell
states). However, for the other cases we find

(V3(1| ® I, ® I,)|W) = |0) @ |0)
(V3L ® (1| ® I)|W) =0) ® |0)
(V3L ® I ® (1))[W) =0) @ |0).

Thus these states are not entangled.

Problem 25. Let 01, 02 and o3 be the Pauli spin matrices. Consider the
Hamilton operator

- 1
H = 56(0’3 ®IQ +IQ ®O’3) 7A(0'1 ®O’1)

where € > 0 and A > 0. Find the eigenvalues and normalized eigenvectors
of H. Are the eigenvectors entangled?

m=(5). 19=(1)

and | 11) = | 1)®| 1) etc.. Then the eigenvalues and normalized eigenvectors
are given by

Bo=—VET A%, [0) = ———(| 1) +a| 1))

Solution 25. Let

i
Bi— A, \1>=%<|u>+|w>>
Bo—+A,  |2)= %(—I )+ 1)
Ba=+V@ N7, [3) = o=s(al L)+ | D)
where
VCEy
Ve

The eigenstates are entangled.

Problem 26. Consider the Hilbert space H = C™ and the product space
HRH. Let A be an arbitrary n x n matrix over C and I,, the n x n identity
matrix. Consider the following definition. A normalized vector ¥ € H @ H
is called mazimally entangled, if its reduced density matrix is maximally
mixed, i.e. a multiple of I,

(VI(A® L)) = dim(H) ™ 'tr(A). (1)
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(i) Show that the Bell states in C*

1 1 0 0
1 [o 1 (o 1 (1 1 [

ot = — , P =— C Ut = — LU = —
210 21 0 N R V2 | -1
1 -1 0 0

satisfy equation (1), where H = C2.
(ii) Calculate the left and right-hand side of equation (1) for the vector
(100 0). Discuss.

Solution 26. (i) We have dim(H) = n = 2 and tr(A) = ai1 + age. For
the left-hand side we have

a1 0 a2 O
0 aiq 0 ai12
a1 0 a22 0
0 any 0 a2

Thus for the Bell state ¥+ we have

a1 0 ai12 0

1 0 a1 0 age

—(1 1

2 ( 00 ) a21 0 as2 0
0 axn 0 a

1
= 5((111 + ag2).

_ o o -

Analogously we prove for the other Bell states that equation (1) is satisfied.
(ii) For the vector (1 0 0 0) we obtain for the left hand side aj;. Thus
equation (1) is not satisfied. This state is not entangled.

Problem 27. Let |H) (|V)) indicate the state of a horizontal (vertical)
polarized photon. Suppose we have the product state

1 1
V2 V2
Thus we have a product state of two polarization entangled pairs. One

photon out of each pair (2 and 3) is directed to the two inputs of a polarizing
beam splitter. What is the output?

[¥)1231 = —=([H)1@|V)2 = [V)1©|H)2) © —=([H)3®[V)s—[V)s @ [H)a).

Solution 27. Since the polarizing beam splitter transmits horizontally
polarized photons and reflects vertically polarized photons, coincidence de-
tection between the two polarizing beam splitter outputs implies that either
both photons 2 and 3 are both horizontally polarized or both vertically po-
larized. Thus the state (1) is projected onto a two-dimensional subspace
spanned by

Vi@ H)®|H)s @ |V)a, |HY1 @|V)2®|V)s @ |H)a.
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After the polarizing beam splitter, the renormalized state corresponding to
a fourfold coincidence is

;%(MD1®|Vb/®|Vh/®LHM—%U31®LHh/®LHh/®\VM)

This is a GHZ state of four particles, which can exhibit nonlocal behaviour
according to the GHZ theorem.

|¢>12’3’4 =

Problem 28. An entanglement witness W on the product Hilbert space
Ha ® Hp is a linear operator on H4 ® Hp such that W is not positive
semi-definite and

(VW) =0

for all separable [¢)) = [1)a) ® |[¢p), where |[t4) € Ha and |[¢p) € Hp.
Show that

0 00 -1
0O 1 0 O
w=n-20h @t =] o o]
100 0

is an entanglement witness.

Solution 28. The eigenvalues of W are —1 and 1 with multiplicity 3
with corresponding eigenvectors given by the Bell basis. Clearly W is not
positive semi-definite. Using [1/) = [¢4) ® |[¢p), with |¥a), [¥p) € C?, we
find
(GIW[6) = (Yala)wslvs) — [($al0)(¥5]0) + (wal1){wp1)*
= (ItwAl0)2 + a1} ) (1B 0) + [(ws 1))
— [(2al0)($510) + (¥a|1) (Y [1)[?
> (1{ealo)? + 1@l D) (s l0)? + D))

~(Iealoywnlo) |+ [walt) s 1))
= (Iwalo) 1) = [{eall) (wsl0)]) = 0.

Thus the operator W is an entanglement witness. Furthermore,
tr(W[eT)(@T]) = (2F|W|et) = 1.

Consequently W is a witness for the entangled Bell state |®1).

Problem 29. Consider the distillation under 1-local operations of a pure
state in the Hilbert space C*

[¥) == ]00) + B|11)
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with |a|? + |8 = 1. If this state can be distilled, it will be transformed
into the Bell state 1 1

—|00) + —=|11).

\/§| ) ﬁ' )

Find a generalized measurement on the first qubit which can be used to
distill [®@7T) from |1)).

%) =

Solution 29. We could attempt to construct a separable unitary transfor-
mation to perform this transform, however one component of a generalized
measurement, on the first qubit will achieve this for k € C, k £ 0

Un = [0(0] + 1)1

which transforms the density operator p := [} ()] to

(Uo ® I)p(Up @ I)*
tr(Uo ® I)p(Uo ® I)*

= [@T) (@7
with probability

po = tr((Up @ Ip(Uy @ I)*) = 2|k|?.

Of course this is only possible for [a?|, |8]? # 0, i.e. for & = 0 or 8 = 0 there
is no distillable entanglement. To complete the generalized measurement
we must find Uy such that UsUy+U;U; = I. Since UjUy is clearly positive
semidefinite we can use the polar decomposition U; = Uy Hy, where U is
unitary and H; is positive semidefinite. We obtain

10){0] + (1

= U IT-UiUy = Uy 1—‘

-

Consequently it is necessary that k < min{|al|?, |3|?}.
Problem 30. Consider the GHZ state (Greenberger-Horne-Zeilinger)

1
E(|001> + [110)).

We consider the basis o = {|L), |R)} and the basis § = {|H), |V)} described
by

gy =

a: 0)= (|L> +IR), (1) = (|L> 1R)),

3\
3\

g 0= (|H> +V)), )= (IH> V).

Sl
Sl
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(i) Express |¢) in terms of the bases a and 8, where one qubit is in the
basis o and the remaining two in the basis 3.

(ii) Use (i) to predict the measurement outcomes where all qubits are mea-
sured in the basis a. Compare with the actual outcomes.

Solution 30. (i) Expressing only one qubit of |1) in the basis « and the
rest in the basis [ basis yields

¥) = 3(LHH) + |RVH) - |LVV) — |[RHV))  apf
= i(|HLH) + |VRH) — |VLV) — |[HRV))  Baf
_ 1
2

=<(|HVL)+|VHL) — |HHR) — |VVR)) BBa

Measuring two qubits in the [ basis as given in the previous equations
allows us to deduce the result of measuring the other qubit in the a basis.
Let B; denote the result after measuring qubit j in the § basis. As an
example, from the first equality, if S = f3 then the first qubit is |L), and
|R) when 5 # (3. Thus we construct the following table.

Outcomes in § basis | Outcomes in « basis
B = B2 = fs LLR
B = B2 # B3 RRR
B = B3 # P2 RLL
B2 = B3 # b1 LRL

(ii) We find in the « basis
) = 3(ILLL) + |RRL) — [LRR) — |RLR)).

None of the results obtained are consistent with the outcomes in the table
deduced in (i).

Problem 31. Consider the state in C8

1

W)= D Cirjasslit) @ li2) ® |s)

J1,32,93=0

0= (1) w-(3)

Let R, S, T be 2 x 2 matrices over C

R— (Tt T ’ g (S s 7 T — t11 t12
21 T22 821 S22 to1  to2

where
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where det(R) = 1, det(S) = 1, det(T) = 1. This means that R, S and T
are elements of the Lie group SL(2,C). Let

1 1
> i) @li2)®hs) = (ROSQT) > cjyjajslin) @|j2) ®1js)-
J1,J2,33=0 J1,J2,33=0

(1)
We define the hyperdeterminant of C' = (¢j, jyj,) With j1,j2, js € {0,1} as
2 2 2 2 2 2 2 2
Det(C) := (chooCi11 + 001110 + 010101 + €611€100)
—2(co00c001¢110¢111 + €000€010€101€111 + €000C011€100C111
+C001C010€101€110 + C001€011C110C100 T+ 0010001101010100)
+4(co00C011€101€110 + €C001€010€100C111)-
Show that
Det(C') = Det(D). (2)
Owing to (2) the quantity Det(C) is called an invariant.

Solution 31. Note that det(R® S ®T) = 1. We find eight equations for
dooo, doo1, - -+, di11. From det(R) = det(S) = det(T) = 1 it follows that
T117T22 —T127T21 = 1, S§11522 — 812521 = 1, t117f22 —t12t21 =1. Inserting dj1j2j3
into the right-hand side of (2) and inserting these conditions it follows that
Det(D) = Det(C).

Problem 32. The hyperdeterminant of a 2 x 2 x 2 hypermatrix C' = (¢;;)
(i,4,k € {0,1}) is defined by

1 1 1
Det(C) = —5 Z Z €34’ €5/ €Lk Emm’ Enn’ Epp! CijkCil j'mCnpk’ Cn/p'm’

: —0i! i k! ! ! o —
1,5,k,m,n,p=014",5",k’,m’,n',p’=0

where €ggp = €11 =0, €91 = 1, €19 = —1.
(i) Calculate Det(C).
(ii) Consider the three qubit state

1

)= > curld) @ 15) © k).

i,5,k=0

The three tangle T3 is a measure of entanglement and is defined for the three
qubit state [¢) as
T123 ‘— 4‘D€t<0)|

where C' = (¢;;1). Find the three tangle for the GHZ state

|GHZ) = %(I0> ®0) ®|0) + 1) @ [1) © 1))
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and the W state

W)= =

\/§(|0> ®0) ® 1) +]0) @ [1) ©[0) +[1) @ [0) @ |0)).

Solution 32. (i) We obtain
/2 2 2 2 2 2 2 2
Det(C) := (chooCi11 + 001110 T C010C101 + Co11CT00)
—2(co00co01¢110¢111 + €000€010€101€111 + €000C011C100C111
+€001€010€101€110 + €001€011€110€100 + €010€011C€101€100)
+4(c000C011€101€110 + €001€010€100C111)-

(ii) For the GHZ state we obtain cooo = 1/v/2, c111 = 1/v/2. All other
coefficients are zero. Thus we find for the three tangle 73 = 1. For the W
state we have cgg1 = cg10 = C100 = % Thus 73 = 0. Using this measure of
entanglement the W state is not entangled. Note that the W-state cannot
be written as a product state.

Problem 33. Let |0), |1) be an orthonormal basis in C2. Consider the

normalized state
1

) = > einli) @ |k)

4,k=0
in the Hilbert space C* and the 2 x 2 matrix C = (cjx). Using the 4
coefficients ¢;i (j,k € {0,1}) we form a multilinear polynomial p in two
variables x1, T2
p(x1,72) = coo + co121 + Cr072 + C1171 T2 (1)

Show that determinant det(C) = copc11 — co1¢10 18 the unique irreducible
polynomial (up to sign) of content one in the 4 unknowns c;; that vanishes
whenever the system of equations

_9 _9p _
_8331 _8332 =0 (2)

has a solution (z}, %) in C2.

Solution 33. Inserting (2) into (1) provides the three equations
coo + co1®1 + 1022 + cnizize =0, cor +ennwe =0, 1o+ ey = 0.
Multiplication of the first equation with ¢;; and inserting the second and
third equation yields
cooC11 + €o1€11%1 + €10€11 22 + C11T1€C11%2 = CooC11 — Co1C10 — C10C01 + C10C10
= Co0C11 — C01C10
=0.
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Problem 34. Consider the state
|1)) = cos()|00) + sin(«)|11), O<a<mn/4

where « is called the Schmidt angle.

(i) Find the eigenvalues of the density matrix [¢)(¢)].

(ii) Find the partially traced density matrix (we find when we trace over
one of the subsystems).

(iii) Show that the partially traced density matrix has two unequal and
non-zero eigenvalues A; = cos?(a) and Ay = sin?(a).

(iv) Calculate the von Neumann entropy for the corresponding density ma-
trix. Show that the entropy grows monotonically with the Schmidt angle.

Solution 34. (i) We obtain for the density matrix

cos?(a) 0 0 sin(2a)/2

0 0 0 0

pla) = 0 00 0
sin(20)/2 0 0 sin®(a)

with the eigenvalues 0 (triple) and 1. Thus the eigenvalues are independent
of a.
(ii) We obtain the diagonal matrix

e (Cosz(a) sing<a>> '

(iii) From (ii) we see that the eigenvalues are cos?(a) and sin® ().
(iv) Thus for the entropy we find

S(p2) = — cos? () logy(cos? () — sin?(a) logy (sin?(av))
which is monotonically increasing for 0 < cos?(a) < 1/2, i.e. 0 < a < 7/4.
Problem 35. Let o1, 09, o3 be the Pauli spin matrices. We form the
nine 4 x 4 matrices
ij: = Uj®0k7 j,k:1a273'

Note that [X,i, Emn] = 04. The variance of an hermitian operator O and
a wave vector |¢) is defined by

Vo (16)) = (81(0)*[¢) — ({6]01))*.
The remoteness for a given normalized state |) in C* is defined by

3

R =33 ((WIE0)%10) — (0IZ514))%) .

j=1 k=1
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Find the remoteness for the Bell states

67 = —=(0) ®10) + 1) ®[1)), [67) =

7 (|0>®|0> 1) © 1))

%\

1 _
|w+>=ﬁ<|0>®|1>+|1>®|0>>, [¥7) = (|0>®|1> 1) ©10))-

%\

Solution 35. We have for all j,k=1,2,3
Y=Ll =1
Thus (¢|(X;x)?[¢)) = 1, where [¢) is one of the Bell states. Now

(¥l(or @ o1)[¥)) = (¥l(o2 ® 02)[9)) = (Yl(03 ® 03)[¢) = 1.

All the other matrices of 3 yield 0 for all Bell states. Thus we find for
the remoteness of all Bell states R = 6.

Problem 36. A general pure state |¥) of two qubits can be written as

|T) = €0 cos Bp|00) + e** sin(6y) cos(6;)]01)
+¢'%2 sin(f) sin(6;) cos(H2)[10) 4 €2 sin(fy) sin(f; ) sin(f2)[11)(1)

where ¢; and 6 are chosen uniformly according to the Haar measure

d(sin(6))8d(sin(6,))*d(sin(02))2dpodp1dpadeps (2)

1
(2m)*

with

0<¢; <2, 039k<g (3)

where j = 0,1,2,3 and k = 0,1,2. An extra overall random phase e*?0
is included to maintain consistency with SU(n), where n = 4. For a pure
state of two qubits the tangle 7, is defined as

7:=4det(pa) (4)

where p4 is the reduced density matriz obtained when qubit B has been
traced over (or vice versa, permuting A and B). The tangle 7 is an entan-
glement measure.

(i) Find 7 for |¢). Then find 7 for the four Bell states and the unentangled
state |00).

(ii) Using the Haar measure find 7 for a randomly selected pure state.
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Solution 36. (i) From the state |¥) we obtain the 4 x 4 density matrix

Yoy Yo o3 oy

_ _ | g i s s

P gt ot dov o3 )
Y3y 3y 33 b3y

where ' '
o = e cos(fy), b1 = €'® sin(fy) cos(fy)

Yy = €2 sin(fp) sin(0;) cos(fa), 3 = €'¥% sin(fy) sin(f;) sin(fy).  (6)

Using the basis
1 0
(o)or  (J)en 7)

where I5 is the 2 x 2 unit matrix we find the 2 x 2 matrix

iy = (wows + Ul ot +wzw§> (8)
Y1g + sy ] + sy )

It follows that

det(pa) = (Yoo +v2103) (V11 +¥s93) = (1o +¥313) (Yoto1 +¥2¢3). (9)

Therefore

det(pa) = ovoshs + V11 vet; — o Tvss — Yohiets.  (10)
Inserting (6) into (10) we get

det(pa) = cos?(0p) sin?(6) sin? (6, ) sin?(62) + sin* (f) cos® () sin?(8;) cos®(6s)
_(ei(¢0—¢1—¢2—¢3) 4 ei(—¢0+¢1+¢2—¢3))
x sin®(6y) cos(fy) sin’ (6 ) cos(6; ) sin(fs) cos(6s).

It follows that the four Bell states have the maximum possible entangle-

ment, i.e. 7 = 1. The product state |00) has 7 = 0.
(ii) From (2) we find

48
(2m)*

and

COS(&()) (sin(@o))5 cos(@l)(sin 91 )‘3 COS(HQ) Sin(og)d90d91d92d¢od¢1 d¢2d¢3

/ dpu=1
SU4)

i.e. the Haar measure is normalized. Here we made use of

27 w/2
/ d¢ =2m, and / sin®(z) cos(z)dz = ——
0 0
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where k = 1,2,.... Integrating det(p) (or det(pp)) over the Haar measure

gives (1) = 2, where we used

/2 m—1 /2
/ sin™(x) cos™ (x)dx = / sin™ " 2(z) cos™ (z)dx
0 m+n Jo
/2 /2
- m n n—1 om n—2
/ sin™(z) cos™ (z)dx = / sin™(z) cos" ™% (z)dx
0 m+n .o
and
71'/2 1
/ sin(z) cos(z)dz = =.
0 2

A randomly selected pure state of two qubits might thus be expected to
have 0.4 tangle units of entanglement.

Programming Problems

Problem 1. Let |1)) be a given state in the Hilbert space C". Let X and
Y be two n x n hermitian matrices. We define the correlation for a given
state [¢) as

Cxy ([¥) :== (WIXY ) — (| X[¢) (& [Y]1)).

Let n =4,
0 0 0 1 1 0 0 O
0 01 0 0 0 0 1
X = 01 0 0]’ Y= 0 0 1 0
1 0 0 0 01 0 0
and consider the Bell state
1
1 0
1

Find the correlation.

Solution 1. Since X)) = |¢p) we have (¢|X|¢) = 1 and (Y| X = (¢|.
Thus

(I XY[Y) = I XY (WY [¢) = @Y [9) = (Y [) = 0.

A Maxima implementation is
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/* CorrelationBell.mac */

X: matrix([0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,01);
Y: matrix([1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,01);
b: matrix([1/sqrt(2)],[0], [0], [1/sqrt(2)]1);

bT: transpose(b);

CXYb: BT . X . Y . b - (T . X . b) . (bT . Y . b);

Problem 2. Consider the normalized vector in C®

Let u be a vector in C® and w be a vector in C2. Can v be written as
v=u®w? Can v be written as v=w ®u?

Solution 2. In the first case we have to solve the system of equations

1/2 Uj1wW1
—1/2 ULWo
0 | uown
0 - U2W2
1/2 U3wWq
71/2 uzw
In the second case we have to solve the system of equations
1/2 wiuy
71/2 wiU2
0 o wius
0 | waug
1/2 WaU2
—1/2 wau3

For the first system the Maxima program

/* C6.mac */

solve([1/2-ul*w1=0,-1/2-ul*w2=0,u2*w1=0,u2*w2=0,1/2-u3*w1=0,-1/2-u3d*w2],
[ul,u2,u3,wl,w2]);

solve([1/2-wi1*ul1=0,-1/2-wi1*u2=0,w1*u3=0,w2*ul=0,1/2-w2*u2=0,-1/2-w2*u3],
[ul,u2,u3,wl,w2]);

provides the solution (r arbitrary and r # 0)

1
Uy = 5, UQZO, us =
2r

5, wy =r, wy=—r.
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Hence we can write

1
-1
Lo _13)@1(1)
20*\@1 V2 \-1)°
1
-1

The solution set for the second system is empty, i.e. v cannot be written
asv=wQu

10.3 Supplementary Problems

Problem 1. Consider the two Hilbert spaces Hi = Ho = C¢ and the
product Hilbert space H = H1 ® Ha. A state [¢)) € H is called maximally
entangled if

1
b3 ([9)(W]) = tra, (J)(1) = -
Apply this definition to the Bell states in H = C*, i.e. d =2

1 1

1 0 1 0

|1/’1> - \/i 0 ’ |1/’2> - \/i O ) 9

1 -1

0 0

1 1 1 1

0 0

Problem 2. (i) The normalized states

—1 1 1 1
1|1 1 1 1|1 1|1
21 1 221 ] 2|-1] 2|1

1 1 1 -1

form an orthonormal basis in C*. Are the states entangled?
(ii) Do the normalized states

-1 0 1

1
VAT TN S IRV T I S VAT Bl N IRVE]
0 1 1 —1
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form an orthonormal basis in C*? Are the states entangled?

Problem 3. Show that the GHZ state

Wy=-—(1 0 0 0 0 0 0 1)"

Sl

in C® is entangled.

Problem 4. We consider the finite-dimensional Hilbert space H = C2"
and the normalized state

1

)= > Changnli) ® 1i2) @ - ® |jn)

J1:J25--:Jn=0

in this Hilbert space. Here |0), |1) denotes the standard basis. Let €
(j,k =0,1) be defined by €po = €11 = 0, €01 = 1, €10 = —1. Let n be even
or n = 3. Then an n-tangle can be introduced by

T1..n =2 § Cay...anCBy...80Cy1..9 C1...6,
aty...,an=0
8150000 =0

X€a1B1€azfa " €an_1Bn_16v181€7262 """ 67n—15n—1€06n’vn65n5n| .

Consider the case n = 4 and a state [1) with coooo = 1/V/2, c1111 = 1/v/2
and all other coefficients are 0. Show that 7234 = 1.



Chapter 11

Bell Inequality

11.1 Introduction

Bell’s theorem states that, according to quantum mechanics, the value of
a certain combination of correlations for experiments of two distant sys-
tems can be higher than the highest value allowed by any local-realistic
theory of the type proposed by Einstein, Podolsky and Rosen, in which
local properties of a system determine the result of any experiment on that
system. The most discussed Bell inequality, the Clauser-Horne-Shimony-
Holt (CHSH) inequality states that in any local-realistic theory the absolute
value of a combination of four correlations is bounded by 2.

Consider a system with two distant particles ¢ and j. Let A and a (B
and b) be physical observables taking values —1 and 1 referring to local
experiments on particle i (). The correlation C(A, B) of A and B is defined
as

C(A,B) = PAB(I, 1) — PAB(L 71) — PAB(*I, 1) —+ PAB(fl, 71)

where Pap(1l,—1) denotes the joint probability of obtaining A = 1 and
B = —1 when A and B are measured. In any theory in which local variables
of particle ¢ (j) determine the result of local experiments on particle i (5),
the absolute value of a particular combination of correlations is bounded
by 2

|C(A, B) —mC(A,b) —nC(a, B) — mnC(a,b)| <2

295
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where m and n can either be —1 or 1. The CHSH inequality holds for any
local-realistic theory, where m,n € { —1,1}. For a two particle system in
a quantum pure state |1), the quantum correlation of A and B is defined

Co(4,B) := (Y| ABly)

where A and B are the self-adjoint operators which represent the observ-

ables A and B. For certain choices of A, a, B, b, and [¢), the quantum
correlation violates the CHSH inequality.

Let H 4 and Hp be finite-dimensional Hilbert spaces. Let H be the Hilbert
space H = Ha®@Hp, i.e. H is the tensor product of the two Hilbert spaces
Ha and Hp. Let Ay, Ao be hermitian operators (matrices) in H 4 with

A2=1,, Al=1I,4
and let Bl, Bs be hermitian operators (matrices) in Hp with
B=15,  Bi=1Iz

Let |9) be a normalized state in the product Hilbert space Ha @ Hp. The
generalized Bell inequality is given by

(1AL © Buly) + (Y] A1 © Balw)) + (] A2 ® Buly) — (| A2 ® Baly))] < 2.

If |¢)) can be written as a product state [1)) = |¢p4) ® |¢p) then the Bell
inequality is not violated.

The Pauli spin matrices o1, 02, 03 admit the eigenvalues +1 and —1 and
the 2 x 2 identity matrix admits the eigenvalue +1. Hence all Kronecker
products of these matrices admits these eigenvalues.
Let

A1 =030, Ay=01®1l, A3=02®1I

1 1
By :I2®ﬁ(03+01 —09), Bs =Iz®%(03—01 + 02)

1 1
Bs=1,® —(—034+01+03), Bs=I® —(—03—01—0
3 2 (—o3 1 2) 4 2 \/§( 3 1 2)

V3
Y= Al(Bl +B2*33*B4)+A2(Bl*B2+B3*B4+A3(B1*BQ*B3+B4)

and [¢) = 1(10)4 ® [0)5 +[1)4 @ [1)5). Then

(Y[S]p) = 4V/3.
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11.2 Solved Problems

Problem 1. Let H4 and Hp be finite-dimensional Hilbert spaces. Let
‘H be the Hilbert space H = Ha @ Hp, i.e. H is the tensor product of
the two Hilbert spaces H4 and Hp. Let |1)) be a normalized vector (pure
state) in H. Let X be an observable (described as a hermitian matrix X)
in #. Then (¢| X)) defines the expectation values. The following three
conditions are equivalent when applied to pure states.

1. Factorisability: |¢) = |a) @ |B), where |a) € Ha and |B) € Hp with |a)
and |B8) normalized.

2. The generalized Bell inequality: Let 12117 A, be hermitian operators
(matrices) in H 4 with

A2 =1y, A2 =14

where 14 is the identity operator in H 4. Let Bl, Bs be hermitian operators
(matrices) in Hp with

B? =I5, B2=1y

where I is the identity operator in Hp. Thus the eigenvalues of Ay, A,
By and Bj can only be £1. The generalized Bell inequality is

|(Y| A1 @ Bi|y) + (W] A1 @ Bo|yp) + ($|As @ Bi|) — (] As @ Bs|yh)| < 2.

3. Statistical independence: For all hermitian operators A on H4 and B on
‘Hp with the conditions given above

(WA @ BlY) = (Y]|A ® L) (|1a ® Bly).

(i) Show that condition 3 follows from condition 1.
(ii) Show that condition 2 follows from condition 3.

Solution 1. (i) Consider the product state |¢)) = |a) ® |8). Then

(wI(A@ B)lv) = ((8] @ (al)(A © B)(la) @ [8)) = (ol Ala){5|5|8)
= WlAe Ip[y)([1a @ Bly).

(ii) We use the shortcut notation (A; ® By) = (¢|A; ® By|p) etc. Using
statistical independence we have

|<A1 ®B1> + <A1 ®Bz> + <z‘i2 ®Bl> — <A2 ®BQ>| =

(A1 ® Ip)((1a @ B1) + (14 @ Bs)) + (A @ Ip)((Ia ® By) — (14 ® By))|.
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Using the fact that [(A; ® I)| < 1 and |(A; ® I)| < 1 we have

(A1 ® B1) + (A1 ® By) + (A ® By) — (As @ Bo)|
<|{Ta® By) + (In ® By)| + [(Ia ® By) — (Ia ® By)|
<max(((Ia ® Bi) + (Ia ® B2)) + (I @ B1) — ((Ia ® By)),
((Ia ® Br) + (In ® Ba)) — (14 ® B1) — (14 ® Ba)),
—((Ix ® B1) + (14 ® B1)) + ((Ia ® B1) — (Ix ® Ba)),
—((Ia® B1> + (14 ® B2>) —(({a® Bl> —(Ia® B1>))
=max(2(I4 ® B1),2(I4 ® Bs), —=2(I4 ® By), —2(I4 ® By)) < 2

where we also used |(I4 ®Bl)| <1, [{Ia ®B2)| <1.

Problem 2. Let Ha = Hp = C2. Let {|0),|1) } be the standard basis
in C2. Consider the entangled state in H = C* (EPR state)

1
ﬁ(|0> ® 1) — 1) ®0))

which is one of the Bell states. Show that this state and the operators

) =

Al =01, Ag = 09

By = — (01 + 02), By :=
1 \/5(1 2) 2

violate the Bell inequality.

1
\ﬁ(gl — 03)

Solution 2. We have

A|0) = 1), A4[1) =0)

A|0)y = i|1),  Ay1) = —i|0)
B0} = 7<|1>+z|1>> Bty = 7<|0>—z\o>>
Balo) = (1) =i, Balt) = —=(10) — il0)).

S\

V2
Using (0]0) = (1]1) =1 and (0|1) = (1]0) = 0, we find

(Y[ A1 @ Br|Y) + (| Ay @ Ba|h) + (] A2 @ Bi|y) — (] Az @ Bo|))| = 2V/2.

Thus the Bell inequality is violated since 2v/2 > 2.
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Problem 3. Let 01, 02 and o3 be the Pauli spin matrices. Consider the
Bell operator defined by

3

Z (aj(ck + di) + bj(ck — di))oj ® ok
k=1

B =

where a, b, c,d are real unit vectors in R3.
(i) Calculate the matrix B2.
(ii) Consider the Bell state

=

— o O

Calculate the density operator p = |®T)(®*| and then tr(pB). Discuss.
(iii) Let

le1) =

—~ O O O

Calculate the density operator p = |e1)

(ii).

e1| and then tr(pB). Compare to

Solution 3. (i) Since
(0j @ ok)(om @ on) = (0j0m) @ (0k0n)
we have

3 3
B = 4 Z Z aJ Ck +dk +b (Ck - dk))(am(cn +dn)
k= 1

—dn))(0j0m) @ (0k0n).

J,k=1m,n
+bi(cn
Since 07 = I,

0109 = —09201 :i03, UgUgZ—UgOQZiOl, 0301 :—0'10'3:i0'2
and B? is hermitian (since B is hermitian) we obtain

B2 =1, ® I + (asbs — asbs)(cads — c3dy)oy @ o
+(a1bs — bras)(c1dz — dic3)os ® 02
+(a1ba — azby)(c1da — cody)os ® 03
+(agbz — baaz)(csdy — c1ds)o1 @ 02
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+(a1bs — bras)(csds — cads)os @ oy
+(agbs — asby)(c1ds — cady)o1 ® o3
+(a1by — agb1)(cads — c3da)os ® o1
+(a1bs — agbi)(cads — c1d2)o2 ® o3
+(a1by — agby)(csdy — c1d3)o3 ® 0.
(ii) We obtain
1 0 0 1
110 0 0 O
e\ /Bt
1 0 0 1

Thus p can be written as a sum of Kronecker products
1 10 10 0 0 0 0
p‘2<(0 0>®<0 0>+<0 1>®(0 1)
0 1 0 1 0 0 0 0
(0 0)e (o) (5 0)= (i 0)
10 00
tr<(0 O)aj)_a tr((o 1)aj>_o

for j =1,2 and

(D) (6 )

Since

we find
1
tr(pB) = 5 (a1(01 + d1) + b1(01 - dl) — GQ(CQ + dQ) - bQ(CQ — dg)
+as(cs +ds) + b3(cz — d3)) -
(iii) We have

p=le){er| =

(o) o)

oS o o
o O oo
o O oo
o O o o
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Thus 1
tr(pB) = 5(03(63 + ds3) + bz(c3 — d3)).

Problem 4. Consider the Pauli spin matrices o = (01, 09,03). Let q, r,
s, t be unit vectors in R3. We define

Q:=q-0, R=r-0, S=s-0, T:=t-0.
Calculate the matrix (Q® S +R®S+R®T —Q ® T)? and express the

result using commutators.

Solution 4. Using that for j,k =1,2,3 we have

3
00 = 5]’ch2 +1 E €5k00¢
=1

with €123 = €231 — €312 = 1, €321 = €213 = €132 = —1 and 0 otherwise we
obtain

(QRS+RS+RT-QaT)?=4L® 1, +[Q,R] ® [S,T).

Problem 5. Let X; and X5 be m x m hermitian matrices with
X2 =X2=1,.

Let Y7 and Y5 be n x n hermitian matrices with
Y2 =Y} =1,

(i) What can be said about the eigenvalues of X, X5, Y7 and Y57
(ii) Consider the so-called Bell operator

BZ:X1®(Y1+}/2)+X2®(Y1*}/2).

Calculate B2. Express the result using commutators.
(iii) What can be said about the eigenvalues of B2 and B?

Solution 5. (i) From the eigenvalue equation X;x; = Ax; we obtain
Xl(Xlxl) = Xl(/\xl) = )\X1X1 = A2X1.

Consequently I,,x; = A2x; and therefore 1 = A2. Thus the eigenvalues can
only be +1. Analogously, we find that the eigenvalues for the matrices X,
Y1 and Y5 can only be +1.
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(ii) Since X7 = X3 = I, and Y = Y = I,, we have

B?=1,® (Y1 + Y2)(Y1 + Y2) + (X1 X2) ® (Y1 + Y2) (V1 — Y2)

+(XoX1) ® (Y1 = Yo) (Y1 + Y2) + I, @ (Y1 — Y2) (Y1 — Ya)

=1, 2L+ V1Y, + Yo1]) + X1 Xo ® (YY1 — 11Y5)
+Xo X7 @ (1Ye — VoY1) + I, ® (21, — V1Y — YoY7)

=4I, @ I, — (X1 X2) @ [V1, Ya] + (X2X1) ® [V1, V3]

=4Iy, @ I, — [X1, X2] @ [Y1,Y?]

=41, ® I, + (i[ X1, X2]) ® (i[Y1, Y2]).

(iii) Note that the commutator [A, B] of two hermitian d x d matrices A,

B is in general not hermitian. However i[A, B] is hermitian. Thus we can
find an m x m unitary matrix U and an n X n unitary matrix V' such that

U(i[X1, Xo])) U™ = diag(a1, ag, ..., )

V(Z[Yh Y2])V* = diag(1617 /82a s 7Bn)
with a;, 8; € R. It follows that

(U V)B*(U* @ V*) =41, ® I, + (U(i[ X1, Xo))U*) @ (V(i[Y1, Ya2])V*)
=41, ® I, + diag(a, . . ., ) @ diag(B, - - -, Bn)-

The real eigenvalues o of the hermitian matrix i[X;, X»] are restricted by
—2<a; <2forj=1,2,...,m. Analogously, the real eigenvalues §, of the
hermitian matrix [Y7, Ys| are restricted by —2 < g < 2for k=1,2,...,n.
Thus we have —4 < «;8; < 4. The eigenvalues of B? are therefore given
by

4+ o, B, ji=L2....m, k=12...,n.

It follows that the eigenvalues of B are

[Njkl = V4 + ;B

with 7 =1,2,...,mand k=1,2,... ,n.

Problem 6. Let n, m be unit vectors in R®. Consider the spin singlet
state (entangled state)

w=2(()2(1)-(1)2(s))

(i) Show that the quantum mechanical expectation values E(n,m)

E(n,m) = ($|(e-n) @ (o - m)[¢)
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is given by
E(n,m) = —m-n = —|n - |[m]|cos(¢) = — cos(¢n,m) (1)

where ¢n m are the angles between the two quantization directions n and
m. We write cos(¢n,m) to indicate that ¢m n is the angle between m and
n.

(ii) The CHSH inequality is given by

|[F(n,m) — E(n,m’)| + |E(n’,m’) + E(n’,m)| < 2. (2)

Insert (1) into (2) and then find the angles, where the inequality is maxi-
mally violated.

Solution 6. (i) Note that o - n = nyjoq + neoy + ngos. Straightforward
calculation yields the result.
(ii) We obtain

|COS(¢n,m) - COS(¢n,m’)| + |COS(¢H/,m’) + COS(¢H’,m)| <2

The maximal violation is 2v/2, achieved by the angles
(bn,m’ = 37T/47 (bn}m = ¢n’,m’ = ¢n’,m = 7T/4

where cos(37/4) = —1/+/2 and cos(7/4) = 1/4/2. Angles which violate the
inequality (2) are called Bell angles.

Problem 7. Consider four observers: Alice (A), Bob (B), Charlie (C)
and Dora (D) each having one qubit. Every observer is allowed to choose
between two dichotomic observables. Denote the outcome of observer X’s
measurement by X; (X = A, B,C, D) with ¢ = 1,2. Under the assumption
of local realism, each outcome can either take the value +1 or —1. The
correlations between the measurement outcomes of all four observers can
be represented by the product A;B;CyD,, where i,j,k,l = 1,2. In a lo-
cal realistic theory, the correlation function of the measurement performed
by all four observers is the average of A;B;Cj;D; over many runs of the
experiment

Q(AZB]Cle) = <'LZJ|AlB]Cle|¢>
The Mermin-Ardehali-Belinskii-Klyshko inequality is given by

Q(A1B1C1Dy) — Q(A1B1C1D3) — Q(A1B1C2 D1 ) — Q(A1BC1Dy)
—Q(A2B1C1D1) — Q(A1B1C2D2) — Q(A1B2C1D2) — Q(A2B1C1 D2)
—Q(A1B2CaD1) — Q(A2B1C2D1) — Q(A2B2C1 Dy) + Q(A2B2CaDy)
+Q(A2B2CoD1) + Q(A2B2C1 D) + Q(A2B1C2Ds) + Q(A1B2Ca Do) < 4.
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Each observer X measures the spin of each qubit by projecting it either
along ni* or ny. Every observer can independently choose between two
arbitrary directions. For a four qubit state |¢), the correlation functions
are thus given by

Q(A;B;CvDy) = (¢|(n - 0) @ (nf - 0) @ (nf - 0) @ (0] - o))

where - denotes the scalar product, i.e. n¥ - o := n]Xlal + njéag + n%ag.

J
Let

1 0 0 0
nf: 01, n‘24: 0], nP=[1], nP=1{0],
0 1 0 1
0 0 1 -1 1 1
c c D D
nf=|1), ng=(0}), ny=—71 0|, ny=—10
1 0 ’ 1 1 V2 1 R 1

Show that the Mermin-Ardehali-Belinskii-Klyshko inequality is violated for
the state

1

(10000)—|0011)—|0101)+]0110)+|1001)-+|1010)+|1100)+|1111))

where

and |0000) = |0) ® |0) ® |0) ® |0) etc..
Solution 7. For the first term we have

Q(AB,CyDy) = %(1/401 © 03 ® 03 @ (=01 + 03) 1)

= —%(M(ol ® 09 ® 02 ® 01)|¢)

1
V2
Using (¢[(01 ® 02 ® 09 ® 01)[Y)) = —1, (Y|(01 ® 02 ® 02 ® 03)[1h) = 0 we
obtain for the first term

+—(¢|(01 ® 02 ® 02 ® 03)|V).

1
AyBC1Dy) = —.
Q(A1B1C1Dy) NG
Analogously we calculate the other terms. Summing up the terms we find
the value 4v/2. Since 4v/2 > 4 the Mermin-Ardehali-Belinskii-Klyshko
inequality is violated by the state |1)).
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Programming Problem

Problem 1. Let A = o1, AQ = 0y

Blzﬁ(al —‘1-0'2), BQZ%(Ol—Og).

(i) Consider the entangled state

Is the Bell inequality violated?
(ii) Consider the product state

1
9 =5

—
|
\Fa
)
N
— =
~~_
®
Sl
)
N
— =
~_

Is the Bell inequality violated?

Solution 1. We apply the Maxima program

/* Bellinequality.mac */
Al: matrix([0,1],[1,0]); A2: matrix([0,-%i]l, [%i,0]);
Bl: (A1+A2)/sqrt(2); B2: (A1-A2)/sqrt(2);
K11: kronecker_product(Al,B1);
K12: kronecker_product (A1,B2);
K21: kronecker_product(A2,B1);
K22: kronecker_product(A2,B2);
psi: matrix([1],[1],[11,[-11)/2;
psiT: transpose(psi);
S: psiT . K11 . psi + psiT . K12 . psi
+ psiT . K21 . psi - psiT . K22 . psi;
S: ratsimp(S);
Sabs: abs(S);
phi: matrix([1], [11,[11,[11)/2;
phiT: transpose(phi);
S: phiT . K11 . phi + phiT . K12 . phi
+ phiT . K21 . phi - phiT . K22 . phi;
S: ratsimp(S);
Sabs: abs(S);

In both cases the Bell inequality is not violated which is obvious for the
second case since it is a product state.
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11.3 Supplementary Problems

Problem 1. Let 01, 03 and o3 be the Pauli spin matrices. Consider the
Bell operator defined by

3
1
B = 52 a; Ck-i-dk)—l-b(ck—dk))U]@O'k
7,k=1

where a, b, c,d are real unit vectors in R3.
(i) Consider the orthonormal basis in C*

-1 1 1 1
N O T R TS A
2 1 ’ 2 1 ’ 2(-11)" 2 1

1 1 1 -1

Calculate the density operators p; = v;v¥ and then tr(p; B). Discuss.

J
(ii) Consider the basis in C*

-1 0 1 1
1 1 1 -1 1 0 1 1

u = — , Uy = — , U3 = — , Uy = —
0 1 1 -1

Calculate the density operators p; = u;u} and tr(p;B). Compare to (i).

Problem 2. Consider the Hilbert space H4 = C? and the Pauli spin

matrices
- 0 1 p 0 —1
A1=U1=(1 0>7 A2=<72=(Z- OZ)

the Hilbert space Hp = C? with the hermitian matrices

) 10 0 A 0 0 1
B 0 1 0], Bo=[0 -1 0
0 0 -1 1 0 0

with B? = I3, B3 = I3 and the normalized state in CO
1
V2

Is the Bell inequality violated?

W)y=—(1 0 0 0 0 —1)".
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Teleportation

12.1 Introduction

Teleportation is the transmission of quantum information using a classical
channel and entanglement. It demonstrates the use of entanglement as a
communication resource. The simplest case is to consider the teleportation
of a single qubit using two bits of classical communication and one entan-
gled pair (EPR-pair). Quantum teleportation is the disembodied transport
of an unknown quantum state from one place to another. The key idea is
that two distant operators, Alice at a sending station and Bob at a receiv-
ing terminal, share an entangled quantum bipartite state and exploit its
nonlocal character as a quantum resource. The resource state can be the
singlet state of a pair of spin—% particles (Bell state)

1
V2

Particle 1 is given to Alice and particle 2 is given to Bob. Alice intends
to transport an unknown state of a third spin—% particle to Bob. She per-
forms a complete projective measurement on the joint system consisting of
particle 1 and 3 and then conveys its outcome to Bob via a classical commu-
nication channel. As a consequence of Alice’s measurement, the total-spin
state of the three-particle system collapses. Owing to the entanglement,
this involves a breakdown of the spin—% state of Bob’s particle 2. Never-

theless, Bob makes use of the information transmitted classically by Alice

|¥) (10) @ [1) = 1) ©10)).

307
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to transform his reduced state into an output that is an accurate replica of
the original unknown input.

12.2 Solved Problems

Problem 1. Consider the following states (a, b € C)

) = al0) +B[L), Jaf2+[b[2 = 1 &
) 1= 1) © —(100) + |11)). @)
(i) Show that the state |¢) can be written as
)= 575(100) + 1)) ® (a0} +I1)) + 3=(100) — [11)) & (alo) = 1)
45275101+ 10) @ (al1) +i0)) + 5=(01) ~ [10) © (1) = o).

(ii) Describe how measurement of the first two qubits of |¢) can be used to
obtain |¢)) as the last qubit. Alice has the first qubit of |¢) and Alice and
Bob share the second and third qubits of |¢) (an EPR-pair).

Solution 1. (i) Inserting (1) into (2) we obtain

1
6) = 75 (al000) -+ al011) +100) +111) .

On the other hand we have

1 1
——(|00) + [11)) ® (a|0) + b|1)) + 202

2v2
1 1
+2—\/§(\01> +[10)) ® (a|1) + b|0)) + WG
1
= m(a|000> + a|110) + b|001) + b|111))

1
——(a|000) — a[110) — b001) + b|111
575 (@1000) — al110) = b[001) +B[111))

1
——(a|011) + a[101) + b010) + b[100
+5/5 (@l01L) + al101) +5[010) +5[100))

1
+——=(a|011) — a|101) — b|010) 4 b|100
573 @1011) — al101) — bio10) + b[100)

1
= —(a|000) + a|011) + b[100) + b|111))

= 9)-

(100) — [11)) © (a|0) — b[1))

(I01) — [10)) @ (al1) — b]0))

N
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(ii) We measure in the Bell basis

1 1 1 1
{ﬁ<|oo>+|11>>, 5000, = 1)), =((01) + 1) ﬁ<|01>—|1o>>}.

From the state |¢) we can see that the first two qubits are in each of the
Bell states with equal probability. Thus if we measure the first two qubits
in the Bell basis we obtain a result corresponding to each of the Bell states
and can perform a transform to obtain |¢)) in the last qubit as follows

Bell State Transform
(00} + [11)) L
75(100) = [11))  [0){0[ — [1)(1]
%(|01> + [10)) Unor
5(101) = [10))  [0)(1] —[1)(0]

After measurement and applying the corresponding transform we obtain
|1} as the last qubit. So if Alice and Bob initially share the entangled pair

Z50000) 4 11)) = (04 © [0)5 + 114 © 1)),

Alice can perform a measurement in the Bell basis on her qubit and her part
of the entangled pair and sends the result (two bits) to Bob who applies
the corresponding transform to his part of the entangled pair. The state
|t) is thus teleported from Alice’s qubit to Bob’s qubit. Note that the Bell
basis is obtained by applying Ucyor(Ug ® I2) to the computational basis
{]00),]01),]10),|11)}. The transforms are unitary and therefore invertible.
Thus we can also measure the first two qubits in the computational basis
after applying the unitary matrix

(U ® I,)Ucnor.

Problem 2. Consider the state in the Hilbert space H = C16
|tho) = 10101) = [0) ® [1) ® |0) @ |1)

where {]0), |1) } is the standard basis in C?. Let

[¢1) = Bltho) = (\0101> +10110))

%\

[p2) =Ulhr) = (|0101> + [1010))

S\
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) = ) = —=(0101) = [1010))
) = L N
1) = Ui} = —=((0101) = [0110)

|th5) = B*[4) = —|0110).

Find the 16 x 16 unitary matrices B, U, S which perform these transfor-
mations.

Solution 2. From the above equations we find the following

B[0101) = 7(|0101> +|0110))
7(\0101> +0110)) = 7(|0101) +[1010))
7(\0101> +[1010)) = 7(|0101) 11010))

U*EOOND —]1010)) = E(|01o1) —10110))
B*—(j0101) — 0110)) = —[0110).

I~

A unitary transform maps an orthonormal basis to an orthonormal basis.
The above equations do not determine B, U and S uniquely. For simplicity
let B, U and S act as the identity on subspaces for which the unitary
transformations are not constrained by the above equations. For B we
have

1
EGOD +1]10)),  B|0110) = [01) ®

B|0101) = [01) ® (110) — [01)).

-

One solution is

B= %14 ® (|7){01] + 18)(10] + [} {00] + 8) (11])

where
la) = [00) +|11), [B) =00) —[11), |y) = [01)+[10), [6) = [10) —[01).

This means that B maps from the computational basis to the Bell basis in
the second two qubits. For U we have

1
U <|o1> ® ﬁum) + |1o>)) 7(|01o1> +11010))



Teleportation 311

and
U (|o1> ® %(\01) _ 10))) _ %(|0101> — 1010)).
We rewrite these equations in the simpler form
U|0101) = [0101),  U[0110) = |1010).
A solution for U is then
U = I + (]1010) — |0110))({0110| — (1010])

i.e. U is the identity except on the subspace spanned by [0110) and |1010),
where U swaps |0110) and |1010). For S we have

1 1
S——(]0101) + |1010)) = —=(]0101) — |1010)).
\/5(| ) +[1010)) \/§(| ) — [1010))
A solution for S is S = I1g — 2]1010)(1010] i.e. S is the identity except for
changing the sign of [1010).

Problem 3. Let |¢) := a|0) + b|1) be an arbitrary qubit state. Let |¢)
be another arbitrary qubit state. Let U be a unitary operator which acts
on two qubits.

(i) Determine the implications of measuring the first two qubits of

1
10) := ) © ﬁ(fz ® U) ((100) +[11)) @ |9))

with respect to the Bell basis. How can we obtain U(|) ® |¢)) as the last
two qubits?

(ii) Alice has |¢) and Bob has |¢). Describe how U can be applied to |1)®]|®)
using only classical communication and prior shared entanglement. After
the computation, Alice must still have the first qubit of U(]1)) ® |¢)) and
Bob must still have the second qubit of U(|) @ |¢)).

Solution 3. (i) We have

|0) = al0) @ (12®U)((|00>+I11>)®|¢>)

%\

+o1) © (Iz ® U) ((|00) + [11)) @ [¢))

%\

=al0) ® (

0)®U(0) @)+ 1) @U(1) ®|¢)))

Sl

+o|1) © (|0>®U(|0>®|¢>)+ D eU(1) @[4))

%\
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1
=7 (100) ® U(al0) @ [¢)) + [01) @ U(all) ® |$)))

1
7 ([10) @ U(b]0) @ [#)) + [11) @ U(b]1) @ |¢)))-

Expanding |00), [01), |10) and |11) in the Bell basis for the first two qubits
yields the state

10) = -—=(100) + [11)) @ U ((al0) + b[1)) © [4))

L
2f
Q\f

*275
1
+27§(|01> —[10)) ® U ((a|1) — 0]0)) @ |¢)) .

(100) = [11)) © U ((al0) = bl1)) @ |¢))

(101) +[10)) © U ((al1) + b|0)) @ |¢))

We measure in the Bell basis
1 00 11 1 00 11 1 01 10 1 01 10
{ﬁu )+ 1), 5100} = |11, ((01) + [10). (1) | >>}.

From |6) we can see that the first two qubits are in each of the Bell states
with equal probability. If we make a measurement we obtain a result corre-
sponding to each of the Bell states and can perform a transform to obtain
U(J1) ® |¢)) in the last two qubits as follows

Bell State Transform
Z(00) + [11)) 3
5(100) = [11)) U ((|0){0] — [1){1]) @ I2) U*
0D +110)  UlUxor ® B)UT
Z5(101) = 10)) U ((Jo)(1] = [1){0]) ® L) U™

Thus after measurement and applying the corresponding transform we ob-
tain U(]y)) @ |¢)) as the last two qubits. Thus if Alice and Bob initially
share the entangled state

1

\/5(|00> +[11))
Bob applies U to his two qubits. Then Alice can perform a measurement
in the Bell basis on her qubit and her part of the entangled pair and sends
the result (two bits) to Bob who applies the corresponding transform from
the table to his part of the entangled pair. Thus with probability % Bob
can begin the computation U(|1)) ® |¢)) without knowing the state |¢) and



Teleportation 313

still obtain the correct result after Alice measures her two qubits. With
probability % he still has to apply a transform which is independent of [)).
(ii) Alice teleports |¢)) to Bob with one entangled pair, Bob performs the
computation U(|¥)®|$)) on his two qubits and then teleports the first qubit
back to Alice with a second entangled pair. Thus 4 bits of communication
are used in this scheme (Alice sends two to Bob, and then Bob sends two
to Alice). Alice and Bob can perform Ucnor even though their qubits are
spatially separated if they have prior entanglement.

Problem 4. In quantum teleportation we start with the following state
in the Hilbert space C®

[¥) ©10) @ 10) = (al0) +b[1)) @ [0) ® |0) = [¢00)

where |al? + |b]?> = 1. The quantum circuit for teleportation is given by

A H

H H

C

Sy
s

where A is the input |¢), B the input |0) and C' the input |0). Study what
happens when we feed the product state [)00) into the quantum circuit.
From the circuit we have the following eight 8 x 8 unitary matrices (left to
right)

Ui=LoUg®I, Uy=1I1®Uxor,
Us=Uxor®1I2, Us=Up®I® I,
Us=L®Uxor, Us=IL®I Uy,

U; =1, Unor ® Unor, Us=1L®I, Uy

where @ denotes the direct sum of matrices, Uy denotes the Hadamard
gate, Uxopr denotes the XO R-gate and

01
UNOT::<1 0)

(i) Find U8U7U6U5U4U3U2U1|’l/}00>.
(ii) Write a program which implements and verifies the teleportation algo-
rithm.
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Solution 4. (i) Applying the first four unitary matrices to the input state
we obtain

U,UsUs Uy |400)
=:g(moo>+w100>+¢011>+-u11>)+-30010>—¢110>+¢001>—»101».

This state can be rewritten as

UsUUaU; hi00) = 7<|o> ET
7 V2

Applying all eight unitary matrices to the input state we obtain

50 210) +1) @ [1)))

o

(10) = 1)) ® (~=(10) @ 1) + 1) & [0})).

UsUrUsUsU,U3Us Uy |100)
b
=:%(|000>—+\100>-%|010>-%|110>)+—§(\011>—%|111>-+|001>—%\101>)

This state can be rewritten as

(500 +1) @ (50000 + 1) 1)

The state |¢)) will be transferred to the lower output, where both other
outputs will come out in the state (|0) + [1))/v/2. If the two upper outputs
are measured in the standard basis (|0) versus |1)), two random classical
bits will be obtained in addition to the quantum state |¢)) on the lower
output.

(ii) The implementation in SymbolicC++ is as follows. The Matrix class
of SymbolicC++ includes the method kron for the Kronecker product of
two matrices and the method dsum for the direct sum of two matrices.
The overloaded operators * and + are used for matrix multiplication and
addition. The identity matrix is also implemented. Thus the code for the
quantum circuit is as follows.

// teleport.cpp
#include <iostream>
#include "symbolicc++.h"
using namespace std;

Symbolic Hadamard(const Symbolic &v)

{

Symbolic H("",2,2);

Symbolic sqrti2 = sqrt(1/Symbolic(2));
H(0,0) = sqrt12; H(0,1) = sqrti2;
H(1,0) sqrti12; H(1,1) = -sqrtil2;
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return (H*xv);

}

Symbolic XOR(const Symbolic &v)
{
Symbolic X("",4,4);

X(0,0) = 1; X(0,1) = 0; X(0,2) = 0; X(0,3) = 0;
X(1,0) = 0; X(1,1) = 1; X(1,2) = 0; X(1,3) = 0;
X(2,0) = 0; X(2,1) = 0; X(2,2) = 0; X(2,3) = 1;
X(3,0) = 0; X(38,1) = 0; X(3,2) = 1; X(3,3) = 0;
return (X*v);

}

Symbolic Bell(const Symbolic &v)

{

Symbolic I("",2,2), H("",2,2), X("",4,4);
Symbolic sqrtl2 = sqrt(1/Symbolic(2));

I = I.identity(Q);

H(0,0) = sqrti12; H(0,1) = sqrtil2;

H(1,0) = sqrt12; H(1,1) = -sqrti2;

Symbolic UH = kron(H,I);

X(0,0) = 1; X(0,1) = 0; X(0,2) = 0; X(0,3) = 0;
X(1,0) = 0; X(1,1) = 1; X(1,2) = 0; X(1,3) = 0;
X(2,0) = 0; X(2,1) = 0; X(2,2) = 0; X(2,3) = 1;
X(3,0) = 0; X(38,1) = 0; X(3,2) = 1; X(3,3) = 0;
return (Xx(UH*v));

}

Symbolic Swap(const Symbolic &v)

{

Symbolic S("",4,4);

$(0,0) = 1; s(0,1) = 0; S(0,2) = 0; S(0,3) = 0;
S(1,0) = 0; 8(1,1) =0; S(1,2) = 0; S(1,3) = 1;
S(2,0) = 0; S(2,1) = 0; 8(2,2) = 1; 5(2,3) = 0;
S(3,0) = 0; S(3,1) =1; 5(3,2) = 0; 5(3,3) = 0;

return XOR(S*XOR(v));
}

Symbolic Teleport(const Symbolic &v)
{

Symbolic result;

Symbolic NOT("",2,2),H("",2,2),I("",2,2),X("",4,4);
Symbolic sqrtl2 = sqrt(1/Symbolic(2));

NOT(0,0) = 0; NOT(0,1) = 1; NOT(1,0) = 1; NOT(1,1) = O;
H(0,0) = sqrti12; H(0,1) = sqrti2;

H(1,0) = sqrti12; H(1,1) -sqrtl2;

I = I.identity(Q);

X(0,0) = 1; X(0,1) = 0; X(0,2) = 0; X(0,3) = 0;



316 Problems and Solutions

X(1,0) = 0; X(1,1) =1; X(1,2) = 0; X(1,3) = 0;
X(2,0) = 0; X(2,1) = 0; X(2,2) = 0; X(2,3) = 1;
X(3,0) = 0; X(3,1) = 0; X(3,2) = 1; X(3,3) = 0;

Symbolic Ul
Symbolic

kron(I,kron(H,I)); Symbolic U2 = kron(I,X);
kron(X,I); Symbolic U4 = kron(H,kron(I,I));
Symbolic U5 = kron(I,X); Symbolic U6 = kron(I,kron(I,H));
Symbolic U7 = dsum(I,dsum(I,dsum(NOT,NOT)));

Symbolic U8 = kron(I,kron(I,H));

result = U8 (U7x* (U6* (US* (U4* (U3* (U2* (U1*v)))))));

return result;

}

a
w
1]

// The outcome after measuring value for qubit.
// Since the probabilities may be symbolic this function
// cannot simulate a measurement where random outcomes
// have the correct distribution
Symbolic Measure(const Symbolic &v,unsigned int qubit,
unsigned int value)

{

int i,len,skip = 1-value;

Symbolic result(v);

Symbolic D;

len = v.rows()/int (pow(2.0,qubit+1.0));
for(i=0;i<v.rows() ;i++)

{

if (1 (i%len)) skip = 1-skip;

if (skip) result(i) = O; else D += result(i)*result(i);
}

return result/sqrt(D);
}

// for output clarity
ostream &print(ostream &o,const Symbolic &v)
{
char *b2[2]={"|0>","|1>"};
char *b4[4]={"]00>","[01>","[10>","[11>"};
char *b8[8]={"|000>","[001>","|010>","|011>",
"1100>", " 101>, 110>, [ 111>}
char *xb;
if (v.rows()==2) b=b2;
if (v.rows()==4) b=b4;
if (v.rows()==8) b=b8;
for(int i=0;i<v.rows();i++)
if (v(i)1=0) o << "+(" << v(i) << ")" << Db[i]l;
return o;

}

int main(void)



Symbolic zero("",2)

,one("",2);

sqrt12 = sqrt(1/Symbolic(2));

zero(0) = 1; zero(1) = 0; one(0) = 0; one(1)
kron(zero,zero); zo = kron(zero,one);
kron(one,zero); oo = kron(one,one);
print (cout,Hadamard(zero) )<< endl;
print (cout,Hadamard(one)) << endl;

"; print(cout,X0R(zz)) <<
"; print(cout,X0R(z0)) <<
"; print(cout,X0R(0z)) <<
"; print(cout,X0R(00)) <<

= "; print(cout,Bell(zz))

"; print(cout,Bell(zo))
"; print(cout,Bell(oz))

= "; print(cout,Bell(oo0))

= "; print(cout,Swap(zz))
= "; print(cout,Swap(zo))

"; print(cout,Swap(oz))

= "; print(cout,Swap(00))

Symbolic

Symbolic

Symbolic a("a"), b("b");
Symbolic

zz =

0z =

cout << "UH|0O> = ";
cout << "UH|1> = ";
cout << endl;

cout << "UXOR|00> =
cout << "UXOR|01> =
cout << "UXOR|10> =
cout << "UXOR|11> =
cout << endl;

cout << "UBELL|00>
cout << "UBELL|01> =
cout << "UBELL|10> =
cout << "UBELL|11>
cout << endl;

cout << "USWAP|00>
cout << "USWAP|01>
cout << "USWAP|10> =
cout << "USWAP|11>
cout << endl;

greg=kron(a*zero+b*one,kron(zero,zero)) ;
cout << "UTELEPORT("; print(cout,qreg) << ") = ";
print (cout,qreg=Teleport(qreg)) << endl;

cout
tp00
tp01
tp10
tpll

tp00
tpO1
tp10
tpll
cout
cout
cout
cout
cout

<< "Results after measurement of first 2 qubits:" << endl;

<<
<<
<<
<<
<<

Measure (Measure(qreg,0,0),1,0);
Measure (Measure(qreg,0,0),1,1);
Measure (Measure(qreg,0,1),1,0);
Measure (Measure(qreg,0,1),1,1);
Equations simplify = (a*a==1-b*b,1/sqrt(1/Symbolic(4))==2);
= tp00.subst_all(simplify);
tpO1l.subst_all(simplify);
tp10.subst_all(simplify);
tpll.subst_all(simplify);

" 100> & "
"oo1> ;o
"Ol10> "
"> o
endl;

; print(cout,tp00) << endl
; print(cout,tp01) << endl
; print(cout,tpl0) << endl
; print(cout,tpll) << endl

Teleportation

ZZ("",4) ,ZO("",4) ,OZ(”",4) ’oo(|lll’4) ’qreg;
tp00,tp01,tpl10,tpll,psiGHZ;

1;

endl;
endl;
endl;
endl;

<<
<<
<<
<<

<<
<<
<<
<<

>
>
>

>

psiGHZ=kron(zz,zero) *sqrt12+kron(oo,one) *sqrti12;
cout << "Greenberger-Horne-Zeilinger state
print(cout,psiGHZ) << endl;

n.
s

endl;
endl;
endl;
endl;

endl;
endl;
endl;
endl;
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cout << "Measuring qubit O as 1 yields : ";
print (cout,Measure(psiGHZ,0,1)) << endl;
cout << "Measuring qubit 1 as 1 yields : ";
print (cout,Measure(psiGHZ,1,1)) << endl;
cout << "Measuring qubit 2 as O yields : ";
print (cout,Measure(psiGHZ,2,0)) << endl;
return O;

}

The program generates the following output

UTELEPORT (+(2) | 000>+ (b) [ 100>) =
+(1/2*a) |000>+(1/2%b) |001>+(1/2%a) |010>
+(1/2%b) 011>+ (1/2%a) | 100>+(1/2%b) [ 101>
+(1/2*a) [110>+(1/2%b) | 111>
Results after measurement of first 2 qubits:
100> : +(a)|000>+(b) 001>
101> : +(a)|010>+(b) 011>
[10> : +(a)[100>+(b) 101>
[11> : +(a) [110>+(b) [ 111>

12.3 Supplementary Problems

Problem 1. Let vy, va, v3 be normalized states in C2. Find the unitary
8 x 8 matrices Uy, Usy, Uz such

Ui(vi ® va ® v3) = Vo ® V3 ® v

UQ(VQ ®V3 ®V1) = V3 ®V1 ®V2
U3(V3 X Vi ®V2) =V Va2 ® V3.

Discuss

Problem 2. Let |0), |1) be the standard basis in C2. Construct a unitary
8 x 8 matrix U applying the generalized Gram-Schmidt technique such that

() ewem) -

S50+ ) e () ) © F=(0) + 1)



Chapter 13

Cloning

13.1 Introduction

Cloning is the duplication of information. Cloning is necessarily a physical
process. Obviously we have to find unitary transformations for the cloning
process. The no cloning theorem is a result of quantum mechanics which
forbids the creation of identical copies of an arbitrary unknown quantum
state. However, approximate copies still have many uses in quantum com-
puting. Owing to the superposition principle of quantum mechanics it is not
possible in general to clone an arbitrary quantum state. As a consequence
any successful attempt to clone a state will destroy the original state in the
process. Quantum cloning machines are devices for approximately cloning
arbitrary quantum states. Suppose we want to clone the state 1)) € H to
obtain

[¥) ® |4).

The approximate cloning operation yields some mixed state p in the product
Hilbert space H ® H. The fidelity of the cloning process for |¢) is given by

(Wl @ @hp(lP) @ [¥)).

Optimal cloning attempts to maximize the average fidelity (closeness to
[4)) @ |1))). In the case of symmetric cloning we assume

([tra(p)[4)
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is independent of the system on which the partial trace is performed. Thus
for symmetric cloning we need only use (¥|try(p)|)) as the measure of
fidelity. We provide exercises describing what types of information can be
cloned accurately and techniques for cloning certain types of information.

13.2 Solved Problems

Problem 1. Let a € {0,1} and |0), |1) be the standard basis. Find a
unitary 4 x 4 matrix that maps

U:la)®la) = |a) @ [a)

where @ denotes the NOT operation applied to a.

Solution 1. Obviously the permutation matrix

0100

100 0)_(0 1).(0 1
U=10 001 :(1 0)69(1 0)

00 10

provides such a map, where @ denotes the direct sum.

Problem 2. The CNOT gate maps (a,b € {0,1})
la) ® |b) — |a) ® |a & b)

where @ is the XOR operation. Show that the CNOT gate can be used to
clone a bit.

Solution 2. Setting b = 0 we obtain from the CNOT gate
|la) ©10) = |a) ®|a)

since a @ 0 = a for all a. Thus we have cloned a bit.
Problem 3. Let

T1
x = , x12] + xoxy =1
L2

be an arbitrary normalized vector in C?. Can we construct a 4 x 4 unitary
matrix U such that

v((3)e6)) = ()= (2) o
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Prove or disprove this equation.

Solution 3. Such a matrix does not exist. This can be seen as follows.
From the right-hand side of (1) we have

()= G = ((0) + (2) = ((5)+(2)) -
(W(9%1)*(%1)@(il_)*(%)@(ﬁ)*(é)@(i)
(G)e(0)=o((5) 2 0) + (2) = o)

“(5)= () (h)= ()

where we used the linearity of the unitary matrix U. Comparing these two
equations we find a contradiction. This is the no cloning theorem.

However equation (1) does hold when

(5)= () ()= ()= ()= ()

Therefore x122 = 0. Thus at least one of 1 and x5 must be zero. It is still
possible to clone elements of a known orthonormal basis.

Problem 4. Let |¢), |s), |¢) be normalized states in a Hilbert space H.
Let U be a unitary operator, i.e. U~! = U* in the product Hilbert space
H ® H such that

U(ly) @ |s)) = [¥) @ [¥)
U(|o) ® s)) =) ® |9)-

Show that (p|y)) = (#[1p)2. Find solutions to this equation.

Solution 4. Taking the scalar product of these two equations with U* =
U~! and (s|s) = 1 we obtain

(W@ (sNUTU(|9) ® |s)) = (4] @ (¥[)(|4) ® |9))
(@ (s])(I¢) @ |s)) = (V]8) (¥¢)
(lo) = (vl9)*.



322  Problems and Solutions

The equation can be satisfied if ()|¢) = 0 (|¢) and |¢) are orthonormal to
each other) or (p|¢) =1, i.e. [1)) = |¢).

Problem 5. Let {]0), |1)} be a basis in C2. Let [¢)) be an arbitrary
qubit. Is there a unitary transformation such that

V) @ [¢) = [9) @10)?

Solution 5. Such a unitary transformation does not exist. For an ar-
bitrary qubit |¢) the product states |¢) ® |¢) span a three-dimensional
subspace of the four-dimensional Hilbert space C* of two qubits. However,
the product states |¢) ® |0) span only a two-dimensional subspace, as |0)
is a fixed state. Thus the unitary transform would take a system with von
Neumann entropy logs(3) to one with von Neumann entropy log,(2). Since
the system is closed (we have a unitary transformation), this decrease of en-
tropy is therefore a violation of the second law of thermodynamics. Thus the
second law of thermodynamics implies that such a unitary transformation
does not exist.

Problem 6. Consider the approximate cloning of a qubit |¢)) € C? by
simply measuring the qubit with respect to a randomly chosen orthonormal
basis { |0),|1) }, and then using the state |0) ®|0) or |1) ® |1) corresponding
to the measurement outcome. Determine the average fidelity of this cloning
process.

Solution 6. The state |¢) is represented by a density operator

1

)= 5

(I+n-0)

where n is a unit vector in R? and n-o := ny0,+ns094+n303. The randomly
chosen orthonormal basis can be represented by the density operators

0){0] = 5 (12 + m )
111 =L = 0)(0] = 5(F2 ~m- )

where m is a unit vector in R3. Measuring [¢) in the basis { |0}, |1) } yields
|0) with probability

1
[0[)* = 5 (1 +n-m)
and |1) with probability

()P = 50— m)
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where [(0|¢)]? = (0[1){2)|0). Thus we construct a two qubit system de-
scribed by the density operator

S0 m)[0)(0] @ 10)(0] + (1~ n-m)[1)(1] @ [1){1]

If we trace out either qubit we are left with the same density operator, i.e.
this is symmetric cloning. The fidelity for |¢) (symmetric cloning) is given

by
2

B(Hn-m)]:B(l—n-m)} — L+ (nm)?),

To determine the average fidelity we integrate over all m € R3 with |m| =
1. Thus we use spherical coordinates

m = (sin(0) cos(¢), sin(0) sin(¢), cos(6)), ¢ €[0,2x], 6¢€]l0,7].

Then
n - m = ny sin(f) cos(¢p) + ng sin(f) sin(¢) + n3 cos(9).

Consequently the average fidelity is given by

1 1
in nmu 31+ (- m)%) dm
2 1
/ (1+n-m)?)sin(8)do db
= 1 + = / (n2 51113(9) +n SIH3(9) + 2n3 0052(9) sin(0))d0

278 ), ! ? ’
1 + 1 /ﬂ(z cos?(6) sin(8) + (n? 4+ n2)(sin(f) — 3 cos®() sin(6))) do
2 8J
2
~3

where we used n3 = 1 — n? — n3. The average fidelity is independent of

|t)), i.e. the cloning process in universal. However the cloning process is
not optimal.

Programming Problem

Problem 1. Show that there is a unitary 4 x 4 matrix such that

() ()=5E0)mh)



324  Problems and Solutions

Solution 1. The unitary matrix

1 0 0 -1
=0 1)e (Vo)
/* cloning.mac */

vl: matrix([1],[1])/sqrt(2); v2: matrix([1],[-1])/sqrt(2);
I2: matrix([1,0],[0,1]);

V: matrix([0,-1],[1,01);

U: kronecker_product(I2,V);

viv2k: kronecker_product(vl,v2);

viv2kU: U . viv2k;

vivik: kronecker_product(vl,vl);

if (vivik=v1v2kU) then print("U does the cloning")

else print("U does not do the cloning");

will do the job.

13.3 Supplementary Problems

Problem 1. Let a,b € {0,1}.
(i) Can one find a unitary 4 x 4 matrix such that

U(la) @ b)) = |a) ® |a-b)

for all a,b € {0,1}7 Here - denotes the AND operation.
(ii) Can one find a unitary 4 x 4 matrix such that

U(la) @ [b)) = |a) ® |a + b)

for all a,b € {0,1}? Here + denotes the OR operation.

Problem 2. Let
x= 1 x|, r12] + Towy + x3x; =1

be an arbitrary normalized vector in C2. Can we construct a 9 x 9 unitary
matrix U such that

T 1 X1 T
Ullz|ol0]]|=z]|®|2]? (1)
3 0 T3 x3
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Quantum Algorithms

14.1 Introduction

An algorithm is a precise description of how to realize a given objective,
for example solving a computational problem. We distinguish between
classical and quantum algorithms where quantum physical resources are
used. Quantum algorithms run on quantum computers and thus utilizing
unitary transformations such as the quantum Fourier transform and super-
position. Some quantum algorithms also utilize entanglement. Quantum
algorithms include: quantum counting, quantum phase estimation algo-
rithm, Deutsch’s algorithm, Deutsch-Josza algorithm, Simon’s algorithm,
Shor’s algorithm, Gover’s algorithm and hidden subgroup problem. Quan-
tum counting algorithm is a quantum algorithm for counting the number
of solutions for a given search problem. The quantum phase estimation
algorithm is used to find the eigenphase of a normalized eigenvector of a
unitary gate (unitary matrix) given a quantum state proportional to the
normalized eigenvector and access to the unitary gate. Deutsch’s problem
leads to the simplest quantum algorithm. Consider the Boolean functions f
that map {0, 1} to {0, 1}. There are exactly four such functions: two con-
stant functions (f(0) = f(1) = 0 and f(0) = f(1) = 1) and two balanced
functions (f(0) =0, f(1) =1 and f(0) = 1, f(1) = 0). In Deutsch’s prob-
lem one is allowed to evaluate the function only once and we are required
to deduce from the result whether f is constant or balanced. Thus we are
asked for the global property of f. A generalization is the Deutsch-Josza
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problem. One considers the boolean functions

f:{0,1}" = {0,1}

in the following way. Assume that, for one of these functions, it is promised
that it either constant or balanced (i.e. has an equal number of 0’s outputs
as 1’s) and consider the goal of determining which of the two properties
the function actually has. Given a boolean function f : {0,1}" — {0,1}.
Assume that f is known to be invariant under some n-bit XOR mask b.
Simon’s problem is to determine b. Shor’s algorithm solves the discrete log-
arithm problem and the integer factorization problem. Grover’s algorithm
searches an unsorted database with N entries for a marked entry. The
algorithms of Deutsch, Simon, Shor and others can be formulated group
theoretically as a hidden subgroup problem. Let f be a function from a
finitely generated group G to a finite set such that f is constant on the
cosets of a subgroup K and distinct on each on each coset. The cosets of
K are the sets

g K={g9g-k:keK}, gedG.
The cosets partition the group G, i.e. the union of all cosets is the set of

the group G and every two cosets are equal or their intersection is empty.
Thus one writes

K={keG: f(k-g)=f(g9),VgeG}
The problem is, for a given f and G determine the hidden subgroup K.

The quantum Fourier transform plays an important role in a number of
quantum algorithms. The quantum Fourier transform on the additive group
of integers modulo 2™ is the mapping

2m 1
Fam . m
la) 2> exp(2miay/2™)|y)
y=0

where a € {0,1,...,2™ —1}. The state on the right-hand side is unentan-
gled. The quantum Fourier transform is used in Shor’s algorithm. Given
positive integers a and N which are relatively prime and such that a < N.
The goal is to find the minimum positive integer r such that a”" mod N = 1.
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14.2 Solved Problems

Problem 1. In classical communication complexity Alice is provided with
a binary string
X =T0T1 " Tp-1

of length n and Bob is provided with a binary string
Y =YoY1-Yn—-1
of length n. Alice has to determine a boolean function
f:{0,1}"x{0,1}"— {0,1}

with the least communication between herself and Bob.
(i) Consider the parity function

fxy)=20@01 @ OTn1 OYoDY1 S+ DYn—1
where @ is the XOR operation, i.e.
0p0=0, 0l=1, 10=1, 161=0.

How many bits has Bob to send to Alice so that she can determine f7
(ii) Consider the inner product modulo-2 function

fxy)=(20-90) ® (21 Y1) D+ ® (Tn—1"Yn—1)
where - denotes the AND operation, i.e.
0-0=0, 0-1=0, 1-0=0, 1-1=1.
What is the minimum number of bits Bob has to send to Alice so that she

can compute this function?

Solution 1. (i) Obviously Bob has to send only one bit, the one he finds
by computing yo ® y1 & -+ S Yn—1.
(ii) Bob must send all n bits in order for Alice to compute f.

Problem 2. Find all z4,25,2¢c € {0,1} such that x4 + 25 + 2¢ =
1 mod 2. We use the mapping f; : {0,1} — U(2)

f1(0) :==Upn, fi(1) =1

where Uy is the Walsh-Hadamard transform and U(2) denotes the unitary
group over C2. Thus we can map from the triple (z4,zp,z¢) to linear
operators acting on three qubits

f3(za,xp,20) = fi(za) ® fi(zp) @ fi(zc).
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Let
[ = 51001} + [010) + [100) —[111).

For each triple (x4, zp, z¢) found in the first part of the problem, calculate
|¢) = f3(xa,zp,20)[).
Let sa,sp, s¢ denote the result (0 or 1) of measuring the first, second and

third qubit, respectively of |¢) in the computational basis. In each case
determine

sa+ s+ sc mod 2, TA-XTB-XCO-
Solution 2. We have
(an-rwaC) S { (05 07 1)’ (07 170)7 (la 0) 0)7 (1a 17 1) }

We note the symmetry of the state |¢)) with respect to qubit ordering. Thus
we need only to calculate the transform for (0,0,1) and (1,1,1). For (1,1,1)
we have f3(1,1, 1)) = (Io®@ I, ®12)|¢)) = |¢). Measuring the qubits yields

(SA, SB, SC) € { (0707 1)a (07 ]-7 O)a (1’070)3 (17 1, 1) }

with equal probability. In each case we find s4 + sg + s¢ = 1 mod 2. For
(0,0,1) we have f3(0,0,1) = Uy ® Uy ® I. Since

[9) = 5001) + 110)) @0) + 5(100)  [11)) © 1)
we obtain
£5(0,0, 1)) = £100) ~ [11)) & [0) + 5 (J01) +]10)) @ 1)

We find that measuring the qubits yields

(sa,sm,sc) € {(0,0,0),(0,1,1),(1,0,1),(1,1,0) }

with equal probability. In each case we find s4 + sp + s¢ = 0 mod 2.

(xa,zB,xc) | Ta-TB-To | Sa+ S+ sc mod 2
0,0,1) 0 0
(0,1,0) 0 0
(1,0,0) 0 0
(1,1,1) 1 1

)
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We find that sgq + sp + sS¢ = x4 - B - xc mod 2. Suppose Alice, Bob
and Carol each have a bit string (xa1,...,Zan), (€B1,...,2B,n) and
(xc,1,-..,%cm), respectively. They want to calculate

n
f(XAvXBaXC) = Z(SCA,j “TRBj- ZECJ) mod 2
j=1

sharing (communicating) as little information as possible. If Alice, Bob
and Carol share n triplets of qubits in the state |¢) they can calculate
SA1,--+>SAms SB,1s---,8B, a0d Sc1,. .., Sc,, Tespectively as above. Thus

n
f(xa,xp,%c) = Z(SA,]‘ +sB,; + sc,;) mod 2.

Jj=1

If Alice, Bob and Carol calculate

SA\B\C = ZSAlB\CJ mod 2.
j=1

Bob and Carol need only to send one bit each (Sp and S¢) to Alice for
Alice to compute f(x4,xp,Xc) = Sa+Sp+Sc, for any n. In other words
the communication complexity is 2. Classically, for n > 3, three bits of
communication are required.

Problem 3. (i) Find all z,y, z € {0, 1,2, 3} such that
4y +2z=0mod 2. (1)
What are the possible values of the function

(r+y+ 2) mod 4

flay2) = .

when the condition (1) holds?

(ii) Now use the binary representation for x = x1x9, y = y1yo and z = 2129
where xo,x1,Y0,Y1,20,21 € {0,1}. Describe the condition x + y + 2z =
0 mod 2 in terms of zq, z1, Yo, Y1, 20 and 2.

(iii) We use the map

f1(0) = I, f1(1) =Un.

Thus we can map from the triple (zg, yo, 20) to linear operators acting on
three qubits

f3(w0, 90, 20) = f1(z0) ® f1(yo) ® f1(20)-
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Let )
[¢) := §(|OOO> —]011) — [101) — |110)).

For each triple (zo, yo, 20) found in part (i) calculate

|#6) == f3(x0, Yo, 20)|1).

Let sz, sy, s, denote the result (0 or 1) of measuring the first, second and
third qubit, respectively of |¢) in the computational basis. In each case
determine

Sz + Sy + 5, mod 2, o + Yo + 20-

Solution 3. (i) Obviously « + y + z must be even. Thus the sum includes
only an even number (0 or 2) of odd numbers. Thus we have the nine
combinations

(0,0,0),(0,1,1),(0,0,2),(1,1,2),(0,2,2),(0,1,3),(2,2,2),(1,2,3), (0,3, 3).

(ii) Let (z,y, z) be an element of the set of all permutations of elements of
the above set. When x 4+ y + z is even, (x + y + z) mod 4 € {0,2}. Now
when z+y+2z = 0 mod 2 then f(x,y,2) € {0,1}. Since z4+y+2z = 0 mod 2
the least significant bit of the sum must be zero. The least significant bit
is given by zo @ yo P zo = 0. We find that

fx,y,2) =21 ®y1 ® 21 ® (2o + Yo + 20)-
XOR is denoted by “®” and OR is denoted by “4”. Thus we have
(I07 Yo, ZO) S { (07 07 O)a (07 17 1)3 (17 07 1)7 (15 17 O) }

(iii) We note the symmetry of the state |1)) with respect to the qubit or-
dering. Thus we need only calculate the transform for (0,0,0) and (0, 1,1).
For (0,0,0) we have

Measuring the qubits yields
(82,5y,82) € {(0,0,0),(0,1,1),(1,0,1),(1,1,0) }

with equal probability. In each case we find s, + s, + s, = 0 mod 2. For
(0,1,1) we have f5(0,1,1) = I ® Uy ® Uy. Note that |¢)) can be written
as

[9) = 510) @ (100) — [11)) = 11} ® (1) + |10))
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Therefore
1 1
30,1, )l¥) = 510) ® (|01) +[10)) — S ]1) ® (|00) —[11)).
We find that measuring the qubits yields

(82,5y,82) € {(0,1,0),(1,0,0),(0,0,1),(1,1,1) }

with equal probability. In each case s; + s, + 5. =1 mod 2.

(70,90, 20) | o+ Yo + 20 | Sz + 5y + 5, mod 2
(0,0,0) 0 0
(0,1,1) 1 1
(1,0,1) 1 1
(1,1,0) 1 1

We find that (sg + s, + s, mod 2) = zg + yo + 20. Thus for three parties
to calculate f(zx,y,z), where each party has one of the z, y and z, it is
sufficient for each party to send one bit (1 @ s, or y1 B Sy Or z1 @s,) to the
other parties to calculate f(x,y, z). In other words each party can calculate

l'lEBSQg@yl@SyEBZlEBSz:zl@yl@zl@(x0+y0+z0):f(xayaz)

after communication. In other words three bits broadcast to all parties
are sufficient to calculate f(z,y, z), the communication complezity is 3 bits.
Classically it is necessary that 4 bits be broadcast.

Problem 4. (i) Determine the eigenvalues and eigenvectors of
A(I) = (1 - x)Ig + zUnor, S {O, 1}.
(ii) Show that the unitary transform

Uy = 10£(0))(00] + [0£(0))(O1] + [LF(1))(10] + [1f(1)) (11

where f: {0,1} — {0,1} is a boolean function and T denotes the boolean
negation of x, can be written as

Uy = 10)(0] @ A(f(0)) + [1)(1] @ A(f(1))-
(iii) Calculate
1
0y (12 25 (0~ ).
Consider the cases f(0) = f(1) and f(0) # f(1).
Solution 4. (i) We have A(0) = I, and A(1) = Uyor. Thus Ag has

eigenvalues 1 (twice), and A(1) has eigenvalues 1 and —1. We tabulate the
eigenvalues and corresponding eigenvectors of A(x)
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eigenvalue eigenvector
I L0+

=*  Z0) = 1))

(ii) We have
Ur= (1 — £(0))]00){00] + £(0)]01)(00]

=0)(0] @ ((

)(01] + (1 = £(0))[01)(01]
F))10) (10 + F(1)[11) (10|
)+ (1= FQ) (1|
(1= £(0)[0){0] + f(0)[1){0
(0)[0) (L] + (1 = f(0))[1)
= FNI0)O[+ F()[1)
0) (1 + (1 = F(1)I1)
)(10)40] + [1){1]) +

+/(0)[00
+(1 = f(1)
+/()[10)(
=0)(0f@ ((1 - )
+0){0] @ (f (1
+H) (M@ (( 0]
+H A @ (F(1)] {1

1— f(0) FO)(|0) (L[ +1){0[))

= F)0)CO + [1) (L)) + D) 0) (L] + [1){0]))

+(1| @

(1
=10){0] @ A(f(0)) + [1) (1] @ A(f(1)).

(iii) We find

i

Iy ® —=(|0) - |1>)> =10)(0] @ A(f(0 ))7(\0> )

NG
+HH{A[ @ A(f(1))

2510~ 11)

= 0)(0] @ (~1//© 2= (10) = 1)
1 (- ><1>}<|o> )

= (=7 10)0 & —=(10) = |1)
=) O] © = (10) — 1)

= ((=p7© (|o><0| + ()OO e 1)

< (Re 2500 1)

Thus when f(0) = f(1) we apply the identity operator to the first qubit
and when f(0) # f(1) we apply a phase change to the first qubit. The
eigenvalues (—1)7©) and (—1)/™ are said to kick back to the first qubit.
A phase change combined with two Walsh-Hadamard transforms in the
appropriate order implements a NOT gate.
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Problem 5. (i) Alice and Bob share n entangled pairs of the form
%(|OO> + |11)). We can write their shared state of 2n qubits in the form
of the generalized Bell state

1S
) = 7 7:20 17) ®15) (1)

where the first n qubits belong to Alice and the second n qubits belong
to Bob. Furthermore Alice has 2™ bits ag,...,asn_1 and Bob has 2" bits
bg,...,ban_1. Let the unitary operators Ups4 and Upp act on the compu-
tational basis as follows

UPA‘j>:(71)aj|j>7 ]:071772’”71

Upplj) = (-1)%]j),  j=0,1,...,2" — L.
Let
|¢) := (Upa @ Upg)|h). (2)

Calculate the state
(@ UH> ® (@ UH> . @

(ii) For each of the cases

(a) ap=bo, a1 ="b1,..., agn_1 = ban_
2n 1
(0) > lax —bel =27
k=0

determine when measurement of the first n qubits in the computational
basis yields the same result as measurement of the second n qubits in the
computational basis.

Solution 5. (i) From (1) and (2) we obtain

2" —1

\/27 Z 1)%+%5) @ |5).

Thus we find for (3)

2" —12"—-12"—1
<®UH> <®UH> |p) = T Z Z aJ+bj+j*k+j*l‘k>®|l>

i=0 k=0 (=0
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<® UH> ) =@ Unli)

n—1 1 )
:§UHE(|0> + (—=1)%[1))

= Z (—1)dokotirkittin_rkn_1|f)
k=0

where we decompose j and k as follows
J=Jot+i12+jod+ -+ jn12"", k=ko+ki2+kod+ - +kn12""

and

Jxk:=(jo ko) ® (j1 k1) ® - ® (Jn—1-kn-1)
= joko + jik1 + -+ + jn_1kn_1 mod 2.

(ii) For the case (a) we have for k =1

1 2n—1 _ ' 1 2" —1 _ _
- —1)aitby ikl ERRVELSS Y
(2v2)" g( ) (2v2)" g( )

= b 2§1(,1)7*(k+l)
(2v2)" =

_ 1 n

- (2va)r

=27 "/2,

In other words the probability of measuring |k) ® |k) for a given k is 27™.

Furthermore
21 2n 1

Z 27" =9 Z 1=1.
k=0 k=0

For the case (b) we find when k =1

271 2" -1
Z (_1)a,-+bj+j*k+j*l — Z (_1)aj+bj =0.
§=0 J=0

Thus if condition (a) holds measuring the 2n qubits in the computational
basis always yields |j) and |j), i.e. the first n qubits always yield exactly
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the same result as the second n qubits.

If condition (b) holds then measuring the 2n qubits in the computational
basis yields |7) and |k) where j # k, i.e. the first n qubits never yield the
same result as the second n qubits.

Problem 6. (i) Show that the vectors
1
V2

form an orthonormal basis for C2.

(ii) Determine the probabilities associated with finding |0) in the states
[0g) and |14).

(iii) Determine how to obtain |0g) and |1x) using only measurement and
the phase change operation

1

0pr) = 7

(10) +11)),  [1m) = —(l0) = 1))

Ups := [0){0] — [1)(1].

(iv) Let f:{0,1} — {0,1} be a boolean function and

Uy :=10£(0)){00[ 4 [0£(0))(OL] + [Lf(1))(10] + [1f(1))(11].
Determine in terms of [Oy) and |1g)
(a) Up(|0m) @ [0m)),  (b) Up(|0n) ® |1m)).

These techniques are used to solve Deutsch’s problem.

Solution 6. (i) First we demonstrate the linear independence of the
vectors
al0) +b|1) =

(a+b)|0g)+ —=(a—0d)[1x)

N
V2
1

5@,

Thus for a|0g) + b|1g) = 0 it follows that a = b = 0.
(ii) We find

,_.S‘,_.
[N}

al0g) + b|1g) = —=(a+b)]0) +

I~

(01021) = 5 ((010) + {011) + {1]0) + (1[1)) = 1
(L) = 2(0000) — (0]1) — (1]0) + {1[1) =1

(O |1r) = %(<0|0> — (O]1) + (1j0) — (1[1)) = 0
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1 1
101012 = L 1({010) + 012 =
1 1
0f1)? = 2/({0[0) — (Ol =3
2 2
Thus measurement projects the state |0) onto |0g) and |1g) with equal

probability.
(iii) Starting with |0), we can obtain [0g) and |1z) by measurement in the
|0gr) and |1g) basis and applying Upg as follows

Desired state Measure Transform

0m) 10rr) I
|0g) 1) Ups
1r) [0g) Ups
1m) 11r) I

(iv) For (a) we have
01r) ©102r) = 300} + [01) +]10) + 1),

Thus

(10£(0)) +[0£(0)) + [LF(1)) + [1f(1)))

((1 — £(0))[00) + f(0)[01) + £(0)|00) + (1 — f(0))[01)

+(1 = f(1)[10) + f(1)11) + f(1)[10) + (1 — f(l))|11>)
=10g) ®|0g).

UrlOmr) @ |0pr) =

l\DM—l[\:\»—l

For (b) we have

01) @ 1) = 5(100) — [01) + |10) — [11).
Thus
(10£(0)) = [0£(0)) + [LF(1)) = [LF(1)))

(1= £(0))[00) + £(0)|01) — £(0)[00) — (1 — f(0))|01)
L= f(1)[10) + fF(D[1L) — fF(1)[10) — (1 = f(1)[11))
(1 —2/(0))[00) — (1 —2£(0))[01)
2f(1))[10) = (1 = 2f(1))[11))

—1)©@00) — (-1)/@}01)

UplOg) @ 1) =

w\»—~—|—w\>—~—|—w\»~w\»—~
~~ o~ Y~ —~
A =

I
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~(=1)/[10) - (~1)D]11))

=5 ((1/O0) @ (0) 1) + (-1 V10) 1))
= 2500~ (<)) 9 1)
= Z5(O(0) = (OO @ 1)

=(=1)/OUF0) @ f(D)r) @ [La).

Note that f(0) @ f(1) is 0 when f is constant, and 1 when f is balanced.
Thus by determining f(0) @ f(1) we have solved Deutsch’s problem .

Problem 7. Consider the following quantum game G,, with n > 3 players.
Each player P; (j = 0,1,...,n — 1) receives a single input bit z; and has
to produce a single output bit y;. It is known that there is an even number
of 1s among the inputs. The players are not allowed to communicate after
receiving their inputs. Then they are challenged to produce a collective
output that contains an even number of 1s if and only if the number of 1s
in the input is divisible by 4. Therefore, we require that

I
—
I
—

n n

N |

Yj z; (mod)2

<
Il

=)
<
I

=)

provided that
n—1
Z z; =0 (mod) 2.
§=0

We call x = zgz1 - x,—1 the question and y = yoy1 - - - yn—1 the answer.
Show that if the n-players are allowed to share prior entanglement, then
they can always win the game G,,.

Solution 7. We define the following n-qubit entangled state in the Hilbert
space C?"

1
[04) = —5(100-+-0) +[11---1)
1
_)y:=—=(]00---0) —|11---1)).
|vb-) \/§(| ) — | )
The Walsh-Hadamard transform is given by
Unl0) = =100 + =1, Unll) =+ —=10) — —=]1)
" V2 v2 U " V2 Noa

Furthermore consider the unitary transformation

Usl0) — [0),  Us|l) — &™/21)
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where €/7/2 = 4. If the unitary transformation Ug is applied to any two
qubits of |11 ), while other qubits are left undisturbed, then

Usltp+) = [¢-)

and if Ug is applied to any two qubits of |i)_), then

Usl—) = [t4).

Therefore, if the qubits of |¢;) are distributed among n players, and if
exactly m of them apply S to their qubit, the resulting state will be | )
if m =0 (mod 4) and [¢p_) if m = 2 (mod 4). The effect of applying the
Walsh-Hadamard transform to each qubit in |¢4) is to produce an equal
superposition of all classical n-bit strings that contain an even number of
1s, whereas the effect of applying the Walsh-Hadamard transform to each
qubit in |¢p_) is to produce an equal superposition of all classical n-bits
that contain an odd number of 1s. Thus

Un@Uy @ @Un)|s) = f;, > lvoyi- Y1)

A(y)=0 (mod 2)

1
Ug @U@ - @Uu)lv-) = ——— > |yoyr-Yn-1)
2nt A(y)=1(mod?2)

where
n—1
)=y
j=0
denotes the Hamming weight of y. Consequently the strategy is as follows:
At the beginning the state |1 ) is produced and its n-qubits are distributed
among the n players. After the separation each player A; receives input

bit z; and does the following

1. If z; =1, A; applies the unitary transformation Ug to his qubit; other-
wise he/she does nothing,.

2. He/she applies Uy to this qubit.

3. He/she measures his/her qubit in order to obtain y;.

4. He/she produces y; as his/her output.

An even number of players will apply Ug to their qubit. If that number is

divisible by 4, which means that 1 SO = 01 x; is even, then the states reverts
to |¢4) after step 1 and therefore to a superposition of all |yoy1 « - Yn—1)
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such that A(y) = 0 (mod 2) after step 2. It follows that Z _0 yi, the
number of players who measure and output 1, is even. If the number
of players who apply S to their qubit is congruent to 2 modulo 4, which
means that 1 Z?;Ol x; is odd, then the state evolves to |1)_) after step 1 and
therefore to a superposition of all |y) = |y0y1 -yn—1) such that A(y) =1
(mod 2) after step 2. In this case Z 0 y; is odd. In either case, (1) is
satisfied at the end of the protocol.

Problem 8. Let zg,21,y0,y1 € {0, 1} where Alice has g and z; and Bob
has yg and y;. Alice and Bob want to calculate the boolean function

9(xo,21,90,y1) =21 ® Y1 ® (T0 - Yo)

where @ denotes the XOR operation and - denotes the AND operation.
Furthermore Alice and Bob share an EPR pair (Bell state)

1
—(]00) — [11)).
5(00) = 11)
Alice applies the unitary matrix
I
%(16”0>®2

to her qubit of the EPR pair and Bob applies the unitary matrix

T
b@&ﬂ m+mﬁ

to his qubit of the EPR pair, where

Un(0) = <n<(g>) _?é§)> |

Let a denote the result of Alice measuring her qubit of the EPR pair and
let b denote the result of Bob measuring his qubit of the EPR pair. Find
the probability that a & b = g - yg, where & denotes the boolean XOR
operation and - denotes the boolean AND operation.

Solution 8. We define |¢) to be the state of the EPR-pair after Alice
and Bob apply their transforms. Consequently

[4) 1= Un (—1g +205 ) @ Ur (35 + w07 )7(|00> I11)).

Thus

|w>:%<(c0s< 16+x0 )|O>+sm< 16+z0 )\1))
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® (cos (_TG + % ) |0) + sin (_173 TY7 ) |1>)
— (—sin (—1164-960 )|O>+COS <—E+$0 )|1>)
® (_Sin<_116+y0 )|O)+cos (—1—64-2/0 >|1>))
= % (cos (—g + (2o + v0) ) |00) + sin (_§ + (zo +vo) 7 ) 101)
+ sin (7g + (20 +90)— ) |10) — cos (,g + (zo +yo) ) |11>)

Thus we find for the probabilities of obtaining a and b

a b a®bd P(a,b)

0 0 0  Fcos®(—m/8+ (zo + yo)m/4)
0 1 1 Lsin® (—7/8 + (0 + yo)7/4)
10 1 1sin® (—7/8 + (0 + yo)7/4)
1 1 0 1 cos? (—m/8 + (zo + yo)m/4)

Next we find the probability that

a®b=1zo-Yo
for given xy and yq
To Yo o Yo Pla® b=z yo)
0 0 0 Pla=0,b=0)+P(a=1,b=1) = cos?(n/8)
0 1 0 Pla=0,b=0)+ P(a=1,b=1) = cos?(n/8)
1 0 0 Pla=0,b=0)+ Pla=1,b=1) = cos?(n/8)
1 1 1 Pla=1,b=0)+ P(a=0,b=1) = cos?(n/8)

We find the probability

P(a®b=xq-yo) = cos?(m/8).

Problem 9. Let G be a finite group and let p : G — GL(n,C) be a
representation of G where n € N. Show that

C:=> pl9)nl9)

geG

is positive definite. Thus the positive definite matrices C~1, v/C and v/C -
exist. Is po : G = GL(n,C) defined by

pe(g) = VCplgVT
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a unitary representation of G7

Solution 9. Clearly C is hermitian. Since p(g) is invertible, we have
p(g)x # 0 for all x # 0, x € C™. Thus

x"Cx =Y x"p(9)*p(g)x = Y [Ip(g)x]* > 0.

geG geq

It follows that C' is positive definite and the positive definite matrices C 1,
-1
VC and VC = exist. Obviously pc(g) is invertible, then the inverse is

given by pc(9)~t = VCplg)"'VT . Let g1,92 € G then
pclg1)pc(9s) = VCplg)VC VCplga)V T = VCplg1)plg2)VT
—VCplg1 - g2)VC

where - is the group operation. Thus pc provides a representation for G.
We also have for all ¢’ € G

p(g)Cp(g") =" p(g)p(9) p(9)p(d') =D (plg)r(g)"p(9)p(g’)

9eG geG
= (plg-9N)7plg-g) = plg)plg) =C
geG geG

where we used that {¢’ - g : ¢ € G} = G. Now we find

pe(9) pele) =VT ' plg) VT VCpgVT " = VT plg) CplgVC
_vclevo =,
where [, is the identity operator on C™. Thus p¢ is a unitary representation
for G.
Problem 10. Let G be a finite abelian group with identity 0 and let
f: G — S for some finite set S. We use the orthonormal bases
{l9)a : g€ G} cCl®l and {|s)s : seS}cCll.
Find a unitary operator Uy such that
Us(lg)e @ [so)s) = lg)a @ [f(9))s

where sg € S.

Solution 10. Let hy : S\ {so} = S\ {f(g)} be arbitrary one to one
functions for each g € G. One solution is

Up = la)alala ® | 1f(@)s(sols + D |hg(s)s(sls

g€eG s€S\{so}
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Problem 11. Let G be a finite abelian group with identity 0 and let
f: G — S for some finite set S. We use the orthonormal bases

{lg) : ge G} cClol

Discuss the quantum Fourier transform over the group G.

Solution 11. Since G is a finite abelian group the irreducible repre-
sentations of G are of the form xy : G — C. There are |G| such repre-
sentations labeled x, for ¢ € G. Since x is a group homomorphism we
have x(g1 - g2) = x(g91)x(g2) for all g1, g2 € G. Irreducible representations
X1 7 X2 have the property that

> xa(9)xa(g) =0.

geG

The trivial irreducible representation x1(g) = 1 for all g € G provides

Y x(@xile) =D x(9)=0

geG geG

for nontrivial y. The transform over the group structure is

Ur(QG)

\/@ZZX“

ueGveG

where the x; : G — C are the |G| irreducible representations of G, x;(g) is
a |G|-th root of unity. For G = Zx, the group of integers {0, 1, ..., N —1}
with addition modulo N, we obtain the quantum Fourier transform.

Problem 12. Let G be a finite abelian group with identity 0, and K
be a subgroup of G. The cosets of K, ie. g-K :={g-k : k€ K} for
g € G, partition G. Now suppose f : G — X, for some finite set X, with
the property f(g1) = f(g2) if and only if g4 - K = go - K. From f and G we
wish to find the hidden subgroup K. As the computational basis we use
the orthonormal basis Bg = {|g)¢ : ¢ € G} C CI¢l and the orthonormal
basis Bx = {|z)x : © € X } € C*l. We begin with the state

\/EZ|QG®|JC

geqG

Show how measurement of the second system in the basis Bx and then
performing the quantum Fourier transform over the group structure for the
first system can be used to find K.
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Solution 12. We can factor out the second state according to the cosets

of K
\/\?Z (Z g k) ) ®1f(9))x

keK

Measuring the second state in the basis Bx projects the first state, for some

g, onto
Z lg -k

| iex
Applying Ur(G) yields

\/W uezgxu <k;( xu(k)> lu)e

since the irreducible representations are group homomorphisms. Due to the
fact that the irreducible representation y, of G can also be considered as
an irreducible representation of the subgroup K we have

> x(k) =0

keK

for nontrivial x so that

| u u(k) | |u)
1O g S M= gt S (S0 we
fg' Y a@le

xu(k)=1 VkEK

In the last result we find non-zero probability amplitudes for |u)g when
xu(k) = 1 for all k£ € K. Measurement of the state yields v € G with
Xu(k) = 1Vk € K. We can consequently test the different K against x,,. If
K has a generator kg, then x,(ko) = 1 so that measurement provides the
possibility of recovering the generator of K. In general, the process must
be repeated since we may have found a generator for a subgroup.

Problem 13. (i) The CHSH game is a game between a referee from one
side and two player (named Alice and Bob) from the other side. Alice and
Bob are separated and not allowed to communicate till the game is over.
Let a,b,z,y € {0,1}. The game starts with a referee selecting two bits
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and y uniformly at random. The referee then sends x to Alice and y to
Bob. Alice sends back to the referee a bit a and Bob sends back a bits
b. So Bob’s response bit b cannot depend on Alice’s input and vice versa
Alice’s response bit a cannot depend on Bob’s input. After the bits a and
b has been transferred to the referee. Then he tests whether the boolean
equation is satisfied
T-y=a®db.

If it is satisfied Alice and Bob win and the referee loses. If not the referee
wins and Alice and Bob lose. What is the best strategy for Alice and Bob
to win?

(i) Let |0), |1) be the standard basis in C2, I be the 2 x 2 identity matrix,

[ cos(m/8) —sin(m/8) _( cos(n/8)  sin(w/8)
Ra= (snxﬂyg) cos(/8) >’ Ry = <——$n(ﬂ/8) coﬂﬂ/8)>
and
Ua=Ra®Il, Up=L®Rp, Uap=Ra®Rp

where A refers to Alice and B refers to Bob. Note that RaRp = I>.
Consider the Bell state

1
¥ =75

If Alice receives = 0 and Bob receives y = 0, then calculate

(|0)a ®|0) 5+ |1)a @ [1)B).

[¥) = (2@ L)[¥), poo = |(W[I¥)]*

If Alice receives = 0 and Bob receives y = 1, then calculate

[¥) = (2@ Rp)|v),  por = |{¥l|v)[*.

If Alice receives = 1 and Bob receives y = 0, then calculate

V) = (Ra® I)|¥), pro=[(¥][¥)]*.

If Alice receives x = 1 and Bob receives y = 1, then calculate

) = (Ra® Rp)l¥), pu1 = [(¥]l¥)[*.
Calculate the probability

1 1 1 1

p= Zpoo + me + pr + an

and show that p > 3/4. Note that

cos(m/8) = %\/24— V2, sin(r/8) = % 2 -2,
cos?(m/8) — sin?(n/8) = %\@
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Solution 13. (i) The truth table is

r yla blxz-y|laddb| w
0 0j]0O 0 0 1
00|01 0 1 0
00|10 0 1 0
00|11 0 0 1
01|00 0 0 1
01|01 0 1 0
01|10 0 1 0
01111 0 0 1
10700 0 0 1
1001 0 1 0
10|10 0 1 0
1 0|11 0 0 1
11100 1 0 0
1 1]01 1 1 1
11110 1 1 1
1111 1 0 0

From the truth table we find the following. If Alice always submits a = 0
and Bob always submits b = 0 the winning probability for Alice and Bob
is 3/4. Analogously, if Alice always submits ¢ = 1 and Bob always submits
b = 1 the winning probability for Alice and Bob is 3/4.

(ii) Obviously for (z = 0,y = 0) we obtain pgo = 1. For (z =0,y = 1) we
obtain pg; = cos?(m/8). For (x = 1,y = 0) we obtain pjo = cos?(7/8) For
(x =1,y =1) we have

(Ra® Rp)lY) =(Ra ® Rp)
1

(10) @10) + 1) @ [1))

Sl

((Ral0))

&

(B35]0)) + (Ra[1)) ® (Rp[1)))

S

1 .
= ﬁ(COS(W/ﬁl)lO) ® |0) — sin(7/4)[0) ® [1)
+sin(w/4)|1) ® |0) + cos(m/4)|1) ® |1))
where we utilized that

cos?(m/8)—sin?(nr/8) = cos(n/4) = sin(n/4), 2sin(r/8) cos(n/8) = sin(w/4).

It follows that 1
Wl(Ra @ Re)l)” = .

Hence

~ (0.8018

e

1 3 1 5
p= 1(1?00 + po1 + pio + p11) = s+ 5c082(77/8) =3+
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Programming Problems

Problem 1. Consider two bitstrings b1, b2 of the same length n. We
define the scalar product of the two bitstrings as

blx b2 = (b1[0] - b2[0]) @ (b1[1] -~ b2[0]) & - @ (b1[n — 1] - b2[n — 1])

where @ is the XOR operation and - is the AND operation. Give a C++
implementation utilizing the bitset class.

Solution 1. The C++ program is

// scalarproduct.cpp

// c++ -std=c++11 -o scalarproduct scalarproduct.cpp
#include <iostream>

#include <string>

#include <bitset>

using namespace std;

int main(void)

{

// least significant bit on the right-hand side
const int n=8;

bitset<n> bl(string("10001010"));

bitset<n> b2(string("00110111"));

cout << b2[0] << endl << endl;

int templ[n];

int j;

for(j=0;j<n;j++)

{

temp[j] = b1[j] & b2[jl;

cout << temp[j] << endl;

}

cout << endl;

int scalar = temp[0] ~ temp[1];

for(int j=2;j<n;j++)

{

scalar = scalar
}

cout << scalar << endl;
return O;

}

temp[j];

Problem 2. Let a,b,z,y € {0,1}. Find all solutions of the boolean
equation
a-b=xdy.
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Utilize the bitset class of C++.

Solution 2. The C++ program provides the solutions

// bitequation.cpp
#include <iostream>
#include <bitset>
using namespace std;

int main(void)
{
bitset<1> a;
bitset<1> b;
bitset<1> x;
bitset<1> y;
int j1,j2,j3,j4;
cout << "The solutions are: " << endl;
for(j1=0;j1<=1;j1++)
for(j2=0;j2<=1; j2++)
for(j3=0;j3<=1; j3++)
for(j4=0;j4<=1; j4++)
{
a=3jl; b=3j2; x=33; y = j4,;
if((a & b)==(x ~ y))

{cout << "a = " << JL KK "MK p =" G
<< "x = " <K< jB3 KK MM KK "y = " << j4 << endl;
}
1
return O;

}

provides the solutions

The solutions are:

a=0b=0x=0y=0
a=0b=0x=1y=1
a=0b=1x=0y=20
a=0b=1x=1y=1
a=1b=0x=0y=0
a=1b=0x=1y=1
a=1b=1x=0y=1
a=1b=1x=1y=0
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Problem 3. Let w := e?™/4 The 4 x 4 quantum Fourier transform is
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given by

1 1 1 1
111 w w? W
U= 211 w? wt WS
1 w? Wb W

Since w* = 1 we can write
1 1 1 1
111 w w? W
U= 211 w?2 1 w?
1 w? w? w

Show that the matrix is unitary. Then find the four eigenvalues. Apply
matrix to the normalized vector

<
Il
|
— =

Discuss.

Solution 3. The Maxima program

/* Fourier.mac */

om: exp(2+%pi*%i/4);

F: matrix([1,1,1,1],[1,om,om"2,0om"3],[1,0om"2,1,0m"2],[1,0m"3,0m"2,0m])/2;
F: trigexpand(F);

FT: transpose(F);

FTC: conjugate(FT);

R: F . FTC;
phi: matrix([1],[1],[1]1,[11)/2;
psi: F . phi;

eigenvalues(F);

provides us with the information that F' is unitary since FF* = I,. The
eigenvalues are +1 (twice), —1 and ¢ and

F¢ =

oo o
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14.3 Supplementary Problems

Problem 1. Consider the standard basis

1 0 0
=10, 2=|1], B=|0
0 0 1

in C?, the unitary matrix (quantum Fourier transform)
1 1 1 1
U=—|1 -exp(i2n/3 exp(—i2n/3)
V3 1 exp(—i27/3) exp(i2n/3)

and the six permutation matrices

1 00 01 0 00 1
Pp=|010]|, B=|001]|, =10 0],
001 100 01 0
00 1 01 0 1 00
Pr=|0 10|, P=|100], =001
100 00 1 010

The first three permutation matrices P, P», P53 are the even permutation
matrices with
det(Pl) = det(Pg) = det(Pg) =1

and the last three permutation matrices Py, Ps, Ps are the odd permutation
matrices with
det(P4) = det(P5) = det(PG) =—1.

Do the following calculation. First find the normalized state
Y1) = U[2).
Then calculate the six normalized states
k) = Prltn), k=1,2,3,4,5,6

Next find U* and check it is really the inverse of U. Then calculate the six
normalized states

U*lgy), k=1,2,3,4,5,6.
Finally find the twelve probabilities

21U i) 2, (31U i) .
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Discuss. This exercise plays a role for the quantum permutation algorithm.

Problem 2. Suppose the input consists of n qubits and the boolean
function to be calculated is

Fi={0,1,....,2" ~1} - {0,1}.

Show that
"1 1

Up=> Y 1)l @ ke f(5)) (k]

7=0 k=0

is a unitary matrix (a permutation matrix).



Chapter 15

Quantum Error
Correction

15.1 Introduction

In classical communication theory where bits are communicated, the only
possible type of error that can occur is a bit flip. In the quantum case
any rotation or phase change in the Hilbert space of the quantum state is
an error. Thus there are an infinite number of different errors that could
occur just for a single qubit. Fortunately the measurement process involves
the projection of the quantum state into a compatible subspace. Thus
measurement to determine the occurrence of an error reduces the error to
one compatible with the measurement. Suppose the data is contained in
the state [¢), and the environment is described by the state |E). The
initial state of the entire system is described by the tensor product of the
states |¢) ® | '), which evolves according to some unitary operation U. The
state |¢) evolves according to the unitary operation U, which describes a
quantum algorithm. In classical error correction codes, all that needs to be
corrected are bit flips. In the quantum case errors such as bit flips, phase
changes and rotations complicate the error correction techniques. Since
arbitrary errors in an encoding of information cannot be corrected, only
certain types of errors are assumed to occur. The types of errors depend on
the implementation. For example, suppose the types of errors (which we
assume are distinguishable due to an encoding) are described by the unitary
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basis F1, ..., E, so that all errors are described by a linear combination
E=cBi+ - +c,E,,  ElE; =1

where I is the identity operator and j = 1,...,n. We use the product
state 1) ® |0), where |¢)) is an encoded quantum state with the necessary
property that it can be used to determine if any error of Fq,..., E, has
occurred, and the second quantum register will hold the number of the type
of error which occurred. Let S denote the operator for the error syndrome

S(E; @ DY) @ |0) := |¢) @ [).

Now the encoded state with errors is given by

(E@D)(lv) ®|0) chE |¥) ® [0).

Jj=1

Applying the operator for the error syndrome gives

S(E @ I)(l$) ®0)) ZCJE ¥) ® |3).

j=1

Measuring the second register identifies the error. Suppose the measure-
ment corresponds to |k), then the error can be repaired since

(E;' o D(Br® DY) ® k) = [¢) ® [k).
Given a normalized state in C2
) = al0) + 811), laf* + [ =1
A bit-flip changes the normalized state into
all) + B|0)

i.e. we apply the operator |0)(1|. The phase-flip error changes the normal-
ized state into

al0) — B1)
i.e. we apply the operator |0)(0] + e‘™|1)(1].
Let o1, 02, 03 be the Pauli spin matrices and oo = I». A general single bit

error is thus a map
e1ls + eso1 + e300 + e403.

Interaction with the environment maps single qubits as

[9) = (e100 + e201 + €302 + e403)[1)).
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15.2 Solved Problems
Problem 1. Calculate the following in terms of I, X, Y, Z

(i
(ii

(iii

XZ, ZX

Ucnor(X @ I,)Ucnor
Ucnor(I2 ® X)Ucnor

(iv) Uenor(Z @ I,)Ucnor

(v ( )

(vi (

(vii

Ucnor(I2 ® Z)Ucnor
Ucnor(X @ X)Ucnor
Uonor(Z ® Z)Ucnor
UcnorUcnoT

NN NG NI NI N N N

(viii
where
I :=10){0] + [1)(1], X :=[0)(1] + [1){0]

Y= [0) (1] = [1){0],  Z:=[0)(0] = [1)(1]
Ucnor:=10)(0| ® I + |[1)(1| ® X.

Solution 1. Straightforward calculation yields

(i) XZ=-Y, ZX=Y

(ii) Ucnor(X @ I)Ucnor = X ©® X
(iii) UCNOT(IQ ® X)UCNOT =L®X
(iv) Ucnor(Z @ I2)Ucnor = Z & Ip
(v) Uenor(Io ® Z)Ucnor =Z ® Z
(vi) Uenor(X @ X)Uenor = X ® I
(Vii) UCNOT(Z ® Z)UCNOT =L®Z
(viii) UenorUcnor = 12 ® Is.

Problem 2. Suppose that the only errors which can occur to three qubits
are described by the set of 8 x 8 unitary matrices

{Lehel, LoUnor®Unor, L@UpUp, L@ (UpUnor)®(UpUnor)}

where Up :=[0)(0| — |1)(1], Unor := |0){(1] + |1)(0|. A linear combination
of these unitary matrices is given by
E=alb LI+ Bl @ Unor @ Unor + 0l Up @ Up
+vI2 ® (UpUnor) ® (UpUnoT)
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where «, 3, 6, v € C. Describe how an arbitrary error E on the three-qubit
state 1

—(|00) 4+ [11)) ®

\/ﬁ(\ )+ [11)) @ |¢)

can be corrected to obtain the correct |1) as the last qubit, where

[v) := al0) +b|1), |a*+[b]*=1, a,beC.

Solution 2. Applying the matrix (Is = I ® I ® 1)
alg+ L @Unor @Unor +010Up@Up 4+~ @ (UpUnor) ® (UpUnoT)

to the state
*(\00> +[11)) @ [4)

N

yields the state

1
aﬁuow + 1) @ |¢) +ﬁ\f

1
+5ﬁ(|00> — |11)) ® (a|0) — b[1)) +7ﬁ

Thus we measure the first two qubits in the Bell basis and apply the cor-
responding transform to the last qubit to obtain [).

(101) + [10)) @ (al1) + b]0))

(I01) — 110)) @ (a1) — b]0)).

measure transform
ooy + 1)
1(01) +110)  Unor
1300y~ 1)) Up
2(01) ~ 10))  UnorUp

Problem 3. Assume that the only errors that occur in a system of
qubits are isolated to individual qubits, i.e. the error in one qubit state
is independent of the error in another qubit state. Hence the error for
each qubit can be expressed as a linear operator E on the Hilbert space
C2. Furthermore E can be expressed as a linear combination of the 2 x 2
identity matrix and the Pauli spin matrices o1, 03 and o3. Now consider
a non-degenerate n-qubit code representing a single qubit state which can
correct errors in up to k qubits.

(i) Find a lower bound describing n.

(ii) Find the lower bound for k = 1.
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Hint. The n-qubit states representing qubits with errors should be distinct
(orthogonal) for distinct errors and distinct from the case where there are
no errors.

Solution 3. (i) We have 3 distinct errors on a single qubit described by
the Pauli matrices. Thus there are

i\ _ o n!
3(l>_3l!(nl)!

distinct errors in [ qubits of n qubits. The total number of ways to have at
most k errors in n qubits is then given by

> ()

There are 2™ orthogonal states in a Hilbert space describing n qubits. Since
the states representing qubits (]0) or |1)) with distinct errors should be

orthogonal, we find
k
n
2) 3 <2m.
>4(}) <

(ii) For k = 1 we have the bound 2(1+ 3n) < 2™. In other words, for k = 1
we find n > 5.

Problem 4. Consider the Pauli matrices o1, 02, o3 and the 2 x 2 unit
matrix. Do these matrices form a group under matrix multiplication? If
so, provide a proof. If not, what set with minimal cardinality includes the
Pauli matrices and forms a group under matrix multiplication?

Solution 4. Obviously these matrices do not form a group since o109 =
io3 which is not a Pauli matrix. Since the factor i is introduced, all factors
which are powers of 4 must be included i.e. £1 and =i:

{Fo, tio : 0 € {Iz,01,02,03}}.

Thus we have a group of cardinality 16.

Problem 5. Let S be a set of operators closed under the hermitian
conjugate (adjoint) such that the quantum code Cyg of the set of states

Cs:={lY) : U) =), vVUeS}

is non trivial (does not consist only of the zero state). The set S is called
the stabilizer of the code Cs.
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(i) Show that
[M,N]|¢) =0, VM,NeS, [¢)eCs.

(ii) Let [E, M] = 0 for some M € S. What can be said about E|¢) when
) € Cs ?
(iii) Let [E, M]+ = 0 for some M € S. What can be said about E|¢)) when
) € Cs ?

Solution 5. (i) Since M Ny = M) = |¢), NM|yp) = N|p) = |¢) it
follows that [M, N]|¢) = 0.
(ii) For |¢) € Cg we have

ME[y) = EM|¢) = El¢).

Thus E|v) is an eigenstate of M corresponding to the eigenvalue 1.
(iii) For |¢), |¢) € Cs we have

(IE[Y) = (9| EM|¢p) = —(o|ME[p) = —(g| M Elp) = — (6| E|¢).
Thus (¢|E|y) = 0. In other words, E|) ¢ Cg. Furthermore
ME|Y) = —EMp) = —E[¢))

thus E|v) is an eigenstate of M corresponding to the eigenvalue —1.

Problem 6. Consider the application of the controlled NOT gate to the
state |10) = |1) ® |0). Suppose that a single qubit error o1 ® I occurs
before the controlled NOT operation is performed. How many errors does
the resulting state have after performing the control NOT operation? Also
discuss the case when the error is given by %(Ig +01)® Is.

Solution 6. The intended operation is Uonyor|10) = |11). The operation
with error is

UCNOT(Ul ® .[2)|10> = UCNOT‘OO> = |00>.

Thus we have two single qubit errors o1 ® I and Is ® o1. For the second
type of single qubit error we have

UCNOT%uz 01)® L|10) = UCNOT%<|10> +[00)) = %(\0@ 1)),

Here we find that the error cannot be expressed in terms of single qubit
erTors.
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Problem 7. Consider the application of the controlled NOT gate to
corresponding pairs of qubits of the state |10) where |0) is a code word for
|0) and |1) is a code word for |1) in a quantum error correction code that
can correct single qubit errors. In other words the controlled NOT gate is
applied to the i-th qubit of |1) as control and the i-th qubit of |0) as target.
Suppose that a single qubit error

1

V2
on one of the qubits of |1) occurs before the controlled NOT operation is
performed. Discuss the error correction of this computation.

(I2 +01)

Solution 7. Suppose the single qubit error occurs on the j-th qubit, and
that the encoding |1) and |0) is n qubits long. Thus the error is

<®12> (I2+01) ® ® I
k=j+1

Let Uonor denote the pairwise application of the controlled NOT opera-
tion. Then

UcnorE|10) = Uonor EUS yorUcnor|10).

The controlled NOT operation is given by

1 1
Ucnor = 5(-’2 +o3) @I+ 5(1'2 —03)®o0y.
We find the matrix
1U (Is + 01)U¢ 1(I®I+®)
—— g = —= ag g1 ).
\@ CNOT\1L2 1 CNOT \/i 2 2 1 1

Consequently we obtain the normalized state

UCNOTE|10 ( (@IQ)
1 j—1 n+j—1 2n
+—= L|®o® I, | ®01® I
H(@n)ene(@n)ens( @ -

k=1 k=j+1 k=n+j+1
XUCNOT|1O>-
Thus there is a linear combination of no error, or a single qubit error in

the first block of n qubits and a single qubit error in the second block of n
qubits. Both errors can be independently corrected.
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Programming Problem

Problem 1. Consider the single qubit state a|0) + b|1) with aa + bb = 1.
Encode the single qubit state in three qubits as

a(|0) ©10) @10)) + b(|1) @ 1) ©[1))

ie. |0) = |0)®])®]0), |1) — |1)®|1)®]|1). Give a Maxima implementation.
Solution 1. Utilizing the Uonyor gate
0 1
Ucnor =12 ® (1 0)

and I ® Ucnyor, Ucnor ® Is we can implement the encoding.

/* encoding.mac */

v0: matrix([1],[0]); vi: matrix([0],[1]);

psi: a*v0 + b*vi;

alpha: kronecker_product (psi,kronecker_product(v0,v0)) ;
I2: matrix([1,0],[0,11);

UCNOT: matrix([1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,01);
Ul: kronecker_product(I2,UCNOT);

U2: kronecker_product (UCNOT,I2);

beta: Ul . U2 . alpha;

15.3 Supplementary Problem

Problem 1. Let |0), |1) be the standard basis in C?. Consider the
quantum bit

1
) = *2(\0> —11))
which is encoded as
Cly) =) = %(l@ ®0) ®[0) — |1) ® [1) ® |1)).

Consider the error £ = %01 QI ® Iy + %Ig ® o1 ® I5. Show that

El¢) = %ﬂ(ll>®lo>®l0>—|0>®|1>®|1>)+%(IO>®|1>®|0>—|1>®|0>®|1>)-

Then apply the syndrome extraction to (El)) ® |0) ® |0) @ |0).



Chapter 16

Quantum Cryptography

16.1 Introduction

Cryptography usually involves a key or keys to be used in encryption and
decryption algorithms. Classical cryptography generally relies on maps that
are perceived to be very difficult to invert with incomplete information.
One popular algorithm due to Rivest, Shamir and Adelman is the RSA
algorithm

n=pqg, Me{0,1,....n—1}, ed=1mod (p—1)(g—1)
C :=(M*° mod n), M = (€4 mod n)

where p and ¢ are large prime numbers, M is the message and C' is the
encrypted message. If p, ¢ and d are unknown then, in general, C' can-
not easily be obtained from M. However, Shor found that p and ¢ can be
obtained with relative ease (and consequently also d) using the quantum
Fourier transform.

Quantum cryptography is concerned with the secure distribution of keys
using quantum communication channels. Another application is hiding
classical data in quantum states. Quantum cryptographic techniques rely
on physics to supply secure communication in the sense that it is possible to
determine if someone has intercepted the message. This is due to the fact
that measurement in quantum mechanics is associated with a disturbance
(projection) of the quantum state. Entanglement can also be used to detect
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whether a message has been intercepted. For example, when one qubit of
an EPR pair is measured the correlation is destroyed which can be tested
with Bell’s inequality.

16.2 Solved Problems

Problem 1. Let p,q be large prime numbers, (e,n) a public key, and
(d,n) a private key for the RSA cryptosystem where n = pg. Let M,C €
{0,1,...,n— 1} with

C = M*° mod n, M = C?% mod n.
(i) Let ged(a,n) = 1. Show that p and ¢ can be determined from even
reNifa" =1modn, a”/? # 1 mod n, a”/?> # 1 mod n.
(ii) Hlustrate (i) with p =5, ¢ =11 and a = 6.
(iii) Show that M can be determined from C and ¢t € N, where (¢ minimal)
C* = C mod n.

(iv) Mlustrate (iii) with p =5, ¢ =11, e =9 and C' = 48.

Solution 1. (i) We have
a" —1=0mod n, (a2 —1)(a2 +1) =0 mod n
Consequently
[(a2 — 1) mod n][(a? + 1) mod n] = kn = kpq
for some k € Z. Consequently one of p and ¢ is given by
ged(a? — 1 mod n,n).

The second is found by division of n. The ged can be determined efficiently
using the Euclidean algorithm.
(ii) The powers (from 0) of a in modulo 5 - 11 = 55 arithmetic are

1, 6, 36, 216 = 51, = 306 = 31, = 186 = 21, = 126 = 16, = 96 = 41,

=246 =26,=156 =46, =276 =1

where the last power is 10. Thus we use r = 10. Thus the periodicity of
this sequence is also 10. Consequently

6° —1 = 7775 = 20 mod n.
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Using the Euclidean algorithm
55=2-20+15, 20=1-1545, 15=3-540

Thus we find the ged(20,55) = 5. Consequently p =5 and ¢ = n/5 = 11.
(iii) We find

Ct= M = it = (Cc)? = C? = M mod n.

(iv) We find
C° =487 =494°39 =14 - 14 - 48 = 3.

The powers (from 0) of C° in modulo 5 - 11 = 55 arithmetic are
1,3,9,27, 26, 23, 14, 42, 16, 48
ie. weuset =9. Now C' =3 = M mod n.

Problem 2. Apply the quantum Fourier transform to the first register of

%(\@ @[0)+ 1) @[1) +12)®(2) +[3) @[0) + |4) @ |1) +[5) @ [2))

to find the underlying periodicity in the second register. In this case the
quantum Fourier transform is given by

¢) =

5
1 —LTT
Ugrr = —= Y e R0 j) (k.
6
7,k=0

Solution 2. Applying the quantum Fourier transform yields

(Ugrr @ DY) = Z|] ( —zQﬂ'j/6|1>+e—i27rj2/6‘2>

+e—z27rj3/6|0> +e—z27rj4/6|1> +€—i2wj5/6|2>)

Il
| =
Nl

o

[1+ 7] 1j) & (10) + 7 ™I/31) 4 e~ 27/ %)2) )

NI

2) @ (10) 4+ e™m20/21) 4 e~ H47/3)))

W =
[e=]

Jj=

Thus measuring the first register yields 0, 2 or 4. The minimum positive
value is 2. The period is 6/2 = 3.
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Problem 3. Let By = {]0),]1)} and By = {|0g),|1x)} denote two
orthonormal bases in C? where

1 1
o) 1= 200+ ). L) s= —=(0) = ).
Show that
) = %ﬂw ® 1) — 1)@ [0)) = —%uom L) — |21} ® [02)).

Solution 3. A simple calculation yields

1
) := ﬁ(@ ®[1) = 1) ®10))
1
= 72\/5(”0H> + 1@ @ [0m) = [1m)] = [108) — [1m)] @ [|08) + [14)])
1
= _E(‘Om ®1u) — 1) ® |0m)).

Problem 4. Let
By :={ |[¢o) := |H), [1):=|V) }

denote an orthonormal basis in the Hilbert space C2. The states |H) and
|V} can be identified with the horizontal and vertical polarization of a
photon. Let

S 1
V2 V2

denote a second orthonormal basis in C2. These states are identified with
the 45° and -45° polarization of a photon. Alice sends photons randomly
prepared in one of the four states |H), |V), |¢o) and |¢1) to Bob. Bob
then randomly chooses a basis By or By to measure the polarization of the
photon. All random decisions follow the uniform distribution. Alice and
Bob interpret |1y} as binary 0 and |¢)1) as binary 1 in the basis B;. They
interpret |¢g) as binary 0 and |¢;) as binary 1 in the basis Bs.

(i) What is the probability that Bob measures the photon in the state
prepared by Alice, i.e. what is the probability that the binary interpretation
is identical for Alice and Bob?

(ii) An eavesdropper (named Eve) intercepts the photons sent to Bob and
then resends a photon to Bob. Eve also detects the photon polarization in
one of the bases By or By before resending. What is the probability that
the binary interpretation is identical for Alice and Bob?

By { 160) = —(1H) + V), |n) == = (|BT) |v>>}
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Solution 4. (i) The probability that Alice chooses to prepare a state from
the basis By is 3 and from Bs is 1. Similarly the probabilities that Bob
chooses to measure in the basis B; and By are also % Thus the probability
that Alice and Bob measure in the same basis is i + i = % To determine
the correlations in the binary interpretation we consider the two cases (a)
Alice and Bob use the same basis and (b) Alice and Bob use a different
basis. The cases (a) and (b) have equal probability of 3. For the case (a)
Alice and Bob have the same binary interpretation. For the case (b) we
note that

[{@olgo)|* = [(olo1)|* = [{nldo)]* = [(¥rldr)]* = %

In other words, if Bob uses the wrong basis he obtains the correct binary
interpretation with probability % Therefore the total probability that Alice
and Bob have the same binary interpretation is

1 1 11 3

s 'ty Ty
Thus 75% of the photons sent by Alice have an identical binary interpreta-
tion shared by Alice and Bob.
(ii) From (i) the probability that Alice and Eve, Eve and Bob, as well as
Alice and Bob measure in the same basis are all % + % = % Also from
(i) we find that if Alice and Eve work in the same basis Bob has a 75%
chance of obtaining the correct result since Eve does not perturb the state
of the photon. Similarly if Bob and Eve work in the same basis Bob has
a 75% chance of obtaining the correct result since Bob does not perturb
the state of the photon after Eve resends it. Now we consider the case
when Eve uses a different basis from that of Alice and Bob. Suppose Alice
sends [1)o) from Bj, and Eve measures in By. Thus Eve will obtain |¢g)
or |¢1) with equal probability % Now Bob measures in the basis By and
obtains |19) with probability 3 or [¢) with probability 3. Thus we can
construct the following table where P; is the probability that Eve obtains
Alice’s binary interpretation of the state correctly and P; is the probability
that Bob obtains Alice’s binary interpretation of the state correctly.

Alice’s basis | Eve’s basis | Bob’s basis | P; P
B; B; B; 1 1
B; B; By 1 1/2
B By B 1/2 1 1/2
B By By 1/2 1 1/2
By By By 1/2 | 1/2
Bsy B; Bsy 1/2 | 1/2
Bs B B; 1 1/2
B B B 1 1
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The total probability that Bob’s binary interpretation corresponds to Al-
ice’s binary interpretation is

L 1+1+1+1+1+1+1+1 _2
8 2 2 2 22" 2 8

ie. 62.5%.

Problem 5. (i) Consider the two-qubit singlet state in the Hilbert space
(24
1 1

Let U be a 2 x 2 unitary matrix with det(U) = 1. Find the state (UQU)|).
(ii) Consider the state

(101) = [10)) = —=(|0) @ [1) = [1) ® |0)) .

1
[v) = ﬁ(2|0011> —0101) — |0110) — |1001) — |1010) 4 2|1100))

in the Hilbert space C'. This state is an extension of the two-qubit singlet
state given in (i). Calculate the state (U@ U @ U @ U)).

(iii) The state given in (i) and (ii) can be extended to arbitrary N (N =
even) as follows

[) ! (;V —p)!(—l)N/2—Pj1j2 -+ JN)

1
- (N/Q)'\/W perm%tionf.

0...01...1

where the sum is extended over all the states obtained by permuting the
state
0...01.. ) =|10)®---®[0) ®|1]) ®---® 1)

which contains the same number of Os and 1s and p is the number of Os in
the first N/2 positions. Thus the state is a singlet state. Let

UN =U®---@U N — times

Find the state USN [¢)).

Solution 5. (i) A unitary transformation for 2 x 2 matrices is given by
|0) — a|0) + b|1), 1) — ¢|0) +d|1)
where ad — be = €® (¢ € R). We obtain

ele

U U)W = 7

(10) @ [1) = 1) ©10)).
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For ¢ = 0 (det(U) = 1), we obtain the eigenvalue equation (UQU)|¢) = |¢).
(ii) Using the results from (i) and det(U) = 1, we find

UeUaUaU)Y) = ).

(iii) Using the result from (i), we also find U®¥|¢)) = [1). The state |¢)
given in (iii) can be used to distribute cryptographic keys, encode quantum
information in decoherence-free subspaces, perform secret sharing, teleclone
quantum states, and also for solving the liar detection and Byzantine gen-
erals problems.

Problem 6. Let p denote an arbitrary 4 x 4 density matrix. Consider
the unitary operators (bilateral rotations)

L(1 i 1 11 1 11
B””'_2(i 1>®(i 1>’ By'_2(—1 1>®(—1 1>’
(1 0 1 0
Bz.—z<0 —i)®(0 —i)

and the unitary operators

Uy =1, Uy:=B}, Us:=Bj, Uy:=B?, Us:=B,B,, Us:=B,B.,

Uy := B.B,, Ug:= B,B,, Uy:=UZ, Uy :=UZ, Uy :=U2, Uy :=UZ.

The mixed state py is prepared by transforming 12 systems each described
by the mixed state p according to each of the operators Uy, ..., Ujs. Cal-
culate the density matrix

;&2
W = 1o ZUijj.
j=1

Express pw in terms of the Bell basis.

Solution 6. An arbitrary 4 x 4 density matrix p can be written in the
form

a1 aiz2 ais a14
a12 a2z a23 24
a13 a3 a33 34

14 Q24 G354 1—aj; —ag —ass

where aq1,a12,a13 € R. We find

2-2F 0 0 0

1 0 142F 1—4F 0

Pw =% 0 1—4F 1+2F 0
0 0 0 2-2F
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where F' := (a22 + a3z — 2Ras3)/2. In terms of the Bell basis we have

ow = Flum) ™|+ 2o (0 +167) (67 + 19767

Problem 7. Let

pw —F|¢+><¢+|+ (|¢+><¢+|+|¢ W™+ 17 ) {e7])
where F' € [0,1] is the fidelity. Consider the unitary matrices

1 0 0 0 0 1
Upxor1 = (O 0)®12®I2®12+(0 1>®12®<1 0)®12,

1 0 0 0 0 1
UBXOR23:IQ®<O 0>®I2®12+12®<0 )®I2®( 0)

and Upxor = Upxor1Usxorz (bilateral exclusive or). Let

p:=Upxor(pw @ pw)UkxoR-

Calculate the probability p. that the last two qubits of a system described
by p are found in the same state when measured with respect to the stan-
dard basis, i.e. the last two qubits are in one of the states

(0)=() ()= ()

Determine the fidelity

1000

oo relenetem) (o 0 0 0
' De ’ 000 0
0 0 01

It is the projection onto the space of states compatible with the measure-
ment outcomes above. Discuss the case 1/2 < F < 1.

Solution 7. The probability p. is given by

8F2 —4F +5
pe=tr(p(Lom) = - IED
Thus the new fidelity F”’ is given by
10F? —2F +1

Fle ——————.
8F2 —4F +5
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For FF =1/2 we find F/ =1/2 and for F = 1 we find F’ = 1. We have
(2F —1)4F - 1)(1 - F)
AF2F —1)+5

Obviously for 1/2 < F < 1 we have F' > 0, 2F —1 > 0, 4F —1 > 0 and
1—F>0. Thus F/ > F when 1/2 < F < 1.

F'—F=

Programming Problem

Problem 1. Alice and Bob share the entangled state (one of the four
Bell states)
1
W)=

Alice applies Iy ® I to |¢) when she wants to send the bit string 00 and
sends (I ® I)|Y). Alice applies 03 ® I3 to |¢) when she wants to send the
bit string 01 and sends (o3 ® I2)|¢). Alice applies 01 ® Is to |[¢)) when she
wants to send the bit string 10 and sends (01 ® I2)|¢). Alice applies ioa @1
to ) when she wants to send the bit string 11 and sends (ioy ® I2)|¥).
What states are send to Bob?

(|0)a ®1(0)5 + [1)a @ [1) ).

Solution 1. We have
(I2 @ I2)[h) =1

<%®mw=§¢m@mwwwm
1

(1 ® B4} = Z=(1) @ 10) +10) & |1)

, _ L _

(i72@ B)IV) = —=(10) © 1) = ) ©[0).

So we have the four Bell states which form an orthonormal basis in C*.
The corresponding Maxima program is

/* AliceBob.mac */

I2: matrix([1,0],[0,1]);

sigl: matrix([0,1],[1,0]);

sig2: matrix([0,-%il, [%i,01);

sig3: matrix([1,0],[0,-11);

e0: matrix([1],[0]); el: matrix([0],[1]1);
psi: (kronecker_product(e0,e0)+kronecker_product(el,el))/sqrt(2);
t1: kronecker_product(I2,I2) . psi;

t2: kronecker_product(sig3,I2) . psi;

t3: kronecker_product(sigl,I2) . psi;

t4: kronecker_product (/i*sig2,I2) . psi;
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16.3 Supplementary Problem

Problem 1. Given an orthonormal bases in C2

By = { |l‘>, ‘y> }a By = { ‘u>7 |U>}
with
= i u v = i u) — (v
|z) = \/5(\ )+1v), ) \/Q(‘ ) —[v)

Thus we have mutually unbiased bases. Alice encodes her key-bits, for
example as a polarized photon, and sends it to Bob.

(i) Assume that Alice has chosen the state |z) with the density matrix
|z} (z|. The state of Eve in C? is |1) with the density matrix |1)g)(1)o|. Eve
applies a unitary 4 x 4 matrix to the product state |z) ® |¢g)

U(lz) ® [¢0)) = [B)

so that |B) is an entangled state. Show that the Schmidt decomposition of
the state |B) is of the form

|B) = Valz) @ &) + V1—aly) ® [¢)
where |£;) L |¢;). Show that the density matrix for the post-interaction

state |X) is of the form pA¥ = | X)(X| = U(p2 @ p§)U*.
(ii) Show that when Alice sends the state |y) the entangled state

U(ly) ® [¢o)) = [Y)
is of the form
V) =V/Bly) @ &) + V1 - Blz) @ 1¢,)

where |€,) L |(y).
(iii) Study the special case where U is the Bell matrix

10 0 1
1

g Lo 1 o0
2lo1 -1 o0
10 0 -1

and
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Quantum Channels

17.1 Introduction

We consider the Hilbert space H of n x n matrices over C with the scalar
product (Frobenius inner product)

(A, B) :=tr(AB™)

with A, B € H. We also consider the Hilbert space C™ and the vec oper-
ator. Given a n X m matrix the vec operator stacks the column on top of
each other.

A state is described using n x n density matrices p, i.e. tr(p) =1 and p >0
(positive semidefinite). For a pure state we have p? = p and for a mixed
state we have p? # p.

The space of trace-class operators acting in this Hilbert space is denoted
by S(H). A quantum channel from a Hilbert space H4 to a Hilbert space
Hp is represented by a completely positive trace-preserving map

P : S(HA) — S(HB).

Such a positive trace-preserving map can be represented in Stinespring
representation, Kraus operator representation and Choi-Jamiolkowski rep-
resentation.

369
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Let H,, denote the vector space of n x n Hermitian matrices over the real
numbers. We say that p € H,, is positive semi-definite (or p > 0) if x*px >
0 for all x € C", or equivalently: all of the eigenvalues of p are non-negative.
A linear map ¢ : H, — H, is TPCP (trace-preserving completely positive)
if

1. TP (trace-preserving): Vp € H,, tr(p) = tr(v(p))

2. CP (completely positive): Vm € N, p € Hypp,

pP=20 = (@ Inxm)(p) >0
where I, ., is the identity operator on m x m matrices.

Let H,, be the vector space of the n X n hermitian matrices and H € H,,.
Consider a family of n x n matrices Vi, ..., V,, over C. Consider the
completely positive map ¥ : H,, — H,, defined by

V(H) =) V;HV}
j=1
This map is said to be a Kraus map if

SV =1
j=1

Then the matrices Vi, Vs, ..., V,, are called Kraus operators.

A completely positive trace-preserving map ® : S(A) — S(B) can be rep-
resented in three different ways, the Stinespring representation, Kraus op-
erator representation and Choi-Jamiolkowski representation. Stinespring’s
representation tells us that every quantum channel ® : S(A) — S(B) can
be written in terms of an isometry V from A to the joint system B @ FE
(E environment) followed by a partial trace such that ®(p) = trg(VpVT)
for all p € S(A). Tracing out system B instead of E defines a com-
plementary channel ¢¢(p) = trg(VpV1) for all p € S(Ha). The Choi-
Jamiolkowski representation of the channel ® : S(A) — S(B) is the opera-
tor J(®) € S(B ® A) that is defined as

J(@) =A@ x L)(I2){Q) = > S(Ejp® Ejr)
1<) k<Al

where
1K
|Q>=ﬁ;lj>®lj>

and Ejj is the elementary matrix with 1 at entry (jk) and 0 otherwise.
|A| := dim(A), |B| := dim(B) denote the input and output dimension of
the quantum channel, respectively.
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17.2 Solved Problems

Problem 1. Let H, be the vector space of n X n hermitian matrices.
The adjoint (conjugate transpose) of a matrix A € C"*" is denoted by A*,
Consider a family Vi, Vo, ..., V,, of n X n matrices over C. We associate
with this family the completely positive map ¢ : H,, — H,, defined by

$(X) = Y VXV
j=1
The map 1) is said to be a Kraus map if ¢(I,) = I, i.e.
2 ViVi =1
j=1

and the matrices Vy, Vo, ..., V,, are called Kraus operators.

0 1 0 0
i) we(00)

Show that Vi and V5 are Kraus operators and find the associated Kraus
map.

Let m =n =2 and

Solution 1. Since

X « (0 1 0 0 0 0 0 1y (1 0
V1V1+V2V2_(o 0)(1 0>+<1 o)(o 0)‘(0 1)
the matrices Vi and Vs are Kraus operators. The associated Kraus map is
. a b\ (0 1 a b 0 0 n 0 0 a b 0 1
c d) \0 0 c d 10 1 0 c d 0 0
_(d 0
“\0 a)’

Problem 2. Let ¢ : H,, — H,, be a Kraus map. Thus % is linear. Show
that there exists ¥ € C™*"™ such that for all X € H,,

vec(¥(X)) = Uvec(X)

where 1 is an eigenvalue of ¥. What is a corresponding eigenvector?
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Solution 2. Let V4, V5, ..., V,, be the Kraus operators associated to 1.
Since vec(ABC) = (CT @ A)vec(B) we find

vee(p(X)) = vec Z Vi XV} Z V; @ Vj | vec (X).
j=1 j=1
Thus we find
U= "V;aV,
j=1

We also have 9(I,,) = I, so that
vec(¥(1,)) = Uvec(I,) = vec(1,)

so that 1 is an eigenvalue of ¥ and a corresponding eigenvector is vec(Iy,).

Problem 3. Let L denote the space of linear operators on a Hilbert space
H. A linear map € : L — L is called a positive map if for all positive semidef-
inite p € L the operator €(p) is also positive semidefinite. As an example we
consider the transpose operation. Let B = {|1),2),...,|dim(H))} denote
an orthonormal basis for the Hilbert space H. The transpose of a linear

operator
dim(H) dim(H)

Z Z ajlj)(k
Jj=1 k=1

is given by
dim(H) dim(H)

=2 2wy
Jj=1 k=1

The transpose operation ey (pg) is a positive map.

Let L4 denote the space of linear operators on a Hilbert space H 4, Lp the
space of linear operators on the Hilbert space Hp and Lap the space of
linear operators on the Hilbert space Ha ® Hp. The extension € ® I of the
linear map € : L4 — L4 is defined by

dim(La) dim(La)
€@ | Y A4®Bi|= > eA)®B
k=1 k=1

where Ay € Ly and By € Lp for k = 1,2,...,dim(Ly4). Similarly the
extension I ® p of p: Ly — Lp can be defined. A positive map e : L. — L
is a completely positive map if all possible extensions (e ® I or I ® €) of
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the map to arbitrary Hilbert spaces are positive. Every completely positive
map can be written in the form

e(p) =D AwpA;,
k
where Ay is a linear operator on the Hilbert space. Furthermore, if

> ApA; =T
k

then e is trace preserving, i.e. tr(e(p)) = tr(p). Is the transpose operation
completely positive?

Solution 3. Partial transposition ep(py ® I in the basis B of the Hilbert
space Ha of a state p in the Hilbert space Hy ® Hp is not completely
positive. Consider the Bell state |®) in the Hilbert state C? ® C2. Then

0
1

(Bt — =
%) (@] = 3

= o o
o O OO
= o o

0
0
0
Thus we have

1
(erctiop.1np @ DIPTHET]) = 5

[ elael
o= o O
o o= O
-0 o O

This last matrix has as eigenvalues 1 and —1. Consequently it is not positive
semidefinite.

Problem 4. Let |0), |1) be an orthonormal basis in C2. The Kraus
operators are defined by

Ko :=(al0)(0] + B1)(1]) ® I
Ky = (B1){0] + a]0)(1]) @ (|11)(0[ 4 [0)(1])
where aa® 4+ g5* = 1.
(1) Show that KSKO + Kle = IQ X IQ.
(ii) Let
_ L

9 =cl0)®[0) + 8L @), ) =—7%

(10) @10) +[1) @ [1)).

5

Show that Ko ) (1| K + K1) ()| K = ) ().
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Solution 4. (i) From K§ = (a*|0)(0] + 5*|1)(1]) ® I> we obtain

(1)

Ko Ko = (aa”|0)(0] + B67[1)(1]) © Ia.

Since K7 = (8*|0)(1] + a*[1)(0]) @ (|0)(1]| 4+ |1)(0]) we have
(

KKy = (B710)(0] + aa™[1)(1)) @ (|0)(0] + [1)(L]).
Since 0)(0] + |1)(1] = I and aa*® + 85* = 1 we obtain the result.

(ii) Since

Kol) = %<a|o> ® [0) + B1) @ [1))

we have

Aoly)(¥|Ag =
%(aa*l()) (0[@[0)(0[+88%[1)(1@[1)(1|+a|0)(1]@[0) (1|+a” 5[1)(0]@[1){1]).

Since

Ayfi) = %(am ® [0) + B1) ® 1)) = Aol45)

we obtain Aq|v) (| AT = Ag|) (| Ag. Thus

Ag|th) (Y] Ag + Ax|ih) (] AT =
aa”|0)(0]@[0)(0] + B8 1) (1] @ 1) (1] +aB*|0) (1] @ |0) (1] +a” B[1){0[ @ [1)(0]
which is the density matrix |¢)(¢|.

Problem 5. Find all Kraus maps v : Hy — Hs, associated with families
of 2 Kraus operators (V4 and V), which provide the transformation

oo 0)-(07)

Is there a Kraus map associated with a single Kraus operator which also
provides this transformation?

Calculate

Solution 5. By linearity of the Kraus map v we have

(3 0)=o(3 )= (3 ool )= (0 D)(0 ).
o3 2)-(5 8)
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We construct the matrix W which implements ¥ under the vec operator.
We write U = 1II; + A(I4 — II;), where A is a 4 X 4 matrix such that ¢ is a
Kraus map providing the given transformation and

1 0 0 1
1 «_ 110 0 0 O
II; := ivec(Ig)(vec(Ig)) =510 0 0 o
1 0 0 1
is a projection matrix. We have
1 1 1 0
1 0 0 110 1 0 0 0 0
\I/vec<0 O>—‘II ol =35 0>+2A 0 =10 —Vec<0 1)
0 1 -1 1
so that
1 —1
0 0
(H)-(6)
-1 1
We write A = —II_; + B(Iy — II_1), where B is a 4 x 4 matrix and
1 1\" 1 00 -1
o — 1|10 0 11 0o 00 0
N 0] — 0 00 0
-1 -1 -1 0 0 1
is a projection operator with II_{II; = II;II_; = 04. Consequently,
0 0 0 1 00 0 O 0 b2 b1z 1
|0 0 0 O 0 1 0 Of [0 by bag O
P=1000 0/ Blo o1 0] |0 b by 0
1 0 0 O 0 0 0 O 1 bgo bys O

Clearly ¥ cannot be written as a Kronecker product of 2 x 2 matrices, so no
Kraus map associated with a single Kraus operator can provide the given
map. Assume ¥ = C ® C + D ® D for some 2 x 2 matrices C' and D. We
find the equations

0 b _ - b 1 _ -—
<0 b;z) = 6110+d11D, (b;§ O) = C126’+d12D7

0 b . _— b 0 - _—
<1 bii) =¢1C +da D, (bii 0) = €220 + da2D.

Clearly the first columns (second columns) of C' and D are linearly depen-
dent. Thus we find

_ _ 0 [65) o _ 0 dg
v1_0_<01 o>’ VQ_D_<d1 o)
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where c1, c2,d1,dy € C satisfy |e1|? + |di|> = 1, |ca|® + |da]? = 1.

Problem 6. Let py,p2 € H, be positive semi-definite matrices.

(i) Is p3s = p1 + p2 positive semi-definite?

(i) Is p4 = kp1 (k € C) positive semi-definite?

(iii) Let ps € H,, such that p; + ps is positive semi-definite. Is p5 positive
semi-definite?

Solution 6. (i) Let x € C”, then x*p3x = x*p1x + x*p1x > 0 since
x*p1x > 0 and x*p1x > 0. Thus p3 is positive semi-definite.

(ii) Let x € C™, then x*pyx = kx*p1x is non-negative if and only if kK € R
with £ > 0. Thus, in general, py = kp; is positive semi-definite if and only
if £ > 0 (the only exception is when p; is the zero matrix, in which case
the statement is true for all k € C).

(iii) In general, no. Consider (1 }) = (é (1)) + ((1) (1) . All of the

matrices appearing in this equation are positive semi-definite, except for
0 1

(o)

Problem 7. Show that a linear map ¢ : H, — H, is a TP map if

and only if ¢¥*(I,) = I,,, where " denotes the adjoint with respect to the
Frobenius inner product and I,, is the n x n identity matrix.

Solution 7. The Frobenius inner product (A, B) := tr(B*A) provides

tr(p) =tr(L;p) = (p, In)
tr(¥(p)) = tr(I"¢(p)) = (b(p), In) = (p,¥"(In))

so that
tr(p) = r((p) & V(L) = L.

Problem 8. Show that

n

pPo = Z (E” & Ez;) € H,2

i,7=1

is positive semi-definite, where Fj; is the elementary n x n matrix with a 1
in row ¢ and column j and O elsewhere.

Solution 8. Any vector x in C"™ can be written in the form

n
X = E Ts,t€s et

s,t=1
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where {ei,...,e,} is the standard basis in C"* and z,, € C for s,t €
{1,...,n}. Since e}E;; = d;se; we find

* _
X poX = E TiiXjj =
i,j=1

Problem 9. An orthonormal basis, with respect to the Frobenius inner
product, for H,, (n > 2) is given by B = B; U By where

1 . i
Bl{\/i(Ejk+Ek]) : ]7k15""n7j§k}

Bzz{ﬂ(Ejk_Ekj) : Jvk:17""n?j<k}'

Express
n

pPo ‘= Z (E” & Ez;) € H,2

i,7=1

in terms of this basis.

Solution 9. We find

pp=Y FF- > GaG.

FeB; GeEB2

Problem 10. Show that a linear map % : H,, = H, is a CP map if and
only if (¢ ® I xn)(po) is positive semi-definite where

n

Po = Z (E” ® EU) € H,-.
=1

Solution 10. If ¢ is completely positive, it follows immediately that
(¥ ® Inxn)(po) is positive semi-definite (since po is positive semi-definite).
Consider the linear extension z/z Myxn = Mpxp of 9, ie. 1/)( ) = ¥(p) for
all p € H,,. Assume that

(1/]®In><n Po Z¢ 1]

i,j=1
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is positive semi-definite. This is the Choi-Jamiotkowski representation. We
have a spectral decomposition

(¥ @ Lnxn)(po) Z)\kujuk = kavk

where {u1,...,u,} is an orthonormal set and vy := +/Agup (note that
Ax > 0). Define
Pj = In X e;f

and consider P;(¢ ® Lnsen)(po) Py

n

(¥ ® Inxn)(po) = Z W(Ey) ® By = kavk

i,7=1

Pi(t) @ Inscn)(po) Py = ¥(Eij) = Y Piog(Pyor)*

and define Vie; := P;u, so that

77,2

Pi(4 ® Luxn)(po) P = O(Eij) = Y Vi By Vi

k=1

By linear extension, the map v is given by

= VipVit
k=1

which is completely positive since for p € Hypp, p > 0

nz

(¢®Im><mp ZVk®I Vk®f )
k=1

is positive semi-definite. Consequently 1) is completely positive if and only
if there exists V7,...V,2 (Kraus operators) such that

n2
=> VipVy.
k=1
This is a Kraus representation.

Problem 11. Is the map v : H, — H, given by ¢(p) = p” completely
positive?
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Solution 11. Consider

n

pPo = Z (Ez] & EZJ) c Hn2-

4,j=1

We have

(% ® Inxn)(po) = Z W(Ey) @ By = Y By @ Ey.

ij=1 ij=1

Any vector x in C™" can be written in the form

n
X = E Ts,t€s & ey

s, t=1
where {ei,...,e,} is the standard basis in C" and z,, € C for s,t €
{1,...,n}. Since e;E;; = d;se} we find

X* (1) @ Lxn)(po)x = Y Tjiwij 20

ij=1

in general (consider x15 = —x2; = 1 and all other coefficients are zero).

Problem 12. Let v : H, — H), given by

U(p) = VipVir
k=1

be a CP map. Find the condition on Vi,...,V,2 such that ¢ is TP (and
hence TPCP).

Solution 12. The adjoint of

Wp) =Y VipVir
k=1

with respect to the Frobenius inner product is
TLQ

v (p) = Z Vi pVi
k=1

and since 9 is TP if and only if ¢*(I,,) = I,, we find

TL2

tr(p) = tr(¥(p)) & Y ViVi=1I,.
k=1
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Problem 13. Let v : H, — H, given by

’I’L2
p) = VirVy
k=1
be a CP map. Show that there exists a matrix V' such that

¥(p) = trm (V(p ® Ip2)V").

Solution 13. Let

3
v

V= (Vi @ Egi)-
k=1
Then
n? n?
Vip®Inm S (VipVi") @ Bt = Y _(VipVy) ® Ejy,

k=1 k=1

and )

tr,2 (V(p (39 In2 Z VkPVk tr Ekk) w(P)
k=1

This is a Stinespring representation.

Problem 14. A minimal Stinespring representation of a CP map 9 :
H, — H, is a representation

Y(p) = trm(V(p® I,)V")

where m is minimal. This corresponds to minimizing the number of non-
zero Kraus operators Vi in a Kraus representation

m
=> VipVy.
k=1

Given a Kraus representation
7L2
k=1

Consider

n2

A= Zvec Vi) (vee(Vi))*.
k=1
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The matrix A is positive definite and thus has a spectral decomposition
m
A= Z )\kaVk*
k=1

where m is the rank of A and Aq,..., A\, > 0. We find the Kraus operators
Vi for the minimal representation from vecV, = v/ Arvy. Find a minimal
representation for the completely map on Hsy given by

= /01 & (0 1\ = [(00\ 5 (00
(Vo) we(oa) me(n) m=(0)

Solution 14. The matrix A is given by

0 0 0 O
0 2 1 0
A= 01 2 0
0 0 0 O
0 0
1 1 1 1 1 1
=3 — — (0 1 1 0)+1-— — (0 1 =1 0
vali] ! ARNNCE Rl Vol )
0 0

with non-zero eigenvalues 1 and 3. An optimal Kraus representation is

given by
3/0 1 1 /0 -1
Vl\/;<1 0)’ ‘/2\/5(1 0)'
We verify that the map is correct
a b 2d ¢
¥ (c d) o ( b 2a>
_3(0 1 a b 0 1
“2\1 0)\ec a/\1 0
+} 0 -1 a b 0 1
2\1 0 c d -1 0/°

The corresponding minimal Stinespring representation is given by

= 3/0 1 10 1 /0 -1 0 0
V;V’“@E"”“\/;(l 0>®<0 O>+ﬁ<1 0>®<0 1)

0 0 V3 0
1 0 0 0 -1
2l v3 o o0 o

0 1 0 0
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o(0 ) (2 a)e (6 V)

3d 0 3¢ O

_tr}0d0—0_2dc
“2913 0 3¢ 0] \bv 2)

ie.

Problem 15. Consider the Kraus operators K; and K>

0 1 . (00 (00 . (0 1
fa-(o0) = m=(10) m=(0 ) = - (00)

and an arbitrary 2 x 2 matrix A = (a;,). Then

KiAKS + Ky AKS = (“22 0 ) :
0 an
So the trace is preserved under this transformation. Let

Cl 9 02 } C1, C2

be Fermi creation and annihilation operators, respectively. Consider the
operators

A~ 0 1 ~
Ra= (e d) () o) =clen Kl =dlo

0 0 5
K2=(c1 c§)<1 O):cgcl, Kl =cley

and

A= (c]{ c; ) A (2) = ach{ + algc]{cg + aglc;c;cl + aggc;cz
Find the operator IA{lflf{I + kQAk;
Solution 15. With c;r-ck + ckc; = 6,1 we obtain

IAQAIA(I + IA(Q/AIIA(; = a‘lngCQ + a22c11-01 — (a1 + a22)c1010202)

a 0 c
= (CI CE) ( (2)2 ) <C;> — (au + a22)ciclc£02.

a11
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Programming Problem

Problem 1. Let p € [0,1]. Apply computer algebra to show that the
2 x 2 matrices

V1 1 — 1 — 1 —
Ky = T—F?)MIQ, K, = Tuffl, Ky = Tuam K; = Tugs

are Kraus operators. Show that the sixteen 4 x 4 matrices K; ® Ky, (j,¢ =
0,1,2,3) are Kraus operators.

Solution 1. Note that the operators K; and K; ® K, are hermitian. The
Maxima program is

/* Kraus.mac */

I2: matrix([1,0],[0,1]1);

sigl: matrix([0,1],[1,0]);

sig2: matrix([0,-%il, [%i,01);

sig3: matrix([1,0],[0,-11);

KO: sqrt(1+3*mu)*I2/2; K1: sqrt(l-mu)*sigl/2;

K2: sqrt(l-mu)*sig2/2; K3: sqrt(l-mu)*sig3/2;

KOTC: KO; KITC: K1; K2TC: K2; K3TC: K3;

S: KO . KOTC + K1 . KI1TC + K2 . K2TC + K3 . K3TC;

S: ratsimp(S);

K0O: kronecker_product (KO,K0); KO1: kronecker_product(K0,K1);
K02: kronecker_product (K0,K2); KO03: kronecker_product(K0,K3) ;
K10: kronecker_product(K1,K0); K11: kronecker_product(K1,K1);
K12: kronecker_product(K1,K2); K13: kronecker_product(K1,K3);
K20: kronecker_product(K2,K0); K21: kronecker_product(K2,K1);
K22: kronecker_product(K2,K2); K23: kronecker_product(K2,K3);
K30: kronecker_product(K3,K0); K31: kronecker_product(K3,K1);
K32: kronecker_product(K3,K2); K33: kronecker_product(K3,K3);
KOOTC: KOO; KO1TC: KO1; KO2TC: KO02; KO3TC: KO03;

K10TC: K10; K11TC: K11; K12TC: K12; K13TC: K13;

K20TC: K20; K21TC: K21; K22TC: K22; K23TC: K23;

K30TC: K30; K31TC: K31; K32TC: K32; K33TC: K33;

S: KOO . KOOTC + KO1 . KO1TC + K02 . KO2TC + KO3 . KO3TC

+ K10 . K10TC + K11 . K11TC + K12 . K12TC + K13 . K13TC

+ K20 . K20TC + K21 . K21TC + K22 . K22TC + K23 . K23TC

+ K30 . K30TC + K31 . K31TC + K32 . K32TC + K33 . K33TC;

S: ratsimp(S);
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17.3 Supplementary Problems

Problem 1. Let |0), |1), |2) be the standard basis in C3 and o = (2 —
\/5)/4, B =2+ /3. Show that
= va(y/Blo){0] +[1){1]) )(0)
= va(|1){0] + v/BI0){1]) @ (|1){1] + /BI0)(0])
= va(V/Blo){0] +[1)(20) © (v/Bl0){2] + [1)(0])
K= a([1)(0] + /Bl0)(2]) ® (I1)(2] + v/BI0){0])
)
)

(vVBI0){L| + [1)(0

&
&
&
&

)
K5_|1> 1@ (2y/aBl1)(1] + 2)(2]
—12)(2 @ (J1)(1] + v/20B]2) (2]

are Kraus operators in CY.

Problem 2. Let u € [0,1] and o1, 02, 03, 09 = I be the Pauli spin
matrices. Then the four 2 x 2 matrices
_V1+3u _VIl-p V1l AT
Ky=—~—7—09, Ki=—3—01, Ky=-——03 Kz=-——
2 2 2 2
are Kraus operators. Show that the sixteen 4 x 4 matrices K; x Ky, (j,¢ =
0,1,2,3) are Kraus operators, where x denotes the star product.

g3

Problem 3. Let K; (j =1,...,m) be n x n matrices over C with

inK; = I,.
j=1

Show that

S K @K)K; @ K}) =1, @ I, = L.

j=1¢=1

Problem 4. Consider the 4 x 4 matrices with trace 1

1 0 0 1 000 0
110 0 0 0 1o 110
A_§0000’3_50110
1 0 0 1 000 0

(i) Can one find a unitary matrix U such that UAU ! = B?
(ii) Apply the vec operator to A and B. Then find a 16 x 16 unitary matrix
W such that Wvec(A) = vec(B).



Part 11

Infinite-Dimensional
Hilbert Spaces
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Chapter 18

Bose Operators and
Number States

18.1 Introduction

Besides qubit-based quantum computing and quantum algorithms, quan-
tum information over continuous variables is also applied and used in fields
such as quantum teleportation and quantum cryptography. For continuous
systems Bose operators play the central role. Consider a family of linear
operators b;, b;[-, j=1,2,...,m on an inner product space V', satisfying the
commutation relations (Heisenberg algebra)

[bj, be] = [b1,6f] =0, [bj,b}] = &l (1)

where I is the identity operator. The operator b;(- is called a Bose creation
operator and the operator b; is called an Bose annihilation operator. The
inner product space must be infinite dimensional for (1) to hold. For, if A
and B are n x n matrices such that [A, B] = AI, then

tr([A,B]) =0
implies A = 0.
Let |0) = |00...0) be the vacuum state, i.e.

b;/0) = 0j0)

387
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with (0]0) =1, j =1,2,...,m. A normalized state is given by
1
= ptymapt 2 Lty _
OO, (0,)710) = )

where j1,72,...,5k € {1,2,...,m} and ny,no,...,nx € {0,1,2,...}. The
states are called number states (also called Fock states). For b; we also use
the notation IR I ®--- bR IR I®---® I, where b is in the jth position.

Let m = 1. Consider the number states |n) (n =0,1,...). Then
bin) =vnln—1), bin)=vn+1n+1), bibn) =n|n)

and -
> lnyn| =1
n=0

where I is the identity operator and # = bb is the number operator. We

have 1
n) = —(bH"0), n=0,1,2,....

The number states [n) form an orthonormal basis in the Hilbert space
l3(Np). The Hamilton operator H of the one-dimensional harmonic oscil-
lator can be written as

- 1
H = hw (bTb + 21)
with the eigenvalue equation H|n) = (hw + 1/2)|n)

Consider the commutation relation
(g, p] = ihl

with p = —ih9d/0q. The electric field E for a single mode in a box of length
L can be written as

- hw —t(wt—k-x i(wt—k-x
E(x,t):ze,\g/m(b(())e (wi—kex) _ pi(g)eilwt—k >)

where k - x = k121 + koo + k3xs.

Define the unitary operators

Ua = exp(iap/h), Vo = exp(ifg/h).
Then o A
Un Vs = exp(iaf/h)VaU,

with o dimension meter and 8 dimension kg . meter . sec™!.
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18.2 Solved Problems

Problem 1. Consider the Hamilton operator for the one dimensional
harmonic oscillator

- 1 1
H=—p*+ -mw?¢*
om? 2"
where w is the frequency and m the mass. We introduce the characteristic
length
h
eo = I
mw

and define the dimensionless linear unbounded operators (Bose operators)

(s ) we(Loin).
bi=——+i— |, b = i
V2 (fo h/g NCARD h/(o

(i) Find the commutator [b, bf].

(ii) Express ¢ and p in terms of b and bt i. e. find the inverse transform.
(iii) Express H in terms of b and b'. Find H|n). Discuss

Solution 1. (i) Since

0
p = —Zhaiq
we obtain [b,bf] = I, where I is the identity operator.
(i) We find
.1 . h/b
= —/lo(b+0b), = b—bh).
=7 o ) P \/z.( )

(iii) We obtain
- 1
H = hw(d'd + 1)

and the eigenvalue equation H|n) = hw(n + 1/2)|n) with n = 0,1, ....
Problem 2. Let b, b' be Bose annihilation and creation operators. Find
the commutator of the operators

E:€1I—|—b, ET:621+bT

where [ is the identity operator and €;, €5 are constants.

Solution 2. We have

(0,7 = [e1] + b, o + 1] = [e1 1, €21) + [e11,b1] + [b, e21] + [b, bT]
[b b*]
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Problem 3. (i) Let 8 € C. Calculate the commutators
(ii) Let n € N and 8 € C. Calculate the commutator [b, (36T — 5*b)"].

Solution 3. (i) We find
[b,Bb" — B*b] = BI,  [b,Bb" — B*b] = B*1.
(ii) If f is an analytic function we have

_df(b)
b, f(b)] = o

Thus
(BT, (80" — B70)") = n (6T — B*b)" .
For n = 1 we have [bf, (8b" — 8*n)] = g*I.

Problem 4. Let 7 :=b'b and a € R. Calculate the state exp(an)|0).
Solution 4. Since 7|0) = 0]|0) we obtain exp(an)|0) = |0).

Problem 5. (i) Calculate the commutators [b2, b7d], [b2, bT2].
(ii) Using the commutation relations and b|0) = 0|0) calculate the state

bbb'b|0).
Is the state normalized?
(iii) Let
1

n) = —(bH"0), n=0,1,2,...
) \/H( )"(0)

be the number states. Find the operator

> In)(nl.
n=0

Solution 5. (i) Using the commutation relations we obtain
[b?,bh] = 202, [b?,b1?] = 21 + 4b'0.
(ii) Using the commutation relations and b|0) = 0]|0) we find

bbbTbT|0) = 2/0).
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(iii) Since |n) (n =0,1,2,...) is an orthonormal basis we find

Y el =1
n=0

where [ is the identity operator, i.e. we have the infinite-dimensional unit
matrix. This is the completeness relation.

Problem 6. Using the number states |n) find the matrix representation
of the unbounded operators b'b.

Solution 6. Since b'b|n) = n|n) we obtain the infinite dimensional un-
bounded diagonal matrix diag(0,1,2,...).

Problem 7. Let 7 := b'b be the number operator. Calculate the commu-
tators [n, b], [, [, b]], [, [7, [, B]]]. Discuss the general case for m commu-
tators.

Solution 7. We have [n,b] = —b, [, [A,b] = (=1)%b, [A,[n, [R,b]]] =
(—1)3b.  Obviously, for the general case with m commutators we find
(=1)™b.

Problem 8. Using the number states |n) find the matrix representation
of the unbounded operators b + b.

Solution 8. Since b|n) = v/njn— 1), bf|n) = v/n + 1|n+ 1) we obtain the

infinite dimensional unbounded symmetric matrix

01 0 0
1 0 V2 0
0 vV2 0 V3
0 0 V3 0

Problem 9. Let bf, b be Bose creation and annihilation operators, re-
spectively.

(i) Calculate the commutator [b" + b, bTb].

(ii) Consider the symmetric 4 x 4 matrices

00 00 01 0 0
4_|0 100 leo\/?o
00 2 0] 0 vV2 0 V3
00 0 3 0 0 V3 0
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Find the commutator [A, B]. These matrices appear when we truncate the
infinite dimensional unbounded matrices b'b and b' + b.

Solution 9. (i) Using bb' = I + b'b we obtain [bf + b, bTb] = —bT +b.
(ii) We obtain the skew-symmetric matrix

0 -1 0 0
1 0 —v2 o0
0 0 3 0

which is a truncation of the infinite dimensional unbounded matrix —b' +b.
Problem 10. (i) Let € € R. Find
fole) = o iebTbpt jieb'd fale) = o iebTbp iebTh

Le. fc(o) = bTv fa(o) =b.
(ii) Then find the 2 x 2 matrix A(e) such that

—iebTbpt iebTb +
e (T + b)e . b' +b
<eiebTb(ibT _ ib)eiebfb> = A(e) <ibT _ ib) :

Solution 10. Applying parameter differentiation and bb' = I + bTb we
obtain the differential equation

df.
E_ ch

with the initial condition f.(0) = bT. The solution is f.(¢) = e~*bT. Anal-
ogously for f, we find df,/de = if, with the initial condition f,(0) = b.
Hence f,(¢) = eib.
(ii) Since

e-z‘eb*b(bt + b)eielﬁb — e—iept 1 i

e—iebTb(ibT _ ib)@iemb — ie—ieb’[ _ ieieb

we obtain

e~iept + eiep
ie~ept — jeiep

( (cos(e) — isin(e))bl + (cos(e) + isin(e))b >
i(cos(e) — isin(e))bt —i(cos(e) + isin(e))b
)

(st o)) (1)
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Problem 11. Consider the operators
A= bk67i¢k + b;rcei(bk, B= bgeii(m + bzeid)e'

Find the commutator [/1, é]. What is the condition on the phases ¢ and
¢¢ such that [A, B] = 0 for k = 7

Solution 11. We have

[A, B] = [bre ™% + bl b= + blei%]
[ —iy bT Zd’e] [blei@c,bee*i(be]
( i(de—dk) _ ¢ (¢>k*¢e))5[k
2isin(pe — o) Ogr-

Thus the commutator is zero for k = £ if sin(¢y — ¢r) = 0 i.e. ¢y — o = nmw
and n € Z.

Problem 12. Let f be an analytic function in z and z € C. Let 7 := b'b
be the number operator. Calculate

G Eb), e FBh), e FB), e rh).

Solution 12. Since 7b = b(f — I) and nb" = bT (I + i) we find

" f(b) = f(e *b)e™
M f(bT) = f(e*bl)e

e f(b) = f(b— 2D)e
e f(bT) = f(bF + 20)e®®

Problem 13. Let bf, b be Bose creation and annihilation operator with
the commutator relation [b,b] = I, where I is the identity operator. Show
that one has a representation

d
b b —.
=z, — P

Solution 13. We calculate the commutator

[d/dz, 2] f(2)
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where f is an analytic functions. Using the product rule we obtain

afdz 5(2) = - (25(2) ~ 2T = () 4L O i)

Problem 14. Consider the differential operators

) o-C-d

acting in the vector space S(R). Find the commutator [b, bf]. Find the
operator N = bfb.

Solution 14. Let f € S(R). We have

[b,0T)f =bbl f — bIDf

1 d df  &f
=3 (- en =g - 33)

1 d df  d*f
3 <$2f—dx($f)+ dx_dx2>
_d df
—%(»’Cf)—$@
=f.

We obtain the differential operator
A1 d?
N=_(22-1-—].
2 (x d;v2)

Problem 15. Let e € Rand € >0, 2 = bband {|n) : n=0,1,2,...}
denote the number states.
(i) Using the number states calculate the trace

o0

tr(e” ") = Z(n|e_6ﬁ|n>.

n=0
(ii) Using the number states calculate the trace

bTbe*EbTb Z n|bTbe*d’Tb|n>.

n=0
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Solution 15. (i) Since 7|n) = n|n) we have e*d’Tb|n> = e “"|n). Thus

E

—E’H, E e—en —

(ii) Using (n|b'b = (n|n we obtain

+ —ebTb en _
r(b'be Zne "—71)2.

Problem 16. Consider the Hamilton operator H = hwb'b.
(i) Calculate the trace tr(e=H/*5T),

(ii) Consider the density operator
_ exp(—H/kpT)
tr(exp(—H /kpT))

Let 7 := bfb. Calculate m = (7) = (b1b) = tr(bTbp) and (H).
(iii) Calculate tr(pb), tr(pb').

Solution 16. (i) We set A := fw/(kpT). Then using the completeness

relation -
I=Y"|n)(n
n=0

filn) = n|n) and e=*"|n) = e~*"|n) we find

e—ﬁ/kBT —/\bTb Ze—,\b b|n Yn| = Ze /\nln

Thus
/ 1
—H/kpT\ _ —N\n _
e 1) = 3 (e = T

(ii) Using the result from (i) we obtain

1
er—1

7= (b'b) =

and therefore -
<H> = ehw/kBT _ 1
(iii) Since (n|b|n) = 0, (n|bf|n) = 0 we obtain

(b) = tr(pb) =0, b1y = tr(pb") = 0.
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Problem 17. Consider the Bose-FEinstein density operator

1 oo ﬁ n
p_n+1g;(n+1>|mm|

where |n), n =0,1,2,... are the number states and
b -1
n.= <eXp <M> — 1) .

Solution 17. We set o = fw/(kpT) and use the number states as an
orthonormal basis. Thus

Show that tr(p) = 1.

o0 1 oo J— n
E;TMMm n+12;<nil)
m=0 n=0

where we used (m|n) = (n|m) = §nn. Now we have

1 N n
nt1 nt1

—Q

=1—e"7, =e

Since the sum is a geometric series we have

> 1
ZJE) ——

Thus tr(p) = 1.

Problem 18. Let b and b' be Bose annihilation and creation operators,
respectively. Consider the general one-mode canonical Bogolubov transform

b:= €' cosh(s)b + ' sinh(s)b'
bt := e cosh(s)bT + e~ sinh(s)b

where s is a real parameter (squeezing parameter).

(i) Show that the operators band bt satisfy the Bose commutation relations.
(i) Find the inverse Bogolubov transform.

Solution 18. (i) Since cosh?(s) — sinh?®(s) = 1 we find

[b,b'] = bbf — bt =1.
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(ii) The transformation can be written in the matrix form

(5)= (ol Same (1),

The determinant of this matrix is +1. Thus the inverse transformation is
given by

b\ [ e *cosh(s) —e'¥sinh(s) ;l;

bt )~ \ —e "sinh(s) e cosh(s) ot )

Problem 19. Let ¢ € R and f : C2 — C be an entire analytic function.
If a function f is analytic on the whole complex plane then f is said to be
entire. Show that

eCf(b,b e = f(b,bT + €I) (1a)

e~ F(b,b)e? = f(b+ eI, bT). (1b)

Solution 19. We have
eebf(b7 bT)e—eb — f(eebbe—eb’ eebb]‘e—eb) _ f(b7 eebbTe_Eb).

Since e*bfe=® = bl + €I we find (1a), where we used [b,b'] = I. A similar
proof holds for (1b).

Problem 20. Let f: C — C be an entire analytic function. Show that

f('y) = Zf

where |n) is the number state.

Solution 20. The completeness relation is given by

> Iyl =
n=0
Since bb|n) = n|n), we have f(bTb)|n) = f(n)|n). It follows that

FOFb) = f(bT0)T = F(bT0) > In)(n| = Zf (b10)|n) (n| = Zf

n=0 n=0 n=0
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Problem 21. Let f be an analytic function in = and y. Let b’ and b
be Bose creation and annihilation operators, respectively. We can define
f(b,b") by its power series expansion

F(b,07) : Z Z Z FGitsdon oy i) (B1)B2 . bin,

J1=0j2=0 Jn=0

We can use the commutation relation for Bose operators repeatedly to
rearrange the operators b, bf so that

f(b, bT Z Zf(n) bT myn.
m=0n=0

We say that the function f(b,b") is in normal order form.
(i) Consider the functions

f(b,07) =bTbb™s,  g(b,d") = bTbLTHHD.

Find the normal order form for these functions.
(ii) Consider the operator exp(—eb'b), where € is a real positive parameter.
Find the normal order form.

Solution 21. (i) From the commutation relations for Bose operators we
find bb" = I + b'b. Thus

f(b,b") = bTb+bTbTbb, (b, bT) = bTHTbTHEL + 36THTHL + bTh.
(ii) Using the results from (i) and bb(b0)7 = bt (I + bTb)7b we find

=1

et =" (e — 1) (b1)7v

Problem 22. Let {|n) : n = 0,1,2,... } be the number states. We
define the linear operators

o0 o0
E::Z|n)<n+1|, Et ::Z|n—|—1><n
n=0 n=0

Obviously, Et follows from E.

(i) Find EET and ETE.

(ii) Let f be an analytic function. Calculate Ef(7)Et and Ef f(a + I)E,
where 7 is the photon number operator and I is the identity operator.
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Solution 22. (i) Using (m|n) = 0y, and the completeness relation we
find

EET = Z|m m+1|2|n+1 ZZW mi 11 (n]

m=0 n=0
— > )l =
m=0

Analogously, we find ETE = I —[0)(0|.
(ii) Using the Taylor expansion around 0 of an analytic function we have

Z|m m+1|zf

m=0

Applying A|m) = m|m), #/|m) = m/|m) and
(4 I)m) = (m+1)|m), (A + I |m) = (m + 1)’|m)
we obtain Ef() = f(n + I)E. Thus Ef(a)Et = f(i + I). Analogously

Eff(h+1)E = f(a).

Problem 23. Consider the Susskind-Glogower canonical phase states

)= > )
n=0

where |n) are the number states. Let

im—l

be the non unitary number-lowering operator. Find I:|¢>

Solution 23. Since (m|n) = dmn we have L|¢) = €'®|¢). This means
that |¢) is an eigenstate of the operator L.

Problem 24. Let b' and b be Bose creation and annihilation operators,
respectively. Consider the operator

ealb2+a2(b*)2+a3(bbf+bfb) (1)
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where a1, as, a3 € R. Let € € R be an arbitrary real parameter. Find the
smooth functions fy, f1, f2 and f3, depending on €, such that

ec(erb?+a () +as (6T4070)) — fo()IHf1() (1) fa(bTbefa(b”  (9)

where I denotes the identity operator. Then set € = 1. Solve the problem
using parameter differentiation with respect to e. We find a system of
ordinary differential equations for the functions fy, f1, fo and fs.

Solution 24. Differentiating the left-hand side of (2) with respect to €
yields

(01 + an(B1)? + axg(BbF 4 b)) ec(oat res8) s 100
Fo( QT+ ((B1)? (df 0; % (bT)2> P2l b fa(V?
€

Lo OIHOB)? fa( T (df2bn,> oFalep?

el OTHAOBT? f2 (BT o fs ) <df3 )
de

Owing to the identity eXe—eX = I, we have
676(a1b2+a2(bT)2+a3(bbT+bTb)) — effs(6)b2effz(e)bTbG*fO(f)I*fl(6)(“)2_
From the last two equation we obtain

a1b? + az(b")? + as(bb! 4 b'b) = %I + %e_ﬁ“bze_beTb(bT)zehb”’eff’b2

LU gyt | Wy
d de

€
Since
e~ T (22O — (piy2=282(0
e~ T3V (pF)2e 500" = (p1)2 4 4 f2(e)0? — 2f3(e)(I + 20TD)
e T3V plpe s — pTp — 2 £y (e)p?
we ﬁnd

a1b? + az(b")? + 2a3b'b + asl

_dfo,; df1 o2f2

- (0612 + 4538 — (2l + abib)) + &2

+

(bTb 2f3b%) + df3b2
6

where we used
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and bb" = I + b'h. Separating out terms with I, b2, (b7)2, and bTb we find

d d
L Yl
€
5d d d
4f3 i 72f2+£ f2f3—041—0
d
% — a262f2 =0
d d
4£f36_2f2 _ ﬁ + 2a3 =0.
de de

Using this system of equations we can cast the system of nonlinear differ-
ential equations in the form

7) d

o _ oy 4 200f5, DL = ages

de de

d, d,

£ =2a3 + 40(2]037 £ = a1 + 40[3f3 + 40&2f§

with the initial conditions f;(0) = 0 for j = 0,1,2,3. We first solve the
fourth equation which is a Riccati equation and then insert it into the
third and second equation to find fo and fy. Finally we solve for f;. The
integration yields

fole) = %ln(cosh(Q)\e) — (a3/A) sinh(2Xe))
B (a2 /2X) sinh(2)\e)
~ cosh(2Xe) — (a3 /\) sinh(2\e)
f2(€) = —In(cosh(2Xe) — (ag/A) sinh(2Xe))
_ (a1 /2X) sinh(2Xe)
cosh(2Xe) — (a3/\) sinh(2)\e)
where X := y/az — ajas. Setting € = 1 we have
1B (b1)>aus (bb1 5b) _ 1
V/cosh(2X) — (a3 /) sinh(2))
(a2 /) sinh(2X) 9
e exp (cosh(Q/\)Q (as/2) b () " )
x exp(In(cosh(2X) — (ag/\) sinh(2X)) ~1b7h)

(a1 /20) sinh(2)) 2
exp <cosh(2)\) — (a3/N) Sinh(Q)‘)b ) '

Problem 25. The homogeneous Bogolubov transform of the Bose creation
operator b and Bose annihilation operator b

Ezub—i—lﬂ)*, u,veC
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for a pair of complex parameters

o= lulexp(i), v = [v] exp(i)

obeying additionally |u|? — |v|? = 1 is canonical since it leaves the commu-
tator invariant, i.e. e
b, = (5,57 = I.

Every canonical transform can be represented as a unitary transformation
b= B(u,v)bB (1, v).

The Bogolubov unitary operator B(u,v) is defined by this relation up to an
arbitrary phase factor. One choice is the normal form

B _ 2 Vi (bt LAY
(L, v) = exp( 2,ub exp (— In(u)b'b) exp 2,ub

Show that the Bogolubov transform forms a continuous non-commutative

group.

Solution 25. Let |p/|? — [V/|*> = 1, |u”|> — |"|?> = 1. Then we have
B/, V)B(u",v") = B(u,v)

and p = p/p + vV v = p"*v" + /1 with |u|? — [v|? = 1. The identity

element of the group is given by B(1,0), where we used that In(1) = 0. The
inverse element of B(u,v) is given by

Bil(ﬂﬂ v) = BT(M7V) = B(u", —v).

Obviously, the associative law also holds.

Problem 26. Consider the operators
1
Ky :=blbl,  K_:=bby, Ks:= 5(b{b1 +biby 4+ 1)
where [ is the identity operator. Find the commutators
[K+7K7]7 [K37K+]7 [K?an]'

The operators Ky, K_, K3 form a representation of the Lie algebra su(1, 1).

Solution 26. Using the commutation relations given above we find
[K4, K_] = blblboby — bobybibl = bIbiboby — bybl — blbybyb)
— —bybl — blby = —I — blby — blb,
= —-2K3.
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Analogously [K3, K_| = —-K_, [K3, K] = K.
Problem 27. Consider the linear operators
Jpi=blby, J_ :=blby, h:%@m—@m

where b{,b; are Bose creation operators and b, by are Bose annihilation
operators and [ is the identity operator. Find the commutators

[J+7J—]7 [J?n‘]-‘r]’ [J37J—]'

The operators J,, J_, Js form a representation of the semisimple Lie alge-
bra su(2).

Solution 27. Using the commutation relation given above we find

[Ty, J_] = blboblby — bhbyblby = blboblby — bliby — bibib1bs
= —blby + biby = 2.

Analogously [J3, J_| = —J_, [J3,J] = J4.

Problem 28. Consider the Bose creation operators b{, b; and Bose an-
nihilation operators by,bs with by = b® I, by = I ® b and b1]00) = 0]00),
b2]/00) = 0]00), where |00) = |0) ® |0) is the vacuum state. Consider the
linear transformation

by = uy1by + urabs + 01151 + 7J12bJr

by = u1by + ugabs + 0215 + U22bT

bl = v}1b1 + viphs + ul b + uisb]

b} = v3,b1 + v3yba + udy b] + u3,b)
where ujg, v, € C.

(i) Find the condition that the operators 51, 52, EI, Eg also satisfy the
commutation relation for Bose operators. o
(ii) For the vacuum state of the Bose fields by, by we can write

B)= @)= B @) = > 3 conlm) )

m=0 n=0

Find the recurrence relation for ¢,,,, from the condition

bi[0) @ [0) =0,  bo[0) @ [0) = 0. (1)
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Solution 28. (i) From the conditions

bl =0, bl =0, [ubll=1, (2Bl =1
we find
U11V21 + U12V22 — U21V11 — U22U12 = 0 (2a)
UT1UG + UraUsy — V11V5 — V12U59 = 0 (20)
Uy + UpaUiy — V1107 — V1207 = 1 (2¢)
U1 UG + UgaUsy — V21Us — U22Vse = 1. (2d)
(ii) From the conditions (1) we find
C(m+1)nu11\/m + Cm(n+1)ul2\/m
+C(m-1)nV11VM + Cr(n—1)V12vV/N = 0 (3a)
and
C(m+1)nuzlm + Cm(n+1)uz2\/m
+C(m—1)nV21 VM + C(n—1)V22v/n = 0. (3b)
Let

Aqi=upuze — UrU21, Ao i= U121 — U21V11, A3 i= U122 — U21V12

Ay 1= u22v11 — U12V21, Aj := Uz2V12 — UI2V22.

Multiplication of (3a) with ug; and (3b) with u1; and subtracting yields
Cnnt1) D1V + 1= —C(m_1)nDovV/Mm — Cp(n_1)Az/1.

Multiplication of (3a) with ugs and (3b) with w12 and subtracting yields
Cmt1yn DIV + 1 = —¢(m-1)nAaV/M — Cin_1)Asv/n.

We assumed that A; # 0. From (2a) we see that Ay = As. Thus we have

C(2k)(2n+1) = C(2k+1)(2n) = 0

C(zk)(zn)z(—l)n+k (2n)1V/(2k)!

" oszsjsn(ij)% <2AA31>nS <2AA41 > ks(n - 8)!(k1— )12

s<k

and

Captn)@ntn) = (1) 20+ 1)1V (2k +1)!
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6 &) &) T

5<k:

Consequently, for the vacuum state of Bose operators by and by we find

o0

|66> = Z (C(2k)(2n) ‘2/€> (39 ‘271) + C2k+1)(2n+1) |2k + ].> ® |2n + ].>) .
k=0,n=0

In operator form this can be written as

. A A A
|OO>:coeXp( 2A4 1)? - A%W 2A31 (b;)Q) 10) @ |0).

Thus the unitary operator

_ Ba give _ Bzgir  Bs i
Uexp( 2A(b) Abb 2A1(b)

is the operator of transformation of the vacuum states for the most general
two-dimensional Bogolubov transformation. Thus we also have

im) @ [n) = U(jm) @ |n)).

Problem 29. Quantum mechanically, a phase shift 6 induced by a linear
optical element on a single-mode optical field is described by the unitary
operator

U := exp(idn)

where 7 := bb is the number operator and b the annihilation operator for
the optical mode. Assume the optical field is in the state |1).

(i) Express |¢) in the basis of photon number state representation.

(ii) Find the state |[¢') := Uly).

(iii) Find |Ay) := |[¢') — |¢) and the norm || |Av)]|.

Solution 29. (i) We can write

o0

=3 culm)

m=0

in the basis of photon number state representation, where c¢,, are the ex-
pansion coefficients.
(ii) The phase-shifted state [¢)') can be written as

o0

[0) = exp(idn) Y | emlm) = Y cme™|m).

m=0 m=0
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(iii) Thus for the difference we find

|A) = = > cm(e®™ = 1)|m)
m=0
and therefore

[ 1AD)|1? = (Ayp|Ap) —4Z|cm|2sm (6m/2) _4213 sin(6m/2)

m=0 m=0

where P,,, = |c,,|? is the photon number distribution for the input field.

Problem 30. The generator of displacements for numbers is formally
defined by

= [ "o g

where
oo

) =D e"In),  ER.

n=0
Show that these basis states are not normalized.

Solution 30. Since
o0

Z (m|e™™™

m=0

and (m|n) = 0, we find

Problem 31. Let by, bs be Bose annihilation operators. Show that

1

tpt
6'ub1b2 el’ble |00> —
1—pv

e”bib;/(k"””()()), w,v €R (1)
where |00) = |0) ® |0).

Solution 31. We solve the problem by considering the expression
ehbiba Vb0 = of (11,600
where f is an analytic function. Differentiating both sides with respect to

L yields
f9f af

b1boehbibz bk 00) = 100).
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Thus 9
biboel [00) = ef£|00).

Note that df /O commutes with exp(f) since f is a function of b} and b}
only. If we multiply from the left by exp(—f) we find

e Tbibael |00) = gﬁmo).
If follows that of
—fp ol o fpof _
e 'bhie’ e T bhye’ |00) = =]00).
1 2e’00) 3#‘ )

Using
9g

[bvg(b’ bT)] = % (2)

with ¢ = e/, we obtain

f
e Ihef = et (efbl " Oe ) b of

R + -
abl abl

since ef commutes with df/ 5‘bJ{. Similarly

Thus we have

of of _of

Since b3]|00) = 0]|00) we arrive at

3] of o
b 2L 28 0L 60 = 9 o,
obs — obl b} o
Using (2) again with g = 8f/6b£ we obtain

of _ of o*f
et R A o g
o, oby ' oblow]

Since b1]00) = 0/00) we obtain

( o*f  of of

of
oblobl, bl b} o
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Since f contains only bI and bg which commute, the solution of this partial
differential equation must be of the form

F (b1, B5) = ha ()] + ha ()b b}

Thus £(0,b],b}) = vblbl or hi(0) = 0, ho(0) = v owing to (1). Inserting
this ansatz into the partial differential equation and equating equal powers
of b{b;, we find that h; and hs satisfy the nonlinear system of ordinary
differential equations

@ - h%, % = hoy

dp du

with the solution of the initial value problem

v

ha(pt)

i hi(p) = —In(1 — pv)

and thus we find (1).

Problem 32. The standard Pauli group for continuous variable quantum
computing of n coupled oscillator systems is the Heisenberg-Weyl group
which consists of phase-space displacement operators for n harmonic os-
cillators. This group is a continuous Lie group and can therefore only be
generated by a set of continuously parameterized operators. The Lie alge-
bra that generates this group is spanned by the 2n canonical operators pj,
dj, 7 =1,2,...,n along with the commutation relation

[4j, D] = ihdjp 1.

For a single oscillator (n = 1) the algebra is spanned by the canonical
operators {q,p, [ }. We define the operators

X(q) := e @/Map, Z(p) := el/Mpd

where ¢,p € R. Let {|s) : s € R} be position eigenstates (in the sense of
generalized functions).
(i) Calculate the states X (g)|s)

» Z(p)]s)-
(ii) Find the commutator [X (q), Z

|
(P)]-
Solution 32. (i) We find in the sense of generalized functions that

X(q)ls) =ls+q),  Z(p)ls) = exp((i/h)ps)|s).

Thus the operator X (g) is a position translation operator. The operator
Z(p) is a momentum boost operator.
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(ii) We obtain X (¢)Z(p) = e~ /M Z(p) X (¢q) and

(X(q), Z(p)] = (I — /M) X (q)Z(p).

Problem 33. Let r € R. Find €1, €5 and €3 such that

er(bibl—bib2) — je1b]b] jea(b]br+bibat1) pesbrbe

Solution 33. Using the fact that the operators
Ky :=—bby,  K_:=0blbl,  Ks:= —%(bibl + by + 1)
form the semi-simple Lie algebra
(K3, K] = K, (K3, K_| = —-K_, (K4, K] =2K3

and
er(K++K_) — €K_ tanh(r) 62 In(cosh(r)) K3 €K+ tanh(r)

we find €; = tanh(r), e = — In(cosh(r)), e3 = — tanh(r).
Problem 34. To build a simple quantum computer one could use the
following optical gates

Us := exp(inb'b) phase modulator

Up :=exp (Z(b{bz — blbg)) quantum beam splitter

Ur i=exp (5blba(blbs = bib}))  Fredkin gate

(i) Calculate the state Ug|n).
(ii) Calculate the state Ug|01).
(iii) Calculate the states Up|011), Up|101), Up|zy0) with x = 7 and =,y €

{0,1}.
Solution 34. (i) Since b'b|n) = n|n) we obtain
¢ n) = €™ n) = (=1)"n).
(ii) Since
(662 — b1b1)[01) = [10),  (blb> — brb])[10) = —[01)

we find
Upl01) = — (|01> + 110))

S
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where we used sin(7/4) = 1/v/2 and cos(7/4) = 1/v/2.
(iii) Since
bibs(blby — b1b)|011) = [101),  blbs(blby — byb})[101) = —|011)
and bibs (bTby — bybh)|zy0) = 0]zy0) we find the states
Upl101) = —[011),  Upl011) = [101),  Upglayo) = zy0)

where we used that b|0) = 0/0) and b|1) = |0). Thus blbs plays the role of
a control operator.

Problem 35. Let € be a real parameter, o3 the Pauli spin matrix and I
the 2 x 2 identity matrix. Calculate

fe) = 3@ (1, @ pip)e—cos@O-b1) 1)

using parameter differentiation and then solving the differential equation
with the corresponding initial values (operators), i.e. f(0) = I, @ b'b.

Solution 35. From (1) we obtain f(0) = I, ® b'b. Now

d,
di _ eeas@(b—bf)(US ® ((b _ bT)bTb _ bTb(b _ bT))>e—eas®(b—bT)
€

= e300 (g @ (b + b)) @O,
Thus
df (0
M =U3®(b+bT).
de

Since (b — bf)(b+b") — (b+bT)(b— b') = 21 and 02 = I, we obtain for the
second order derivative

d2—f =211

dez ~ 72 '

Thus the solution of this second order linear differential equation is
fle) =L @I+ Cre+ Oy,
Inserting the two initial values (operators) yields
Ci=032b+0b"), Co=1I b
It follows that

fle) =L, &I +eos @ (b+bl) + I @ blb.
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Problem 36. Let b, bf be Bose operators. Find the eigenvalues of the
operator (—1)””7. This unitary operator is defined by eimb'h. Why is this
operator called the parity operator?

Solution 36. Let |n) be a number state. Then bTb|n) = n|n), bTbbTb|n) =
n?|n) etc. Thus

ei-rrbTb|n> — eiﬂn|n>
where n =0,1,2,...,00. It follows that

<m|eiﬂ'n|n> _ eiﬂ'n<m|n> _ eiﬂndmn.
Since €™ = +1 if n is even and €™ = —1 if n is odd we find that the

eigenvalues of (—1)bTb are +1 and —1 both infinitely degenerate.

Problem 37. The hermitian cosine C’SG and sine SSG operators intro-
duced by Susskind and Glogower are given in the number state basis by

oo

Csai=3 D (mn -+ 1]+ |+ 1n)
n=0

S50 =52 S (Im)n +1] = n+ 1){n).
n=0

Solve the eigenvalue equations C'SG\C>SG = c|¢)sq, S'SG|S>SG = s|s)sa-

Solution 37. We find
2, > 2, =

e)sa =1/ =V1=e Y Unle)ln), |s)sc = \/7\/ 1= 52 " i"Up(s)In)
& n=0 & n=0

where Uy, (z) for £ = ¢ or x = s are the Chebyshev polynomials of second
kind and z € [—1,1]. They obey the recursion formula
Uni1(x) = 22U (2) + Up—1(x) =0

where Up(z) = 1 and Uy (z) = 2.

Problem 38. Let |0) be the vacuum state, i.e. b/0) = 0]|0), and € € R.
Calculate the state

exp(eb’ @ b1)(|0) ® |0)).

Sometimes one also writes exp(eb{bgﬂ())\()).
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Solution 38. Since bf|n) = v/n + 1|n+ 1) for n =0,1,2,... we obtain
(b @b (|n) @ |n) = (bT|n)) @ (bT|n)) = (n+ )|n + 1) @ |n + 1).
Now
2
exp(ebl © b1)[0) @10) = (1 © I + 5 @ b + S (612 @ (6)? + )]0} @ [0)
=10) @ |0) +€[1) @ 1) + €212) @ |2) + - - -

=> €l @)
j=0

What is the condition on € so that the series converges? This means: what
is the condition that the state can be normalized?

Problem 39. Let b,b' be Bose annihilation and creation operators, re-
spectively. Let € € R and |0) be the vacuum state, i.e. b|0) = 0|0).
(i) Calculate the state bexp(eb')|0).
(ii) Calculate the state b™ exp(eb')|0), (n = 2,3,...).
Solution 39. (i) Since
bb110) = 10),  b(®T)*0) = 267[0),  b(bT)?|0) = 3(b")?|0)
and in general b(b!)"|0) = n(b7)"~1|0) we obtain

2 3
bexp(eb!)[0) = €|0) + %21;*\0} + %3(b*)2|0> T
2
= (I +ebt + %(W +-9)0)
= eexp(eb)|0).

(ii) Using the result from (i) we have

b™ exp(eb')[0) = €™ exp(eb')|0).

Problem 40. Let |0) be the vacuum state. Calculate the state
Loy t(pt i
§(b RQI-I®b)bO' @I +I®0b")(]0)®(0))
where [ is the identity operator. Discuss.

Solution 40. Since (b @ I)(I ®b') = (I ®b")(b! @ I) we obtain the state

1
7 (12) @10) — 0) ©12)).
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The photons interfere constructively or destructively. Complete destructive
interference implies that the affected outgoing mode is in the vacuum state.

Problem 41. Consider the operators
Lot i Lot i Lot i
Jx = §(b1b2 + b2b1), Jy = §Z(b1b2 — b2b1), Jz = §(b1b1 — b2b2)

and Jy :=J, +iJ, = blby, J_ :=J, —iJ, = biby. Let ¢ € R. Find

e‘“”b{e“zd), e—iqu&b;eiqus, e—z’Jy¢bJ{eind>7 e—in¢b;einq5.

Solution 41. We obtain

exp(—iJ. )bl exp(iJ.p) = ble~1*/?
exp(—iJ. )b} exp(if.¢) = bhe~*¢/?
exp(—iJy@)bl exp(iJ,¢) = bl cos(4/2) + b sin(¢/2)
exp(—inqS)b; exp(iJyp) = b; cos(¢/2) — b]; sin(¢/2).

Problem 42. Let {|n) : n =0,1,2,...} be number states. Consider the
linear operator

Tig = i(m) RIINIRI®(n|)

n=0

in the product (infinite-dimensional) Hilbert space H = H; @ Ha ® Hs with
Hy, = Ho = Hs. Here I denotes the identity operator. Apply the operator
T3 to the state T @ I ® |)).

Solution 42. We find

M

Tis(I© I [)) (In) @ T@ (I @ I ® (n|P)I)

3
I
=)

M

((nlp)fn) @ T eI

I
<)

n

PYYRIRI

where we used
oo

[9) =D {nld)ln).

n=0
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The operator T3 can be considered as a transfer operator.

Problem 43. A beam splitter can be realized by means of a linear medium
where the polarization vector is proportional to the incoming electric field
P =E
with xy = x(") denoting the first order (linear) susceptibility. We consider

the incoming field excited only in the relevant spatial modes b; and by (at
the same frequency w)

. hw :
— . i(k-r—wt)
Bl 1) =iy 50 ((b1 +bo)e + h.c.)

where h.c. denotes the hermitian conjugate. The interaction Hamilton op-
erator contains only the resonant terms

5 N 2 _ XIw i
H =-P-E=—E2=2"(bTby + byb
I X 260‘/(12Jr 105)

where - denotes the scalar product. The evolution operator (in the interac-
tion picture) of the whole device is expressed as

. 1—7
U :=exp (2 arctan (1/ - ) (bJ{bg +b1b£)>

where 7, given by
-1
xhw
= ( 1+ tan?
. ( T tan (%OV))

represents the transmissivity of the beam splitter.
(i) Calculate by = Ut U, by = UThU.
(ii) Find a rotation of the phase frame by 37 /2.

Solution 43. (i) Straightforward calculation yields
gl = UTblU = —iT1/2b1 + (1 — 7')1/2()2

52 =UTpU = i(1 — 7-)1/2b1 4 71/2p,,.

(ii) A rotation of the phase frame can be obtained by the substitution
b1 — —ib;. Then we obtain

51271/21714-(1—7')1/21)2, 52:7_1/21)2_(1_7_)1/2[)1.

Problem 44. Owing to their helical wave fronts the electromagnetic field
of photons having an orbital angular momentum has a phase singularity.
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There the intensity has to vanish resulting in a doughnut-like intensity
distribution. These light fields can be described using Laguerre Gaussian
(LGpr) modes with two indices p and I. The p-index (p =0,1,2,...) iden-
tifies the non-axial radial nodes observed in the transversal plane and the
l-index (I = 0,£1,42,...) the number of the 27-phase shifts along a closed
path around the beam center. The index [ is also called the topological
winding number. It describes the helical structure of the wave front around
a wave front singularity or dislocation. The index [ also determines the
amount of orbital angular momentum in units of & carried by one pho-
ton. When the pump beam is a LG),,, mode, under conditions of collinear
phase-matching, the two-photon state at the output of the nonlinear crys-
tal can be written as a coherent superposition of eigenstates of the orbital
angular-momentum operator that are correlated in orbital angular momen-
tum, i.e., l1 +1lo = lp, where [; and 5 refer to the orbital angular momentum
eigenvalues for the signal and idler photons. A photon state described by
a LG mode can be written as

Ip) := / dgLG1p ()b (9)/0)

where the mode function in the spatial frequency domain is given by

LGip(p, ) = wop! 12 WopPk mLm Piwg _Piwg
O ) Ve ) Uz )P

X exp (il¢k +1 (p — lé') 7T)

with pg and ¢y, being the modulus and phase, respectively, of the transverse

coordinate q. The functions Llpf | are the associated Laguerre polynomials
and wy is the beam width. Find the state |lp) for [ = p = 0.

Solution 44. Since the associated Laguerre polynomial LY is given by
LY(x) = 1 we obtain

wo \ 1/2 202
LGOO = (ﬁ) exp <pk4 O> .

Thus for LGyy we find a Gaussian.

Programming Problem

Problem 1. Find the normal ordering of bbTbb" and apply it then to the
vacuum state. Find the normal ordering of bb'b! and apply it then to the
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vacuum state. Find (b+ b7)*. Find the operator b + bb! + bbTbT + bbTbTbT
and normal ordering. Apply computer algebra.

Solution 1. In the SymbolicC++ program the operator b is denoted by b,
the operator b by bd and the vacuum state by vs. The rules b¥xbd==bd*b+1
and b*vs=0 are implemented.

// bose2.cpp

#include <iostream>
#include "symbolicc++.h"
using namespace std;

int main(void)

{
Symbolic b("b"), bd("bd"), vs("vs");
b = "b; bd = “bd; vs = “vs; // noncommutative

Equations rules = (b*bd==bd*b+1,b*vs==0);

// example 1

Symbolic resl = bxbd*b*bd;

cout << "resl = " << resl.subst_all(rules) << endl;

cout << "reslkvs = " << (reslxvs).subst_all(rules) << endl;
// example 2

Symbolic res2 = b*bd*bd;

cout << "res2 = " << res2.subst_all(rules) << endl;

cout << "res2*vs = " << (res2*vs).subst_all(rules) << endl;
// example 3

Symbolic res3 = (b+bd) "4;

cout << "res3 = " << res3.subst_all(rules) << endl;

cout << "res3*vs = " << (res3*vs).subst_all(rules) << endl;

// example 4
Symbolic res4 = b + b*bd + b*bd*bd + b*bd*bd*bd;

cout << "resd4 = " << resd.subst_all(rules) << endl;

cout << "resdkxvs = " << (resdxvs).subst_all(rules) << endl;
return O;

}

The output is

resl = bd"(2)*b~ (2)+3*bd*b+1

resl*vs = vs

res2 = bd~(2)*b+2*xbd

res2*xvs = 2xbd*vs

res3 = b~ (4)+4*bd*b~ (3)+6xb~ (2)+6xbd~ (2) *b~ (2)
+12%bd*b+4*bd " (3) *b+6*bd~ (2) +bd "~ (4) +3

res3*vs = 3*vs+6xbd” (2)*vs+bd~ (4)*xvs

res4 = b+bd*b+bd" (2) *b+2xbd+bd"~ (3) *b+3*bd "~ (2) +1

resd*vs = vs+2xbd*vs+3xbd”~ (2) *vs
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18.3 Supplementary Problems

Problem 1. (i) Let b, bT be Bose creation and annihilation operators and
7= Loty 1wt
H= §(b b+0b").

Show that [b, H] = b.
(ii) Let n be a positive integer. Show that
[bTb, (61" = n(d")™, [bTb,b"] = —nb".

(iii) Let b, b be Bose creation and annihilation operators and z € C. Show
that

[b, efzb*b} _ (ez B 1)efzb*bb’ [bT, efzbtb} _ (ez _ ]_)eizbfbbf.

Problem 2. Let f:C — C be an analytic function.
(i) Show that e f(b1)|0) = f(bf + 21)|0).
(i) Show that e~ £(bT)[0) = f(bte=%)|0).

Problem 3. Let f,g: C — C be analytic functions. Then

Let 7 € R. Use this relation to calculate the commutators
[b,exp(r(b1)?/2)], [ exp(r(b1)?/2], [b*, exp(r(bT)?/2].

Then show that bexp(7(b7)?/2)|0) = 7b' exp(7(b7)?/2)|0).

Problem 4. Let bf, b be Bose creation and annihilation operators. Show
that

o0

exp( GbTb Z Ybl.

j=0

Problem 5. Let bJ{, b;, b1, b be Bose creation and annihilation operators
and let N > 1 be a positive integer. Consider the operators

V2 Vai

Tt T
Tl N3/2 N3/2 (b b b2 b blbl),

(16T by + bibeby), T =
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. 2

Ty = N(2bgb2 —blby).
Show that the commutators are given by
44

A oA 7 ~ N
(1, o] = (I = To)(I +31) + 151,

A A 47 ~ PN 47
[15,Th] = NTQ» (15, T>] = _NTl

where I denotes the identity operator.

Problem 6. Let b, b be Bose creation and annihilation operators. Show
that .

p(b,bT) = (1 —e e ?
is a density operator, where A = Shw, 8 = 1/(kgT).

Problem 7. Let |n) be a number state and |3) be coherent state. Show
that )
(sr)"

n!

[(nlB)I* = exp(—|BI*)

which is a Poisson distribution.

Problem 8. Let bf, b be Bose creation and annihilation operators. Con-
sider the operators

. . . 1
T =0N2, Ty=-b% 1T3=4 (b*b+ 21) )
Show that they satisfy the commutation relations

(11, Ty) =Ty, [T1,T3] = —8T1, [Tz, T3] = 8Ts.

Show that
exp(e((b')? — b%)) =

exp(—%b2 tanh(2¢)) exp((bTb + %I) In(cosh(2¢)) exp(% (bT)2 tanh(2e)).

Problem 9. The semi-simple Lie algebra su(1,1) is given by the com-
mutation relations [kl,kg} = 72.1433, [kg,kﬂ = ikg, [kg,k'g] = 72‘]{31, where
k1, ko and k3 are the basis elements of the Lie algebra. Show that an
infinite-dimensional matrix representation is given by

0100 .. 0 i 0 0

1020 i 0 2 0
k=1]0 2 0 3 k=il 0 -2 0 3i
2100 3 0 2

0 0 =3 0
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1
ks = idiag(l, 3,5,7,...).

Problem 10. Let b, b be the Bose creation and annihilation operators
and S3, S;, S_ be the Spin—% matrices. Consider the operators

N=btb@L+Ip®S; K=(@b +bc(Sy+S).
(i) Show that [N,b® Sy + bl ® S_] = 05 ® 0.
(ii) Show that [N, K] =2(bf ® Sy —b® S_).
Problem 11. Consider the operators
1 1
Qr=50l@cthod), Q- =sbhiod-tjeo).

Find Q1+ Q_, Q_Q+ and the anticommutator [Q,Q_]+.

Problem 12. Let

Jy=blby @ Ip+Ip®@ct

J_=biby @Ip+Ig®ec

Js = (blby — blbo) @ Iy + 15 @ (2¢Tc — Ip).
Show that [Jy,J_] = Js, [J1, Js] = =2J4, [J_, J5] = 2J_.

Problem 13. Find the matrix representation of b' ® ¢ + b ® ¢ applying
the basis |n) ® |0), |n) ® c¢f|0). Find the matrix representation using the
basis

18) ®10), |8) @ct|0)

where |8) are coherent states.

Problem 14. Let ¢, ¢ be Fermi creation and annihilation operators.
(i) Show that eire’e = I — 2cte.
(i) Show that et = diag(1,—1,1,—1,...).
Problem 15. Find the states
e (In) @ [0)), €O (1n) © |0)).

Problem 16. Let b be a Bose operator and I be the identity operator.
Show that we can write

(8T =061 ~81) = =5 [ [ DT a0 (3.
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Problem 17. Let 01, 02,03 be the Pauli spin matrices and bf, b be Bose
creation and annihilation operators. Study the spectrum of the Hamilton
operator

ﬁ = hwilp ® o3 +ﬁw2bTb®Ig —‘rhwg,(bT +b) X o1.

Problem 18. Let f(k) be the Fourier transform of f(x), where f €
L2(R) N Ly (R). Show that if

_ Rl @Pd R Pk
T lf(@)Pde T )2k

exist, then E, E, > 1/4.
Problem 19. The Fourier transform is given by

k) = /Rf(x)eik”’dm, fx) = ;f(k)e_ikxdk.

s

(i) Show that for the Gaussian distribution we have

1 (x — E)? , 1 5.4
Wexp <%¢2) & exp (zkE 57 k<.

(ii) Show that for Poisson distribution we have

Z nl exp(—A)d(z — n) & exp(A(e™ — 1))

(iii) Show that for Lorentzian distribution we have

r 1

(iv) Show for the product of two Gaussian distributions we have

1
exp ( E(Ey + Fy) — 2(a§ + ag)kz)
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Coherent States

19.1 Introduction

Quantum coherent states are the closest quantum-mechanical analogue to
a classical particle oscillating in a harmonic potential. Coherent states are
minimum uncertainty states. Quantum computation circuits with coherent
states as the logical qubits can be constructed using simple linear networks,
conditional measurements and coherent superposition resource states. Co-
herent states are very sensitive to their environment. The output of a single
mode stabilised laser can be described by a coherent state |3), where 3 is a
complex number which determines the average field amplitude. Harmonic
oscillator coherent states can be defined in three different equivalent ways.
Firstly, the coherent states are the eigenstates of the Bose annihilation
operator

b|B) =plB),  BeC

Thus the spectrum of the operator b fills the entire complex plane. Secondly,
they are displaced vacuum states

18) = exp(~|5]*/2) exp(Bb") exp(~5*b)[0)
where |0) is the vacuum state with (0]0) = 1. Since
b|0) = 0]0)

we have

|B) = exp(~|8]*/2) exp(501)|0).

421



422 Problems and Solutions
Thirdly, coherent states are states of minimum uncertainty

h

ApAx = =
b 2
and are thus most classical within the quantum framework.

Expressed in number states |n) the coherent states are given by

— o—18I7/2 gt
By =¢e E n).
13) 2 ﬁn!‘ )
The displacement operator is defined as

D(B) = exp(Bb! — 7).

Then the coherent states can be defined as

|6) = D(B)|0).

We have

The completeness relation is given by

L _
~ [eaml=1

where I is the identity operator. Let |3), |y) be coherent states. Then

1) = oxp (35 + hi?) + 527

It follows that
(Bl = B) = e

Let |n) be number states. Then

(1) = exp (—3167) =

Let 7 = bb be the number operator. Then

(BlnlB) = 86"
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19.2 Solved Problems

Problem 1. Bose creation bf and annihilation b operators obey the
Heisenberg algebra [b,bT] = I, [b,b] = [b,bT] = 0 with b|0) = 0, where |0) is
the vacuum state. The coherent states |3) can be obtained by applying the
unitary displacement operator

D(B) := exp(Bbf — 5*D)

on the vacuum state |0), i.e.

)= D) = exp(sv! — 3 0)0) =exp (~315) Y- o). sec
n=0 :

Show that from this definition the coherent states can also be obtained as
the eigenstates of the annihilation (destruction) operator b, i.e. b|3) = j|5).

Solution 1. We find for the commutator

[b, (86T — 670)"] = Bn(BbT — B0)" !, n=1,2,...

and therefore we have the commutation relation [b, D(8)] = SD(S3). Since
b|0) = 0|0) we have

00) = D(B)b]0) = (b — BI)D(B)[0) = (b — BI)|B)

where we used the commutation relation given above.

Problem 2. Let D(3) be the displacement operator. Find the operators
D7(8) and D~1(8).

Solution 2. We find D(3) = D~1(3) = D(-8).

Problem 3. Let |8) and |y) be coherent states.
(i) Calculate (y|8). Calculate (0|D(5)]0) = (0|3).
(ii) Find the probability |{v|B)|?.

Solution 3. (i) Since

) = exp (3167 imm ) =ew (~3h1) 3 Iim)

we find

18) =exp (=508 + 1) ) 3= 3 T2 )
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= (—5098 + b)) 3 P2

o n!
—exp (5182 + ) + 5

where we used (m|n) = 0p,y,. Using this result we find

018 = exp (3161 .

(ii) From (i) we obtain |(7|8)]*> = exp(—|8 — ~[?). If ¥ = B we have
[(B|B)|? = 1. Tf v = — 3 we obtain |(8] — B> = e~ 45

Problem 4. Let |3) be a coherent state. Let 7 := bTb. Calculate

(Bl7[B)-

Solution 4. Since b|3) = B|3), (B|b" = (B|5* we obtain
(Bln|B) = BB* = |8

Problem 5. Let b, b' be Bose annihilation and creation operators and Z,
p be canonical position and momentum operators which are related by the
equations

1 1
b= 5@ +ip), b*zxﬁ(wﬂp)-

Express the displacement operator with  and p.
Solution 5. We obtain
D(&,p) = exp(i(pt — xp))

where the real and complex parameters are also related by

1 _ - 1 :
B = ﬁ(ﬂcﬂp), B = E(x—w)-

Problem 6. Consider the Hamilton operator H = hwb'b. Let
U(t) := exp(—itH/h).

Find the state U(t)|3), where |5) is a coherent state.
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Solution 6. Since -
_ 2N B
=e n
18) Z:O ml )
and b'b|n) = n|n) we find
U(t)|8) = |Be™™").

Thus the linear evolution of |§) is a rotation in phase space. The initial
state will be revived at wt = 27,4, ... as expected.

Problem 7. Let D(B) := exp(B8b' — 5*b) be the displacement operator.
(i) Find the operators D(B)bD(—3), D(3)b' D(—p).
(ii) Find the operators D (3)bD(3), DT (3)bt D(B).

Solution 7. (i) Since [bf,b] = —1, [bT, [bf,b]] = 0 we obtain
D(B)bD(=B) =b—BI,  D(BWB'D(=p) =b' - B*I.

Note that D(—3) = DT(3) = D~(3).
(ii) Using parameter differentiation yields

DI(B)bD(B) =b+BI,  DI(B'D(B) = bl + B*1.

Problem 8. Coherent states are defined as

. —BB"/2 A
)= P i)

where 8 is a complex number. We have b|8) = §|8) (eigenvalue equation),

Y Im(m| =1
m=0

(completeness relation) and bfb|n) = n|n).

(i) Calculate (n|B) and then the probability P, (3) := |(n|3)|*.
(ii) Let A := b'b. Calculate () := (B|A|B), (A2) := (B]A2|B).
(iii) Calculate the variance ((An)?) := ((A — (A)I)?).

Solution 8. (i) Using (n|m) = d,,, we have

/BTL
\/m.

(n13) = exp (5161
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Thus we obtain
(BB*)" exp(=BB*)

n!

Pn(ﬂ) =

This is a Poisson distribution.
(ii) Using b|8) = B|B) and therefore (8]b" = (8|8* we find

(h) = (BIbTB|B) = BB*, (A% = (BB")* + BB

where we used bb" = bTb + I.
(iii) Applying the results from (ii) we obtain

((AR)%) = (7 — (A)])*) = BB".

Problem 9. Let |0), |1), ...be the number states. An arbitrary normal-
ized state |g) can be expanded as

o0 o0
9) =D cili), Y e =1.
=0 i=0

Express the state using coherent states |3). Consider the special case that
c; = 0 for all j except for ¢, = 1.
Solution 9. We find

g) = /C 181124 (8% 8) B

™

where d?8 = d(R(8))d(3(B)) and

j=0 I

If all ¢; are equal to O except for ¢, =1 we obtain

) =t} = 1 [l e

Problem 10. Let |3) be a coherent state and |1)) be an arbitrary state
in the Hilbert space containing |8). Show that

B(B)] < exp (iw) |
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Solution 10. We have the following identity (completeness relation)

/ 42818)(8] = Z jm) (m

from which it follows that the system of coherent states is complete. Using
this equation we can expand an arbitrary state |¢)) with respect to the state

)
v =1 [ EsEwie)

If the coherent state |3) is taken as [¢), then this equation defines a linear
dependence between the different coherent states. It follows that the system
of coherent states is supercomplete, i.e. it contains subsystems which are
complete. Using the definition for the coherent state given above we obtain

1 ) . > 5n
(Bly) = exp (—2|/3| )ww ) W):;wﬂ

The inequality |(n|1)| < 1 means that the function ¢ (3) for the normaliza-
tion state [1) is an entire analytic function of the complex variables 8. We
also have |(3]1)| < 1. Therefore we find a bound on the growth of ¢ (53)

B(B)] < exp (;W) |

The normalization condition can now be written as

2 / d2B exp(— |82 (B) [ = (wlw).
C

The expansion of an arbitrary state |¢) with respect to coherent states now

takes the form
1 1
o) =+ [ @pexp (3108 ) w15,

Problem 11. Coherent states |3) can be written as |5) = D(8)|0), where
D(p) is the displacement operator and |0) denotes the vacuum state. Show
that

D(B)D(y) = exp(iS(877)) D(B +7)- (1)

Solution 11. Since [b,b] = I we have

[BbT —B*b, /bt —*b] = —[BbT, y*b] — [3*b,yb'] = (By* —B*7) = 2iS(By*)I.
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Using the Baker-Campbell-Hausdorff formula

eAeB — pA+BIA,B]/2

for [[A, B], A] = 0 and [[4, B], B] = 0, we find (1). As a consequence we
have ‘ )
D(B)D(7)D(=B) = **7)D(y).

It follows that the operators exp(2mit)D(S) form a group. An element g of
this group is defined by the real number ¢ and a complex number 3: g(¢, §).
The product of two group elements g = g1 s is given by g(¢t, 8) with

1 *
t=t; +to+ —S(B207)
2

and 3 = f1 + Sa.

Problem 12. Consider the displacement operator D(8). Show that

D(B)D(y) = " =77 D(7)D(B). (1)

Solution 12. The Baker-Campbell-Hausdorff formula
GATB _ (A B —[ABl/2 _ BAA,B]/2
for [A, [A, B]] = [B,[A, B]] = 0 can be applied since
(BT — 5b, 46" =48] = (By* — NI

where I is the identity operator. Thus (1) follows.
Problem 13. Let |3) be a coherent state. Show that

1 25 _
- [l =1

where I is the identity operator and the integration is over the entire com-
plex plane. Set 8 = rexp(ig) with 0 <r < oo and 0 < ¢ < 2.

Solution 13. We have

1 2 _l — |7’L m‘ —|8I? gxm gn ;2
s Loees= 23250 P [ eorgmgnas

)
'm! Jc

Using 8 = rexp(i¢) we arrive at
1 1 oo [ee) |n><m| o0 2 /27\' . B
— d*p=— re " Ty el =M g,
~ [mees- 2>y O .

n=0m=0
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Since )
/ ei(n—77L)¢d¢ — 27T6nm
0

we have
1 20 - |7’L><7’L| * —s_.n
+ Lioes =3 I [ erras

where we set s = 72 and therefore ds = 2rdr. Thus

! 2 _OOTLTL:
+ Lm@as =3 imn =1

where we used the completeness relation for the number states.
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Problem 14. (i) The Husimi distribution of a coherent state v is given

by
Py (B) = |(BI)I*.
Calculate pZ (5).

(ii) The Husimi distribution of the number state |n) is given by

Piny (B) = 1(BIn) .

Calculate pllfw (8).
(iii) Consider the state |n1) ® |n2). Find

Playoing (B) = ({81 @ (Ba])(Ina) @ [n2))[*.

Solution 14. (i) Since

18) = o= 18172 Z ﬁm)’ ) = e—1?/2 Z im)
Vn! — V!

|
n—o V1

we find
(Bly) = e 1B /2e=In* /287

where we used (m|n) = . Thus [(B|7)]? = exp(—|8 — 7|?) and the

Husimi distribution of a coherent state is Gaussian.
(i) Since (m|n) = dpmy we find

_ a2 8"
(Blm) = =172

and hence )
e P (81"

[{BIn)[* =

n!
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The Husimi distribution represents a Poisson distribution over the photon
number states.
(iil) Since

((B1] @ (B2])(In1) @ [n2)) = (B1|n1)(Ba|n2)

we obtain

G L s (Y
TL1! TLQ! '

H
Pin1)®|na)

Problem 15. In a Kerr medium the state evolution is governed by the
interaction Hamilton operator

H = k(b'D)?
where k is a coupling constant proportional to the nonlinear susceptibility

of the medium. A coherent input signal state |3) evolves according to the
solution of the Schrodinger equation

[¥e(t)) = exp(—iH1)|B).

Calculate |¢.(t)) for t = w/(2k). Discuss.
Solution 15. Straightforward calculation yields

[Ve(t =7/ (28))) = —=(e77/*|8) + /4| - )

,_.g‘,_.
[\

= L (e™/D(B) + ™/ 1D(~B))|0)

N

where D(f) is the displacement operator. The state describes a super-
position of two coherent states with opposite phases. When |3| becomes
large the two components become mesoscopically distinguishable states of
the radiation field. Realistic values of the Kerr nonlinear susceptibilities
are quite small, thus requiring a long interaction time, or equivalently a
large interaction length. Thus losses become significant and the resulting
decoherence may destroy the quantum superposition.

Problem 16. Let |3) be a coherent state. Express the density operator

1 27 » _;
p:g/o dg||Ble=")(|Ble=|

with number states |n).
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Solution 16. We obtain

5 2n
p=e 3 P ).

n=0

This is a collection of number states.

Problem 17. Let b, b be Bose creation and annihilation operators and
f = bfb. We can introduce nonlinear coherent states B and BT with an
intensity dependent function f(7) (which is an operator valued analytic
function)

B :=0bf(n) = f(h+ I)b, Bt := fT(a)b" = b fT (A + 1).

We consider f to be real and non-negative, i.e. fT(n) = f(n).
(i) Calculate the commutator [B,Bf]. Then consider the special case

f(7) = I'and f(n) =

(ii) Express the harmonic oscillator for BT and B

1
H= 5(BBT + B'B)
using 7 and (7).
(iii) Find the eigenstate of the operator B, i.e., find the nonlinear coherent
state
B|Z>NL = >\|Z>NL-
What is the condition that the state belongs to the Fock space?

Solution 17. (i) Since f is analytic we have a Taylor expansion. We
obtain

B, B = (A + Df(+ Df (A + I) = af () f (7).
With f(7) = I we obtain the result for the Bose operators b and bf. For
the case f(7) =7 we obtain
(B, B"] = 3a% 4+ 3 + I.
(ii) We obtain
1

S+ Df(A+ D f(+ 1) +af(R)f(7).

H:

(iii) Using the expansion with respect to the Fock basis {]0), |1),...} and
the fact that f is an analytic function we obtain

|2) v = Ny (l2?) 1/2202"\71

n=0
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where the coefficients C,, are given by
_
[nf () f)]T

and the normalization constant is given by

Cn = Co=1, [f()':==f(n)f(n—1)---f(1)

oo

Ni(I2) = 3 Gl

n=0

In order to have states belonging to the Fock space, it is required that
0 < N¢(]2]?) < co. This implies that

|2 < lim n[f(n)]?.
n—oo
The function f(n) corresponding to any nonlinear coherent state is found
to be
Cn—l

fn)

Problem 18. Let D(5) be the displacement operator. Is
D(B)D(B") = D(B+ )7
Prove or disprove.

Solution 18. The answer is no. We find

DOD(E) = exp (3(58° ~ 55)) DB + ),

Note that g € C. If 8,8’ € R then we have D(8)D(5") = D(8 + 5').

Problem 19. Consider the coherent state |5). We define the Schrodinger
cat states

1B4) =N (18) +1=8)),  [B-) = N_(I8) = [-8))-

(i) Normalize the two states.
(ii) Calculate the probabilities |(84|n)|?, (3—|n)|? and discuss.

Solution 19. (i) From (54|54+) =1, (f—|f-) =1 and

(718) = exp(—|8 —~I*/2)
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we obtain
_ (/D) - exp(BP/2)
2,/cosh(|B%)’ ~ 2y/sinh(]BR)’

(ii) Since

_ s B
(n|B) = e V? Qm

we obtain the probabilities

(B4 )P = s (14 (1))
2n
(Bl = s O = -1y

Problem 20. Consider the linear operator
Z:=b+bl=b1+I1®b (1)
where by = b® I and b; =TI ®0bl. Let Dy(2) := e?b'=="b (z € C) be the

displacement operator and

1 o0
= — -1H" .
10)) NG n§:o< )"|n) @ |n)
The states |z)) are defined by

2)) := D, (2)]0)) = D, (27)[0))-

Find the state Z|z)). Discuss.

Solution 20. We have [Z, ZT] = 0 and
Z\z)) = z|z)), zeC.

Thus |z)) is an eigenstate of Z. For z = 0 the state |0)) can be approximated
by a physical (normalizable) state called the twin beam state - corresponding
to the output of a non-degenerate optical parametric amplifier in the limit
of infinite gain.

Problem 21. Consider the beam splitter interaction given by the unitary
transformation

Ups = exp(if(bibl + bl b))
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where by and by are the Bose annihilation operators. Let |3), |y) be coherent
states. Calculate

Ups(|7) @ 18))-

Solution 21. We obtain
Uss([y) @ |8)) = | cos(8)y + isin(8)B) @ | cos(8)8 + i sin(h)7)

where cos?() (sin”(0)) is the reflectivity (transmissivity) of the beam split-
ter.

Problem 22. The normalized Schrédinger cat state of a single-mode
radiation field is given by

1

= \/2 n 2605(9)672‘5‘2 (|6> + ei9| _ ﬂ>)

18,6)

Discuss the special cases § =0, 0§ =7, § = 7/2.

Solution 22. For 6 = 0 we obtain the even coherent states

1

18,0) = W(W +[—8))-
For 0 = 7 we obtain the odd states
1

|5,7T> = WU@ - | - 5>)~

For 6 = w/2 we obtain the Yurke-Stoler states

1

8,7/2) = —=(I8) + il = B))-

Sl

2

Problem 23. We know that

.
|8) = D(8)|0) = ”* ~|0)
= P e Pbe=BBI/2)) = = BB/2cBbT |

_ & n
_ —BB/2 B n)
e E n
o Vn!

where
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Let o1 be the Pauli spin matrix. Extend the calculation to the state

0@ (o))

D(B) := exp(Bbl @ o1 — Bb @ 7y).

where

Solution 23. First we note that since o7 = I and [b,bf] = I
—[Bb' @ 01, —Bb @ 1] = =PRIz ® I.

Thus we obtain

DI @ () = ome e et g ()
= e_BB/Qe/BbT®O-$e_ﬂb®(Tl ‘0) ® ( 1 )

0
— ¢ BB/2e80 @010y (é)

26—56/2<C 1 n>>®<(1))
(Z %mm) © (2))

Problem 24. Bose creation (b') and annihilation (b) operators, where

bl = (0],b},...,b8), b= (b1,bs....bn)
obey the Heisenberg algebra
[bj b = 6l [bj,bi] = [bl,b]] =0, j,k=1,...,N.
Coherent states, where z € C", are defined as eigenvectors of the annihila-

tion operators, that is b|z) = z|z).
(i) Show that the normalized coherent states are given by

) = exp (3 a?) expla - b0 )

where

N N
2P =D 15 zbl=) b
j=1 Jj=1
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and |0) =]00... 0) is the vacuum vector satisfying b|0) = 0|0).
(ii) Let |w) be a coherent state. Find (z|w), (z|w)|?.

(iii) Calculate
/ dp(z)|z)(z|.
R2N

Solution 24. (i) Consider the number representation
(b)™ )™ (B
Vil Vng! T Vna!
We expand |z) with respect to |n) and apply

b]|n> = \/nj|n17"'anj _17"'7nN>
b;-|n> =+/n; +1ny,---,n;+1,--- ,ny)

we find, after normalization, that |z) is given by (1).
(ii) We find

|n>E\n1,n2,...,nN>: |0>

alw) = exp (= + wl? = 227 w))
and
(a2 = exp(~lz — w).

(iil) Since

>1

N
,H (Rz;)d(Sz)
Jj=1

we find

[ dut@)z)el =1
R?N

where I is the identity operator.

Programming Problem

Problem 1. Give a computer algebra implementation that implements

b|B) = BIB), (BIb" = (BI5".
Then find 0%|8), (8|, (818), blB), (Bb]B).
Solution 1. In the SymbolicC++ program bd denotes bf, b denotes b,

cs denotes the coherent state |8) and ds denotes (8| and conj denotes the
complex conjugate and z denotes 3.
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// coherent.cpp
#include <iostream>
#include "symbolicc++.h"
using namespace std;

int main(void)

{
Symbolic b("b"), bd("bd"), cs("cs"), ds("ds");
b= "b; bd = “bd; cs = “cs; ds = “ds; // noncommutative

Symbolic z("z"), w("w"), conj("conj");

Equations rules =
(b*cs[z]==z*cs[z] ,b*cs [w]==w*cs[w],
ds [z] *¥bd==ds [z] *conj [z] ,ds [w] *bd==ds [w] *conj [w],
ds[z]*cs[z]==1,ds[w]*cs[w]==1,
ds [w] *cs [z] ==exp (- (z*conj [z] +wkconj [w] -2*conj [w] *z) /2) ,
ds [z]*cs [w]==exp(-(z*conj [z]+w*conj [w] -2*conj [z]*w)/2));

// example 1

Symbolic rl = b*(bxcs[z]);

rl = ri1.subst_all(rules);

cout << rl << endl;

rl = ri[z==1];

cout << rl1 << endl;

// example 2

cout << (ds[z]l*cs[z]).subst_all(rules) << endl;

// example 3

Symbolic r2 = b*cs[z];

Symbolic r3 = ds[w]*r2;

cout << r2.subst_all(rules) << endl;

cout << r3.subst_all(rules) << endl;

return O;

}
The output is

z~ (2) *cs [z]

cs[1]

1

zxcs[z]

e~ (-1/2*zxconj[z] -1/2xwxconj [w]+conj [w]*z) *z

19.3 Supplementary Problems
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Problem 1. Let |5) (8 € C) be a coherent state. Show that the projection

operator |3)(8] can be expressed as

18)(B| = exp(—BB) exp(Bb")[0)(0] exp(Bb).
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Find tr(|5) (5],

Problem 2. Let D(f) be the displacement operator.
(i) Show that (normally ordered form of D(f))

D) = exp (5161 ) exp(0h) exp(—).
(ii) Show that (antinormally ordered form of D(f))

D(3) = exp (191 ) expl-570) exp(v).

Problem 3. Let 7 = b'b and D(j3) be the displacement operator. Find
the commutator

[, D(B)].
Find the commutator
[In) (nl, D(B)].
Find the commutator
[In)(nl, [B){BI).

Problem 4. Show that the solutions of the eigenvalue problem for the
one-dimensional harmonic oscillator

h? d? mw?
(—dez + 21‘2> U(l‘) = Eu(x)

are given by

1 mw\ 1/4 9 9
un(a) = e () Hala/ao) exp(=a®/(2a)
with E,, = hw(n + 1/2), 2o := \/h/(mw) and H,(x/x¢) are the Hermite

polynomials.



Chapter 20

Squeezed States

20.1 Introduction

Coherent states are not the most general kind of Gaussian wave packet.
They are also not the most general kind of minimum-uncertainty wave
packets, since the minimum uncertainty wave packet satisfies

AgAp = h/2

which only constrains the product of the dispersions Aq and Ap, whereas
for coherent states we have that

(Ag)? = h/(2w) and (Ap)? = hw/2.

For squeezed states one does not have this restriction. Unlike a coherent
state, an initial squeezed state does not remain a minimum-uncertainty
state in the course of time under the harmonic oscillator evolution. The
product AgAp oscillates at twice the harmonic oscillator frequency between
a maximum value and a minimum value. Squeezed states possess the prop-
erty that one quadrature phase has reduced fluctuations compared to the
ordinary vacuum. Squeezed states of the electromagnetic field are gener-
ated by degenerate parametric down conversion in an optical cavity. The
ideal squeezed state is defined as

€)== S(0)[0)

439
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where
1 *7.2 1 12
S(Q) = exp (50— ~b
2 2
is the one-mode squeezing operator with ¢ € C. If we set
¢ =se®

(s > 0) then s is called the squeezing parameter.

The operator S(¢) is unitary, since

166) = exp (502 - )

and therefore ST(¢)S(¢) = I. In disentangled form S(¢) is given by

(bTh 4 bb) ln(cosh(s))>

S(¢) =exp <—;(bT)2€i0 tanh(s)) exp <—;

X exp <;b26_i0 tanh(s)) .

Using this result the squeezed states can be expressed with number states
=V ((2n)! 1 "
[€) = +/(sech(s)) E M (—2 exp(i) tanh(s)) |2n)
n!
n=0

where n = 0,1,2,... and we used that (b'b + bb7)|0) = |0). The expansion
over the number state basis only contains even components. The state |¢)
is normalized. We also have the eigenvalue equation

(beosh(s) + ble'? sinh(s))[¢) = 0|¢)
and similarly (¢| is the zero-eigenvalue left eigenstate of
bl cosh(s) 4 be™* sinh(s).
The overlap of two squeezed states is given by

1
/cosh(sy) cosh(sg)(1 — e~i(02=61) tanh(s; ) tanh(sz))

(€l¢) =

_ i0 _ i0
where £ = 511, ( = s9€"72.
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20.2 Solved Problems
Problem 1. Let ¢ € C. The squeezing operator is defined by

S(0) = exp (- 50+ 0°)

where ¢ € C. We set ¢ = se’?, where s > 0 and § € R. The single mode
squeezed states |() are defined by

€) == S(0)|0).

(i) Show that S(¢) is unitary.
(ii) Find S(¢) in the disentangled form.
(iii) Calculate the state [{) = S({)|0) using the number states.

Solution 1. (i) We obtain
510 = ex (507 - $07) = 5(-0)

Thus we have ST(¢)S(¢) = I.
(ii) We obtain

S(¢) =exp (—;(bf)%” tanh(s)) exp (—;(bTb + bb') ln(cosh(s)))
X exp @b%i" tanh(s)> .

(iii) Using the result from (ii) we obtain

1¢) = \/(sech(s Z W ( = exp(if) tanh(r ))n |2n)

n=0

where we used that (bfb 4 bb1)|0) = |0).

Problem 2. Consider the one-mode squeezing operator

S(¢) = /2P =)

where ¢ € C. Calculate
b=ST()bS(Q), b = SHOH'S(O).

Solution 2. We obtain

*

& sinh(|¢])b.

e sinh(lchpl, B = cosh(lchb! — -

b = cosh(|¢|)b — 3
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Problem 3. Consider the single-mode squeezing operator
1 *
S(Q) = exp ( b1 = ¢ b2) :

Let |0) be the vacuum state. Find the state S(¢)|0) = |¢) using number
states |n). Use this result to find the expectation value (¢[b75|¢).

Solution 3. Expansion over the number state basis contains only even
components, i.e.

o k
S0y = 1¢) = jﬁ 3 <2M) OB ok

k=0

where ¢ = se’, = cosh(s), v = €¥ sinh(s). Using this result and
bib|2k) = 2k|2k)

we obtain
(¢[bTol¢) = |v[*.

Problem 4. Let S(¢) be the one-mode squeezing operator (¢ € C)

S(C) = exp (ic*bz - ;qb*)z) |

S() (bbT ) SHOE (5(%);*?*((% )

and show that we can write

(stws') = (i)

where the 2 X 2 matrix T'(,(*) depends only on ¢ and (*.

Calculate

Solution 4. We have ST(¢) = S(—(). Let ¢ € R. We set
fi(e) = e3e(CTH2 =N~ 5 ("0 —¢(07)?)
and
fol(e) = 2V =CNH)pte—3e(CTH*—C(01)?)
with the initial conditions fi(e = 0) = b and fo(e = 0) = bf. We find the
system of differential equations for f; and fo. Using bb' = I + bTb we have

afi _ _lge%e(c*bl’—c(b*)z)((bf)zb — b(b1)2)em 2e(CTV*=C)?)

de 2
=(fa(e).
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Analogously, we obtain

dfs .,
E_C fi(e).

In matrix notation we have the system
(dfl/d€> _ ( 0 C) (f1>
df2/de ¢ 0)\fe)"
_(0 ¢
A= < g O)_
We find

exp(ed) = < cosh(es)  (sinh(es)/ S) _ ( cosh(es) e Sinh(es))

Let

(*sinh(es)/s  cosh(es) e " sinh(es)  cosh(es)

where we used ¢ = sexp(if). Taking into account the initial conditions we

obtain
S(QbST(O) cosh(s) e'? sinh(s) b
S(ObTST(¢) ) — \ e ®sinh(s)  cosh(s) bt )
The matrix on the right-hand side can be decomposed as

( cosh(s) el sinh<s>> _

e~ sinh(s)  cosh(s)
0 /2 cosh(s) sinh(s) 0 e'0/2
e”0/2 sinh(s) cosh(s) e~i0/2 0 )

Problem 5. For generating a squeezed state of one mode we start from
the Hamilton operator

H = hwb'b + ihA (b2t — (bT)2e 2wt

A photon of the driven mode, with frequency 2w, splits into two photons of
the mode of interest, each with frequency w. Solve the Heisenberg equation
of motion for b and b'.

Solution 5. The Heisenberg equation of motion yields
db 1
T
dt ih[ ’

dbf 1 . _
2 qpt — bt IAbe2iwt
o ih[b , H](t) = iwb be

H|(t) = —iwb(t) — 2AbT (£)e=2"
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Using b = bexp(—iwt) we obtain

db ~ db' ~

— = —2AbT(¢ — = —2Ab(¢).

= R (t
Introducing the operators

~ 1~ ~ ~ 1 ~ ~

bp = —(b+bf bg == —(b—b'

ie.
E:gp+ng, ’[;TZEP,Z'EQ

we finally arrive at the system of differential equations

dbp db,
ZF o oNbp(t 29— 9Nbg(t
7 P(t), 7 Q)

with the solution of the initial value problem
bp(t) =bp (0)672[\1&, bo(t) = bg (0)€2At.

If the state is the vacuum state |0) we obtain a squeezed state. For the
electric field E(r,t) we have

E(r,t) =iE(b(t)e™ ™ — bl (t)e~kT)
= Z’g(g(t)eik-r—iwt _pf (t)e—ik‘r—iwt)
= —2E(bp(t)sin(k - r — wt) + bo(t) cos(k - r — wt)).

Thus bp and by are the amplitudes of two quadrature components of the
electric field. They are measurable by phase sensitive detection.

Problem 6. Consider the squeezing operator

S(s) :=exp <;s(b2 — bT2)>
where s € R. Find the operators
S(s)aS'(s),  S(s)pS'(s)

where

1 i S ot
q.—\@(b+b), pi= (b—"b").

Solution 6. We obtain
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Problem 7. Let ¢ € C and

G = %(CbTbT — C*bb).

(i) Calculate the commutators [G, b], [G, [G, D]].
(ii) Let

S(¢) :=exp (;(aﬂb* — C*bb)) = exp G.
Find S(()bS(—¢), S(C)b'S(—¢).
Solution 7. (i) We have
G, b = %{[bTbT,b] = —Cbf

and

(G, 1G, 0] = [G, =T = =[G, bT] = [,
(ii) Using the results from (i), we find

S(¢)bS(—¢) = (cosh(s))b — e® (sinh(s))b'

where ¢ = re*®. Likewise, we find

S(C)bTS(—¢) = (cosh(s))b" — e~ (sinh(s))b.

Problem 8. Consider the unbounded linear operators

1 1 1 1

::71.2 _::72 = = T 7I

Kyo=300 K 50 Ko:= g0+ 5I)
At :=b", A:=0b

where I is the identity operator.
(i) Show that these operators form a Lie algebra.
(ii) Consider the operator

P:=(K,—-CK_+4aAl—a*A
where ¢ and « are complex numbers. Let

T
V= eBKJreeA e’yKoeuleéK, enA

445

where f3, €, v, v, § and 1 are complex numbers. Let e’ = V. Find v, 3, 6,

€, n, v as functions of ¢ and a.
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Solution 8. (i) For the commutators we obtain

[Ko,Ki]=+Ky, [K., K. ]=-2K,, [Ky,Al=-A", [K_,AT|=A

(Ko, AT] = %AT, [Ko, A] = —%A, [A, AT] = 1.

This Lie algebra refers to squeezed coherent states.
(ii) We write the complex numbers ¢ and « in terms of real numbers A, y,
0 and ¢ as ¢ = re'?, a = se’®. We use the formula

(o]
A —A __ [AvB]n
e“Be © = E_O ]

where the repeated commutator [A, B],, is defined by
[A, B],, :=[A,[A, B]n-1]
with [A4, Blp := B. We find

e’ Ae P = cosh(r)A — € sinh(r) AT + ;((cosh(r) —1)e' =% _sinh(r)e'?)

eP AteP = cosh(r) At —e = sinh(r) A+ ((cosh(r)—1)e? ¢~ _sinh(r)e~%).
T

The corresponding similarity transformations, induced by the operator V,
are

VAV =e "2(A - BAT — €I)
VATV = (772 — Bse /2 AT + 6e™/2 A+ I — ede /2.
From
ePAe P =vAV 1, ePATe P =vAty—!
we find, by separating out terms with AT, A and I, that

v = —2In(cosh(r))

B = e tanh(r)

6= —e "% tanh(r)

((cosh(r) — 1)e'®=%) —sinh(r)e'?)

‘T cosh(r)

= *Wh(r)((cosh(r) —1)e” 1079 _sinh(r)e ).

The coefficient v cannot be found by this method. How can we determine
v? One finds

s2

YT cosh(r)

((cosh(r) — 1) + i¢sin(0 — 2¢)(sinh(r) — r cosh(r))).



Squeezed States 447

1
i z
(b b+ 2I>

Problem 9. (i) Show that the operators

DO =

1 1
K. = =bpf K_ = —bb Ko =
+ 2 ) 2 5 0

are generators of the Lie algebra su(1,1).
(ii) Let D(B) be the displacement operator and

S(¢) =exp(CKL —(¢C"K_), ¢eC
We define the state
(8, €)) == D(B)S(¢)[0)-
Show that the ordering D(3)S(¢) versus S(¢)D(8) is unitarily equivalent.

Solution 9. (i) We have [Ko, K] = Ky, [Ko, K_] = —K_, [Ky,K_] =
—2K,.

(i) We have D(B)S(¢) = S(¢)D(v), v = Bcosh(s) — B*e? sinh(s) and
z = se'?.

Problem 10. Consider the squeeze operator
S(Q) = exp (;(c*bQ = ¢! 2))

with ¢ = [¢|exp(i( + 0). Is S(C)S(C") = S(¢' +¢")?
Solution 10. The answer is no. We find

S(E)5(¢") = ex (=0 (50 + 51) ) 5(0) 1)
with

¢"=[¢"exp(if'), p' = cosh|("], V' = exp(if’)sinh[(|

/|2

and |p/|? — [v/|* = 1 with analogous relations for ¢”, " and v". In (1) ( is

obtained from
v

¢=ldlexp(ito+ ). 1¢ = ton ™" (1)

!, e

with p = p'py” + vV, v=p*v" +v'u

"

and |u|? — [v]? = 1.
Problem 11. (i) A single mode squeeze operator is defined by

S(2) = exp @(z(bf)? _ z*bz))
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where z € C with z = re?®. Write S(z) in the form S(z) = exp(iH(z)).
Find H(z).
(ii) Calculate
RY(6)H (2)R(¢)

where R(¢) = exp(igbd) is a single-mode rotation. Set ¢ = 6/2 and thus
find H(r).
(iii) Use the transformation
T+ 1ip _

V2 V2
and express H(r) in terms of x and p.
(iv) Discuss the H(r) as a Hamilton function.

(v) Write down the eigenvalue equation Hy(x) = Ev with p = —id/dx.
Discuss the spectrum.

b:

Solution 11. (i) Obviously we have

1
H(z) = —(2(b")2 — 2*b?).
27
(ii) We find _
R'(¢)H(2)R(¢) = H(ze~?).
Thus for ¢ = 0/2 we obtain H(r).
(iii) Inserting the transformation yields

r
H(r) = ~ % (ap + pr).
(iv) The Hamilton function H(r) = —rzp leads to the Hamilton equations
of motion
dx dp
—=—rz — =rp.
dt ’ a ~ "

This describes damping of = and the pumping of p. This is a classical
picture of a squeezing process.
(v) Since

r dy r

H(r)(@) = =% (ap+ po)(@) = ire - +iZy(@)

it follows that the eigenvalue equation is
d E 1
vt = = (i + 3 ) via

H(r) has a purely continuous spectrum covering the whole real axis. H(r)
is also parity invariant (x — —z). Therefore each generalized eigenvalue
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E € R is doubly degenerated. The eigenvectors in the sense of generalized
functions are

L —GB/r+1)2
V(@) = =g
where
- a forx > 0 P 0 forzx>0
TT10 forz<0” T 1z forx <0
and A € C.

Problem 12. Consider the linear operator

N 1 .. .
D= 5(ap +pd)-
We set h = 1. R .
(i) Find the commutators [D, ] and [D, p|. R
(ii) We consider the linear operator S. := exp(—ieD), € € R. We define

STqS = exp( zeadD = Z adD (1)
where . .
(adD)g := [D, §.
Calculate the operators S1gS, and SipS..
(iii) Let

V2

Express D in terms of b and b'.
(iv) Consider the normalized state |¢) := S|0). Calculate the expectation

values
(elgle), (elple), (el@®le), (elp?le).

V2

mw

b:*/m<<j+infw), sz\/m(q 'ﬁ).

Solution 12. (i) Since [g, p] = il we find
[D.q) = ~ig,  [D.j] =ip.
(ii) Using the result from (i) and the definition (1) we find the operator
5148, = e4.

Using the result from (i) and the definition (1) with ¢ replaced by p, we
find
STpS, = e <p.
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(iii) First we express ¢ and p in terms of b and b'. Using the commutation
relation [¢, p] = iI, we obtain

D = 2i(bfot —bb).
(iv) Using the results from (i) through (iii) we find the expectation values
(elgle) = (01:51dSc|0) = e“(0[g0) = 0

(elple) = (01SIpSe[0) = e(0]5]0) =0
1

(el?le) = (01210} = > — = (Ag)?
(elf”l€) = 2 (0p2|0) = e~ 5= = (Ap)*,
Problem 13. Consider the uncertainty relation
~ ~ . N 1 ~ A
(1A%[$) = (WIA)*) (WIB[v) — (W|Blv)*) > Z1(WI[4, Blly)[?

where A and B are observable, [A, B] denotes the commutator and i) is
a normalized state. Let bf, b be Bose creation and annihilation operators
and

1
2

(i) Let |¢p) = |B) be a coherent state (5 € C). Find the left-hand and
right-hand side of the uncertainty relation.

(ii) Let |[¢) = |n) be a number state (n = 0,1,2,...). Find the left-hand
and right-hand side of the uncertainty relation.

(iii) Let |¢p) = |() be a squeezed state (¢ € C). Find the left-hand and
right-hand side of the uncertainty relation.

~ 1 . . N
A:E(zb—sz), B=—=(b+0").

5

Solution 13. (i) For the commutator we find

(A, B] =il
where I is the identity operators. Thus with (3|8) = 1 we obtain for the
right-hand side

1 ) 2_}
1Bl = 7.

Now b|B) = B|B), (B|bf = (B|B. It follows that

(WIAlg)? = 5 (6>~ B +267)
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(WIBIY = 2(5° +  +265)
WlA%N) = (1 57~ B +26)
(WIB) = S(1+ 67 + 5" +267)
and

(B14%18) — (BIAIB) = 3, (BIB?I8) — (BIBIS) = 5.

It follows that the uncertainty relation is an equality for the present case.
(ii) With (n|n) = 1 for the right-hand side we have again 1. From

(n|AJn) =0, (n|Bln) =0

and 1 1
(lA%fn) = S(+20),  (0lBln) = S(1+20).

Thus we have the inequality

=

1

S+ 2n)? >
So if n = 0 we have an equality.

(iii) We set ¢ = se’®. From [¢) = S(¢)|0), where S(¢) is the squeezing
operator we obtain

(CIBIC) = (0151 (¢)bS(€)]0) = (0| (cosh(s)b — ¢’ sinh(s)b")|0) = 0
(CIbT[C) = (0[S™(¢)bTS(¢)]0) = (0] (cosh(s)b" — e~ sinh(s)b)|0) = 0.
Now
(¢16%1¢) = (0[S TH(¢)bS(¢)STH(¢)bS(¢)|0) = —€™ cosh(s) sinh(s)
(CIO")?[¢) = (0[S™H(QBTS(O)STH(EbTS(¢)]0) = —e* cosh(s) sinh(s).

Hence 1 1
(C|A%|¢) = 5 cosh(2s) + 3 sinh(2s) cos(6)

and . 1
€|B?¢) = 5 cosh(2s) — 3 sinh(2s) cos(0)

and the inequality follows

%(coshg(QS) — sinh®(2s) cos®(0)) >

RNy

With cosh?(2s) — sinh®(2s) = 1 we have an equality for §# = 0 and 6 = 7.
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Problem 14. Consider the operator
U(z) = oblb2—zbib:

where b{,b; are Bose creation operators and by, by are Bose annihilation
operators and z € C. Find the operators

U(z)U(z)7 1, U(2)boU(2)~

Solution 14. We have

U‘l(z) — —2blbatzblbr

Thus |
U ()00 (2) ! = cos(|2])by — zs1|r;(||zl)62
U(2)boU(2) " = cos(|z])bs + ZSilnz(ZDbl-

We can write

cos(|z zsin(|z])
(U(2)b1U(2) "1, U(2)baU(2) ) = (b1, ba) <(|(|)) ! >

2] cos(|z|)

where the matrix on the right-hand side is an element of the Lie group
SU(2).

Problem 15. Consider the operator
U(z) = ob1bl—2babs

where bJ{, b; are Bose creation operators and by, by are Bose annihilation
operators and z € C. Find the operators

Uz U(z)"Y,  U(2)biU(z)""

Solution 15. We have

U=l(z) = o~ 7bIbh+2babr

Thus
zsinh(|z|)

||

U(2)byU(2)"" = cosh(|z|)by — b
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Zsinh(|z|)

2]

U(2)blU(2)~" = cosh(|z|)b}, — by.

We can write in matrix form

—1 i 1 i [ cosh(|z]) _%ﬁz“
UEhU() ™, U0 () >=<bl,b2><—zsinh<z> h( I)>
B cosh(|z

where the matrix on the right-hand side is an element of the Lie group
SU(1,1).

Problem 16. Describe how two-mode squeezed state can be generated.

Solution 16. Two mode squeezed states can be generated either by entan-
gling two independent single-mode squeezed states via a 50:50 beam splitter
or by employing the non-degenerate operation of a nonlinear medium in the
presence of two incoming modes. The unitary operator describing two-mode
squeezing is

Ur2(C) = exp(—i(Cbiba + ¢*bib1)/2)

where ¢ € C is the squeezing parameter.

Problem 17. Consider the two-mode squeezing operator
S5(C) = exp(CblbL — " baby).

Let |0) ® |0) be the two-mode vacuum state. Find the normalized state

52(¢)(10) ©10))

expressed in number states.

Solution 17. We obtain
1 X (v k
SO0 ©10) = 725 () wam

where
¢ =se?, p=cosh(s), v=e"sinh(s).

This state is known as two mode squeezed vacuum or twin beam state.

Problem 18. Let |0) be the vacuum state. Then we define the coherent
squeezed state as

18, ¢) == D(B)S(¢)[0)
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where D(3) is the displacement operator and S(() is the squeezing operator
with 8,¢ € C.
(i) Show that the state |3, () is normalized.

(if) Show that S(C)D(5)[0) # |5, ¢)-
Solution 18. (i) We have

(8,18, ¢) = (0IS(=)D(=A)D(B)S(0)|0) = 1.
(ii) We have
5(¢)D(a)]0) = S(C)D(B)S(=)S(C)I0)
= exp(B(b' cosh(s) + be~™ sinh(s))
—B*(bcosh(s) 4 bTe? sinh(s)))S(¢)[0)
= D(Bcosh(s) — §*e' sinh(s))S(¢)[0)
= |B cosh(s) — B*e? sinh(s), ¢)

where we used that
S(ODB)S(=¢) =
exp(B(bf cosh(s) + be ™ sinh(s)) — B*(bcosh(s) + bl e sinh(s))).
Thus |8, () can be written as

18,¢) = S(C)D(B cosh(s) + 87 sinh(s))|0).

Problem 19. Let 7 = b'b. Find (8, (|78, ¢).

Solution 19. We have

(B, <[2]8, C) = {0[(b' cosh(s) — be~" sinh(s) + 5I)
x (bcosh(s) — bTe' sinh(s) + BI)|0)
=sinh?(s) + |3|%.

Problem 20. Let |a) be a coherent state. The Husimi distribution of a
quantum wave function [¢) is given by

Pl (@) = [(W]o) .

(i) A coherent squeezed state |y, 5) is defined as

¢, B) == D(B)S(¢)[0)



Squeezed States 455

where D(f3) is the displacement operator and S(¢) := exp((¢*b>—((b7)?)/2).
The coherent squeezed states |, 8) also minimize the uncertainty relation,
however, the variance of both canonically coupled variables are not equal.
The modulus g of the complex number ¢ = ge®* determines the strength
of squeezing, s = e9 — 1, while the angle 0 orients the squeezing axis. Find
the Husimi distribution

P\gﬁ (@) = [(eC, /8>|

of a coherent squeezed state |(, ).

Solution 20. Let a = ay + iao, where aq, as € R. We obtain

Pipy (@) = [{ale, B)F = exp(—(R(B) —a1)?/(s+1)* = (I(B) —a2)*(s +1)*).

Problem 21. Let (r € R)
S(r) =exp (;r(bQ - bTQ)) , D(B) = exp(BbT — B*D).
Find the operator ST(r)D(B)S(r).

Solution 21. We find

SHr)D(B)S(r) = DR(B)e" +iS(B)e ™).

Problem 22. Let D(3) be the displacement operator

D(B) = exp(Bb — 5*D)

and
S(r,¢) = exp(re’? (b1)?/2 — re™ 0% /2)

be the squeeze operator with the squeeze factor » > 0 and squeeze angle
¢ € (—m,m]. Let

o0 —

1 n n
T = n+1nz_%<n+1) [ (nl

be the Bose-FEinstein density operator with the mean occupancy
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Consider the displaced squeezed thermal state

p= D(ﬁ)‘s(rv (b)pTST(’I“, ¢)DT(6) (1)

The Weyl expansion of the density operator

o=+ [ EADEN

with d?A = dR(\)d3()\) provides the one-to-one correspondence between
the density operator p and its characteristic function

o0

X(N) = te(pD(V) = Y (nlpD(N)|n). (2)

n=0

A Gaussian state has a characteristic function of the form

1 1 1
X(A) = exp (— (A + 2) A2 — §B*A2 - 5B(A*)2 +C*\ — C/\*>

with A > 0. Find the coefficients A, B, C for the given p.

Solution 22. Calculating (2) where p is given by (1) and comparing
coefficients yields

1 1 1\ .
A= (n—i— 2> cosh(2r) — 3 B=— (n+ 2) e sinh(2r), C = 8.

Problem 23. Let S(¢) be the one-mode squeeze operator with ¢ = [¢|e®.
Let D(B) be the displacement operator. Find S(¢)D(3)S~1(¢).

Solution 23. We obtain

S(Q)D(B)S™(C) = D(B), B = cosh(|¢])B + € sinh(|¢])B".

Programming Problem

Problem 1. Give a computer algebra implementation of squeezed states.

Solution 1. The Bose creation and annihilation operators are denoted
by b and bd and b*bd==1+bd*b is implemented.
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// squeezed.cpp
#include <iostream>
#include "symbolicc++.h"
using namespace std;

int main(void)

{

Symbolic eps("eps"), zeta("zeta"), zetab("zetab");
Symbolic b("b"), bd("bd");

b= "b; bd = “bd; // b and bd are noncommutative
Symbolic S, Sd;

Symbolic arg("arg");

arg = -zeta*bdxbd/2 + zetab*bxb/2;

S = exp(eps*arg);

Sd = exp(-eps*arg);

Symbolic resultl("resultl");

resultl = S*arg*b*Sd - S*xb*arg*Sd;

resultl = resultl.subst_all(b*xbd==1+bd*b) ;

cout << resultl << endl << endl;

Symbolic result2("result2");

result2 = S*xargxbd*Sd - S*xbd*arg*Sd;

result2 = result2.subst_all(b*bd==1+bd*b) ;

cout << result2 << endl;

return O;

}
The output is

e” (-1/2*eps*zetaxbd” (2)+1/2xeps*zetab*b” (2) ) xbd*zeta*
e” (1/2xeps*zeta*xbd” (2)-1/2*eps*zetab*b~(2))

e” (-1/2*eps*zetaxbd” (2)+1/2xeps*zetab*b” (2) ) xbxzetab*
e” (1/2xeps*zeta*bd” (2)-1/2*eps*zetab*b~(2))

20.3 Supplementary Problems
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Problem 1. Let |8) be a coherent state and |) be a squeezed state.

Calculate

BIe), KIS

Problem 2. Let 7 = b'b be the number operator and S(¢) be the squeezed

operator. Find the commutator

7, S(C)]-
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Problem 3. Consider the displacement operator, squeezing operator and
rotation operator

D(B) = ™', §(¢) = eI Rg) = et
where 3,( € R. Find the commutators

[D(B), S [D(B), R(d)],  [R(#),S(C)]-

Problem 4. Let b, b be Bose creation and annihilation operators and
~v € R. Calculate

ev((bf)z—lf)be—v((b")2—b2)7 V(012 =02 pt =7 ((07)2 %)
utilizing
1 1

GABeiA =B+ [A, B] + *[A7 [A7BH + 5

2! [A,[A,[A, B])] + -

Problem 5. Let ¢ € C. The squeezing operator is defined as
Lot 1so
S(¢) =exp { 5¢(b")" = 5Cb7 ) .
2 2
We set ¢ = se’?. Show that
ST(C)bS(¢) = cosh(s)b + € sinh(s)b'.
ST(C)bTS(C) = cosh(s)b! + e~ sinh(s)b
(€IbTBIC) = (0]ST(Q)DFS(¢)ST(QS(¢)]0) = sinh?(s).
Problem 6. Let D(f) be the displacement operator and S(¢) be the
squeezing operator with
B=re?, (=se.
Show that

S(¢)D(B)]0) = D(B cosh(s) — Be’’ sinh(s))S(¢)]0).

Problem 7. Let S(¢), D(8), R(«) be the squeezing operator, displace-
ment operator and phase shift operator, where

R(a) = exp(iab'b).
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Let p be a density operator. Then

p = D(B)R()S(()pST(Q)RT (@) DY(B)

is a density operator. Calculate p for

p=In)nl, p=18)Bl, p=10(l

Problem 8. Consider the two-mode squeezing operator
S(¢) = exp(Cblbl — Chiby), ¢ = sei@+/2)
where
bi=btel, b=Is0
Show that

(oo}

> T2 (tanh(s))" n) @ [n).

SO0 910) = i
n=0

The state is mode-entangled.

Problem 9. Let b‘;, b;, b;, b1, ba, b3 be Bose creation and annihilation
operators. Note that

[b1by — b1b}, bibs — bybk] = blbg — bybl
[b1bs — bybL, blby — bybl] = blbg — blbs.

Let 61,065,035 € R and consider the unitary operator

U(6:,05,05) = 03 (0205 —b1bs) 02 (b2b] —bib1) 01 (b2bl—bibs)

Find the 3 x 3 matrix M such that

bl UbiUt bl
U(6:,04,603) | b} | = | UblUT | = M(61,62,05) | b
bl UbtUt bl

Problem 10. Consider the unitary operator for two-mode squeezing

U(¢) = exp(Cbibh — Chaba).
The Hamilton operator with « € R is given by

H = ia(bIb — byby).
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The Hamilton operator indicates that two photons are simultaneously cre-
ated or annihilated. Find the 4 x 4 matrix M ({, ) such that

Ig% Z(C)b%U:(C) by
v | |0 = | gl | =M@ |
o U(OpLUT(0) o
Show that
cosh(s) 0 0 —e'? sinh(s)
weo-| 0 e
—e~ ¥ sinh(s) 0 0 cosh(s)

where ¢ = se?. Show that the determinant of the matrix is +1.
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Trace and Partial Trace

21.1 Introduction

Let [n) be the number states (n = 0,1,...) and |B) be a coherent state
(8 € C). The trace of a bounded linear operator A could be calculated
using the number states |n)

o0

tr(A) = " (n|A|n)
n=0
or using coherent states |6>
u(d) =+ [ #3031418)

The integration is over the complex plane C. One usually introduces polar
coordinates 3 = re® with r > 0 and ¢ € [0, 27).

Let H1, Ho be complex Hilbert spaces. Let H be their Hilbert tensor prod-
uct, i.e. H = H1 ®Hs. Each Hilbert space admits at least one orthonormal
basis. Then try would be the operator of taking the partial trace with re-
spect to the Hilbert space Hs. The linear operation tro maps states in the
Hilbert space H into states in the Hilbert space H;. Analogously we con-
sider try. For number states we could utilize |n1) ® |n2), where ny = 0,1,...
and ny =0,1,....

461
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21.2 Solved Problems
Problem 1. Show that

o

> (nldin) = < [ (31418).

n=0

Solution 1. We have
1
m =< [ Bias
and therefore
1 — 1
ol == [ Beplas = = [ wls) (el

We also apply the completeness relations

1 ) o
= [wes 1=

Thus we have

o0 o0

r(A n|Aln n 1 23 Aln
wd) =S poldln) = Sl (1 [ 1985 ) A
L [ wedmes
Cn:O
1 N 2 A 25 12
= Wg/cnz_; ((nln) (v1B8)d*y) (BIA] (/C 5><6|n)> d?5d*B
1 2 2 2 S 1
= [ [ [ @ 3 ) 1)) 51410

1 2092, 72 =
=5 [ [eoaa 6<<6| (;mw) |7>> (18)

*i/ / / d Bd’d*5(317) (517) (+18) (BIA])

/ / a2 Bd%(518) (B AlS)

7T/d? (6 Al5).
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Problem 2. The trace of an analytic function f(b,b') can be calculated

as
00

tr(f(b,b) =Y (nlf(b,b7)[n)

n=0

where {|n) : n = 0,1,2,...} are the number states. A second method
consists of obtaining the normal order function of f and integrating over
the complex plane

tr(£(b,b1)) / 78,87 828.

(i) Find the trace of e~ using this second method, where ¢ > 0.
(ii) Compare with the first method.

Solution 2. (i) The normal order form of e~<b't is given by
1
D =T G WL
k=0
Thus we have to calculate the integral
(BT BB

kl
€ k=0

We set B = re’®. Thus 88* = r2. Since d?8 — d¢rdr with ¢ € [0,27),

r € [0,00) and
2w 00 o, 1
d¢ = 2, re” " dr = —
0 0 2a

we obtain 1
i
t —eb'by _ .
(e ) 1—e¢
(ii) Using the first method we find
. oo ; (oo}
tr(e= ") = 3 {nle~ ) = 3 (nle~ " |n)
n=0 n=0
S ey = 3
n=0 n=0
_ 1
S l—ec

Thus the first method is simpler to apply for this case.
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Problem 3. The single-mode squeezed state |() is given by |¢) = S(¢)]0),

where .
S(0) = exp (-gw " <2b>

with ¢ € C. One sets ¢ = se?® with s > 0. Why does the squeezed state [()
cannot be used to calculate the trace?

Solution 3. The single-mode squeezed operator S(¢) can be written as
1 1
S(¢) = exp (—2(bT)2 " tanh(s )) exp (—Q(bTb+ bb*)ln(cosh@)))

X eXp (;er_w tanh(s)) .
From b|0) = 0]0) and |¢) = S(¢)|0) we find
|¢) = +/(sech(s Z \/T ( —e' tanh(s )> [2n).

n=0

Consequently the single-mode squeezed state is a superposition only of even
number states. Thus the single-mode squeezed states are not complete.
Note that the coherent states are overcomplete. The coherent squeezed
states D(6)S(¢)]0) also form an overcomplete set. One has

1 9 _
~ [ espapd =1

where [ is the identity operator.

Problem 4. Consider the two-mode squeezed state
) = e i) 0o)

where |00) = |0) ® |0) and s is the squeezing parameter. This state can also
be written as

) = @ >~ (anl(s)" ). @ )

This is the Schmidt basis for this state. The density operator p is given by
p = |[)(¢|. Calculate the partial traces using the number states.

Solution 4. We have

o0
= (tanh(s))"|n) ® |n) E (tanh(s))™(m| ® (m)|
2 Z
cosh 0

(o9 Z Z (tanh(s))™(tanh(s))"|n)(m| @ |n)(m).

m=0n=0

cosh
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Let I be the identity operator. Using that (k|n) = dx, and (m|k) = dmi
we have

pr=> (I (koI @ k)
k=0
= CObh (cosh(s))2 Z 1@ (k) Z (tanh(s))" (tanh(s))™ |n) (m| @ [n)(m|(I @ |k))
m,n=0
B COSh 22 Z tanh ta‘nh( )) ‘ ><m|6kn6mk
k=0m,n=0

cosh (cosh(3))2 Z tanh(s))?*|k)(k|.

We obtain the same result for po.

Problem 5. Use the reduced density operators p; and ps from the pre-
vious problem and calculate the entanglement

E(s) == —tr(p1logy(p1)) = —tr(p2 logy(p2))-

Discuss E as a function of the squeezing parameter s.

Solution 5. We have

E(s) = —tr ((COSSQ(S) f:(tanh%(s))kw)

k=0

1 - 2
x log, <coshQ(s) Z(tanh z(s))€><€|>> .

£=0

The two matrices inside the trace are diagonal matrices and thus the prod-
uct is again a diagonal matrix. Thus

ok tanh%(s)
Ztanh <cosh2(s) ) .

Using the property of log it follows that

E(s
(s) = cosh2

log2 (tanh?( 2k log2 (cosh?( Qk
E(s) = k tanh tanh
(s) cosh2 Z (3osh2 Z "

The identity

Z tanh?*(s) = cosh?(s)
k=0
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follows from a geometric series. The identity
Z k tanh®*(s) = sinh?(s) cosh?(s)

can be obtained from the first identity by parameter differentiation with
respect to s. Using these results we obtain

E(s) = — sinh?(s)(log,(sinh?(s)) — log, (cosh?(s)) 4 log,(cosh?(s))
= —sinh?(s) log, (sinh?(s)) + (sinh?(s) 4 1) log, (cosh?(s))
= —sinh?(s) log, (sinh?(s)) 4 cosh?(s) log, (cosh?(s)).
For s = 0 we have E(s =0) = 0.
Problem 6. Consider the product Hilbert space C?>®H, where H denotes
an arbitrary Hilbert space. For the one-Bose system one would set H =

£5(Np). An arbitrary pure state in this product Hilbert space can be written
as

1) = 10) ® |o) + 1) @ |¢1)

where |¢o), 1 € H and |0), |1) forms an orthonormal basis in the Hilbert
space C2. The condition that the state |) to be normalized, i.e. (1) =1
leads to the constraint

(Polgo) + (P1]¢1) =

If we assume that |¢g) and |¢1) have identical norms, then [¢)) takes the
form

) = %um ® o) + 1) ® 1)

where |¢g) = f|<p0> lp1) = f|<p1> and |@o), ¢1) are normalized. Defining
the reduced density operators using the partial trace as

p1 = tre2([0)(0]),  p2 = tra(|9) ()

the entanglement of [¢) is given by

E(|¢)) = —tr(p1logy(p1)) = —tr(p2 logy(p2)).

Find p1, p2, the nonzero eigenvalues of p1, pa and E(|¢)).

Solution 6. Straightforward calculation yields

p1 = |do){po| + |p1){(P1]
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and

p2 = (¢0]$0)10){0] + {110} |0) (1] + (Po|d1) 1) (O + (D1]¢1)[1)(1].

Applying the constraint (¢o|do) + (P1]/¢1) = 1 we find that the nonzero
eigenvalues of p; and ps are given by

A= (14 /(1 —2(doldo))? + 4[(do|d1)[?)

DO | =

and 1—A. Thus E(|1)) = —Alogy(A)—(1—X) logy(1—X\). The entanglement
is described exclusively by (dg|¢o) and |(¢po|d1)|>.

Programming Problem

Problem 1. Give an implementation of number states so that they can
utilized to calculate traces.

Solution 1.

/* numberstates.cpp */

#include <iostream>
#include "symbolicc++.h"

int main(void)

{

// b is the Bose annihilation operator, bd is the creation operator

// N[j] is the number state |j>, DN[j] is the dual state <j|

Symbolic b("b"), bd("bd"), N("N"), DN("DN"), m("m"), n("n"), x("x");

b= "b; bd = “bd; N = “N; DN = “DN;

BindingEquations rules = (b*N[0]==0,DN[0]*bd==0,
(n,b*N[n]==sqrt (n)*N[n-1]),
(n,bd*N[n]==sqrt (n+1)*N[n+1]),
(n,DN[n]*b==D[n+1] *sqrt (n+1)),
(n,DN[n]*bd==DN[n-1]*sqrt(n)),
(n,DN[n]*N[n]==1),
(m,n,DN[m]*N[n]==0));

Symbolic rl = b*b*N[n];

cout << "rl = " << rl.subst_all(rules) << endl;

cout << "ri(n=1) = " << ri[n==1].subst_all(rules) << endl;

cout << "DN[2]*N[3] " << (DN[2]*N[3]).subst_all(rules) << endl;

cout << "DN[4]*N[4] " << (DN[4]%*N[4]).subst_all(rules) << endl;

Symbolic r2 = b*N[n];

cout << "r2 = " << r2.subst_all(rules) << endl;

Symbolic r3 = DN[n]*r2;
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cout << "r3 = " << r3.subst_all(rules) << endl;
Symbolic r4 = b*N[n+1];

cout << "r4 = " << rd.subst_all(rules) << endl;
Symbolic r5 = DN[n]*r4;

cout << "r5 = " << r5.subst_all(rules) << endl;
Symbolic r6 = b*N[n];

cout << "r6 = " << r6.subst_all(rules) << endl;
Symbolic r7 = DN[n+1]*r6;

cout << "r7 = " << r7.subst_all(rules) << end;
return O;

}

21.3 Supplementary Problems

Problem 1. Consider the density operator

_ exp(—hwb'b/kpT)
P~ Selexp(—hwbib/kpT))”

Show that p expressed with number states [n) (n =0,1,...) is given by

N ()"
p= Z WVO (n|

where
(n) == tr(pb'b) = (exp(hw/kpT) —1)71.

Problem 2. Let |0), |1) be the standard basis in C? and |8;), |32) be
coherent states. Consider the normalized state

[V) = c0|0) ® |B1) + c1]1) @ |B2)

where ¢g and ¢; are the normalization constants. Find p; = trez(|¢)(¢]).

Problem 3. Can the squeezed state |¢) be used to calculate the trace of
an operator? Calculate

1

— dc.

[

Discuss.
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Entanglement

22.1 Introduction

In the original paper of Einstein, Podolsky and Rosen the spin version of
entanglement was not used. They considered measurement of position and
momentum observables for two particles in one-dimensional motion. The

entangled state
o0

W=/ el-pe
—0o0
was studied, where the first component in the tensor product refers to
particle 1 and the second to particle 2. The state [¢)) is thus a superposition
of simultaneous eigenkets of the momentum operators Py and P, of the two
particles with associated eigenvalues p and —p, respectively. Thus [¢) is
itself an eigenket of
PeI+IoP,

with the eigenvalue 0. The entangled state [¢) is also an eigenket of the
operator
N RQI+1T®Q,

where Ql and Qg are the position operators of the two particles. The
maximally entangled state of the original EPR pair can also be written as

lv) = 13/2 /dkexp(ik -1r1) exp(ik - 13) = §(ry +12)

(2m)

469
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where § denotes the Dirac delta function and - is the scalar product. If
the potential energy between the two particles is assumed to be spherically
symmetric, we can assume that the vectors r; and rs lie in the xy-plane in
the laboratory frame without loss of generality.

Entangled state are the Schrodinger cat states
1

VN3

where |3) denotes a coherent state. For squeezed states |¢) we can consider
the entangled state

(I8)@|=B8)+[-B)©18)

Jivi<<>®|—<>+—<>®|¢>>.

The two-mode state

[9) = e*%=1]0) & o)

1 > .
= cost(s) 2 tanh(s)) ") )

where s is the squeezing parameter and |n) are the number states is an
entangled state. Let |0), |1) be an orthonormal basis in C? and |3) be a
coherent state. Then

(0} ©18) + 1) ®| - 5)

is an entangled state. One can also consider

1

\/N“O) O+ el-q)

where |() is a squeezed state.
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22.2 Solved Problems

Problem 1. Let
2

9 [ 1 &
Pp— . —_— . — 2
f(p,q) = E G|ty § (pj — pr)
Jj=1 k=1
and
9 (& 1 &
L ) - L 2
9(p,q) = N E 129] tw Ek 1(qg ar)°.
Jj= Jik=

The Wigner function of the pure entangled N-mode state is given by

N
Wap) = (2) ew (e ipa - Fapa) )

where q = (q1,¢2,...,9n) and p = (p1,p2,...,pN) are the positions and
momenta of the N modes and s is the squeezing parameter with equal
squeezing in all initial modes. Consider the case N = 2. What happens if
s — 007

Solution 1. The state W(q,p) is always positive, symmetric among
the N modes and becomes peaked at ¢; —¢; =0 (4,7 = 1,2,...,N) and
p1+ p2 + -+ pr = 0 for large squeezing parameter s. From (1) we have

W(q1,q2,p1,p2) =

hd exp (—6‘23 ((q1 + ) + (p1 — pz)Q) — e ((p1+p2)* + (1 — qz)Q)) :

2
For s — oo we find in the sense of generalized functions

Co(q1 — q2)0(p1 + p2)
where § denotes the Dirac delta function. This makes a connection to the
original EPR state of Einstein, Podolsky and Rosen. Thus for large s the
function W peaks at ¢ — g2 = 0 and p; + p2 = 0.
Problem 2. Consider the operator

Ulr) = o (b1bh—b1b2)
where bl{, b; are Bose creation operators and by, by are Bose annihilation

operators and r € R. Thus bl = bT @ I, bl = I @ bt. Let |0) @ |0) be the
vacuum state, i.e.

(b I)(|0) ©[0)) = 0]0) ®[0), (I ®@b)(|0) ®]0)) = 0[0) ©0).



472  Problems and Solutions

(i) Calculate |9 (r)) = U(r)(]0) ® |0)).
(ii) Let

Xi=b+bl=bol+btel, Vi:=—iby—bl)=—i(bxl-blaI),
Xoi=by+bl=T@b+I®b",  Yy:i=—i(by—bl)=—iIob—Ixb.
Find var(X; + X), var(¥; — Y3), where

var(A) := (A%) — (4)?

is the variance.
(iii) What happens in the limit » — oo to the state |¢(r))?

Solution 2. (i) We find

[9(r)) = Ur)(10) ®10) = /(1= 22) Y~ X"[n) @ [n)

n=0

where A = tanh(r) and therefore v/1 — A2 = 1/ cosh(r). The entanglement
of this state can be viewed as an entanglement between quadrature phases in
the two modes (EPR entanglement) or as an entanglement between number

and phase in the two modes.
(if) We find

var(X; + Xp) = 2%, var(Y; — Y5) = 272",

(iii) The state [¢(r)) approaches a simultaneous eigenstate of X, + X, and
Y, — V5.

Problem 3. Consider a quantum-mechanical system governed by the
Hamilton operator

H = T bl by + hwnblby + Bixb! by bhbs

where b; and by are Bose annihilation operators for two distinct harmonic
oscillator modes, respectively and x is a coupling constant. Such a Hamil-
ton operator for optical systems describes a four-wave mixing process, when
the constant y is then proportional to the third order susceptibility. It can
also be used to describe two distinct modes interaction in Bose conden-
sate. Furthermore, it describes the effective interaction of output pump
and probe fields of an optical-cavity mediated by a two-level atom, in the
dispersive limit. Let

[P(t = 0)) :=|B1) ® |B2)

where |31) and |B2) are coherent states.
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(i) Find U(¢)|¢(t = 0)), where
U(t) = exp(—iHt/h).

(ii) Consider the special case t = w/x. Discuss.
(iii) Consider the four cases a) wy = 2y, ws =2x, b)w; =2x, ws =X,
C) wy =X, w2 =2y, d) wi =X, wg=x for |¢(7T/X)>

Solution 3. (i) We find

_ 2 0 ﬂlefiwlt)m . B
[6(0)) = V@B @I8) = o2 32 P 6 gy emtentmsionsy,
1 2 mZ::O \/m 5

(ii) For t = w/x we have

_ ) 1 m = even
exp(—ixmt) = exp(—imm) = {_1 m = odd

Thus

[h(m/X)) = |B1y e ™1/ X) @ |Bae T2 /X) 4 |8 _eTI/X) @ | Bye Tt w2/X)
or

[h(m/x)) = |Bre ™1 /XY @ |Bape”TW2/X) 4 | —BeTI™L/X) @ |By_eiTw2/X)

where 1
|€iefi7rwkx> — §(|€67irwk/x> + |_€efi7rwk/x>)

with £k = 1,2 and € = 31, B2. Hence the state is entangled.
(iii) For case a) we find

|4) = |B1) ® |B24) + |—B1) ® |B2-).
For case b) we find

|©_) = [B1) ® [B24) — |—PB1) ® |B2-)-
For case ) we find

[W4) = |B1) @ [B2-) + | — B1) ® |B2+)-
For case d) we find

(W_) = [B1) ®B2=) — | = B1) ® |B2+).

These states may be considered as Bell states. However these states are not
perfectly orthogonal, but for large-amplitude fields |31],|82] < 1 this can
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be achieved approximately. Furthermore there is an asymmetry in these
states.

Problem 4. Discuss the entanglement of the state
[9) = D7D (s + wi = wp)d(ks + ki = k)b (ki) (w(k:))|0)

which appears with spontaneous parametric down conversion. Here w;, k;
(j = s,1,p) are the frequencies and wave vectors of the signal (s), idler (i),
and pump (p) respectively, w, and k, can be considered as constants while
bl and b;r are the respective Bose creation operators for the signal and idler.

Solution 4. The entanglement of this state can be thought of as the
superposition of an infinite number of two-photon states, corresponding to
the infinite number of ways the spontaneous parametric down conversion
signal-idler can satisfy the expression for energy and momentum conserva-
tion (owing to the delta functions)

hws + hw; = hw,,  hK, + hk; = Bk,

Even if there is no precise knowledge of the momentum for either the signal
or the idler, the state does give precise knowledge of the momentum corre-
lation of the pair. In EPR’s language, the momentum for neither the signal
photon nor the idler photon is determined. However, if measurement on
one of the photons yields a certain value, then the momentum of the other
photon is determined.

Problem 5. Consider the function

1 1 1
G(x1,xo;71) = \/7 exp <—4(x1 + 15)%e? — 1(1‘1 - $2)26_23>
™

where s > 0 is the squeezing parameter. Find

lim (G(z1,x2; 8), (1, x2))

S§—00

in the sense of generalized functions, where ¢ € S(R?). Here S(R?) is
the set of all infinitely-differentiable functions which decrease as |x| — oo,
together with all their derivatives, faster than any power of |x| 1.

Solution 5. We find

lim (G(z1,x2;5), d(x1,22)) = d(21,21).

=00
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Thus

lim G(x1,z2;8) — 6(x1 — 22)
§—00

in the sense of generalized functions, where § is the Dirac delta function.

Problem 6. Consider the operator
U, = exp(e(blby — biby)), ecR.

(i) Find U, U, UTbgU Consider the special case € = m/4.
(ii) Find D = U}, (b]b1 — blbo)Us s
(iii) Solve the elgenvalue problem D|d) = d|d).

Solution 6. (i) Using the expansion

we find
Ulb U, = by cos(e) + by sin(e), UlbyU, = —by sin(e) + by cos(e).

For the special case e = m/4 we obtain

N

1
UL o1 Usja = ﬁ(bg +b1), UL boUsss = —=(by —b)
since sin(7/4) = cos(7/4) = 1//2.
(ii) From (ii) we find
UIbIU, = bl cos(e) + b sin(e), USbiU, = —bl sin(e) + bl cos(e).

Thus
D = blby + bybl.

(iii) The eigenvalue problem D|§) = d|§) can be rewritten as
(b1b1 = bbo)[v) = dlv)

where
|V> = Uﬂ./4|(5>
The eigenvalue problem can easily be solved since b'b|n) = n|n). We find
In+d)®|n)y deZ*

p)y = @) d=0
In)®n—dy deZ~
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where Z* denotes the positive set of integers and Z~ denotes the negative
set of integers. The eigenvalue d has countable degeneracy corresponding
to the one-integer parameter set \1/(")> of eigenstates. In order to solve for
the original eigenvalues we have to compute their transformation under the
action of the operator Uy 4, i.e.

6™y = Ul ™).
We consider the Schwinger two-bosons realization of the su(2) Lie algebra
1
Jpi=bibl,  J_=blby,  J3i= §(b;b2 —blby)
with [J4, J_] = 2J3, [J3, J+] = £J4. Thus

™
Urjs = €xp (Z(J+ - J—)) .
Using the Baker-Campbell-Hausdorff formula we find

exp(§J4 — £J_) = exp(nJy.) exp(BJ3) exp(—i).J_)

where

n= étan(@, B =1In(1 + |nf?).

Thus
Uy /s = exp(b1bh) exp(In2(blby — bib1)) exp(—blbo)

where we used that tan(w/4) = 1.

Problem 7. Consider the Hamilton operator
N—1 N—1
H="" hyblbj+ > Vijmblblbmbi.
1,j=0 1,5,0,m=0

The operators b} are Bose creation operators and the operators b; are Bose
annihilation operators. Let
it o= bib;

be the particle number operator of mode j for an appropriate basis. Show
that an eigenstate |¢)) of H is entangled or

[H, 7)) = 0[)

i.e. we have eigenvalue equation with eigenvalue 0.
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Solution 7. Suppose |¢) is not entangled. We write [¢) as

) = Ino) ® -+ ® Inn—1)

where {]0,), |1;),...} is a basis for particles in mode j with 0 < j < N.
We define the creation, annihilation and number operators, for particles in
mode j, by

bilng) := v/ +1ln +1;),  bilny) = jln — 1)

and 7; := b;fbj. We have the eigenvalue equation for |¢), namely H )y =
A). Thus

[H 7] 1) :ﬁ@ﬂw — g H ) = Hng) — Mg |y)
=nH[Y) — M |Y) = An; ) — Ani|v)
=0[¢).

Problem 8. Let |3) be a coherent state. Consider the entangled coherent
state

[6) = CUBY) @ I82) + €|—B) @ |-Ba)

where C' is the normalization factor and ¢ € R.

(i) Find the normalization factor C.

(ii) Calculate the partial trace using the basis {|n) @ I : n =0,1,2,...}
where {|n) : n =0,1,2,...} are the number states and I is the identity
operator.

Solution 8. (i) Since

(81) = exp (=587 + bi?) + )

for coherent states |8) and |7), we have
(B18) =1,  (B|-B) = exp(=2|8).
We find from the condition (|t)) = 1 that
1= |C*(2 + 2 cos(¢) exp(=2[f1]* — 2|B2|*)).

Thus
1

C — .
V2 + 2 cos(p) exp(—2| 512 — 2]B2]?)
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(ii) We have to calculate

oo

w1 ([9) () = C Y (((n| @ 1)(|B1) © |B2) + €| =B1) © | B2))

n=0

X((B1] @ (Ba| + e (Bi—| © (Ba—])(In) @ 1)).

Thus
tra (0 01) = C2 3 (n181) (31 8 Bl + €~ 1B 81—l ) |
+€Z‘;:<£L|—B1><ﬂlln>|—62><ﬁ2| + (0= B1) (B —|n)|—B2) (Ba—]).
Using
(nlB1) (B In) = ‘”é[ﬂl)
(n|B1)(B1—n) = 5'<n—'|5|>
(nl—B1) (B} = W
(nl—B1) (B1—In) = ﬁ'TEI'ﬂU
and

o (81" 2 o (1B e
Z% L= et ;T:e 18]

we arrive at

tr1 (|9 (]) = C2(|B2) (Ba| + €%~ 281 | 8,) (8o —|
+em e 8y) (B + |~ 2) (B2 )

Problem 9. A beam splitter is a simple device which can act to entangle
output optical fields. The input field described by the Bose annihilation
operator by is superposed on the other input field with Bose annihilation
operator by by a lossless symmetric beam splitter with amplitude reflec-
tion and transmission coefficients r and ¢. The output field annihilation
operators are given by

by = Bb B, by = BbyBT

where the beam splitter operator is

~ 9 . .
B :=exp <2(b.{b261¢ — blbgew))
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with the amplitude reflection and transmission coefficients
t:=cos(6/2), r:=sin(0/2).

The beam splitter gives the phase difference ¢ between the reflected and
transmitted fields.

(i) Assume that the input states are two independent number states |n1) ®
Ing), where ni,ns = 0,1,2,.... Calculate the state B(|n;) ® |na)).

(ii) Consider the special case ny = 0 and ng = N.

Solution 9. (i) We obtain the state

B(|jn1) ® |n2)) = Z Z ((ma1] ® (ma]) B(In1) @ [n2))|m1) & |ma)

m1=0mo=0

Z Z B2 lmy) @ [mo)

m1=0mso=0

where
ny no
B;rzrilnr;m _ efwﬁ(nlfml) E E (71)n17k:rn1+n27k:7€tk+€
k=0 £=0

vV n1!n2!m1!m2!

“H(ng — B)e(ny — 6)!5m1’”2+’“—45mm1—k+e

with d,, p is the Kronecker delta. When the total number of input photons
is N = nj +nq, the output state becomes an (N 4+ 1)-dimensional entangled
state.

(ii) We obtain from the results of (i)

N
B(0)®|N)) =) 'lk) ® N — k)

k=0

where the expansion coefficients are given by
1/2
N .
o = (k‘) RN =Fkeiko,

Problem 10. The beam splitter operator is given by

~ 9 . .
B =exp <2(b.{b261¢ — blbgew)) .
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The input field described by the Bose operator b; is superposed with another
input field with Bose operator by by a lossless symmetric beam splitter with
amplitude reflection and transmission coefficients r and t, i.e.
t:=cos(0/2), r:=sin(0/2).
The output-field Bose annihilation operators are given by
b = By BY, by, = Bb,BH.
Consider the input state (product state of two independent Fock states)
[n1,n2) = [n1)|n2) = |n1) ® [ng)

where ny,n9 = 0,1,.... Calculate B|n1, ng). Is this state entangled?

Solution 10. We obtain

B"Ill,’ﬂ,g Z Z |N1,N2><N1,N2\B|n1,n2 Z Z BTZX17{Z2|N1,NQ>

N1=0 N2=0 N1=0 N>=0
where
niy n2
B,’Jl\/;]’riZQ — e—z¢(n1—N1) § § (_1)n1—krn1+n2—k—ltk+l
k=0 1=0

vV TL1!7I2!N1!N2!

I N
Ty — k) (g — 1)1 ONma ko lONz et

where 0 is the Kronecker delta function. When the total number of input
photons is N = ny +ns with N > 1, the output state is an (N +1) entangled
state.

Problem 11. Consider the product Hilbert space C2®?H where H denotes
an arbitrary Hilbert space. For the one-Bose system we would set H =
I5(N). An arbitrary pure state in this product Hilbert space can be written
as

1) :=10) & [¢o) + [1) @ |¢1)

where |@g), |¢1) € H and {|0),|1) } forms an orthonormal basis in C2. The
condition for the state |¢) to be normalized, i.e. (¢|1)) = 1, leads to the
constraint {(¢o|po) + (1|¢1) = 1. If we assume that |¢pg) and |¢;) have
identical norms, then [¢) takes the form

) = *(|0> @ lpo) + 1) @ 1))

S
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where |¢pg) = %|§00>, |p1) = %|g01> and |¢og), |¢1) are normalized. Defin-

ing the reduced density matrices (using the partial trace)

pri=tre2([0)(D)),  pa = tra([9) ()

the entanglement of |¢) is given by

E(|¢)) == —tr(p1logy(p1)) = —tr(pz2 logs(p2))-

Describe the entanglement.

Solution 11. Straightforward calculation yields

p1 = |po){po| + |p1){(P1]
and
p2 = (¢0|$0)|0) (0] + (P1]¢0)[0) (1| + (Bolp1)[1) {0 + (P1]p1)[1)(1].

Applying the constraint we find that the non-zero eigenvalues of p; and ps
are given by

(1+ VT =2060l60)? + 41{bol6n) )

N |

>\(<¢0|¢0>a |<¢0|¢1>|2) =
and 1 — \. Thus
E(|1)) = =Alogy(A) — (1 — M) logy (1 — A).

The entanglement is described exclusively by (@g|¢o) and |{¢g|¢1)|?. Fur-
thermore we have the inequality

B~

[{old1)* < (Boldo) — (doldo)? <

Problem 12. Consider the superposition (macroscopic quantum super-
position states) |¢o) = co(Jay + |—a)) and |¢1) = c1(|8) + |—B)) where
co,c1 € C and |a), |—a), |8), |-8), are coherent states, i.e.

) = c0l0) © (|) + |=)) + e |1) @ (18) + [=5))-

Discuss the entanglement.

Solution 12. The conditions for entanglement from the previous problem
can be applied. In this case the normalization condition yield

2leo2(1 4+ e7211*) 4 20eq [2(1 + 7218y = 1.
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Consequently (¢o|do) = 2|co|2(1 + e~21ol") and
(e=31a=B” 4 e=3lathly2
(1+ e—21aP)(1 + e—21BP)

[{dol1)* = (Boldo) (1 — (doldo))

It is convenient to define the real valued quantities
(e=3la=BI" 4 g=3la+hI?)2
(1+ e 20P)(1 + e 277y

2
Poo = {¢o|do) = 2|co|?(1 421017y, Po1 =

Thus we obtain
‘<¢0\¢1>‘2 = POO(1 — P00)Po1-

The maximum entanglement occurs when (¢o|¢1) = 0 and (¢o|¢o) = 3.
Since the above equation implies (¢ |p1) # 0 for (dg|po) = %, the maximum
entanglement is approached asymptotically for a = 0, || — oo or § = 0,

|a| = oo. This is due to
o= B = |al* +|8]* = 2R(aB),  |a+ B> = |al* + |5 + 2R(ap).

In other words, for a, 8 # 0 one term shrinking in the numerator of pg;
implies the other is growing. To find the entanglement we first determine
the eigenvalues of p; and py which are now given by

A= % (1 + /1 —4(1 = po1)poo(l —poo)) .

Problem 13. Consider the case when |¢g) is described by a number state
and |¢1) is described by a coherent state, i.e.

[¥) = c0l0) @ [n) + c1[1) @ |a).
The scalar product between a number state [n) and a coherent state |a) is
given by
‘2 a™

(n|a) = ezl Wk

Discuss the entanglement.

Solution 13. The normalization condition for this case gives
|C()|2 + |Cl|2 =1.

Consequently {¢o|do) = |co|?, and

|a|2n

|<¢0|¢1>‘2 = |Co|2(1 — |(30|2)e*‘0¢|2T
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It is again convenient to define the quantities pgy and pg1 as

|a|2n

2
poo = (¢o|do) = |col?, por =€ o

Thus we obtain |[(¢g|é1)|? = poo(1 — poo)po1- The entanglement can again
be determined from pgg and pp; and proceeds as described in the previous
problem.

Problem 14. Let |3) be a coherent state. Consider the entangled state

1
_NB

(i) Find the normalization Ng.
(ii) Express the entangled state |¢) using Fock states |n) ® |m) with n,m €
No.

|¥) (IBY@18) == B)®@| = B))-

Solution 14. Using (3| — 8) = exp(—2|3|?) we obtain
Ng =2 — 2exp(—4|8[%).

(ii) We obtain

_ 2exp(—[BP*) i grim
1% NB n,m|n+m odd nlm!

Thus the total number of photons is always odd.

1) In) @ [m).

Problem 15. Let |B), |y) be coherent states. Consider the balanced
entangled coherent state

) = ﬁum ® 7) + ¢ — B) ®| — 7))

and ¢ = w/2. Counsider the operator
U = exp(in(b'b® I + 1 ®b'D)).
Find U|¢) and U?|¢)). Discuss.

Solution 15. Since e¢i™ = —1 and /2 =4 and

exp(igb'0)|8) = |Be’?)
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we find the entangled state
i
V2

Applying the operator U again yields U?[1)) = |1). Note that

Ulp) = —=UB) @ |7) —il = B) © =)

b hy —inh!
6zTrb bbe zﬂbb:_b.

Problem 16. Consider the unitary evolution operator for the beam split-
ter

Ugs = exp(B(blbye™® — byble™?))
where the real angular parameter  determines the transmission and reflec-
tion coefficients via T = t? = cos?(f) and R = r? = sin?*(#). The internal
phase shift ¢ between the reflected and transmitted modes is given by the
beam splitter itself. To control ¢ we can place a phase shifter in one of the
output channels.
(i) Let |[¢in) = |0) ® |1), i.e. the one input is a one-photon state and the
other the vacuum state. Calculate |¢ou:) = Ups|tin)-
(ii) To test quantum non locality of the state [to,:) we apply the displaced
parity operator based on joint parity measurements

I12(B1, B2) := D1(B1) Da(Ba) exp(im(fuy + f2)) DI (81) DS (Ba)

where D1(f1) and D2 (fB2) are the unitary displacement operators. Calcu-
late

Mi2(B1, B2) = (Yout Th2(B1, B2) [out)-
(iii) The two mode Bell function B(f31,P2) can be written as

B(f1, B2) = 1112(0,0) + I12(B1, 0) + IL12(0, B2) — Ili2(B1, B2).
For local realistic theory B(f1, 82) should satisfy the Bell-CHSH inequality

|B<51a62)| S 2.

The violation of this inequality indicates quantum non locality of the single
photon entangled state. Calculate B(f1,82) and discuss the case where

|B1]? =182
Solution 16. (i) We find

[out) = t|0) ® [1) 4+ re"®|1) @ |0).
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(ii) We obtain

H(ﬂla 62) - <¢out|ﬂ(ﬂla 62)|¢out>
= (Alre™*?B1 + 52| — 1) exp(—=2(|51[* + |B2[*)).-

(iii) Let |81]? = |B2|? = J and let 12 be an arbitrary phase space difference
between the two coherent displacements (8, and (2. Then we can write
By = B1eM2. Thus the two-mode Bell function is given by

B(B1,B2) = =1+ (4J —2)e 2/ — (40 — 1)e™* — 8rtJe ™ cos(A)

where A := v15 + ¢. When 15 = —¢ we obtain the maximal value |B|nqz
of the two mode Bell function

|Blmaz = 1+ (47 — e * + 8rtJe ) — (4] — 2)e~?”.

Problem 17. There are various ways in which photons can be entangled.
The photon is a spin-1 particle. One has a) polarization entanglement, b)
momentum (direction) entanglement c¢) time-energy entanglement d) or-
bital angular momentum states entanglement. Describe the different types
of entanglement for photons. Parametric down conversion can produce
photons that are entangled both in polarization and in space.

Solution 17. Polarization entanglement. The highest contrast in exper-
iments can be achieved for polarization-entangled states created by para-
metric down-conversion. Type-II sources can produce polarization entan-
glement directly. Parametric down-conversion or spontaneous parametric
fluorescence is the spontaneous reverse process of second-harmonic gener-
ation, or more generally speaking three-wave mixing in nonlinear optical
media (for example Beta-Barium Borate crystal). In nonlinear optics the
polarization P depends nonlinear on the electric field E. The nonlinearity
is given by a power series expansion of the polarization vector (summation
convention is used)
P =XV By + XL E B + XS E BBy + -

where Xg;) describes the normal refractive properties of a material includ-
ing any kind of birefringence. XE?,)C is the coeflicient tensor for three-wave,
because two E terms can lead to another P term, mixing in strongly non-
linear material. The XE?,)CI term describes effects that occur at even higher
intensities, e.g. Kerr-lensing or phase conjugation.

In down-conversion one has a high-frequency pump field and two lower fre-
quency down-converted fields. Let w be the frequency. Energy conservation
yields

hwy = hwi + hws
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whereas phase matching is given by
hk, = hk; + hko

where k is the wave vector. As most nonlinear media are birefringent
the second criterion can be satisfied by choosing an appropriate cut, thus
managing the refractive indices and therefore wave velocities such that light
can be emitted in specific directions. In type-II spontaneous parametric
down-conversion a pump beam is incident on a nonlinear optical crystal
in which pump photons spontaneously split with a low probability into
two orthogonally polarized photons called signal and idler. From energy
and momentum conversation one finds that the wavelength and emission
directions of the down conversion photons are correlated. They depend
on the pump wavelength as well as on the angle between optical axis of
the crystal and the pump beam. In the degenerate case (signal and idler
having the same wavelength) the photons leave the crystal symmetrically
with respect to the pump beam along two cones. For certain orientations
of the optical crystal, the two emission cones intersect and the photons
emerging along the intersection directions can not be assigned to one of
the two orthogonally polarized cones anymore and thus form a polarization
entangled pair. The polarization entangled state (Bell state) is described
by

1

\/i
where h and v denote horizontal and vertical polarizations of light. The
state is fully entangled (Bell state). By using only standard optical elements
in one of the two output beams, one can transform any one of the Bell states
into any of the other.
The energy-entangled states from down-conversion photons are the most
universal. They are present for any pair of photons. Since there are many
ways to partition the energy of the pump photon, each daughter photon
has a broad spectrum, and hence a narrow wave packet in time. The sum
of the two daughter photons energies is well-defined. They must add up to
the energy of the monochromatic pump laser photon. This correlation is
given by the energy entangled state

(Ih) @ |v) + o) @ |h))

) = /0 "AB)|E), ® |E, — E);dE

where each ket describes the energy of one of the photons, s and i denotes
the signal and idler, respectively, and A(FE) is the spectral distribution of
the collected down conversion light.

Another entanglement from the parametric down-conversion process is the
momentum direction entanglement. From the emission of a parametric
down-conversion source two pairs of spatial (momentum direction) modes
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are extracted by pinholes. Photon pairs are emitted such that whenever
a photon is emitted into one of the inner two modes its partner will be
found in the opposite outer mode due to the phase matching in the crys-
tal. The superposition of the two inner and the two outer modes on the
beam-splitter serves to measure coincidence rates in various superposition
of the initial spatial modes. After the beam-splitters we cannot distinguish
the upper two modes from the lower two and therefore interference will be
observed in the various coincidence rates.

In a discrete version (time-bin entanglement) of energy-time entangled
states sources one sends a double pulse through the down-conversion crys-
tal. If the delay between the two pump pulses equals the time difference
between the short and the long arms of the Mach-Zehnder interferometer
then again there are two indistinguishable ways of obtaining a coincidence
detection.

22.3 Supplementary Problems

Problem 1. Consider the number states |n) (n = 0,1,2,...). Are the

states
1
2(|n>®|n) +n+1)®@|n+1))

(In)®@n+1)+|n+1) ®|n))

S-S

entangled?

Problem 2. Let |[¢) be a squeezed state. Is the state

(0 ®1 -0+~ ®l0)
entangled?

Problem 3. Let |n) be a number state and |5) be a coherent state. Is

the state
1

VN

entangled? Does it depend on n € Ny and g € C?

(In) @18) + [n) ® | = B))



488  Problems and Solutions

Problem 4. Consider the coherent state |3) and the squeezed state |()

state. Is the state 1

VN

entangled? Here NV is a normalization factor.

(I8) @[¢) +16) @ 16))

Problem 5. Let
bh=blolel, b=Icbtel, b=Iclcb

be Bose creation operators. Let |¢) (¢ € C) be a squeezed state with input
mode bg) and [081), |82) (B1,02 € C) be coherent states with input modes
bl{, b;, respectively. Show that the state

|Ca Bla/82> =

0 \n Tyn1 T\no
i Y (o Uk PO R ), 10), 0 ),

is entangled. Here C,(() is the coefficient of the squeezed state with squeez-
ing parameter se?’ and is equal to 0 for all odd values of n and for n even
given by

n=0,n1=0,n2=0

B \/7’? 1 » n/2
Cn(¢) = o) (/2] (—26 tanh(s)) ,  neven.
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Continuous Variable
Teleportation

23.1 Introduction

Quantum continuous variables provide a new approach to quantum infor-
mation processing and quantum communication. They describe highly ex-
cited quantum systems such as multi-photon fields of light. Continuous vari-
ables offer additional advantages over the single-photon system. They in-
volve the use of highly efficient telecommunication photodiodes. The coher-
ent sources of continuous entanglement are also orders of magnitude more
efficient than the spontaneous sources of discrete entanglement. Teleporta-
tion schemes can be demonstrated involving bright light sources. Entangled
states build from coherent states |3) are utilized and also Schrodinger cat
states
1

m(lﬂ) +1=8)

23.2 Solved Problems

Problem 1. Consider the numbers states |n) with n =0,1,2,.... Let
[Win) = al0)1 + B[1)1 +7[2)1 (1)

489
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be an input quantum state in mode 1. An ancilla quantum state
|\Dancilla> = |O>2|0>3 = |0>2 @ |0>3

in the vacuum state is also given. The modes 2 and 3 pass through a first
parametric amplifier whose transformation is given by the operator (6; € R)

U23(91) = exp(91 (b£b§ — b2b3))
(i) Calculate
W citia) = U23(01)|Wanciia) = U23(01)(]0)2 ® [0)3)

and set y; = tanh*(6,).
(ii) Consider the product state
Vi) [ Wancitia) = [Win) @ [Woncitia)-

ancilla ancilla

The output mode 2 of the first parametric amplifier and the mode 1 are
used as the input modes of the second parametric amplifier (62 € R)

U12(92) = eXp(Hg(b]{b; — b1b2)) ® I3.

Calculate
|\Ilout> = U12(02)(|\Ilin> ® |\Ij:1ncilla>)

which contains only the state |1)1[1)2 and set v, = tanh?(6s).
(iii) Find the projection

(1<1|2 o2 <1| & I)‘\Ilout>-
(iv) Assume that we want to transform the input state (1) into
[Wout) = al0)s + B[1)z — 7[2)s.

What is the relation between the coefficients vy, and 27

Solution 1. (i) Since
[bLbE, babs] = —biby — blibg — I

and
bbb, 5] = oY, [blbs, bibL] = bib)

[b3ba, babs] = —bobs,  [blbs, babs] = —babs

we have a Lie algebra with the basis b;b;, babs, b;bg, b;bg, I. Thus we can
disentangle the operator Uss(61) as

Uas(61) = exp(y/A1b5bl) exp(In(1 — 1) (bhby + bibs + 1)/2) exp(—/71b2bs).
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Now we have

exp(—4/71b203)|0)2]0)3 = (|0)2 ® |0)3)
exp(In(1 — 1) (b3ba + bbs + 1)/2)[0)2]0)s = exp(In((1 — 71)*/2)(|0)2 @ [0)3)

=1 =7(]0)2 ® |0)3)

and
exp(y/7105b5)(0)2(0) 5 XhMM|n

Thus

U23 (61 anczlla =V 1- a! Z 71 |7’L 2 0y |?’L> )

(ii) Using the result from (i) since the structure of the operator Uiz is the
same as Us3 we obtain

Wour) = /(1= 7)1 = 72)[1)1[1)2(v32010)s + vA1(1 — 292)8]1)3

+71v/72(372 — 2)’Y|2>3 + Wothers

(iii) The projection yields the state

[Wout) = V(1 —71)(1 = 72)(vV720[0)3 + /71 (1 — 272) B[1)3
+71v72(372 — 2)7(2)s.

(iv) The relation for the parameters is

V2 = V(1= 292) = —11y/72(372 — 2)
with the solution

21 — 7V2 3—+2

= =~ 0.757, = ~ 0.226.
§a! 9+4\/§ V2 7

Problem 2. Let |3) be a coherent state. Let b and b' be Bose annihilation
and creation operators, respectively. Let D(u) be the displacement operator
(1 € C). Consider the product state

_l 2 *
-~ [eam el

This is a maximally entangled continuous-variable state. The state is not
normalized. For teleportation we assume the unknown state |¢) to be in
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mode 1, the sender’s part of the quantum channel to be in mode 2, and the
receiver’s part in mode 3. Calculate

(12(¢] ® I3) (D} (1) ® Lo ® Is) (|1 @ [1)a3)

where I is the identity operator acting on mode 2, I3 the identity operator
acting on mode 3, and DI indicates that the operator acts on mode 1.

Solution 2. Using the completeness relation of coherent states

1
7r

/ 2B18)(8] = 1
C

yields
1
=7 [ a8
C

where we used I|8) = |5). Applying this expansion and the identity
(v8) = (B*1")

we find
(12(¢] ® I3) (D} (1) ® Lo ® Is) (|1 @ [1)a3)

-4 /C /C B D (1)[6) 7" 18)18) s
- /C /C B8 ) (71D ()|8)18")s
-2 /@ B(6" 1D ()|6) 8"}

-2 /@ d2818) (81D} (1) )

= D} 1)/}

where we used the identity

%/dZMB*IwWIDT(M)Ié) = (B*|D" () 9).
C

We conclude that after the joint measurement, the sender’s state is pro-
jected onto the state which is a unitarily transformed unknown state. Upon
receiving the measurement outcome p, the receiver recovers the unknown
state by using the appropriate unitary transformation D(u).
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23.3 Supplementary Problem

Problem 1. Let
—181?/2 ;n
B)=c¢e g —I|n), pBeC
> n=0 '| >

be a coherent state. Consider the “coherent Bell states”given by

00%) = —2=(8)918) 1~ B o] - 7)
097y = =8 0 19) ~ |~ B @ | - 5)
0) = —=(8)© =B +1 -7 ©13)
0= =981 -1~ f @ 13)

in analogy to the Bell states in C*

@7) = 7(IO>®\0>+|I>®|1>)
|o7) = 7(|0>®\0> 1) @ 1))
) = 7(|0>®\1>+I1>®I0>)
=) = \ﬁ(|0> ®[1) = [1) ®0)).

Note that B
Ni =2(1+e195),
For the Bell states in C* we have
(@T®7) =0
etc.. Do we have
(COT|CP™) =0
etc.? Consider the normalized qubit state
) = aol0) + a1[1), laol® + |as|* = 1.
We define the linear operators
Ri(b4[B) +b-[ = B)) =b-_|8) + by | — B)
R3(b+|B) + b = B)) =b+[B) —b_| = B)
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in analogy to the Pauli spin matrices o1 and o3. Note that o103 = —ios.
Consider the normalized state

lv) = ]\;(b+|5> +bo-| - 5))

Describe teleportation utilizing the expression

) & [CBT) = — (1<|o> ®18)+ 1) ® |- B) ® 1)

Vv v

+%(\o> 218) — 1)@ | — ) ® Ryl

+%(‘0> R|—08)+ 1) ®18)) ® Ril|v)
1

+ () e-f-nels)e <R1Rs>|v>) ~

S5

Can this scheme also be applied if we replace the coherent state by squeezed
states?
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Swapping and Cloning

24.1 Introduction

Swapping and cloning need not only be studied for finite-dimensional sys-
tems but also for continuous variables. We can therefore investigate whether
coherent states |3) and squeezed states |() can be swapped or cloned.

24.2 Solved Problems

Problem 1. Can two coherent states be swapped, i.e. can we find a
unitary transformation (swap operator) such that

Uswap(|51> ® ‘/82>) = |52> ® |ﬁ1>

holds? Consider the unitary operator

U(z) := ¢blba—="bab} zeC.
Solution 1. Yes, we can find a swap operator. From the unitary operator
given above we find U(2)(|0) ® |0)) = [0) ® |0). Now we have

U(2)(181) ® |82)) = U(2)(D(B1) © D(62))|0) ©10)
=U(2)D1(B1) Da(B2)U " (2)]0) @ |0)

495
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where D(/3) is the displacement operator. Thus

U(2)D1(B1)D2(B2)U 1 (2) = U(2) exp(B1b] — Bibi + Babl — Bibo)U(2) ™!
and therefore
U(2)D1(B1) D2(B2)U " (2) = exp(B1(U(2)b1U (2) ™)' = B (U (2)b1U(2) )

+82(U(2)b2U (2) )T = B3 (U (2)b2U (2) 1))
= exp(X).

Calculating the unitary transformations in the exponent, we find

x = (costlegn + 0 ) of = (costleor + L 3 )

- (costan = D 5, ) o] = (oo - Z 5t )

|2 |2

Thus

wﬂMD{@mwm+““4%QD{mamm”mﬂ”m)

2] 2]
=D <cos(|z|)ﬁ1 + zsinz(||z|)ﬁ2) ® D <cos(|z|),82 — Z*Siﬁpz)ﬁl) .
Therefore, we have
1) & 1) — o= + 62} @ con(ll) 2 - T )

If we write z = |z[e?®, then we can write
|B1) ® B2) — | cos(|z])Br + € sin(|2])B2) @ | cos(|z])B2 — e~ sin(|z])B1).
Choosing sin(|z|) = 1 yields
1B1) © |B2) = 1€ B2) ® [—e ™ 1) = e B2) @ e D). (1)
Applying the unitary operator

V= efiébiblei((wmr)b;bg — iobTh ® oi(0+m)bTb

from the left, we find |51) ® |B2) — |B2) ®|F1). If weset B = B and Sz =0
in (1) we obtain

18)©10) = | cos(|2])8)®| —e =" sin(|z])8) = | cos(|2])B) @]e "+ sin(|z])B).-
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Problem 2. We cannot clone coherent states, i.e., we cannot find a
unitary operator which maps

18) ©10) = |8) ® |B).
Use the result from problem 1 (equation (1))
18) ®10) — | cos(|z])8) ® e+ sin(|z])8) (1)

to find an approximation.

Solution 2. Applying the operator I ® lE+mbT ¢4 the right-hand side
of (1), we obtain

| cos(|2])8) ® | sin(|2]) 5)-

If we set |z| = /4 we obtain

e |2 )el ).

This is called imperfect cloning.

Problem 3. We consider three infinite-dimensional Hilbert spaces H1,
Ho, Hs and the product Hilbert space H3 ® H1 ® Ho with Hi = Ho = Hs.
Consider the heterodyne-current operator Z := by + b; where the Bose
annihilation operator acts in the Hilbert space H; and the Bose creation
operator bg acts on the Hilbert space Ha. We have [Z, ZT] = 0 and the
eigenvalue equation Z|z))12 = z|2))12 with z € C. The eigenstates |z)) are
given by
[2))12 = D1(2)]0))12 = D2(2%)[0))12

where D; denotes the displacement operator for mode 1, Dy the displace-
ment operator for mode 2 and

1 oo
012 = —= ) (=1)"In)1 @ |n)2
A
in the Fock basis (number basis). The expression

s2((2l)2 = = Dy(+)T13 D} (2)

where
o0

Tyg:=>» [n)isin|=> ()@ T I I (n|)

n=0 n=0
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denotes the transfer operator which obviously satisfies Ty3|1)s = |¢); for
any vector |[¢). For a cloning operation consider the input state in the
product Hilbert space Hz @ H1 ® Ha

|w=wn®4fdwxwam.

where |¢)3 is the original state in the Hilbert space Hs to be cloned in H3
itself and H; and Hs is an ancillary Hilbert space. The cloning transfor-
mation is realized by the unitary operator

U = exp <<;(b3 L b+ %(b3 _ bg)) A (;(bg +ul) - %(bg _ bj,,)) Z)

where Z = by + bl =b@ I+ I ®b'. Let |¢))our = U).

(i) Calculate the commutator [bsh] + bsby, biby + bibl] and discuss.

(ii) Evaluate the one-site restricted density matrix p3 corresponding to the
state [1) oyt for the Hilbert space Hs.

(iii) Evaluate the one-site restricted density matrix p; corresponding to the
state [¢) oyt for the Hilbert space H;.

(iv) Compare the two density matrices.

Solution 3. (i) Using [b;,bl] = 6,1 we find
[bsbl + baba, blby + bibE] = T + biby + biby + bIbS + by .
The right-hand side does not depend on b3 and bg.

(ii) Let |w))12 be an eigenstate of the operator Z. We have p = |¢) (4.
Thus for the partial trace we have to calculate

03 :/d2w/d2,z/dzz’f(z,z*)f*(z’,z’*)A
C C C

where A = 15((w|Di(2)|¢)33(0|Ds(2) @ |2))1212((2'|w))12. Using the com-
pleteness and orthogonality of the eigenstates |w))i2 of the operator Z we
find

m:AfM@fW@@WmW%@-

(iii) For p; we have to calculate

2 & dQZ, P Z* * Z/ Z/*
P1 :/Cd ’l,U/(C p /(; T f( 9 )f ( ’ )
x D1 (2)Ty3(D}(w) DY(2)|$)33 (6| D3 (2') D (w)) Ty D(2') .
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Using the completeness and orthogonality of the eigenstates |w)) of the
operator Z we find after integration over z and 2’

P / d2w| F(w, w*) 2D} ()] )11 (91 D1 (2)
C

where f(w,w*) denotes the Fourier transform over the complex plane

1 -
flw,w*) = f/d2zewz YR f(z,2").
T Jc

f(z,z*) _ \/26_22

one has two identical clones, i.e., p3 = p; which are given by the original
state |¢) degraded by Gaussian noise.

(iv) For

Problem 4. Let o € R. Find

(bt @b—bobt
R CIE))

Solution 4. We have

(b @b—bab") (1) ®|0)=—]0)® 1)
(bT®@b—b@b")(—[0)®]|1)=—|1) ® |0)
(bT@b—b@b")(—]1)®|0)=0)® 1)

(bf@b—bx b (0)® (1) =1) @ 0).

Therefore we find
042 Oé4 Oég
e (bT@b—b@bT) _ 1) @ ]0) <1 -7 + T ) +10) ® [1) (—a+ 3T )

= cos(a)|1) ® |0) — sin(«)|0) ® |1).
If a = /2, then

exp(a(b’ ® b= b® b1))(|1) ® |0)) = —|0) @ |1)
and if o = 37 /2, then

exp(a(bf @b —b@ b)) (1) @ |1)) = [0) @ [1).
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24.3 Supplementary Problems

Problem 1. Consider the four Bell states of entangled coherent states

—

[CoF) =

(8)218)+1-5 8- )

-3

Ce7) = =B} @18) —[- B &[-F)

-3

[CTT) = BY @ =B +1-8)©16)

Ny

-3

cv) =
N,

(IB) @] =B) == B) @16))-

ﬁ

Let Upg be the unitary operator of the beam splitter
0
Ups = exp (Z(bT ®b—b® bT)) .
Find the states
U35|C<I>+>, UBs‘C(I)7>, UBs|C\I/+>, U35|C\I/7>.

Study also the case with the coherent state |3 replaced by a squeezed state
1€)-

Problem 2. (i) Find a unitary operator U such that

Ulg) =1-2).

(ii) Find a unitary operator V such that

VIQ)=1=¢)
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Homodyne Detection

25.1 Introduction

In optical homodyne detection one mixes a local oscillator field (for example
a coherent state or squeezed state of light) with a signal field at a balanced
(50/50) beam splitter (unitary operator)

Ups = exp(m(bg ®bro +bs @ sz)/4)

where the signal field mode is represented by the Bose operator bg and the
local oscillator is represented by the Bose operator bro. Then

Ups (0581 Yyt — Ups(bs ® NULg\ _ 1 (bs@I—il®@bro
BS T \Ups(I®@broULs) V2 \I®bro—ibs®1I )"

Thus the signal wave is overlapped on a beam splitter with a relatively
strong local oscillator wave in the matching optical mode. The two fields
emerging from the beam splitter are incident on two high-efficiency pho-
todiodes whose output photocurrents are subtracted. The photocurrent
difference is proportional to the value of the electric field operator. Thus
optical homodyne detection corresponds to the difference photon counting
of the two output electric fields from the beam splitter.
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In heterodyne detection the signal electric field and another electric field,
the auxiliary electric field, feed the same port of a beam splitter. The
local electric field oscillator enters the other port of the beam splitter. The
frequencies of the signal, auxiliary and local oscillator fields are different.
One has wg + wa = 2wy, wg — w4 = 2w with wy, > w.

25.2 Solved Problems

Problem 1. A homodyne detector is constructed by placing a photo-
counter in each arm after the beam splitter and then considering the dif-
ference photocurrent between the two modes

b= BT — .
Express the homodyne photocurrent in terms of the input modes by, bs.

Solution 1. Straightforward calculation yields
D = (27 — 1)(bjby — biba) + 20/7(1 = 7)(b]bs + bibl).
This expression reduces to
D=blby+bbl =t @b+ b bl

for a balanced (7 = 1/2) beam splitter.

Problem 2. Let by, by be Bose annihilation operators. Consider the

operators
1

V2

where 6 is a phase shift. Let I := didJr —d' d_. Find I in terms of the
original operators by, bs.

ds (by & bae'®)

Solution 2. We have
I=did, —d d_
1 —i i 1 —1 %
= 5 (0 + ™) (by + bae™®) — 2 (0] — ble™") (br — bae™)
= blibre " + blbye™.

This plays a role in homodyne measurement, where b; describes the signal
field and by describes the local oscillator field.
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Problem 3. Let bg, bro, bp be the Bose annihilation operators cor-
responding to the signal, the local oscillator and the photodetector input
field, respectively. Let 0 < € < 1. By shifting the bp field with a constant

phase, we have
bp = Vebs +ivV1 —ebro.
Let
bs =25 +1i9s, bro==2ro+iJro, bp=2Zp+igp
where #, § are the (hermitian) quadrature operators. Let
s =blbs, fiLo="0blobro, fp=0bhbp

be the photon number operators and let () be the average with respect to
a quantum state. Find the mean photodetector output (7ip).

Solution 3. We obtain
(hp) = e+ (1 — e)i — 2(e(1 — €))/*(EsfLo — LL0s)-

Problem 4. Suppose that bi,b; are Bose creation operators and by, by
are Bose annihilation operators and I is the identity operator. Consider
the linear operator

Z:=b@1+Ixb

where b; := b® I and b; = I ®bl. Thus Z = by + b; The operator is
called the heterodyne-current operator. One also finds the notation
Z =bg+0br

where the subscripts S and I, respectively denote the signal mode at fre-
quency wo + Aw and the imaging mode at frequency wy — Aw (Aw <K w).
(i) Calculate the commutator [Z, ZT].

(ii) Find the states Z(|0) ® |0)), ZT(]0) @ |0)).

(iii) Find the state Z2(|0) ® |0)).

Solution 4. (i) We have
Zh=bl+b=bl@l+I®b
and
(2, ZN=0b@T+T12b) @I +Ixb)
~VRI+TRb)(bRT+TDb)
=t @I +bb+bl @bl +T@bTb
—boer-bhebt —beb—Tebb!
=" —bTb) @ T+ T (b'b—bbl)
—IQI-1®I=0.
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(ii) We have

Z(0)®|0)= (b +1®0b)0)®|0)
=(®1)(10) ® |0) + (I @b")(|0) ©0))
=10) ® bT(0) = |0) ® |1)

since b|0) = 0. Analogously
210) @ 10) = bT[0) @ [0) = [1) @ 0).

(iii) We find
Z*(|0) @ |0)) = V2(10) ® |2)).

25.3 Supplementary Problems

Problem 1. (i) Show that the spectrum of the operator
K = blby +bibh =b' @b+ b bl

is discrete and coincides with the set Z of relative integers. Note that

K(|0) @ 10)) = 0(|0) ® |0))

K(11) @ 1)) = v2(2) ©(0) + v2/0) ® |2).
(ii) Find
(Bl (BHEIB) @18)), (¢l ® (CNE(IS) @)

Problem 2. Let b1, by be Bose annihilation operators and

K = by cos(¢) + basin(¢).
Show that

KTK = blby cos®(¢) + blby sin?(¢) + (blby + byb}) sin(¢) cos(¢).

Study the case that by, bo are Fermi annihilation operators.



Chapter 26

Hamilton Operators

26.1 Introduction

Most experimental realizations of quantum logic gates (Hadamard gate,
quantum phase gate, controlled-NOT gate) involve several qubits and num-
ber states. A Hamilton operator H must describe the interaction. Thus in
quantum computing we are faced with two problems. One is to determine
the Hamilton operator H for the system such that the time-evolution

exp(—iHt/h)

represents the execution of the computation. The other one is to build the
hardware described by this Hamilton operator.

For example the Hamilton operator that produces squeezed states is given
by

H = huwob'd + hr(b?ee™® + (bF)%ee™?)
where b, b are Bose creation and annihilation operators, wq is the fre-
quency of the degenerate signal/idler mode, € is the classical pump field of

frequency w and « is the coupling constant between the pump and signal
modes.
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26.2 Solved Problems

Problem 1. Consider a single continuous variable corresponding to a
linear operator X. Let P be the operator of the conjugate variable, i.e.

[X,P] =il. (1)
Consider the Kerr-Hamilton operator
K = H? = (X? 4+ P?)2

The Kerr-Hamilton operator corresponds to a x® process in nonlinear op-
tics. The linear unbounded operators X and P could correspond to quadra-
ture amplitudes of a mode of the electromagnetic field. The quadrature
amplitudes are the real and imaginary parts of the complex electric field.
Let

= %(XP + PX).
Calculate the commutators
(K, X], [K, P, [X,[KS], [P[KS].

Discuss.

Solution 1. Since

P?X? =X?P? —4iXP —2I, P?X = XP? - 2P
we find
(K, X]= %(XQP + PX? +2P%)

(K,P|= —%(PQX + XP? 4 2X3)

(X, K, S]] = P?
[P,[K, S]] = X5

Thus the algebra generated by X, P, H, S, K by calculating commutators
includes all third order polynomials in X and P. We can construct Hamil-
ton operators that are arbitrary hermitian polynomials in any order of X
and P. We have

[P, P X" = iP™ 2 X" + lower order terms

and
[X3, P X" =iP™ 1 X"2 4 lower order terms.
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Problem 2. A nonlinear four-wave mixing device can be described by
the Hamilton operator
H

hw(blby + bibh)? = —hw(b' @ b+ b @ b2,

A~

1
4
(i) Let |n) be a number state. Consider the normalized input state |n) ®|0).
Find the normalized state

exp(—ift/h)(|n) © |0))

for the interaction time ¢ = 7/w.
(ii) Consider the normalized input state |n) ® |0). Find the state

exp(—iHt/h)(|n) ©|0))

for the interaction time t = 7/(2w).

Solution 2. (i) For the interaction time ¢ = m/w the output state is
|0) ® |n) (for n even) and exp(—im/4)|n) ® |0) for n odd. Thus the device
acts as an even-odd filter, switching the even numbers from one mode to
the other. Under these operating conditions it can be used as a device
to measure parity without counting the photon number. It is sufficient to
detect any photons in either of the output channels.

(ii) If the interaction time is t = 7/(2w) the output state will have the form

1
V2

which is a maximally entangled state for n photons.

(In) @ |0) + e~ FD7™/2]0) @ |n))

Problem 3. Cross phase modulation is described by the Hamilton oper-
ator

H = —hwbibiblby = —hw(b'b @ b1d)

where w is a function of the third order susceptibility x(®). Consider the
two-mode number state [m) ® [n), i.e. m,n = 0,1,2,.... Find the state
exp(—iHt/h)(|m) ® |n)).

Solution 3. Since by =b® I and by = I ® b we have
blbi|m) @ [n) = m|m) @ |n),  biba|m) @ |n) = n|m) @ |n).

Thus
exp(~iflt/h)|m) @ [n) = ™" m) © |n).
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Problem 4. A Kerr medium is nonlinear in the sense that its refractive
index n has a component which varies with the intensity of the propagating
electric field E, that is

n = ng + no|E[?

where ny and no are constants. For a single-mode field, described by Bose
creation and annihilation operators b" and b, propagating through a low-loss
Kerr media, the interaction Hamilton operator can be written as

H = xb'2p%.

(i) Show that the number state |n) is an eigenstate.

(ii) Assume that the initial state is a coherent state |3). Find |5(t)).

(iii) Let xt = 7r/s where r and s are mutually prime with » < s. Write
exp(—inmrn?/s) as a discrete Fourier transform. Express |3(t)) using this
expansion.

Solution 4. (i) Since b126? = bTb(b'h — I) and bTb|n) = n|n), we have
Hin) = x(n* —n)|n).

Thus the eigenvalues are x(n? —n).
(ii) The solution of the time dependent Schrédinger equation (k= 1)

d .
i sy

is given by R
6(1)) = exp(—iH1)[f).
Using the result from (i) we find

B(1) = 3 cpem X )|y
n=0

where
2 /gy B
= — 2)——.
e = exp(-181*/2)
Since n? — n is always an even number, the system will revive whenever yt

is a multiple of .
(iii) Let xt = nr/s where r, s are mutually prime with » < s. Then we can
write the quadratic (in n) phase in terms of linear phases using the discrete
Fourier transform

£—1

exp(—imn’r/s) = Z ag’s) exp(—2mipn/L)
p=0
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where
=13 if r is odd, s is even or vice-versa
~ | 2s if both  and s are odd.
Thus
=
alr®) = 7 Z exp(—imrk? /s + 2mipk/f)
k=0
and
-1
1B(8)) =D af ) |Bexp(in(r/s — 2p/1))).
p=0

Problem 5. The Hamilton operator for the second harmonic generation

can be written as R .
H = iz (0by, - b2b!,)

where b is the fundamental cavity mode Bose operator, by, is the second-
harmonic mode Bose operator and « is the nonlinear coupling. Using the
Heisenberg equation of motion find the time evolution of b and bgy,.

Solution 5. The Heisenberg equation of motion of an operator Ais given
by R
dA PN
ih— = [A, H|(t).
i = [, (1)
The commutation relations are given by
0,01 =1, [ben,bl,]=1

(b6] = [bsn, bsn] = [b, bsn] = [b,b],] = 0.
Thus we find the operator-valued nonlinear differential equations

db dbsp, K
— = rbib, ZIsh 2
ar s dt 2

In a more realistic model, cavity photon losses must be taken into account.

Problem 6. A single spin—% particle is placed on a cantilever tip. The
tip can oscillate only in the z-direction. A ferromagnetic particle, whose
magnetic moment points in the positive z-direction, produces a non-uniform
magnetic field at the spin. A uniform magnetic field, B, oriented in the
positive z-direction, determines the ground state of the spin. A rotating
magnetic field, B;(t), induces transitions between the ground state and

excited states of the spin. It is given by
B, (t) = By cos(wt + ¢(t)), By, (t) = —By sin(wt + ¢(t)), B.(t)=0
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where ¢(t) describes a smooth change in phase required for a cyclic adia-
batic inversion of the spin

|[do(t)/dt| < w.
In the reference frame rotating with By(t), the time-dependent Hamilton
operator is given by
fo PEomiwlZ? h< do

H(t)—sz-l- 9 wL—w—dt>Sg—hw151

08
gﬂ@Z

ZS3

where Z is the coordinate of the oscillator which describes the dynamics of
the quasi-classical cantilever tip, P, is its momentum, m} and w. are the
effective mass and the frequency of the cantilever, S3 and S; are the z—
and the z— component of the spin,

1/0 1 1/1 0
Sl_2<1 0)7 ‘93_2(0 _1)7

wy, is its Larmor frequency, wy is the Rabi frequency (the frequency of the
spin precession around the magnetic field B1(t) at the resonance condition
w=wr, d¢/dt =0), g and p are the g-factors and the magnetic moment of
the spin and we defined m? = m./4 as the effective cantilever mass. The
operator acts in the product Hilbert space Ly(R) ® C2. One sets

we = (ke/m?)?, wip =B, wi=7B

where v = gu/h is the gyromagnetic ratio of the spin, m. and k. are the
mass and the force constant of the cantilever, B, includes the uniform
magnetic field By and the magnetic field produced by the ferromagnetic
particle.

(i) Cast the Hamilton operator in dimensionless form H/hw. — K by
introducing the quantities

EO = ﬁujc, FO = kCEQ, ZQ =\ Eo/kc, PO = h/ZO

with w = wy, and using the dimensionless time 7 := w,t.
(ii) The dimensionless time-dependent Schrédinger equation

— = KU
287

)

can be solved using the expansions

where

Vi(r,2) = ) Au()ln),  Wa(rz) =) Ba(r)n)
n=0 n=0
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|n> _ 7T1/42n/2(n!>1/2€7z2/2Hn(Z)

where {|n) : n = 0,1,...} are number states. Here H,(z) are the Her-
mitian polynomials. Find the time evolution of the complex expansion
coefficients A,, and B,,.

(iii) What would be an initial state closest to the classical limit?

Solution 6. (i) Since H/(hw,) — K we find

1 d
Tiw = §(p§ +22) + S3d7f — 651 — 277253

where we used wy, = w and

Pz Z w1 gp 8Bz dt d
== 2= —, €:= —, = , wedt = dr.
b Py Zo We K 2F. 0Z

(ii) Inserting the series expansions into the dimensionless Schrédinger equa-
tion we find the system of linear differential equations with time-dependent
coefficients for the complex amplitudes A, (7) and B, (7)

dA, n+1+1d¢ -
Car 2 dr \[

dB, 1 1d
i _( + = +¢>

(\/>An 1+vn+ An+1)

(VnBn—1+ Vn+ Bn+1)—ﬂ4

dr 2d f

where we used the Bose operators b and b defined by
bln) = V/nln — 1), bin) =vn+1jn+1)

and

02+22) ) = (n4 3 ) o)

DN | =

with

Lo Lo ot f
: \/Q(b +0), psc ot —b), [bb]=1.

(iii) We can choose the coherent state

2

-

n

ZA e Wa(e.0) =0 4,(0) = T exn(-157/2).

Problem 7. Consider two Bose-Finstein condensates which both oc-
cupy the ground-state of their respective traps. They are described by the
atom Bose annihilation (creation) operators by (bJ{) and by (b;) Atoms are
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released from each trap with momenta (wave vectors) k; and ko, respec-
tively, producing an interference pattern which enables a relative phase to
be measured. The intensity I(x,t) of the atomic field is given by

I(x, 1) = To (| (b (£)e™ ™ 4 b (£)e™> ) (b (e ™™ + by(t)e™ ™)) (1)

where I is the single atom intensity. Atoms within each condensate collide.
This can be described using the Hamilton operator

= %nx((biblf + (blb2)?) 2)

where x is the collision rate between the atoms within each condensate.
Cross-collisions between the two condensates, described by the term bJ{bl b; ba
could also be included. Using the Hamilton operator given by (2) the
intensityl(x,t) is given by

I(x,t) = Io((|bibr]9) + (|blbalib) + ([b] exp(ixt(biby — bhbo))bo|th)e ™
+(b[bS exp(—ixt(b]by — bibs))bi[¢)e' ™))
where ¢(x) := (ko — kq) - x. Calculate I(x,t) for the product state
[¥) = |B1) ® |B2)

where |31) and |B2) are coherent states.

Solution 7. Since b|3) = B|3), (8]b" = (B]8*, and
— 1 — 1

eixtbtbm Z ey S N 18) = Z = (eXt — 1)(bT)i g7
J!
=0

we have o _
(BleX*"?|B) = exp((e™" —1)8*B).
We also have
ixtb’ i * ixtbt * i *
(Ble™™*b|B) = Bexp((eX =1)8*B), (BIbTe™X?|B) = B* exp((e™—1)5" ).
Since biby; = bTb® I and blby = I © blb we have
eixt(b}bl—b;zm) _ eixtblble—ixtb;bg — ixt(bTb®I) ,—ixt(I@bTD)
_ (eixthb D)(I® eﬂ'xtzﬁb) _ eixtzﬁb ® efixtb*b.

Thus
(W[blbi[) = BiBr,  (]bhbalt) = B3 B
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and

i by —b] —ip(x * i *
(p[p] et Orbr=b2b2) by e 9 0) = 5% By exp((e™X! — 1)1 1)

x exp((e X" — 1)B5 By)e "¢

—ixt(bTbr—blbs ib(x) * i *
<¢|b£€ xtbrb1=bsb2)py 1)1 9) = ) B3 exp((e™Xt — 1)1 41)
x exp( (Xt — 1) B2)e'?™).
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Problem 8. Consider the Hamilton operator H of a coupled one Bose

one Fermi system

H=whb@Ip+JIlgocc+ad @c+b@ch)

where w, J, « are positive quantities, Ig is the identity operator in the
space of the Bose operators and I is the identity operator in the space
of the Fermi operators. Here b and b' are Bose annihilation and creation
operators, respectively, and ¢ and ¢ are Fermi annihilation and creation
operators, respectively. The commutation and anticommutation relations

are

[b,0T] =1Ip, [b,0] = bl b7]=0

[c, CT]Jr =1Ip, et = [CT’CT]Jr =0.

Find the eigenvalues of the Hamilton operator H. Find the eigenvectors.

Use the matrix representations for ¢f, ¢, bf, b, i.e.

d_(00 (01
“\10) —\o 0)"

For the Fermi states we set

Thus
0
e =i = (7).

For the Bose operators we have

0 0 0 0 0 1
1 0 0 0 0 0
=10 v2 0 0 ., b=|0 o0
0 0 0 0

0 V3

oo&o
ocloo
@
coo
D
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For the number states of the Bose operators we have

1

In)s mb*”|0>3

where n =0,1,2,....

Solution 8. Using the matrix representation for the number operators
cte and bTb given above we find

0 0
fo—
de= (3 V)

b'b = diag(0,1,2,...).

and

Thus it follows that

b'b® Ir = diag(0,1,2,...) ® <1 0> = diag(0,0,1,1,2,2,...)

0 1

and
fo 0 0\ ..
Ig®cle=diag(1,1,1,...)® 01 = diag(0,1,0,1,...).

For the interacting terms we find

ooy 1)e (3 ) (8 F)e

soe-wo(? 2)e (B 9o (s o

where @ denotes the direct sum of matrices. Adding up the matrices we
obtain the matrix representation of the Hamilton operator

f{z(@@(i g)@(“\gs \fda>@<2%a‘] ﬁa>@-~-
o (Vi Wna) e

Thus one eigenvalue is 0. The eigenvector for the eigenvalue 0 is given by
|0) 5 ®10) z. Thus this state is not entangled. To find the other eigenvalues
we have to find the eigenvalues of the 2 x 2 matrices

(el i)
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where n =0,1,2,.... We find

1
Ei(n)= S, +nw £ \/(J —w)?+ (n+1)a.
2 2 4
Whether 0 is the lowest eigenvalue depends on the values of J, w and a.

Consider the case with n = 0. Then

J w 1
E_ = = — —_— - — 2 2.
(n=0) 5 + > 4(J w)?2+a
The eigenvector for the eigenvalue E_(n = 0) is given by (« # 0)
1 1 w J
Drp4+—|—/-(J-—w2+a2+=-2|1 .
|0>B®>F+a< WP ratt g 2>|>B®O>F

Thus this state is entangled except if —/(J —w)2/4 + a2 +w/2—-J/2 =0.

The condition E_(n = 0) = 0 yields o = Jw. Then we find the state

J
0)p® [1)p — a|1>B ® [0) F.

This state is also entangled if J # 0. Thus we have an unentangled state
with eigenvalue 0 and for given parameter values of J, w and « we can have
an entangled state with this eigenvalue.

Problem 9. Let b, b' be Bose annihilation and creation operators. Let

1 . 0 1 1 . 0 0
0+::2(01+102):<O 0), a_:=2(01—wg)=(1 O)'

Consider the Hamilton operator
H=btoo_ +boo,

which describes a single atom coupled to a single mode of an electromag-
netic field. o4 act on the atom and b, b act on the field.

(i) Calculate H2.

(ii) Calculate the commutator b ® o_,b® o, ].

(iii) Let |n) be a number state and |3) be a coherent state. Calculate

A(n, B) = ({n| ® )¢ (18) ® I)

where 6 € R and I is 2 x 2 unit matrix.

Solution 9. (i) Since 0_o_ =0, 0404 =0 and

(10 (0 0
7+7=-=\o o) 7777 o 1
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we find
Voo +b@o) b @o_+bxoy)=bb®@cio_ +bboo_oy.

Thus we can write in matrix notation
bt 0
0 b/

Moo booy]=bb®o o, —bbl @oyo_.

(ii) We have

(iii) Since b|g) = B|B) and b|n) = /n|n — 1) we obtain

EE ( cos(6/n) %ﬁsinwﬁ))_

_ — ZANIAa I
A(n,a) = exp(—|p]7) ol \/%Sin(gm) cos(6v/n + 1)

Problem 10. Consider the model Hamilton operator for ions trapped
inside an optical cavity
H = Ho + |4

where

X 1 hw
Hy = (huaTa T 21a> QLR+ I, @hwb bR+ 1,01, 7003

and

V = hQ(exp(ing(at + a) —i(wpt + ¢) 1) @ I, @ o4 + h.c.)
+hgsin(n.(a" +a)) @ (bT + ) @ (04 +0-).

Here a' (a) and b' (b) are Bose creation (annihilation) operators for the
vibrational phonon and the cavity field photon, respectively and wy is the
transition frequency of the two-level ion. The ion-phonon and ion-cavity
coupling constants are 2 and g, and oy, (k = z,+, —) are the Pauli operators
describing the internal state of the ion. Thus we consider a two-level ion
radiated by the single mode cavity field of frequency w. and an external
laser field of frequency wy. The operators I,, I, and I, are the identity
operators in their respective Hilbert spaces, where Is is the 2 x 2 unit
matrix. Thus we have a tripartite system. The parameters iy and 7. are
the Lamb-Dicke parameters.

(i) Consider the unitary operator

Up(t) = exp(—iHot/h).
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Calculate (interaction picture)
H(t) = Ul (t)VU(t) = exp(iHot/h)V exp(—iHot/h).

(ii) Discuss how a Hadamard gate can be realized.
Solution 10. (i) Straightforward calculation yields
Hy(t) = 12 (O exp(i(Bort - 0))) @ I @ 0

+hQ

<Z inL)*OEa* exp(i((dor, — kv)t — QS))) QL ®os
k=1

/\
bl
I 8
N

Z iny)Fa™ OF exp(i((Sor, + kv)t — ¢))> L ®oy

+hg Z lc 1 k ‘rkOk exp(i(dpe + kv + 2w )t) | @ e o
+hg Z (" 1E) 05k exp(i(8pe — kv + 2w )t) | @ bT @ oy
+hg Z (I OLak exp(i(do. — kv)t) | @ b® oy

+hg Z (1R at*Of exp(i(doe + kv)t) | @ b oy

k=1,3,...
~+h.c.
where
2 2p 1D P 2 2p TP qP
L (inL)a'a e (inc)*Pa'ra
O; =ex , Of =ex
g p( 2 )z(:) pl(p+ k) imew (50 ) 2 (p+k)
and
dorL = Wy — Wr, 0oe 1= Wy — We.
(ii) A basis is
Im) @ n) ®@1g),  |m)®[n) @ [e)
where m = 0,1,...,00 denotes the state of ionic vibrational motion, n =

0,1,...,00 denotes the state of the quantized cavity field and |g) and |e)
denote the ground state and excited state, respectively for the two-level
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ion. Using appropriate values for the parameters and the time we can find
an implementation of the Hadamard gate

Im) @ 10) ® |g) — %(Im> ®0) @g) + m) @[0) @ |e))

Im) @10) ® |e) — %(Im> ®|0) @1g) — [m) ® [0) @ |e)).

Problem 11. Consider a square lattice with lattice constant a and pe-
riodic boundary conditions. Let c}L (¢;) denotes the creation (annihilation)
operator for an electron in the Wannier state at the lattice site j. The
Hamilton operator H of spinless tight-binding electrons in the presence of
a magnetic field can be written as

H= Z t.iljzc‘;rlcjz
(J1.d2)

e (i
tj 4, = —texp —if/ A - dr
I Js,

The summation (ji,j2) runs over the nearest neighbour site on the square
lattice. The uniform magnetic field B is applied in z-direction. Choosing
the Landau gauge

with

A = B(0,z,0)
the line integral in ¢, j, can be written as
e A g 0 ji=(mn) jo=(m+1n)
h j1 B _27qu)/q)0 jl = (m?n) j2 = (man + 1)

where the integers m and n refer to the x = 1, y = 2 coordinates of the
square lattice sites. ® = Ba? is the magnetic flux through a unit plaquette.
g stands for the magnetic flux quantum h/e. Find the Hamilton operator
in the Bloch representation. The Fourier transform is given by

i(k1j1+k2j2)c.
J

Ck:\/lﬁjze

with the inverse )
L= —i(k1j1+k2j2)
G=—= ¢ Ck
N k

where k runs over the first Brillouin zone.
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Solution 11. We obtain the Hamilton operator in Bloch representation
H=—-2t Z cos(kia)ct (k)e(k)

TP

K
—tzk: (GXP(—ikza)CT(lﬁ + 27{)0, ka)c(k1, ko)

P
+ exp(ikga)ct (kg — 2L, ka)e(ky, kg))
afbo

where cf(k) creates an electron in the Block state with wave vector k and
c(k) annihilates an electron in the Block state with wave vector k. If
®/Py = p/q is rational, the magnetic Brillouin zone can be reduced to
0 <k <2r/aand 0 < kg < 27/(ga). We obtain

TP T
k 2—V0. ko | = k 2—— k
C(1+ ady 2) C<1+ aq)o( +4q), 2>

with ¢ are integers.

26.3 Supplementary Problems

Problem 1. Let bl, bl be Bose creation operators. Consider the Hamilton
operator
H = Twblby (b} + by).

Find the unitary operator

U = exp(—iHt/h) = exp(—iwtb!by (b} + by)).

Problem 2. Let bi, b; be Bose creation operators. Study the Hamilton
operator

H = hunb{by-+hubsbo-+ S (0]) 6+ 52 (05) 63+ o (b bo-+D1 b)) +512b] b1 .

Problem 3. Let |3) be a coherent state. Then the operator

U=1-=2[5)(5|
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is unitary, i.e. UUT = I. Find a self-adjoint operator K such that
U = exp(—iK).

Study also the cases
vV =1T-2|()(C|

where |() is a squeezed state and
W =1 —2|n)(n|

where |n) is a number state.
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Putzer method, 88

Quantum 2-torus, 195
Quantum algorithm, 325

222
Similar matrices, 69
Singlet state, 307
Singular value decomposition, 50
Skew-hermitian matrix, 70
Spectral decomposition, 66
Spectral representation, 135, 236
Spherical coordinates, 323
Spin coherent state, 98
Spin flipped density matrix, 123
Spontaneous parametric down con-
version, 474

Quantum correlation function, 68, 249 Square root of NOT, 181

Quantum Fourier transform, 183, 326

Quantum relative entropy, 210, 214,
216

Qubit, 3

Qubit trine, 9

Qudits, 187

Qutrit state, 240

Rabi frequency, 510

Reduced density matrix, 289
Relative entropy of entanglement, 213
Remoteness, 288

Repeated commutator, 446
Resolution of identity, 273

Riccati equation, 401

Scalar product, 37, 77

Schmidt angle, 288

Schmidt basis, 464

Schmidt decomposition, 50, 130, 200,
260, 268

Schmidt number, 259

Schmidt rank, 53, 260

Schrédinger cat states, 432, 434

Schrodinger equation, 11, 131

Schur’s theorem, 126

Schwinger two-bosons realization, 476

Second harmonic generation, 509

Second law of thermodynamics, 322

Separable, 251
Shannon entropy, 266

Squeezing operator, 440, 442, 444

Squeezing parameter, 396, 440

Stabilized, 47

Stabilizer, 355

Standard basis, 3, 6, 7

State entanglement rate, 267, 270

Statistical independence, 297

Stinespring representation, 380

Subadditivity, 218

Supercomplete, 427

Superposition, 3

Susskind-Glogower canonical phase
states, 399

Swap gate, 201, 203

Swap operator, 204, 495

Symmetric group, 181

Tangle, 124, 289

Technique of parameter differentia-
tion, 73

Teleported, 309

Tensor product, 31

Tetrahedron, 125

Three tangle, 286

Toffoli gate, 160, 174, 192

Tomography, 125

Trace, 141, 394, 463

Trace distance, 120

Transfer operator, 414

Transmissivity, 414



Transpose, 372

Triangle inequality, 127

Trotter formula, 113

Truth table, 155

Twin beam state, 433, 453

Two mode Bell function, 484
Two mode squeezed vacuum, 453

Uhlmann’s transition probability, 274
Unary gates, 25

Uncertainty relation, 136, 450
Undisentangled form, 90

Unitary depolarizers, 279

Unitary operator, 175

Universal gates, 155

Vacuum state, 387

Variance, 19, 26, 116, 288, 425, 472

Vec operator, 369

Vector product, 17

Von Neumann entropy, 209, 256, 265,
267, 270, 322
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Von Neumann equation, 132, 267
Von Neumann measurement, 235

W state, 49, 241, 280, 287

Walsh-Hadamard gate, 183

Walsh-Hadamard transform, 7, 34,
178, 337

Werner state, 122, 265, 266

Weyl expansion, 456

Weyl representation, 76

Wigner function, 147, 148, 471

Wigner operator, 147

XOR gate, 155, 186
XOR operation, 327
XY-model, 189

Yang-Baxter equation, 107
Yurke-Stoler states, 434

Zassenhaus formula, 90
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