
 www.FreeLibros.me

MANUAL DE UML

00 KIMMEL Preliminares.indd 1 11/5/07 12:09:59 AM

 www.FreeLibros.me

00 KIMMEL Preliminares.indd 2 11/5/07 12:09:59 AM

 www.FreeLibros.me

MANUAL DE UML

PAUL KIMMEL

MÉXICO • BOGOTÁ • BUENOS AIRES • CARACAS • GUATEMALA
LISBOA • MADRID • NUEVA YORK • SAN JUAN • SANTIAGO

AUCKLAND • LONDRES • MILÁN • MONTREAL • NUEVA DELHI • SAN FRANCISCO
SINGAPUR • ST. LOUIS • SIDNEY • TORONTO

Traducción

José Hernán Pérez Castellanos
Traductor profesional

00 KIMMEL Preliminares.indd 3 11/5/07 12:10:00 AM

 www.FreeLibros.me

Prohibida la reproducción total o parcial de esta obra,
por cualquier medio, sin autorización escrita del editor.

DERECHOS RESERVADOS © 2008 respecto a la primera edición en español por
McGRAW-HILL INTERAMERICANA EDITORES, S.A. de C.V.
A Subsidiary of The McGraw-Hill Companies, Inc.

Corporativo Punta Santa Fe
Prolongación Paseo de la Reforma 1015 Torre A
Piso 17, Col. Desarrollo Santa Fe,
Delegación Álvaro Obregón
C.P. 01376, México, D.F.
Miembro de la Cámara Nacional de la Industria Editorial Mexicana, Reg. núm. 736

ISBN 970-10-5899-2

Translated from the 1st English edition of
UML DEMYSTIFIED
By: Paul Kimmel
Copyright © MMVI by The McGraw-Hill Companies, Inc. All rights reserved.

ISBN: 0-07-226182-X

1234567890 09765432108

Impreso en México Printed in Mexico

Director Editorial: Fernando Castellanos Rodríguez
Editor de desarrollo: Cristina Tapia Montes de Oca
Supervisor de producción: Jacqueline Brieño Álvarez
Diagramación: By Color Soluciones Gráficas

MANUAL DE UML

00 KIMMEL Preliminares.indd 4 11/5/07 12:10:00 AM

 www.FreeLibros.me

A la memoria de mi hermana Jennifer Anne
a quien sólo se le concedieron 35 años.

00 KIMMEL Preliminares.indd 5 11/5/07 12:10:00 AM

 www.FreeLibros.me

ACERCA DEL AUTOR

Paul Kimmel es arquitecto en jefe y uno de los fundadores de Software Concep-
tions, Inc. Ha estado diseñando e implementando software orientado a objetos
desde 1990, tiene más de 12 años de experiencia con los lenguajes de modelado,
y fue uno de los primeros en adoptar el Unified Modeling Language. Paul ha ayu-
dado a diseñar e implementar soluciones con el uso del uml para algunas de las
más grandes corporaciones del mundo, desde bancos internacionales, empresas
multinacionales de telecomunicaciones, empresas de logística y embarque, ofi-
cinas del Departamento de Defensa hasta grupos gubernamentales, nacionales e
internacionales.

00 KIMMEL Preliminares.indd 6 11/5/07 12:10:00 AM

 www.FreeLibros.me

vii

CONTENIDO BREVE

CAPÍTULO 1 Una imagen vale más que mil líneas de código 1

CAPÍTULO 2 El principio con casos de uso 17

CAPÍTULO 3 Diagramación de características como procesos 47

CAPÍTULO 4 Comportamientos con diagramas de interacción 81

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 101

CAPÍTULO 6 Cómo se relacionan las clases 131

CAPÍTULO 7 Uso de los diagramas de esquemas de estado 157

CAPÍTULO 8 Modelado de componentes 175

CAPÍTULO 9 Ajuste y finalización 185

CAPÍTULO 10 Visualización de su topología de despliegue 197

APÉNDICE A Examen final 209

 Bibliografía seleccionada 225

 Índice 227

00 KIMMEL Preliminares.indd 7 11/5/07 12:10:00 AM

 www.FreeLibros.me

00 KIMMEL Preliminares.indd 8 11/5/07 12:10:00 AM

 www.FreeLibros.me

ix

CONTENIDO

Reconocimientos xv

Introducción xvii

CAPÍTULO 1 Una imagen vale más que mil líneas de código 1

Comprensión de los modelos 2

Comprensión del UML 3

La evolución del diseño de software 3

Si nadie está modelando, ¿por qué debe
hacerlo usted? 5

Modelado y el futuro del desarrollo de software 5

 Herramientas para modelado 5

 Uso de los modelos 6

 Creación de diagramas 7

Revisión de los tipos de diagramas 7

 Hallar la línea final 12

¿Cuántos diagramas debo crear? 12

¿Cuán grande debe ser un diagrama? 13

¿Cuánto texto debe complementar mis modelos? 13

Obtenga una segunda opinión 13

00 KIMMEL Preliminares.indd 9 11/5/07 12:10:01 AM

 www.FreeLibros.me

Manual de UML x

Contraste de los lenguajes de modelado con el proceso 14

Examen 14

Respuestas 16

CAPÍTULO 2 El principio con casos de uso 17

Cómo hacer el caso para los casos de uso 18

Establecimiento de prioridad de las capacidades 19

Comunicación con los no tecnófilos 20

Uso de los símbolos de los casos de uso 21

Símbolos de actores 21

Casos de uso 21

Conectores 22

Casos de uso de inclusión y de extensión 25

Anotaciones en los diagramas de casos de uso 27

Creación de los diagramas de casos de uso 32

¿Cuántos diagramas son suficientes? 34

Ejemplos de diagramas de casos de uso 34

Diseño controlado con casos de uso 43

Examen 44

Respuestas 46

CAPÍTULO 3 Diagramación de características como procesos 47

Elaboración de las características como procesos 48

Un viaje hacia el código 48

Comprensión de los usos de los diagramas
de actividades 49

Uso de lo símbolos de los diagramas de actividades 51

Nodo inicial 52

Flujo de control 52

Acciones 56

00 KIMMEL Preliminares.indd 10 11/5/07 12:10:01 AM

 www.FreeLibros.me

xi

Nodos de decisión y de fusión 62

Bifurcaciones y uniones de transición 63

Partición de la responsabilidad con carriles 63

Indicación de las señales cronometradas 67

Configuración de los parámetros de entrada 70

Forma de mostrar las excepciones en los
diagramas de actividades 70

Terminación de los diagramas de actividades 71

Creación de los diagramas de actividades 72

Reingeniería del proceso 73

Reingeniería de una subactividad 74

Saber cuándo renunciar 77

Examen 77

Respuestas 79

CAPÍTULO 4 Comportamientos con diagramas de interacción 81

Elementos de los diagramas de secuencia 82

Uso de las líneas de vida de objetos 83

Activación de una línea de vida 84

Envío de mensajes 85

Adición de restricciones y notas 87

Uso de marcos de interacción 87

Comprensión de lo que nos dicen las secuencias 91

Descubrimiento de objetos y mensajes 92

Elementos de los diagramas de colaboración
(o comunicación) 94

Igualación del diseño con el código 96

Examen 97

Respuestas 99

CONTENIDO

00 KIMMEL Preliminares.indd 11 11/5/07 12:10:01 AM

 www.FreeLibros.me

Manual de UML xii

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 101

Elementos de los diagramas básicos de clase 102

Comprensión de las clases y los objetos 103

Modelado de relaciones en los diagramas de clases 112

Estereotipado de las clases 117

Uso de paquetes 118

Uso de notas y comentarios 118

Restricciones 118

Modelado de primitivos 120

Modelado de enumeraciones 121

Indicación de espacios de nombres 122

Cómo saber qué clases necesita 123

Uso de un enfoque ingenuo 124

Descubra otros beneficios del análisis de dominios 124

Examen 128

Respuestas 130

CAPÍTULO 6 Cómo se relacionan las clases 131

Modelado de la herencia 132

Uso de la herencia simple 132

Uso de la herencia múltiple 135

Modelado de la herencia de interfaces 139

Boceto de diagrama 139

Uso de la realización 140

Descripción de la agregación y la composición 143

Asociaciones y las clases asociaciones 145

Examen de las relaciones de dependencia 150

Adición de detalles a las clases 153

00 KIMMEL Preliminares.indd 12 11/5/07 12:10:01 AM

 www.FreeLibros.me

xiii

Examen 153

Respuestas 155

CAPÍTULO 7 Uso de los diagramas de esquemas de estado 157

Elementos de un diagrama de estado 158

Examen de los símbolos de estado 159

Examen de las transiciones 164

Creación de máquinas de estado de comportamiento 166

Creación de máquinas de estado de protocolo 167

Implementación de diagramas de estado 168

Examen 172

Respuestas 174

CAPÍTULO 8 Modelado de componentes 175

Introducción del diseño basado en componentes 177

Diseño componentes-interfaz 177

Diseño a partir de las clases 177

Modelado de un componente 178

Especificación de las interfaces proporcionadas
y requeridas 179

Examen de los estilos de modelado de componentes 180

Trazado de los diagramas de componentes
para consumidores 180

Trazado de los diagramas de componentes
para productores 182

Examen 183

Respuestas 184

CAPÍTULO 9 Ajuste y finalización 185

Modelado de los hacer y los no hacer 186

No tenga esperando a los programadores 187

CONTENIDO

00 KIMMEL Preliminares.indd 13 11/5/07 12:10:01 AM

 www.FreeLibros.me

Manual de UML xiv

Trabaje de una macrovista hacia una microvista 187

Documente en forma económica 187

Encuentre un editor 188

Sea selectivo acerca de los diagramas
que elige crear 188

No dependa de la generación del código 188

Modele y estructure disminuyendo el riesgo 188

Si es obvio, no lo modele 189

Haga hincapié en la especialización 189

Uso de patrones de estado conocidos 189

Refactorización de su modelo 192

Modo de agregar documentación de soporte 192

Validación de su modelo 193

Examen 193

Respuestas 195

CAPÍTULO 10 Visualización de su topología de despliegue 197

Modelado de nodos 198

Manera de mostrar artefactos en nodos 201

Adición de trayectorias de comunicación 204

Examen 206

Respuestas 207

APÉNDICE A Examen final 209

Respuestas 223

Bibliografía seleccionada 225

Índice 227

00 KIMMEL Preliminares.indd 14 11/5/07 12:10:01 AM

 www.FreeLibros.me

xv

Bien entrada mi segunda década como escritor, tengo que agradecer a Wendy Ri-
naldi, de McGraw-Hill/Osborne, junto con Alexander McDonald y a mi agente Da-
vid Fugate, de Waterside, por esta oportunidad de escribir lo que creo que el lector
encontrará como un libro informativo, entretenido y fácil de seguir sobre el Unified
Modeling Language.

También quiero manifestar mi agradecimiento a Eric Cotter, de Portland, Ore-
gon, al ofrecerse para proporcionar la edición técnica para el Manual de uml. Eric
realizó un trabajo excelente al hallar mis equivocaciones y omisiones, así como al
mejorar las explicaciones.

Doy las gracias a mis anfitriones en el Ministry of Transportation Ontario, de St.
Catharines, Ontario; colaborar con ustedes en el CIMS fue un proceso agradable y
el examen de mis modelos y diseños con ustedes proporcionó una excelente base
para este libro. Gracias también a Novica Kovacevic, Jennifer Fang, Rod, Mar-
co Sánchez, Chris Chartrand, Sergey Khudoyarov, Dalibor Skacic, Michael Lam,
Howard Bertrand y David He de Microsoft; fue un placer trabajar con y aprender
de todos ustedes.

En 2004, junto con Bill Maas, Paul Emery, Sainney Drammeh, Bunmi Akin-
yemichu y Ryan Doom, se formó el área Greater Lansing de .NET Users Group
(glugnet.org) y me gustaría mandar un saludo a todos los grandes miembros y pro-
motores de glugnet. Nos reunimos el tercer jueves de cada mes a las 6:00 p.m., en el
bello campus de la Michigan State University. Gracias a la MSU por permitir el uso
de sus excelentes instalaciones en el Engineering Building y el Anthony Hall.

Mientras estaba trabajando en Ontario, mi sustento me fue graciosamente su-
ministrado en Prudhommes, en Vineland, Ontario, en las salidas 55 y 57, y en el
Honest Lawyer, en St. Catharines, Ontario, Canadá. Gracias a Lis, Jen, Cheriton,
Everett, Kathryn y Kim por los alimentos y la bebida para adultos, así como al per-
sonal del Honest Lawyer, por el acceso inalámbrico.

RECONOCIMIENTOS

00 KIMMEL Preliminares.indd 15 11/5/07 12:10:02 AM

 www.FreeLibros.me

Por último, pero no porque sean los menos importantes, tengo una deuda de
gratitud con mi esposa Lori y mis cuatro hijos, Trevor, Douglas, Alex y Noah, que
representan el papel de mis más importantes admiradores y partidarios. Una familia
es la más grande de las bendiciones. (También me gustaría presentar al miembro
más reciente de nuestra familia, Leda, un eficiente laboratorio de chocolate, quien
espera con paciencia a mis pies como un sutil recuerdo para empujarme de regreso
a la computadora e ir a hacer algo más una que otra vez.)

00 KIMMEL Preliminares.indd 16 11/5/07 12:10:02 AM

 www.FreeLibros.me

xvii

A menudo, los nuevos inventos nacen sin necesidad y se documentan sobre serville-
tas mucho antes, si acaso, de que se proporcione una definición autorizada y formal.
El Unified Modeling Language (uml) es precisamente uno de esos ejemplos. Los
aspectos individuales de lo que al final se convirtió en el uml los definieron Ivar
Jacobson, James Rumbaugh y Grady Booch, sin necesidad, mucho antes de que sus
colaboraciones individuales se consolidaran en una sola definición.

Existe un problema mixto con las especificaciones formales y estándar. En gene-
ral, para que un cuerpo augusto de científicos ratifique algo debe estar definido sin
ambigüedad y con rigor. Si busca la definición del uml, encontrará metamodelos
que describen hasta el más mínimo detalle lo que es y lo que no es. El efecto es
muy semejante a leer informes del congreso: extensos, áridos, tediosos y con un
poquito de jugo ocasional. Piense en las definiciones formales, en comparación
con las aplicaciones prácticas, como esto: existen reglas rigurosas específicas que
definen algo tan sencillo como el álgebra, pero usted no necesita conocerlas, aun
cuando realizamos álgebra sencilla o nos apoyamos en ella en tareas cotidianas,
como bombear gasolina. Por ejemplo, precio por litro multiplicado por el número
de litros = precio total. Con una simple sustitución de texto por carácter, podemos
crear ecuaciones aritméticas, p * g = t, que empiezan por parecerse a esas confusas
ecuaciones de la escuela, pero que las hacen convenientes, desde el punto de vista
rotacional, para determinar cualquier cantidad de ella. Lo que quiero decir es que
incluso las personas que se identificarían como desafiadas por las matemáticas las
aplican todos los días para fines prácticos, sin siquiera pensar que lo que están ha-
ciendo es resolver problemas matemáticos.

Ése es el objetivo de este libro. Hay definiciones formales y rigurosas del uml y
existen por buenas razones, pero usted no necesita conocerlas para usar este lengua-
je de una manera práctica. Los lingüistas del uml deben conocerlo en lo más íntimo,
para definir con rigor, precisamente como los profesores de un idioma conocen la

INTRODUCCIÓN

00 KIMMEL Preliminares.indd 17 11/5/07 12:10:02 AM

 www.FreeLibros.me

Manual de UML xviii

gramática hasta lo más profundo para poder enseñarlo, pero usted no necesita ser
un profesor de su idioma para comunicarse con eficacia. Esto es verdad también
para el uml; no necesita conocer todos los detalles acerca de él para usarlo con
eficacia.

uml DesMitificado está escrito de manera sencilla y está diseñado para hacer que
este lenguaje sea práctico, así como una herramienta eficaz para comunicar análisis
y diseño de software.

Hay muchos libros sobre proceso, y el uml no define un proceso. Sin embargo,
este libro está organizado de tal manera que si usted crea los tipos de modelos se-
gún se necesita, en el orden en el que aparecen en él, entonces puede contar con un
inicio práctico de un proceso susceptible de usarse.

uml DesMitificado es un libro de tamaño modesto, pero es una recopilación de
más de una docena de años de experiencia práctica trabajando con algunas de las
mayores y mejor conocidas empresas del mundo, así como con muchas bien cono-
cidas y no tan grandes empresas. El uml descrito en este libro es pragmático, prác-
tico y aplicable, ya sea que usted se encuentre estructurando aplicaciones pequeñas,
medianas o muy grandes. En pocas palabras, uml DesMitificado deja la pelusa y el
rigor de torre de marfil a otros textos y le dice a usted lo que necesita saber para usar
con éxito el uml al describir software.

00 KIMMEL Preliminares.indd 18 11/5/07 12:10:02 AM

 www.FreeLibros.me

1

CAPÍTULO

Las imágenes de pequeñas personas formadas por palillos representan la forma
de comunicación más antigua registrada en la historia humana. Algo de este arte
rupestre se remonta a épocas tan antiguas como hace 75,000 años. Lo que resulta
bastante extraño es que nos encontramos al principio del moderno siglo xxi y to-
davía estamos usando pequeñas figuras de línea para transmitir información. Eso
es correcto; un pequeño hombre formado por palillos que llamamos Esaw es el
carácter central en uno de los lenguajes más recientes desarrollado por los humanos
(figura 1-1).

1

Una imagen
vale más que mil
líneas de código

1

01 KIMMEL.indd 1 11/4/07 7:00:18 PM

 www.FreeLibros.me

Manual de UML 2

El lenguaje acerca del cual estoy hablando se llama Unified Modeling Language (Len-
guaje unificado de modelado), o uml. El uml es un lenguaje tanto como Pascal, C# (C
sharp), el alemán, el inglés y el latín; y el uml posiblemente es uno de los lenguajes más
recientes inventados por la humanidad, alrededor de 1997.

Como sucede con otros lenguajes, el uml fue inventado por necesidad. Es más, como
con muchos lenguajes, en el uml se usan símbolos para transmitir significado. Sin embar-
go, a diferencia de los lenguajes orgánicos, como el inglés y el alemán, que evolucionan
con el transcurso del tiempo a partir del uso común y la adaptación, el uml fue inventado
por científicos, lo cual, por desgracia, es un problema. Los científicos son muy inteli-
gentes pero con frecuencia no son muy buenos para explicar las cosas a aquellos menos
científicos. Aquí es en donde intervengo.

En este capítulo, revisaremos el origen y la evolución del uml; también hablaremos
acerca de cómo crear imágenes usando el uml, cuántas imágenes crear y qué tipos de
ellas, qué deben transmitir esas imágenes y, lo más importante, cuándo suspender el di-
bujo de imágenes y empezar a escribir código.

Comprensión de los modelos
Un modelo es una colección de imágenes y texto que representa algo; para nuestros fi-
nes, software. (Los modelos no tienen que representar software, pero ahora reduciremos
nuestro ámbito a los modelos de software.) Un modelo es para el software lo que un plano
azul es para una casa.

Los modelos son valiosos por muchas razones específicas; en gran parte, constan de
imágenes e, incluso, las imágenes simples pueden transmitir más información que una
gran cantidad de texto; por ejemplo, código. Esto resulta coherente con el viejo adagio un
tanto modificado de que una imagen expresa un millar de líneas de código. Los modelos
son valiosos porque es más fácil dibujar algunas imágenes sencillas que escribir código
o incluso texto que describan lo mismo. Los modelos son valiosos porque es más barato,
rápido y fácil cambiar modelos que cambiar código. La verdad simple es que barato, rá-
pido, fácil y flexible es lo que usted quiere cuando está resolviendo problemas.

Figura 1-1 Esaw, a quien se menciona como actor en el uml.

Esaw

01 KIMMEL.indd 2 11/4/07 7:00:19 PM

 www.FreeLibros.me

CAPÍTULO 1 Una imagen vale más que mil líneas de código 3

Desafortunadamente, si cada uno usa imágenes diferentes para dar a entender lo mis-
mo, entonces las imágenes se agregan a la confusión, en lugar de mitigarla. Aquí es en
donde entra el uml.

Comprensión del UML

El uml es una definición oficial de un lenguaje pictórico con símbolos y relaciones co-
munes que tienen un significado común. Si todos los participantes hablan uml, entonces
las imágenes tienen el mismo significado para todos aquellos que las observen. Por lo
tanto, aprender uml es esencial para ser capaz de usar imágenes para experimentar bara-
ta, flexible y rápidamente con las soluciones.

Es importante reiterar aquí que es más rápido, más barato y más fácil resolver proble-
mas con imágenes que con código. La única barrera para obtener beneficios del modela-
do es aprender el lenguaje del mismo.

El uml es un lenguaje precisamente como lo son el inglés o el afrikaans. El uml
comprende símbolos y una gramática que define la manera en que se pueden usar estos
símbolos. Aprenda los símbolos y la gramática, y sus imágenes serán comprensibles para
todo aquel que reconozca estos símbolos y conozca la gramática.

Aunque, ¿por qué el uml? Usted podría usar cualesquiera símbolos y reglas con el fin
de crear su propio lenguaje de modelado, pero el truco estaría en hacer que otros también
lo usaran. Si sus aspiraciones son inventar un mejor lenguaje de modelado, entonces no
me corresponde detenerlo. Debe saber que el uml se considera un estándar y que lo que
este lenguaje es o no es lo define un consorcio de empresas que constituyen el Object
Management Group (omg, Grupo de Administración de Objetos). La especificación del
uml está definida y ha sido publicada por el omg en www.omg.org.

La evolución del diseño de software
Si siente que ha llegado tarde a la fiesta del uml, no se inquiete; en realidad, ha llegado
temprano. La verdad es que el uml ha llegado tarde a la fiesta de desarrollo del software.
Trabajo en todo Estados Unidos y converso con una gran cantidad de gente en muchas
empresas muy grandes de software, y el uml y el modelado apenas están empezando a
ponerse de moda. Esto queda ejemplificado de la mejor manera en las propias palabras de
Bill Gates después de su famosa “semana de reflexión” en 2004, en donde se informa que
habló acerca de la importancia creciente del análisis y diseño formales (léase uml) en el
futuro. Este sentimiento lo apoya también la muy reciente compra de Visio, que incluye
las capacidades de modelado de uml, por parte de Microsoft.

01 KIMMEL.indd 3 11/4/07 7:00:19 PM

 www.FreeLibros.me

www.omg.org.

Manual de UML 4

El uml representa una formalización del análisis y el diseño, y la formalización siem-
pre parece llegar tarde. Considere los fabricantes de automóviles del siglo pasado. Al
principio del siglo pasado, todos los fabricantes de coches en Flint, Michigan, estaban
convirtiendo los carruajes ligeros tirados por un solo caballo en automóviles. Esto ocu-
rrió mucho antes de que las grandes universidades, como la Michigan State University
(msu), graduaran ingenieros mecánicos capacitados para construir automóviles y herra-
mientas de software, como programas para diseño con ayuda de computadora (cad) que
son especialmente buenos en el dibujo de artículos complejos, como las partes de los au-
tomóviles. La evolución de la ingeniería formalizada de los automóviles es consecuente
con la evolución de la ingeniería formalizada del software.

Hace alrededor de 5000 años, los chinos crearon una de las primeras computadoras:
el ábaco. Hace cerca de 150 años, Charles Babbage inventó una máquina mecánica de
cálculo. En 1940, Alan Turing definió la máquina Turing de cálculo, y Presper Eckert
y John Mauchly inventaron la Eniac. Después de las máquinas de cálculo, vinieron las
tarjetas perforadas y el análisis y diseño estructurados de Grace Hopper para apoyar el
desarrollo de Cobol. En la década de 1960, se inventó Smalltalk, un lenguaje orientado a
objetos, y en 1986, Bjarne Stroustrop inventó lo que ahora se conoce como C++. No fue
sino hasta alrededor de este mismo periodo —la década de 1980— cuando hombres muy
inteligentes, como Ivar Jacobson, James Rumbaugh y Grady Booch, empezaron a definir
los elementos del análisis y diseño modernos de software, lo que ahora llamamos el uml.

A finales de la década de 1980 y principios de la de 1990, las guerras sobre la nota-
ción del modelado estaban plenamente entabladas, con diferentes facciones apoyando
a Jacobson, Rumbaugh o Booch. Recuerde, no fue sino hasta 1980 cuando la persona
promedio pudo comprar y poseer una computadora personal (pc), y hacer algo útil con
ella. Jacobson, Rumbaugh y Booch, cada uno por su lado, usaron símbolos y reglas di-
ferentes para crear sus modelos. Finalmente, Rumbaugh y Booch empezaron a colaborar
en relación con los elementos de sus respectivos lenguajes de modelado, y Jacobson se
les unió en Rational Software.

A mediados de la década de 1990, se fusionaron los elementos de modelado de Rum-
baugh [Object Modeling Technique (omt, técnica de modelado de objetos)], Booch
(método de Booch) y Jacobson (Objectory and Use Cases, cajas objetos y de usos) —a
Rumbaugh, Jacobson y Booch se les mencionaba como “los tres amigos”— para formar
el proceso unificado de modelado. Poco tiempo después, se eliminó proceso de la espe-
cificación del modelado y nació el uml. Esto ocurrió hace muy poco tiempo, apenas en
1997. La especificación uml 2.0 se estabilizó en octubre de 2004. Es correcto, ahora sólo
estamos en la versión 2.

Esto lleva a la pregunta: ¿precisamente cuántas empresas están usando el uml y, en
realidad, diseñando software con modelos? La respuesta es todavía muy pocas. Traba-
jo en toda Norteamérica y personalmente conozco ejecutivos en algunas empresas de
software con mucho éxito, y cuando les pregunto si estructuran el software con uml, la
respuesta es, casi siempre, no.

01 KIMMEL.indd 4 11/4/07 7:00:19 PM

 www.FreeLibros.me

CAPÍTULO 1 Una imagen vale más que mil líneas de código 5

Si nadie está modelando, ¿por qué debe hacerlo usted?

Una persona racional podría preguntar: ¿por qué entonces, si Bill Gates está ganando miles
de millones escribiendo software sin hacer un hincapié significativo en el modelado for-
mal, debo preocuparme acerca del uml? La respuesta es que casi el 80% de todos los pro-
yectos de software fallan. Estos proyectos sobrepasan sus presupuestos, no proporcionan
las características que los clientes necesitan o desean o, lo que es peor, nunca se entregan.

La tendencia actual es llevar al exterior el desarrollo del software, hacia las naciones
en desarrollo o del tercer mundo. La idea básica es que si los ingenieros estadouniden-
ses especializados en software están fallando, entonces si se paga una quinta parte a un
desarrollador euroasiático de software esto permitirá a las empresas intentar tener éxito
con una frecuencia cinco veces mayor. ¿Qué están hallando estas empresas que están
llevando el desarrollo hacia el exterior? Están descubriendo que Estados Unidos tiene
algunos de los mejores talentos y recursos disponibles, y que la mano de obra barata en
lugares alejados sólo introduce problemas adicionales y tampoco es garantía de éxito. La
respuesta real que se necesita consumir más tiempo en el análisis y el diseño del software,
y esto significa modelos.

Modelado y el futuro del desarrollo de software

Un énfasis creciente en el análisis y diseño formales no significa el fin del crecimiento de
la industria del software; significa que los días del salvaje, salvaje oeste de las décadas
de 1980 y 1990 llegarán al momento en que terminen; pero todavía está el salvaje, salvaje
oeste de los hackers, allí en la tierra del software, y estará por algún tiempo.

Lo que un énfasis creciente en el análisis y diseño del software significa precisamente
ahora es que los profesionales capacitados en uml tienen una oportunidad única para
capitalizar este interés creciente en este lenguaje; también significa que, de manera gra-
dual, menos proyectos fallarán, la calidad del software mejorará y se esperará que más
ingenieros en software aprendan el uml.

Herramientas para modelado
Hasta hace muy poco, el modelado ha sido un cautivo en una torre de marfil rodeada
por una guarnición impenetrable de científicos armados con metamodelos y herramien-
tas para modelar ridículamente caras. El costo de una licencia para una herramienta
popular para modelar estaba en los miles de dólares, lo que significó que el profesional
promedio debía gastar por una aplicación para modelar tanto como lo que gastó por toda
una computadora. Esto es ridículo.

01 KIMMEL.indd 5 11/4/07 7:00:19 PM

 www.FreeLibros.me

Manual de UML 6

Las herramientas para modelar pueden ser muy útiles, pero es posible modelar sobre
trozos de papel. Por fortuna, usted no necesita ir tan lejos. La ame o la odie, Microsoft
es muy buena para bajar el costo del software. Si tiene una copia de msdn, entonces tiene
una herramienta casi gratuita para modelar: Visio. Ésta es una buena herramienta, capaz
de producir de manera competente modelos uml de alta calidad, y no le destrozará su
presupuesto.1

Para mantenernos en el tema de este libro —desmitificar uml—, en lugar de hacer
saltar la banca en Together o Rose, usaremos el Visio de precio adecuado. Si el lector
quiere usar Rose xde, Together o algún otro producto, sea bienvenido para hacerlo, pero
después de leer este libro verá que puede usar Visio y crear modelos profesionales, y
ahorrarse cientos o incluso miles de dólares.

Uso de los modelos
Los modelos consisten en diagramas o imágenes. Lo que se intenta con los modelos es
que sean más baratos para producir y experimentar que con el código. Sin embargo, si
usted trabaja arduamente sobre qué modelos trazar, cuándo suspender el dibujo y empe-
zar a codificar, o en si sus modelos son perfectos o no, entonces con lentitud observará
reducirse el costo y el valor en tiempo de los modelos.

Puede usar texto llano para describir un sistema, pero se puede transmitir más informa-
ción con imágenes. Podría seguir con ahínco la máxima de la eXtreme Programming (xp,
programación extrema) y codificar, volviendo a descomponer en factores conforme avan-
ce, pero los detalles de las líneas de código son mucho más complejos que las imágenes,
y los programadores se adhieren al código pero no a las imágenes. (Yo no comprendo
por completo la psicología de esta adhesión al código, pero en realidad existe. Sólo trate
de criticar en forma constructiva el código de alguien más y observe cómo se deteriora
la conversación con rapidez hasta llegar al insulto.) Esto significa que una vez que se
escribe el código, es muy difícil obtener la aceptación de su codificador o de un admi-
nistrador para hacerle modificaciones, en especial si el código se percibe para trabajar.
Inversamente, la gente trabajará con mucho gusto de manera informal con los modelos y
aceptará sugerencias.

Por último, debido a que en los modelos se usan símbolos sencillos, más personas
interesadas pueden participar en el diseño del sistema. Muestre a un usuario final un cen-
tenar de líneas de código y escuchará el chillar de los grillos; muestre a ese usuario final
un diagrama de actividades, y esa misma persona le dirá si ha captado usted la esencia de
cómo se realiza correctamente esa tarea.

1 Microsoft tiene un nuevo programa que le permite comprar msdn Universal, el cual incluye Visio, por 375
dólares. Éste es un valor especialmente bueno.

01 KIMMEL.indd 6 11/4/07 7:00:19 PM

 www.FreeLibros.me

CAPÍTULO 1 Una imagen vale más que mil líneas de código 7

Creación de diagramas
La primera regla de la creación de modelos es que el código y el texto consumen tiempo,
y no queremos pasar una gran cantidad de tiempo creando documentos de texto que nadie
leerá. Lo que sí queremos hacer es captar con exactitud las partes importantes del pro-
blema y una solución. Desafortunadamente, ésta no es una prescripción para el número o
la diversidad de diagramas que necesitamos crear y no indica cuánto detalle necesitamos
agregar a esos diagramas.

Hacia el final de este capítulo, en la sección “Hallar la línea final”, hablaré más acerca de
cómo se sabe que se ha completado el modelado. En este momento, hablemos acerca
de los tipos de diagramas que tal vez queramos crear.

Revisión de los tipos de diagramas

Existen varios tipos de diagramas que usted puede crear. Revisaré con rapidez los tipos
de diagramas que puede crear y los tipos de información que se pretende transmitir con
cada uno de estos diagramas.

Diagramas de casos de uso
Los diagramas de casos de uso son el equivalente del arte rupestre moderno. Los símbo-
los principales de un caso de uso son el actor (nuestro amigo Esaw) y el óvalo del caso
de uso (figura 1-2).

Los diagramas de casos de uso son responsables principalmente de documentar los
macrorrequisitos del sistema. Piense en los diagramas de casos de uso como la lista de
las capacidades que debe proporcionar el sistema.

Diagramas de actividades
Un diagrama de actividades es la versión uml de un diagrama de flujo. Los diagramas
de actividades se usan para analizar los procesos y, si es necesario, volver a realizar la
ingeniería de los procesos (figura 1-3).

Figura 1-2 El caso de uso “Hallar alimento”.

Hallar alimento

01 KIMMEL.indd 7 11/4/07 7:00:20 PM

 www.FreeLibros.me

Manual de UML 8 � �

Un diagrama de actividades es una herramienta excelente para analizar problemas que,
al final, el sistema deberá resolver. Como una herramienta de análisis, no queremos em-
pezar resolviendo el problema en un nivel técnico mediante la asignación de clases, pero
podemos usar los diagramas de actividades para entender el problema e incluso refinar
los procesos que comprenden el problema.

Diagramas de clases
Los diagramas de clases se usan para mostrar las clases de un sistema y las relaciones
entre ellas (figura 1-4). Una sola clase puede mostrarse en más de un diagrama de clases
y no es necesario mostrar todas las clases en un solo diagrama monolítico de clases. El
mayor valor es mostrar las clases y sus relaciones desde varias perspectivas, de una ma-
nera que ayudará a transmitir la comprensión más útil.

Figura 1-3 Un diagrama de actividades en el que se muestra la manera en que Esaw camina
para hallar alimento.

Salir de
la cueva

Vagar

Buscar
alimento

Evitar los
depredadores

(Necesitar más
alimento)

Regresar
a la cueva

01 KIMMEL.indd 8 11/4/07 7:00:20 PM

 www.FreeLibros.me

CAPÍTULO 1 Una imagen vale más que mil líneas de código 9

Los diagramas de clases muestran una vista estática del sistema; no describen los
comportamientos o cómo interactúan los ejemplos de las clases. Para describir los com-
portamientos y las interacciones entre los objetos de un sistema, podemos revisar los
diagramas de interacción.

Diagramas de interacción
Existen dos tipos de diagramas de interacción: la secuencia y la colaboración. Ambos
transmiten la misma información, empleando una perspectiva un poco diferente. Los
diagramas de secuencia muestran las clases a lo largo de la parte superior y los mensajes
enviados entre esas clases, modelando un solo flujo a través de los objetos del siste-
ma. Los diagramas de colaboración usan las mismas clases y mensajes, pero organiza-
dos en una disposición espacial. La figura 1-5 muestra un ejemplo sencillo de diagrama
de secuencia, y la 1-6 transmite la misma información con el uso de un diagrama de
colaboración.

Un diagrama de secuencia implica un ordenamiento en el tiempo al seguir la secuen-
cia de mensajes desde arriba a la izquierda hasta abajo a la derecha. Debido a que en el
diagrama de colaboración no se indica en forma visual un ordenamiento en el tiempo,
numeramos los mensajes para indicar el orden en el cual se presentan.

Algunas herramientas convertirán de manera automática los diagramas de interacción
entre secuencia y colaboración, pero no es necesario crear los dos tipos de diagramas. En
general, se percibe que un diagrama de secuencia es más fácil de leer y más común.

Figura 1-4 Un diagrama sencillo de clases, quizás uno de muchos, que transmite una faceta del
sistema que se está diseñando.

Sustento Esaw

Agua Alimento

01 KIMMEL.indd 9 11/4/07 7:00:20 PM

 www.FreeLibros.me

Manual de UML 10

Diagramas de estado
Mientras que los diagramas de interacción muestran los objetos y los mensajes que se
pasan entre ellos, un diagrama de estado muestra el estado cambiante de un solo objeto,
conforme éste pasa por un sistema. Si continuamos con nuestro ejemplo, entonces nos
enfocaremos sobre Esaw y cómo está cambiando su estado a medida que busca con afán
el alimento, lo encuentra y lo consume (figura 1-7).

RECUERDE Desmitificado: el UML es un lenguaje. Como programar o hablar idiomas,
si no se usan con frecuencia, se pueden olvidar un poco. Es perfectamente aceptable
mejorar un idioma particular. La meta del modelado es captar la esencia del mismo y
diseñar con pericia y, finalmente, con tanta exactitud como sea posible, sin quedarse
atascado decidiendo acerca de los elementos del lenguaje. Desafortunadamente, las he-
rramientas del UML no son tan exactas como los compiladores en la descripción de los
errores del lenguaje.

� �

�

Figura 1-5 Diagrama sencillo de secuencia en el que se demuestra cómo se recoge y prepara el
alimento.

Esaw Canasta Fuego

Adquirir
el alimento

Caminar
hacia la cueva

Abrir

Tomar el alimento

Cocinar (alimento)

Trasladar (alimento)

Comer

Vaciar a la (alimento)

Alimento cocinado

01 KIMMEL.indd 10 11/4/07 7:00:20 PM

 www.FreeLibros.me

CAPÍTULO 1 Una imagen vale más que mil líneas de código 11

Diagramas de componentes
El uml define varios tipos de modelos, incluyendo modelos para análisis, para diseño y
para implementación. Sin embargo, nada hay que le fuerce a crear o mantener tres mode-
los para una aplicación. Un ejemplo de un diagrama que podría encontrar en un modelo
de implementación es de componentes. En un diagrama de componentes, éstos se mues-
tran —piense en subsistemas— en el producto final.

�

�

�
�

� �

� � � � � � � � � � � �
�

Figura 1-6 Diagrama de colaboración que transmite el mismo comportamiento de adquisición
y consumo.

�

�

�
�

� �

� � � � � � � � � � � �
�

Figura 1-7 Diagrama de estado (o esquema de estado) que muestra el estado progresivo confor-
me Esaw busca con afán el alimento y come.

Esaw

Canasta

Fuego

1: Reunir alimento
3: Caminar hacia la cueva
8: Comer el alimento

Canasta
2: Vaciar a la
4: Abrir
5: Tomar el alimento

6: Cocinar el alimento

7: Retirar el alimento

Hambre Buscar

Comida

Reposo

/ Salir de la cueva

(Hambre)

(Seguro para comer) / Encontrar alimento

(No tiene hambre)

01 KIMMEL.indd 11 11/4/07 7:00:21 PM

 www.FreeLibros.me

Manual de UML 12

Cubriré los diagramas de despliegue más adelante en este libro, pero por ahora, apla-
zaré la cita de un ejemplo. En general, un diagrama de componentes es un poco semejan-
te a uno de clases, con símbolos de componentes.

Otros diagramas
Hay otros tipos o variaciones de diagramas que podemos crear. Por ejemplo, un diagrama
de topología del despliegue le mostrará cómo se verá desplegado su sistema. Lo común
es que un diagrama de este tipo contenga símbolos que representen cosas, como servido-
res web, servidores de bases de datos y varios dispositivos diversos, así como software
que constituye la solución de usted. Este tipo de diagrama es más común cuando usted
está estructurando sistemas distribuidos en n hileras.

Más adelante, en este libro, le mostraré ejemplos de algunos de estos diagramas. Recuer-
de que, en el modelado, la clave consiste en modelar aspectos interesantes de su sistema
que ayuden a aclarar elementos que puedan no ser obvios, en oposición a modelarlo todo.

Hallar la línea final
La parte más difícil del modelado es que es tan nuevo que los modelos uml están sujetos
a algo de las mismas guerras de los lenguajes que sufrieron los proyectos orientados a
objetos durante la última década. Le aliento a evitar estas guerras de lenguajes, ya que
principalmente son ejercicios académicos improductivos. Si se encuentra colgado acerca
de si algo es bueno o no en uml, entonces se está dirigiendo hacia la parálisis del análisis
(y del diseño).

La meta es ser tan exacto como sea posible en una cantidad razonable de tiempo. El
software mal diseñado es suficientemente malo, pero ningún software es casi siempre
peor. Con el fin de determinar si ha concluido con un diagrama o modelo particular,
haga la pregunta: ¿el diagrama o modelo transmite lo que entiendo, lo que quiero dar a
entender y mi intención? Es decir, ¿el diagrama o modelo es suficientemente bueno? La
exactitud es importante porque los demás necesitan leer sus modelos, y los errores idio-
máticos significan que esos modelos serán más difíciles de leer para los demás.

¿Cuántos diagramas debo crear?

No existe respuesta específica. Una pregunta mejor es: ¿debo crear todo tipo de diagra-
mas? La respuesta a esta pregunta es no. Un refinamiento de esta respuesta es que resulta
útil crear diagramas que resuelvan los problemas delicados de análisis y diseño, así como
diagramas que la gente realmente leerá.

01 KIMMEL.indd 12 11/4/07 7:00:21 PM

 www.FreeLibros.me

CAPÍTULO 1 Una imagen vale más que mil líneas de código 13

¿Cuán grande debe ser un diagrama?

Determinar cuán grande necesita ser un modelo es otra buena cuestión para decidir. Si
un modelo dado es demasiado grande, entonces puede aumentar la confusión. Intente
crear modelos detallados, pero no demasiado. Como con la programación, la creación de
modelos uml requiere práctica.

Solicite retroalimentación de diferentes grupos cuya opinión sea importante. Si los
usuarios finales piensan que un diagrama de análisis capta de manera adecuada y correcta
el problema, entonces siga adelante. Si los programadores pueden leer una secuencia y
deducir cómo implementar esa secuencia, entonces siga adelante. Siempre puede agre-
gar detalles, si debe hacerlo.

¿Cuánto texto debe complementar mis modelos?

Una idea fundamental del uso de imágenes para modelar, en lugar de texto muy confuso,
es que las imágenes transmiten más significado en menos espacio y son más fáciles de
manipular. Si agrega demasiado texto —restricciones, notas o documentos largos—, en-
tonces está anulando la finalidad de esta notación pictórica más concisa.

El mejor lugar para el texto es el caso de uso. Un buen texto descriptivo en cada caso
de uso puede aclarar con precisión qué característica apoya ese caso. En el capítulo 2
demostraré algunas buenas descripciones de los casos de uso.

Se recibirá bien que agregue cualquier texto aclaratorio que necesite, pero la regla
general para el texto es análoga a la dada para los comentarios en código: sólo comente
cosas que estén razonablemente sujetas a interpretación.

Por último, trate de documentar todo en su herramienta de modelado, en oposición a
un documento separado. Si encuentra que usted necesita o el cliente requiere un panora-
ma arquitectónico general escrito, aplace esto hasta después de que el software se haya
producido.

Obtenga una segunda opinión

Si se encuentra atascado en un diagrama particular, obtenga una segunda opinión. Con
frecuencia, dejar un diagrama a un lado durante un par de horas u obtener una segunda
opinión le ayudará a resolver aspectos acerca de un modelo. Puede ser que halle que el
usuario final de ese modelo entenderá lo que usted quiere decir o proporcionará más
información que aclare la confusión, o bien un segundo par de ojos puede suministrar
una respuesta lista. Un elemento crítico de todo software de desarrollo es construir cierta
inercia y captar los macroconceptos, o grandes conceptos, sin quedarse atascado o man-
tener esperando a los usuarios.

01 KIMMEL.indd 13 11/4/07 7:00:21 PM

 www.FreeLibros.me

Manual de UML 14

Contraste de los lenguajes de modelado
con el proceso

En realidad, el uml empezó su vida como Unified Process (Proceso unificado). Los in-
ventores se dieron cuenta con rapidez de que los lenguajes de programación no deter-
minan el proceso, ni debieran hacerlo los lenguajes de modelado. Por tanto, proceso y
lenguaje se dividieron.

Existen muchos libros sobre procesos. No pienso que un proceso represente el mejor
ajuste para todos los proyectos, pero quizás uno de los procesos más flexibles es el Ra-
tional Unified Process (Proceso unificado racional). Mi enfoque en este libro es sobre el
uml, no sobre cualquier proceso particular. Estaré sugiriendo los tipos de modelos por
crear y lo que le dicen a usted, pero le aliento a que examine los procesos de desarrollo
por usted mismo. Considere examinar el Rational Unified Process (rup), el proceso Agile,
eXtreme Programming (xp) e, incluso, Microsoft’s Services Oriented Architecture (soa,
arquitectura orientada a servicios de Microsoft). [soa es más que un procedimiento arqui-
tectónico en el que se usan elementos como xml Web Services (Servicios web xml), pero
ofrece algunas buenas técnicas.]

No soy un experto en todos los procesos, pero enseguida doy un resumen que le dará
un punto de partida. El rup es un aparador de actividades centradas en el uml, que define
macrofases iterativas en pequeñas cascadas, incluyendo iniciación, elaboración, cons-
trucción y transición. xp es hackeo constructivo. En general, la idea se basa en estructurar
sobre lo que usted comprenda, esperar que las cosas cambien y usar técnicas como la
programación de redes composición en factores y para apoyar los cambios a medida que
usted aumenta su comprensión. El soa de Microsoft depende de tecnologías como com+,
Remoting y los xml Web Services así como de una separación de las responsabilidades
por medio de los servicios. Agile es una nueva metodología que no entiendo por comple-
to, pero que en el libro del Dr. Boehm, Balancing Agility and Discipline, se le compara
con xp, y sospecho que, desde el punto de vista conceptual, reside en alguna parte entre
rup y xp.

Es importante tener presente que muchas personas o entidades que le ofrecen un pro-
ceso pueden estar intentando venderle algo, y algunas muy buenas ideas tienen que venir
de cada una de estas partes.

Examen
1. ¿Qué significa el acrónimo uml?

a. Uniform Model Language

b. Unified Modeling Language

01 KIMMEL.indd 14 11/4/07 7:00:22 PM

 www.FreeLibros.me

CAPÍTULO 1 Una imagen vale más que mil líneas de código 15

c. Unitarian Mock-Up Language

d. Unified Molding Language

2. El UML sólo se usa para modelar software.

a. Verdadero

b. Falso

3. ¿Cuál es el nombre del proceso más íntimamente asociado con el UML?

a. El proceso de modelado

b. El Rational Unified Process

c. eXtreme Programming

d. Los métodos Agile

4. ¿Cuál es el nombre del cuerpo de normas que define el UML?

a. Unified Modeling Group

b. Object Modeling Group

c. Object Management Group

d. Los cuatro amigos

5. Los diagramas de caso de uso se usan para captar las macrodescripciones de un sistema.

a. Verdadero

b. Falso

6. Los diagramas de secuencia son diferentes de los de colaboración (elija todo lo que
sea aplicable).

a. Los diagramas de secuencia son diagramas de interacción; los diagramas de colabo-
ración no lo son.

b. Los diagramas de secuencia representan un ordenamiento en el tiempo, y los de
colaboración representan clases y mensajes, pero no se implica el ordenamiento en
el tiempo.

c. El orden en el tiempo se indica numerando los diagramas de secuencia.

d. Ninguna de las anteriores.

7. Un diagrama de clases es una visión dinámica de las clases de un sistema.

a. Verdadero

b. Falso

8. Un buen modelo UML contendrá por lo menos un diagrama de cada tipo.

a. Verdadero

b. Falso

01 KIMMEL.indd 15 11/4/07 7:00:22 PM

 www.FreeLibros.me

Manual de UML 16

 9. ¿Cuál es el apodo del grupo de científicos más notablemente asociados con el
UML?

a. La pandilla de los cuatro

b. Los tres mosqueteros

c. Los tres amigos

d. El dúo dinámico

10. Los diagramas de secuencia son buenos para mostrar el estado de un objeto a
través de muchos casos de uso.

a. Verdadero

b. Falso

Respuestas
 1. b

 2. b

 3. b

 4. c

 5. a

 6. b

 7. b

 8. b

 9. c

10. b

01 KIMMEL.indd 16 11/4/07 7:00:22 PM

 www.FreeLibros.me

CAPÍTULO

17

El Unified Modeling Language (uml) soporta el análisis y diseño orientados a obje-
tos proporcionándole una manera de captar los resultados del análisis y el diseño. En
general, iniciamos con la comprensión de nuestro problema; es decir, el análisis. Un
tipo excelente de modelo para captar el análisis es el diagrama de casos de uso.

La finalidad de un caso de uso es describir la manera en que se usará un sistema:
describir sus finalidades esenciales. La finalidad de los diagramas de casos de uso
es captar en forma visual las finalidades esenciales.

Un caso de uso bien escrito y bien representado en diagrama es una de las
clasificaciones de modelos individuales más importantes que usted puede crear.
Esto es así porque expresar con claridad, conocer y organizar los objetivos es sin-
gularmente importante para alcanzarlos con éxito. Existe un viejo proverbio que
dice: “Un viaje de mil millas empieza con un paso”, y existe un proverbio un poco
menos antiguo que dice: “Si no sabe hacia adónde va, entonces el viaje nunca
terminará.”

El principio
con casos de uso

2

02 KIMMEL.indd 17 11/4/07 7:00:50 PM

 www.FreeLibros.me

Manual de UML 18

En este capítulo, hablaré acerca de una primera parte significativa de ese viaje —la
creación de casos de uso— que cubrirá

• Los símbolos usados para crear los diagramas de casos de uso
• Cómo crear los diagramas de casos de uso
• Cuántos diagramas de casos de uso crear
• Cuánto incluir en un diagrama de casos de uso
• El nivel de detalle a incluir en un diagrama de casos de uso
• Cómo expresar las relaciones entre los casos de uso individuales
• La cantidad y el estilo de texto que es útil para hacer anotaciones en los diagramas

de casos de uso
• De manera significativa, cómo establecer las prioridades de los casos de uso

Cómo hacer el caso para las casos de uso
Los diagramas de casos de uso parecen muy fáciles; constan de figuras de línea, líneas y
óvalos. La figura de palillos se llama actor y representa a alguien o algo que actúa sobre
el sistema. En el desarrollo de software, los actores son personas u otro software que ac-
túa sobre el sistema. Las líneas son punteadas o continuas, con varias flechas o sin ellas,
que indican la relación entre el actor y los óvalos. Estos últimos son los casos de uso y, en
el diagrama de casos de uso, los óvalos tienen algún texto que proporciona una descrip-
ción básica. La figura 2-1 es un ejemplo sencillo de un diagrama de casos de uso.

Durante mucho tiempo los diagramas de casos de uso me fastidiaron porque parecían
demasiado sencillos para tener algún valor. Un niño de tres o cuatro años con un crayón
y un pedazo de papel podría reproducir estas figuras de línea; sin embargo, su sencillez
es decepcionante.

Que un diagrama de casos de uso sea fácil de crear es un elogio implícito para el uml.
Hallar los casos de uso correctos y registrar sus responsabilidades en forma correcta es la
decepción. Hallar los casos de uso correctos y describirlos de manera adecuada es el pro-
ceso crítico que impide que los listos ingenieros de software pasen por alto necesidades

Figura 2-1 Un diagrama de casos de uso muy sencillo.

Patrón

Crear lista de trabajos

02 KIMMEL.indd 18 11/4/07 7:00:51 PM

 www.FreeLibros.me

CAPÍTULO 2 El principio con casos de uso 19

críticas y que inventen de manera innecesaria. En pocas palabras, los diagramas de casos
de uso constituyen un macrorregistro de lo que usted quiere estructurar.

En el párrafo anterior, usé el prefijo macro. Macro en este contexto sencillamente
significa “grande”. Los grandes objetivos, o macroobjetivos, son los que se mencionan
como los argumentos, o razones, poderosos de la empresa para hacer algo. En los diagra-
mas de casos de uso se captan los objetivos grandes, poderosos. En el texto de esos casos
se captan los detalles de apoyo.

Esto es lo que se me escapaba en las imágenes de las figuras de línea de los diagramas
de casos de uso; perdía de vista que, sencillamente, al registrar lo que el sistema hará y
lo que no hará, registramos y especificamos el alcance de lo que se está creando; tam-
bién perdía de vista que el texto que acompaña los diagramas de casos de uso rellena los
espacios en blanco entre los macroúsos y los microúsos, en donde micro significa usos
“menores, de apoyo”.

 Además de registrar los usos primarios y secundarios, los diagramas de casos de uso
nos proporcionan en forma implícita varias oportunidades significativas para administrar
el desarrollo, a lo cual entraré con más detalle a medida que avance el capítulo.

Establecimiento de prioridad de las capacidades
¿Alguna vez ha escrito una lista de cosas por hacer? Una lista de cosas por hacer es una
lista de cosas que usted debe hacer o desea hacer. El acto de escribir la lista es un punto
de partida. En esencia, los casos de uso son listas de cosas por hacer. Una vez que ha cap-
tado los casos de uso, ha articulado lo que el sistema hará, y puede usar la lista para dar
prioridades a nuestras tareas. Tanto enunciar como organizar los objetivos son primeras
tareas muy críticas.

El valor de establecer prioridades para las capacidades de un sistema es que el software
es fluido. Permítame ilustrar, por medio de un ejemplo, lo que quiero decir. Es posible
crear, guardar, abrir e imprimir un documento de texto tanto con Notepad (Bloc de notas)
como con Word de Microsoft, pero la diferencia en el número de líneas de código y el nú-
mero de características entre estos dos programas es tremenda. Al establecer prioridades
de los usos, con frecuencia tenemos la oportunidad de hacer, con ventaja, malabarismos
con las características, el presupuesto y el programa.

Suponga, por ejemplo, que mis objetivos primarios son ser capaz de crear, guardar,
abrir e imprimir un documento de texto. Suponga además que mis objetivos secundarios
son guardar el documento como texto llano, HyperText Markup Language (html, lengua-
je de marcado de hipertexto), y como texto enriquecido, es decir, formateo especial. Esta-
blecer prioridades de las capacidades significa que podría elegir enfocarme hacia los usos
primarios —crear, guardar, abrir e imprimir—, pero aplazar el soporte de html y texto
enriquecido. (Las características en el software por lo común se aplazan hacia versiones
posteriores, debido a las restricciones reales mencionadas con anterioridad, incluyendo
tiempo, presupuesto y un cambio en el entorno de la empresa.)

02 KIMMEL.indd 19 11/4/07 7:00:51 PM

 www.FreeLibros.me

Manual de UML 20

No tener tiempo suficiente y quedarse sin dinero son problemas directos. Los desarro-
lladores de software son rutinariamente optimistas, se distraen en salidas por la tangente
y pasan más tiempo en reuniones que en la planeación, y estas cosas gravan un presu-
puesto. Sin embargo, tomemos un momento para examinar un cambio en el entorno de
la empresa. Si nuestras necesidades originales fueron html, texto llano y texto enrique-
cido y hemos estado estructurando nuestro software en los últimos cinco años, resultaría
perfectamente plausible que un cliente dijera, a la mitad del curso del desarrollo, que
guardar un documento como eXtensible Markup Language (xml, lenguaje ampliable de
marcado) sería más valioso que como texto enriquecido. De este modo, debido a un clima
tecnológico en evolución, a media corriente un cliente podría restablecer las prioridades
y demandar xml como más importante que el texto enriquecido. Si no hubiéramos docu-
mentado nuestras necesidades primarias y secundarias, entonces podría ser un reto muy
grande determinar los trueques deseables, como cambiar el texto enriquecido por el xml.
Debido a que registramos con claridad los casos deseables de usos, podemos establecer
prioridades y hacer trueques valiosos, si es necesario.

Comunicación con los no tecnófilos

Otra cosa que no perdí de vista acerca de los casos de uso es que su mera sencillez los
hace un medio fácil de transmisión para comunicarse con no tecnófilos. A estas personas
las llamamos usuarios o clientes.

Los programadores que usan el hemisferio izquierdo de su cerebro en general detestan
a los usuarios. La idea básica es que si uno no puede leer el código, entonces es tonto o,
por lo menos, más tonto que aquellos que sí pueden. El uml y los casos de uso cubren
la brecha entre los programadores que usan el hemisferio izquierdo del cerebro y los
usuarios no tecnófilos.

Una figura de palillos, una línea y un óvalo son suficientemente simplistas, cuando se
combinan con algún texto, para que todos los participantes puedan entender el significado.
El resultado es que los usuarios y clientes pueden observar los dibujos y leer el texto llano,
y determinar si los tecnólogos han, o no, registrado con exactitud y comprendido las ca-
racterísticas deseables. Esto también significa que los administradores —quienes pueden
no haber escrito código en 10 años— y las direcciones técnicas pueden examinar el pro-
ducto final y, por inspección, garantizar que la inventiva desenfrenada no es la causa de los
programas no cumplidos ni de las características ausentes. Demostrando esta disonancia
al continuar con mi primer ejemplo, suponga que, de cualquier manera, se implementa el
soporte de texto enriquecido porque el programador sabe cómo almacenar y recuperar ese
tipo de texto. No obstante, debido a que el xml es más reciente y el programador tiene me-
nos experiencia en trabajar con él, la característica de escritura en xml se aplaza sin ma-
licia. Un administrador proactivo puede descubrir las necesidades de un cliente, según se
captan mediante los casos de uso, y apropiarse de salidas por la tangente improductivas.

02 KIMMEL.indd 20 11/4/07 7:00:51 PM

 www.FreeLibros.me

CAPÍTULO 2 El principio con casos de uso 21

Debido a que los casos de uso son visuales y sencillos, los usuarios y clientes pueden
suministrar retroalimentación, y las personas que constituyen el puente entre los clientes
y los programadores, como los administradores, pueden determinar si las características
que en realidad se estructuraron reflejan con exactitud los deseos de los usuarios.

Uso de los símbolos de los casos de uso
Los diagramas básicos de casos de uso constan de sólo unos cuantos símbolos: el actor,
un conector y el óvalo del caso de uso (figura 2-2). Tomemos unos cuantos minutos para
hablar de cómo se usan estos símbolos y qué información transmiten.

Símbolos de actores
La figura de palillos, mencionada como actor, representa participantes en los casos de
uso. Los actores pueden ser personas o cosas. Si un actor es una persona, entonces, en
realidad, nunca se puede representar por medio de un código. Si un actor es otro subsis-
tema, entonces se le puede observar como una clase o subprograma, pero todavía repre-
sentarse usando el símbolo de actor en los diagramas de casos de uso.

Los actores se descubren como resultado del análisis. Conforme vaya identificando
los macrousos del sistema, identificará quiénes son los participantes para esos casos de
uso. En principio, registre cada actor a medida que se descubre, agregando un símbolo
de actor a su modelo y describiendo cuál es su papel. Nos preocuparemos acerca de la
organización y el refinamiento más adelante, en la sección titulada “Creación de los
diagramas de casos de uso”.

Casos de uso
El símbolo del caso de uso se utiliza para representar capacidades. Al caso de uso se
le da un nombre y una descripción mediante un texto. Este último debe describir cómo
inicia y finaliza el caso de uso, e incluye una descripción de la capacidad descrita por
el nombre de la misma, así como escenarios de apoyo y requisitos no funcionales. En la
sección titulada “Creación de los diagramas de casos de uso”, examinaremos ejemplos

Figura 2-2 Los símbolos básicos de los diagramas incluyen al actor, al conector y al óvalo del
caso de uso.

Actor Conector Caso de uso

02 KIMMEL.indd 21 11/4/07 7:00:51 PM

 www.FreeLibros.me

Manual de UML 22

de nombres de casos de uso, y en la sección titulada “Documentación de un caso de uso
utilizando un borrador”, proporcionaré un borrador modelo que pueda usar para ayudarse
a escribir las descripciones de los casos de uso.

Conectores

Dado que los diagramas de casos de uso tienen múltiples actores y en virtud de que los
casos de uso pueden estar asociados con los actores y con otros casos de uso, se utilizan
los conectores para indicar la manera en que ambos están asociados. Además, los estilos
de conectores pueden cambiar para transmitir más información acerca de la relación
entre los actores y los casos de uso. Por último, los conectores pueden tener adornos y
anotaciones que suministran incluso más información.

Estilos de líneas para los conectores
Existen tres estilos básicos de líneas para los conectores. Un conector de línea simple se
llama asociación y se usa para mostrar cuáles actores están relacionados con cuáles casos
de uso. Por ejemplo, en la figura 2-1 se mostró que un patrón está asociado con el caso de
uso “Crear lista de trabajos”.

Un segundo estilo de conector es una línea punteada con una flecha direccional (figura
2-3). Este estilo de conector se conoce como dependencia. La flecha apunta hacia el caso
de uso del que depende. Por ejemplo, suponga que a los patrones de www.motown-jobs.
com se les debe dar acceso para crear una lista de trabajos. Entonces podemos decir que
el caso de uso “Crear lista de trabajo” depende de un caso de uso “Entrar”. Ésta es la
relación que se ilustra en la figura 2-3.

Un tercer estilo de conector es una línea dirigida con un triángulo hueco, al cual se le
conoce como generalización. La palabra generalización en el uml significa “herencia”.
Cuando mostramos una relación de generalización entre dos actores o dos casos de uso,
estamos indicando que el actor o el caso de uso “hijos” son un caso del actor o uso básico
y algo más. En la figura 2-4, se muestra una relación de generalización entre dos actores y
dos casos de uso.

� �

�

Figura 2-3 El caso de uso “Crear lista de trabajos” depende de que el patrón obtenga acceso.

Crear lista de trabajos Entrar

Patrón

02 KIMMEL.indd 22 11/4/07 7:00:52 PM

 www.FreeLibros.me

www.motown-jobs.com
www.motown-jobs.com

CAPÍTULO 2 El principio con casos de uso 23

En las relaciones de generalización, la flecha apunta hacia la cosa sobre la cual nos
estamos expandiendo. Existen varias maneras en las que usted puede describir esta rela-
ción en forma verbal —acerca de la cual usted debe saber—, pero desafortunadamente,
todos estos sinónimos pueden conducir a confusión verbal. Los siguientes enunciados
describen las relaciones de generalización que se muestran en la figura 2-4:

• El usuario es el objetivo y el patrón es la fuente.

• El patrón es un usuario.

• El usuario es el subtipo y el patrón es el supertipo.

• El patrón se hereda del usuario.

• El usuario es el tipo padre y el patrón es el tipo hijo.

• El patrón generaliza al usuario.

(En esta lista, puede sustituir la frase Crear lista de trabajos en todas partes en donde
vea la palabra Usuario, y sustituir la frase Crear lista de trabajos por prioridades en
todas las partes en donde vea la palabra Patrón, para transmitir la relación entre los dos
casos de uso.) El último enunciado, en el cual se usa la palabra generaliza, es el más
exacto en el contexto del uml, pero vale la pena reconocer que todos los enunciados son
equivalentes.

�

�

Figura 2-4 Diagrama de casos de uso en el que se muestran dos relaciones de generalización
entre dos actores y entre dos casos de uso.

Usuario

Patrón

Crear lista de trabajos

Crear lista de
trabajos por prio-

ridades

02 KIMMEL.indd 23 11/4/07 7:00:52 PM

 www.FreeLibros.me

Manual de UML 24

Adornos de los conectores
Los diagramas uml fomentan el uso de menos texto porque las imágenes transmiten una
gran cantidad de información a través de una conveniente taquigrafía visual, pero los
diagramas uml no se abstienen por completo del texto; por ejemplo, los conectores pue-
den incluir texto que indique multiplicidad de los puntos extremos y texto que estereotipa
el conector.

Manera de mostrar la multiplicidad

En general, los conectores pueden tener notaciones de multiplicidad en cualquiera de sus
dos extremos. Las notaciones de multiplicidad indican el conteo posible de cada cosa.
Por ejemplo, un asterisco significa muchos; un asterisco próximo a un actor significa
que puede haber muchos ejemplos de ese actor. Aun cuando el uml permite hacer ano-
taciones de esta manera en los conectores de caso de uso, eso no es muy común. Es más
probable que usted vea estas marcas de notación de conteo en diagramas del tipo de los
de clase, de modo que daré detalles sobre la multiplicidad en el capítulo 3.

Estereotipado de los conectores

Una notación más común en los conectores es el estereotipo. Los estereotipos agregan
detalles a la relación entre los elementos en un diagrama de caso de uso. Por ejemplo,
en la figura 2-3, introduje el conector de dependencia. Se puede usar un estereotipo para
ampliar el significado de este conector.

En la sección titulada “Estilos de líneas para los conectores”, dije que un patrón puede
crear una lista de trabajos e ilustré esto con un actor patrón, un caso de uso “Crear lista
de trabajos” y un conector de asociación; sin embargo, también dije que el patrón debe
obtener acceso. Cuando un caso de uso —“Crear lista de trabajos”— necesita los servi-
cios de otro caso de uso —“Entrar”— entonces se dice que el caso de uso dependiente
incluye el caso de uso del que depende. (En código, una relación incluir se implementa
como reutilización de código.)

Un estereotipo se muestra como texto entre los caracteres « y » (comillas angulares).
Por ejemplo, si decimos que “Crear lista de trabajos” incluye a “Entrar”, entonces pode-
mos representar un estereotipo incluir colocando una anotación en el conector de depen-
dencia como se muestra en la figura 2-5.

Figura 2-5 Ejemplo de un estereotipo incluir —usado para representar reutilizar— en la depen-
dencia entre “Crear lista de trabajos” y “Entrar”.

� ���

�

EntrarCrear lista
de trabajos

Patrón

«incluir»

02 KIMMEL.indd 24 11/4/07 7:00:52 PM

 www.FreeLibros.me

CAPÍTULO 2 El principio con casos de uso 25

Incluir y extender son conceptos importantes en los diagramas de caso de uso, de
modo que enseguida ampliaré lo relativo a estos temas.

NOTA Estereotipo es un concepto generalmente útil en el UML. La razón de esto es que
es permisible que usted introduzca y defina sus propios estereotipos. De esta manera,
puede extender el UML.

Caso de uso de inclusión y de extensión

Una relación de dependencia entre dos casos de uso significa que, de alguna manera,
el caso dependiente necesita al caso del que depende. Dos estereotipos de uso común y
predefinidos que refinan las dependencias en los casos de uso son el incluir y el extender.
Tomemos un minuto para ampliar nuestros comentarios de introducción sobre incluir, de
la sección anterior, e introduzcamos extender.

SUGERENCIA Visio aplica un estereotipo extender en el conector de generalización para
dar a entender herencia. Existen variaciones entre el UML y las herramientas del mismo,
porque el UML es un estándar en evolución y la implementación de las herramientas
puede ir adelante o atrás de la definición oficial del UML.

Más sobre los estereotipos incluir
Una dependencia rotulada con el estereotipo incluir significa que, finalmente, el caso de
uso dependiente es para volver a usar el caso del que depende. El equipaje que va con el
estereotipo incluir es que el caso de uso dependiente necesitará los servicios del caso del
que depende y saber algo acerca de la realización de ésta, pero lo opuesto no es cierto.
El caso de uso del que se depende es una entidad completa y distinta que no debe de-
pender del caso dependiente. La concesión de acceso es un buen ejemplo. Resulta claro
que requerimos que un patrón tenga acceso para crear una lista de trabajos, pero también
pudimos obtener acceso por otras razones.

NOTA En una dependencia incluir entre casos de uso, el caso dependiente también se
conoce como el caso de uso básico, y aquella de la que se depende también se conoce
como el caso de uso de inclusión. Aunque básico y de inclusión pueden ser términos más
precisos, no parece que se empleen de manera común al hablar.

Poner tanto significado en una pequeña palabra como incluir es la razón por la cual
el uml puede transmitir una gran cantidad de significado en un diagrama sencillo, pero
también es la razón por la cual los modelos uml pueden representar un reto para crearse
y leerse. Una estrategia real a la que puede recurrir es agregar una nota en donde no esté

02 KIMMEL.indd 25 11/4/07 7:00:53 PM

 www.FreeLibros.me

Manual de UML 26

seguro acerca del uso de algún aspecto idiomático del uml (vea, más adelante, “Anota-
ciones en los diagramas de caso de uso”). Por ejemplo, si quiere describir la relación
entre “Crear lista de trabajos” y “Entrar”, pero no está seguro acerca de cuál conector o
cuál estereotipo usar, entonces podría usar una asociación simple y una nota asociada al
conector que describa en texto llano lo que usted quiere dar a entender. La nota puede
actuar como un recordatorio para, más adelante, regresar y buscar el uml preciso.

Uso de los estereotipos extender
El estereotipo extender se usa para agregar más detalle a una dependencia, lo cual signi-
fica que estamos agregando más capacidades (como ejemplo, vea la figura 2-6). Como
se muestra en la figura, decimos que “Registrar las listas vistas” extiende (y depende de)
“Ver lista”.

NOTA En una relación extendida, la flecha apunta hacia el caso de uso básico y el otro
extremo se conoce como el caso de uso de extensión.

En la sección anterior, no permitiríamos que un patrón creara una lista de trabajos
sin registrarse, pero en el caso del registro del caso de uso entrar es indiferente para la
reutilización del caso. En esta sección, a el caso de uso ver lista no le importa que la es-
tén registrando; en otras palabras, la característica registrar necesitará saber acerca de la
característica ver lista, pero no en sentido contrario.

Una perspectiva valiosa aquí es quién podría estar interesado en el registro. Es eviden-
te que al “Solicitante de trabajo” tal vez no le interese cuántas veces se ha visto la lista,
pero un patrón previsor podría estar interesado en cuánto tráfico está generando su lista.
Pasemos ahora por un momento a un dominio diferente. Suponga que el “Solicitante de
trabajo” fuera el comprador de una casa y que la lista lo fuera de residencias. Ahora tanto
el comprador como el vendedor podrían estar interesados en el número de veces que se
ha visto la propiedad. Una casa que ha estado en el mercado durante meses puede tener

Figura 2-6 Seguir el rastro del número de veces que se ve una lista de trabajos es una extensión
de “Ver lista”, como se describe mediante la dependencia y el estereotipo extender.

�

Registrar las listas vistas

Ver lista

Solicitante de trabajo

«extender»

02 KIMMEL.indd 26 11/4/07 7:00:53 PM

 www.FreeLibros.me

CAPÍTULO 2 El principio con casos de uso 27

problemas. Sin embargo, en los dos escenarios, la lista es lo más importante y el número
de veces que se ha visto es secundario. Esto ilustra la noción de caso de uso de extensión
como parecidas a las características y, desde una perspectiva de mercadeo, las extensiones
podrían ser elementos que estén separados en un paquete opcional de características.

SUGERENCIA Considere la alternativa, ya que se relaciona con un caso de uso de ex-
tensión. Los casos de uso de extensión son características secundarias naturales. Si su
proyecto tiene un programa apretado, lleve hasta el final los casos de uso de extensión,
y, si su tiempo se agota, entonces posponga los casos de uso de extensión para una ver-
sión posterior.

Incluir y extender parecen algo semejantes, pero la mejor manera de tenerlos en orden
es recordar que “la relación incluir es para volver a aplicar el comportamiento modelado
por otro caso de uso, en tanto que la relación extender es para agregar partes a caso de
uso existentes así como para modelar servicios opcionales del sistema” (Övergaard y
Palmkvist, 2005, p. 79).

Anotaciones en los diagramas de casos de uso
Considere el trabajo de un estenógrafo en un juicio. Los estenógrafos usan esas graciosas
máquinas estenográficas de escribir que producen una suerte de majaderías taquigráficas.
Podemos suponer con seguridad que si una máquina de escribir común o un procesador
de palabras pudiera aceptar una entrada suficientemente rápida como para mantenerse al
ritmo del habla natural, entonces el estenógrafo nunca se hubiera inventado.

Los estenógrafos producen una taquigrafía que es más condensada que el discurso al
hablar. El uml es como la taquigrafía para el código y el texto, y las herramientas de mo-
delado del uml son semejantes a los estenógrafos. La idea es que los modelos se puedan
crear más rápido que el código o más rápido que escribir descripciones en forma de texto.
Dicho eso, a veces no hay un buen sustituto para el texto.

Si se encuentra en el predicamento de que sólo el texto parece resolver —o no está
seguro del uml—, entonces siga adelante y agregue texto. Puede agregar texto mediante
la documentación de sus modelos con características de la mayoría de las herramientas de
modelado, agregando referencias url a los documentos más verbosos o agregando notas
directamente en los propios diagramas. Sin embargo, si agrega demasiado texto, entonces
de manera natural, tardará más en completar el modelado y puede ser que se requiera un
esfuerzo mayor para entender el significado de cada uno de los diagramas.

Inserción de notas
El uml es una taquigrafía para una gran cantidad de texto y de código, pero si lo necesita,
siempre puede agregar texto. Todos los diagramas, incluyendo los casos de uso, permi-

02 KIMMEL.indd 27 11/4/07 7:00:53 PM

 www.FreeLibros.me

Manual de UML 28

ten que se les agreguen anotaciones en forma de texto. Las notas se representan como un
trozo de papel con una punta doblada y una línea que une el cuadro de texto al elemento
que se le está haciendo la anotación (figura 2-7). Use las notas con moderación, porque
pueden abarrotar un diagrama y hacerlo difícil de leer.

Modo de agregar documentación de soporte
Todas las herramientas de modelado que he usado —Together, Rose, Rose xde, Visio,
Poseidon para uml y la de Cayenne Software— permiten la documentación del modelo.
Por lo común, esta documentación toma dos formas: texto que se almacena en el modelo
y Uniform Resource Locators (url, localizadores uniformes de recursos), que hacen
referencia a documentos externos (figura 2-8). El examen de las características de su
herramienta particular le descubrirá estas capacidades.

Más importante es qué tipo de documentación debe usted proporcionar. De manera
subjetiva, la respuesta es tan pequeña como aquella con la que pueda ponerse en marcha,
pero en general, los diagramas de caso de uso parecen necesitar lo máximo.

Los diagramas de caso de uso son bastante básicos con sus figuras de línea, pero son
bastante importantes porque registran las capacidades que tendrá el sistema de usted. Una
buena información a incluir con sus diagramas de caso de uso es

• Un párrafo conciso en el que se describa cómo empieza el uso, incluyendo cuales-
quiera condiciones previas

• Un párrafo corto para cada una de las funciones primarias

• Un párrafo corto para cada una de las funciones secundarias

• Un párrafo corto para cada uno de los escenarios primarios y secundarios, los cua-
les ayuden a ubicar en un contexto la necesidad de las funciones

�

Ver lista es parte de un caso de uso más grande, “Hallar
trabajo”, pero se encuentra aquí para ilustrar que estamos

registrando las listas vistas.

Ver lista

Registrar las listas
vistas

Solicitante de trabajo

Figura 2-7 Nota que agrega texto llano para aclarar algún aspecto de un diagrama.

«extender»

02 KIMMEL.indd 28 11/4/07 7:00:53 PM

 www.FreeLibros.me

CAPÍTULO 2 El principio con casos de uso 29

• Un párrafo para las necesidades no funcionales

• Puntos de inserción en donde se usen cualesquiera otros casos de uso dependientes

• Un punto de finalización con las condiciones posteriores

Todos estos elementos suenan como una gran cantidad de trabajo, y pueden serlo. Sin
embargo, recuerde que los casos de uso son los fundamentos del análisis, y es importante
que las documente tan cuidadosa y completamente como pueda. De igual importancia es
notar que usé las palabras conciso y corto de manera intencional. Por corto, quiero dar a
entender que es aceptable tener párrafos de una sola oración.

Puede usar cualquier formato que le guste para documentar sus casos de uso. Si se
siente cómodo con el formato de borrador, es muy fácil crear un borrador modelo con
base en la lista con viñetas que acabo de dar. Una buena práctica es elegir un estilo para
su documentación y adherirse a él.

Tomemos un momento para explicar en detalle los elementos —según se describen en
la anterior lista con viñetas— de la documentación del caso de uso. Tenga presente que
esto no es una ciencia exacta y que su documentación de los casos de uso no necesita ser
perfecta.

Documentación de un caso de uso utilizando un borrador
Puede usar texto de forma libre para documentar un caso de uso, pero encuentro que un
modelo de borrador sugiere la extensión de la información y actúa como un recordatorio
de los elementos necesarios para documentar cada caso en forma adecuada. A continua-

Figura 2-8 Mediante un doble clic sobre un elemento de modelo en Visio, puede añadir docu-
mentación que está agregada en el modelo.

02 KIMMEL.indd 29 11/4/07 7:00:54 PM

 www.FreeLibros.me

Manual de UML 30

ción se presenta un modelo que incluye una breve descripción y un ejemplo para cada
sección. Vale la pena hacer notar que este estilo de documentación no es parte del uml,
pero es un elemento útil del modelado.

1. Título

a. Descripción: Use aquí el nombre del caso de uso, pues facilita mucho el acopla-
miento de los diagramas de caso de uso con su documentación respectiva.

b. Ejemplo: Mantener lista de trabajos.

2. Inicios del caso de uso

a. Descripción: Describa con brevedad las circunstancias que llevan al caso de
uso, incluyendo las condiciones previas. Deje fuera los detalles de la implemen-
tación, como “El usuario hace clic en un hipervínculo”, o las referencias a las
formas, los controles o los detalles específicos de la implementación.

b. Ejemplo: Este caso de uso se inicia cuando un patrón, un agente de un patrón o
el sistema quiere crear, modificar o eliminar una lista de trabajos.

3. Funciones primarias

a. Descripción: Los casos de uso no son necesariamente singulares. Por ejemplo,
“Administrar la lista de trabajos” es un caso de uso razonable y puede incluir
funciones primarias como leer un recipiente o escribir en él. La clave aquí es
evitar demasiado pocas o demasiadas funciones primarias. Si necesita una bue-
na medida, podrían ser dos o tres funciones primarias por caso de uso.

b. Ejemplo: “CLAB la lista de trabajos.” Las funciones primarias de “Mantener la
lista de trabajos” son crear, leer, actualizar y borrar la lista de trabajos.

4. Funciones secundarias

a. Descripción: Las funciones secundarias son como un reparto de apoyo en una
pieza teatral. Por ejemplo, dado un caso de uso “Administrar la lista de traba-
jos”, actualizar, insertar, crear y borrar una lista de trabajos —llamado CLAB por
crear, leer, actualizar y borrar— son excelentes funciones secundarias, parte de
un caso de uso más grande. Si necesita una medida, entonces el doble de funcio-
nes secundarias que de primarias es bueno.

b. Ejemplos:

1) “Hacer caducar la lista de trabajos.” Treinta días después de que la lista de
trabajos se pone a disposición para ser vista, se dice que caduca. Una lista
que ha caducado no se borra, pero es posible que los usuarios, con excepción
del propietario de la lista, ya no puedan verla.

2) “Renovar la lista de trabajos.” Se puede extender una lista por 30 días adicio-
nales mediante el pago de una tarifa adicional.

02 KIMMEL.indd 30 11/4/07 7:00:54 PM

 www.FreeLibros.me

CAPÍTULO 2 El principio con casos de uso 31

3) “Hacer que una lista de trabajos sea prioritaria.” En cualquier momento, du-
rante la vida de una lista, su propietario puede elegir promoverla hacia lista
prioritaria, mediante el pago de una tarifa prorrateada por la parte consumida
del periodo de la misma.

4) “Registrar las listas vistas.” Cada vez que se ve una lista, se escribirá una
entrada de registro, haciendo constar la fecha y la hora en que se vio la lista
y el protocolo de Internet (ip) del visitante.

5) “Examinar registros de las veces que se ha visto la lista.” En cualquier mo-
mento, el propietario puede ver la información registrada en relación con sus
listas.

6) “Notificación automática de los registros de la vista de la lista.” El propie-
tario de una lista de trabajos puede elegir que se le envíen por correo elec-
trónico los registros de las vistas de esa lista, con un intervalo especificado
por él.

7) “Pagar por la lista.” Se pide al propietario que pague por cada lista, a menos
que ésta se ofrezca como un premio de promoción.

5. Escenarios primarios

a. Descripción y ejemplo: Un escenario es un relato corto que describe las fun-
ciones en un contexto. Por ejemplo, dada una función primaria “Crear lista de
trabajos”, podríamos escribir un escenario como éste: “La secretaria del Sr. Gar-
cía está por jubilarse, y él necesita contratar a alguien que la reemplace. Al Sr.
García le gustaría una secretaria que mecanografíe 100 palabras por minuto,
quiera trabajar sólo cuatro horas al día y cobrar 10 dólares por hora. Necesita
que la secretaria de reemplazo empiece a trabajar no después del 15 de enero.”
Considere por lo menos tantos escenarios primarios como funciones primarias
tenga. También considere un par de variaciones del escenario para las funciones
importantes. Esto ayudará a que piense acerca de su problema en formas creati-
vas. Hacer una lista de los escenarios en aproximadamente el mismo orden que
el de las funciones que describe el escenario es una práctica útil.

6. Escenarios secundarios

a. Descripción y ejemplo: Los escenarios secundarios son relatos cortos que ponen
a las funciones secundarias en un contexto. Considere un escenario secundario
al que nos referiremos como “Hacer caducar lista de trabajos”. Demostrado
como un escenario, podríamos escribir: “El Sr. García pagó para que la lista se
publicara durante 30 días. Después de 30 días, la lista de trabajos se retirará y
se notificará al Sr. García por correo electrónico, dándole oportunidad de reno-
varla.” Podemos organizar los escenarios secundarios en un orden coherente
con las funciones secundarias que apoyan.

02 KIMMEL.indd 31 11/4/07 7:00:54 PM

 www.FreeLibros.me

Manual de UML 32

7. Necesidades no funcionales

a. Descripción: Las necesidades no funcionales se encargan de com-
portamientos implícitos, como con qué rapidez sucede algo o
cuántos datos se pueden transmitir.

b. Ejemplo: Debe procesarse el pago de un patrón en un periodo no
mayor a 60 segundos, en tanto que él o ella, espera.

8. Finalizaciones de los casos de uso

a. Descripción: En esta parte se describe lo que significa haber fina-
lizado para el caso de uso.

b. Ejemplo: El caso de uso ha finalizado cuando los cambios hechos
en la lista de trabajos se han mantenido y se ha hecho el pago.

Cuánta información incluya en la parte escrita de sus casos de uso en realidad es decisión
de usted. El uml guarda silencio acerca de este asunto, pero un proceso como el rup le pue-
de ofrecer alguna guía sobre el contenido, cantidad y estilo de la documentación en texto.

Como nota final, resulta útil registrar ideas acerca de las funciones y escenarios, inclu-
so si finalmente elige descartarlos. Por ejemplo, podríamos agregar una función secun-
daria que exprese que “El sistema permitirá una renovación semiautomática de una lista
de trabajos que están caducando”, apoyada por el escenario “La lista del Sr. García para
contratar una nueva secretaria está próxima a caducar. Se notifica por correo electrónico
al Sr. García que su lista está próxima a caducar. Al hacer clic sobre un vínculo en el co-
rreo, la lista del Sr. García se renueva en forma automática usando la misma facturación
e información de pago usadas con la lista original”.

Al registrar y conservar las ideas consideradas, es posible hacer un registro de las ideas
que se consideraron, pero puede ser que se lleven a cabo o que jamás se haga. Conservar
un registro de las posibilidades impide que usted repita una y otra vez las ideas conforme
los miembros del equipo vienen y se van.

Por último, resulta útil insertar referencias a los casos de uso del que se depende. En lu-
gar de, por ejemplo, repetir un caso de uso de inclusión, sencillamente haga una referencia
a ese caso en el punto en que se necesite. Por ejemplo, suponga que pagar por una lista de
trabajos requiere que un patrón tenga acceso; en lugar de repetir el caso de uso “Entrar”,
sencillamente hacemos una referencia a ella en donde se necesite; en este caso, podemos
hacer una referencia a “Entrar” cuando hablemos acerca de pagar por la lista de trabajos.

Creación de los diagramas de casos de uso
Como mencioné al principio, los casos de uso son listas de diseños por hacer. Ya que
un día feriado siempre está precisamente a la vuelta de la esquina, una buena analogía

02 KIMMEL.indd 32 11/4/07 7:00:54 PM

 www.FreeLibros.me

CAPÍTULO 2 El principio con casos de uso 33

comparativa es que definir casos de uso es como escribir una lista de tareas en orden para
preparar su casa para una gran visita de parientes. Por ejemplo, podría escribir “Desem-
polvar la sala”. Entonces decide que su hija de 10 años hizo un buen trabajo la última
vez, de modo que le pide a ella que desempolve. En este caso, el nivel de detalle es
importante, porque sabe —si alguna vez ha desempolvado— que diferentes tipos de
cosas necesitan diferentes tipos de desempolvado: las chucherías pequeñas se pueden
desempolvar con un plumero; las mesas para servir café y las de los extremos podrían
necesitar Pledge® y un paño limpio y seco, y los ventiladores del techo podrían necesitar
la varita y el cepillo de una aspiradora. La clave en este caso es la diferencia entre lo que
describimos con un diagrama y lo que escribimos como parte de nuestro caso de uso.

NOTA Podría preguntarse qué tiene que ver desempolvar con los casos de uso y el
software. La primera respuesta es que se pueden usar los modelos de caso de uso para
cosas que no son software, y la segunda parte es que el software se encuentra en un
número cada vez mayor de aparatos. Suponga que estábamos definiendo casos de uso
para un robot que limpia casas; entonces nuestras reglas para desempolvar podrían
ser útiles. Y si se está preguntando cuán probable podría ser el software para robots,
entonces considere la aspiradora Roomba®, un pequeño robot que vaga por un cuarto
aspirando los desperdicios y, según su material de mercadeo, incluso sabe cuándo re-
cargarse. Alguien tuvo que definir e implementar esas capacidades.

El caso de uso para desempolvar del párrafo anterior constaría de un actor, “Niña”, un
conector de asociación y un caso de uso “Desempolvar la sala” (figura 2-9). No hace falta
que el propio diagrama de casos de uso describa todas las microtareas necesarias de las
que consta “Desempolvar la sala”. Por ejemplo, “Encontrar Pledge y un paño limpio y
seco” es una subtarea necesaria, pero en realidad, no es un caso de uso en y por sí misma.
Los casos de uso buenos significan tener que hallar buenos actores y el nivel correcto de
detalle, sin hacer confusos los diagramas.

Después de que tenemos el diagrama de caso de uso, podemos agregar información
de soporte de la documentación del modelo para nuestro caso de uso. Las funciones
primarias incluirían desempolvar las áreas clave, y las funciones secundarias incluirían
la preparación, como hacerse de la aspiradora y hallar el Pledge. Los escenarios adecua-

�

Figura 2-9 Caso de uso para un actor niña y desempolvar una sala.

Desempolvar la sala

Niña

02 KIMMEL.indd 33 11/4/07 7:00:54 PM

 www.FreeLibros.me

Manual de UML 34

dos incluirían el manejo de áreas problemas específicas, como desempolvar los marcos
de los cuadros y artículos de colección. Los requisitos no funcionales podrían incluir
“Terminar de desempolvar antes de que lleguen los abuelos”. No se preocupe acerca de
lograr diagramas perfectos ni de la documentación del caso de uso; use el borrador para
ayudarse a considerar los detalles y los diagramas de caso de uso para obtener una buena
imagen de sus objetivos.

¿Cuántos diagramas son suficientes?
La suficiencia es un problema difícil. Si proporciona demasiados casos de uso, su mo-
delado puede continuar durante meses o incluso años. También puede adentrarse en el
mismo problema con la documentación de los casos de uso.

NOTA Fui consultor en un proyecto para un departamento grande de la agencia de
defensa. Literalmente, la agencia había estado trabajando sobre casos de uso por casi
dos años sin tener el fin a la vista. Aparte de que me pareció un proyecto interminable,
los expertos del dominio sentían que se estaban captando casos de uso erróneos o que
las casos de uso tenían poco o ningún valor práctico y explicativo. Los modelos no es-
taban logrando la marca. El objetivo es captar las características esenciales del objeti-
vo de usted, y los modelos de casos de uso son una excelente manera de baja tecnología
para hacer que se involucren expertos en el dominio que no son técnicos. Pasar por alto
el valor de incitación al diálogo de los diagramas de casos de uso es perder la mitad del
valor de esos diagramas.

Una línea de base razonable es que las aplicaciones de mediana complejidad podrían
tener entre 20 y 50 buenos casos de uso. Si usted sabe que su problema es moderada-
mente complejo y tiene cinco casos de uso, entonces puede estar pasando por alto fun-
cionalidad crítica. Por otra parte, si tiene cientos de casos de uso, entonces puede estar
subdividiendo macrocajas de uso prácticas en microcajas.

Desafortunadamente, no existen reglas difíciles y rápidas. Definir las casos de uso co-
rrectos requiere práctica y buen juicio que se adquiere con el transcurso del tiempo. Para
ayudarle a empezar a adquirir alguna experiencia, en la siguiente subsección se demues-
tran algunos diagramas reales de casos de uso para www.motown-jobs.com.

Ejemplos de diagramas de casos de uso
Este libro es acerca del uml. La documentación específica de texto no es parte del
uml, de modo que limitaré los ejemplos de esta sección a la creación de los diagramas
de casos de uso. Puede usar su imaginación y el borrador de la sección titulada “Do-
cumentación de un caso de uso usando un borrador” para practicar la escritura de las
descripciones de casos de uso.

02 KIMMEL.indd 34 11/4/07 7:00:54 PM

 www.FreeLibros.me

www.motown-jobs.com.

CAPÍTULO 2 El principio con casos de uso 35

Motown-jobs.com es un producto de mi empresa, Software Conceptions, Inc. Mo-
town-jobs es un sitio web para poner en contacto personas que buscan trabajo con quie-
nes los ofrecen; es un sitio web como dice.com, monster.com, computerjobs.com o ho-
tjobs.com y está implementado en asp.net. Dejando todo esto aparte, Motown-jobs.com
se inició como una idea cuyas características se captaron como un grupo de casos de uso.
Debido a que estaba estructurando el software para mi empresa, tuve que representar
el papel de experto en el dominio, siendo el dominio lo que se requiere para hacer coin-
cidir patrones con empleados. Dado que he estado buscando y hallando clientes para mi
empresa durante 15 años, tengo algo de experiencia en esta área.

Hallar los casos de uso puede iniciar con una entrevista con su experto en el dominio,
o bien haciendo una lista. Como yo estaba representado el papel de entrevistador y entre-
vistado, sencillamente empecé con una lista de las cosas que pensaba que Motown-jobs.
com necesitaría ofrecer para ser útil. He aquí mi lista:

• Los patrones o los agentes de los patrones querrán publicar información acerca
de los trabajos que están ofreciendo.

• Quienes están buscando trabajo pueden querer publicar un currículum vítae que
puedan ver los patrones potenciales.

• Los patrones o los agentes de los patrones querrán buscar en forma activa en el sitio
web los currículum vítae que se ajusten a las habilidades necesarias para llenar los
sitios vacantes en el trabajo.

• Quienes están buscando empleo querrán buscar en los puestos que se encuentran
en lista.

• Los patrones o los agentes de los patrones deberán pagar por las listas y por buscar
en los currículum vítae, pero publicar currículum vítae o buscar en las listas de
trabajos será un servicio gratuito.

• Una fuente adicional de ingresos podría ser publicidad y servicios de estructura-
ción de currículum vítae, de modo que el sitio web podrá vender y tener espacio
para publicidad, y ayudar a los solicitantes de trabajo a crear su currículum vítae.

Además de que escribir software es caro y de que también lo son el hardware, el soft-
ware del servidor y las conexiones de alta velocidad de Internet tanto para comprarlos
como para darles mantenimiento, ayudar a las empresas a encontrar empleados es un
servicio valioso, o, por lo menos, ésa es la premisa que se encuentra detrás de la estructu-
ración de Motown-jobs.com. Resolver acerca de cuánto cobrar por las listas y para atraer
anunciantes son funciones de negocios y de mercadeo, de modo que hablaré acerca de
eso en mi lista de casos de uso.

Ahora bien, claro que podría empeñarme en examinar todas las pequeñas tareas de las
que consta cada una de las macrotareas —como publicar las vacantes de puestos de tra-
bajo—, pero la lista que tengo es un buen lugar para iniciar. Empecemos por diagramar
estas características (figura 2-10).

02 KIMMEL.indd 35 11/4/07 7:00:55 PM

 www.FreeLibros.me

Manual de UML 36

Observe en la figura 2-10 que capté mantener trabajos y hallar currículo para la clasi-
ficación patrón, mantener anuncios para la clasificación anunciantes, publicar currículo y
hallar trabajos para la clasificación solicitantes de empleo y para administrar la factura-
ción para el sistema. Lo siguiente que puedo hacer es preguntar a las partes involucradas
si estos casos de uso captan la esencia de las características que necesito.

Como un diagrama de caso de uso, a esto le doy una calificación de C, pero es un ini-
cio. Lo siguiente que puedo hacer es revisar a los actores y a los propios casos de uso en
busca de redundancias, simplificaciones o detalles adicionales que se necesitan, y hacer
al diagrama los ajustes necesarios.

Definición de los actores
En el diagrama de casos de uso de la figura 2-10, tengo los actores “Patrón” y “Agente
del patrón”; no obstante, para todas las intenciones y finalidades, estos dos actores hacen

Figura 2-10 Un primer paso en el diagrama de casos de uso para Motown-jobs.com.

Buscar en los cu-
rrículum vítae

Mantener la lista
de trabajos

Mantener la
información sobre

facturación

Mantener el anuncio

Mantener el cu-
rrículum vítae

Hallar
trabajo

Patrón

Agente del patrón

Anunciante

Solicitante de trabajo

Sistema

02 KIMMEL.indd 36 11/4/07 7:00:55 PM

 www.FreeLibros.me

CAPÍTULO 2 El principio con casos de uso 37

las mismas cosas en relación con el sistema y lo hacen de la misma manera; por consi-
guiente, puedo eliminar el “Agente del patrón” y renombrar al “Patrón” como “Propieta-
rio de la tarea”; con una descripción sencilla, “Propietario de la tarea”, se capta la idea de
que un trabajo en lista “lo posee” una parte responsable. En la figura 2-11, se muestra la
revisión en el diagrama de casos de uso.

A continuación, parece bastante obvio que una lista de puestos de trabajo, un currí-
culum vítae y un anuncio son todos clasificaciones de listas, y las personas a quienes
pertenecen esos elementos son “Propietarios de listas”. Puede experimentar con estas re-
laciones usando la generalización. En la figura 2-12, se muestra el diagrama modificado
de casos de uso.

En la figura 2-12, se tratan los trabajos, los anuncios y los currículum vítae todos como
listas que necesitan mantenerse. También se muestra que el sistema de facturación está
asociado con las listas y las búsquedas de los currículum vítae. En ciertos aspectos, la
figura 2-12 es una mejora, pero en otros es demasiado ingeniosa. Por ejemplo, describir

Figura 2-11 “Patrón” y “Agente del patrón” se convierten en un solo actor: “Propietario del
trabajo”.

Buscar en los cu-
rrículum vítae

Mantener la lista
de trabajos

Mantener
el anuncio

Mantener el cu-
rrículum vítae

Hallar
trabajo

Anunciante

Sistema

Solicitante de trabajo

Propietario del trabajo

Mantener la
información sobre

facturación

02 KIMMEL.indd 37 11/4/07 7:00:55 PM

 www.FreeLibros.me

Manual de UML 38

a un solicitante de trabajo como un “Propietario de listas” sugiere que cada solicitante
de trabajo posee un currículum vítae en lista. ¿Qué sucede si un solicitante de trabajo no
quiere publicar un currículum vítae? Además, dije que publicar un currículum vítae es
un servicio gratuito, pero la implicación es que el sistema de facturación trate las listas
de currículum vítae como un concepto susceptible de facturación. ¿Significa esto que es
susceptible de facturación, pero que el costo es 0 dólares? El diagrama revisado parece un
poco más ingenioso y lleva tanto a preguntas como a respuestas. Quizás podría, además,
dividir “Listas” en “Listas susceptibles de facturación” y “Listas gratuitas”. Esto podría
resolver la cuestión del sistema de facturación, pero ¿qué sucede acerca de los solicitan-
tes de trabajo que no publican currículum vítae? Todavía debo resolver este problema.
Por ahora, regreso a los cuatro actores separados, en oposición a los tres tipos de propie-
tarios de listas y el actor sistema (figura 2-13).

Figura 2-12 Esta figura sugiere que los trabajos, los currículum vítae y los anuncios son todos
listas que debe mantener un propietario de lista, así como una asociación entre el sistema de fac-
turación y las listas y las búsquedas de los currículum vítae.

Buscar en los cu-
rrículum vítae

Mantener la lista
de trabajos

Mantener la
información sobre

facturación
Mantener el anuncio

Mantener el cu-
rrículum vítae

Hallar
trabajo

Propietario del trabajo

Anunciante

Solicitante de trabajo

Sistema

02 KIMMEL.indd 38 11/4/07 7:00:55 PM

 www.FreeLibros.me

CAPÍTULO 2 El principio con casos de uso 39

Me gusta la forma más sencilla del diagrama de casos de uso de la figura 2-13; está
menos abarrotada, es más fácil de seguir y me dice lo que necesito saber acerca de las
características del sistema.

División de los casos de uso en diagramas múltiples
Puede elegir tener un diagrama maestro de casos de uso y varios diagramas menores de
casos de uso o sólo varios diagramas menores. Usted decide. Los diagramas más sen-
cillos son más fáciles de manejar y seguir, pero puede ser que no muestren cómo están
relacionados los casos de uso. En general, prefiero los diagramas sencillos y separados
y crear un solo diagrama maestro, si estoy seguro de que al hacerlo obtendré algunos
beneficios específicos.

Figura 2-13 Cuatro actores separados no relacionados que participan en casos de uso no rela-
cionados.

Solicitante de trabajo

Sistema

Mantener
el anuncio

Mantener la lista
de trabajos

Hallar
trabajo

Anunciante

Propietario del trabajo

Mantener la
información sobre

facturación

Buscar en los
currículum vítae

Mantener el
currículum vítae

02 KIMMEL.indd 39 11/4/07 7:00:56 PM

 www.FreeLibros.me

Manual de UML 40

Mantener la
información sobre

facturación

Entrar

Sistema

Administrador

«incluir»
Usuario

registrado

En mi ejemplo de Motown-jobs.com, tengo cuatro facetas significativas; tengo casos
de uso relacionados con el solicitante de empleo, casos de uso relacionados con el pro-
pietario del trabajo, casos de uso para los anunciantes y el sistema de facturación. Para
examinar cada una de estas facetas del sistema, separaré estos casos de uso y los actores
que les incumben en diagramas separados y agregaré detalles. En las figuras 2-14 a la
2-17 se muestran los nuevos diagramas.

Al separar “Mantener la información sobre facturación” en un caso de uso separado,
tengo espacio para agregar detalles. Por ejemplo, es razonable que el sistema de factu-
ración se interese sólo en lo que es susceptible de facturación y que un actor llamado
“Usuario registrado” pueda mantener elementos susceptibles de facturación. Advierta
que agregué el caso de uso “Entrar”. Dado que necesito saber cuáles usuarios están para
ser facturados, necesitaré un medio de registrar y autenticar.

En la figura 2-15, introduje la idea de que un solicitante de empleo también se conside-
ra como usuario registrado. Sin embargo, elijo requerir registro sólo si el usuario quiere
publicar un currículum. Quiero saber cuáles personas están proporcionando información
a nuestro sistema, pero no lo requiero de los navegadores casuales. Una vez más, para
publicar algo en el sistema, requeriré que al usuario se le dé acceso y, de lo contrario, sólo
ofrecer al usuario casual la oportunidad de registrarse. El concepto de usuario registrado
sugiere que necesito otro caso de uso “Mantener información de registros”. Esto puede
implementarse como un sencillo diagrama de casos de uso, con el actor “Usuario regis-
trado” y una asociación al nuevo caso de uso.

Figura 2-14 En esta figura se muestra que un nuevo actor, llamado “Usuario registrado”, puede
mantener un elemento susceptible de facturación, si ese usuario entra y el sistema de facturación
se asocia con los elementos susceptibles de facturación.

Mantener
elementos susceptibles

de facturación

02 KIMMEL.indd 40 11/4/07 7:00:56 PM

 www.FreeLibros.me

CAPÍTULO 2 El principio con casos de uso 41

En la figura 2-16, muestro que un anunciante es un usuario registrado y también in-
cluyo que “Mantener el anuncio” generaliza “Mantener elementos susceptibles de fac-
turación”. Dado que “Mantener elementos susceptibles de facturación” también está en
el diagrama de la figura 2-16, de igual manera sé que esto significa que estoy ligado con
los casos de uso de facturación, registro y autenticación (o concesión de acceso), pero de
manera intencional quité esos elementos del diagrama para no abarrotarlo.

En la figura 2-17, señalo la dependencia entre “Mantener elementos susceptibles de
facturación” y “Entrar” mostrando el conector de dependencia entre estos dos casos de
uso. Debe resultar obvio que, como “Buscar en los currículum vítae” y “Mantener la lista
de trabajos” generalizan “Mantener elementos susceptibles de facturación”, se requiere
la autenticación para publicar trabajos y buscar en los currículum vítae. El uso de un solo
conector simplifica el diagrama.

Ciertamente, será bienvenido el que usted intente crear un solo diagrama maestro de ca-
sos de uso, pero no necesita hacerlo. Incluso en este sistema relativamente sencillo, un solo
modelo monolítico podría únicamente agregarse a la confusión; nuestro objetivo es redu-
cir la confusión y aumentar la comprensión tan sencilla y directamente como sea posible.

Figura 2-15 Vista ampliada de casos de uso relacionados con los solicitantes de trabajo.

Entrar

Hallar trabajo

Usuario registrado

Solicitante de trabajo

«incluir»

El registro sólo se requiere si el usuario desea publicar un
currículum vítae.

Mantener el
currículum vítae

02 KIMMEL.indd 41 11/4/07 7:00:56 PM

 www.FreeLibros.me

Manual de UML 42

Pienso que estos cuatro modelos hacen esto, pero la exposición ilustra en forma precisa la
clasificación de temas que deberá pesar al decidir en cuáles modelos invertir su tiempo.

Manera de hallar la línea final
A medida que se evalúen sus diagramas de casos de uso y su documentación como texto
escrito, le surgirán otras ideas y las cosas que pasó por alto. Esto es de esperarse. Do-
cumente estas ideas, incluso si al final las descarta. También esté preparado para revisar
sus modelos a medida que cambien su comprensión y la de sus clientes o el clima de
la empresa. Una comprensión creciente o un clima dinámico de la empresa significa
más diagramas de casos de uso y revisiones a los ya existentes. Si anticipa la naturaleza
dinámica de la comprensión, entonces no tendrá problema para continuar con los pasos
siguientes, en lugar de intentar crear un juego perfecto de casos de uso sin reflexionar.

El objetivo de crear diagramas de casos de uso es documentar los aspectos importantes
del sistema, para proporcionar a los usuarios una manera de baja tecnología para evaluar
en forma visual sus comprensiones mutuas y, a continuación, seguir adelante. El resulta-
do que deseamos es un juego de casos de uso “suficientemente bueno”, no perfecto.

Usuario registrado

Figura 2-16 Vista cada vez más detallada de los casos de uso en los que intervienen los anun-
ciantes.

Mantener el anuncio

Mantener elemen-
tos susceptibles de

facturación

Anunciante

«incluir»

Entrar

02 KIMMEL.indd 42 11/4/07 7:00:56 PM

 www.FreeLibros.me

CAPÍTULO 2 El principio con casos de uso 43

Diseño controlado con casos de uso
Hasta ahora, he definido casos de uso significativos y los diagramas de casos de uso para
Motown-jobs.com. (Dejé fuera “Mantener información de los clientes”, pero sé que la
necesito.) Con base en la exposición, debe resultar obvio que omití tareas menores, por
ejemplo, leer listas en una base de datos y escribirlas para ésta. Sin embargo, esto queda
cubierto en “Mantener la lista de trabajos”. No necesito un diagrama separado de casos
de uso para mostrar que estoy “clabeando” —por clab, o sea, crear, leer, actualizar y
borrar— listas, anuncios o currículum vítae, aunque resultará útil describir estas cosas en
diagramas futuros, como los diagramas de secuencia (vea el capítulo 6 para obtener más
información). Lo siguiente que me interesa realizar es el establecimiento de prioridades.

Demasiados proyectos pasan por alto por completo los casos de uso e ignoran el es-
tablecimiento de prioridades, pero los casos de uso existen para ayudarle a administrar
el alcance y para establecer prioridades. El término diseño controlado por casos de uso
significa que expresamos lo que estamos estructurando en nuestros casos de uso con el
fin de limitar el alcance y evitar el desperdicio de tiempo, y establecemos prioridades
en lo que estructuramos empezando con las características más críticas y de prioridad
más alta. Con demasiada frecuencia, los programadores estructurarán cosas agradables o
fáciles como primeros diálogos “Acerca de” y campanas y silbidos innecesarios, porque
están examinando alguna nueva tecnología, y esto es un factor significativo de por qué
fallan tantos proyectos.

Figura 2-17 En esta figura se muestra la relación entre el propietario del trabajo y sus casos de
uso, incluyendo una descripción clara de que se requiere la autenticación y que ese propietario
esté administrando elementos susceptibles de facturación.

Entrar

Buscar en los
currículum vítae

Mantener la lista
de trabajos

«incluir»

Usuario registrado

Propietario del trabajo

Mantener
elementos susceptibles

de facturación

02 KIMMEL.indd 43 11/4/07 7:00:57 PM

 www.FreeLibros.me

Manual de UML 44

Después de que haya definido sus casos de uso, querrá establecer prioridades y además
diseñar e implementar una solución para apoyar aquellos casos de uso con la prioridad
más alta o que representan el riesgo más significativo. ¿Cómo decide qué diseñar y es-
tructurar primero? La respuesta es pregúntele a su cliente qué es lo más riesgoso, lo más
importante o lo más valioso y a continuación enfoque sus energías en esos casos de uso.

NOTA La pregunta real que debe hacer a su cliente es: “¿Qué características podemos
estructurar primero de modo que si estamos fuera de tiempo y de presupuesto, todavía
tendremos un producto que pueda comercializarse?” Los clientes no siempre quieren
escuchar las preguntas difíciles, y usted deberá aplicar cierta diplomacia, pero hallar
la respuesta correcta a esta pregunta y actuar en términos de ella puede ser lo más im-
portante que usted haga.

Para Motown-jobs.com, decidí —como cliente— que puedo presentarme en el mer-
cado con un servicio de listas de trabajo con base en una tarifa. Esto significa que si
implemento “Mantener la lista de trabajos”, “Buscar un trabajo” y “Mantener la infor-
mación sobre facturación”, tendré un producto con el que puedo entrar al mercado. Esto
no significa que no querré estructurar en el sistema la publicación de currículum vítae, la
búsqueda y el apoyo para la publicidad; sólo significa que éstas no son las características
más importantes.

Las prioridades que siguen son más difíciles. ¿Debo estructurar a continuación la pu-
blicación de currículum vítae y la búsqueda, o la publicidad? La respuesta es que quiero
que los solicitantes de trabajo usen el servicio y los propietarios del trabajo vean que hay
una gran cantidad de tráfico e interés en mi sitio, de modo que apoyaré a continuación
la publicación de un currículum vítae —el cual es un servicio gratuito pero crítico— y,
después, la búsqueda de currículum vítae, el cual también es un servicio gratuito, pero
que depende de tener currículum vítae para revisar. Por último, apoyaré la publicidad, la
cual finalmente depende de tener tráfico suficiente para interesar a los anunciantes.

Lo importante aquí es que la identificación de mis casos de uso me ayudó a establecer
prioridades en mi lista de tareas e ilustra un camino crítico para mi criterio de éxito mí-
nimo: vender anuncios de se solicitan empleados.

Examen
1. ¿Qué símbolo representa un caso de uso?

a. Una línea

b. Una línea dirigida

c. Una figura de palillos

d. Un óvalo que contiene texto

02 KIMMEL.indd 44 11/4/07 7:00:57 PM

 www.FreeLibros.me

CAPÍTULO 2 El principio con casos de uso 45

2. Un actor solamente puede serlo una persona.

a. Verdadero

b. Falso

3. ¿Qué símbolo representa una dependencia?

a. Una línea

b. Una línea con un triángulo que apunta hacia el elemento dependiente

c. Una línea punteada con una flecha que apunta hacia el elemento dependiente

d. Una línea punteada con una flecha que apunta hacia el elemento del que se de-
pende

4. ¿Cómo se indica un estereotipo sobre un conector?

a. Texto entre un par de comillas angulares

b. Texto llano próximo al conector

c. La palabra estereotipo dentro del símbolo de óvalo

5. Se usa una relación de inclusión para reutilizar el comportamiento modelado por
otro caso de uso.

a. Verdadero

b. Falso

6. Se usa una relación de extensión para modelar características opcionales del sistema.

a. Verdadero

b. Falso

7. En el UML la generalización se refleja en la implementación por

a. polimorfismo.

b. agregación.

c. herencia.

d. interfaces.

8. Todas las capacidades de un sistema deben representarse por un caso de uso.

a. Verdadero

b. Falso

9. En una relación extendida, la flecha apunta hacia el

a. caso de uso básico.

b. caso de uso de extensión.

02 KIMMEL.indd 45 11/4/07 7:00:57 PM

 www.FreeLibros.me

Manual de UML 46

10. Es importante implementar primero los casos de uso fáciles para
garantizar que los primeros esfuerzos tengan éxito.

a. Verdadero

b. Falso

Respuestas
 1. c

 2. b

 3. d

 4. a

 5. a

 6. a

 7. c

 8. b

 9. a

10. b

02 KIMMEL.indd 46 11/4/07 7:00:57 PM

 www.FreeLibros.me

CAPÍTULO

47

Este capítulo se refiere a los diagramas de actividades. Aun cuando lo que destaco
no es el proceso, el siguiente paso después de captar los casos de uso consiste en
empezar a describir cómo se llevarán a su término las características representadas
por sus casos de uso. Los diagramas de actividades ayudarán a usted y a los usua-
rios a describir en forma visual la secuencia de acciones que le conduzcan a través
de la compleción de la tarea.

La meta es convergir hacia el código en forma continua, partiendo de una com-
prensión del espacio del problema en general y captando los problemas que resol-
veremos —los casos de uso— mediante la descripción de cómo funcionan esas
características y, al final, implementando la solución. Los diagramas de actividades
constituyen una herramienta útil de análisis y se pueden usar para la reingeniería
del proceso; es decir, el rediseño del proceso. De esta manera, los diagramas de ac-
tividades constituyen un puente progresivo que conduce del análisis hacia el diseño
y, por último, a la implementación. En este capítulo aprenderá acerca de

• Los símbolos usados para crear los diagramas de actividades

• Cómo crear diagramas de actividades describiendo los casos de uso y los
escenarios como una serie de acciones

Diagramación
de características

como procesos

3

03 KIMMEL.indd 47 11/4/07 7:01:23 PM

 www.FreeLibros.me

Manual de UML 48

• Modelar comportamientos simultáneos
• Refinar las actividades físicas con diagramas de actividades
• Comprender cuándo detener la creación de los diagramas de actividades

Elaboración de las características como procesos
Pocas ideas son por completo nuevas. Los conceptos existentes se refinan, evolucionan
y maduran, llevándose con ellos algo de lo viejo y algo de lo nuevo; lo mismo es cierto
para los conceptos de análisis y de diseño.

El análisis y el diseño estructurados hicieron hincapié en los diagramas de flujo. Un
diagrama de actividad en el Unified Modeling Language (uml) está bastante cercano
a un diagrama de flujo; los símbolos son semejantes pero no los mismos; la utilidad es
semejante, pero existe una diferencia: los diagramas de actividades, a diferencia de los de
flujo, pueden modelar comportamiento paralelo.

Los diagramas de actividades son buenos diagramas de análisis para los desarrolla-
dores, los usuarios, los que hacen pruebas y los administradores, porque usan símbolos
sencillos, texto llano y un estilo semejante al del conocido diagrama de flujo. Los diagra-
mas de actividades son buenos para ayudarle a captar, visualizar y describir un conjunto
ordenado de acciones, desde un principio hasta un final. Los diagramas de actividades se
crean como un conjunto finito de acciones en serie o una combinación de acciones en
serie y en paralelo.

Un viaje hacia el código
Un principio básico del análisis y del diseño orientados a objetos es que queremos par-
tir de ideas y conceptos de alto nivel del espacio de problemas y movernos hacia un
espacio de bajo nivel de soluciones. El espacio de alto nivel de problemas también se
conoce como dominio de los problemas. El espacio de bajo nivel de soluciones se conoce
como el dominio de las soluciones. El uml es un lenguaje para captar y describir nuestra
comprensión a medida que avanzamos desde documentar un problema hasta codificar
una solución.

Con base en la idea de trasladar nuestra comprensión desde el concepto hasta el di-
seño, los casos de uso constituyen una buena manera de captar las cosas que describen
nuestro problema. Por ejemplo, queremos hacer corresponder a los patrones con los
empleados potenciales proporcionando un tablero de listas de trabajos. Un caso de uso
que da soporte a esto es administrar las listas. Un paso siguiente en un sentido abstracto
consiste en describir cómo emprenderíamos la administración de una lista. En esta co-
yuntura, todavía es demasiado pronto para empezar a hablar acerca de bases de datos y
lenguajes de programación; en cambio, queremos hablar acerca de las actividades que
describen nuestro problema, y estas actividades constan de acciones.

03 KIMMEL.indd 48 11/4/07 7:01:23 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 49

NOTA En un nivel ideológico, análisis y diseño son procesos según los cuales descom-
pondremos un problema en problemas discretos menores, de tal manera que podamos
componer soluciones pequeñas para cada problema discreto y, al final, orquestar las
soluciones pequeñas en un todo coherente. El UML es un lenguaje para descomponer un
problema y recomponerlo como la descripción de una solución. Un lenguaje como Vi-
sual Basic.NET es útil para implementar la descripción de la solución, y el proceso es la
forma en que la emprenderíamos.

Comprensión de los usos de los diagramas de actividades
Los diagramas de actividades no son en realidad acerca de los métodos o clases. Todavía
es demasiado pronto para eso. La razón para que sea así es porque las cosas técnicas,
como el polimorfismo, la herencia, los métodos y los atributos, en general, son conceptos
sin significado para los usuarios y, a veces, para los administradores.

Los diagramas de actividades constituyen un medio a través del cual podemos captar
la comprensión de las personas a las que llamamos expertos del dominio. Por ejemplo,
si está estructurando un sistema para administración de cárceles, entonces un experto
del dominio podría ser un oficial del penal, quien posiblemente no entienda la diferencia
entre un espacio de nombres, una clase y la interfaz, pero, como diseñador, puede ser que
usted no comprenda el significado de una compra de 50 cepillos de dientes por parte de
un recluso. Un diagrama de actividad puede ayudar.

Un relato verdadero —y por qué consultar puede resultar interesante— se encuentra
detrás de la metáfora de los cepillos de dientes. Mientras estaba trabajando para una cár-
cel grande del condado en Oregon, tuve que escribir una aplicación piloto para demostrar
asp.net en sus primeros días. La aplicación piloto sería finalmente parte de un sistema de
administración de cuentas de los reclusos para la cárcel. La idea básica es que los prisio-
neros no pueden tener efectivo en su posesión, pero pueden tener dinero en una cuenta
para comprar artículos personales y golosinas. El condado administró las cuentas. Algu-
nas de las reglas incluían límites sobre el número de barras de dulce que, digamos, un
diabético podría comprar, así como un límite sobre el número de cepillos de dientes que
podían comprarse. Al no ser oficial del penal, me pareció extraño que alguien comprara
más de un cepillo de dientes y más extraño todavía por qué a alguien podría interesarle.
El problema es que cuando se les talla hasta que formen una punta o se les hace una ra-
nura con un trozo de hoja de rasurar encajada en forma segura en la punta y sostenida en
su lugar con una banda de caucho, un cepillo de dientes se puede convertir en un arma
formidable. (En realidad, sabía esto porque lo aprendí cuando fui policía militar o lo vi
en un episodio de “Oz” en hbo.)

En la práctica, este relato es ilustrativo del hecho de que aquellos que se encuentran
sobre el terreno —los expertos del dominio— conocerán los detalles en los que usted
nunca pensará. Los diagramas de actividades son buenos para captar estos detalles en
un sentido general y de una manera en que los expertos del dominio pueden examinar,
aclarar y mejorar.

03 KIMMEL.indd 49 11/4/07 7:01:23 PM

 www.FreeLibros.me

Manual de UML 50

Trabajando hacia atrás, partiendo de mi relato de administración de cuentas de los
prisioneros, podría tener un caso de uso “Hacer compra” y un escenario que garantice
que la compra no viole una regla de seguridad. Podemos captar esto en un diagrama de
actividad con la llaneza suficiente como para que un oficial del penal nos pueda decir
si comprendimos el problema y lo hemos descompuesto en forma suficiente. En la figura
3-1, se muestra un diagrama de actividad para este escenario.

Figura 3-1 Diagrama de actividad que ilustra las restricciones sobre el tipo y el número de
artículos que se pueden comprar estando en prisión.

Artículo al carrito

Comprobar
cantidad

(Más artículos)

/ Artículo agregado

(Artículo restringido)

/ Artículo agregado

(Se sobrepasa la cantidad permitida)

(No más artículos)

Pagar
la cuenta

A

A

Registrar la violación
a las restricciones

Rechazar el
artículo

/ Artículo descartado

A

03 KIMMEL.indd 50 11/4/07 7:01:24 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 51

Por ahora, no se preocupe acerca de qué significan las formas. Sólo advierta el texto
sencillo y el flujo sugerido por las flechas. La idea general es que de un solo vistazo
—quizás con un mínimo de explicación— este diagrama debe tener sentido para los
usuarios y desarrolladores sin distinción. En la siguiente sección, empezaremos a exami-
nar lo que significan estos elementos y más.

Uso de lo símbolos de los diagramas
de actividades

Los diagramas de actividades pueden ser sencillos diagramas de flujo que tienen un punto
de inicio y de finalización finitos, o diagramas más complejos que modelen comporta-
miento paralelo y múltiples subflujos, así como que definan múltiples terminaciones. En-
cuentro que trazar diagramas de actividades simples es una manera excelente de arrancar
y que agregar demasiados escenarios alternos en un solo diagrama lo hacen difícil de
manejar y de imprimir, así como de entender.

Hacer que sus diagramas de actividades sean comprensibles puede ser más importante
que hacer que el diagrama sea detallado o que abarque todo. Otro error es crear diagra-
mas de actividades para todos los casos de uso y escenarios. La creación de diagramas
lleva tiempo, y una buena manera de enfocar su tiempo es trazando los diagramas de
aquellos aspectos que son más críticos para resolver su problema.

Considere un par de ejemplos. Los programas que almacenan datos por lo común lo
hacen en bases de datos en forma de relación. Este comportamiento se llama comporta-
miento de crear, leer, actualizar y borrar (CLAB). Leer una base de datos o escribir en ella
se comprenden tan bien que yo no trazaría un diagrama para este comportamiento como
una actividad separada. (De hecho, en realidad la noción de una base de datos no debe
mostrarse en un diagrama de actividad.) El comportamiento completo de leer y escribir
se podría captar en algún punto en una actividad, como una acción llamada traer y al-
macenar o leer y escribir. Por otra parte —tomado prestado del capítulo 2— si vamos a
hacer caducar una lista de trabajo de un cliente y queremos dar a ese cliente una oportuni-
dad de extender la lista, entonces esto es menos común que el comportamiento clab, y yo
crearía un diagrama de actividad para examinar la secuencia de acciones; construyendo el
diagrama de la actividad “Hacer caducar la lista”, podría obtener la secuencia de acciones
precisamente correcta y esto podría ser el catalizador para mejorar la calidad del servicio.
Por ejemplo, podríamos hacer surgir la renovación por medio de la característica de co-
rreo electrónico que expusimos en el capítulo 2.

Si con anterioridad ha creado algunos diagramas de flujo con una herramienta como
Visio, entonces los diagramas de actividades le parecerán bastante directos, pero tenga
presente que estos últimos se pueden usar para modelar comportamiento más rico que
los sencillos diagramas de flujo antiguos. Para crear diagramas de actividades, necesitará
aprender acerca de los símbolos y reglas que se aplican.

03 KIMMEL.indd 51 11/4/07 7:01:24 PM

 www.FreeLibros.me

Manual de UML 52

SUGERENCIA Puede concebir los símbolos y reglas de cualquier diagrama UML como la
gramática visual para el lenguaje.

Nodo inicial
Todo diagrama de actividad tiene un símbolo nodo inicial. Éste es un círculo relleno (vea
la parte superior de la figura 3-1). Es posible proporcionar un nombre y alguna documen-
tación para el nodo inicial, pero en general, yo no lo hago.

El nodo inicial puede tener una línea de transición saliendo de él. La línea de transi-
ción se llama flujo de control y se representa por medio de una flecha dirigida hacia fuera
del nodo inicial. Por claridad, en la figura 3-2 sólo se representan el nodo inicial y el flujo
de control. Puede colocar el nodo inicial en cualquier parte que le guste en el diagrama
y agregar el flujo de control también en cualquier parte que le guste sobre ese nodo. Al
vivir en el hemisferio occidental, tengo inclinación a poner los puntos de arranque arriba
a la izquierda, y los de finalización abajo a la derecha.

Flujo de control
Como se mencionó con anterioridad, un flujo de control es una flecha dirigida. Un flujo
de control también se conoce sólo como flujo o estímulo. El flujo de control empieza en
el símbolo que pierde foco y apunta hacia la cosa que lo aumenta y se conecta con ésta.
Por ejemplo, un flujo de control podría originarse en un nodo inicial y terminar en una
acción, como se muestra en la figura 3-3.

Una manera usual de adornar un flujo de control es agregar una condición guardián.
Una condición guardián actúa como un centinela que requiere que se pase una prueba
antes de que el flujo continúe. En código, por lo común esto se implementaría como una
prueba si condicional.

Uso de las condiciones guardianes
Sin desviar demasiado nuestra atención de las condiciones guardianes, una acción —acer-
ca de la cual hablaremos más en la sección titulada “Acciones”— es algo que sucede en el
flujo. Una acción, como el nodo inicial, es otro tipo de nodo. Los diagramas de activida-

Figura 3-2 El círculo relleno se llama nodo inicial —o punto de inicio del diagrama de activi-
dades— y la flecha dirigida se llama flujo de control.

03 KIMMEL.indd 52 11/4/07 7:01:24 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 53

des están compuestos por completo de diversos tipos de nodos y flujos (o estímulos). Una
condición guardián se muestra como texto entre corchetes y el lector puede concebirla
como un portero hacia el nodo siguiente (figura 3-4).

Si alguna vez el lector ha servido en alguna clase de milicia, entonces está familiariza-
do con la noción de una palabra o frase contraseña:

Guardián: “El gorrión es un presagio.”
Soldado de infantería: “De muerte, que es lo único seguro junto con los impuestos.”
Guardián: “Puede pasar.”

Bien, cuando estuve en el ejército, las frases de contraseña nunca fueron ingeniosas, pero
la idea es la misma. El guardián representa una prueba que se debe pasar para continuar.
Lo que resulta muy extraño es que las pruebas programáticas pueden ser bastante esoté-
ricas, pero el texto que usted escriba en sus condiciones guardianes dará mejor servicio a
su clientela si son sencillas. La figura 3-5 es un ejemplo práctico de un nodo inicial, una
acción y un flujo con una condición guardián.

En la figura, el nodo inicial realiza una transición hacia la primera acción, “Hallar
cliente”. La condición guardián es que se conoce mi fecha de disponibilidad. De ninguna
manera es bueno apilar clientes cuando no me queda tiempo disponible.

El diagrama de la figura 3-5 ilustra cómo un diagrama de actividad es una suerte de ag-
nóstico cuando llega a la implementación. La actividad parcial de la figura 3-5 podría es-
tar refiriéndose a un proceso físico como buscar el sitio web Motown-jobs.com y llamar

Figura 3-3 Un nodo inicial, flujo de control y una acción.

Acción 1

Figura 3-4 Un nodo de control, flujo con guardián y una acción genérica.

Acción 1

(guardián)

03 KIMMEL.indd 53 11/4/07 7:01:24 PM

 www.FreeLibros.me

Manual de UML 54

a los clientes que pasaron o a un proceso de software que explora en forma automática el
sitio web Motown-jobs.com a través de un servicio web y envía correos electrónicos a los
clientes que pasaron, notificándoles de mi disponibilidad. En todos los ejemplos de este
capítulo, verá más casos de condiciones guardianes.

Diferentes maneras de mostrar flujos
La manera más común de diagramar un flujo es usar un solo símbolo de flujo de control
conectado a dos nodos, pero ésta no es la única manera. Si su diagrama es muy complejo,
con una gran cantidad de estímulos que se traslapan, entonces puede usar un nodo co-
nector (figura 3-6). Un estímulo puede realizar una transición desde una acción hacia un
objeto hacia una acción (figura 3-7) y entre dos clavijas (figura 3-8).

Uso de nodos conectores

No tiene usted que usar conectores, pero si sus diagramas se vuelven muy grandes o
complejos, entonces encontrará que sus flujos empiezan a traslaparse o que su actividad
se extiende hacia múltiples páginas. El nodo conector es una buena manera de simplificar
los flujos que se traslapan o aquellos que se extienden hacia múltiples páginas.

SUGERENCIA La versión de Visio que usé para crear la figura 3-6 no soporta el nodo
conector; para crear este efecto, tuve que usar la herramienta Elipse (Ellipse). El re-
sultado es que el diagrama es visualmente correcto, pero Visio informará de un error.
Como ocurre con muchas herramientas, se debe aceptar conceder algo a cambio.

Figura 3-5 Parte de un diagrama de actividades para hallar clientes.

Hallar cliente

(Disponibilidad conocida)

Figura 3-6 Se puede usar un nodo conector con el fin de simplificar los diagramas de activida-
des que se ven muy abarrotados.

Conector

Hallar cliente A A
Hacer contacto
con el cliente

03 KIMMEL.indd 54 11/4/07 7:01:25 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 55

Para usar un nodo conector, trace un flujo que salga de un nodo y haga una transición
hacia un conector. En donde se hace la conexión al nodo siguiente, dibuje un conector con
un flujo que salga de él y que haga la transición hacia el siguiente nodo en el diagrama.

Los nodos conectores vienen en pares. Asegúrese de que las parejas de conectores
tengan el mismo nombre; nombrar a los conectores le ayudará a hacer corresponder los
puntos de conexión cuando tenga múltiples parejas de conectores en un solo diagrama.

Uso de objetos en los diagramas de actividades

Con anterioridad dije que la diagramación de actividades se presenta demasiado pronto
en el análisis como para entender cuáles son los objetos; sin embargo, el uml permite
la adición de objetos a los diagramas de actividades. Después de haber tenido una opor-
tunidad de hacer que los usuarios le proporcionen alguna retroalimentación y haya cre-
cido su comprensión del espacio de problemas, puede resultar útil agregar objetos a sus
diagramas de actividades. La clave aquí es evitar la adición de conceptos técnicamente
complejos demasiado pronto. Si se ha hundido en una discusión acerca de qué es un ob-
jeto o si éste se nombró o no en forma correcta, entonces elimínelo. Por otra parte, si el
objeto es muy obvio —como se presenta en la figura 3-7— y ayuda a la comprensión de
todos, entonces agréguelo.

Resulta valioso tener presente quién es su clientela para cada clase de diagrama. En
general, concibo a los diagramas de actividades como herramientas de análisis que los
usuarios finales leerán para ayudarle a usted a comprender cómo hacen su trabajo; la
explicación de conceptos orientados a objetos parece, por lo común, ser una distracción,
de modo que deje los objetos fuera de los diagramas de actividades.

Uso de clavijas

En el uml, las clavijas son análogas a los parámetros en la implementación. El nombre o
valor de una clavija que sale de una acción debe concebirse como un parámetro de salida

Figura 3-7 Inserción de un objeto cliente entre dos acciones relacionadas con clientes.

Figura 3-8 Una técnica avanzada incluye la conexión de dos clavijas en los nodos de acción con
un flujo de control.

Hallar cliente
Hacer contacto
con el cliente

Cliente

Hallar cliente
Hacer contacto
con el cliente

Cliente

Cliente

03 KIMMEL.indd 55 11/4/07 7:01:25 PM

 www.FreeLibros.me

Manual de UML 56

hacia la acción siguiente. En las figuras 3-7 y 3-8 se transmite la misma información: que
un cliente interviene en este flujo. Las clavijas, como los objetos, pueden ser demasiado
detalladas por el uso cotidiano y pueden dar como resultado discusiones tangenciales con-
fusas cuando se trabajen los flujos con los clientes. Sin embargo, si está explicando las
actividades a diseñadores o programadores, pueden resultar útiles para mostrar objetos.

En los figuras 3-7 y 3-8 resulta claro que los nombres de las acciones —“Hallar clien-
te” y “Hacer contacto con el cliente”— sugieren que interviene un cliente. Dejando fuera
el objeto y las clavijas —vea la figura 3-9— todavía se sugiere con mucha claridad la
participación de un cliente, sin el riesgo de explicaciones largas y tangenciales.

Acciones
Los nodos de acción son las cosas que usted hace o que suceden en un diagrama de
actividades, y un estímulo representa el camino que usted sigue para saltar de acción en
acción. Los nodos de acción tienen una forma un poco más rectangular que los casos de
uso. Dos de los aspectos más importantes de las acciones son el orden en el que ocurren y
el nombre que les asigne. El nombre debe ser corto y directo. El uso de parejas de nombre
y verbo en los nombres de las acciones puede ayudarle a hallar las clases y los métodos,
pero los nombres de las acciones no tienen sólo esta finalidad y, una vez más, es bastante
temprano en el análisis y el diseño para quedarse colgado en los detalles de la implemen-
tación, como las clases y los métodos.

Se permite que las acciones tengan uno o más flujos de entrada y sólo uno de salida.
Si existe más de un flujo de entrada, entonces la acción no será transición hasta que todos
los flujos de entrada hayan alcanzado esa acción. Las acciones se pueden dividir en ca-
minos alternos con el uso del nodo de decisión —al que se hace referencia en la sección
titulada “Nodos de decisión y de fusión”— o realizar una transición hacia flujos paralelos
con el uso del nodo bifurcación, —vea la sección titulada “Bifurcaciones y uniones de
transición”— pero en realidad, para una acción únicamente debe agregarse un solo flujo
de salida, como un flujo saliente para una acción.

Una buena regla empírica para la creación de diagramas de actividades es describir
cómo empieza un caso de uso, cómo progresa y cómo finaliza, con todas las acciones
que deben completarse a lo largo del camino. Los nodos de decisión y de fusión y las bi-
furcaciones y uniones son medios para modelar comportamiento paralelo o alternaciones
con la propia actividad. Si los flujos alternos son muy complejos, entonces puede usar el
diagrama de subactividad para compartimentarla.

Figura 3-9 Este diagrama es más sencillo que aquellos en los que se muestra un objeto o se usan
clavijas, pero todavía sugiere la participación de un cliente.

Hallar cliente
Hacer contacto
con el cliente

03 KIMMEL.indd 56 11/4/07 7:01:25 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 57

Las acciones también pueden usar condiciones previas y posteriores con el fin de
indicar las condiciones necesarias antes y después de que ocurra la acción. Cortemos en
trozos estos aspectos —nombres, subactividades y condiciones— formando subseccio-
nes para examinar cómo anotamos cada aspecto de una acción.

Nombramiento de las acciones
Prefiero que las acciones tengan suficiente detalle —un nombre y un verbo— para des-
cribir lo que sucede y qué o quién interviene; por ejemplo, “Hallar cliente”, “Enviar
correo electrónico al cliente”, “Almacenar lista de trabajo”, “Cancelar lista” y “Borrar
currículo”. Sin una tremenda cantidad de texto adicional, estos nombres me dicen qué
hace la acción y sobre qué actúa. Esto es importante, porque un concepto esencial en el
uml es que se transmita una gran cantidad de información en forma visual, en oposición
a hacerlo con una gran cantidad de texto.

Al final, los nombres y los verbos le ayudarán a encontrar las clases y los métodos,
pero es una buena idea diferir pensar acerca de los detalles de la implementación todavía
durante un tiempo. Sencillamente queremos entender cómo nos desempeñaremos para
realizar una actividad, pero no cómo la implementaremos.

Por ejemplo, en el capítulo 2, definimos un caso de uso “Administrar una lista de
trabajo”. Éste es un caso de uso acerca del cual se puede argumentar que consta de
varias actividades, incluyendo “Publicar una lista de trabajo”. La publicación de una
lista de trabajo es un escenario en el caso de uso “Administrar una lista de trabajo”, pero
“Publicar una lista de trabajo” no es una sola acción. Se puede argumentar que deberían
completarse varias acciones para captar toda la actividad. El siguiente es un ejemplo es-
crito que describe la publicación de una lista de trabajo, seguido de un corto diagrama de
actividades (figura 3-10) que modela lo mismo:

• Proporcionar la descripción del trabajo
• Entrar
• Proporcionar información acerca del pago
• Proceso de pago
• Almacenar la descripción del trabajo
• Proporcionar confirmación

Una vez que tenemos un diagrama inicial —mostrado en la figura 3-10— contamos
con una buena base para sostener una discusión acerca de la actividad. Podemos llevarla
al dominio de los expertos y preguntarles acerca de los detalles del diagrama de activi-
dades y evaluar esta información para determinar si necesitamos revisar el diagrama. Por
ejemplo, tal vez queramos verificar si se puede usar información válida acerca del pago
en relación con el archivo o queremos información nueva acerca de ese pago. O, si el
usuario es nuevo, entonces puede ser que necesitemos agregar un punto de decisión que
permita al usuario registrarse y, a continuación, entrar.

03 KIMMEL.indd 57 11/4/07 7:01:26 PM

 www.FreeLibros.me

Manual de UML 58

Un beneficio real implícito aquí es que un intento razonable en un diagrama de activi-
dades capta la comprensión del modelador y permite a otros proporcionar retroalimenta-
ción y desarrollar el flujo, agregando o eliminando detalles, según sea necesario.

Manera de agregar condiciones previas y posteriores
Se pueden agregar condiciones previas o posteriores a un modelo con el uso de una nota:
los símbolos de estereotipo con las palabras condición previa o condición posterior en

Figura 3-10 Un modelo en el que se muestra la acción requerida para publicar un trabajo.

Proporcionar descripción
del trabajo

Entrar

Proporcionar información
acerca del pago

Procesar el pago

Almacenar la descripción
del trabajo

Proporcionar
la confirmación

(Autenticado)

03 KIMMEL.indd 58 11/4/07 7:01:26 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 59

su interior y el nombre de la condición. La nota se agrega a la acción a la cual se aplica la
condición o las condiciones. Esto se conoce como diseño por contrato y, con frecuencia,
se implementa en el código como una afirmación combinada con una prueba condicional.
La figura 3-11 muestra una condición previa y una posterior aplicadas a la acción “Pro-
porcionar información acerca del pago”.

En la figura 3-11, el diagrama requiere la condición previa de que el usuario se registre
y la posterior de que la información del pago sea válida. Como sucede con el código,

Figura 3-11 Uso de una restricción de condición previa y de condición posterior.

«condición previa»
{Se registra el usuario}

Proporcionar descripción
del trabajo

Entrar

(Autenticado)

Proporcionar información
acerca del pago

Procesar el pago

«condición posterior»
{La información del pago es válida}

Almacenar la descripción
del trabajo

Proporcionar
la confirmación

03 KIMMEL.indd 59 11/4/07 7:01:26 PM

 www.FreeLibros.me

Manual de UML 60

existe más de una manera de representar esta información. Por ejemplo, podríamos usar
una condición guardián antes y después de la acción “Proporcionar información acerca
del pago” (figura 3-12), o podríamos usar un nodo de decisión (vea “Nodos de decisión
y de fusión”) para ramificar hacia una acción de registrar, antes de permitir el suministro
de esa información, y podríamos tener una acción para validar la información antes men-
cionada, después de que se suministre (figura 3-13).

Figura 3-12 Uso de guardianes para expresar una condición previa y una posterior.

Proporcionar descripción
del trabajo

Entrar

(Registrado; autenticado)

Proporcionar información
acerca del pago

Procesar el pago

Almacenar la descripción
del trabajo

Proporcionar
la confirmación

(La información del pago es válida)

03 KIMMEL.indd 60 11/4/07 7:01:26 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 61

Figura 3-13 Uso de un nodo de decisión para indicar que los usuarios deben registrarse y pro-
porcionar información válida del pago.

Proporcionar descripción
del trabajo

Entrar

Registrar
al usuario

(El usuario no se encuentra)

(Autenticado)

Proporcionar información
acerca del pago

Validar la información del pago

(No es válida)

(Es válida)

Procesar el pago

Almacenar la descripción
del trabajo

Proporcionar
la confirmación

03 KIMMEL.indd 61 11/4/07 7:01:27 PM

 www.FreeLibros.me

Manual de UML 62

Estos tres diagramas —figuras 3-11, 3-12 y 3-13— transmiten la misma información.
La diferencia real es de estilo. Si quiere que el diagrama aparezca menos ocupado, trate
de usar la condición guardián. Si el estilo de restricción —de la figura 3-11— parece más
significativo, entonces use ese estilo. Si quiere examinar el registro y la validación de la
dirección, entonces use los estilos de nodos de decisión de la figura 3-13, donde los nodos
de decisión están representados por los símbolos con forma de diamante.

Modelación de las subactividades
A veces es fácil agregar demasiado detalle a un solo diagrama de actividades, lo que lo
hace ocupado y confuso. Por ejemplo, si desarrollamos “Registrar al usuario” de la figura
3-13, para incluir todas las acciones necesarias para registrar los usuarios, como la obten-
ción de un nombre y contraseña únicos del usuario, y validar y almacenar la información
de la dirección de correo, entonces se puede perder el enfoque principal de la actividad
—creación de una lista de trabajo y pagar por ella— en el ruido de todas las acciones y
estímulos adicionales.

Si, en cualquier caso, hallamos que los detalles de las subactividades hacen que un
diagrama sea demasiado confuso, o encontramos que queremos volver a usar las subac-
tividades, entonces podemos marcar una acción como una subactividad con una bifurca-
ción en su interior. (Visio no permite el símbolo de subactividad subsidiaria, de modo que
extraje uno de los garabatos de Paint de Microsoft y lo agregué a la acción “Registrar el
usuario” de la figura 3-13.)

SUGERENCIA Si quiere inventar o encuentra que un aspecto del UML no permite su herra-
mienta específica de modelado, entonces considere la posibilidad de usar un estereotipo
o una nota para documentar lo que quiere usted dar a entender.

Nodos de decisión y de fusión

En los diagramas de flujo, a los nodos de decisión y de fusión se les llamaba diamantes
de decisión. Este símbolo con forma de diamante es uno de los elementos que hace que
el diagrama de actividades sea una reminiscencia de un diagrama de flujo. Los nodos
de decisión y de fusión usan el mismo símbolo y transmiten la ramificación y la fusión
condicionales.

Cuando el símbolo con forma de diamante se usa como nodo de decisión —después
de “Entrar” en la figura 3-13— tiene un estímulo que entra al nodo y múltiples estímulos
saliendo de éste. Cuando se usa como nodo de fusión, hay múltiples estímulos entrando
y solamente uno saliendo. Un nodo de decisión sólo toma un camino de salida, y uno de
fusión no tiene salida hasta que todos los flujos han llegado al mismo.

Las condiciones guardianes en un nodo de decisión actúan como la lógica si… de otro
modo y deben ser mutuamente excluyentes, lo cual por necesidad implica que si se sa-

03 KIMMEL.indd 62 11/4/07 7:01:27 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 63

tisface una de ellas, entonces la otra debe fallar. Como se describe en la figura 3-13, pue-
de estipular las dos condiciones guardianes literalmente, o estipular una de ellas y usar
una guardián [De otro modo] para la condición alterna.

Un nodo de fusión marca el final del comportamiento condicional iniciado por un
nodo de decisión. En la figura 3-13, no necesitamos un nodo de fusión porque reencami-
namos al usuario recientemente registrado de regreso a la acción “Entrar”. No obstante,
si quisiéramos ser un poco más amables, podríamos sencillamente autenticar al nuevo
usuario en forma automática y seguir directamente a proporcionar la información acerca
del pago, en donde el usuario la dejó. Esta revisión se muestra con el uso de un nodo de
fusión en la figura 3-14. (Observe que se modificaron las condiciones guardianes para el
nodo de decisión que está después de la acción “Entrar”, para mostrar el uso del estilo de
guardián [De otro modo].)

Bifurcaciones y uniones de transición

Una bifurcación existe para describir comportamiento paralelo, y se usa una unión para
hacer convergir el comportamiento paralelo de regreso a un solo flujo. En el compor-
tamiento bifurcado no se especifica si ese comportamiento se intercala o no, o bien, si
ocurre en forma simultánea; la implicación es solamente que están ocurriendo acciones
bifurcadas en el transcurso de un intervalo compartido y concurrente. Se suele implemen-
tar el comportamiento bifurcado como comportamiento multiencaminado. (En la figura
3-13, se presenta un ejemplo de una bifurcación después de la acción “Procesar el pago”
y una unión inmediatamente antes del nodo final.)

Cuando múltiples flujos entran a una acción, ésta, de manera implícita, es una unión y
el significado es que sólo hay flujo saliente cuando todos los flujos entrantes han llegado
a la acción. Sus diagramas serán más claros si usa bifurcaciones y uniones de manera
explícita en donde quiera dar a entender que se muestra comportamiento paralelo.

En la figura 3-13, quisimos decir que podemos almacenar una descripción del trabajo
y proporcionar al usuario una confirmación, en forma simultánea o de manera concurren-
te, pero estas dos cosas deben ocurrir antes de que se considere que se ha completado la
actividad.

Partición de la responsabilidad con carriles

A veces usted quiere mostrar quién o qué es responsable de un parte de una actividad.
Puede hacer esto con carriles. Lo común es que las herramientas de modelado muestren
los carriles como un cuadro con un nombre en la parte superior y que usted coloque cua-
lesquiera nodos y estímulos que pertenecen a esa cosa en ese carril. Usted puede tener
tantos carriles como sea conveniente, pero los carriles encajonados pueden dificultar la
organización de su diagrama de actividades.

03 KIMMEL.indd 63 11/4/07 7:01:27 PM

 www.FreeLibros.me

Manual de UML 64

El uml versión 2 permite particiones verticales, horizontales y como rejilla, de modo
que la metáfora carril ya no es precisa. La terminología real ahora es partición de la acti-
vidad, pero todavía se emplea la palabra carril en la conversación general y se usa en las
herramientas de modelado.

Figura 3-14 Nodo de fusión usado para hacer convergir cuando se toma una rama después de
que se registra un nuevo usuario.

Proporcionar descrip-
ción del trabajo

Entrar

Registrar
al usuario

(De otro modo)

(Usuario encontrado)

(Autenticado)

Proporcionar información
acerca del pago

Validar la información
del pago

(No es válida)

Procesar el pago

(Es válida)

Almacenar la des-
cripción del trabajo

Proporcionar la
confirmación

03 KIMMEL.indd 64 11/4/07 7:01:27 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 65

Uso de los carriles
Si en la figura 3-14 queremos mostrar quién o qué es responsable de varias acciones,
entonces podemos agregar un carril (o partición) para lo que creemos que son las par-
ticiones. En el ejemplo, podríamos decir que la publicación de un trabajo se divide en

Figura 3-15 Las acciones se dividen entre un usuario y el sistema.

Proporcionar descrip-
ción del trabajo

Usuario

Entrar

(Usuario encontrado)

(Autenticado)

Proporcionar informa-
ción acerca del pago

(No es válida)

Registrar al

Validar la información
del pago

Procesar el pago
(Es válida)

Almacenar la des-
cripción del trabajo

Proporcionar la
confirmación

Sistema

usuario

(De otro modo)

03 KIMMEL.indd 65 11/4/07 7:01:27 PM

 www.FreeLibros.me

Manual de UML 66

dos particiones: el usuario y el sistema, y agregamos un carril para cada partición (figura
3-15). Si decidimos que el procesamiento del pago representa una partición distinta, en-
tonces podríamos agregar una tercera partición y trasladar la acción de procesar el pago
hacia esa partición (figura 3-16).

Figura 3-16 Subdivisión adicional de las responsabilidades mediante el reemplazo de las ac-
ciones “Validar la información del pago” y “Procesar el pago” en una partición separada con el
nombre de “Procesador del pago”.

Usuario Sistema Procesador del pago

Proporcionar descrip-
ción del trabajo

Entrar

(De otro modo)
Registrar al

usuario
(Usuario encontrado)

(Autenticado)

Proporcionar informa-
ción acerca del pago

Validar la información
del pago

(Es válida)
Procesar el pago

Proporcionar la
confirmación

(No es válida)

Almacenar la des-
cripción del trabajo

03 KIMMEL.indd 66 11/4/07 7:01:28 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 67

Como se hace con la programación, puede dividir su análisis y diseño en tantas par-
ticiones como quiera. Se debe aceptar dar algo a cambio por agregar particiones en los
modelos, precisamente como ha de aceptar dar algo a cambio por agregar particiones en
el código. Partir los modelos puede ayudarle a organizar, pero todas esas particiones su-
gieren software partido que deberá orquestarse y reensamblarse para lograr las metas del
sistema.

Modelado de acciones que se extienden sobre las particiones

A veces una acción puede pertenecer a más de una partición al mismo tiempo. Por
ejemplo, “Registrar al usuario” en realidad no pertenece al usuario o al sistema. Sabe-
mos, con base en las exposiciones anteriores, que “Registrar al usuario” es una actividad
subsidiaria que puede comprender al usuario que proporciona la información personal y
al sistema que valida la información de la dirección y almacena la información de ese
usuario. Sin embargo, el uml no permite que un nodo se extienda en más de una partición
en una sola dimensión. Como resultado, usted deberá elegir una partición para el nodo, y
esto también sugiere que sabemos lo que se cumple acerca de “Registrar al usuario”; es
decir, se puede descomponer en su propia actividad.

Uso de particiones multidimensionales

El modelado de particiones multidimensionales de actividades es un concepto relativa-
mente nuevo. Parece que algunas herramientas de modelado populares y de las que se
dispone en la actualidad no permiten diagramar particiones multidimensionales de acti-
vidades; sin embargo, puede simular una partición multidimensional en Visio agregando
dos carriles (particiones de la actividad) y hacer girar uno de ellos. (El resultado es un
diagrama semejante al de la figura 3-17.) Ahora que tenemos la mecánica para crear una
partición multidimensional, podría usted preguntarse cómo se usa.

Una acción en una matriz de particiones de una actividad pertenece por completo a las
dos particiones. Suponga, por ejemplo, que como estamos preparándonos para vender lis-
tas de trabajos en Motown-jobs.com, decidimos usar PayPal para procesar los pagos. Po-
demos decir que “Procesar el pago” es parte tanto de nuestro “Procesador del pago” como
del sistema de procesamiento de pagos de PayPal, lo cual se refleja en la figura 3-17.

Indicación de las señales cronometradas

Hasta ahora no hemos hablado acerca de cuándo ocurren las cosas. Existen tres tipos de
señales que facilitan hablar acerca del tiempo en los diagramas de actividades. Éstas son
la señal de tiempo, la señal de enviar y la señal de aceptar. Una señal indica que se ha
lanzado un evento exterior y ese evento inicia la actividad.

03 KIMMEL.indd 67 11/4/07 7:01:28 PM

 www.FreeLibros.me

Manual de UML 68

Se usa la forma de reloj de arena de la señal de tiempo para especificar un intervalo
de tiempo. Por ejemplo, podríamos usar la señal de tiempo para indicar que se iniciará la
actividad “Hacer caducar la lista” después de que la lista haya estado disponible durante
30 días (figura 3-18). El símbolo de señal de recibir es un rectángulo con una muesca
cortada, y el de señal de enviar es un rectángulo con una punta sobresaliente, lo que hace
que los símbolos señales de recibir y de enviar luzcan un poco como las piezas de un
rompecabezas (una vez más, mostrados en la figura 3-18).

NOTA Toda herramienta tiene sus limitaciones. En Visio, por ejemplo, no existe símbo-
lo para una señal de tiempo, de modo que inventé una, y las señales de enviar y recibir
se usan como una forma alternativa de documentar eventos. La implementación de
Visio no es precisamente coherente con el UML; es importante no quedarse colgado en
estas pequeñas incoherencias por las que usted está obligado a pasar. En vez de consu-
mir su tiempo en dibujar imágenes para aspectos no soportados del UML, trate de usar
en su lugar una nota.

Figura 3-17 Particiones multidimensionales, en donde dos particiones en diferentes dimensio-
nes poseen una acción al mismo tiempo.

Procesador del pago PayPal

Pr
oc

es
ad

or
 d

el
 p

ag
o

Procesar el pago

03 KIMMEL.indd 68 11/4/07 7:01:28 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 69

Se entiende que el modelo de la figura 3-18 quiere dar a entender que 30 días después
de que se publica una lista, se la hará caducar de manera automática, a menos que un
propietario notificado elija extenderla. Las señales alternas incluyen un usuario que borra
una lista, lo cual hace que la lista se archive antes de quitarse, y un propietario que habla
por propia iniciativa para extender la lista antes de su caducidad. Si el propietario extien-
de la lista, entonces esto envía una señal al sistema para que procese un pago adicional.

Figura 3-18 Señal de tiempo para hacer caducar una lista, dos señales de recibir para extender y
borrar una lista, y una señal de enviar para notificar que una lista está próxima a caducar.

Hacer caducar
la lista

Señal de tiempo

Treinta días después de que la lista se publica

Extender
la lista

Borrar
la lista

Lista borrada Lista extendida

Procesar la información
del pago

Archivar
la lista

Señal de
recibir

Crear lista
de trabajos

(Extender)

(De otro
modo)

Esperar
48

horas

Actualizar el estado
de la lista

<no enviar la acción>

Enviar correo
electrónico al

propietario

Señal
de

enviar

03 KIMMEL.indd 69 11/4/07 7:01:28 PM

 www.FreeLibros.me

Manual de UML 70

Configuración de los parámetros de entrada

Los diagramas de actividades pueden tener parámetros de entrada, como en la figura
3-18, en cada caso en que hablamos de hacer algo con una lista. Podríamos mostrar un
objeto “Lista” como entrada para cada acción en la figura. Tomando sólo una pequeña
porción de la figura 3-18, podemos mostrar la notación y el símbolo para indicar que la
entrada a la acción es un objeto “Lista” (figura 3-19).

En tanto que los objetos de entrada pueden resultar útiles para los desarrolladores, éste
es otro caso en donde pueden agregar confusión para la discusión de la actividad en un
sentido general y analítico. Al menos en el curso de las primeras fases del análisis, consi-
dere aplazar la referencia específica a los detalles de la implementación, como las clases.

Forma de mostrar las excepciones en los diagramas
de actividades
El uml permite el modelado de excepciones. Una excepción se muestra como una línea
zigzagueante (o “rayo”) con el nombre de la clase de la excepción que la adorna. El ma-

Figura 3-19 Se muestra el objeto “Lista” como un parámetro de entrada a la acción “Extender
la lista” y el diagrama de actividades que lo contiene.

aLista : Lista

Extender
la lista

<no recibir
la acción>

Procesar la información
del pago

03 KIMMEL.indd 70 11/4/07 7:01:29 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 71

nejador de la excepción se puede modelar como un nodo de acción con el nombre de la
acción en el mismo y el flujo de excepción conectado a una clavija de entrada en el nodo
de acción de la excepción (figura 3-20).

El nodo que contiene el manejador de la excepción no tiene flujo de retorno. Un ma-
nejador de excepción sólo descuelga la acción que causó que ocurriera el error. Es impor-
tante recordar que estamos captando flujo y acciones generales; en el curso de esta fase,
no necesitamos indicar cómo estamos manejando la excepción.

Los conceptos como excepción, manejador de excepciones, despliegue de la pila y
rendimiento pueden agregarse de manera considerable a la confusión para los usuarios no
técnicos. Si puede agregar una excepción y su nodo de acción sin atascarse en discusio-
nes acerca de cómo se implementan los manejadores de excepciones o cómo funcionan,
entonces siga adelante y agréguelos a sus diagramas de actividades.

Terminación de los diagramas de actividades

Cuando llegue al final de una actividad, agregue un nodo final de actividad. Si llega al
final de un flujo y no sucede algo más, agregue un nodo final de flujo (figura 3-21). Puede
tener más de un nodo final de actividad y de un nodo final de flujo en un solo diagrama
de actividades.

El diagrama de actividades de la figura 3-21 muestra que procesamos todas las listas
caducas hasta no tener más y, para cada lista caduca, enviamos un correo electrónico al
propietario, dándole una oportunidad de renovar la lista o dejarla caducar. Advierta que

Procesar la información
del pago

Figura 3-20 Modelado de una excepción en un diagrama de actividades.

Validar el número de
la tarjeta de crédito

Manejar la expresión común
de inválida

Excepción de expresión común

03 KIMMEL.indd 71 11/4/07 7:01:29 PM

 www.FreeLibros.me

Manual de UML 72

cuando se ramifica el nodo de decisión, debido a que ya no hay más listas caducas, sen-
cillamente va hacia un extremo cerrado. Podría usted imaginarse esta suerte de actividad
implementada como un proceso asíncrono, en donde cada lista caduca se expulsa de un
proceso para permitir que su propietario la renueve.

Creación de los diagramas de actividades
Una decisión tan importante como qué incluye un diagrama de actividades es qué diagra-
mar. Con demasiada frecuencia es fácil mantenerse agregando modelos adicionales y
añadiendo más detalles a los modelos existentes; no obstante, la implicación es que mien-
tras usted está modelando algo, alguien más está esperando para implementar su diseño
o, lo que es peor, mientras usted está refinando sus diseños, algún pobre encargado de

Figura 3-21 Actividad en la que se muestra un nodo final de flujo y un nodo final de actividad.

Hacer caducar
la lista

Procesar el pago

(Más listas caducas)

(No más listas
caducas)

(Extender)

Enviar correo
electrónico

al propietario

03 KIMMEL.indd 72 11/4/07 7:01:29 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 73

implementar tendrá que modificar la implementación de esos diseños. Por esta razón,
es importante hacer que sus diagramas de actividades sean relativamente sencillos;
limite la creación de diagramas de actividades a lo importante, crítico o a los aspectos
retadores de su problema, y evite tratar de hacerlos perfectos. Un buen modelo fácil de
comprender y que se presenta oportunamente es más valioso que un modelo perfecto
posterior; si es que existe tal cosa como un modelo perfecto.

Ejemplos de los diagramas de actividades que yo crearía para los casos de uso del
capítulo 2 podrían ser una actividad para “Mantener la lista de trabajo”, “Hacer caducar
la lista de trabajo” y “Mantener la información sobre facturación”. En especial, estoy in-
teresado en entender los aspectos críticos del sistema, de manera particular aquellos para
los servicios que son elementos susceptibles de facturación. Cosas comunes como buscar
o registrar están suficientemente bien entendidas, de tal manera que es improbable que
yo creara un diagrama de actividad para ellas.

Seleccionar lo que debe modelarse y lo que no, es algo semejante a añadir sal cuando
se está cocinando: siempre puede agregar un poco más, pero es difícil eliminar la sal si ha
añadido demasiada. Lo mismo es verdad con el modelado: no puede recuperar el tiempo
consumido en modelar actividades obvias, pero siempre puede agregar diagramas de
actividades más adelante, si es necesario.

Reingeniería del proceso
Es posible que el uso más benéfico de los diagramas de actividades sea ayudar al per-
sonal que no pertenezca al dominio —por lo común, los tecnólogos que implementarán
una solución— a comprender este dominio. En lo anterior, está implícito que, mientras
los expertos del dominio y los tecnólogos están intentando llegar a una comprensión
común, existe una oportunidad de realizar la reingeniería del proceso. Tomemos un mo-
mento para revisar lo que se quiere dar a entender por reingeniería de procesos.

Con frecuencia, la gente realiza su trabajo de manera cotidiana sin jamás identificar un
proceso formal. El conocimiento del proceso lo tienen sólo los profesionales. A menudo,
estas mismas organizaciones reciben un choque al descubrir cuántos gastos generales y
desperdicio existe en la forma en que están organizadas. La reingeniería de procesos es
una suerte de pseudociencia que conlleva, en primer lugar, la documentación de los pro-
cesos de una organización y, en segundo, a buscar maneras de optimizar esos procesos.

No soy un experto en reingeniería de procesos, pero existen ejemplos históricos en
donde empresas bien conocidas han gastado una cantidad considerable de dinero y ener-
gía para refinar los procesos de sus empresas, y los resultados han conducido a cam-
bios amplios y arrasadores en la industria. Se puede hallar un ejemplo interesante en
Behind the Golden Arches, en el cual se detalla el camino de evolución que condujo a
McDonald’s a aplicar la distribución centralizada para sus franquicias.

03 KIMMEL.indd 73 11/4/07 7:01:29 PM

 www.FreeLibros.me

Manual de UML 74

NOTA Resulta bastante irónico que el propio desarrollo de software sea un ejemplo de
un dominio en donde los profesionales han definido el proceso de una manera ad hoc.
Muchas empresas de software ahora están empezando a darse cuenta de que están muy
atrasadas en relación con un examen introspectivo de los procesos que siguen al pro-
ceso estructurado. ¿Alguien en su organización ha usado alguna vez un diagrama de
actividades (o un diagrama de flujo) para documentar la manera en que se estructura
su software?

El desarrollo de software es un asunto de automatizar soluciones para los problemas.
En un sentido general, es una idea útil documentar los procesos críticos del dominio y
examinar algunas optimizaciones posibles, antes de escribir el código. Si se simplifica el
proceso, también se puede simplificar marcadamente la implementación subsiguiente.

Reingeniería de una subactividad

He aquí un ejemplo que comprende una subactividad llamada “Verificación de la cabina
interior”, que se relaciona con la inspección previa al vuelo de un avión pequeño. La idea
que se encuentra detrás de la verificación de la cabina interior es que estamos buscando
cosas necesarias o importantes en el interior del avión y realizando pasos para ayudar a
algunas verificaciones exteriores. Hay una probabilidad muy buena de que si pasamos
por alto algo, entonces podríamos realizar el despegue en condiciones inseguras o no
contar con recursos críticos durante una urgencia. (Si le molesta que esto no suene como
un problema de software, entonces sólo imagine que estamos documentando este proble-
ma para escribir software de simulación o para realizar las pruebas.)

Uno de los aviones que vuelo es un Cessna 172 Skyhawk. La verificación de la cabina
interior (descrita en la figura 3-22) consiste en

• Asegurarse de que el interruptor de ignición esté en posición de apagado

• Hacer girar el interruptor maestro hacia la posición de encendido de modo que
tengamos energía

• Bajar los alerones

• Verificar la existencia del registro, del certificado de que el avión está en condicio-
nes de volar, del peso y balance de la información y del manual de operaciones, el
cual incluye los procedimientos de urgencia

• Verificar los indicadores de nivel del combustible y el selector de este último

• Hacer girar el interruptor maestro hacia la posición de apagado

Como se muestra en el diagrama de actividades de la figura 3-22, los pasos se llevan
a cabo de manera consecutiva. (Ésta es la manera en que realicé la inspección el primer

03 KIMMEL.indd 74 11/4/07 7:01:29 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 75

par de veces que la llevé a cabo.) Un piloto experimentado (un experto del dominio) le
dirá que se requieren unos cuantos instantes para que los alerones bajen, de modo que
algunas de las otras verificaciones se pueden llevar a cabo en forma simultánea. Podemos
ajustar el diagrama de actividades como se muestra en la figura 3-23.

Figura 3-22 Nuestra comprensión inicial es que cada una de las tareas de la actividad se realiza
en forma consecutiva.

Verificar el interruptor
de ignición

Bajar los
alerones

Verificar los documentos
(AROW)

Verificar el nivel
de combustible

Verificar el selector
de combustible

Girar el interruptor maestro
a la posición de apagado

(Alerones por completo extendidos)

(Ignición en posición de apagado)

Girar el interruptor maestro a
la posición de encendido

03 KIMMEL.indd 75 11/4/07 7:01:30 PM

 www.FreeLibros.me

Manual de UML 76

Verificar el interruptor
de ignición

Girar el interruptor maestro
a la posición de encendido

Verificar los documentos (AROW)

Verificar el nivel
de combustible

Bajar los
alerones

Verificar el selector
de combustible

Girar el interruptor maestro a
la posición de apagado

(Alerones por completo extendidos)

Figura 3-23 Hacer que algunas tareas se realicen de manera simultánea mejorará el tiempo para
la compleción de la actividad.

(Ignición en posición de apagado)

03 KIMMEL.indd 76 11/4/07 7:01:30 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 77

Saber cuándo renunciar
La aplicación de las reglas de manera uniforme le ayudará a trabajar con eficiencia en
el transcurso de la fase de modelado del desarrollo. Con esto presente, recuerde que dije
que una idea importante es captar los caso de usos más críticos y abordarlos primero. Lo
mismo se cumple para los diagramas de actividades. Identifique los casos de uso más
críticos y cree los diagramas de actividades para aquellos que requieren algo de examen.
Por ejemplo, es necesaria la autenticación de un usuario en Motown-jobs.com, pero éste
es un problema bien entendido. Yo no pasaría una gran cantidad de tiempo creando un
diagrama de actividades para esto y no trabajaría en él antes que en aquellos relacionados
con mi caso de uso primario, “Administrar una lista de trabajo”.

Si no está seguro de cuántos diagramas de actividades debe crear, entonces intente
crear un diagrama de actividades para cada una de las funciones primarias de sus casos
de uso más importantes. Intente tener tanto acerca de la actividad modelada con tanta
rapidez y tanta exactitud como pueda. De inmediato, regrese para comprobar con sus
expertos del dominio y examine las actividades para ver si ha captado los puntos más
sobresalientes.

Por último, no permita quedarse atascado aquí. Si no puede llegar a un consenso sobre
lo completo de una actividad particular, entonces déjela a un lado y acuerde en regresar
a ella. Puede haber otros elementos del problema que aumentarán su comprensión, o la
de sus usuarios acerca del problema en general para resolver aquél que dejó a un lado. La
clave es no quedarse atascado demasiado pronto en cualquier problema particular.

Examen
1. Los sinónimos para transición son

a. conector y flujo.

b. estímulo y flujo.

c. estímulo y conector.

d. acción y evento.

2. En general, los diagramas de actividades constan de

a. nodos y estímulos.

b. acciones y transiciones.

c. acciones, decisiones y flujos.

d. símbolos y líneas.

03 KIMMEL.indd 77 11/4/07 7:01:30 PM

 www.FreeLibros.me

Manual de UML 78

3. Se puede mostrar una excepción en un diagrama de actividades con un estímulo en
forma de rayo.

a. Verdadero

b. Falso

4. En un nodo de decisión y en uno de fusión se usan

a. símbolos diferentes.

b. símbolos idénticos.

c. símbolos idénticos o diferentes, dependiendo del contexto.

5. Los flujos múltiples que entran a un nodo de acción constituyen

a. una fusión implícita.

b. una unión implícita.

6. Todo flujo espera en una fusión y una unión hasta que todos los flujos hayan lle-
gado.

a. Verdadero

b. Falso

7. La metáfora de carril ya no se usa

a. porque los carriles ya no son parte del UML.

b. porque las particiones pueden ser multidimensionales y no se ven como ca-
rriles.

c. Todavía se usa la metáfora de carril.

d. Tanto b como c.

8. Pueden existir acciones en dos particiones de una actividad al mismo tiempo, en
dimensión diferente.

a. Verdadero

b. Falso

9. Un nodo de decisión y uno de fusión se representan por

a. un óvalo.

b. un círculo.

c. un rectángulo.

d. un diamante.

03 KIMMEL.indd 78 11/4/07 7:01:30 PM

 www.FreeLibros.me

CAPÍTULO 3 Diagramación de características como procesos 79

10. Los diagramas de actividades son diferentes de los de flujo porque los de activida-
des permiten

a. carriles.

b. comportamiento paralelo.

c. nodos de decisión.

d. acciones.

Respuestas
 1. b

 2. a

 3. a

 4. b

 5. b

 6. a

 7. d

 8. a

 9. d

10. b

03 KIMMEL.indd 79 11/4/07 7:01:30 PM

 www.FreeLibros.me

03 KIMMEL.indd 80 11/4/07 7:01:30 PM

 www.FreeLibros.me

CAPÍTULO

81

Desmitificar significa “exponer algo, hacerlo directo o lanzar luz sobre ello” y en
cada capítulo se hace esto implícita o explícitamente. En este capítulo, me gustaría
empezar mostrándole el camino ahora mismo. Hay varios tipos de diagramas de
Unified Modeling Language (uml); algunos son redundantes y, definitivamente, no
necesita crear todo tipo de diagramas para tener un buen diseño. Existe más de un
tipo de diagramas de interacción y la regla de evitar la redundancia es de lo más
pertinente para este capítulo.

Los dos diagramas comunes de interacción son los diagramas de secuencia y los
de colaboración (o comunicación). Estos diagramas le dicen exactamente lo mis-
mo. Las secuencias tienen un ordenamiento explícito en el tiempo y son lineales, y
las colaboraciones tienen un ordenamiento “rotulado” en el tiempo y son geométri-
cas. Sólo necesita uno u otro, pero definitivamente no ambos.

Me gustan los diagramas de secuencia; son más comunes, muy fáciles de crear y
están organizados de manera natural, y no necesitamos indicar el ordenamiento en

Comportamientos
con diagramas
de interacción

4

04 KIMMEL.indd 81 11/4/07 7:01:57 PM

 www.FreeLibros.me

Manual de UML 82

el tiempo mediante la anotación de los mensajes. Como consecuencia, en este capítulo
haré hincapié en el diagrama de secuencia, pero hablaré con brevedad (y mostraré) los
diagramas de colaboración para que usted se familiarice con ellos. (Si, finalmente, deci-
de que le gusta la organización geométrica de los diagramas de colaboración, entonces
úselos. Sin embargo, recuerde que no necesita tanto secuencias como colaboraciones, y
muchas herramientas uml convertirán con facilidad, en forma automática, las secuencias
en colaboraciones y viceversa.)

En este capítulo, le mostraré cómo

• Identificar los elementos de los diagramas de secuencia

• Crear diagramas de secuencia y de colaboración

• Comprender el ordenamiento en el tiempo de los diagramas de interacción

• Usar los diagramas de interacción para descubrir clases y métodos

• Modelar escenarios de éxito y falla con el uso de los marcos de interacciones intro-
ducidos en el UML versión 2.0

• Usar secuencias para examinar el comportamiento de muchos objetos de uno a otro
lado del caso de uso

Elementos de los diagramas de secuencia
En todo diagrama sólo se usa un subconjunto de los símbolos y de la gramática que cons-
tituyen el uml. El aprendizaje acerca de esos símbolos y de la gramática específica es un
mal esencial. Es importante tener en cuenta que no necesita recordar todas las palabras
de un lenguaje para comunicarse en forma eficaz; no puedo recordar con precisión qué
significa solecismo, como en “porque es el solecismo de un príncipe pensar en controlar
el fin y, sin embargo, no soportar el medio”; pero es importante dominar un lenguaje para
emplearlo en forma creativa.

NOTA Es importante recordar que el UML es un lenguaje en evolución. Como con los
lenguajes hablados, se puede tener comunicación eficaz con una comprensión básica
del lenguaje. La clave es recordar que hay que dejar las leyes del lenguaje a otros. (En
este caso, deje las leyes del lenguaje al Object Management Group.)

Tomemos un par de minutos para examinar los símbolos y la gramática útiles de
los diagramas de secuencia. Empezaremos con los elementos básicos y esenciales de los
diagramas de secuencia: las líneas de vida y los mensajes. (Vale la pena hacer notar que
se puede tener un diálogo aceptable con sólo estos dos elementos de los diagramas de
secuencia.)

04 KIMMEL.indd 82 11/4/07 7:01:57 PM

 www.FreeLibros.me

CAPÍTULO 4 Comportamientos con diagramas de interacción 83

Uso de las líneas de vida de objetos

Una línea de vida es un rectángulo con una recta vertical que desciende de ese rectángulo.
La línea de vida representa un ejemplo de una clase, y la línea que desciende en forma ver-
tical es un lugar conveniente para sujetar mensajes entrantes y salientes. Agregar múltiples
líneas de vida a un solo diagrama y sujetarles mensajes ordenados en el tiempo le permiten
mostrar todas las clases y los mensajes necesarios para completar un escenario descrito
por un caso de uso. Mediante la eliminación de brechas ambiguas o evitando la repetición
de clases y mensajes, puede obtener una solución completa, un escenario a la vez.

Una línea de vida de un objeto toma forma como un objeto que representa una parte
de un papel en un caso de uso. Hablaré más acerca de las líneas de vida conforme avan-
cemos; por ahora, sólo observe el símbolo de la figura 4-1.

Las líneas de vida de objetos pueden representar actores u objetos. Todos los actores y
objetos pueden actualizarse o no como código. Esto puede sonar confuso, pero no lo es.
Suponga, por ejemplo, que estamos estructurando un sistema de reservaciones de boletos
para una línea aérea. Un actor podría ser una persona que trabaje en el mostrador en la
terminal o en un quiosco [usado para e-tickets (boletos electrónicos)]. La persona es un
participante importante en la secuencia de emisión de boletos, pero no se representará
mediante el código. Un quiosco también es un participante importante y, hasta cierto
punto, se representará mediante el código. De este modo, podemos referirnos a un actor
llamado “Autoridad para emisión de boletos” y dar a entender que puede ser tanto la
persona como el quiosco.

En algunas herramientas de modelado se usa el actor con figura de palillos con una
línea de vida sujeta y, en otras, se usa un cuadro con una figura de palillos o el estereotipo
«actor». Más importante que la notación precisa es recordar que un actor puede realizarse
o no como código y que una línea de vida puede ser un actor.

Figura 4-1 Una línea de vida de un objeto representa un ejemplo de una clase y una línea colo-
cada de manera conveniente para permitir la conexión de objetos por medio de mensajes.

algúnObjeto

04 KIMMEL.indd 83 11/4/07 7:01:58 PM

 www.FreeLibros.me

Manual de UML 84

Una línea de vida también puede representar una clase actualizada. Lo que es impor-
tante saber es que una línea de vida es, en general, un nombre que se puede codificar o no
como una clase, pero que definitivamente, es algo que puede interactuar con el sistema
de usted, y que una línea de vida es también sólo un rectángulo con una línea vertical que
desciende de él.

Activación de una línea de vida

Los objetos tienen una duración. Por ejemplo, en lenguaje determinístico, como C++, un
objeto dura hasta que se llama al destructor. En un lenguaje no determinístico como C#
(pronunciado “C sharp”), un objeto dura hasta que se recoge la basura. Esto significa que
el programador en realidad no sabe cuándo se va el objeto. Sin embargo, los modeladores
no están por completo restringidos por el lenguaje de implementación.

Desde nuestra perspectiva, sólo nos preocupamos cuando empezamos a usar un objeto
y cuando terminamos de usarlo, a menos que éste represente un recurso finito. En ambos
casos, para los fines prácticos, el símbolo de activación representa la amplitud de la dura-
ción de un objeto. También es importante saber que un objeto se puede representar como
creado y destruido con el uso de una sola línea de vida.

El símbolo de activación es un rectángulo vertical que reemplaza la línea de vida en
el transcurso de la duración de la existencia de ese caso (figura 4-2), teniendo presente
que un objeto se puede crear y destruir muchas veces y que se usa una línea de vida para
representar todos los casos de esa clase en una secuencia. (Un poco más adelante, hablaré

Figura 4-2 Una línea de vida con un símbolo de activación anotado.

Agente de
reservaciones

Símbolo de activación

04 KIMMEL.indd 84 11/4/07 7:01:58 PM

 www.FreeLibros.me

CAPÍTULO 4 Comportamientos con diagramas de interacción 85

acerca de la destrucción determinística.) Si queremos expresar mensajes anidados o re-
cursivos, entonces podemos apilar horizontalmente los símbolos de activación.

Envío de mensajes

Los mensajes son líneas dirigidas que conectan líneas de vida. La línea se inicia en una
línea de vida, y la flecha apunta hacia aquella línea de vida que contenga el mensaje
invocado. El mensaje puede empezar y finalizar en la misma línea de vida; a esto se le
conoce como llamada anidada. Un triángulo relleno representa un mensaje síncrono; un
triángulo de palillos representa un mensaje asíncrono, y se usa una línea punteada para
los mensajes de retorno. Incluidos como mensajes posibles, se encuentran los mensajes
hallados y los perdidos. Un mensaje hallado tiene un receptor conocido, pero el emisor
no se conoce; uno perdido tiene un emisor conocido, pero no receptor especificado. En la
figura 4-3, se muestra cada tipo de mensaje rotulado con claridad.

Figura 4-3 Símbolos de llamadas de los métodos síncrono y asíncrono.

Objeto1 Objeto2

Mensaje síncrono

Mensaje anidado

Mensaje asíncrono

Mensaje de retorno

Mensaje de
retorno anidado

Mensaje perdido

Mensaje hallado

04 KIMMEL.indd 85 11/4/07 7:01:59 PM

 www.FreeLibros.me

Manual de UML 86

También podemos especificar deconstrucción determinística de objetos agregando un
círculo con una X en el origen del mensaje. Algunos lenguajes, como Visual Basic.net
y Java, no permiten el borrado determinístico de objetos, pero un lenguaje como C++ lo
requiere. (Es posible que usted rara vez encuentre un mensaje de borrado, a menos que
sea crítico que les recuerde a los desarrolladores que liberen recursos finitos.)

Suponga que en Motown-jobs.com queremos usar un esquema específico de auten-
ticación y autorización. Podríamos crear una secuencia que describa cómo queremos
implementar el caso de uso “Entrar”. Observe la secuencia en la figura 4-4 y vea si puede
seguirla de uno a otro lado. Después de la figura está una descripción de la secuencia.

En el objeto usuario se usa el estereotipo actor. (Podría usar también un símbolo de
actor.) El usuario no se realizará como código, pero participa en la secuencia. Empezando
desde arriba a la izquierda y realizando nuestro camino hacia abajo a la derecha, fijamos
el nombre de usuario y la contraseña, y a continuación enviamos el mensaje “Entrar”.
(Esto se interpreta como la forma para “Entrar”, teniendo un método llamado “Entrar”.)

Figura 4-4 Diagrama de secuencia para autenticar un usuario.

«actor»
Usuario

FormaparaEntrar EnvolturadeCifrado DatosdelUsuario

fijar_NombredeUsuario

fijar_Contraseña

Entrar

Verdadero

CifrarContraseña

Leer

DatosdelUsuario

ValidarUsuario

04 KIMMEL.indd 86 11/4/07 7:01:59 PM

 www.FreeLibros.me

CAPÍTULO 4 Comportamientos con diagramas de interacción 87

Enseguida, la contraseña proporcionada por el usuario se cifra y se compara con la con-
traseña cifrada almacenada como parte de los DatosdelUsuario. Si ValidarUsuario tiene
éxito, entonces retornamos un mensaje Booleano Verdadero.

El diagrama de secuencia es bueno para mostrarnos cómo se orquestan los objetos y
se usan los actores de uno a otro lado de un caso de uso, pero no son buenos para mos-
trarnos cómo se implementa este comportamiento. Por ejemplo, pudimos usar el cifrado
con Secure Hash Algorithm 1 (sha1, Algoritmo Seguro de Verificación) con ingenio y
almacenar los datos del usuario con una contraseña cifrada, pero la secuencia no aclara
esto. (Para obtener una resolución en cuanto a cómo implementar una secuencia, consulte
la sección titulada “Comprensión de lo que nos dicen las secuencias”.)

Adición de restricciones y notas

Puede agregar notas y restricciones con el fin de ayudar a quitar ambigüedad al signifi-
cado de aspectos particulares de sus diagramas de secuencia. El uml describe la manera
en que se agregan estos elementos, pero en la práctica, varían un poco, dependiendo de la
herramienta que use. Por ejemplo, podríamos agregar una nota al diagrama de la figura
4-4 que indique que estamos usando sha1 y un valor de ingenio, y almacenando los datos
de la contraseña sólo en una forma cifrada (figura 4-5).

Las restricciones se pueden agregar como texto llano, pseudocódigo, código real u Ob-
ject Constraint Language (ocl, lenguaje para restricciones de objetos). Las restricciones
en código real o en ocl pueden ayudar a las herramientas uml de generación de código a
generar líneas del mismo. En algunos procesos pesados de modelado, la habilidad para
generar código puede ser una necesidad, pero hasta la fecha, parece más difícil crear
modelos uml que generan código granular que escribir el propio código. Usted deberá
decidir por sí mismo si necesita modelos moderadamente detallados o muy detallados.

SUGERENCIA Los modelos con los que se generan aplicaciones completas no son realis-
tas y resultan imprácticos. Evite caer en la trampa de tratar de crear modelos perfectos
con detalle suficiente para escupir una aplicación.

Uso de marcos de interacción

Los marcos de interacción (o fragmentos combinados) son nuevos en el uml versión
2.0. Estos marcos son regiones rectangulares que se usan para organizar los diagramas
de interacción (diagramas de secuencia y de tiempos). Los marcos de interacción pueden
rodear un diagrama completo de interacción o sólo parte del mismo. Cada marco de in-
teracción se etiqueta con una palabra específica (o una abreviatura de esa palabra) y cada
tipo de marco de interacción transmite alguna información específica. En la tabla 4-1, se
definen los tipos actuales de marcos de interacción.

04 KIMMEL.indd 87 11/4/07 7:01:59 PM

 www.FreeLibros.me

Manual de UML 88

Figura 4-5 Uso de notas para agregar detalles a sus diagramas de secuencia.

Tabla 4-1 Tipos de marcos de interacción.

Alt

Bucle

Neg

Opt

Par

Ref

Región

Rod

Fragmentos alternativos (es decir, lógica condicional); sólo condiciones guardianes que
evalúan para que se ejecute lo verdadero.

El guardián indica cuántas veces se ejecutará esta parte.

Una interacción inválida.

Equivalente a un alt con una condición (es decir, una condición sin sentencia de otro
modo).

Los fragmentos se ejecutan en paralelo: piense en encaminamiento múltiple.

Hacer referencia a una interacción definida en otro diagrama.

Región crítica; piense en no reentrante o sólo un camino a la vez.

Usado para rodear un diagrama completo de secuencia, si se desea.

«actor»
Usuario

FormaparaEntrar EnvolturadeCifrado DatosdelUsuario

fijar_NombredeUsuario

fijar_Contraseña

Entrar

Verdadero

ValidarUsuario

CifrarContraseña

Leer

DatosdelUsuario

Usar sha1 e ingenio para cifrar/descifrar la contraseña y sólo almacenar
contraseña cifrada.

04 KIMMEL.indd 88 11/4/07 7:02:00 PM

 www.FreeLibros.me

CAPÍTULO 4 Comportamientos con diagramas de interacción 89

El uml nació para ampliarse. Si piensa en otra clase de marco, entonces úselo, siempre
que lo defina. Desviarse del uml estandarizado es algo que se hace con mucha frecuen-
cia, lo cual es coherente con la manera en que evolucionan todos los lenguajes. Existen
ejemplos de jerga que se adoptan en los lenguajes hablados constantemente.

Pasemos unos minutos observando los marcos de interacción. La clave para usar los
marcos de interacción es elegir el tipo de marco que necesita, especificar las condiciones
guardianes que determinan cómo se ejecuta la interacción que está en el marco y agregar
el número correcto de fragmentos (o divisiones del marco). Empecemos con el marco de
bucle, el cual, básicamente, es una construcción del tipo para… a continuación, para…
cada o mientras, como podría aparecer en un modelo uml (figura 4-6).

NOTA Antes, en este libro, dije que usaría Visio para demostrar que no necesita gastar
miles de dólares para crear modelos UML que se puedan usar. En la figura 4-6, se demues-
tra que podemos crear nuevos elementos para UML versión 2.0 —por ejemplo, marco de
interacción de bucle—, aun cuando Visio no los permita en forma directa. (La interacción
de la figura se creó con herramientas sencillas de Visio para trazar líneas.) En el caso de
los marcos de interacción, no he visto alguna herramienta actual del UML que soporte esta
construcción. La versión actual de Rational para XDE y Visio no incluye marcos de inte-
racción. Usted puede verificar las ofertas de Togethersoft y de Poseidon para UML.

Figura 4-6 Marco de interacción en el que se muestra el marco de bucle; estamos formando un
bucle mediante la creación de múltiples listas de trabajos.

patrón FormaWeb ListadeTrabajo SistemadeFacturación

Bucle (mientras haya
más trabajos)

Introducir
detalles del

trabajo
Crear

Almacenar

PrepararFactura

04 KIMMEL.indd 89 11/4/07 7:02:00 PM

 www.FreeLibros.me

Manual de UML 90

Leemos el diagrama de secuencia de la misma manera que antes, excepto que todos
los mensajes en el marco de bucle son parte del comportamiento repetitivo que describe
esta secuencia. (Una notación de estilo más antiguo era usar un asterisco como condición
guardián. En la figura 4-7, se muestra el mismo modelo usando el símbolo de multipli-
cidad [un asterisco]).

La clave para tener éxito al modelar es recordar que esto se hace en un mundo con res-
tricciones reales: presupuesto para las herramientas, tiempo disponible, la compatibilidad
de la herramienta, la definición actual del uml, etc. No se atasque en las leyes del lengua-
je. Si su herramienta no soporta una construcción particular, invente. En la práctica, yo no
pasaría tiempo para trazar en forma manual un marco de interacción, si mi herramienta
no lo soporta; usaría la condición guardián asterisco.

En la figura 4-8, se muestra otro marco común de interacción, el marco alternativo.
Suponga que ofrecemos gratificaciones para los clientes que publican con frecuencia un
cierto número de trabajos. Puede ser que queramos pasar estos clientes a un sistema dife-
rente de facturación, quizás ofreciendo un descuento especial por volumen.

Figura 4-7 La condición guardián —[*]— por el nombre del mensaje “Introducir detalles del
trabajo” indica multiplicidad o repetición, en un estilo antiguo ideado para indicar un bucle.

patrón

(*) Introducir detalles del
trabajo

FormaWeb ListadeTrabajo SistemadeFacturación

Crear

Almacenar

PrepararFactura

04 KIMMEL.indd 90 11/4/07 7:02:00 PM

 www.FreeLibros.me

CAPÍTULO 4 Comportamientos con diagramas de interacción 91

Comprensión de lo que nos dicen las secuencias
Los diagramas de secuencia de estilo más antiguo tenían una naturaleza singular, pero
con los marcos de interacción podemos transmitir de manera más conveniente las al-
ternativas de comportamiento, comportamiento paralelo y bucles y, evidentemente,
secuencias relacionadas con referencias. Implícito en el ordenamiento de arriba a la
izquierda hacia abajo a la derecha de los diagramas de secuencia, se encuentra un or-
denamiento en el tiempo que muestra cómo un solo caso de uso queda soportado por
múltiples objetos.

Las secuencias no necesitan ser complejas para ser útiles; lo más importante son los
objetos de uno a otro lado de la horizontal y la línea de vida de cada uno de ellos, así
como el orden y el nombre de los mensajes enviados entre los mismos. En realidad, usted
tiene la opción de escalonar las líneas de vida, creando un efecto de dentado; en ocasio-
nes verá este estilo de secuencia. Escalonado o alineado horizontalmente, el efecto es el
mismo.

Figura 4-8 Ejemplo de un marco alternativo de interacción.

patrón FormaWeb ListadeTrabajo SistemadeFacturaciónpara
ClientePreferente

Bucle (mientras haya
más trabajos)

Introducir
detalles del

trabajo
Crear

Almacenar

(cliente preferente)alt

PrepararFactura

PrepararFactura

Sistemade
Facturación

04 KIMMEL.indd 91 11/4/07 7:02:01 PM

 www.FreeLibros.me

Manual de UML 92

NOTA Un modelo completo es subjetivo. En el Rational Unified Process (RUP, Proceso
racional unificado), es preferible contar con más detalle. En el empleo de la metodolo-
gía Agile, se le alienta a crear modelos que sean apenas suficientemente buenos. Al final
—quizás dentro de 50 años— se requerirá que los modelos de software sean tan detallados
y tan rigurosos como los diagramas de alambrados electrónicos, pero ese día no está aquí
todavía. Yo prefiero algo más detallado que los modelos apenas suficientemente buenos
prescritos por la metodología Agile, pero nunca tanto como para generar líneas de código.

Use diagramas de secuencia para mostrar la manera en que varios objetos sustentan
un caso de uso. Aun cuando las secuencias sean buenas como para mostrar cómo se
presentan los objetos en un caso de uso, no lo son en la descripción del comportamiento
específico. Si quiere modelar con más detalle del que soporta una secuencia, entonces
considere usar un diagrama de actividad o el propio código; modelar el código en el nivel
de sentencia generalmente se capta de modo más eficaz si se escribe el código. Si quiere
tener una vista ortogonal —muchos casos de uso, un solo objeto—, entonces necesita un
esquema de estado (vea el capítulo 8).

Descubrimiento de objetos y mensajes
Los casos de uso deben contener escenarios de éxito y de falla. En el uml versión 2.0,
puede usar la construcción de alternación para mostrar lo que sucede cuando las cosas
van como se planeó y qué hacer cuando las cosas van desorganizadas.

Los diagramas de secuencia también son buenos para ayudarle a descubrir las clases y
los métodos. Las clases se pueden identificar con facilidad como un nombre para el ejem-
plo de sus objetos, y los métodos son los mensajes que se invocan en un objeto. Puede no
ser evidente de inmediato cuáles son los parámetros para estos métodos, pero las clases y
los métodos son un buen principio.

Debido a la propia naturaleza de las secuencias, también pueden ser buenos para ayu-
darle a identificar las brechas. Por ejemplo, suponga que descubre que una secuencia
tiene una gran cantidad de notas para explicar lo que está sucediendo. Esto puede indicar
que allí necesitan estar algunos objetos y mensajes bien nombrados que definan el com-
portamiento anotado. (En general, encuentro que las clases y los métodos bien nombra-
dos en el código son preferibles a los comentarios que intentan aclarar los métodos largos
y los objetos bien nombrados, y los mensajes en los modelos son preferibles a una gran
cantidad de notas.) Permita que la secuencia se autoexplique hasta el punto en que sea
posible. Considere la figura 4-9, en la cual se muestra un diseño posible para el compor-
tamiento de búsqueda para Motown-jobs.com.

En la figura, tenemos un solicitante de trabajo, una página de búsqueda y algo llamado
motor de búsqueda. Este diseño no nos habla de la forma de los criterios de búsqueda

04 KIMMEL.indd 92 11/4/07 7:02:01 PM

 www.FreeLibros.me

CAPÍTULO 4 Comportamientos con diagramas de interacción 93

o si los validamos o no. Nada sabemos acerca del motor de búsqueda —qué hace y de
dónde recupera los datos— y no tenemos indicio acerca de la forma de los resultados.
Esta secuencia necesitaría varias notas y una gran cantidad de soporte verbal. Podemos
hacerlo mejor (figura 4-10).

En la secuencia revisada de búsqueda, mostramos que estamos usando un objeto pará-
metro —“CriteriosdeBúsqueda”— para almacenar, validar y pasar la información de bús-
queda que hace entrar al usuario; también estamos describiendo que el motor de búsqueda
lee las listas de trabajo desde un objeto base de datos —en este punto, el objeto base de
datos sencillamente podría representar una capa de acceso a los datos— y este objeto pone
la información leída en una colección tipo de objetos “ListadeTrabajo”. La nueva secuen-
cia es algo que en realidad podemos implementar con muy poca ambigüedad.

Otra característica implícita de la nueva secuencia de la figura 4-10 es que los demás
ahora entenderán con claridad lo que pretendemos al usar objetos personalizados para la
“ListadeTrabajo”. Antes de proceder con la implementación, podríamos tener una dis-
cusión acerca del diseño. Además, debido a que las piezas están delineadas con mayor
claridad, podríamos dividir el trabajo entre los especialistas de uno a otro lado del equipo
de implementación.

NOTA La especialización del papel es al menos tan vieja como Wealth of Nations de Adam
Smith o las líneas de montaje de Henry Ford, pero, en realidad, apenas se está captando en
la industria del software. En nuestra industria relativamente joven, todavía parece que se
prefieren las personas de conocimientos variados y los sufrimientos como resultado.

Figura 4-9 Un mal diseño para la búsqueda de los trabajos en lista.

Solicitante
de trabajo

HallarunaPágina
deTrabajos

Motorde
Búsqueda

Buscar

Resultados
delaBúsqueda

Introducir criterios
de búsqueda

04 KIMMEL.indd 93 11/4/07 7:02:01 PM

 www.FreeLibros.me

Manual de UML 94

Elementos de los diagramas de colaboración
(o comunicación)

Un diagrama de colaboración —reapodado diagrama de comunicación en el uml ver-
sión 2.0— transmite la misma información que un diagrama de secuencia. En donde el
ordenamiento en el tiempo es implícito en la disposición lineal de un diagrama de se-
cuencia, indicamos explícitamente el orden en el tiempo numerando los mensajes en los
diagramas de colaboración geométricamente organizados.

Los símbolos clave en los diagramas de colaboración son el rectángulo, llamado pa-
pel clasificador, y una línea que indica el mensaje, una vez más llamada conector. El
papel clasificador representa los objetos. Los conectores representan objetos conectados
y una flecha nombrada indica el mensaje así como el emisor y el receptor. En la figura
4-11, se muestra la secuencia de la figura 4-10 convertida a un diagrama de colaboración.

Como puede ver, la colaboración tiene los mismos elementos pero pocos detalles. La
naturaleza compacta y la menor cantidad de elementos hacen que las colaboraciones

Figura 4-10 Comportamiento de búsqueda de Motown-jobs.com con un diagrama de secuencia
detallado.

«actor»
Solicitantedetrabajo

 Introducir
criterios de
búsqueda Crear

Criterios

Validar

Buscar(criterios)

ColeccióndeListasdeTrabajos

ActualizarVista

Colección
deListas

deTrabajos

Bucle

Leer listas
de trabajos
(criterios)

Agregar

Crear

Crear

(mientras más)

Criterios
deBúsqueda

Motorde
Búsqueda

BasedeDatos ListadeTrabajo
ColeccióndeListas

deTrabajos
HallarunaPágina

deTrabajos

04 KIMMEL.indd 94 11/4/07 7:02:02 PM

 www.FreeLibros.me

CAPÍTULO 4 Comportamientos con diagramas de interacción 95

sean convenientes al garabatear los diseños. Para leer el diagrama, parta del mensaje 1 y
siga los mensajes por número. No se pretende que en los diagramas de colaboración se
usen marcos de interacción y, como resultado, no transmiten tanta información como el
diagrama de secuencia.

Observe el esquema de numeración de la figura 4-11. Siempre he usado un esquema
sencillo de numeración, tal como el descrito en esta figura, pero el uml versión 2.0 válido
requiere un esquema de numeración anidada. Un esquema sencillo de números es 1, 2, 3,
4, etc. El esquema de números anidados del uml versión 2.0 es 1.1, 1.2, 2.1, 2.2, etc. El
esquema de numeración anidada está diseñado para mostrar llamadas de mensajes anida-
dos, pero se puede salir de control con rapidez. Si quiere usar el sistema de numeración
del uml versión 2.0, entonces los mensajes se renumerarían como sigue: 1 sigue siendo 1,
2 se convierte en 1.1, 3 se convierte en 1.1.1, 4 se convierte en 1.2, 5 se convierte en 2, 6
se convierte en 2.1, 7 se convierte en 2.2 y 8 se convierte en 2.3.

SUGERENCIA Considere usar los diagramas de colaboración cuando trabaje sobre un
pizarrón blanco o sobre servilletas, o donde sea que garabatee sus inspirados diseños.
La naturaleza compacta y el uso de pocos adornos de los diagramas de colaboración
los hacen más manejables cuando se diseña en forma manual.

Los diagramas de colaboración tienen otros elementos comunes como las notas, las
restricciones y los estereotipos; estos elementos se usan de la misma manera que en los
diagramas de secuencia.

Figura 4-11 Búsqueda de listas de trabajos representada en un diagrama de colaboración.

«actor»
Solicitantedetrabajo

HallarunaPágina
deTrabajos

MotordeBúsqueda CriteriosdeBúsqueda

BasedeDatos ListadeTrabajo

ColeccióndeListasdeTrabajos

1: IntroducirCriteriosdeBúsqueda

4: B
uscar 2:

 C
re

ar

3: V
alidar

7: Crear

5: LeerListasdeTrabajos

8: Agregar

 6: Crear

04 KIMMEL.indd 95 11/4/07 7:02:02 PM

 www.FreeLibros.me

Manual de UML 96

Igualación del diseño con el código
Los diagramas de interacción le proporcionan información suficiente como para empezar
a codificar. Los objetos son casos de clases, de tal manera que necesita definir una clase
para cada objeto. En general, los mensajes se igualan con los métodos, y el método se
coloca en la clase del receptor (no del llamador).

En general, he encontrado que con las secuencias tengo la mayor parte de la informa-
ción que necesito para empezar a escribir el código. La manera en que se implementa el
código se basa en un par de factores: 1) la experiencia que usted tenga y 2) el lenguaje de
implementación. Por ejemplo, “ListadeTrabajo” y “ColeccióndeListasdeTrabajos” repre-
sentan una clase y una colección de objetos de esa clase. Si tuviera que implementar esto
en C#, entonces “ColeccióndeListasdeTrabajos” se podría heredar de “System.Collectio-
ns.CollectionBase”, y esa decisión impulsa su implementación (vea la lista).

public class ListadeTrabajo
{}

public class ColeccióndeListasdeTrabajos: System.Collectio-
ns.CollectionBase
{}
 public ListadeTrabajo this [int index]
 {
 get{return (ListadeTrabajo)List[index];}
 set{List[index] = value;}
 }

 public int Add (ListadeTrabajo value)
 {
 return List.Add(value);
 }
}

Advierta que en esta lista heredo de una colección base específica, defino una propiedad
llamada esto y le agrego el método mostrado en la secuencia. Es importante notar que la
secuencia diseñada no indicó la propiedad esto o la clase padre; los diagramas de secuen-
cia no lo harán. En este caso el lenguaje de implementación —C# y la .net Framework
de Microsoft— impulsó esta parte de la decisión. Advierta también que la lista de trabajo
nada nos dice; es una clase vacía. Bien, la “ListadeTrabajo” de la secuencia tampoco nos
dice nada. Los diagramas de secuencia no son buenos para la especificación de detalles del
código; sin embargo, arrancamos interfaces. En este punto, depende de la experiencia de
sus desarrolladores cuánto código pueden escribir. Los desarrolladores menos experimen-
tados necesitarán más detalles, y los más experimentados necesitarán menos. Yo tiendo
a modelar el detalle que es suficiente para mi audiencia; los desarrolladores realizan la
implementación.

04 KIMMEL.indd 96 11/4/07 7:02:02 PM

 www.FreeLibros.me

CAPÍTULO 4 Comportamientos con diagramas de interacción 97

Para empezar a especificar más detalles, como las propiedades, los métodos de soporte
y las relaciones de herencia, podemos usar diagramas de clase. En el capítulo 5 profun-
dizaremos más acerca de los diagramas de clases.

Tenga presente que existe una gran cantidad de conocimiento implícito en esta etapa.
En primer lugar, debe usted saber que es posible que su diseño cambie; en segundo,
cosas tales como las colecciones de salida se basan en patrones y, como se demuestra
en la lista del código, el lenguaje y el marco de referencia (framework) impulsan la im-
plementación; en tercero, existen muchos patrones de diseño comunes y populares (vea
Erich Gamma et al., Design Patterns, Reading, ma: Addison Wesley, 1995) y no siempre
es necesario hacer mucho más que expresar que se usa un patrón; no se requiere en abso-
luto que usted cree modelos para patrones públicos bien conocidos; y lo último pero no
lo menos importante, existe un tema conocido como refactorización. La refactorización
es un medio metódico de simplificación del código; se deriva de una tesis doctoral de
William Opdike y un libro muy publicitado, escrito por Martin Fowler (vea Refactoring:
Improving the Design of Existing Code, Reading, ma: Addison Wesley, 1999). Cuando
se emplea la refactorización, puede significar en la práctica que una decisión respecto a
un diseño se puede mejorar en el transcurso de la implementación. Si la refactorización
es mejor que el diseño, entonces siga adelante y modifique el código, y sencillamente
actualice el modelo para reflejar el cambio.

NOTA En las figuras 4-9 y 4-10, demostramos una refactorización en el diseño cuando
introdujimos el objeto “CriteriosdeBúsqueda”. Esta refactorización se nombra “Intro-
ducir objeto parámetro”, lo cual sencillamente reemplaza una larga lista de paráme-
tros con un solo caso de una clase de parámetros que contiene esos valores. También
nos escurrimos en un patrón de diseño, “Iterador”. La colección tipo que se imple-
mentó como una respuesta para la colección tipo de los objetos “ListadeTrabajo” de
la figura 4-10 se hereda de la CollectionBase de .NET, la cual, a su vez, implementa un
patrón IEnumerable (una implementación del patrón iterador). Los diseños y las imple-
mentaciones buenos se basan en patrones y refactorizaciones. Los buenos modelos de
diseños se basan en un simple, exacto y directo uso del UML y en incorporar patrones de
diseño y refactorizaciones.

Examen
1. Un diagrama de secuencia es un ejemplo de

a. un diagrama de colaboración.

b. un diagrama de interacción.

c. un diagrama de clases.

d. un diagrama de casos de uso.

04 KIMMEL.indd 97 11/4/07 7:02:02 PM

 www.FreeLibros.me

Manual de UML 98

2. Los diagramas de secuencia describen todos los objetos que soporta un solo caso
de uso.

a. Verdadero

b. Falso

3. Los diagramas de secuencia son buenos para mostrar cómo implementar líneas de
código.

a. Verdadero

b. Falso

4. Una diagrama de colaboración y uno de comunicación difieren

a. porque los diagramas de colaboración muestran aquellos objetos que interac-
túan y los de comunicación muestran cómo se comunican los objetos.

b. no en lo absoluto; los diagramas de colaboración fueron sencillamente renom-
brados en el UML versión 2.0.

c. porque los diagramas de colaboración son geométricos y los de comunicación
son lineales.

d. Tanto a como c.

5. Los diagramas de secuencia pueden modelar comportamiento asíncrono y de enca-
minamiento múltiple.

a. Verdadero

b. Falso

6. Los marcos de interacción usan una condición guardián para controlar cuándo y
cuál fragmento del cuadro ejecutar.

a. Verdadero

b. Falso

7. El marco de interacción alt, llamado operador de interacción,

a. se usa para mostrar un fragmento inválido.

b. modela comportamiento opcional.

c. muestra lógica condicional.

d. modela comportamiento paralelo.

04 KIMMEL.indd 98 11/4/07 7:02:02 PM

 www.FreeLibros.me

CAPÍTULO 4 Comportamientos con diagramas de interacción 99

 8. Un buen diseño debe incluir tanto diagramas de secuencia como de colabora-
ción.

a. Verdadero

b. Falso

 9. Se usan símbolos de activación para mostrar

a. la duración de un objeto en un diagrama de secuencia.

b. la duración de un objeto en un diagrama de comunicación.

c. cuando se crea un objeto.

d. Ninguno de los anteriores.

10. En el UML versión 2.0 válido se emplea

a. un esquema de numeración anidada para mostrar ordenamiento en el tiempo
en un diagrama de secuencia.

b. un esquema de numeración anidada para mostrar ordenamiento en el tiempo
en un diagrama de comunicación.

c. un esquema de numeración simple para mostrar ordenamiento en el tiempo en
un diagrama de secuencia.

d. un esquema de numeración simple para mostrar ordenamiento en el tiempo en
un diagrama de colaboración.

Respuestas
 1. b

 2. a

 3. b

 4. b

 5. a

 6. a

 7. c

 8. b

 9. a

10. b

04 KIMMEL.indd 99 11/4/07 7:02:02 PM

 www.FreeLibros.me

04 KIMMEL.indd 100 11/4/07 7:02:03 PM

 www.FreeLibros.me

CAPÍTULO

101

En este capítulo se introducen los diagramas de clases, los cuales constituyen la
vista más común y más importante del diseño que usted creará; se les llama estáti-
cos porque no describen acción; lo que hacen es mostrarle cosas y sus relaciones.
Los diagramas de clases se diseñan para mostrar todas las piezas de su solución
—cuáles piezas se relacionan con ésta o se usan como partes de totalidades nue-
vas— y deben transmitir un sentido del sistema que se estructurará en reposo.

Para comunicarse en un nivel técnicamente preciso en el idioma del Unified
Modeling Language (uml), es de gran ayuda aprender palabras como asociación,
composición, agregación, generalización y realización, pero para comunicarse en
forma suficiente y de manera eficaz, todo lo que debe conocer son palabras senci-
llas para describir relaciones completas y parte de ellas; es decir, relaciones padres
y relaciones hijos, y ser capaz de describir cuántas cosas de un tipo están relacio-
nadas con cuántas de otro. Introduciré los términos técnicos, pero no se atasque
intentando memorizarlos. Con la práctica, llegará un momento en que incorporará
el idioma uml a su lenguaje cotidiano.

¿Cuáles son las
cosas que describen

mi problema?

5

05 KIMMEL.indd 101 11/4/07 7:03:21 PM

 www.FreeLibros.me

Manual de UML 102

Un mito común es que si encuentra usted todos los nombres y todos los verbos que
describen su problema, entonces ha descubierto todas las clases y métodos que necesita-
rá. Esto es incorrecto. La verdad es que los nombres y los verbos que describen su pro-
blema de manera suficiente para un usuario son las clases más fáciles de hallar y pueden
ayudarle a completar un análisis útil del problema, pero finalizará diseñando y usando
muchas más clases que son necesarias para llenar los espacios en blanco.

Este capítulo le mostrará cómo crear diagramas de clases y empezará ayudándole a
deducir cómo encontrar la mayoría o todas las clases que necesitará para diseñar una
solución. Un concepto importante es que muy pocos diseños requieren que se descubran
todos los detalles antes de que resulte la programación. (Unas cuantas agencias guberna-
mentales y empresas, como la nasa y General Dyanamics, pueden tener requisitos rígidos
que estipulen la compleción de un diseño, pero en la mayoría de los casos esto conduce
a tiempos de producción muy largos y un gasto excesivo.)

En este capítulo, le mostraré cómo usar los elementos de los diagramas de clases,
cómo crearlos y cómo captar con anticipación algunas ideas; también le mostraré algunas
maneras de descubrir algunas clases y comportamientos menos obvios. El lector apren-
derá cómo

• Identificar y usar los elementos de los diagramas de clases

• Crear diagramas de clases simples pero útiles

• Modelar algunas expresiones avanzadas

• Deducir la manera de descubrir clases y comportamientos de soporte menos obvios

Elementos de los diagramas básicos de clase
Tontamente, en la preparatoria no me gustó la clase de Literatura y me dejaron perplejo
las clases de gramática. Por fortuna, en la universidad empecé a ver el error de mi modo
de pensar. Aun cuando no soy un experto en gramática inglesa, la comprensión de cosas
como preposiciones, frases prepositivas, conjunciones, objetos, sujetos, verbos, tiempos
verbales, adjetivos, adverbios, artículos, voz activa y voz pasiva, así como palabras pose-
sivas plurales y singulares ayuda mucho al escribir estos pasajes. La razón por la que le
digo esto es que, por desgracia, la gramática es un componente del uml porque es un len-
guaje, pero la gramática de éste es mucho más fácil que la del inglés. ¿Cuánto más fácil
es la del uml? La respuesta es que los dos elementos más importantes en los diagramas
de clases, como en otros diagramas, son un rectángulo y una línea. Los rectángulos son
clases y las líneas son conectores que muestran la relación entre esas clases.

Los diagramas de clases del uml pueden parecer tan desafiantes como Hamlet de
Shakespeare o tan fáciles como la prosa de Hemingway en El Sol también sale, pero
ambos pueden relatar una historia con igual propiedad. Como regla general, enfóquese
en las clases y sus relaciones, y use elementos más avanzados, los cuales también expon-

05 KIMMEL.indd 102 11/4/07 7:03:21 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 103

dré, cuando sea necesario. Evite la idea de que los diagramas de clases deben decorarse
ampliamente para que sean útiles.

Comprensión de las clases y los objetos

El rectángulo en un diagrama de clases se llama clasificador. El clasificador puede decir-
le el nombre de la clase y el nombre de un ejemplo de esa clase, llamado objeto. Al final,
las clases incluirán comportamientos y atributos, llamados también, en forma colectiva
características. Los atributos pueden ser campos, propiedades o ambos. Los comporta-
mientos se considerarán como métodos (figura 5-1).

De modo significativo, en los diagramas de clases se usará el sencillo clasificador re-
presentando por la clase “Motocicleta” de la figura 5-1. Los otros tipos son importantes
y vale la pena examinarlos. Tomemos un momento para hacerlo.

SUGERENCIA Cuando empiece a captar clases en sus modelos, concíbalos de modo con-
ceptual como una fase del análisis; basta empezar solamente con clases y relaciones. Las
características se agregan más adelante.

Uso de clases sencillas
La clase (mostrada en la figura 5-1 como “Motocicleta”) es el elemento más común en
el diagrama de clases. Las clases, a final de cuentas, son cosas en su análisis y diseño, y
pueden ser cosas específicas del dominio o cosas de apoyo. Considere el ejemplo de los
dos párrafos siguientes.

La Groves Motorsports de Mason, Michigan, vende motocicletas, atv (vehículos para
todo terreno), vehículos automotores para nieve y accesorios. Si estuviéramos diseñan-

Figura 5-1 Ejemplos de clasificadores en el uml.

Ejemplo de Motocicleta

Clase

Interfaz Entidad persistida

Clase de una clase Genérico o plantilla

Motocicleta
Clasificar

KDX220R

Tipo

+e()

«interfaz»
IVisitante

«tipo de datos»
Cliente

«metaclase»
MiMetaclase

05 KIMMEL.indd 103 11/4/07 7:03:21 PM

 www.FreeLibros.me

Manual de UML 104

do un sistema de inventario para Groves Motorsports, entonces el personal de ventas, los
compradores y los mecánicos podrían platicarnos acerca de las motocicletas, los atv,
los vehículos para nieve, las botas, los cascos y los artículos de ventas relacionados. Con
base en esta exposición, podríamos deducir con facilidad clases iniciales como “Artícu-
loparaVentas” y “Motocicleta”. Suponga ahora que debemos administrar el inventario
usando una base de datos en forma de relación. Ahora necesitamos saber cuál tipo de base
de datos y cuáles son las clases que describen cómo interactuamos con los artículos del
inventario, es decir, cómo lo leemos y escribimos.

El resultado es que un diagrama de clases puede tener clases que describen los artículos
de inventario, pero otros pueden describir elementos como promociones y ventas, finan-
ciamiento y administración de artículos que no son para venta, pero que pueden ser parte
del inventario de artículos introducidos para mantenimiento. La parte difícil del diseño es
encontrar y describir estas relaciones. Una motocicleta todavía es una motocicleta ya sea
para venta o si se introduce para servicio, y podemos usar la misma clase “Motocicleta”,
pero necesitaremos mostrar tipos diferentes de relaciones basadas en un ejemplo particular
de esa clase.

Uso de objetos
Un tipo de diagrama de clases es un diagrama de objetos. Los diagramas de objetos mues-
tran ejemplos de clases y sus relaciones. En el uml, un objeto se distingue de una clase
subrayando el nombre en el compartimiento superior del rectángulo. Esto se ilustra en la
figura 5-1 por mi Kawasaki kdx 220r inspirada por la crisis de mediados de mi vida.

Uso de interfaces
A menudo los programadores tienen problemas con las interfaces (vea “ivisitante” en la
figura 5-1). Las interfaces son equivalentes a clases abstractas puras. Al decir que una
interfaz es puramente abstracta, estoy afirmando que una interfaz no tendrá código eje-
cutable. Las interfaces constituyen un elemento crítico en los diagramas de clases y el
software; tomemos un momento para entender por qué.

Cuando uso herencia, quiero dar a entender que una cosa también puede concebirse
como otro tipo de cosa. Por ejemplo, tanto una motocicleta como un atv son tipos de
vehículos recreativos. Esta descripción representa una relación de herencia, y en la cual
no se usa una interfaz. Comparativamente, un control remoto envía señales infrarrojas
para cambiar los canales, atenuar el volumen, empezar a grabar o abrir y cerrar la puerta
de una cochera. Los aparatos que reciben estas señales pueden no estar relacionados. Por
ejemplo, tanto una tv como el abridor de la puerta de una cochera tienen una característi-
ca de hacia arriba y hacia abajo, y los abridores de puertas de cocheras y las televisiones
se venden con controles remotos, pero el abridor de la puerta de un cochera no es un tipo
de televisión o viceversa, pero cada uno tiene la capacidad de realizar una operación de

05 KIMMEL.indd 104 11/4/07 7:03:22 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 105

hacia arriba y hacia abajo. Hacia arriba y hacia abajo aumentan o disminuyen el volumen
de una televisión, o hacia arriba y hacia abajo suben y bajan la puerta de una cochera.
Esta capacidad que soporta hacia arriba y hacia abajo a través de un dispositivo de acción
remota es una interfaz o faceta relacionada de cada uno de los aparatos no relacionados.
La forma en que se implementa este comportamiento tampoco está relacionada por com-
pleto, pero no necesita estarlo.

Las interfaces se usan cuando las partes de las cosas tienen facetas semánticamente
similares —comportamientos de hacia arriba y hacia abajo—, pero no tienen genealogía
relacionada.

Por convención, usamos el estereotipo interfaz y colocamos el prefijo “I” a las inter-
faces, como se muestra en la figura 5-1. Considerando la interfaz “ivisitante” de la figura
5-1, podríamos decir que los visitantes tienen una característica tipo. Las pulgas pueden
visitar un perro, y su cuñado puede visitarlo a usted en su casa, pero una pulga es un tipo
de visitante de perro y su cuñado, Enrique, es un tipo de visitante familiar. Las pulgas y
Enrique no son tipos semejantes de cosas (ni con el juego de palabras acerca de los pará-
sitos se pretende que haya semejanzas).

Uso de tipos de datos
Se suele usar el estereotipo de «tipo de datos» para mostrar datos sencillos como “En-
tero” (“Integer”). Si estuviera diseñando un lenguaje de programación, entonces sus
diagramas de clases podrían mostrar tipos de datos, pero en general, yo modelo estos
elementos como atributos de clases y clasificadores de reserva como “Motocicleta” y
“ListadeTrabajo”.

Uso de tipos parametrizados o genéricos
Los sinónimos pueden hacer que la vida sea confusa. En el uml, tipos parametrizados
significa lo mismo que genéricos en C# y Java, y plantillas en C++. Una clase parame-
trizada es aquella en la que, en el tiempo de ejecución, se especifica un tipo de datos
primarios. Para entender las clases parametrizadas, considere un ejemplo clásico.

¿Qué clasifica un algoritmo clasificador? La respuesta es que este tipo de algoritmo
puede clasificar cualquier cosa; números, nombres, inventario, corchetes de impuestos
sobre la renta o listas de trabajos pueden todos ser clasificados. Al separar el tipo de datos
—número, cadena, “ListadeTrabajo”— del algoritmo, tiene un tipo parametrizado. Las
clases parametrizadas se usan para separar la implementación del tipo de datos. En la
clase “Clasificar” de la figura 5-1 se muestra que en un tipo parametrizado se usa el rec-
tángulo con un rectángulo pequeño trazado con líneas punteadas en el que se especifica
el tipo de parámetro.

Vale la pena hacer notar que usar bien las plantillas se considera una parte avanzada del
diseño de software y que existe una cantidad tremenda de software grande sin plantillas.

05 KIMMEL.indd 105 11/4/07 7:03:22 PM

 www.FreeLibros.me

Manual de UML 106

Uso de metaclases
Una metaclase es una clase de una clase. Esto parece haber evolucionado para manejar
el problema de obtención de información del tiempo de ejecución acerca de las clases.
En la práctica, se puede hacer pasar una metaclase como un objeto. Las metaclases se
soportan de manera directa en lenguajes como Delphi; por ejemplo, dada una clase “Lis-
tadeTrabajo”, podríamos definir una metaclase y nombrarla (por convención) “tlistade-
Trabajo”, pasando ejemplos de esta última como parámetro. Se podría usar la metaclase
“tlistadeTrabajo” para crear ejemplos de “ListadeTrabajo”. En un lenguaje como C#,
las metaclases no se soportan en forma directa. En lugar de ello, en C# se usa un objeto
“Type” (“Tipo”) que representa la especie de un ejemplo de una metaclase universal; es
decir, toda clase tiene un metaobjeto asociado que conoce todo acerca de las clases de
ese tipo. Una vez más, en C#, existe la clase “Type” para soportar el descubrimiento del
tiempo de ejecución, dinámico, acerca de las clases.

NOTA Existe otro concepto metadatos, que es semejante a la noción de metaclases. Sin
embargo, metadatos son datos que describen datos y a menudo se usan para transmitir
información adicional relativa a datos; por ejemplo, a veces se usan metadatos para
describir valores válidos para los datos. Suponga que estuviera usted escribiendo un
sistema de contabilidad y que las fechas válidas de las facturas fueran del 1º de enero
de 1990 hasta los tiempos que corren. La mayoría de los tipos de fechas soportan fechas
muy anteriores a la de 1/1/1990, pero usted podría usar el objeto metadatos de fechas
con el fin de indicar que, para sus fines, las fechas válidas empezaron en 1/1/1990, en
lugar de la fecha más antigua para el tipo de datos de su lenguaje.

Existen algunas aplicaciones prácticas para las metaclases. En Delphi, las metaclases se
usan para soportar la creación de un control que se arrastre desde el panel de control (caja de
herramientas) hasta una forma en el momento del diseño. En .net, se usa el objeto “Type”
—un tipo de implementación de la metaclase— para soportar dinámicamente la carga, la
creación y el uso de objetos. Microsoft llama a esta capacidad “Reflection” (“Reflexión”),
pero básicamente es una implementación del idioma de metaclases. Como consecuencia,
cuando los diseñadores de Delphi y Visual Studio estaban diseñando sus respectivas he-
rramientas, puede ser que hayan usado el clasificador de metaclases en sus modelos uml,
suponiendo que usaron estos modelos. Es importante reconocer que precisamente como
diferentes herramientas uml soportarán diferentes niveles de compatibilidad de uml, los
diversos lenguajes soportarán varias decisiones de diseño de maneras distintas.

Decoración de las clases
El símbolo de clasificador se divide en regiones rectangulares (vea la clase “Motocicleta”
en la figura 5-1). El rectángulo de más arriba contiene el nombre de la clase y los este-
reotipos de la misma. La segunda región rectangular, viniendo de arriba, contiene los atri-

05 KIMMEL.indd 106 11/4/07 7:03:22 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 107

butos (figura 5-2). Como se muestra en la figura 5-2, la clase “Motocicleta” tiene un atribu-
to “motor”. El rectángulo de abajo contiene los comportamientos (o métodos). En la figura
5-2, la clase “Motocicleta” contiene un método llamado “ObtenerSalidadePotencia”.

Cada uno de los atributos y métodos se pueden decorar con modificadores de acceso.
(Recuerde que el término característica significa en forma genérica “método o atribu-
to”.) Las características se pueden decorar con los modificadores de acceso +, – o #. El
símbolo de más (+) significa que una característica es pública, o sea, disponible para
consumo externo. El símbolo de menos (–) significa que una característica es privada, o
sea, para consumo interno, y el símbolo de número (#) significa que una característica no
es pública ni privada. Por lo común, el símbolo de número significa que una caracterís-
tica es para consumo interno o consumo por parte de las clases hijos. Este símbolo suele
igualarse a un miembro protegido. En general, las herramientas uml harán en forma
predeterminada que los métodos sean públicos y los atributos privados.

Uso de atributos
En muchos lenguajes modernos se establece una distinción entre propiedades y campos.
Un campo representa lo que las clases de usted saben, y una propiedad representa una
función implícita para leer campos privados y escribir en ellos. No es necesario captar
tanto los campos como las propiedades; basta con capturar los campos.

Cuando agrega clases a sus diagramas de clases, agrega los campos y los hace privados.
Depende de quienes implementan sus diseños el agregar métodos de propiedad, si están
soportados. Si su lenguaje no soporta propiedades, entonces, en el curso de la implemen-
tación, use métodos como get_Field1 (obtener_Campo1) y set_Field1 (fijar_Campo1)
para cada campo, con el fin de restringir el acceso a los datos de una clase.

SUGERENCIA Agregar campos privados y depender de un conocimiento implícito de que
los campos son accesados a través de métodos, ya sean públicos o privados, es una prác-
tica recomendada pero no impuesta o parte del UML. Este estilo de implementación de
diseño simplemente es considerada una buena práctica.

Declaración de atributos

Los atributos se muestran como una línea de texto; necesitan un modificador de acceso
para determinar la visibilidad. Los atributos necesitan incluir un nombre; pueden incluir

Figura 5-2 Clase “Motocicleta” con un modificador de acceso privado en un atributo motor.

Motocicleta

–motor

+ObtenerSalidadePotencia()

05 KIMMEL.indd 107 11/4/07 7:03:22 PM

 www.FreeLibros.me

Manual de UML 108

un tipo de datos y valor predeterminado, y pueden tener otros modificadores que indi-
quen si el atributo es sólo de lectura, sólo de escritura, estático o algo más.

En la figura 5-2, el atributo “motor” tiene un modificador de acceso privado y sólo un
nombre. Enseguida se dan algunas declaraciones más completas de atributos que contie-
nen ejemplos de los elementos que expusimos:

–Tipo : TipodeMotor = TipodeMotor.DosTiempos
–Tamaño : cadena = “220cc”
–Marca : cadena = “Kawasaki” {sólo lectura}

En esta lista tenemos un atributo privado nombrado “Tipo”, cuyo tipo de datos es “Tipo-
deMotor”, y su valor predeterminado “TipodeMotor.DosTiempos”. Tenemos un atributo
nombrado “Tamaño” con un tipo de datos de “cadena” y un valor predeterminado de
“220cc”. Y el último atributo es una cadena nombrada “Marca” con un valor predetermi-
nado de “Kawasaki”; el atributo “Marca” es de sólo lectura.

Declaración de atributos con asociación

Los atributos también se pueden describir como una asociación. Esto sólo significa que
el atributo se modela como una clase con un conector entre la clase contenedora y la clase
del atributo. Pueden estar presentes todos los elementos mencionados con anterioridad;
sencillamente se disponen de manera diferente.

Considere el atributo “motor” que se muestra en la figura 5-2. Este atributo podría re-
ferirse a una asociación a una clase “Motor” (figura 5-3); además, los atributos —“Tipo”,
“Tamaño” y “Marca”— se podrían poner en una lista como miembros de la clase “Motor”.

Cuando use un atributo de asociación, deje la declaración del campo fuera de la clase.
El enlace de asociación (mostrado como “motor”) en la figura 5-3 desempeña ese papel;
no hay necesidad de repetir la declaración en forma directa en la clase contenedora. El
conector de asociación se nombra. Este nombre representa el nombre del campo: en la
figura 5-3, el nombre es “motor” y la clase es “Motor”. Los atributos de asociación tam-
bién pueden contener una multiplicidad, la cual indica cuántos de cada elemento intervie-
nen en la asociación. En el ejemplo, una motocicleta tiene un motor. Si la relación fuera
“Aviones” y “Motores”, entonces podríamos tener un asterisco enseguida de la clase
“Motor” con el fin de indicar que los aviones pueden tener más de un motor.

SUGERENCIA En algunas convenciones se usa un prefijo artículo para un nombre de aso-
ciación, como “el” (“la”) o “un” (“una”), como en “elMotor” o “unMotor”.

Figura 5-3 Manera de mostrar el atributo “motor” usando una asociación.

Motocicleta
–motor

Motor

1 1

05 KIMMEL.indd 108 11/4/07 7:03:22 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 109

El diagrama de clases de la figura 5-3 transmite una información idéntica a la del
diagrama de la figura 5-4. Los diagramas de clase pueden volverse con facilidad dema-
siado complejos si todos los atributos se modelan como asociaciones. Una buena regla
empírica es mostrar tipos simples como declaraciones de campo en la clase contenedora
y mostrar tipos compuestos (clases) como atributos de asociación. En la figura 5-5, se
muestra cómo podemos detallar la clase “Motor” de modo más completo, usando un atri-
buto de asociación en lugar de sólo un campo “motor”. (En la figura 5-5, se agregan los
campos usados para describir un motor mencionado con anterioridad.)

En la figura 5-5, queremos decir que sólo una motocicleta tiene un motor Kawasaki
de dos tiempos y 220cc. (Es posible que esto no sea cierto en la vida real, pero eso es lo
que transmite el modelo.)

NOTA Mencioné que el diagrama de la figura 5-5 significa que sólo una motocicleta tiene
un motor Kawasaki de dos tiempos y 220cc, pero que esta información puede ser inexacta.
Al hacerlo, de manera inadvertida volví a ilustrar uno de los valores de los diagramas de
clases: un diagrama de clases es una imagen que significa algo, y los expertos pueden ob-
servarla y decirle a usted con rapidez si ha captado algo que se basa en hechos y es útil.

� �

Figura 5-4 Esta figura transmite una información idéntica a la que se muestra en la figura 5-4;
es decir, una motocicleta contiene un motor cuyo tipo es “Motor”.

Figura 5-5 Este diagrama de clases contiene más información acerca del motor de la motoci-
cleta al usar un atributo de asociación para el motor y un segundo atributo de asociación para los
tipos posibles de motores.

� �

�

�

Motocicleta

–motor : Motor

Motocicleta Motor

–Tamaño : cadena = 220cc
–Marca : cadena = Kawasaki

–motorTipo

–motor

+DosTiempos = DosTiempos
+CuatroTiempos = CuatroTiempos

«enumeración»
TipodeMotor

05 KIMMEL.indd 109 11/4/07 7:03:23 PM

 www.FreeLibros.me

Manual de UML 110

Arreglos de atributos y multiplicidad

Un solo tipo de atributo podría representar más de uno de ese tipo. Esto implica la mul-
tiplicidad y, posiblemente, el ordenamiento de los atributos. Puede haber más de uno de
algo; por ejemplo, se podrían modelar aviones de múltiples motores como un avión con
un arreglo de motores, y los arreglos se pueden ordenar o desordenar. La multiplicidad
se indica con la mayor facilidad agregando un conteo a un atributo de asociación, y los
atributos ordenados o desordenados se pueden anotar usando las palabras ordenado o
desordenado entre corchetes. En la tabla 5-1, se muestran los conteos posibles de multi-
plicidad y se proporciona una descripción para cada uno.

Los indicadores de multiplicidad se usan en otros contextos y tienen el mismo sig-
nificado de conteo cuando se aplican a otros elementos uml junto con asociaciones de
atributos.

SUGERENCIA Si los valores superior e inferior son idénticos, entonces use un indicador
de multiplicidad de un solo valor, como 1, en lugar de 1..1.

Cuando se habla de multiplicidades, podría escuchar los términos opcional, aplicado a
multiplicidades con cota inferior a 1, obligatorio, si se requiere al menos uno, de un solo
valor, si sólo se permite uno, y de valores múltiples, si se usa un asterisco.

Indicación de unicidad

Los atributos se pueden anotar para indicar unicidad. Por ejemplo, si un campo repre-
senta una clave en una tabla de verificación o una clave primaria en una base de datos en
forma de relación, entonces puede resultar útil anotar ese atributo con los modificadores
{único} o {no único}. Por ejemplo, si quiere indicar que la “IDdelaListadeTrabajo” es un
campo con valor único, entonces lo definimos en la clase como sigue:

–IDdelaListadeTrabajo : entero {único}

Si quiere indicar que el valor clave de una colección debe ser único, entonces use el
modificador {único}. Si las claves se pueden repetir, entonces use {no único}. Rara vez

1

*

0..1

0..*

1..1

1..*

m, n

Sólo 1

Muchos

Cero o 1

Una cota inferior a cero y una superior a infinito; esto es equivalente a *

Uno y sólo uno; esto es equivalente a 1

Una cota inferior de por lo menos uno y una superior de infinito

Indicación de una multiplicidad no contigua, como 3 o 5; ya no es válido en el uml

Tabla 5-1 Indicadores de multiplicidad.

05 KIMMEL.indd 110 11/4/07 7:03:23 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 111

los modeladores tienen tanto tiempo que usan diagramas muy detallados que incluyen
{no ordenada} para dar a entender tabla de verificación. En general, los modeladores sen-
cillamente expresan el tipo de datos del atributo, pero vale la pena saber que en el uml se
especifica ordenado contra no ordenado, y único contra no único, y no arreglo o tabla de
verificación. Los arreglos y las tablas de verificación representan soluciones conocidas
de diseño, no aspectos del lenguaje uml.

Modo de agregar operaciones a las clases
Puede ser útil pensar en el modelado como algo que pasa por un ciclo desde una macrovi-
sión de alto nivel hasta, en forma sucesiva, microvisiones de nivel inferior y, por último,
al código, la microvisión más detallada. La macrofase se puede concebir como una fase
del análisis. En el curso de esta fase, podría bastar captar clases y relaciones conforme
usted empieza a entender el espacio del problema. Conforme mejora su comprensión y
empieza a captar los detalles de una solución —avanzando de una macrocomprensión
hacia una microcomprensión más detallada— empieza a desarrollar el diseño. En esta
coyuntura, puede regresar a sus diagramas de clases y empezar a agregar operaciones
y atributos. Las operaciones, los comportamientos y los métodos se refieren, todos, a lo
mismo. En el uml, por lo general decimos operación y al codificar, por lo general deci-
mos método.

Las operaciones se muestran en el rectángulo que está más abajo en un clasificador.
Las operaciones tienen un modificador de visibilidad como los atributos. Las operacio-
nes incluyen un tipo de datos de retorno; un nombre; una lista de parámetros que incluye
nombres, tipos de datos y modificadores, y modificadores adicionales que pueden indicar
si una operación es estática, virtual o algo más.

Como mencioné con anterioridad, no es necesario mostrar los métodos de propieda-
des. También puede ahorrar algo de tiempo al no desarrollar las operaciones no públicas
con gran detalle. En general, las operaciones públicas describirán en forma suficiente los
comportamientos de la clase, y puede dejar los miembros no públicos a los dispositivos
de sus programadores.

Como en realidad yo no tengo una aplicación que represente motocicletas o un inven-
tario de vehículos para una tienda de vehículos motorizados deportivos, cambiemos un
poco los ejemplos. En ocasiones, voy a Las Vegas y participo en un pequeño “BlackJack”
(figura 5-6). Debido a que me gusta entretenerme tanto como sea posible a cambio de mi
dinero, quise practicar “BlackJack” de una manera en que me hiciera un mejor jugador.
Por tanto, escribí un juego de “BlackJack” que proporcionaba sugerencias con base en
el mejor curso de la acción para ganar una mano. (Esta aplicación está terminada y el
código se encuentra en línea en www.softconcepts.com.) En ese ejemplo, hay muchas
clases, incluyendo una que representa la mano de un jugador como una lista de cartas.
En el clasificador de la figura 5-7, se muestran algunas de las signaturas de operaciones
usadas para implementar la clase “Mano” (“Hand”).

05 KIMMEL.indd 111 11/4/07 7:03:23 PM

 www.FreeLibros.me

www.softconcepts.com.

Manual de UML 112

Modelado de relaciones en los diagramas de clases

Los diagramas de clases constan principalmente de clasificadores con atributos y opera-
ciones así como de conectores que describen las relaciones entre las clases. En alrededor
del 80% de sus diagramas de clases sólo usará estas características. Sin embargo, aun
cuando esto suena sencillo, se pueden usar estos diagramas para describir algunas rela-
ciones muy avanzadas. Por nombre, estas relaciones incluyen generalización, herencia,

Figura 5-6 El juego “BlackJack for Windows”.

���������������������������
��������������
������������������������
������������������������
����������������������
�����������������
�����������������������
�������������������������
��������������������������
����������������������
����������������������
��
����������������
��������������

����

Figura 5-7 Clasificador que muestra varias de las signaturas para la clase “Mano” (“Hand”).

05 KIMMEL.indd 112 11/4/07 7:03:24 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 113

realización, composición, agregación, dependencia y asociación. Con mayor refinación,
los conectores que describen estas relaciones pueden ser dirigidos o no dirigidos y bidi-
reccionales o no direccionales, y pueden expresar multiplicidad (precisamente como la
multiplicidad de los atributos). En esta sección introduciré estos conectores, pero espera-
ré hasta el capítulo 6 para examinar ejemplos con más detalle.

Modelado de asociaciones
El conector de asociación es una línea continua. Si es dirigida, entonces la línea continua
puede tener una flecha de figura de palillos en cualquiera de los dos extremos o en ambos.
Por ejemplo, en la sección anterior impliqué que una “Mano” de blackjack está compues-
ta de objetos “Carta” (“Card”). Podría modelar esta relación agregando una clase “Carta”
a la clase “Mano” introducida en la figura 5-7 y conectando los clasificadores “Mano”
y “Carta” con un conector de asociación. Vea la figura 5-5 en relación con un ejemplo
visual de dos asociaciones, una entre “Motocicleta” y “Motor” y otro entre “Motor” y
“TipodeMotor”.

Precisamente como en la figura 5-5, las asociaciones pueden expresar multiplicidad en
cualquiera de los dos extremos del conector. En la figura 5-5, se indica que una “Moto-
cicleta” está asociada con un “Motor”, y en la 5-8 se indica que existe por lo menos una
mano y que cada una de éstas puede contener muchas cartas.

Si hay una flecha en cualquiera de los dos extremos de una asociación (figura 5-8),
entonces se dice que la asociación es dirigida o direccional. El extremo con la flecha es el
objetivo o el objeto hacia el que se puede navegar. El extremo sin la flecha se llama fuen-
te. Navegación sencillamente significa que la fuente —“Mano” de la figura 5-8— tiene
un atributo del tipo del objetivo —“Carta”. Si la asociación fuera bidireccional, entonces
“Mano” tendría un atributo “Carta”, y ésta tendría un atributo “Mano”. Si la asociación
fuera no dirigida —no hay flechas— entonces se supone una asociación bidireccional.

Modelado de agregación y composición
La agregación y la composición tienen que ver con las relaciones de totalidad y parte.
El conector para la agregación es un diamante hueco, una recta y, de manera opcional,
una flecha de figura de palillos. El diamante se agrega al clasificador de totalidad y la
flecha al de parte. Un conector de composición se parece al de agregación, excepto que
el diamante está relleno.

���� �

Figura 5-8 “Mano” y “Carta” están asociados de manera unidireccional, lo cual significa que
“Mano” tiene un atributo “Carta”.

Mano Carta

05 KIMMEL.indd 113 11/4/07 7:03:24 PM

 www.FreeLibros.me

Manual de UML 114

Imaginarse cómo usar la agregación y la composición se puede decidir de manera muy
sencilla. La agregación es azúcar sintáctica y no es diferente de una asociación; usted no
la necesita. La composición es agregación, excepto que la clase totalidad es responsable
de la creación y de la destrucción de la clase parte, y esta última no puede existir en al-
guna otra relación al mismo tiempo. Por ejemplo, el motor de una motocicleta no puede
estar en una segunda motocicleta al mismo tiempo; eso es composición. Como Fowler
dice: en una relación de composición hay una regla de “no compartir”, pero los objetos
parte se pueden compartir en las relaciones de asociación y agregación.

Antes de observar la figura 5-9, compare la agregación (o asociación) con la composi-
ción pensando en el popular juego de póquer Texas hold’em, en el cual cada jugador tiene
dos cartas y, a continuación, se dan cinco cartas. Cada jugador forma la mejor mano po-
sible de cinco cartas usando sus dos cartas y las cinco compartidas. Es decir, la mano de
cada jugador es un agregado de cinco de las siete cartas, cinco de las cuales están disponi-
bles para todos los jugadores; o sea que se comparten cinco cartas. Si fuéramos a escribir
una versión en software del Texas hold’em usando nuestra abstracción “Mano”, entonces
cada uno de los jugadores tendría una referencia hacia las cinco cartas compartidas. En la
figura 5-9, se muestra la agregación a la izquierda y la composición a la derecha.

Modelado de la herencia
Es importante tener presente que el uml es un lenguaje distinto, distinto de su lenguaje
favorito de programación orientado a objetos y, en general, distinto de los lenguajes de
programación orientados a objetos. Por tanto, para ser modelador con uml, necesita ser
multilingüe; los modeladores con uml necesitan hablar este lenguaje y, en realidad, ayu-
da hablar el lenguaje orientado a objetos que se usará para implementar el diseño. En el
idioma uml, la herencia es la generalización. Esto significa que los programadores pue-
den decir herencia cuando quieren decir generalización, y cuando dicen generalización,
puede ser que quieran decir herencia.

NOTA Desafortunadamente, las relaciones de herencia sufren de una plétora de sinó-
nimos. Herencia, generalización y es un(a) se refieren a lo mismo. Las palabras padre
e hijo también se mencionan como superclase o clase base y subclase. Base, padre y
superclase significan lo mismo. Hijo y subclase significan lo mismo. Los términos que
escuche dependen de quién le está hablando a usted. Para empeorar las cosas, a veces
estas palabras se usan en forma incorrecta.

� �� �

Figura 5-9 La agregación es semánticamente idéntica a la asociación, y la composición signifi-
ca que la clase compuesta es la única clase que tiene una referencia hacia la clase propietaria.

Totalidad Parte Totalidad Parte

agregación composición

05 KIMMEL.indd 114 11/4/07 7:03:24 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 115

La generalización se refiere a una relación del tipo es un(a) o de posibilidad de sustitu-
ción y se refleja en un diagrama uml de clases por medio de un conector de línea continua
con un triángulo hueco en uno de los extremos. El triángulo apunta hacia el padre y el
otro extremo se conecta al hijo.

En una relación de herencia, la clase hijo recibe todas las características de la clase
padre y, a continuación, se pueden agregar algunas características propias. El polimor-
fismo funciona porque las clases hijos son factibles de sustituirse por clases padres. La
posibilidad de ser sustituido significa que si se define una operación o sentencia para
usar un argumento de un tipo padre, entonces cualquier tipo hijo se puede sustituir por
cualquier tipo padre. Considere un ejemplo de Motown-jobs.com (www.motown-jobs.
com). Si se define una clase “Lista” como una clase padre y “Currículo”, “Trabajo” o
“Anuncio” se definen como clases hijo para “Lista” (padre), entonces en cualquier parte
en la que se defina un argumento “Lista”, se puede sustituir con uno de “Currículo”,
“Trabajo” o “Anuncio”. En la figura 5-10, se muestra esta relación.

Cualquier miembro público o protegido de “Lista” se convierte en un miembro de
“Trabajo”, “Currículo” y “Anuncio”. De manera implícita, los miembros privados son
parte de “Trabajo”, “Currículo ” y “Anuncio”, pero estas clases hijos —y cualesquiera
clases hijos— no pueden tener acceso a los miembros privados de la clase padre (o clases
padres, si se soporta la herencia múltiple).

Modelado de realizaciones
Las relaciones de realización se refieren a heredar de interfaces de realización o las
propias interfaces. El conector es casi idéntico a uno de generalización, excepto que la
línea de conexión es punteada con un triángulo hueco, en lugar de ser continua y con
un triángulo del mismo tipo. Cuando una clase realiza una interfaz, o se hereda de ésta,
básicamente la clase está aceptando que proporcionará una implementación para las ca-
racterísticas declaradas por esa interfaz. En la figura 5-11, se muestra la representación
visual de una clase “Radio” que realiza la interfaz “iVolumen”. (Tenga presente que el
prefijo “i” es sencillamente una convención y no parte del uml.)

Figura 5-10 Esta figura muestra que “Currículo”, “Trabajo” y “Publicidad” se heredan de “Lista”.

Lista

Currículo Publicidad Trabajo

05 KIMMEL.indd 115 11/4/07 7:03:25 PM

 www.FreeLibros.me

www.motown-jobs.com.
www.motown-jobs.com.

Manual de UML 116

Para ayudarle a familiarizarse con la herencia de interfaz, agregué un estilo alterno a
la derecha de la figura 5-11. Muchas herramientas de modelado soportan los dos estilos.
Elija un estilo y adhiérase a él. (Yo prefiero el de la izquierda de la figura 5-11, descrito
en el párrafo anterior.)

Modelado de dependencia
La relación de dependencia es de cliente y proveedor. Una clase, el cliente, depende de
una segunda clase, el proveedor, para proporcionar un servicio. El símbolo para una re-
lación de dependencia luce como una asociación unidireccional, excepto que la línea es
punteada en lugar de continua (figura 5-12).

Suponga, por ejemplo, que decidimos soportar varios estilos de presentación para los
usuarios de “BlackJack”. Podríamos ofrecer una consola, Windows o una interfaz gráfica
web del usuario (gui). A continuación, podríamos definir un método “Imprimir” que de-
penda de una “ImpresoradeCartas” específica. Si la “ImpresoradeCartas” es una impresora
gráfica, entonces podríamos presentar un mapa de bits de la carta, pero si la “Impresora-
deCartas” es una impresora basada en dos, entonces puede ser que sólo escribamos texto
en la consola. En la figura 5-13, se muestra la relación de dependencia combinada con
generalización para reflejar diversas clases de “ImpresoradeCartas”.

����� �����

Figura 5-11 La realización, o herencia de interfaz, se puede mostrar en cualquiera de los dos
estilos, como se ilustra en la figura.

Figura 5-12 Esta figura muestra que la “Carta” depende de la “ImpresoradeCartas”, en donde
“Carta” es el cliente e “ImpresoradeCartas” es el proveedor.

iVolumen

Realización, estilo 2Realización, estilo 1

+VolumenhaciaArriba()
+VolumenhaciaAbajo()

Carta

«interfaz»
iVolumen

ImpresoradeCartas

05 KIMMEL.indd 116 11/4/07 7:03:25 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 117

SUGERENCIA Vale la pena hacer notar que en la figura 5-13 se introduce un concepto:
resulta una buena práctica captar varias facetas de un diseño en diagramas separados.
Por ejemplo, en esa figura, puede ser que no estemos mostrando todas las clases del
juego “BlackJack”, pero estamos mostrando relaciones útiles entre la clase “Carta” y
las clases que suministran impresión.

Otra característica útil es que los conectores como la dependencia se asocian con
estereotipos predefinidos. Un estereotipo agrega significado. En el capítulo 6, examina-
remos los estereotipos, cuando examinemos con mayor detalle cómo se relacionan las
clases.

Estereotipado de las clases

El estereotipo es un medio por el cual el uml se puede extender y evolucionar. En forma
visual, los estereotipos aparecen entre comillas angulares («estereotipo»). Hay varios
estereotipos predefinidos para los símbolos de uml, como el clasificador; el lector tiene
la libertad de adoptar nuevos estereotipos, si surge la necesidad. En la figura 5-11, se
muestra un ejemplo en donde se usó el estereotipo «interfaz», con el fin de indicar que un
clasificador representa una interfaz.

SUGERENCIA Algunas herramientas de modelado del UML reemplazarán a los estereoti-
pos con símbolos específicos, cambiando la apariencia de un diagrama, aun cuando no
se altere el significado. Por ejemplo, tanto el clasificador con el estereotipo «interfaz»
como el círculo hueco de la figura 5-11 reflejan con exactitud la interfaz “IVolumen”.

Figura 5-13 La relación de dependencia ahora incluye generalización que muestra tipos especí-
ficos de objetos “ImpresoradeCartas”.

Carta ImpresoradeCartas

+Imprimir()

ImpresoraGráficadeCartas ImpresoradeCartascomoTexto ImpresoraWebdeCartas

05 KIMMEL.indd 117 11/4/07 7:03:25 PM

 www.FreeLibros.me

Manual de UML 118

Uso de paquetes
El símbolo paquete tiene la apariencia de una carpeta de archivos. Este símbolo (figura
5-14) se usa en forma genérica para representar un nivel más elevado de abstracción que
el clasificador. Aun cuando, por lo común, un paquete se puede implementar como un
espacio de nombre o un subsistema, con un estereotipo, también se puede usar para la
organización general y sencillamente representar una carpeta de archivos.

SUGERENCIA Los espacios de nombres resolvieron un problema, acarreado durante
largo tiempo, de múltiples equipos de desarrollo que usan nombres idénticos para
las clases. Una clase nombrada “Customer” (“Cliente”) en el espacio de nombre de
Softconcepts es distinta de “Customer” en el espacio de nombre de IBM.

En el juego “BlackJack” se usan las api contenidas en el cards.dll que vienen con
Windows (y se usa en juegos como el Solitario). Podríamos usar dos paquetes y una de-
pendencia para mostrar que el juego “BlackJack” depende de las api del cards.dll.

Uso de notas y comentarios
La anotación de diagramas es un aspecto importante del modelado. Los diagramas de
clases permiten el uso de la nota, pero vea si puede transmitir tanto significado como sea
posible sin agregar una gran cantidad de notas. (Vea la figura 5-15 en relación con un
ejemplo del símbolo de nota con la punta doblada que se usa en el uml.)

Muchas herramientas soportan la documentación del modelo que se almacena con
éste, pero que no se presenta en los diagramas. La documentación específica del modelo
más allá de notas, comentarios y restricciones no es una parte real del uml, pero es un
buen auxiliar para la creación de modelos.

Restricciones
En las restricciones se usa el mismo símbolo de punta doblada en todos los diagramas.
En realidad, las restricciones pueden ser una parte engañosamente compleja del uml y
pueden incluir información que ayuda mucho a los generadores de código. Por ejemplo,
se pueden escribir restricciones en texto llano o en Object Constraint Language (ocl).
Aunque a todo lo largo de este libro proporcionaré ejemplos de restricciones, de manera
intencional omito una exposición del ocl como no muy desmitificadora.

Figura 5-14 El diagrama muestra que el paquete “BlackJack” depende del paquete “cards.dll”,
en el cual se usa el estereotipo «subsistema».

BlackJack
«subsistema»

cards.dll

05 KIMMEL.indd 118 11/4/07 7:03:26 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 119

Para demostrar una restricción, podemos agregar el símbolo correspondiente e intro-
ducir un texto de restricción que exprese que el número de cartas en un “Monte” debe
ser 52 (figura 5-16). También es posible expresar esto sin una restricción, cambiando la
multiplicidad del extremo de * al número 52. Otro ejemplo podría ser una restricción que

Figura 5-15 Se usa el rectángulo con la punta doblada para agregar notas o comentarios a los
elementos de los diagramas uml.

� � � �

�

�

Figura 5-16 En esta figura se ilustra cómo podemos mezclar las restricciones —“Número de
cartas = 52” en la figura— con otros elementos del diagrama para aumentar su precisión.

BlackJack
«subsistema»

cards.dll

Cards.dll es una API de Windows. (Se usa para juegos como
Solitario.)

Monte Carta

«enumeración»
Palo

–unaCarta –elPalo +Diamante = 1
+Basto = 2
+Corazón = 3
+Espada = 4

«enumeración»
Cara

+As = 1
+Dos = 2
+Tres = 3
+Cuatro = 4
+Cinco = 5
+Seis = 6
+Siete = 7
+Ocho = 8
+Nueve = 9
+Diez = 10
+Sota = 10
+Reina = 10
+Rey = 10

–nominalValor

(Número de cartas = 52)

05 KIMMEL.indd 119 11/4/07 7:03:26 PM

 www.FreeLibros.me

Manual de UML 120

exprese algo acerca del valor nominal o el número y variedad de palos, y también podría-
mos expresar estos elementos con enumeraciones.

En la figura 5-16, incluí la restricción de que el número de cartas en un “Monte” debe
ser 52, una enumeración para indicar que hay cuatro palos y una enumeración para in-
dicar que existen 14 valores nominales posibles únicos. Desafortunadamente, la figura
todavía queda corta, porque en el juego “BlackJack” el as no tiene un valor sencillo úni-
co. Un análisis de este modelo con un experto en el dominio podría revelar con rapidez
un problema posible con el uso de una enumeración para “Cara”. Debido al valor dual
del as, podemos elegir volver a diseñar la solución para usar una clase —“Cara”— y una
generalización —valores nominales específicos, como “As”, “Dos”, “Tres”, etc.— para
resolver el problema de los ases (figura 5-17).

Modelado de primitivos
El uml define primitivos como “Integer”, “Boolean”, “String” y “UnlimitedNatural”
(“Entero”, “Booleano”, “Cadena” y “NaturalIlimitado”) para usarse en la especificación
del propio uml, pero la mayoría de los lenguajes y herramientas definen sus propios ti-
pos primitivos. El lector puede modelar primitivos usando un clasificador, el estereotipo
«primitivo» y el nombre del tipo.

� � � �

�

�

Figura 5-17 Diagrama de clases de la figura 5-16 modificado para captar el hecho de que las
cartas pueden tener valores nominales dinámicos (int = entero).

Monte Carta

As Dos Tres

(Número de cartas
= 52)

–unaCarta –elPalo

–nominalValor

+Diamante = 1
+Basto = 2
+Corazón = 3
+Espada = 4

«enumeración»
Palo

Cara

+TomarValorAlto() : int
+TomarValorBajo() : int

05 KIMMEL.indd 120 11/4/07 7:03:26 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 121

En general, los primitivos se modelan como atributos de otras clases. Sin embargo, en
algunos casos usted tal vez deseará definir sus propios primitivos —siendo un ejemplo
el número imaginario canónico (figura 5-18)—; existen algunos lenguajes, por ejemplo,
Common Language Specification (cls, especificación de lenguaje común) de Microsoft
para .net, en donde aparentemente los tipos primitivos en realidad representan objetos y
se tratan como tales.

 A veces resulta útil desarrollar primitivos, y es aceptable modelarlos como una clase
usando el conector de asociación, como demostré con anterioridad en este capítulo. El
diagrama de la figura 5-18 documenta un “NúmeroImaginario” y desarrolla lo que repre-
sentan las partes real e imaginaria, así como la incorporación de un operador sobrecarga-
do —una función operador— para el tipo primitivo.

SUGERENCIA Los lenguajes como C++, C# y, recientemente, incluso Visual Basic.NET
soportan la sobrecarga de operadores; esto significa que los comportamientos para
operadores como +, –, * y / se pueden definir para tipos nuevos. El modelado de tipos
primitivos y los lenguajes que soportan la sobrecarga de operadores pueden ser muy
útiles si el lector necesita definir tipos de datos extendidos en su solución.

Modelado de enumeraciones
Las enumeraciones son valores nombrados que tienen una semántica que significa mayor
que su valor subyacente. Por ejemplo, se podrían usar los enteros 1, 2, 3 y 4 para repre-
sentar los palos en un monte de cartas de juego, pero una enumeración tipo “Palo” que
contiene cuatro valores nombrados transmite más significado (vea la figura 5-17).

Figura 5-18 Los números imaginarios son números reales multiplicados por el número imagi-
nario i, el cual representa la raíz cuadrada de –1.

«primitivo»
NúmeroImaginario

+Real : flotar
+Imaginario : cadena = i

+operador+(en lhs : NúmeroImaginario, en rhs : NúmeroImaginario) : NúmeroImaginario

La parte imaginaria i representa la raíz cuadrada de –1.

05 KIMMEL.indd 121 11/4/07 7:03:26 PM

 www.FreeLibros.me

Manual de UML 122

� �

Muchos lenguajes modernos soportan un sistema fuerte de tipos. Esto significa que, si
usted define un argumento de enumeración, entonces sólo los valores definidos por esa
enumeración son apropiados, y el compilador impone el uso de los valores del tipo más
significativos semánticamente. En contraste con el uso de un tipo del tipo subyacente
—por ejemplo, enteros para representar palos— que permitirían cualquier valor de ese
tipo subyacente, las enumeraciones transmiten más información y rigor en el código, y
más información en los modelos uml. En la figura 5-19 se ilustra este contraste.

NOTA A veces los modeladores y programadores hacen concesiones. Por ejemplo, po-
demos saber que una enumeración bien nombrada puede transmitir más significado,
pero, de todas maneras, elegir no usar tipos semánticamente más fuertes. Suponga
que, como el cereal Lucky Charms, los diamantes, bastos, corazones y espadas podrían
evolucionar en el futuro; un monte de cinco cartas podría incluir tréboles. Si fuéramos
a usar una enumeración, entonces tendríamos que abrir el respaldo del código en ese
tiempo futuro y redefinir la enumeración. Sin embargo, si usamos un entero y almace-
namos el rango de valores en una base de datos, entonces podríamos extender o cam-
biar los valores posibles de “Palo” ejecutando un comando SQL UPDATE. Saber acerca
de estos tipos de juicios de valor y hacerlos es una de esas cosas que hacen que el de-
sarrollo de software sea un reto.

Indicación de espacios de nombres
El espacio de nombre es una invención reciente en los lenguajes oop. El espacio de nom-
bre es una manera de agrupar elementos del código. El problema se originó a medida que
las empresas de software empezaron a usar las herramientas de otro más ampliamente

Figura 5-19 El entero “Palo” de la izquierda necesita explicación por el camino de una restric-
ción con el fin de limitar y aclarar los valores posibles del entero, en tanto que la enumeración
semánticamente más fuerte del “Palo” que se da a la derecha no necesita esa explicación.

Carta Carta

«enumeración»
Palo

+Diamante = 1
+Basto = 2
+Corazón = 3
+Espada = 4

–elPalo

{Palo >= 1 y Palo <= 4}

Un atributo semánticamente débil, Palo Un atributo semánticamente fuerte

–Palo : int

+EsVálido() : byte

05 KIMMEL.indd 122 11/4/07 7:03:27 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 123

hasta que se hizo más común que el vendedor A produjera software útil con entidades
nombradas de manera semejante a las del vendedor B. El espacio de nombre es una solu-
ción que permite que dos o más elementos nombrados en forma idéntica coexistan en la
misma solución; el espacio de nombre establece una distinción entre estos elementos.

Con frecuencia, los paquetes son representaciones visuales de espacios de nombres, y
éstos se pueden mostrar en diagramas para distinguir los elementos con el mismo nombre
de clasificador. Se usa el operador de alcance :: para concatenar un espacio de nom-
bre con un elemento en ese espacio. Los espacios de nombres se pueden anidar, herma-
nar o disponer en cualquier manera jerárquica razonable en el contexto de un problema.
Si la clase “Carta” se define como un elemento en el espacio de nombre “BlackJack”,
entonces podemos captar esto agregando esa clase al paquete “BlackJack”, como se ilus-
tra en la figura 5-20.

Cómo saber qué clases necesita
Existen dos modalidades para el desarrollo de software orientado a objetos: consumo y
producción. Los equipos pueden trabajar en colaboración en cualquiera de las dos moda-
lidades o en ambas, pero no entender si las habilidades de un equipo soportan el consumo
de objetos, la producción de éstos, o ambas cosas, puede conducir a problemas.

Es perfectamente aceptable usar componentes, controles y objetos por otros y armar
una solución tan bien como sea posible. La analogía más cercana a este estilo de desarrollo
es la manera en que los programadores de C++ consideran a los programadores de Visual
Basic (aunque esta creencia puede ser un poco injusta). En esta modalidad, un equipo se
da cuenta de que su concepción de cómo usar los objetos es buena, pero que su propia pro-
ducción de objetos es defectuosa. Una segunda modalidad aceptable es que un equipo sabe
que es conocedor de los patrones de diseño y de la refactorización, y tiene una historia de
éxitos en la arquitectura de soluciones orientadas a objetos, incluyendo la producción
de sus propios objetos. Las dos modalidades son aceptables, pero es importante saber en
cuál de ellas tiene usted la mayor oportunidad de éxito. (Como dijo Harry el Sucio: “Un
hombre debe conocer sus limitaciones.”) Si va a tener éxito en la creación de modelos
uml que describan algo más que las clases creadas por expertos, entonces necesitará saber
cómo hallar las clases, así que hablemos de eso durante unos cuantos minutos.

Figura 5-20 A menudo, los paquetes se codifican como espacios de nombres y se muestran en
los diagramas uml en el lado izquierdo del operador de resolución de alcance, dos puntos dobles.

BlackJack::Carta

05 KIMMEL.indd 123 11/4/07 7:03:27 PM

 www.FreeLibros.me

Manual de UML 124

NOTA En 2005, el autor Richard Mansfield, en un editorial publicado en DevX.com,
desafió a OO (orientado a objetos) como un paradigma válido. Dejando a un lado todos
los chistes acerca de perros viejos y nuevas bromas, Mansfield se anotó un punto de
manera accidental. La cuestión es que si usted conoce OO suficientemente bien como
para consumirlo pero trata de producirlo, entonces es posible que OO sea decepcionan-
te. Sospecho que muchos proyectos OO fallan porque los consumidores competentes de
OO no son productores tan competentes del mismo. La producción de objetos de calidad
es difícil en el mejor de los casos, y sin conocimiento previo de patrones y refactoriza-
ción, así como sin experiencia, puede ser imposible producir un OO bueno.

Hallar las clases correctas es lo más difícil que el lector hará; es mucho más difícil que
trazar los diagramas. Si encuentra las clases correctas, bastan servilletas para modelar. Si
no puede hallar las clases correctas, entonces no importa cuánto dinero gaste en herra-
mientas; es posible que sus diseños den por resultado implementaciones fallidas.

Uso de un enfoque ingenuo

Cuando aprendí acerca de oo, fue por aprender primero C++ por mí mismo, un proceso
muy doloroso, y entonces di la vuelta para leer acerca de oo. Lo primero que aprendí
fue que se trataba de hallar los nombres y después asignarles verbos. Los nombres se
convierten en clases y los verbos en métodos. Ésta es la parte fácil, pero es posible que
produzca sólo alrededor del 20% de las clases que usted necesitará.

Si el análisis sólo conduce a los nombres y verbos descritos por el dominio, entonces
habrá un déficit de clases y se requerirá gran cantidad de habilidad en computación (hac-
king, “hackeo”). No obstante, empezar con los nombres y los verbos del dominio es un
buen inicio.

Descubra otros beneficios del análisis de dominios

Además de las cosas que los expertos de sus clientes le digan, también necesitará concebir
cómo poner estas cosas a la disposición de sus clientes y, en casi todas las circunstancias,
guardar la información que proporcionen los usuarios. Estos fragmentos de información
se conocen en forma genérica como clases: de frontera, de control y de entidad. Una
clase frontera es aquella que se usa para conectar elementos exteriores al sistema con ele-
mentos del interior. Las clases de entidad representan datos. Por lo común, las entidades
representan datos que persisten, como los que el lector podría encontrar en una base de
datos, y las clases de control administran otras clases o actúan sobre ellas. Por lo general,
los usuarios le dicen a usted mucho acerca de las clases de entidad, y esto puede ayudar
a definir las gui con base en cómo completan ellos las tareas, pero debe trabajar mucho
más para hallar las clases de control y frontera.

05 KIMMEL.indd 124 11/4/07 7:03:27 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 125

SUGERENCIA Si alguna vez ha trabajado como analista, no diga: “Me ha hablado acerca
de las clases de entidad; hábleme ahora de las clases de frontera.” El análisis es una
tarea importante y es posible que no deba dejarse a aquellos que usan protectores de
lápices en los bolsillos de sus chalecos. Las habilidades interpersonales y un enfoque de
baja tecnología, en tono de conversación, producen un buen intercambio de ideas.

Una perspectiva importante es saber que los expertos de la empresa le dirán mucho
acerca de los datos que tienen que almacenar, algo acerca de los procesos que siguen
para obtener los datos y un poco acerca de una buena manera de capturar esos datos
en una computadora. Una segunda perspectiva importante es que los usuarios —los
asignados para explicar las cosas a los ingenieros especialistas en software se llaman
expertos del dominio— pueden hacer una gran cantidad de cosas que no tienen sentido
para los que se encuentran fuera. Desde un punto de vista racional, esto significa que
un ingeniero de procesos puede ser que nunca haya trabajado con su organización para
examinar qué es lo que hace esa organización y cómo lo hace, y para determinar si
existe una mejor manera de hacerlo. El resultado es que puede ser que usted obtenga
una gran cantidad de información que no se pueda traducir bien en software —lo que
se llama una razón baja señal-a-ruido—, pero el experto del dominio puede sentir que
es importante.

SUGERENCIA Cuando se llega al análisis, el mejor consejo que puedo ofrecer es comprar
una pluma cara y un cuaderno de notas forrado en piel, enfrascarse activamente en
la conversación y tomar copiosas notas. Además de hacer que los usuarios se sientan
halagados de que se les esté poniendo una atención tan espléndida, es difícil saber con
tanta prontitud en el análisis qué constituye la señal y qué el ruido, de modo que una
gran cantidad de información es buena.

Habiendo aprendido de los usuarios acerca de las clases de entidad, su trabajo es con-
cebir cuáles son las clases fronteras y de control, y cómo modelarlas. El modelado es más
fácil, de modo que empecemos allí.

Bastante sencillo, una clase entidad está constituida por datos y suele tener larga vida
o persistir, y las clases de entidad se pueden modelar añadiendo el estereotipo «entidad»
al símbolo de clase o usando el símbolo de clase entidad, del que se dispone en muchas
herramientas de modelado (figura 5-21). Una clase de control es un código transitorio
que, en general, controla otras clases o actúa sobre ellas, y es responsable de transportar
los datos entre las clases de entidad y las clases de frontera. Las clases de control se
modelan agregando el estereotipo «control» a una clase o usando el símbolo de clase
(también mostrado en la figura 5-21). Las clases de frontera suelen encontrarse entre
subsistemas. Éstas se pueden modelar como se muestra en la figura 5-21 o adornando una
clase con el estereotipo «frontera».

05 KIMMEL.indd 125 11/4/07 7:03:27 PM

 www.FreeLibros.me

Manual de UML 126

Una inclinación de cabeza para los ejercicios CRC

Las fichas de responsabilidades y colaboradores de las clases (crc, class responsability
and collaborator) constituyen un concepto que comprende un uso de baja tecnología de
fichas de 3 × 5. La idea es que un grupo de personas interesadas se reúnan y escriban, en
la parte superior de una ficha, las clases que han descubierto. Debajo escriben una lista
de responsabilidades, y a un lado de las responsabilidades escriben los colaboradores de
clase necesarios para apoyar esas responsabilidades. Si no existe ficha para una respon-
sabilidad, entonces se crea una nueva ficha.

La idea básica que se encuentra detrás del uso de pequeñas fichas es que son dema-
siado pequeñas como para contener una gran cantidad de comportamientos, lo cual está
dirigido a una división razonable de las responsabilidades.

La creación de fichas crc es una buena idea, pero puede ser que el lector quiera traer
un experto para hacer caminar su grupo a través de este paso el primer par de veces.
Como ése es un consejo práctico, pero no puedo meter un experto en crc en este libro,
hablaré acerca de alternativas, las cuales se describen en las tres subsecciones próximas.

Manera de hallar clases de entidad
Como mencioné con anterioridad, las clases de entidad representan los datos que necesi-
tará almacenar. También abarcan entidades lógicas. Por lo común, una entidad lógica está
constituida por vistas o por el resultado de consultas heterogéneas; por ejemplo,

seleccionar campo1, campo2 del cliente, pedidos en donde pedido.clienteid = cliente.id

Figura 5-21 Los símbolos rectangulares para las clases y los estereotipos se pueden reemplazar
con símbolos que representan específicamente las clases de frontera, control y entidad.

Frontera

Control

Entidad

05 KIMMEL.indd 126 11/4/07 7:03:28 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 127

De manera simplista, esta consulta produce un resultado proveniente de cliente y pedi-
dos, lo cual representa una entidad lógica cliente - pedidos.

Hallar entidades y entidades lógicas es relativamente fácil, debido a que la teoría de la
base de datos relacional está bastante bien comprendida, y las bases de datos relacionales
constan de un depósito significativamente recurrente para las entidades. El lector necesi-
tará entidades para tablas simples y vistas heterogéneas compuestas por tablas múltiples.
De ese punto en adelante, las entidades se modelan sencillamente como clases. Puede
usar un estereotipo «tabla» si las entidades representan tablas, o ningún estereotipo par-
ticular si usa clases personalizadas.

Modo de hallar clases de control

Las clases de control representan el puente entre las clases de entidad y las clases de
frontera, y la lógica de la empresa entre ellas. La manera en que implemente estas clases
depende de su estilo de implementación. Si selecciona un estilo de implementación, en-
tonces la manera de hallar las clases de entidad se puede derivar desde allí.

Suponga que la herramienta de implementación que usted selecciona predefine cla-
ses como filas, tablas y conjuntos de datos. Si elige usar las clases de su herramienta,
entonces sus clases de entidad se compondrán de esas clases, y las clases que forman el
puente hacia sus clases de entidad se definirán por medio del marco de referencia de su
herramienta. Por otra parte, si selecciona clases de entidad personalizadas, entonces éstas
serán análogas a filas, tablas y conjuntos de datos, pero las clases de control todavía serán
las clases del marco de referencia que lee su almacén de persistencia y escribe en él o a
partir de él, por lo común una base de datos.

Las clases de control pueden administrar la manera en que los datos se ponen en orden
para las clases de entidad, la manera en que se ponen en orden para las clases de presen-
tación y la manera en que se ponen en orden para otros sistemas, a través de las clases
de frontera. Existen muchos patrones que incluyen patrones de control general; la clave
es reconocerlos. Un patrón famoso se llama controlador de la vista del modelo (mvc,
model view controller). En el mvc, el modelo se representa por objetos de la empresa, la
gui es la vista de usted, y las clases de control entre ellos representan su controlador. La
implementación del mvc o el reconocimiento de una implementación del mismo requiere
estudio y práctica adicionales. Por ejemplo, Microsoft considera que las páginas asp.net
en .net son una implementación del mvc. La página aspx o html es la vista, el contro-
lador es el código que se encuentra detrás de la página y el modelo está constituido por
los objetos cuyos datos se muestran en esa página. La implementación de un patrón mvc
personalizado en este contexto sería redundante. Existen muchos libros sobre patrones;
Design Patterns (Reading, ma: Addison-Wesley, 1995), escrito por Erich Gamma es un
buen lugar para empezar.

05 KIMMEL.indd 127 11/4/07 7:03:28 PM

 www.FreeLibros.me

Manual de UML 128

NOTA Hay muchos patrones de diseño que pueden guiarlo cuando busca clases de fron-
tera, control o entidad. Una clave aquí es seleccionar un estilo de implementación y
adherirse a él. El lector puede componer una solución hallando primero las entidades
—llamado composición de la base de datos— o hallando objetos de la empresa —llama-
do composición de objetos—, o diseñando primero las GUI —llamado composición de la
presentación o, a veces, mencionada como habilidad en la computación (“hackeo”) —.
Cualquiera de estos estilos de composición pueden tener éxito, pero algunos de ellos fun-
cionan mejor que otros, dependiendo del tamaño y complejidad del problema. Desafor-
tunadamente, no hay un solo mejor estilo para todas las circunstancias, y las opiniones
sobre este tema varían mucho.

Modo de hallar las clases frontera
Las clases frontera se usan para formar puentes hacia los subsistemas. En este caso, el
objetivo es aislar su sistema de la interacción directa con subsistemas externos. De esta
manera, si el subsistema externo cambia, su implementación sólo necesitará cambiar en
las clases fronteras. Aquí pueden ayudar un buen conocimiento de los patrones y un es-
tudio de los sistemas que han tenido éxito.

Este libro es acerca del uml y no pretende que ser un how-to sobre el diseño de soft-
ware. Sin embargo, un recorrido por la bibliografía le conducirá a algunos libros excelen-
tes sobre el uml y el diseño de software.

Examen
1. Se usa el mismo símbolo básico para las interfaces y las clases.

a. Verdadero

b. Falso

2. Al agregar clases a un diagrama, usted debe

a. mostrar propiedades, campos y métodos.

b. mostrar sólo propiedades y campos.

c. mostrar propiedades y métodos.

d. mostrar campos y métodos.

3. Un atributo se puede modelar como una característica de una clase,
pero no como una clase asociación.

a. Verdadero

b. Falso

05 KIMMEL.indd 128 11/4/07 7:03:28 PM

 www.FreeLibros.me

CAPÍTULO 5 ¿Cuáles son las cosas que describen mi problema? 129

4. Al modelar atributos, se

a. requiere que modele métodos atributos.

b. recomienda que no muestre métodos atributos.

c. recomienda que muestre los campos subyacentes para esos atributos.

d. Ninguno de los anteriores.

5. Tanto los tipos simples como los complejos se deben modelar como

a. atributos.

b. clases asociación.

c. atributos y clases asociación.

d. Los tipos simples se modelan mejor como atributos, y los complejos se modelan
mejor como asociaciones.

6. Una asociación unidireccional tiene una flecha en uno de los extremos, conocido
como la fuente; el otro extremo se conoce como el objetivo.

a. La fuente tendrá un campo cuyo tipo es el del objetivo.

b. El objetivo tendrá un campo cuyo tipo es la fuente.

c. Ninguno de los dos.

7. ¿Una agregación y una asociación son

a. semánticamente semejantes?

b. directamente opuestas?

8. ¿Cuál es la diferencia más importante entre una agregación y una composición?

a. Composición significa que la clase totalidad, o compuesta, será responsable de
la creación y destrucción de la parte o clase contenida.

b. Agregación significa que la clase agregada totalidad será responsable de la crea-
ción y destrucción de la parte o clase contenida.

c. Composición significa que la clase totalidad, o compuesta, es la única clase que
puede tener un caso de la clase parte en cualquier momento dado.

d. Agregación significa que la clase totalidad, o agregada, es la única clase que
puede tener un caso de la clase parte en cualquier momento dado.

e. a y c

f. b y d

05 KIMMEL.indd 129 11/4/07 7:03:28 PM

 www.FreeLibros.me

Manual de UML 130

 9. Generalización significa

a. polimorfismo.

b. asociación.

c. herencia.

d. composición.

10. A una asociación se le da nombre. El nombre es

a. el tipo de la clase asociada.

b. el nombre implicado de la asociación y representa el nombre de
un campo.

c. una dependencia.

d. una generalización.

11. El «primitivo» se usa en conjunción con el símbolo de clase. Éste
introduce

a. tipos simples existentes.

b. tipos nuevos semánticamente simples.

c. tipos complejos existentes.

d. tipos nuevos semánticamente complejos.

Respuestas
 1. a

 2. d

 3. b

 4. b

 5. a

 6. a

 7. e

 8. c

 9. b

10. b

11. b

05 KIMMEL.indd 130 11/4/07 7:03:28 PM

 www.FreeLibros.me

CAPÍTULO

131

En el capítulo 5, se introdujeron los diagramas de clases como vistas estáticas de su
sistema. Por vista estática, quiero decir que las clases sólo están ahí, pero sus clases
definen las cosas que se usan para examinar comportamientos dinámicos descritos
en diagramas de interacción y esquemas de estado.

Debido a que las clases y los diagramas de clases contienen elementos centrales
para el sistema del lector, ampliaré el uso básico de los símbolos y las relaciones
básicas del capítulo 5. En este capítulo, se examinarán relaciones más avanzadas e
información más detallada de las clases, estudiando

• Diagramas con un mayor número de elementos

• Relaciones anotadas, incluyendo la multiplicidad

• Modelado de clases abstractas e interfaces

• La manera de agregar detalles a los diagramas de clases

• La comparación de la clasificación con la generalización

Cómo se relacionan
las clases

6

06 KIMMEL.indd 131 11/4/07 7:07:07 PM

 www.FreeLibros.me

Manual de UML 132

Modelado de la herencia
Existen beneficios al heredar, así como retos. Una clase hijo hereda todas las característi-
cas de su clase padre. Cuando se define un atributo en una clase particular, es incorrecto
repetir el atributo en las clases hijos. Si repite un método en la clase hijo, entonces está
describiendo la anulación del método. En el Unified Modeling Language (uml), además
de anular, puede redefinir los métodos; esto se soporta en algunos lenguajes, pero puede
conducir a confusión. La anulación de los métodos es central para el polimorfismo; use
la redefinición de métodos con moderación.

Cuando hereda clases, sus clases hijos heredan las restricciones definidas por todos los
antepasados. Cada elemento tiene la unión de las restricciones que define y las restriccio-
nes definidas por sus antepasados.

El lector tiene varias opciones de herencia que explicaré en esta sección. En esta sec-
ción, se considerarán la herencia simple y la múltiple, y se comparará la generalización
con la clasificación. Para evitar árboles profundos de herencia, también explicaré la he-
rencia de interface y composición en las dos secciones que siguen.

Uso de le herencia simple
La herencia simple es la forma más fácil de herencia. Una clase hijo que hereda de una
clase padre hereda todas las características de esta última, pero sólo tiene acceso direc-
to para los miembros públicos y protegidos. La herencia, llamada generalización en el
uml, se indica por una sola línea que se extiende de la clase hijo a la clase padre, con un
triángulo hueco fijado a esta última. Si múltiples clases heredan de la misma clase padre,
entonces puede usar una sola línea unida que se conecte a esta última.

Generalización contra clasificación
En el capítulo 5, introduje una prueba fácil para determinar si existe una relación de
herencia. Ésta se llama es una prueba. Esta prueba sola puede ser engañosa y conducir
a resultados incorrectos. Es una prueba implica transitividad estricta. Por ejemplo, si la
clase B es una hija de la clase A, y la clase C es una hija de la B, entonces la clase C es
una hija de la clase A. (Decimos que la clase C es una nieta de la clase A o que la A es una
antepasada de la C.) No obstante, la transitividad implicada por la prueba es una no es
estrictamente correcta.

Supongamos que tenemos las proposiciones verdaderas que siguen:

Pablo es un programador de C#.
Programador C# es una descripción de trabajo.
Pablo es una persona.
Programador de C# es una persona.

06 KIMMEL.indd 132 11/4/07 7:07:07 PM

 www.FreeLibros.me

CAPÍTULO 6 Cómo se relacionan las clases 133

“Pablo es un programador de C#” funciona. “Un programador de C# es una persona”
funciona y “Programador de C# es una descripción de trabajo” funciona, pero “Pablo es
una descripción de trabajo” no funciona. El problema es que Pablo es un ejemplo de pro-
gramador de C#. Esta relación se describe como una clasificación de Pablo el programa-
dor de C#, pero la generalización (es decir, la herencia) se usa para describir relaciones
entre subtipos. Por lo tanto, tenga cuidado al usar es una como un solo determinante de
la herencia. Una prueba más precisa es determinar si algo describe un ejemplo (clasifica-
ción) o un subtipo (generalización).

Si la clase B es un subtipo de la A, entonces tiene usted una herencia. Si la relación
describe una clasificación —es decir, describe un contexto o papel en el cual algo es cier-
to— entonces tiene un relación de clasificación. Las clasificaciones se pueden manejar
mejor con las asociaciones.

Clasificación dinámica
La exposición anterior sugiere que la herencia a veces se aplica mal. Regresando a nuestro
ejemplo, Pablo es un programador describe un papel, o clasificación, más precisamente
que una generalización, porque Pablo también es un esposo, un padre y un pagador de
impuestos. Si hubiéramos tratado de generalizar a Pablo como todas esas cosas a través
de la herencia, hubiéramos tenido que usar herencia múltiple, y las relaciones hubieran
sido bastante complejas.

La forma de modelar y captar la clasificación es a través de la asociación. De hecho,
podemos usar un patrón de comportamiento de estado para captar la dinámica y los pa-
peles cambiantes que describen a una persona o la manera como se comporta el ejemplo
Pablo en un contexto dado. Usando una asociación y, de modo específico, el patrón de
comportamiento de estado, podemos implementar la clasificación dinámica; es decir,
podemos cambiar el comportamiento de Pablo con base en el contexto o el papel que está
representando en un momento dado.

El patrón de comportamiento de estado se implementa con el uso de una asociación
y generalización. Sin tratar de reproducir la discusión completa acerca de este patrón
—consulte Design Patterns, escrito por Erich Gamma et al.— podemos hacer un resu-
men. El patrón de comportamiento de estado se llama patrón de comportamiento por-
que describe la manera en que actúa algo. Los otros tipos generales de patrones son de
creación —cómo se crea algo— y estructural —cómo se organiza algo—. El patrón se
llama de estado porque describe cómo se comporta algo con base en el estado. En nuestro
ejemplo, usaríamos este patrón para describir cómo se comportan las personas con base
en alguna condición: el estado. Por ejemplo, cuando Pablo está en el trabajo, se comporta
como un programador de C#. Cuando Pablo está en casa, se comporta como un esposo al
interactuar con su esposa y como padre cuando interactúa con sus hijos.

Si modelamos en forma incorrecta la clasificación de Pablo con el uso de la generali-
zación, entonces crearíamos un modelo como el de la figura 6-1, mostrando toda la he-

06 KIMMEL.indd 133 11/4/07 7:07:07 PM

 www.FreeLibros.me

Manual de UML 134

rencia. Sin embargo, si modelamos los papeles de Pablo de modo más preciso con el uso
de la asociación, tendríamos un modelo mejor (vea la figura 6-2).

En la figura 6-1, se intenta mostrar que una “Persona” es un ejemplo de “Programa-
dor”, “Esposo” y “Padre”. En realidad, esto implica que debería crearse un tipo diferente
de objeto para Pablo, dependiendo del contexto. Sin embargo, en realidad, Pablo siempre
es una persona y las personas representan papeles: a veces, una persona es un esposo; a
veces, un padre; a veces, un trabajador, y así sucesivamente. El papel de la asociación
significa que Pablo siempre es un ejemplo de “Persona”, pero el papel de una persona
cambia en forma dinámica. La clase en cursivas, “Papel”, significa que el papel es abs-
tracto y la asociación “papel” (en minúsculas) en realidad es un caso de “Programador de
C#”, “Esposo” o “Padre”.

El patrón de comportamiento de estado se implementa principalmente por la rela-
ción entre “Persona” y la clase abstracta “Papel”. Lo que está faltando para completar
el patrón son los comportamientos abstractos que es necesario definir por persona e
implementarse por generalizaciones del papel. Por ejemplo, “Persona” podría tener un
método llamado “ProcederconPaciencia” y ese método se declararía en “Papel” y se
implementaría llamándolo “papel”. Se implementaría “ProcederconPaciencia”, es decir,
el comportamiento de “Persona” nombrado “ProcederconPaciencia”, por medio de una
subclase específica de “Papel”. Por ejemplo, en el papel de “Programador de C#”, si
usted les grita a los clientes, entonces puede perder su trabajo; pero gritarle a su esposa
puede dar por resultado que usted duerma en el sofá. El subtipo específico del papel de-
termina el comportamiento, sin cambiar el ejemplo de “Persona”.

Figura 6-1 Diagrama uml de clases en el que se muestra una generalización rígida donde el
objeto “Pablo” intenta reflejar de manera incorrecta “Padre”, “Esposo” y “Programador de C#”.

Persona

Esposo Padre

Pablo

Programador de C#

06 KIMMEL.indd 134 11/4/07 7:07:08 PM

 www.FreeLibros.me

CAPÍTULO 6 Cómo se relacionan las clases 135

NOTA En la compleja sociedad de hoy en día, modelar las relaciones familiares, por
ejemplo, para el gobierno estatal, podría ser excesivamente difícil. Los niños tienen
múltiples padres y madres, a veces el sexo de los dos padres es idéntico y algunas per-
sonas tienen trabajos múltiples y familias nucleares. Sin embargo, esto ilustra que algo
tan aparentemente sencillo, como la gente y sus papeles, puede ser muy complejo, de-
pendiendo del dominio del problema.

Si el género va bien con el contexto de nuestro diseño, entonces podríamos clasificar
todavía más “Esposo” y “Padre” asociado con una enumeración, “Género” (figura 6-3).
La clave es no modelar todo lo que podría; en lugar de ello, modele lo que necesite mode-
lar con el fin de describir el problema de manera suficientemente adecuada para su espacio
de problema.

Uso de la herencia múltiple

La herencia sencilla puede ser difícil porque la prueba es un(a) no es por completo sufi-
ciente. La generalización implica subtipo, pero el lector podría implementar relaciones
de subtipo con el uso de la composición o asociación. La herencia simple representa,
además, un reto porque la clasificación significa que usted está hablando de un caso y
es un(a) parece funcionar durante las discusiones verbales, pero puede ser incorrecta o
demasiado rígida para implementar.

Papel

Figura 6-2 Un segundo diagrama uml de clases en el que se usa la asociación para un papel que
refleja cómo se comportan las personas en ciertos papeles.

Persona

Pablo

Padre

–papel

� ����

Programador de C#

+EscribirCódigo()
+RecogerChequedePago()

Esposo

+ProcederconPaciencia()
+ComprarRegalos()
+Reparar()

+Disciplinar()
+Amar()
+Enseñar()

06 KIMMEL.indd 135 11/4/07 7:07:08 PM

 www.FreeLibros.me

Manual de UML 136

La herencia múltiple es incluso más difícil porque todavía tenemos los problemas de
generalización y clasificación, y éstos se exacerban al tener más de un supertipo. Cuando
un subtipo hereda de más de un supertipo, se entiende que aquél contiene la unión de
todas las características de todas sus clases padres. Hasta ahora todo va bien. Se presenta
un problema cuando más de un supertipo introduce una característica que tiene el mismo
nombre que la de otro supertipo. Por ejemplo, la clase C hereda de la B y de la A, y tanto
la clase A como la B introducen una operación nombrada “Foo”. ¿Por cuál versión de
Foo se resuelve “C.Foo()”, por “A.Foo() o por “B.Foo()? Aun cuando el uml soporta la
resolución dinámica de conflictos, la mayoría de las implementaciones de herencia múl-
tiple requieren que el programador resuelva el conflicto. Esto significa que el programa-
dor debe decidir que “C.Foo()” llama a “A.Foo()”, “B.Foo()” o tanto a “A.Foo()” como
a “B.Foo()” (figura 6-4). Una buena práctica al usar la herencia múltiple es resolver los
conflictos de nombre de manera explícita.

Queda indicada la herencia múltiple cuando una clase tiene más de un supertipo in-
mediato. Albert Broccoli e Ian Fleming, el mismo par que produjo los filmes de James
Bond, produjeron la película Chitty Chitty Bang Bang. En la película, el auto también
era una nave sobre colchón de aire, propulsada por un chorro de agua y un avión. En un

� ����

�

�

�

�

Figura 6-3 Abstracción del género a partir de los papeles de esposo y padre.

Persona Papel–papel

Pablo

Padre

+Disciplinar()
+Amar()
+Enseñar()

«enumeración»
Género

+Masculino
+Femenino –padre

–esposo

+EscribirCódigo()
+RecogerChequedePago()

Programador de C# Esposo

+ProcederconPaciencia()
+ComprarRegalos()
+Reparar()

06 KIMMEL.indd 136 11/4/07 7:07:08 PM

 www.FreeLibros.me

CAPÍTULO 6 Cómo se relacionan las clases 137

diagrama de clases, esto se podría modelar como una clase (la llamaremos “ccbb”) que
se herede de “Bote”, “Automóvil” y “Avión”. El problema surge porque en cada modo se
usó una forma diferente de propulsión; como consecuencia, “ccbb.Propulsar()” podría ser
difícil de resolver en un modelo, e igualmente difícil de implementar.

NOTA El lector podría pensar que los vehículos anfibios y el verbo propulsar resultan
un poco forzados, pero con base en la experiencia real, le puedo decir que, en la actua-
lidad, esos conceptos existen en los diseños. Sin embargo, yo sólo tengo conocimiento
de ejemplos reales en aplicaciones militares.

Debido a las dificultades técnicas reales con la herencia múltiple, muchos lenguajes
poderosos, como C# y Java, no soportan el idioma. Otra razón por la que la herencia múl-
tiple no se soporta en forma universal es que usted puede simular este tipo de herencia
mediante la composición y la promoción de características constituyentes, o a través de
herencia múltiple de interfaces. Desde la perspectiva del uml, la composición y las carac-
terísticas constituyentes que la revisten significan que “ccbb” sería un auto y contendría
los objetos avión y bote, y las características de bote y avión se harían disponibles en
forma indirecta redefiniendo las características al nivel de auto. Entonces se implementa-
rían estas características al invocar las características compuestas internamente de bote o
avión. Por ejemplo, “ccbb.Volar” invocaría el método interno “Avión.Volar”. La herencia
múltiple de interfaces tan sólo significa que una clase implementará todas las caracterís-
ticas definidas por todas las interfaces realizadas.

Evite la herencia múltiple, incluso si es soportada en el lenguaje de implementación que
usted elija o, de lo contrario, use la composición o la herencia de interfaz. En la figura 6-5,

Figura 6-4 Resuelva de manera explícita los conflictos de nombres en las clases con herencia
múltiple, lo que se muestra aquí con el uso de una restricción.

Clase A Clase B

Clase C

+Foo() +Foo()

+Foo()

{A.Foo()}

06 KIMMEL.indd 137 11/4/07 7:07:08 PM

 www.FreeLibros.me

Manual de UML 138

se muestra una manera en que podríamos trazar un diagrama de clases para ilustrar las
características aerodinámicas y anfibias de ccbb. En la figura, entendemos que el diagra-
ma quiere decir que “ccbb” crea un ejemplo de “Nave sobre colchón de aire” nombrada
“bote” y un ejemplo de “Aeronave monomotor de aterrizaje” nombrada “avión”. “Ro-
zar()” se implementaría al llamar “bote.Propulsar”, y se implementaría “Volar()” al lla-
mar “avión.Propulsar”.

Otra opción sería definir tres interfaces: “Avión”, “Automóvil” y “Bote”. Cada una
de estas interfaces podría definir métodos, “Volar”, “Conducir” y “Propulsar”. Entonces
“ccbb” podría implementar cada una de estas interfaces.

La solución que se muestra en la figura 6-5 no es perfecta, y puede no ser atractiva para
todos; no obstante, es importante tener presente que nos estamos esforzando por lograr
modelos suficientemente buenos o susceptibles de lograrse, no perfectos.

�

�

�

�

Figura 6-5 En esta figura, mostramos que “ccbb” hereda de “Automóvil”, pero usa la composi-
ción para mostrar sus capacidades de bote y avión.

Vehículo

+Propulsar()

Avión Bote Automóvil

CCBB

+Volar()
+Rozar()

Monomotor de aterrizaje Nave de colchón de aire

–avión –bote

06 KIMMEL.indd 138 11/4/07 7:07:09 PM

 www.FreeLibros.me

CAPÍTULO 6 Cómo se relacionan las clases 139

Modelado de la herencia de interfaces
Existen tres actividades primarias asociadas con el modelado. Los modeladores necesitan
concebir con rapidez una solución para los problemas y, a menudo, en situaciones de gru-
po. Los modeladores tienen que usar las herramientas uml y esto, con frecuencia, lo hace
una persona en aislamiento o en un grupo pequeño y, por último, en general se solicita
documentación de apoyo en forma de texto. Escribir la documentación arquitectónica
está más allá del alcance de este libro, pero tanto el modelado en grupo, sobre servilletas
y pizarrones blancos, como el uso de las herramientas uml son importantes. A veces,
pienso que los pizarrones blancos y las servilletas son más importantes que las herra-
mientas uml, porque el modelado en grupo hace intervenir a más personas y no estoy por
completo convencido de que los modelos uml reales sean leídos por cualesquiera que no
sean los modeladores y programadores y, en ocasiones, sólo por los programadores.

Boceto de diagrama

Trazar un esbozo de los modelos puede resultar conveniente porque es fácil de hacer y se
puede obtener retroalimentación del grupo que observa y cambiar el dibujo. Sin embar-
go, si intenta usar sobre un boceto la formalidad y las características de las herramientas
uml, se quedará atascado en el dibujo de imágenes bonitas, en lugar de en la solución de
los problemas. Por esta razón, es aceptable usar notaciones abreviadas y símbolos más
pequeños, y no importa si sus rectángulos no son perfectos sobre un pizarrón.

Por ejemplo, en el uml, usamos cursivas para indicar que una clase es abstracta. Sobre
un boceto, podemos usar una abreviatura para la palabra clave abstracta (A), para dar a
entender que una clase es abstracta. En lugar de escribir el estereotipo «interfaz» para las
interfaces, podemos usar «I» o la paleta de caramelo. Suponga que estamos discutien-
do las propiedades del vuelo en un escenario de grupo. Podríamos definir una interfaz
“iAptoparaVolar” con los métodos “TenerResistenciaalMovimiento”, “TenerSustenta-
ción”, “TenerEmpuje” y “TenerPeso”, y mostrar que un paracaídas implementa estas
operaciones (aun cuando es muy difícil simular un boceto en un libro). En la figura 6-6,
se muestra cómo podríamos presentar el uml sobre un pizarrón; en la 6-7 se muestra el
mismo uml captado en nuestra herramienta de modelado.

La figura 6-7 es más clara y mejor que el uml, pero muchos modeladores, en especial
aquellos con poca experiencia en el uml, reconocerán que las dos presentaciones repre-
sentan la misma solución. Además, la sola explicación de qué es la paleta de caramelo
satisfará a los principiantes, y es mucho más fácil de dibujar sobre un pizarrón.

NOTA “Sustentación”, “Resistencia al movimiento”, “Peso” y “Empuje” son los valores
necesarios para los principios del vuelo descritos por la física de Bernoulli y Newton. En
realidad, estas propiedades vinieron a colación cuando estaba exponiendo soluciones para

06 KIMMEL.indd 139 11/4/07 7:07:09 PM

 www.FreeLibros.me

Manual de UML 140

un sistema de evitación de colisiones de compañero contra compañero entrelazados, para
los paracaídas de alta velocidad que usan los paracaidistas de gran altitud, o Halo.

La cuestión es que, en una situación dinámica de grupo, resulta de ayuda ser rápido,
porque se puede botar una gran cantidad de información, a veces toda a la vez. El uso de
una notación abreviada puede no dar siempre como resultado un uml perfecto, pero el
lenguaje es una herramienta para entender y resolver problemas, y es el medio, no el fin.
Usted siempre puede trazar un uml bonito cuando la reunión haya terminado.

Uso de la realización

Si la generalización se usa en exceso, entonces es posible que la realización se use menos
de lo debido. Realización significa herencia de interfaces y se indica al usar una clase con
el estereotipo «interfaz» y un conector con una línea punteada conectada a un triángulo
hueco. El triángulo se fija a la interfaz, y el otro extremo se fija a la clase que implemen-
tará la interfaz.

 El símbolo de la paleta de caramelo dibujado a mano en la figura 6-6 todavía se usa en
algunas herramientas de modelado y se trata de una forma abreviada que se puede reco-
nocer junto con un conector de línea continua para la herencia de interfaces. La dificultad
en el uso de símbolos múltiples para dar a entender lo mismo es que hace que el lenguaje
sea más difícil de entender y, si se usa de manera imprecisa, puede conducir a afectar el

Figura 6-6 Se muestra realizada la interfaz “iAptoparaVolar” por medio de “Paracaídas”, como
podríamos dibujarla sobre un pizarrón.

Figura 6-7 El mismo diagrama que se muestra en la figura 6-6, presentado en Visio (double =
doble).

IAptoparaVolar

+TenerSustentación() : double
+TenerResistenciaalMovimiento() : double
+TenerPeso() : double
+TenerEmpuje() : double

«interfaz»
+ iAptoparaVolar Paracaídas

Paracaídas
TenerPeso
TenerSustentación
TenerResistenciaal
Movimiento

TenerEmpuje

06 KIMMEL.indd 140 11/4/07 7:07:09 PM

 www.FreeLibros.me

CAPÍTULO 6 Cómo se relacionan las clases 141

lenguaje por parte de los pequeños del uml. La afectación del lenguaje es casi siempre
un desperdicio de tiempo, excepto para los académicos.

Relaciones de proveedor y relaciones requeridas
En el uml, la paleta de caramelo se usa en realidad para mostrar relaciones entre inter-
faces y clases. La paleta significa que la clase fijada proporciona la interfaz. Una mitad
de paleta de caramelo o una línea con un semicírculo significa que se requiere una inter-
faz. Si aplicamos los símbolos para las relaciones requeridas y del proveedor a nuestro
ejemplo del paracaídas, entonces podemos modelar nuestros paracaídas de alta velocidad
proporcionando “iAptoparaVolar” (a la izquierda) y requiriendo “iNavegable” a la dere-
cha (figura 6-8).

En la figura 6-8, el propio paracaídas tiene propiedades de vuelo, incluyendo “Susten-
tación”, “Empuje”, “ResistenciaalMovimiento” y “Peso”, aun cuando el “Empuje” sea
probablemente 0, pero un paracaídas navegable puede depender de un dispositivo gps
(Global Positioning System; Sistema de posicionamiento global) que sabe acerca de la
longitud y latitud y un altímetro que sabe acerca de la altitud (y de la velocidad y direc-
ción del viento). También podríamos mostrar la relación idéntica usando el conector de
realización para “iAptoparaVolar” y el de dependencia para “iNavegable” (figura 6-9). Si
está usted interesado en hacer hincapié en las relaciones, entonces puede usar paletas de
caramelos; si quiere hacer hincapié en las operaciones, entonces el símbolo de clase con
los estereotipos es una mejor selección.

Reglas para la herencia de interfaces
La idea básica que se encuentra detrás de las interfaces es que una interfaz describe
una especificación de comportamiento, sin proporcionar los comportamientos, como la
navegabilidad. En nuestro ejemplo del paracaídas, sólo estamos diciendo que nuestros
paracaídas de alta velocidad que evitan las colisiones interactuarán con un dispositivo
que actúa como una ayuda para la navegación, quizás incrementando la resistencia al
movimiento. La presencia de la interfaz no prescribe cuál es el dispositivo; sólo impone
los comportamientos que soporta ese dispositivo.

SUGERENCIA El uso de un adjetivo —por ejemplo, atributo se convierte en atributivo— para
los nombres de interfaces es una práctica común. A veces un diccionario resulta útil.

Figura 6-8 “iAptoparaVolar” es una interfaz proporcionada por “Paracaídas”, e “iNavegable”
muestra una interfaz requerida por “Paracaídas”.

Paracaídas

iNavegableiAptoparaVolar

06 KIMMEL.indd 141 11/4/07 7:07:10 PM

 www.FreeLibros.me

Manual de UML 142

Las interfaces no proporcionan comportamientos; sólo estipulan cuáles deben ser. La
regla es que debe implementarse una interfaz mediante la realización o herencia. Esto
significa que

• Dada la interfaz A, la clase B puede implementar todos los compor-
tamientos descritos por esa interfaz.

• Dadas las interfaces A y B, la cual hereda de la A, la clase C puede
implementar todos los comportamientos descritos por aquéllas.

• Dada la interfaz A y las clases B y C, en donde la clase C hereda de
la B, o ésta se compone de la C, las clases B y C juntas implementan
todos los comportamientos descritos por la interfaz A. En el esce-
nario de composición, B realiza A, y en el escenario de herencia, C
realiza A.

Suponiendo que la especificación de comportamiento “iNavegable” incluyera “Tener-
Longitud()”, “TenerLatitud()” y “TenerAltitud()”, entonces, en el primer escenario, “iNave-
gable” podría realizarse por medio de un dispositivo que pudiera determinar la longitud, la
latitud y la altitud. En el segundo escenario, “iNavegable” podría heredar de una interfaz
“ideAltitud”, y las dos interfaces se realizarían por un solo dispositivo de orientación
tridimensional. Por último, en el tercer escenario, “iNavegable” podría definir las tres
posiciones tridimensionales e implementarse por generalización o composición, como
se muestra en la figura 6-10. (Sólo para satisfacer mi curiosidad, en realidad existe un
dispositivo de ese tipo —el Garmin eTrex Summit gps con brújula electrónica y altímetro.
Yo quiero uno.)

Una vez más, vale la pena hacer notar que los tres escenarios descritos satisfacen de
manera adecuada el requisito de navegabilidad. El escenario real que diseño depende
de las clases de las que dispongo o de qué es conveniente. Si ya tengo parte de la in-
terfaz realizada por otra clase, entonces podría obtener el resto a través de herencia de
composición. Recuerde que el diseño no necesita ser perfecto, pero los modelos deben
describir de modo adecuado lo que usted quiere dar a entender. Siempre puede cambiar
su modo de pensar, si debe hacerlo.

Figura 6-9 En esta figura, se ilustran las mismas relaciones que las descritas en la 6-8; específi-
camente, que “Paracaídas” realiza “iAptoparaVolar” y depende de “iNavegable”.

Paracaídas
«interfaz»

iAptoparaVolar

«interfaz»
iNavegable

06 KIMMEL.indd 142 11/4/07 7:07:10 PM

 www.FreeLibros.me

CAPÍTULO 6 Cómo se relacionan las clases 143

Descripción de la agregación y la composición
La agregación logra una mención aquí porque es el término que se usa más a menudo en
el diseño de software orientado a objetos cuando se habla acerca de la composición, es
decir, cuando se habla acerca de una clase que está compuesta por otras. Se usa el término
agregación, pero se quiere dar a entender composición. Como dije con anterioridad, el
conector agregación —compuesto por un diamante hueco y una línea continua— tiene un
significado ambiguo que no es diferente de una asociación, y se prefiere asociación.

En la composición se usa un diamante relleno y una línea continua. Cuando use la
composición, significa que la clase que representa la totalidad, o clase compuesta, contiene
aquél y sólo el caso de la clase que representa la parte; también significa que la clase tota-
lidad es responsable de la duración de la clase parte.

La composición significa que la clase compuesta debe garantizar que se crean todas
sus partes y se fijan a la compuesta, antes de que ésta esté por completo construida. En
tanto exista la clase compuesta, se puede implementar el confiar que ninguna de sus
partes sea destruida por cualquier otra entidad, Cuando se destruye la compuesta, debe
destruir las partes, o puede eliminar en forma explícita las partes y llevarlas hacia algún
otro objeto. La multiplicidad de la compuesta siempre es 1 o 0.1.

Para demostrar la composición, podemos modificar la relación que se ilustra en la fi-
gura 6-10. En este figura, demostré cómo satisfacer una interfaz a través de herencia, pero
el nombre de la clase hijo “gpsConAltímetro”, suena como una relación de composición.
La palabra con me sugiere composición más que herencia. Para satisfacer la interfaz, po-
demos definir “gpsConAltímetro” como la compuesta, definir “Altímetro” como la parte
y promover el método “TenerAltitud” desde “Altímetro”. En la figura 6-11, se muestra
la revisión, y la siguiente lista muestra cómo podríamos fragmentar cada uno de estos
elementos en C#.

Figura 6-10 Implementación de una interfaz a través de una herencia.

GPS

gpsConAltímetro

+TenerAltitud()

TenerLongitud()
+TenerLatitud()

«interfaz»
iNavegable

+TenerLongitud()
+TenerLatitud()
+TenerAltitud()

06 KIMMEL.indd 143 11/4/07 7:07:10 PM

 www.FreeLibros.me

Manual de UML 144

�

��
�

��
��������������������������
���
�����������������
��������������������������

����
���������������
����
��
�

��

�

����

����
�

�������������������������������

��

����������������������������

���������������������������������

������������������������

��������������������������������

�������������������������

��������������������������������

�������������������������

���������������������������

í

í

í

í

z

�

�

Figura 6-11 Figura 6-10 revisada para usar la composición con el fin de agregar el comporta-
miento del altímetro.

«interfaz»
iNavegable

+TenerLongitud()
+TenerLatitud()
+TenerAltitud()

gpsConAltímetro

+TenerLongitud()
+TenerLatitud()
+TenerAltímetro()

Altímetro

+TenerAltitud()

–altímetro

C

í

()

()C

06 KIMMEL.indd 144 11/4/07 7:07:11 PM

 www.FreeLibros.me

CAPÍTULO 6 Cómo se relacionan las clases 145

En esta lista, podemos ver que “gpsConAltímetro” contiene un campo privado “altí-
metro”. El constructor crea un caso del altímetro, y “TenerAltitud” usa ese altímetro para
retornar la altitud. Debido a que C# es un lenguaje de “basura recolectada”, no necesi-
tamos mostrar un destructor de manera explícita que libere el caso de la parte altímetro.
(Ahora todo lo que queda por hacer es implementar los comportamientos.)

Asociaciones y las clases asociaciones
En el capítulo 5, se introdujo la asociación. Tomemos un momento para recapitular y,
enseguida, introduciré algunos conceptos avanzados relativos a las asociaciones.

Cuando vea un campo en una clase, ésa es una asociación. Sin embargo, a menudo una
asociación en un diagrama de clases se limita a las clases, en lugar de a tipos simples. Por
ejemplo, un arreglo de valores cardinales se podría mostrar como un campo de arreglo o
como una asociación hacia el tipo cardinal, con una multiplicidad de 1 en el extremo que
representa la clase que contiene el arreglo, y una multiplicidad de muchos (*) en el tipo
cardinal. Además, los campos y las asociaciones soportan navegabilidad, posibilidad de
cambiarse y ordenamiento. Ese mismo arreglo de tipos cardinales se podría representar
fijando la flecha de palillos conectada al tipo cardinal. Si quisiéramos indicar que el arre-
glo fuera de sólo lectura —quizás después de la inicialización— entonces colocaríamos
el modificador {sólo lectura} en el campo y en la asociación. El significado es el mismo.

�

����
��������������
����
�

����
��������������
����
�

����

����
�
�������������
�

�����������������������������

��������������������������������

�������������������������������

�������������������������������

�������������������������������������

06 KIMMEL.indd 145 11/4/07 7:07:11 PM

 www.FreeLibros.me

Manual de UML 146

Si el arreglo estuviera ordenado, entonces podríamos colocar el modificador {ordenado}
en el campo del arreglo o en la asociación. En la figura 6-12, se muestra nuestro arreglo
de valores cardinales representado con el uso de una asociación directa de valores cardi-
nales ordenados (clasificados).

Si una asociación tiene características, entonces podemos usar una clase asociación.
Piense en una clase asociación como una tabla de vinculación en una base de datos en
forma de relación, pero es una tabla de vinculación con comportamientos. Por ejemplo,
podemos indicar que un “Patrón” está asociado con sus “Empleados”. Si quisiéramos
indicar que “Empleados” es una colección que se puede ordenar, entonces podemos agre-
gar una clase asociación llamada “ListadeEmpleados” y mostrar el método “Clasificar”
en esa clase (figura 6-13).

En nuestro ejemplo, podemos elegir el uso de una asociación para reflejar que los pa-
trones y los empleados están asociados, en lugar de que un patrón es una clase compuesta
formada por empleados. Esto también funciona muy bien porque muchas personas tienen
más de un patrón.

Una clase asociación tiene un conector de asociación fijo a una asociación entre las
clases que vincula. En el ejemplo, la clase “Patrón” tendría un campo cuyo tipo es “Lista-
deEmpleados”, y éste tiene un método “Clasificar” y está asociado con los objetos “Em-
pleados” (o los contiene). Si dejamos la clase de vinculación “ListadeEmpleados” fuera
del modelo y todavía mantuviéramos la relación uno a muchos, entonces se supondría
que existe alguna suerte de colección, pero el programador tendría la libertad de idear
esta relación. La clase de vinculación aclara la relación con mayor precisión.

� ��

Figura 6-12 Podemos agregar modificadores y detalles a las asociaciones precisamente como
las agregaríamos a los campos.

Figura 6-13 Una clase asociación que muestra que la clase “ListadeEmpleados” vincula en
forma indirecta “Patrón” con “Empleados”.

� �

ClaseConArreglo –valores Cardinal

(ordenado)

Patrón –empleado Empleado

ListadeEmpleados

+Clasificar()

06 KIMMEL.indd 146 11/4/07 7:07:11 PM

 www.FreeLibros.me

CAPÍTULO 6 Cómo se relacionan las clases 147

También podríamos modelar la relación usando por asociación el “Patrón” a la “Lis-
tadeEmpleados” y la “ListadeEmpleados” al “Empleado”. El diagrama de la figura 6-14
muestra que, básicamente, las tres variaciones son lo mismo.

La parte superior de la figura 6-14 implica un arreglo o colección y, con instruccio-
nes sencillas, como “Usar una colección con tipo de los objetos Empleado”, suele ser
suficiente para realizar una implementación adecuada. Los dos diagramas de abajo en la
figura 6-14 proporcionan un poco más de información e indican propiedad del compor-
tamiento de clasificación, pero la implementación de cualquiera de las tres figuras debe
ser casi idéntica.

Suponga además que elegimos mostrar cómo se tuvo acceso a un empleado específico
de la colección por medio de un tipo, quizás un número de identificación del empleado.
Por ejemplo, dado un número de identificación del empleado, podríamos indicar que
uno de esos números conduce a un empleado único. Esto se conoce como asociación
calificada y se puede modelar agregando la clase del calificador, como se muestra en la
figura 6-15.

� �

� �

� � � �

Figura 6-14 Tres variaciones que reflejan una relación uno a muchos entre un “Patrón” y
“Empleados”.

Patrón
–empleado

Empleado

–empleado

(ordenado)

Patrón Empleado

ListadeEmpleados

+Clasificar()

–empleados –empleado
Patrón ListadeEmpleados Empleado

+Clasificar()

06 KIMMEL.indd 147 11/4/07 7:07:12 PM

 www.FreeLibros.me

Manual de UML 148

Cuando vea un calificador, esperará verlo usado como un parámetro que da como re-
sultado un caso específico del tipo asociado. La siguiente lista de código muestra cómo
podemos implementar ese código en Visual Basic.net usando una colección con tipo de
objetos “Empleado”, una clase nombrada “iddelEmpleado” y un indexador.

� �

Figura 6-15 El calificador que da como resultado un empleado único es el “iddelEmpleado”.

��������������������������

��������������������

�����������

���������

��

�����������

���������������

���������������
����������������

������������������������������

������������������������
�������������������������������

������������������������
������������������
������������

�������������������
���

��

�����������������������������

���

����������������������������������

������������������������������������

����������������

����������������������������������

���

���

��

ó

Patrón

«señal»-farley()

iddelEmpleado –empleado
Empleado

El calificador es iddelEmpleado

06 KIMMEL.indd 148 11/4/07 7:07:12 PM

 www.FreeLibros.me

CAPÍTULO 6 Cómo se relacionan las clases 149

Incluso si no está familiarizado con Visual Basic.net, puede observar los encabeza-
dos de las clases y ver todas las clases que se muestran en la figura 6-15 (la cual incluye

��
����������������

��������������������������������
����������������

���������������������������������
�����������
���������

���������������������������

������������������������������������
�����������
������������������������
���������������
����������������������������������
�������������������������
���������������
����������������

�����������
����������������������
���������������

�����������������������
���������������
����������������
���������

�������������������������

���
�������������������
�����������

��
����������������
���������

��
��������������������������������

���������������������

���

��������������������������������

���

���

��������������������������

��

ID

06 KIMMEL.indd 149 11/4/07 7:07:12 PM

 www.FreeLibros.me

Manual de UML 150

“Patrón”, “Empleado”, “iddelEmpleado” y la implicada “ListadeEmpleados”). [El he-
cho de que “ListadeEmpleados” herede de “System.Collections.CollectionBase” es co-
nocimiento especializado que se requiere en cualquier lenguaje o marco de referencia
particular. El lector tiene la opción de mostrar la generalización de “CollectionBase” por
“ListadeEmpleados”, lo cual podría usted agregar al diagrama (figura 6-16), si sus desa-
rrolladores necesitaran que se les lleve un poco más de la mano.]

El factor de decisión que me ayuda a elegir cuánto detalle agregar es mi audiencia
de programadores. Si mis compañeros programadores son muy experimentados en el
lenguaje y marco de referencia de implementación que se seleccionen, entonces podría
dejar fuera detalles acerca de cómo implementar la colección de empleados. Para los
programadores nuevos, puede resultar de ayuda mostrar la información agregada en la
figura 6-16. En la práctica, con programadores muy nuevos, suelo agregar más detalles y,
a continuación, codificar un ejemplar que les muestre cómo implementar la construcción,
en este caso una colección con tipo específica para Visual Basic.net.

Nota Incluso los diagramas UML detallados no siempre resultan claros para todos. Por
esta razón, suele ser un detalle importante que los modeladores sepan cómo implementar
los diagramas que crean en la plataforma objetivo que se elija o, por lo menos, que una
persona del equipo pueda traducir a código los aspectos avanzados de los diagramas UML.

Examen de las relaciones de dependencia
Una dependencia es una relación de cliente y proveedor, también conocidos como fuente
y objetivo. La relación de dependencia es una línea punteada con una flecha de palillos
en el extremo. La flecha se fija al proveedor, también llamado objetivo. Yo prefiero los
términos fuente y objetivo, ya que objetivo facilita recordar hacia cuál de los extremos
apunta la flecha.

Una dependencia en un diagrama de clases significa que la fuente depende del objetivo
de alguna manera. Si el objetivo cambia, entonces la fuente resulta afectada. Esto significa

� �

Figura 6-16 En el diagrama revisado se usa una clase asociación para introducir la generaliza-
ción que muestra que “ListadeEmpleados” hereda de “System.Collections.CollectionBase”.

Patrón

«señal»-farley()

IDdelEmpleado –empleado
Empleado

System.Collections.CollectionBaseListadeEmpleados

06 KIMMEL.indd 150 11/4/07 7:07:13 PM

 www.FreeLibros.me

CAPÍTULO 6 Cómo se relacionan las clases 151

que si cambia la interfaz del blanco, entonces resultará afectada la implementación de la
fuente. Las dependencias no son transitivas. Por ejemplo, si una clase A depende de una
clase B y esta última depende de la clase C, entonces si cambia la interfaz de la C, puede
ser que tenga que cambiarse la implementación de la B, pero no necesariamente la inter-
faz de ésta. No obstante, si las dependencias son cíclicas —la clase A depende de la B, la
cual depende de la C, la cual, a su vez, depende de la A— entonces los cambios a la clase
C pueden tener un efecto cíclico que produzca cambios muy difíciles, lo que conduce a
una implementación frágil. Como regla general, evite las dependencias complicadas y
cíclicas.

Las asociaciones dirigidas, la composición y la herencia implican una dependencia. Si
la clase A tiene una asociación dirigida con la B, entonces la clase A depende de la B. Si la
clase B hereda de la A, entonces la B depende de la A. La asociación y la generalización
son relaciones más precisas con sus propias connotaciones; use la dependencia cuando
no es aplicable uno de los tipos más específicos de relaciones.

Por último, antes de que examinemos algo de los estereotipos predefinidos que se
aplican a las dependencias, no trate de mostrar todas las relaciones de dependencia; sólo
trace las dependencias que son importantes.

En la tabla 6-1, se muestran los estereotipos predefinidos para las dependencias. Con
frecuencia, la implicación de una dependencia resulta clara por su contexto, pero estos

Tabla 6-1 Lista de estereotipos para las relaciones de dependencia definidas por el uml Versión
2.0.

acceder

ligar

llamar

crear

derivar

ejemplificar

permitir

realizar

refinar

enviar

sustituir

rastrear

usar

Referencia privada hacia otro contenido del paquete.

Describe un nuevo elemento que se crea cuando se asigna el parámetro de la plantilla.

Un método en la fuente llama a un método en el objetivo.

La fuente crea un ejemplo del objetivo.

Se deriva un objeto de otro.

La fuente crea un ejemplo del objetivo.

La fuente puede tener acceso a los miembros privados del objetivo (por ejemplo,
implementada como una relación de amigo en algunos lenguajes).

La fuente implementa la interfaz del objetivo. (El conector de realización es una mejor
selección.)

La fuente refina el objetivo. Esto se usa para tener la posibilidad de rastreo entre los
modelos (por ejemplo, entre un modelo de análisis y uno de diseño).

Indica un emisor y un receptor de una señal.

Se puede sustituir el blanco por la fuente. (Esto es semejante a cómo una subclase puede
ser sustituida por su superclase.)

Usado para vincular elementos del modelo.

La fuente necesita el blanco para completar su implementación.

06 KIMMEL.indd 151 11/4/07 7:07:13 PM

 www.FreeLibros.me

Manual de UML 152

estereotipos existen para que exprese con claridad el uso que usted pretende. (Después de
la tabla hay una breve descripción de cada una de las relaciones de dependencia.)

A menudo, basta con trazar el conector de dependencia ocasional en el código e imple-
mentar lo que quiere usted dar a entender. Los siguientes párrafos se extienden un poco
sobre las relaciones de dependencia descritas en la tabla 6-1.

La dependencia “acceder” soporta la importación de paquetes en forma privada. Algu-
nos de estos conceptos son nuevos en el uml versión 2.0, y éste es uno que no he tenido
ocasión de usar. El ejemplo más cercano que se podría aplicar aquí es la diferencia entre
las cláusulas de uso de interfaz y de implementación en Delphi. En esencia, Delphi so-
porta importación privada en sus cláusulas de uso de la implementación.

Si alguna vez ha leído The C++ Programming Language, escrito por Bjarne Strous-
trop, entonces habrá leído el discurso sobre las clases plantilla. En C con clases, las plan-
tillas se originaron como una construcción semanal con tipo ideada usando la sustitución
y macros. El resultado fue que el nuevo nombre creado por la concatenación del tipo
cadena condujo a una nueva clase. Con las plantillas, el resultado es el mismo. Cuando
define el parámetro para los tipos parametrizados —plantillas o genéricos— tiene una
nueva entidad. “Ligar” existe con el propósito de modelar este caso.

“Llamar” llama de manera directa un método de la clase objetivo. “Crear” indica que
la fuente crea un ejemplo del objetivo. El lector podría ver esta relación en conjunción
con el patrón fábrica. El único propósito de una fábrica es realizar todos los pasos nece-
sarios para crear el objeto correcto.

“Derivar”, “realizar”, “refinar” y “rastrear” son dependencias abstractas; existen para
representar dos versiones de la misma cosa. Por ejemplo, la dependencia “realizar” im-
plica la misma relación que una realización; es decir, la implementación de una interfaz.
“Rastrear” se usa para conectar elementos del modelo conforme evolucionan; por ejem-
plo, usar casos para las realizaciones de casos de uso.

“Ejemplificar” también se podría usar para indicar que la fuente crea ejemplos del
objetivo. Un ejemplo mejor se relaciona con la información del tipo en el tiempo de eje-
cución o la reflexión en .net. Podríamos mostrar que se usa una metaclase (o el ejemplo
del objeto “Tipo” en .net) para crear un ejemplo de una clase.

El estereotipo “permitir” se usa para indicar que la fuente puede invocar miembros
no públicos del objetivo. Esta relación la soporta el modificador “Friend” (“Amigo”) en
lenguajes como Visual Basic y a través de reflexión dinámica.

Una señal es como un evento que ocurre fuera de secuencia. Por ejemplo, cuando
usted está dormido y la alarma empieza a sonar, ésta es una señal para despertar. El
estereotipo “señal” se usa para indicar que ha sucedido algo que necesita una respuesta.
Piense en evento.

El estereotipo “sustituir” se aplica cuando la fuente se puede sustituir con el blanco.
La forma más clara de sustitución es una clase hijo en lugar de una clase padre. Por últi-
mo, el estereotipo “usar” es común. “Usar” sencillamente implica que la fuente necesita
que se complete el objetivo. “Usar” es una forma más generalizada de “llamar”, “crear”,
“ejemplificar” y “enviar”.

06 KIMMEL.indd 152 11/4/07 7:07:13 PM

 www.FreeLibros.me

CAPÍTULO 6 Cómo se relacionan las clases 153

Adición de detalles a las clases
Como se dice, el mal se encuentra en los detalles. Los diagramas de clases pueden incluir
una gran cantidad de información que se transmite por medio de caracteres de texto,
fuentes y qué es lo que se incluye, así como qué se excluye. Yo prefiero ser explícito
hasta el punto que sea posible, pero no verboso, y estar presente en persona para resolver
las ambigüedades en el transcurso de la implementación. En esta sección, quiero señalar
unos cuantos detalles que el lector puede buscar y algunos atajos respetables que puede
tomar para asegurarse de que entiende los diagramas uml creados por otros y que los
otros entienden los diagramas de usted. Debido a que estas directrices básicas son más o
menos cortas, se encuentran en una lista como proposiciones.

• Las características subrayadas indican características estáticas.

• Las propiedades derivadas se demarcan por medio de una diagonal antes del nom-
bre de la propiedad. Por ejemplo, dadas las propiedades “horas trabajadas” y “sala-
rio por hora”, podemos derivar el salario, el cual aparecería como “/salario”.

• Los nombres de clases en cursivas indican clases abstractas. Una clase abstracta
tiene algunos elementos sin implementación y depende de subclases para una im-
plementación completa.

• Campos del modelo; las propiedades se implican en lenguajes que soportan pro-
piedades. En lenguajes que no soportan propiedades, los métodos con los prefijos
“get_” y “set_” conducen al mismo resultado.

• Las restricciones especifican condiciones anteriores (pre) y posteriores (post).
Use las restricciones para indicar el estado en el cual debe estar un objeto cuando
se introduce un método y se hace salir otro. La construcción “aserción” soporta
este estilo de programación.

• Cuando está modelando operaciones, trate de mantener un número mínimo de ope-
raciones públicas, use campos privados y permita el acceso a los campos a través
de propiedades (si se soportan) o de métodos de acceso (si no se soportan las pro-
piedades).

Examen
1. Una subclase tiene acceso a los miembros privados de una superclase.

a. Verdadero

b. Falso

06 KIMMEL.indd 153 11/4/07 7:07:13 PM

 www.FreeLibros.me

Manual de UML 154

2. Si una clase hijo tiene más de una clase padre y cada padre introduce
una operación con el mismo nombre,

a. el programador debe resolver el conflicto de nombre en forma ex-
plícita.

b. todos los lenguajes que soportan herencia múltiple resuelven los
conflictos de manera implícita.

c. Ninguna de las anteriores. No se permiten los conflictos.

3. ¿Cuál(es) de las proposiciones siguientes es (son) verdadera(s)?

a. La generalización se refiere a subtipos.

b. La clasificación se refiere a subtipos.

c. La generalización se refiere a ejemplos de objetos.

d. La clasificación se refiere a ejemplos de objetos.

e. Ninguna de las anteriores

4. Realizar

a. significa heredar de una clase padre.

b. significa implementar una interfaz.

c. significa promover los miembros constituyentes en una clase com-
puesta.

d. es un sinónimo de agregación.

5. Si un lenguaje no soporta herencia múltiple, entonces se puede tener
una aproximación del resultado por medio de

a. una asociación y la promoción de propiedades constituyentes.

b. realización.

c. composición y la promoción de propiedades constituyentes.

d. agregación y la promoción de propiedades constituyentes.

6. La clasificación dinámica —en donde un objeto se cambia en el tiem-
po de ejecución— se puede modelar usando

a. generalización.

b. asociación.

c. realización.

d. composición.

06 KIMMEL.indd 154 11/4/07 7:07:13 PM

 www.FreeLibros.me

CAPÍTULO 6 Cómo se relacionan las clases 155

 7. Una clase “asociación” se menciona como una clase de vinculación.

a. Verdadero

b. Falso

 8. Un calificador de “asociación”

a. se usa como una precondición a una asociación.

b. representa el papel de un parámetro usado para retornar un objeto único.

c. se usa como una precondición posterior a una asociación.

d. es lo mismo que una asociación dirigida.

 9. Seleccione las proposiciones correctas.

a. Una interfaz proporcionada significa que una clase implementa una interfaz.

b. Una interfaz requerida significa que una clase depende de una interfaz.

c. Una interfaz proporcionada significa que una clase depende de una interfaz.

d. Una interfaz requerida significa que una clase implementa una interfaz.

10. Cuando un símbolo de clasificador se encuentra en cursivas,

a. significa que el símbolo representa un objeto.

b. significa que el símbolo representa una clase abstracta.

c. significa que el símbolo representa una interfaz.

d. significa que el símbolo es un valor derivado.

Respuestas
 1. b

 2. a

 3. a y d

 4. b

 5. c

 6. b

 7. a

 8. b

 9. a y b

10. b

06 KIMMEL.indd 155 11/4/07 7:07:14 PM

 www.FreeLibros.me

06 KIMMEL.indd 156 11/4/07 7:07:14 PM

 www.FreeLibros.me

CAPÍTULO

157

Históricamente, la diferencia entre los esquemas de estado y los diagramas de acti-
vidades ha sido un embrollo. En el Unified Modeling Language (uml) versión 2.0,
los esquemas de estados entran en posesión de la suya como un diagrama distinto
y separado.

Los esquemas de estados (también conocidos como máquinas de estado) son
buenos para mostrar el estado de un objeto sobre muchos casos de uso y para defi-
nir protocolos que describen una orquestación correcta de los mensajes, tal y como
se podría necesitar para tener acceso a las bases de datos o para conectividad por
el Transmission Control Protocol (tcp; Protocolo de Control de la Transmisión).
De manera ideal, los esquemas de estado son adecuados para describir el com-
portamiento de las interfaces de los usuarios y de los controladores de dispositi-
vos para sistemas de tiempo real. En tanto que los diagramas de interacción son
buenos para la comprensión de los sistemas, los esquemas de estados son buenos para
la indicación precisa del comportamiento. Si usted está trabajando en sistemas de
tiempo real o con controladores de dispositivos físicos, entonces puede usar con fre-
cuencia los esquemas de estados. Sin embargo, un número enorme de aplicaciones son

Uso de los
diagramas de

esquemas de estado

7

07 KIMMEL.indd 157 11/4/07 7:10:34 PM

 www.FreeLibros.me

Manual de UML 158

empresariales, basadas en interfaces gráficas del usuario (y las bases de datos, así como
muchos programadores, usan herramientas modernas de desarrollo rápido de aplicacio-
nes para crear prototipos de interfaces, en lugar de definir sus comportamientos usando
esquemas de estados). [No estoy juzgando acerca de si los prototipos deben crearse sin
los esquemas de estados, pero la creación de prototipos de interfaces gráficas del usuario
(gui) no es parte del uml.]

Parte de la desmitificación del uml es asegurarse de que usted sabe que no necesita
usar todos los elementos del modelo, crear toda suerte de diagramas o modelar todos los
aspectos de un sistema. Adhiérase a la modelación de elementos que sean complicados y
en donde el examen del modelo puede conducir a una mejor solución. Por ejemplo, si está
usando un marco de referencia bien comprendido como ado.net, es innecesario crear
diagramas de protocolos que muestren cómo abrir una conexión, leer datos y cerrarla.
Estos procesos están prescritos por el marco de referencia, y el tiempo que se consuma
en la creación del modelo podría usarse mejor en otra parte. Dicho esto, en ocasiones
querrá o necesitará esquemas de estados; en este capítulo le mostraré los elementos de
estos esquemas y algunos ejemplos. El lector aprenderá

• Acerca de los elementos que se usan para crear esquemas de estados

• Cómo crear esquemas de estados

• La diferencia entre los esquemas de estados de comportamiento y de protocolo

• Formas comunes de implementar esquemas de estados

Elementos de un diagrama de estado
Lo más sencillo acerca del uml es que la mayoría de los diagramas se componen de
símbolos y líneas sencillos. Esto se cumple en los esquemas de estados, los cuales se
componen de manera significativa de símbolos llamados estados y líneas llamadas tran-
siciones. La sencillez de los símbolos es la parte más fácil del modelado; la identificación
de los problemas, la captación de las soluciones y la captura de esta comprensión son los
aspectos del modelado con uml que pueden hacer que modelar sea tan complejo como
programar.

Tres cosas para recordar son

• Conocer todos los símbolos y la gramática no implica que deba usarlos todos.

• Es esencial modelar los aspectos importantes del sistema, así como modelar aque-
llos que no son obvios.

• No necesita toda suerte de diagrama para toda suerte de problema; sea selectivo.

Dicho esto, ampliemos nuestro conocimiento del UML y consideremos los diversos
símbolos para los esquemas de estados que evolucionaron a partir de su relación entre-
mezclada con los diagramas de actividades.

07 KIMMEL.indd 158 11/4/07 7:10:35 PM

 www.FreeLibros.me

CAPÍTULO 7 Uso de los diagramas de esquemas de estado 159

Examen de los símbolos de estado
Existen varios símbolos de estados; el más común es el rectángulo con esquinas redon-
deadas o estado simple. De manera significativa, los esquemas de estados constan de es-
tados y transiciones simples, pero hay otros estados que representan papeles importantes
aunque menos prominentes.

En esta sección, explicaré los estados simples con actividades comunes y para hacer;
estados compuestos ortogonales y no ortogonales; estados inicial, de terminación y final;
las conexiones, las selecciones y los estados de historia; los estados submáquinas y los
superestados, así como los puntos de entrada y de salida.

Uso de los estados inicial, final y de terminación
Recuerde que los esquemas de estados y los diagramas de actividades tienen una historia
compartida; como consecuencia, aun cuando en el uml versión 2.0 sus definiciones están
delineadas con mayor claridad, los esquemas de estados y los diagramas de actividades
todavía tienen algunos símbolos en común. Tres estados —inicial, final y terminal— usan
los mismos símbolos que se encuentran en los diagramas de actividades, pero desempe-
ñan papeles adecuados para los esquemas de estados.

El estado inicial es un círculo relleno que representa un pseudoestado en las máquinas
de estados de protocolo —vea “Creación de máquinas de estado de protocolo” más ade-
lante— en el uml versión 2.0. Puede usar el estado inicial en los esquemas de estados en
general, pero no es de uso común. En el estado final se usa el mismo símbolo —un círculo
relleno con un contorno circular— como actividad final en los diagramas de actividades y
se usa para indicar el fin de un esquema de estados; vea “Creación de máquinas de estado
de comportamiento” más adelante. Los estados finales no tienen transiciones salientes;
no tienen actividades de entrada, salida o para hacer; no hacen referencia a submáquinas,
y no están divididos en regiones. (Estos conceptos se describen abajo.) El estado final es
un punto extremo sin elaboración. El estado de terminación es una X usada en las máqui-
nas de estados de protocolos; piense en él como en un extremo muerto.

Uso de la conexión y los estados de selección
Un estado de selección es un pseudoestado que se usa en las máquinas de estado de
protocolos. Una selección se parece a un diamante de decisión y desempeña un papel
semejante al de una decisión en los diagramas de actividades. Una selección tiene una
sola transición entrante y más de una saliente. Las transiciones salientes se toman de-
pendiendo de cuál condición guardián evalúa lo que es verdadero. Si más de un guardián
evalúa lo que es verdadero, entonces se toma una transición arbitraria, pero por lo menos
un guardián debe evaluar lo verdadero (figura 7-1).

Una conexión es un círculo relleno, como el del estado inicial, y se usa para combinar
varias transiciones entrantes en una sola saliente, o para dividir una sola transición en-
trante en múltiples transiciones salientes (figura 7-2).

07 KIMMEL.indd 159 11/4/07 7:10:35 PM

 www.FreeLibros.me

Manual de UML 160

El mayor problema al usar notaciones y símbolos de estilo antiguo es que si usted trata
de generar código, es posible que la herramienta le informe de un error. Sin embargo, el
estado de los generadores de código todavía es incierto, y cada herramienta tiene algunas
limitaciones relativas a la especificación formal del uml.

En virtud de la historia compartida del esquema de estados con los diagramas de ac-
tividad, el lector podría ver conexiones modeladas usando los símbolos de bifurcación y
de unión que se emplean en los diagramas de actividad. Tanto la bifurcación/unión como
la conexión con sus transiciones entrantes y salientes indican con claridad el intento de
transiciones que se dividen o combinan.

Uso de los estados de historia superficial y profunda
Una historia superficial se indica por medio de un círculo con una H, y una profunda
se indica por medio de un círculo con una H*. Las historias se usan en las máquinas
de estados de protocolos. Se usa una historia superficial para representar un subesta-
do reciente para un estado compuesto, y se usa una profunda para representar una
historia recursiva de subestados. (Para obtener más información, consulte la siguiente
sección sobre los estados compuestos.)

Si una máquina de estados realiza una transición hacia un estado de historia, entonces
se activa y ejecuta el estado más reciente. Piense en los estados de historia como en un me-
dio de modelar deshacer, rehacer o hacer pausa en los comportamientos y reanudarlos.

(prueba1)

Figura 7-1 Estado de selección en el que se muestran una sola transición entrante y dos salien-
tes, cada una con una condición guardián.

Figura 7-2 Conexión en la que se muestran múltiples transiciones entrantes con una sola sa-
liente.

Transición entrante

(prueba2)

Transiciones salientes

Guardián

07 KIMMEL.indd 160 11/4/07 7:10:35 PM

 www.FreeLibros.me

CAPÍTULO 7 Uso de los diagramas de esquemas de estado 161

En la figura 7-3, se muestra un estado compuesto —vea “Comparación de los estados
simples y compuestos” más adelante— que representa un horno de microondas. Cuando la
puerta está cerrada, podríamos estar calentando, o el horno sólo podría estar apagado (off).
Cuando estamos calentando, un temporizador, una luz y el emisor de microondas están
encendidos (on); cuando salimos del modo de calentamiento, el temporizador, la luz y el
emisor se apagan. Si la puerta se abre, entonces la luz se enciende y se almacena una histo-
ria antes de la transición al estado de apagado. Se pretende que la historia permita reanudar,
en el punto del tiempo transcurrido en el temporizador, si arrancamos de nuevo el horno.

En la primera parte del siglo pasado, se descubrió que las microondas podían rebotar de
los objetos y se usaron para detectar la dirección y el alcance. Se intentó que la aplicación
original fuera para detectar los messerschmitts alemanes durante la Segunda Guerra Mun-
dial. El doctor Percy Spencer, en Raytheon, descubrió de manera accidental que el emisor
de microondas fundió algo de chocolate que tenía en su bolsillo. A continuación, Spencer
probó con algunas semillas de maíz para producir “palomitas” en una bolsa de papel, y se
descubrió el horno de microondas. Debido a su aplicación original como radar, al horno
se le llamó “estufa de radar” y, finalmente, el nombre se cambió por horno de microon-
das. La primera estufa de radar tenía 6 pies (1.80 m) de altura y costó 5,000 dólares.

Uso de las actividades de estado
Los estados son activos o inactivos. Un estado se vuelve activo cuando se ejecuta su acti-
vidad de entrada. Un estado se vuelve inactivo después de que se ejecuta su actividad de
salida. (En la figura 7-3, el lector puede ver ejemplos de actividades de entrada y salida.)
Se puede ver una buena demostración de una implementación de actividades de entrada y
salida en eventos escritos para cuando un control aumenta foco y pierde foco. Por ejem-
plo, cuando abrimos la puerta de un refrigerador, se enciende una luz y, cuando cerramos
la puerta, la luz se apaga.

Los estados pueden contener actividades adicionales. Éstas se dividen en categorías:
comunes y de hacer. Una actividad común es algo que sucede de manera instantánea. Una

Figura 7-3 Estado compuesto en el que se muestra una historia superficial —círculo H— la cual
indica que el estado del microondas se almacena cuando la puerta se abre.

Puerta cerrada

Apag

H

Puerta abierta

entrada/Luz Enc
salida/Luz Apag

Calentamiento
 entrada/Emisión de
microondas, Luz Enc,
Temporizador Apag

 salida/No emisión de
microondas, Luz Apag,
Temporizador con
tiempo transcurrido

07 KIMMEL.indd 161 11/4/07 7:10:36 PM

 www.FreeLibros.me

Manual de UML 162

actividad con el prefijo “hacer/” se conoce como actividad de hacer. Las actividades de
hacer suceden durante un tiempo. Por ejemplo, una actividad común se podría completar
en unas cuantas instrucciones de máquina que no se pueden interrumpir, o quizás podría
durar más, si ocurriera dentro de una sección crítica de camino. Una actividad de hacer
sucede en el curso de muchas instrucciones y puede ser interrumpida, por ejemplo, por
un evento.

Considere la aplicación Visual SourceSafe de la figura 7-4. Si hace clic en un nodo
de alto nivel y elige la opción “Get Latest Version” (“Obtener la versión más reciente”),
entonces podría estar esperando un tiempo, porque copiar cientos o miles de archivos
de un almacén de código fuente, a través de una red, hasta una estación de trabajo toma
tiempo. En forma concienzuda, esa operación de larga ejecución debe ser susceptible de
interrumpirse. Con el uso de una simple actividad de hacer en un estado, se indica que
ésta es una parte que se pretende del diseño.

Comparación de los estados simples y compuestos
Un estado simple es aquél sin subestructura. No tener subestructura significa que el esta-
do no está dividido en regiones y que no hay subestados. Un estado compuesto (también
llamado superestado) tiene una estructura interna que puede incluir regiones y sí incluye
subestados. El estado “Puerta cerrada” de la figura 7-3 es compuesto; también es un es-
tado no ortogonal.

Estado compuesto no ortogonal significa que hay subestados anidados y sólo uno está
activo en un momento. Por ejemplo, en la figura 7-3, sólo “Calentamiento” o “Apag”
está activo en un momento. Un estado compuesto ortogonal está dividido en regiones
que se ejecutan en forma concurrente. En cada región, sólo un subestado está activo en
un momento.

La figura 7-3 es un ejemplo de un estado compuesto no ortogonal. Para crear un esta-
do compuesto ortogonal, divida el símbolo de estado en regiones y coloque subestados
en sus regiones respectivas. La figura 7-5 muestra un estado compuesto ortogonal que
representa el congelador de un refrigerador. El enfriamiento y la congelación suceden
en forma concurrente en compartimientos separados, pero el encendido de la luz sucede
cuando se abre cualquiera de las dos puertas.

SUGERENCIA Visio no realiza un gran trabajo de administración de estados compuestos;
soporta subestados compuestos agregando un esquema de estados hijo vinculado cuan-

Figura 7-4 Estado con una “hacer/actividad Obtener la versión más reciente”; el “hacer/” signi-
fica que este estado se puede interrumpir.

 hacer/Obtener los archivos
más recientes

/ Obtener lo más reciente

07 KIMMEL.indd 162 11/4/07 7:10:36 PM

 www.FreeLibros.me

CAPÍTULO 7 Uso de los diagramas de esquemas de estado 163

do usted agregue un estado compuesto a un diagrama. Las características avanzadas,
como los subestados compuestos ortogonales, tienen soporte en las herramientas más
avanzadas (y más caras). Vale la pena pagar el precio de admisión a ese tipo de he-
rramientas, si usted usa con frecuencia características avanzadas que no encuentra en
herramientas como Visio.

La figura 7-3 se creó laboriosamente usando ms-Paint, en tanto que la 7-5 se creó con
mucha mayor rapidez usando Rational xde. Yo realizo una gran cantidad de modelado,
de modo que vale la pena el precio de admisión para usar este paquete, pero en algunos
proyectos, he usado Visio y funciona bien para el modelado cotidiano. Las herramientas
buenas son la marca de un buen artesano, pero gastar una gran cantidad de dinero no es
garantía de éxito.

Uso de las actividades internas
Las actividades internas son como autotransiciones; consulte “Examen de las transicio-
nes” más adelante. Una actividad interna es una respuesta que sucede en forma interna
y que dispara una actividad sin la ejecución de una actividad de entrada o salida. En las
actividades internas se usa el mismo evento, guardián y actividad que en las transiciones.
Más adelante hablaré más acerca de las transiciones.

Vinculación con las submáquinas
En lugar de repetir los diagramas de esquemas de estados (máquina de estados), usted
quiere volver a usar los diagramas. Esto se aplica a las máquinas de estados. El uml
soporta el modelado de submáquinas mediante el nombramiento de la máquina de subes-
tados después del nombre del estado, separada por un nombre de clase. (Esto se parece a
la sentencia de declaración de nombre de clase variable en C++.) Por ejemplo,

mystate : MyStateMachine

indica que “MyState” (MiEstado) es un ejemplo de la máquina de estados nombrada
“MyStateMachine”.

Figura 7-5 Estado compuesto ortogonal que representa enfriamiento y congelación simultáneos.

Puerta cerrada

Entrada/Luz Enc
Salida/Luz Apag

Puerta abierta
Enfriamiento

Congelación

/Cerrar puerta
/Abrir puerta

07 KIMMEL.indd 163 11/4/07 7:10:36 PM

 www.FreeLibros.me

Manual de UML 164

Si está usando Visio, entonces puede usar la notación de nombre, dos puntos y má-
quina de estados para hacer referencia a una máquina de subestados. Otras herramientas
—como Rational xde, mencionada con anterioridad— soportan un símbolo especial para
las submáquinas y vinculará en forma dinámica la submáquina de referencia.

Examen de las transiciones
Las transiciones son líneas dirigidas que conectan estados. Las transiciones pueden ocurrir
con base en algún mecanismo de disparo —por lo común, implementado como eventos— y
pueden procesarse o no con base en una condición guardián, lo que da como resultado al-
gún efecto. Esta suerte de relación de causa y efecto ilustra por qué las máquinas de estados
pueden resultar útiles para modelar interfaces del usuario. En esta sección, se examinarán
los mecanismos de disparo, ejemplos de condiciones guardianes y la manera de especifi-
car los efectos. También completaremos la exposición acerca de las transiciones internas
y externas introducidas en la sección “Uso de actividades internas”.

Especificación de los disparadores
Una transición tiene un estado fuente, un evento de transición, un guardián, un efecto y
un estado objetivo. Antes de salir del estado fuente, ocurre la actividad de salida. Cuando
ocurre el disparo de la transición, se puede realizar una prueba con una condición guar-
dián para determinar si se toma la transición. Una transición tomada da como resultado
un efecto. Por último, se ejecuta la actividad de entrada del objetivo. La línea dirigida
que representa la transición se rotula con el evento opcional de disparo, el guardián y el
efecto. Si finalizan las actividades en un estado, entonces el resultado se conoce como
transición sin disparo o de compleción.

A los disparadores, o eventos, que significan una transición se les da la categoría de
eventos de llamada, de cambio, de señal y temporizador. Un evento de llamada especi-
fica una llamada síncrona de un objeto. Un evento de cambio representa un cambio en
el resultado de una expresión booleana. Un evento de señal indica un mensaje explícito,
nombrado síncrono, y un evento temporizador es un disparador que ocurre después de un
intervalo específico de tiempo. El disparador es el primer elemento, si está presente, fijo
a una transición.

SUGERENCIA Algunas herramientas pueden colocar prefijos a tipos específicos de transi-
ciones, con etiquetas como “cuándo”, en el caso de Visio y eventos de cambio.

Especificación de las condiciones guardianes
Las condiciones guardianes se colocan entre corchetes y deben evaluarse para una con-
dición booleana susceptible de probarse. (He visto la notación para las condiciones guar-
dianes en otros diagramas, como los diagramas de actividad y de interacción.) Si está

07 KIMMEL.indd 164 11/4/07 7:10:36 PM

 www.FreeLibros.me

CAPÍTULO 7 Uso de los diagramas de esquemas de estado 165

presente una condición guardián, entonces se evalúa y debe conducir a un valor verdade-
ro para que se complete la transición.

Las condiciones guardianes deben ser relativamente sencillas y no deben conducir a
efectos secundarios. Por ejemplo “[x > 0]” es una buena condición guardián, pero “incre-
mentar x durante la evaluación como [x++ > 0]” es un guardián con efectos secundarios
porque se cambia el valor de x cada vez que se ejecuta el guardián.

NOTA El modelado formal evolucionó después de prácticas formales de codificación.
Muchas buenas prácticas, como no escribir código condicional con efectos secundarios,
las prácticas especulares deseables en el código y, en general, los modelos, finalizan
como código.

Especificación de los efectos
Los disparadores, los guardianes y los efectos son opcionales. El último elemento de un
símbolo de transición es el efecto opción (o actividad). El efecto es alguna actividad que
se debe realizar cuando se dispara la transición. La signatura de una transición, incluyen-
do un disparador, un guardián y el efecto, es

Event[Guard] / Effect

También podría ver eventos mencionados como disparadores y efectos a los que se les da
el nombre de actividades. Aunque muchos sinónimos pueden ser confusos, estas palabras
son suficientemente cercanas como para transmitir su finalidad.

Según la especificación formal, puede haber muchos disparadores, un guardián y una
actividad. Soportar cero para muchos disparadores significa que más de un evento pue-

Figura 7-6 Diversas transiciones que muestran elementos opcionales.

Apag
Mezcla fijada

como rica
Calentamiento del car-
burador fijado en frío

Interruptor
maestro Enc

salida/Faro Enc
Arranque

cuando: Arrancado

(Ignición Apag)

Girar la ignición a Enc
(Área de la hélice despejada) (Ignición Apag)

Cebar

entrada/Soltar la ignición
salida/Ajustar ahogador en vacío

Motor funcionando

cu
an

do: F
all

a e
l a

rra
nque

Cebo adentro y
cerrado

07 KIMMEL.indd 165 11/4/07 7:10:37 PM

 www.FreeLibros.me

Manual de UML 166

de dar como resultado una transición. Soportar un solo guardián no significa que éste no
pueda tener múltiples predicados (subexpresiones que conducen a un resultado boolea-
no), y un solo efecto no significa que éste no puede ser un efecto compuesto. (Además, el
estado objetivo también puede realizar muchas actividades.) En la figura 7-6, se muestran
varias transiciones con algunos de los elementos descritos en esta sección, o todos ellos.

En la figura, estamos mostrando una máquina de estados que refleja el estado de un
avión monomotor entre los estados de apagado y de marcha en vacío. La máquina de
estados modela el motor como un sistema complejo con una progresión de transiciones
y estados, siendo el estado final que el motor se encuentra funcionando y marchando en
vacío.

NOTA En un sistema digital, resulta fácil hacer que se ejecuten cosas como “la ignición
debe estar en posición de apagado antes de que el interruptor maestro se haga girar a la
de encendido”, pero en un sistema analógico, podríamos con facilidad hacer girar una
hélice en un Cuisinart humano. Como modeladores, nuestro trabajo es captar las reglas;
a veces, no se puede hacer que se ejecuten las reglas, en especial en sistemas analógicos.

Revisión de los tipos de transición
Hablé de varias clases de transiciones. Déme un momento para revisarlas aquí.

Una transición de entrada ocurre cuando se entra primero a un estado, antes que su-
ceda cualquier otra cosa en ese estado. Una transición de salida es lo último que sucede
antes de salir de un estado. Una transición externa puede ser una autotransición o una
transición hacia otro estado. Una autotransición ocurre cuando se sale de un estado y se
vuelve a entrar al mismo. En la figura 7-6, se muestra una autotransición cuando falla el
estado de “Arranque” y regresamos al mismo estado para hacer otro intento. Por último,
una transición interna es una respuesta a un evento que no da como resultado un cambio
de estado. Las transiciones internas no causan la ejecución de una actividad de entrada
o de salida.

Creación de máquinas de estado de comportamiento
Las máquinas de estados de comportamiento son para modelar el comportamiento pre-
ciso y se implementan como código. Como consecuencia, en las máquinas de estados de
comportamiento se usan la mayoría de los elementos de los que se dispone para la crea-
ción de esquemas de estados (o diagramas de máquinas de estados). En el uml versión 2.0
se definen con precisión los elementos que se pretende se usen en las máquinas de esta-
dos de protocolo y las que están dirigidas a las máquinas de estados de comportamiento;
sin embargo, si necesita un elemento en una de comportamiento, entonces úsela, incluso
si no está dirigida de manera específica para una máquina de este tipo.

07 KIMMEL.indd 166 11/4/07 7:10:37 PM

 www.FreeLibros.me

CAPÍTULO 7 Uso de los diagramas de esquemas de estado 167

En la figura 7-7, se ponen juntos muchos de los elementos y se describe una máquina
de estados de comportamiento. Esta máquina empieza con una motocicleta en el estado de
parada y las transiciones hacia los estados previo al arranque y en funcionamiento,
incluyendo un camino para regresar al estado de parada. (El texto en cursivas rotula
varios elementos del diagrama.)

Una clave para construir una máquina de estados de comportamiento es determinar
cuánta información poner en su modelo. El modelo de la figura 7-7 podría describir
información suficiente para un arranque estando montado en una motocicleta, pero si
necesitáramos entender también cómo funcionaron los sistemas de combustible, trans-
misión e ignición, entonces este diagrama sería insuficiente. Como con la programación,
la sentencia “Divide et impera” (Divide y manda) también se aplica aquí. Lo que quiero
decir por dividir y conquistar es que es posible que modeláramos los diversos subsiste-
mas —ignición, combustible y transmisión— por separado y usáramos referencias a las
máquinas de subestados para incorporar esos elementos en el diagrama de la figura 7-7.
La premisa es que nuestro diagrama es un buen punto de partida, pero agregar demasiados
elementos, lo que conduce a un solo diagrama monolítico, posiblemente sea más complejo
que aquello que se puede captar de una sola mirada. Los diagramas complejos contrarres-
tan el valor del modelado.

Creación de máquinas de estado de protocolo
Las máquinas de estados de protocolo tienen que ver con una serie de secuencias lógicas
predecibles. No quiere decir que estas máquinas tengan que implementarse, pero son
para describir el orden de las transiciones y los estados. Por esta razón, las máquinas
de estados de protocolo se usan para describir interfaces. Debido a que las interfaces no
tienen definiciones, muchos de los elementos que usted usa en las máquinas de estados
de comportamiento sencillamente no se necesitan en las de protocolo.

Figura 7-7 Máquina de estados de comportamiento en la que se realiza un ciclo a través de los
estados de parada y funcionando en mi motocicleta.

Parada
Embrague encas-

trado

En funciona-
miento

Estado inicial

cuando: Selector de
combustible Enc

cambiar el evento

Dar con el pie al arrancador (Embrague encastrado)

Oprimir interruptor de detención

estado simple

transición/(guardián)

cuando: Falla el arranque

llamar evento

07 KIMMEL.indd 167 11/4/07 7:10:37 PM

 www.FreeLibros.me

Manual de UML 168

Considere el uso ordenado de una base de datos. Podemos decir que se crea una co-
nexión hacia esa base, se abre la conexión, se recuperan los datos y se cierra la conexión.
Esto describe un protocolo que se puede implementar como una interfaz (o interfaces)
para tener una secuencia lógica predecible y confiable de pasos —un protocolo— con el
fin de garantizar que una conexión se usa con corrección todas las veces. En la figura 7-8,
se muestra la máquina de estados de protocolo que se describe aquí.

Se puede usar una máquina de estados de protocolo para mostrar a los desarrollado-
res, en un nivel alto, cómo usar en forma correcta todas las veces las partes del sistema.
Mediante la definición de una interfaz con estos elementos, les daría un medio de seguir
el protocolo. La máquina de estados que se muestra en la figura 7-8 se podría usar como
una ayuda de adiestramiento para garantizar que un recurso valioso, como la conexión
a una base de datos, no se use en forma incorrecta.

Implementación de diagramas de estado
Los diagramas de actividad muestran cómo se soporta un solo caso de uso. Los diagra-
mas de interacción muestran el ordenamiento en el tiempo de la creación de objetos y
mensajes enviados, pero no son buenos para mostrar cómo se implementan los objetos.
Las máquinas de estados muestran un objeto conforme cubre varios casos de uso y están
diseñadas para mostrar cómo se deben implementar los objetos. Quizás una de las razo-
nes por las que parece que estas máquinas se usan con menos frecuencia que los diagra-
mas de interacción es porque aquéllas están más cercanas al código que los otros tipos de

Figura 7-8 Máquina de estados de protocolo en la que se muestra la secuencia lógica y confiable
de eventos que tienen que ocurrir para usar de manera correcta todas las veces una conexión a una
base de datos.

Crear Abrir

Cerrar Leer

Conectar

Creado

Recuperación de
datos

Abierto

ConectadoCerrado

Destruir

07 KIMMEL.indd 168 11/4/07 7:10:37 PM

 www.FreeLibros.me

CAPÍTULO 7 Uso de los diagramas de esquemas de estado 169

diagramas, y cuanto más próximos se encuentran al código, más tentados se sienten los
programadores a empezar a codificar.

En el desarrollo de software de alta ceremonia, puede haber un mandato que imponga
el número y variedad de diagramas por crear. (He trabajado en un par de ellos, pero son
raros.) En virtud de que las máquinas de estados están cercanas a las líneas del código, yo
sólo crearía estas máquinas para tipos riesgosos, complicados o raros de subsistemas. La
producción de prototipos gui funciona de maravilla para la mayoría de las aplicaciones y
tiene un efecto apaciguador sobre los usuarios. Las máquinas de estados que representan
gui no parecen satisfacer la necesidad para tener una evidencia tangible del progreso, así
como para prototipos interactivos, visualmente estimulantes.

Dicho esto, Fowler (2000) expresa que una máquina de estado se puede implementar en
una de tres maneras: conmutador anidado, el patrón de comportamiento de los estados y
las tablas de estados. Una sentencia de conmutador anidado es exactamente como suena:
se evalúa algún valor semántico constante, y una serie de sentencias si… condicionales, se
selecciona la caja o conmutador de sentencia que determina cuál bloque de ramales del
código se debe ejecutar. Usar un conmutador anidado es la manera menos orientada a
objetos de implementar una máquina de estados. La segunda elección que se da en la lista
es el patrón de estados. El patrón de estados define comportamientos abstractos, y la má-
quina de estados se implementa llamando ejemplos específicos de subclases de la clase
de estados abstractos. Ésta es una manera poderosa orientada a objetos de implementar
el comportamiento de estados. Por último, podemos usar tablas externas de estados. En
una tabla de estados se almacena la fuente, el disparador, el guardián, el efecto y la in-
formación del objetivo en una base de datos, archivo xml o algo semejante. Aun cuando
no es un procedimiento orientado a objetos, es el más flexible porque podemos cambiar
la tabla de estados sin modificar, reestructurar y redesplegar el código.

En la lista siguiente se muestra cómo podríamos implementar el comportamiento del
horno de microondas (de la figura 7-3), usando una sentencia de conmutador. Aunque
este código es funcional, puede ser el más difícil de implementar, leer y mantener.

��������������

��

��

�
���������������
����

�
����������������

������
������
�

������

������
�

������

����������������������������

��
��

�������������������������������������
�������������������������������

������������������������������������

��

���

��

����������������������������
�����������������������������

����������������������������

�������������������������

�����������������������������������

��������������������������

H

z

z

z z

z z

EstadodelEmisordeMicroondas{ Off, On };

07 KIMMEL.indd 169 11/4/07 7:10:38 PM

 www.FreeLibros.me

Manual de UML 170

������
�

������

������
�

������

������
�

������

������
�

������

������
�

������

��������

������������

���������������������

���������������������

������������
�����������������
���������

������������

���������������������

��

����������������������������
�����������������������������

��

����������������������������������
�����������������������������������

������������������������������

���

�������������������������������

���

��

�������������������������������

���������������������������������������
���
�������������������������������

���
��

��

���������������������

��
��������������������������������������

��

��

���������������������������������������
�������������������������������

���

��
���
��

��

���

��������������

��

��

�
���������������
����

�
����������������

������
������
�

������

������
�

������

����������������������������

��
��

�������������������������������������
�������������������������������

������������������������������������

��

���

��

����������������������������
�����������������������������

����������������������������

�������������������������

�����������������������������������

��������������������������

z

z
z

z z

z
z

z

zz
z

z
z z

zz

z

07 KIMMEL.indd 170 11/4/07 7:10:38 PM

 www.FreeLibros.me

CAPÍTULO 7 Uso de los diagramas de esquemas de estado 171

Podríamos implementar las reglas en una tabla y leerla para cada transición (tabla 7-1).
Aunque sería improbable que cambiáramos los estados del microondas después del des-
pliegue, este procedimiento es de uso común en los portales de aplicación de la Web,
como dotnetnuke o ibuyspy.

La lista anterior de código funciona bastante bien porque podemos codificar con facili-
dad las relaciones anidadas que reflejan los subestados de “Calentamiento” y “Apag”. La
tabla 7-1 no es por completo satisfactoria, porque tenemos que llevar a la superficie los
subestados anidados con el fin de captar los comportamientos deseados cuando la puerta
está cerrada y reanudamos el ataque nuclear a los alimentos. (El significado es bastante
claro en la tabla; podríamos agregar una columna adicional para indicar con claridad los
subestados.) Vea el capítulo 9, en relación con un ejemplo del patrón de comportamiento
de los estados.

Vale la pena hacer notar que el patrón de estados, un conmutador o una tabla externa
no implementarán una máquina completa de estados. Estas tres opciones representan un
procedimiento general, pero el código básico y otros patrones también son útiles aquí.
Por ejemplo, podemos usar el patrón de comportamiento Memento para facilitar la cap-
tura y restablecer el estado interno de un objeto. Vea el capítulo 9, para obtener más in-
formación sobre los patrones y consiga un ejemplar de Design Patterns, escrito por Erich
Gamma et al.

���������������������
������������

�����������������
��������
������

�

�����������������������������������

����

���

������
�

������

������
�

������

������
�

������

������
�

������

������
�

������

��������

������������

���������������������

���������������������

������������
�����������������
���������

������������

���������������������

��

����������������������������
�����������������������������

��

����������������������������������
�����������������������������������

������������������������������

���

�������������������������������

���

��

�������������������������������

���������������������������������������
���
�������������������������������

���
��

��

���������������������

��
��������������������������������������

��

��

���������������������������������������
�������������������������������

���

��
���
��

��

���
z

á

z

z

z

z z

z z

z

07 KIMMEL.indd 171 11/4/07 7:10:39 PM

 www.FreeLibros.me

Manual de UML 172

Examen
1. Los esquemas de estado (o diagramas de máquinas de estado) son

buenos para

a. trazar diagramas de sistemas.

b. trazar diagramas de objetos y mensajes para un solo caso de uso.

c. comprender un solo caso de uso.

d. especificar el comportamiento de un objeto a través de varios casos de uso.

2. Las máquinas de estado son especialmente útiles en el examen de las GUI y de los
controladores de tiempo real.

a. Verdadero

b. Falso

3. Se usa una conexión para

a. combinar varias transiciones entrantes en una sola transición saliente.

b. dividir una sola transición entrante en varias transiciones salientes.

c. Tanto a como b

d. Ninguna de las anteriores

4. Se usan los pseudoestados de historia para restablecer los estados anteriores.

a. Verdadero

b. Falso

Tabla 7-1 Esta tabla se podría exteriorizar en una base de datos o en un archivo xml, para
permitir que se cambien los comportamientos después del despliegue.

Fuente

Puerta cerrada

Puerta abierta

Calentamiento

Apag

Puerta abierta

Puerta abierta

Disparador

Abrir puerta

Cerrar puerta

Abrir puerta

Abrir puerta

Cerrar puerta

Cerrar puerta

Guardián Efecto

Luz Enc

Luz Apag

Luz Enc,
Emisor Apag,
Temporizador en pausa

Luz Enc

Luz Enc,
Emisor Enc,
Temporizador Enc

Luz Apag

Objetivo

Puerta abierta

Puerta cerrada

Puerta abierta

Puerta abierta

Calentamiento

Apag

07 KIMMEL.indd 172 11/4/07 7:10:39 PM

 www.FreeLibros.me

CAPÍTULO 7 Uso de los diagramas de esquemas de estado 173

 5. Una actividad común se ejecuta

a. en el transcurso de un tiempo, y una de hacer se ejecuta de inmediato, pero se
puede interrumpir.

b. de inmediato, y una de hacer se ejecuta en el transcurso de un tiempo y se
puede interrumpir.

c. en el transcurso de un tiempo y se puede interrumpir, y una de hacer se ejecu-
ta en el transcurso de un tiempo.

d. en el transcurso de un tiempo, y una de hacer se ejecuta también en el transcur-
so de un tiempo; sólo que esta última se puede interrumpir.

 6. Las transiciones son líneas dirigidas rotuladas con

a. un evento disparador opcional, un guardián y un efecto.

b. un evento disparador, un guardián opcional y un efecto.

c. un evento disparador, un guardián y un efecto opcional.

d. opcionalmente, un evento disparador, un guardián y un efecto.

 7. Las transiciones internas hacen que se ejecuten una actividad de entrada y una de
salida.

a. Verdadero

b. Falso

 8. Las autotransiciones hacen que se ejecuten una actividad de entrada y una de sa-
lida.

a. Verdadero

b. Falso

 9. Un estado compuesto ortogonal

a. está dividido en regiones, y sólo se puede activar una de ellas a la vez.

b. está dividido en regiones, y sólo se puede activar un subestado a la vez.

c. está dividido en regiones, y sólo se puede activar un subestado por región a
la vez.

d. está compuesto de una sola región, y se pueden activar múltiples subestados en
forma simultánea.

10. Un estado compuesto no ortogonal

a. está compuesto de regiones, y sólo se puede activar una de ellas a la vez.

b. no está dividido en regiones, y sólo se puede activar un subestado a la vez.

07 KIMMEL.indd 173 11/4/07 7:10:39 PM

 www.FreeLibros.me

Manual de UML 174

c. no está dividido en regiones, y se pueden activar múltiples subestados a la
vez.

d. está dividido en regiones, y se puede activar un subestado por región a la vez.

Respuestas
 1. d

 2. a

 3. c

 4. a

 5. b

 6. a

 7. b

 8. a

 9. c

10. b

07 KIMMEL.indd 174 11/4/07 7:10:40 PM

 www.FreeLibros.me

CAPÍTULO

175

Cuanto tenía 15 años, compré mi primer auto por 325 dólares. Adelante; ríase;
en 1981, un auto de 325 dólares era tan malo como usted pueda imaginar. Por
supuesto, siendo industrioso, empecé a hallar maneras de restaurarlo y hacerlo tan
respetable para el camino en tanto yo supiera cómo hacerlo. Una de las primeras
cosas de las que me di cuenta acerca de este cubo oxidado Cutlass Oldsmobile 1974
—además de que el asiento delantero no quedaba fijo, lo que causaba que se fuera
por completo hasta delante, cuando me detenía, y por completo hasta atrás, cuando
aceleraba, del agujero del tamaño de un balón de futbol en el radiador y de los neu-
máticos de cuatro tamaños diferentes— era que se necesitaba reemplazar la banda
del motor, con trayectoria en serpentina. Pensé que reemplazar una banda con estas
características era una tarea que podía manejar.

Modelado de
componentes

8

08 KIMMEL.indd 175 11/4/07 7:11:35 PM

 www.FreeLibros.me

Manual de UML 176

Después de llevarme el auto a casa, me enfrasqué en el reemplazo de la banda. Empecé
por quitar el radiador, la bomba de agua y el alternador. El lector se imagina el cuadro.
Me di cuenta de que éste era un trabajo más grande de lo que podría ser capaz de hacer y
resolví llevar el auto al taller de reparaciones de la Firestone que estaba en la carretera. El
muchacho del taller aflojó el alternador, lo hizo girar hacia dentro, deslizó la banda sobre
el ventilador y el alternador, regresó el alternador a su lugar, apretó los pernos y terminó
en 10 minutos. Sólo recibí mi primera lección, con un costo de 35 dólares, de lo que vale
el conocimiento.

¿Por qué le relaté esta historia? La respuesta es que cuando le digo que es posible que
repase de modo superficial este capítulo y tal vez no necesite los diagramas de compo-
nentes, créame.

Para modelar componentes, usamos muchos de los mismos símbolos y conectores que
hemos expuesto en los capítulos anteriores, pero existe una diferencia. Los componentes
son trozos autónomos de código —piense en subsistema— que se pueden volver a usar
desplegándolos de manera independiente. (Los componentes no tienen que ser grandes,
pero en general, son mucho más que una sola clase o un par de clases vagamente relacio-
nadas.) En general, los componentes tienen múltiples interfaces suministradas y requeri-
das y se encuentran en aplicaciones grandes y complejas con docenas o cientos de clases
del dominio. Por tanto, si está estructurando una simple aplicación cliente-servidor, un
sitio web básico o una aplicación de Windows para un solo usuario, entonces es posible
que no necesite diagramas de componentes. Si está estructurando una solución empre-
sarial con cientos de clases del dominio y elementos susceptibles de volver a usarse,
entonces podría necesitar diagramas de componentes.

No toda clase es de dominio. Las clases de arreglos, colecciones e interfaces gráficas
de los usuarios (gui) no son clases del dominio. Las clases del dominio son las que cap-
tan el problema de este último: estudiante, registro, clases en una aplicación de matrícula;
reservaciones, personas, procesos, tiempo servido en la aplicación de administración de
una prisión, y depósitos, retiros y cuentas en un sistema bancario. Si tiene cientos de estos
tipos de clases, entonces puede ser que necesite diagramas de componentes.

Ejemplos obvios de componentes muy complejos incluyen cosas como aplicaciones
de Microsoft Office, Enterprise Java Beans, com+ y corba. Quizás componentes menos
complejos podrían incluir el componente de persistencia en la base personalizada de
datos del lector.

Dicho esto, lo aliento a que sólo vea superficialmente este capítulo, pero debe leerlo
por completo si sabe que está estructurando un sistema grande o está intentando orga-
nizar los esfuerzos de un equipo grande; un panorama general del sistema le ayudará
a orquestar los esfuerzos de todos los desarrolladores. En este capítulo, se mostrará la
mecánica directa de creación de los diagramas de componentes. Para obtener directrices
excelentes sobre las circunstancias de estructuración de los diagramas de componentes,
consulte The Object Primer: Agile Model-Driven Development with UML 2.0, de Scott
Ambler, 3a. edición. En este capítulo aprenderá

08 KIMMEL.indd 176 11/4/07 7:11:35 PM

 www.FreeLibros.me

CAPÍTULO 8 Modelado de componentes 177

• Cómo describir los componentes

• Cómo especificar las interfaces suministradas y requeridas

• A alternar las maneras para especificar un componente con base en el detalle que
quiere transmitir

Introducción del diseño basado en componentes
Existen dos métodos generales para derivar componentes: el método componentes-inter-
faz, y el método que privilegia el desarrollo de clases. Cualquiera de ellos es útil. Permí-
tame explicar cómo funcionan y el porqué de su utilidad.

Diseño componentes-interfaz

Conocido también como método de arriba hacia abajo, es el más recomendado por al-
gunos especialistas. Este enfoque implica que primero se definen los componentes
—es decir, las grandes piezas del sistema— y después las interfaces correspondien-
tes. Una vez que los componentes y las interfaces se han definido, es posible dividir la
implementación del sistema entre los participantes, organizándolos en varios grupos o
equipos encargados de construir cada componente. Como todos los involucrados están
de acuerdo respecto de cómo construir las interfaces, los desarrolladores son libres de
implementar como deseen las partes internas del componente.

Considero que este método puede resultar si el equipo está utilizando muchos compo-
nentes bien establecidos con interfaces de dominio público. Sin embargo, definir todos
los nuevos componentes desde esta perspectiva puede constituir todo un reto.

Por otro lado, utilizar el enfoque “de arriba hacia abajo” implica el compromiso de
instaurar un estilo de implementación complejo, ya que los sistemas basados en compo-
nentes constan de hasta tres o cinco interfaces de soporte, y pasan por clases para todas
las clases dominio. (Ésta es la razón por la que los componentes representan interfaces
discretas y bien definidas, resultantes de las clases por las que pasan.)

En consecuencia, el problema del método componentes-interfaz radica en que es ne-
cesario diseñar (e implementar) cinco clases de soporte para cada clase dominio, razón
por la cual los sistemas basados en componentes pueden resultar caros, riesgosos y muy
demandantes por lo que se refiere al tiempo de desarrollo.

Diseño a partir de las clases

El método a partir de las clases (conocido también como método de abajo hacia arriba)
significa que antes que nada se definen las clases —por ejemplo, las que resuelven el pro-

08 KIMMEL.indd 177 11/4/07 7:11:35 PM

 www.FreeLibros.me

Manual de UML 178

blema del negocio— y después la estructura. El resultado es que se dedica una importante
cantidad de esfuerzo a la resolución del problema, en lugar de dedicarlo al diseño de una
arquitectura complicada.

Utilizando las clases dominio y el método a partir de las clases se tiende más a la
resolución del problema, aunque siempre es posible derivar componentes de las clases
dominio en caso de que la complejidad de la solución se incremente o se identifique un
grupo de clases que pueda depurarse y reutilizarse con más facilidad si se les encapsula
en componentes.

Cualquiera de los métodos descritos puede funcionar. En el caso de aplicaciones pe-
queñas o medianas es probable que no se requieran muchos componentes, de manera que
un diseño a partir de las clases daría buenos resultados. Por lo que se refiere a las aplica-
ciones de tipo empresarial, que demandan una guía experimentada, tal vez sería mejor el
diseño componentes-interfaz.

Vale la pena considerar que es más fácil cambiar de decisión en aquellos modelos que
estén codificados. Por lo tanto, si usted crea modelos podrá explorar y cambiar rápida-
mente sus decisiones en materia de diseño. Esta premisa es válida también por lo que
respecta a los diagramas de componentes.

Modelado de un componente
En el Unified Modeling Language (uml), el símbolo de componente se cambió del sím-
bolo difícil de manejar de la figura 8-1 a uno de clasificador —un rectángulo— con el
estereotipo de «componente» (figura 8-2) o un pequeño icono que luce como el de la
figura 8-1, en la esquina superior derecha del propio símbolo.

Tenemos que acomodarnos con algunas herramientas uml que no son por completo
compatibles con el uml versión 2.0. El clasificador de la figura 8-2 muestra las secciones
de atributos y operaciones del propio símbolo. Esto es aceptable.

Si su herramienta soporta el símbolo de estilo antiguo (mostrado en la figura 8-1),
entonces también puede usarlo. Aparentemente, la razón para el cambio de símbolo es
que los rectángulos sobresalientes del estilo antiguo dificultaban el dibujo y la fijación
de conectores.

Figura 8-1 Símbolo de componente del estilo antiguo del uml.

Componente1

08 KIMMEL.indd 178 11/4/07 7:11:36 PM

 www.FreeLibros.me

CAPÍTULO 8 Modelado de componentes 179

Especificación de las interfaces
proporcionadas y requeridas

En el capítulo 6, introdujimos las interfaces proporcionadas y requeridas. Una interfaz
proporcionada se representa por la paleta de caramelo que se extiende desde la interfaz, y
una interfaz requerida se representa por media paleta que se extiende desde la interfaz. En
términos sencillos, una interfaz proporcionada es aquella que el componente define, y una
interfaz requerida es la que necesita que se complete. En la figura 8-3, se ilustra parte de
un sistema financiero que muestra el componente de administración de cuentas y la capa
de persistencia (por lo común, base de datos).

No se quede atascado en las limitaciones de su herramienta de modelado. Es más que
probable que, si su herramienta genera código, entonces lo generará con base en el uso
correcto de los símbolos para el subconjunto de la versión del uml que su herramienta so-
porta. Por ejemplo, en la figura 8-3, vemos los rectángulos sobresalientes más pequeños,
y tuvimos que fabricar la imagen de rótula para las interfaces requerida y suministrada, lo
cual, para esta versión del uml, en realidad funciona para frustrar la herramienta.

Si su herramienta tiene la misma limitación que Visio 2003 —la cual no soporta la
mitad de la paleta— entonces podría indicar las relaciones de interfaz suministrada y
requerida usando el conector de dependencia (figura 8-4).

NOTA A los conectores de mitad de paleta y de paleta completa y a los clasificadores
se les menciona en forma metafórica como diagrama de alambrado. Si alguna vez el
lector ha visto un diagrama de alambrado, entonces podría ver las semejanzas.

Figura 8-2 Símbolo revisado de componente en el uml versión 2.0.

Figura 8-3 El componente “AdministradordeCuentas” proporciona la interfaz “Cuenta” y re-
quiere la interfaz “Persistencia”.

«componente»
Componente1

Cuenta

Administración de cuentas Persistencia

Persistencia

08 KIMMEL.indd 179 11/4/07 7:11:36 PM

 www.FreeLibros.me

Manual de UML 180

Examen de los estilos de modelado de componentes
Existen diferentes maneras de trazar el diagrama del mismo componente con base en la
información que queremos mostrar. Si un diagrama es para un implementador, entonces
tal vez usted quiera mostrar un diagrama de caja blanca —con los detalles internos mos-
trados— de un componente. Si el diagrama es para un consumidor, entonces sólo necesita
mostrar las interfaces proporcionadas y requeridas. Si quiere mostrar la implementación
de las interfaces proporcionadas, entonces puede usar un clasificador y dependencias,
porque los clasificadores son mejores para mostrar los detalles de implementación de las
interfaces.

En esta sección, revisaremos algunas variaciones de los diagramas de componentes,
incluyendo diagramas con más elementos. (Para esta sección del capítulo, cambié a Po-
seidon para el uml versión 3.1, que tiene mejor soporte para los diagramas de componen-
tes del uml versión 2.0 que cualquiera de las copias de Rational xde o Visio. Cuando se
modela una aplicación o un sistema real, le aliento a que use la herramienta y la notación
más fácilmente disponibles. Sin embargo, en un formato de libro, el cambio de herra-
mientas le da a usted una idea de algo de la variedad que hay por ahí.)

Trazado de los diagramas de componentes para consumidores
Cuando esta creando diagramas de componentes para consumidores —otros programado-
res que usarán los componentes— todo lo que necesitará mostrarles es una vista de caja
negra del componente. Una vista de caja negra de un componente proporciona los detalles
de las interfaces proporcionadas y requeridas. Si su herramienta lo soporta, puede usar un
símbolo de componente y hacer una lista de las interfaces proporcionadas y requeridas,
incluyendo las signaturas expuestas de los métodos, o puede mostrar los clasificadores con
el estereotipo «interfaz». La mayoría de las herramientas soportan las realizaciones, las
dependencias y los clasificadores, de modo que este último estilo es el más fácil de crear.

Figura 8-4 Uso de una dependencia, en lugar de la mitad de la paleta de caramelo, para modelar
una interfaz requerida cuando el uml versión 2.0 no está por completo soportado por su herra-
mienta de modelado.

Cuenta Administración
de cuentas

Persistencia
Persistencia

08 KIMMEL.indd 180 11/4/07 7:11:36 PM

 www.FreeLibros.me

CAPÍTULO 8 Modelado de componentes 181

Una interfaz proporcionada es aquella en la que el componente realiza; por tanto,
al usar clasificadores, la paleta de caramelo se convierte en el conector de realización.
Una interfaz requerida es aquella en la cual el componente depende; por tanto, al usar
clasificadores, la media paleta de caramelo se convierte en el conector de dependen-
cia con un estereotipo «usar». En la figura 8-5, está un diagrama de caja negra en el
que se muestran las interfaces proporcionadas “iExceptionxmlPublisher” (“iPublicador-
xmldeExcepciones”) e “iExceptionPublisher” (“iPublicadordeExcepciones”) y la inter-
faz requerida “iConfigSectionHandler” (“iManejadordeConfigSecciones”). (Éste es un
diagrama parcial de componentes del Exception Management Appliccation Block; Bloc
de aplicación de administración de excepciones para .net ofrecido por Microsoft y que
se usa en Motown-jobs.com.)

En la figura 8-5, el lector sabe que el componente “ExceptionManagement” reali-
za “iExceptionxmlPublisher” e “iExceptionPublisher”, los cuales son elementos que el
consumidor será capaz de usar. El lector también sabe que algo llamado “iConfigSectio-
nHandler” es algo que el componente necesita.

NOTA Si usted está interesado en .NET y los bloques de aplicaciones, entonces puede
obtener más información en www.microsoft.com. Los bloques de aplicaciones son bá-
sicamente componentes que resuelven problemas susceptibles de volver a usarse, en un
nivel más alto de abstracción que sencillamente clases en un marco de referencia.

Si el contexto es desconocido, entonces este diagrama no proporciona información
suficiente, pero una vez que colocamos el componente en un contexto —en este caso,
en el marco de referencia .net—, los tipos de datos y las interfaces requeridas quedan a
disponibilidad del consumidor.

Figura 8-5 Interfaces suministradas y requeridas modeladas con el uso de conectores de reali-
zación y de dependencia, así como clasificadores, para elaborar la definición.

+Publish(exception:Exception,additionallinfo:NameValueCollection,configSettings:NameValueCollection):void

+Publish(exceptioninfo:XmIDocument,configSeettings:NameValueCollection):void

+Create(parent:Object,configTextObject,section:XmINode):void

«interfaz»
iExceptionPublisher

«interfaz»
iConfigSectionHanler

«interfaz»
iExceptionxmlPublisher

«usar»

«componente»
ExceptionManagement

08 KIMMEL.indd 181 11/4/07 7:11:37 PM

 www.FreeLibros.me

www.microsoft.com.

Manual de UML 182

Trazado de los diagramas de componentes para productores

Si estamos trazando diagramas de componentes para productores —aquellos que imple-
mentarán el componente— entonces necesitamos más información. Para los productores,
necesitamos mostrar los componentes, las clases y las relaciones internas que el imple-
mentador de los componentes deberá crear como código. A esto es a lo que me estoy
refiriendo como vista de caja blanca, o detalles internos.

Podemos desarrollar el diagrama de componentes de la figura 8-5 y agregar detalles
internos acerca del componente “ExceptionManagement”. En la figura 8-6, se muestran
las interfaces proporcionadas y requeridas como paletas de caramelo y se amplía el enfo-
que sobre los elementos internos del componente.

En la figura 8-6, se muestran las mismas interfaces proporcionadas y requeridas, pero
nuestra vista original de caja blanca muestra ahora cómo soportamos algunos de los ele-
mentos externos. Aunque puede ser que esta vista todavía no proporcione todos los detalles
necesarios para implementar el componente “ExceptionManagement”, podríamos agregar
atributos y operaciones a los clasificadores y combinar el diagrama de componentes con
otros diagramas, como los esquemas de estados, los diagramas de clases y las secuencias.
En forma colectiva, los diversos diagramas explicarían la manera de implementar el com-
ponente.

Vale la pena hacer notar que estamos expresando la misma suerte de relaciones que
hemos visto antes en los diagramas de clases. También vale la pena hacer notar que los
componentes, como las clases, pueden contener elementos anidados, como los compo-
nentes anidados.

Figura 8-6 En esta figura, se cambia el enfoque para destacar la vista interna, o caja blanca, del
componente.

iExceptionPublisher

iExceptionxmlPublisher

DefaultPublisher ExceptionManager

ExceptionManagerSectionHandler

iConigSectionHandler

+Publish(exception:Exception):void

«componente»
ExceptionManagment

08 KIMMEL.indd 182 11/4/07 7:11:37 PM

 www.FreeLibros.me

CAPÍTULO 8 Modelado de componentes 183

Para experimentar con el modelado de componentes, encuentre un dominio con el que
esté familiarizado o una solución existente, como la base de datos de muestra de Nor-
thwind. Vea si puede describir una vista de arriba hacia abajo de una versión en componen-
tes de los elementos de un sistema para la plena satisfacción de los pedidos de los clientes.
(Por supuesto, puede usar cualquier dominio muestra con el cual esté familiarizado.)

Examen
1. Todo modelo debe contener por lo menos un diagrama de componentes.

a. Verdadero

b. Falso

2. Un método de arriba hacia abajo para los diagramas de componentes significa que
usted

a. define primero los componentes y, a continuación, descompone esos componen-
tes en sus partes constituyentes.

b. define las partes constituyentes y, a continuación, coloca los componentes en la
parte superior de esas partes constituyentes.

c. Ninguna de las anteriores

3. Un método a partir de clases o de abajo hacia arriba para diseñar puede ser valioso
porque (seleccione todo lo que sea aplicable)

a. los componentes en realidad no se necesitan.

b. usted logra más tracción al resolver primero los problemas del dominio.

c. la estructuración de infraestructura es cara y tardada.

d. en un momento posterior, las clases del dominio siempre pueden organizarse en
componentes.

4. Los símbolos de los componentes se pueden representar usando un clasificador con
el estereotipo «componente».

a. Verdadero

b. Falso

5. Una interfaz proporcionada se puede representar por medio de una paleta de cara-
melo con nombre

a. o por la mitad de una paleta de caramelo.

b. o por una dependencia en un clasificador con el estereotipo «interfaz».

c. o por un estereotipo «interfaz» en un clasificador con un conector de realización.

d. sólo usando la paleta de caramelo.

08 KIMMEL.indd 183 11/4/07 7:11:37 PM

 www.FreeLibros.me

Manual de UML 184

 6. Una interfaz requerida es aquella que realiza el componente.

a. Verdadero

b. Falso

 7. Una interfaz requerida se puede representar por medio de la mitad de una paleta
de caramelo con nombre

a. o por una paleta de caramelo.

b. o por una dependencia en un clasificador con el estereotipo «interfaz».

c. o por un estereotipo «interfaz» en un clasificador con un conector de realiza-
ción.

d. sólo usando la mitad de una paleta de caramelo.

 8. Los componentes pueden contener componentes anidados.

a. Verdadero

b. Falso

 9. Como regla general, usted sólo usa componentes y diagramas de componentes
para sistemas con 100 o más clases del dominio.

a. Verdadero, pero ésta es una directriz general. Los componentes pueden ayu-
darle a organizar una solución y a estructurar elementos susceptibles de volver-
se a usar que se pueden vender por separado.

b. Falso, porque la estructuración de componentes siempre es más barata a largo
plazo.

10. Para cada clase del dominio en una arquitectura basada en componentes, usted
puede necesitar de tres a cinco clases de soporte.

a. Verdadero

b. Falso

Respuestas
 1. b

 2. a

 3. b, c y d

 4. a

 5. c

 6. b

 7. b

 8. a

 9. a

10. a

08 KIMMEL.indd 184 11/4/07 7:11:37 PM

 www.FreeLibros.me

CAPÍTULO

185

He trabajado en proyectos con presupuestos desde menos de 5 millones de dólares
que incluían 20,000 horas-hombre, hasta proyectos con presupuestos de más de
1,000 millones de dólares y cientos de miles de horas-hombre. En algunos de estos
proyectos casi no se usó modelado y diseño formales y, en otros, se usó tanto mo-
delado y diseño que todo el ímpetu llegó a perderse. La lección es que demasiada
poca formalidad puede dar por resultado un producto mediocre, de mala calidad, y
demasiada formalidad puede hacer que un proyecto se atore o se cancele.

También vale la pena mencionar que he trabajado para compañías enormes que
no modelan en absoluto, pero entregan software constantemente. Uno tiene que pre-
guntarse si el éxito de esos proyectos está relacionado con cuánto dinero tuvieron
que arrojar al problema esas empresas y también si el software hubiera sido mejor,
más rápido y más barato si se hubiera modelado y diseñado un poco.

La respuesta se encuentra en alguna parte entre los dos extremos. En general,
los modelos de software necesitan ser tan completos y precisos como lo que se está
diseñando. Por ejemplo, si está construyendo algo tan complejo como una casa
para un perro, entonces es probable que no necesite mucho en el camino de los mo-
delos. Para algo tan complejo como una casa, es posible que necesite modelos tan
complejos como un plano azul. Conocer el tamaño, el número de habitaciones y los
materiales de construcción le ayudará a dimensionar y presupuestar un proyecto,
dejando al mismo tiempo algo de espacio para la invención. Por ejemplo, las varia-
ciones en los artefactos luminosos, el color de la pintura, el estilo del alfombrado
y la colocación precisa de las tomas de electricidad se pueden dejar (dentro de lo
razonable) al ingenio de los especialistas. Para las casas, los especialistas son los

Ajuste y finalización

9

09 KIMMEL.indd 185 11/4/07 7:16:23 PM

 www.FreeLibros.me

Manual de UML 186

carpinteros, los electricistas, los colocadores de techos y los plomeros; para el software,
los especialistas son los programadores, los probadores, los dba (database administra-
tors; administradores de bases de datos) y los diseñadores de la interfaz gráfica para los
usuarios (gui).

La realidad es que casi todo el software es más complejo que una casa, y mucho de él
se está estructurando sin planos azules (modelos uml) que describirían de manera ade-
cuada la casa de un perro. La razón es que el modelado del software es nuevo y difícil.
Además, el código se puede compilar, depurar, ejecutar y probar con resultados super-
ficialmente mensurables. Como contraste, los modelos no se compilan y sólo se pueden
“depurar” en forma manual, y no se ejecutan, y no hay manera sencilla de ponerlos a
prueba. Yo apostaría a que muy pocas empresas de software están realizando revisiones
técnicas del código con éxito; olvídese acerca de las revisiones técnicas del Unified Mo-
deling Language (uml).

Lo que todo esto significa es que si usted está leyendo esto, entonces se encuentra
adelante de muchos de sus semejantes en términos de la práctica del modelado del soft-
ware; también significa que la definición de un proceso y encontrar un equilibrio entre
demasiado mucho y demasiado poco modelado son importantes. En este libro, he dado
algunos apuntadores prácticos, en el contexto del modelado y diseño con uml, que me
han ayudado en el pasado. Estos apuntadores se basan en algunos proyectos que han te-
nido éxito y en algunos que han fallado. Para ayudarle a imaginarse cómo completar sus
modelos, hablaré acerca de

• Unas cuantas cosas básicas que hacer y no hacer

• El uso de patrones y refactorizaciones conocidos

• Cuándo y cómo agregar documentación de soporte

• La validación de sus modelos

Modelado de los hacer y los no hacer
Pensé en nombrar esta sección “Las mejores prácticas de modelado”, pero los hacer y los
no hacer me parecen más desmitificadores.

A principio de la década de 1990, inicié el modelado usando lo notación booleana.
En aquellos días, había unos cuantos lugares en donde usted podía aprender un lenguaje
como C++ de un profesional experimentado y casi ninguna parte en donde aprender
modelado. Esto significa que, al principio, los pocos libros que pude conseguir y mis
propios errores fueron los únicos profesores de los que dispuse. Después de más de 12
años, he mejorado, pero todavía existen unos cuantos expertos auténticos en modelado
y, hasta donde puede decir, muchas universidades todavía no están ofreciendo currículos
para arquitectos en software (o incluso modeladores en uml); este conocimiento todavía

09 KIMMEL.indd 186 11/4/07 7:16:23 PM

 www.FreeLibros.me

CAPÍTULO 9 Ajuste y finalización 187

es nuevo. Como consecuencia, el consejo que puedo darle se basa en mi propio estudio
intenso y en muchos años de sentir mi camino. Es evidente que esto sugiere que el exper-
to de su comunidad puede no estar de acuerdo con mi opinión. Usted conoce mejor a su
propia gente que yo; si piensa que algo no funcionará o que mi consejo es cuestionable,
entonces busque a esos pocos viejos sabios a quienes todos reconocen como expertos: Ja-
mes Rumbaugh, Ivar Jacobson, Grady Booch, Erich Gamma y Martin Fowler. Hoy unos
cuantos otros, pero ya tiene el panorama. Cuando tengo preguntas acerca del modelado
con uml, éstos son los amigos hacia quienes también recurro.

No tenga esperando a los programadores

La primera regla es: no tenga a los programadores esperando los modelos. Esto signifi-
ca que debe realizar una gran cantidad de diseño antes de armar su equipo principal de
programación. Resultará útil que disponga de unos cuantos programadores para ayudarle
en la creación de su prototipo, pero no cree el equipo por completo hasta que tenga bien
encaminados un plan del proyecto y algo del análisis y el diseño.

Por desgracia, la mayoría de los proyectos no se organizan de este modo. Llega el
equipo completo y, de inmediato, empieza la presión para que todos trabajen, incluyendo
los programadores. Intente crear modelos con el detalle suficiente como para tener tra-
bajando a los programadores, pero no tan detallados que los tenga atascados esperando.
Esto es difícil de hacer.

Trabaje de una macrovista hacia una microvista

Trabaje primero sobre aspectos del “gran panorama”. Por ejemplo, identifique primero
las partes grandes del sistema —gui web, macrolenguaje personalizado, servicios web
y persistencia de las bases de datos— antes de trabajar sobre las clases y las líneas del
código. Si quiere concebir las partes y la forma en que se ajustan entre sí, entonces el
trabajo se puede dividir en subsistemas. Éste es un procedimiento de arriba hacia abajo,
pero soporta una división del trabajo y le da un contexto para el trabajo más pequeño y
más detallado.

Documente en forma económica

La mayor parte de la documentación es parte de la microvista. Al modelar, tenga presente
que el uml es un lenguaje taquigráfico para el texto. (Usted podría diseñar un sistema
completo en texto llano, ¿correcto?) Analice y diseñe una solución tan completa como se
necesite, sin agregar una cantidad de notas y documentación. A menudo, los diagramas
adicionales pueden aclarar un diagrama con tanta rapidez como un texto largamente de-
sarrollado.

09 KIMMEL.indd 187 11/4/07 7:16:23 PM

 www.FreeLibros.me

Manual de UML 188

También puede guardar algo de la documentación para el final del proyecto, si sus
modelos son difíciles de entregar. Si su cliente (interno o externo) no está pagando por
lo modelos, entonces consumir recursos para pulirlos puede ser un desperdicio de su
tiempo y de su dinero.

Encuentre un editor

Ser un buen modelador con uml no es lo mismo que ser un buen escritor. Además de
tener un segundo par de ojos para mirar sus diagramas uml, tenga escondido un buen
conocimiento del español para revisar su documentación. Una vez más, sólo haga esto si
los modelos son difíciles de entregar.

Sea selectivo acerca de los diagramas que elige crear

¿Por qué la pollita cruzó la carretera? Es posible que la respuesta sea porque pudo. No
cree diagramas porque puede; sólo cree aquellos que resuelven problemas interesantes y
sólo aquellos que en realidad se necesitan. Este enfoque también le ayudará a eliminar el
problema de los programadores en espera.

No dependa de la generación del código

James McCarthy advierte acerca de dejarse llevar por la imaginación —dejar salir nues-
tro alocamiento—, pero si alguien le dice que debe modelar, modele, modele y déle un
golpecito al interruptor para generar un ejecutable, entonces déjese llevar. Nos encontra-
mos a una década o dos de que el apoyo a la tecnología y a la educación generó aplicacio-
nes. Nunca he visto este trabajo de aproximación y he hablado con varios consultores de
Rational, quienes están de acuerdo conmigo. La generación de código es una buena idea,
pero nos falta mucho por recorrer para automatizar la generación de software.

Modele y estructure disminuyendo el riesgo

El software suele tener unas cuantas cajas muy importantes de la empresa y un montón
de cajas de soporte de esa empresa. El principio guía es estructurar primero las partes
más difíciles y más importantes del software. El ataque a los problemas difíciles le ayuda
a evitar sorpresas desagradables y, con frecuencia, se puede embarcar el software si las
cajas importantes de la empresa están apoyadas, incluso cuando los adornos adicionales
no son tan grandes. En mi experiencia, éste es uno de los errores más grandes que se
cometen en los proyectos: estructurar primero las cosas fáciles.

09 KIMMEL.indd 188 11/4/07 7:16:23 PM

 www.FreeLibros.me

CAPÍTULO 9 Ajuste y finalización 189

Si es obvio, no lo modele

Los bloques, los componentes, las herramientas de terceras partes y los marcos de refe-
rencia de las aplicaciones se encuentran fuera de su control; todo lo que puede hacer es
usarlos; a menos que usted también posea esos elementos, lo cual es raro. No desperdicie
el tiempo modelando lo que no posee. Si debe modelar herramientas de terceras partes
para ayudar a los desarrolladores a usarlas, entonces modélelas como cajas negras: todo
lo que necesita es modelar su presencia e interfaces, y sólo necesita modelar las interfa-
ces que en realidad está usando. Si, por ejemplo, sus desarrolladores pueden usar ado.
net o el Data Access Application Block (Bloc de aplicación de acceso a datos), entonces
sencillamente indique que lo está usando. Eso es suficiente.

Haga hincapié en la especialización

Otra equivocación es la generalización de los miembros del equipo. Los equipos de soft-
ware constan de personas con aptitudes y conocimientos variados, pero existe una canti-
dad tremenda de documentación y evidencia históricas acerca de que la especialización
es algo bueno: Wealth of Nations de Adam Smith, las líneas de montaje de Henry Ford y
la antigua frase latina “Divide et impera”. Considerar en primer lugar la división del pro-
blema, la intensidad del enfoque, la especialización y la estructuración de los elementos
críticos le llevará a recorrer gran parte del camino al éxito.

Uso de patrones de estado conocidos
Los patrones no son una idea original o nueva. La aplicación de los patrones en soft-
ware parece tener su origen en un libro de 1977 titulado A Pattern Language, escrito por
Christopher Alexander et al. Lo extraño es que este libro es acerca del diseño de ciudades
y poblados pequeños, y patrones como espacios verdes. El patrón de espacios verdes
significa que los poblados deben tener parques.

Evidentemente, es una extrapolación inteligente convertir un libro acerca del diseño de
ciudades en un concepto que revolucione el software —esto no sucede de cualquier otra
manera que no sea por extrapolación— pero se ha demostrado que el buen uso de patro-
nes ayuda a lograr un buen software. La pregunta es: dado que los patrones de software
están documentados, ¿necesita usted agregarlos a sus diagramas uml cuando los use en
sus diseños? La respuesta es posiblemente.

Los patrones de software son plantillas, pero existe cierta latitud en cómo implemen-
tarlos. Cada vez que se emplea un patrón, el lector tendrá nombres diferentes de cla-
ses basados en el dominio de la solución, y muchos patrones se pueden implementar de

09 KIMMEL.indd 189 11/4/07 7:16:24 PM

 www.FreeLibros.me

Manual de UML 190

maneras diferentes. Por ejemplo, los eventos y los manejadores de eventos son una im-
plementación del patrón observador, pero ésta no es precisamente la manera en que está
documentado el observador. Microsoft considera las páginas asp y detrás del código para
asp.net como una implementación del controlador de visión de modelos (mvc, model-
view-controller), pero usted no verá asp.net mencionado en la definición del patrón. Por
consiguiente, la respuesta es sí, en muchos casos; si usa un patrón, entonces debe incor-
porarlo en sus modelos para colocarlo en el contexto de su dominio del problema. Sin
embargo, si tiene un equipo muy experimentado, entonces sencillamente podría decirles
a los desarrolladores que usen aquí el patrón mvc, de observador o de estado.

SUGERENCIA Una buena sugerencia es identificar los patrones cuando los use. La identifi-
cación de los patrones de diseño bien documentados eliminará o por lo menos mitigará
la necesidad de que duplique esa documentación en sus diseños.

Una buena regla empírica es que el buen software se basa en patrones. La clave es
aprender acerca de los patrones de diseño, concebir las áreas clave en donde ayudarán al
diseño de usted y, a continuación, incorporarlos en sus diseños.

En la figura 9-1, se demuestra cómo podemos modelar el patrón de comportamiento
de estados, pidiendo prestado del horno de microondas del capítulo 7. En este ejemplo,
se demuestra cómo podemos modelar un patrón conocido en donde sólo los nombres
cambian. En la figura 9-2, se muestra el modelo clásico de patrón de observador, y en la
figura 9-3 se muestra una variación de este patrón que refleja las variaciones en el modelo
clásico pero, no obstante, de observador.

Figura 9-1 Esta figura es una implementación clásica del patrón de comportamiento de estados
para el ejemplo del horno de microondas del capítulo 7.

Horno de microondas Estado del horno
de microondas

+Abrir():void
+Cerrar():void

+Abrir():void
+Cerrar():void

estado.Abrir() Estado abierto Estado cerrado

+estado

09 KIMMEL.indd 190 11/4/07 7:16:24 PM

 www.FreeLibros.me

CAPÍTULO 9 Ajuste y finalización 191

Advierta que en el ejemplo clásico del observador (vea la figura 9-2), no se usa una
interfaz; sin embargo, en la figura 9-3 usé una interfaz. El resultado es que cualquier cosa
puede implementar “iEscucha” y desempeñar el papel de escucha. Esta implementación
es útil en los lenguajes de herencia sencilla y también es útil para mover mensajes por
una aplicación de una manera unificada. La razón para agregar este modelo e indicar que
es una implementación de observador es que se trata de una implementación diferente
a la clásica, pero la documentación para el observador todavía ayuda a aclarar la razón
fundamental para su uso.

��������������

����������������

��������������
����������������������������������

����������������

����������������������������������

Figura 9-2 Diagrama clásico del patrón de observador, también conocido como publicar-sus-
cribir.

Figura 9-3 Variación del patrón de comportamiento de observador que menciono como difun-
dir-escuchar, lo cual está muy próximo a la noción de publicar-suscribir del observador.

Sujeto

Sujeto concreto

Observador

Observador concreto

Difusor Colección de Escuchas

+Difundir(mensaje:String):void
+Add(escucha:Escucha):void

+Add(escucha:Escucha):void

foreach(escucha en
ColecciondeEscuchas)

if(escucha.get_Escuchando())
escucha.Escuchar(mensaje)

«interfaz»
iEscucha

«Property»+get_Escuchando():booleano
«Property»+set_Escuchando
+Escuchar(mensaje:String):void

Escucha

+Attach(observador:Observador):void
+Detach(observador:Observador):void
+Notify():void

09 KIMMEL.indd 191 11/4/07 7:16:24 PM

 www.FreeLibros.me

Manual de UML 192

Refactorización de su modelo
Este libro no es el mejor foro para enseñar los patrones de diseño o la refactorización.
El uml es distinto a los patrones, pero éstos se describen con el uso del uml y el texto
de otros libros. La refactorización es diferente tanto del uml como de los patrones. Aun
cuando existe cierto traslape entre los patrones y las refactorizaciones —por ejemplo,
tanto Singleton como Factory son patrones de creación así como refactorizaciones—, la
refactorización es algo que, en general, se realiza después de que se ha escrito el código,
para mejorar el diseño del código existente. Dicho esto, no hay razón para que usted no
pueda refactorizar sus modelos.

Suponga, por ejemplo, que tiene una signatura de mensaje en un diagrama de interac-
ción que tiene varios parámetros. Antes de liberar el diagrama a sus programadores, podría
aplicar la refactorización “IntroduceParameterObject” (“IntroducirParámetroObjeto”).
Esta refactorización sencillamente dice convertir una signatura larga de un método en una
corta, mediante la introducción de una clase que contenga todos los parámetros necesarios
para un método en particular y cambiar ese método para que acepte un caso de esa clase.

No hay necesidad de hacer otra cosa que no sea introducir la clase parámetro y cam-
biar la signatura del método, pero tendría que saber acerca de la refactorización y la
justificación para hacer este cambio. Para aprender más acerca de la refactorización, lea
Refactoring: Improving the Design of Existing Code, escrito por Martin Fowler, y obten-
ga así más información sobre este tema.

Los patrones y las refactorizaciones no son parte del uml, pero le ayudarán a crear
mejores diagramas uml. Los buenos diseños no necesitan tener un uml gramáticamente
perfecto, pero los patrones y las refactorizaciones harán que sus diseños sean mejores.

Modo de agregar documentación de soporte
Muchas herramientas de modelado aceptarán cualquier documentación que usted cree
y combine con sus diagramas y producirán documentación de alta calidad para el mo-
delo —en general, HyperText Markup Language (html)— con referencias cruzadas e
indexado. Sin embargo, si usa una herramienta como Excel, Word, Bloc de notas o algo
junto con la herramienta uml para crear su documentación, entonces está anulando esta
característica de la mayoría de las herramientas.

Le recomiendo que transmita con imágenes tanto significado como sea posible. La ra-
zón sencilla es que las imágenes transmiten más información en un formato conciso que
resmas de texto. Si necesita texto, entonces intente con restricciones y notas en el mode-
lo, pero manténgalas en un mínimo. Por último, si debe agregar mucha documentación,
no retrase a los programadores mientras la escribe. Tendrá suerte si los programadores
incluso leen sus modelos —la verdad hiere— dejando en paz el texto largamente desarro-

09 KIMMEL.indd 192 11/4/07 7:16:25 PM

 www.FreeLibros.me

CAPÍTULO 9 Ajuste y finalización 193

llado. Por desgracia, muchos programadores se sienten perfectamente felices si codifican
lo que les viene a la mente o cualquier cosa que hayan codificado en su último proyecto,
Los modelos complicados pueden finalizar siendo ignorados.

En general, para la posteridad, me gusta incluir un panorama general arquitectónico
escrito, en un documento separado, que describe el sistema en un alto nivel. Algunas per-
sonas sencillamente no pueden o no leerán los modelos —piense en los administradores
o, incluso, en futuros programadores—, pero yo creo estos documentos cerca del final del
proyecto cuando todos los demás están ocupados depurando y haciendo pruebas.

Tenga presente que el uml y el modelado son sólo una faceta del desarrollo del soft-
ware. El modelado debe ayudar, no obstaculizar, el proceso en su conjunto.

Validación de su modelo
Muchas herramientas validarán los modelos en forma automática. Por desgracia, cada
herramienta es diferente y cada una de ellas parece soportar aspectos diferentes del uml.
El lector puede volverse loco tratando de eliminar los errores de los que informen las he-
rramientas de validación de los modelos uml. Yo no consumiría mi tiempo aquí. Punto.

Su tiempo será mejor empleado codificando ejemplos que muestren a los desarrolla-
dores cómo implementar el modelo, enseñando a los desarrolladores la manera de leer
los modelos y recorriendo los modelos con los desarrolladores para ver si tienen sentido
y se pueden implementar. En general, en el momento en que usted y los desarrolladores
se encuentren felices con un diagrama en particular, el programa tiene la mayor parte de
lo que su diagrama describe codificado de todos modos.

Por último, precisamente como no embarcaría código con advertencias y errores, tam-
poco quiero embarcar modelos con advertencias o errores. Si la validación de un modelo
informa de un error, esto suele significar que estoy usando una característica de manera
incoherente con la implementación del uml que mi herramienta específica soporta. Antes
de ponerle un listón a mi modelo y seguir con alguna otra cosa, trataré de resolver las
discrepancias de las que informan las herramientas de validación. No obstante, histórica-
mente, los clientes por lo común no han estado dispuestos a pagar por este esfuerzo.

Examen
1. Un modelo sólo está completo cuando contiene por lo menos uno de cada tipo de

diagrama.

a. Verdadero

b. Falso

09 KIMMEL.indd 193 11/4/07 7:16:25 PM

 www.FreeLibros.me

Manual de UML 194

 2. Los diagramas de componentes son absolutamente necesarios.

a. Verdadero

b. Falso

 3. Debo seleccionar un procedimiento de arriba hacia abajo o a partir de clases para
modelar, pero no puedo combinar las técnicas.

a. Verdadero

b. Falso

 4. Se ha argumentado que la especialización conduce a ganancias en la producti-
vidad.

a. Verdadero

b. Falso

 5. Los patrones de diseño son parte de la especificación UML.

a. Verdadero

b. Falso

 6. La refactorización no es parte de la especificación UML.

a. Verdadero

b. Falso

 7. La mayoría de los expertos están de acuerdo en que los patrones y las refactoriza-
ciones mejorarán la implementación del software.

a. Verdadero

b. Falso

 8. El UML es un estándar y todos están de acuerdo en que debe usarse.

a. Verdadero

b. Falso

 9. Es esencial usar una herramienta para validar los modelos.

a. Verdadero

b. Falso

10. Todas las herramientas de modelado del UML son capaces de generar de manera
eficaz aplicaciones enteras, completas.

a. Verdadero

b. Falso

09 KIMMEL.indd 194 11/4/07 7:16:25 PM

 www.FreeLibros.me

CAPÍTULO 9 Ajuste y finalización 195

Respuestas
 1. b

 2. b

 3. b

 4. a

 5. b

 6. a

 7. a

 8. b

 9. b

10. b

09 KIMMEL.indd 195 11/4/07 7:16:25 PM

 www.FreeLibros.me

09 KIMMEL.indd 196 11/4/07 7:16:25 PM

 www.FreeLibros.me

CAPÍTULO

197

Topología de despliegue significa, sencillamente, la forma en que lucirá su sistema
cuando lo ponga en uso. Para esto, puede construir un diagrama de despliegue. Este
tipo de diagramas muestran al lector los elementos lógicos, sus ubicaciones físicas
y cómo se comunican estos elementos, así como el número y variedad de elementos
físicos y lógicos.

Use diagramas de despliegue para mostrar en dónde está su servidor web y si
tiene más de uno; úselos para mostrar dónde está su servidor de bases de datos y
si tiene más de uno, así como cuál (cuáles) es (son) la(s) relación (relaciones) del
(de los) servidor(es) con los otros elementos. Este tipo de diagramas pueden mos-
trar cómo están conectados estos elementos, cuáles protocolos están usando para
comunicarse y cuáles sistemas operativos o dispositivos físicos, incluyendo las
computadoras y otros dispositivos, están presentes.

Visualización
de su topología

de despliegue

10

10 KIMMEL.indd 197 11/4/07 7:17:18 PM

 www.FreeLibros.me

Manual de UML 198

Resulta clara la implicación de que, si no cuenta con la mayoría de estos elementos,
entonces es posible que no necesite crear un diagrama de despliegue. Si está creando una
aplicación simple que es única o, incluso, una simple aplicación de base de datos para un
solo usuario, un sitio web, una aplicación de consola o un servicio, entonces puede pasar
por alto la creación de un diagrama de despliegue.

Los diagramas de despliegue no son difíciles de crear, en general no contienen un gran
número de elementos y sólo se necesitan para aplicaciones de complejidad mediana a
grande. Estos diagramas son buenos para la visualización del panorama de su despliegue,
para sistemas con múltiples elementos. Desde luego, usted es libre para crear un diagra-
ma de despliegue para todo modelo, pero ésta es un área en donde podría economizar.

Modelado de nodos
Los nodos son cajas tridimensionales que representan dispositivos físicos que pueden
ser computadoras, aunque no necesariamente, o entornos de ejecución que pueden ser
computadoras, sistemas operativos o entornos de autocontención, como com+, iis o un
servidor Apache.

Los dispositivos físicos por lo común incluyen computadoras, pero pueden incluir
cualquier dispositivo físico. Al trabajar en un proyecto para Lucent Technologies, hace
algunos años, estuve escribiendo software para teléfonos de hoteles: mover los ajustes te-
lefónicos de teléfono a teléfono y controlar los sistemas de conmutación. En mi diagrama
de despliegue, mostré las computadoras, los teléfonos y los conmutadores telefónicos.
Más recientemente, estuve trabajando en un proyecto para Pitney Bowes. Estaba escri-
biendo un armazón de embarque multinacional para soportar el concepto de transportador
universal. En gran parte de ese armazón se usó msmq —formación de cola de mensajes
con com+—, de modo que el diagrama de despliegue reflejó nodos que representaban un
entorno de ejecución com+.

Figura 10-1 Nodo con un solo nombre en un diagrama de despliegue del Unified Modeling
Language (uml).

Leyenda de Merlín

10 KIMMEL.indd 198 11/4/07 7:17:18 PM

 www.FreeLibros.me

CAPÍTULO 10 Visualización de su topología de despliegue 199

El símbolo básico para un nodo es un cubo tridimensional con el nombre en el mismo
(figura 10-1). Si usted quisiera modelar varios nodos del mismo tipo, entonces podría
usar una etiqueta que indique el número de casos de ese nodo, o podría agregar múltiples
nodos al diagrama. En la figura 10-2, se muestra cómo podría modelar una granja web
con el uso de la etiqueta de nodos múltiples a la izquierda y los símbolos de esos nodos
a la derecha.

Además de usar etiquetas para indicar la multiplicidad de los nodos, podemos usarlas
para indicar información acerca del nodo. Por ejemplo, en nuestro ejemplo del servidor
web, podríamos indicar que todos los nodos están ejecutando el servidor iis y Windows
2003. En la figura 10-3, se muestran estas etiquetas adicionales.

Figura 10-3 Diagrama de despliegue parcial en el que se muestran nodos múltiples y detalles
acerca del sistema operativo y de la versión del servidor web.

Figura 10-2 En este diagrama, se muestra una etiqueta que indica que existen dos servidores
web (izquierda) y dos servidores web de nodo físico a la derecha.

Servidor web

{número desplegado = 2}

Servidor web1

Servidor web2

Servidor web

{número desplegado = 2}

{sistema operativo = windows 2003}

{servidor web = iis 6.0}

10 KIMMEL.indd 199 11/4/07 7:17:18 PM

 www.FreeLibros.me

Manual de UML 200

SUGERENCIA La PC virtual es una herramienta que uso para tener múltiples computado-
ras lógicas en una sola computadora. Es una manera excelente para probar software beta
o tener una máquina limpia para despliegue local, como el de una aplicación web para
hacer la prueba acerca de dependencias y el montaje y la configuración apropiados.

Por último, podemos agregar uno o dos estereotipos a un nodo —«dispositivo» o «en-
torno de ejecución»— para indicar si estamos hablando acerca de un dispositivo físico
o de un entorno de ejecución. En la figura 10-4, se ilustra un diagrama alternativo en el
que se muestra un solo servidor web que ejecuta un entorno de ejecución en un ejemplo
de pc virtual.

NOTA Un reto interesante y recurrente es que, en los proyectos a largo plazo, los desa-
rrolladores vienen y se van. En general, el resultado de una transición es que alguien
que ha permanecido en el proyecto tiene que dedicar una tarde o todo un día ayudando
al recién llegado a configurar su máquina. Un proyecto de instalación o un diagrama
de despliegue para el entorno de desarrollo podrían ser tan útiles como un diagrama de
despliegue para un sistema de producción. (Si tiene un poco de tiempo adicional, intén-
telo y vea cómo funciona.)

Figura 10-4 Nodo en el que se muestra la pc virtual usada como un entorno de ejecución.

PC virtual

Servidor web

{sistema operativo = Windows xp}

{servidor web = Apache}

10 KIMMEL.indd 200 11/4/07 7:17:19 PM

 www.FreeLibros.me

CAPÍTULO 10 Visualización de su topología de despliegue 201

Manera de mostrar artefactos en nodos
Los artefactos son las cosas que está desplegando. (Si está combinando el desarrollo de
hardware y software, entonces también podría desplegar sus propios nodos, pero sólo
estoy hablando acerca de software.) Los artefactos se modelan usando el símbolo de clase
y un estereotipo «artefacto». Los artefactos pueden ser exe, dll, archivos html, docu-
mentos, archivos .jar, ensamblajes, guiones (scripts), archivos binarios o cualquier otra
cosa que despliegue como parte de su solución. Por lo común, los artefactos binarios son
componentes y podemos usar una etiqueta para especificar cuál componente representa
un artefacto. En la figura 10-5, se muestra un artefacto que representa un .dll y, en la 10-
6, se muestra cómo colocaríamos ese artefacto en un nodo.

De manera tradicional, podría usted encontrar cierto traslape entre los diagramas de
componentes y los de despliegue. Por ejemplo, si un artefacto implementa un componen-
te, puede mostrar el componente implementado como una etiqueta, o puede agregar el
componente al nodo que muestra la dependencia entre el artefacto y el componente. En
la figura 10-7, se muestra la etiqueta de componente usada para indicar que el artefacto
mostrado implementa el componente usado “AdministracióndeExcepciones”, y en la fi-
gura 10-8 se muestra lo mismo con el uso de la dependencia más verbosa fija al símbolo
de un componente. (El estereotipo «manifestar» significa que el artefacto es una mani-
festación del componente.)

NOTA También se pueden usar dependencias entre los artefactos, para indicar que un
artefacto depende de un segundo. Esto apoya la noción de referencias en .NET, se usa en
Delphi e incluye C++. Por ejemplo, el “AdministracióndeExcepciones.dll” tiene una
dependencia del “Sistema.dll” (no mostrada) que contiene la clase “RegistrodeEven-
tos” en .NET.

Como una alternativa para colocar varios diagramas anidados de clases en un solo
nodo, el uml permite hacer listas de artefactos como texto. Por ejemplo, un sitio web ba-
sado en asp.net contendrá un binario, varios archivos .aspx que contienen html y asp, y
quizás otros documentos o elementos, como un guión. Usar el símbolo de clase para más
de un par de artefactos dará por resultado que el nodo sea ridículamente grande. Haga una
lista de los artefactos como texto, si hay muchos de ellos. En la figura 10-9, se muestra
cómo podemos hacer una lista de varios artefactos en un solo nodo.

Figura 10-5 Artefacto que representa un binario que es el ejecutable que soporta un sitio web.

«artefacto»
motown-jobs.dll

10 KIMMEL.indd 201 11/4/07 7:17:19 PM

 www.FreeLibros.me

Manual de UML 202

Figura 10-7 La especificación del componente en un artefacto implementa el uso de una eti-
queta.

Figura 10-6 En los diagramas de despliegue, los artefactos se despliegan hacia los nodos, de
modo que podemos mostrar un artefacto anidado en un nodo.

Servidor web

{sistema operativo = Servidor Windows 2003}

{servidor web = iis 6.0}

«artefacto»
motown-jobs.dll

Servidor web

{servidor web = iis 5.5}

«artefacto»
AdministracióndeExcepciones.dll

{componente = AdministracióndeExcepciones}

10 KIMMEL.indd 202 11/4/07 7:17:19 PM

 www.FreeLibros.me

CAPÍTULO 10 Visualización de su topología de despliegue 203

Si estuviéramos desplegando el archivo .dll del sitio web en una granja web, entonces
cada nodo de servidor web sería idéntico. En este caso, sería más fácil usar la etiqueta de
número desplegado, en un solo nodo, en lugar de repetir cada nodo y trazar los diagramas
de nodos idénticos.

Técnicamente, puede agregar la combinación de nodos, componentes y artefactos que
necesite, y puede variar los estilos —texto o símbolos— con base en cuántos elementos
tiene un nodo. Sin embargo, tenga presente que si tiene demasiados elementos, enton-
ces el diagrama puede volverse difícil de leer. Si tiene un diagrama complicado de des-
pliegue, entonces intente la implementación de una macrovista con nodos, artefactos y
conectores, y una microvista que amplíe los aspectos importantes del macrodiagrama.
Muestre los detalles en una o más microvistas asociadas con el macrodiagrama de des-
pliegue. Por ejemplo, considere mostrar los artefactos en el servidor web y, si quiere ex-
pandir la relación entre el artefacto “AdministracióndeExcepciones.dll”, el componente
“AdministracióndeExcepciones” y la clase “RegistrodeEventos”, entonces cree una vista
separada de este aspecto del sistema.

Figura 10-8 Especificación de la dependencia de un componente mediante un símbolo de com-
ponente.

Servidor web

{servidor web = iis 5.5}

«artefacto»
AdministracióndeExcepciones.dll

«componente»
AdministracióndeExcepciones

«manifestar»

10 KIMMEL.indd 203 11/4/07 7:17:19 PM

 www.FreeLibros.me

Manual de UML 204

Adición de trayectorias de comunicación
Si usted sólo tiene un nodo, entonces no necesita un diagrama de despliegue; si tiene más
de uno, entonces posiblemente quiera un diagrama de despliegue y querrá mostrar cómo
se conectan y comunican esos nodos.

Hay dos tipos de conectores que se usan entre los nodos y los artefactos en un diagra-
ma de despliegue. La asociación representa una trayectoria de comunicación entre los
nodos; muestra los nodos que se comunican y se puede usar un rótulo sobre esa asocia-
ción para mostrar los protocolos de comunicaciones entre nodos. Además, se puede dibu-
jar un artefacto fuera de un nodo (un buen procedimiento para Visio, el cual no permite
anidar artefactos en los nodos) y fijarlo a ese nodo con una dependencia y un estereotipo
«desplegar». La dependencia desplegar entre un artefacto y un nodo significa lo mismo
que un artefacto anidado o un artefacto en una lista como texto: que ese tipo de artefacto
se despliega en ese tipo de nodo.

En la figura 10-10, se demuestra cómo podemos externar los artefactos como una
manera alternativa de mostrar en dónde se despliegan esos artefactos y, de manera adi-
cional, también se muestran los nodos y las trayectorias de comunicación entre éstos. Las
trayectorias de comunicación se rotulan si existe algún lugar interesante de comunicación
entre los nodos.

Como ocurre con todos los diagramas, puede agregar notas, restricciones y documen-
tación. También puede agregar tanto o tan poco detalle como prefiera. He encontrado
que, con cualquier diagrama, cuando ha pasado el punto en donde el significado puede

�

Figura 10-9 El uml también permite el uso de texto para hacer listas de artefactos.

Servidor web

{número desplegado = 2}

{sistema operativo = Windows 2000}

«artefacto» motown-jobs.dll

«artefacto» PublicarTrabajo.aspx

«artefacto» Entrar.aspx

«artefacto» HallarTrabajo.aspx

10 KIMMEL.indd 204 11/4/07 7:17:20 PM

 www.FreeLibros.me

CAPÍTULO 10 Visualización de su topología de despliegue 205

ser entendido a primera vista, ese diagrama empieza a perder su valor para el lector. Una
buena práctica es mantener algo de enfoque. Si quiere mostrar el sistema entero desple-
gado, entonces muestre los nodos y las conexiones. Si quiere desarrollar un solo nodo,
entonces cree un nuevo diagrama y agregue detalles para ese nodo. ¿Puede imaginar lo
difícil que sería leer un sencillo mapa del mundo si contuviera información acerca de la
navegación aérea, así como los estados, las ciudades, los pueblos, los caminos, las vías
férreas, los ríos, las veredas, las sendas y la topografía? Piense en los diagramas uml
como mapas de su software, con niveles variables de detalle: diferentes tipos de mapas
proporcionan diferentes tipos y niveles de detalle.

Ahora, habiendo dicho todo esto, debe haber una manera para que, como modelador
de un sistema, pueda usted articular estos pasos en el proceso. Los diagramas de desplie-
gue son una faceta para un entorno de despliegue de aplicaciones vivientes. El monitoreo
de la salud y las pruebas de rendimiento proporcionan al modelador retroalimentación
continua acerca de que su trabajo está funcionando. Podría seguir adelante un largo tre-
cho acerca de esto, pero siento que dejar caer una pequeña sugerencia podría invitarle a
pensar más acerca del producto final en lugar de sólo dibujar imágenes. La integración
de esos artefactos con el código real y ver los frutos de su labor es absolutamente gratifi-
cante. Esto es interesante, pero no está relacionado en forma directa con el uml; tiene que
ver con la incorporación de “otras” herramientas en un proceso.

Figura 10-10 En esta figura, se muestra que los tres artefactos están desplegados en el servidor
web y que el nodo de este servidor se comunica con el servidor pasaporte a través de http/tcp.

Servidor Pasaporte
Servidor web

{servidor web = iis 5.5}

{sistema operativo = Windows 2000}
http/tcp

«desplegar»

«desplegar»

«desplegar»

«artefacto»
AdministracióndeExcepciones.dll

«artefacto»
motown-jobs.dll

«artefacto»
Entrar.aspx

10 KIMMEL.indd 205 11/4/07 7:17:20 PM

 www.FreeLibros.me

Manual de UML 206

Examen
1. Un nodo siempre representa un dispositivo físico.

a. Verdadero
b. Falso

2. Un nodo puede representar (seleccione todo lo que sea aplicable)

a. una computadora.

b. cualquier dispositivo físico.

c. un contexto de ejecución, como un servidor de aplicaciones.

d. Todo lo anterior

3. Los estereotipos que se aplican a los nodos pueden ser (seleccione todo lo que sea
aplicable)

a. «dispositivo».

b. «componente».

c. «entornodeejecución».

d. «manifestar».

4. Se usan etiquetas para agregar detalles a un nodo.

a. Verdadero

b. Falso

5. Un servidor de bases de datos es un ejemplo de un nodo.

a. Verdadero

b. Falso

6. ¿Cuál símbolo usan los artefactos?

a. De paquete

b. De clase

c. De actividad

d. De objeto

7. Un artefacto se puede representar como texto en un nodo, una clase en un nodo y
con un conector de realización y un símbolo externo de clase.

a. Verdadero

b. Falso

10 KIMMEL.indd 206 11/4/07 7:17:20 PM

 www.FreeLibros.me

CAPÍTULO 10 Visualización de su topología de despliegue 207

 8. El conector y el estereotipo para un artefacto mostrado fuera de un nodo es

a. de realización y manifestar.

b. de dependencia y desplegar.

c. de asociación y desplegar.

d. de dependencia y manifestar.

 9. Cuando se muestra un artefacto conectado a un componente, ¿cuál estereotipo se
aplica?

a. «desplegar»

b. «usar»

c. «manifestar»

d. «extiende»

10. ¿Cuál conector se usa para mostrar comunicación entre los nodos?

a. De dependencia

b. De generalización

c. De asociación

d. De vínculo

Respuestas
 1. a

 2. d

 3. a y c

 4. a

 5. a

 6. b

 7. b

 8. b

 9. c

10. d

10 KIMMEL.indd 207 11/4/07 7:17:20 PM

 www.FreeLibros.me

10 KIMMEL.indd 208 11/4/07 7:17:20 PM

 www.FreeLibros.me

209

1. ¿Qué significa el acrónimo UML?

a. Uniform Model Language

b. Unified Modeling Language

c. Unitarian Mock-Up Language

d. Unified Molding Language

2. El UML sólo se usa para modelar software.

a. Verdadero

b. Falso

3. ¿Cuál es el nombre del proceso más íntimamente asociado con el UML?

a. El proceso de modelado

b. El Rational Unified Process

c. eXtreme Programming

d. Los métodos Agile

Examen final

A
APÉNDICE

11 KIMMEL Apendice A.indd 209 11/4/07 7:19:33 PM

 www.FreeLibros.me

Manual de UML 210

 4. ¿Cuál es el nombre del cuerpo de normas que define el UML?

a. Unified Modeling Group

b. Object Modeling Group

c. Object Management Group

d. Los cuatro amigos

 5. Los diagramas de casos de uso se usan para captar las macrodescripciones de un
sistema.

a. Verdadero

b. Falso

 6. Diferencie entre los diagramas de secuencia y los de colaboración (elija todo lo
que sea aplicable).

a. Los diagramas de secuencia son diagramas de interacción; los diagramas de
colaboración no lo son.

b. Los diagramas de secuencia representan un ordenamiento en el tiempo; los de
colaboración representan clases y mensajes, pero no se implica el ordenamien-
to en el tiempo.

c. El orden en el tiempo está indicándose al numerar los diagramas de secuencia.

d. Ninguno de las anteriores

 7. Un diagrama de clases es una visión dinámica de las clases de un sistema.

a. Verdadero

b. Falso

 8. Un buen modelo UML contendrá por lo menos un diagrama de cada tipo.

a. Verdadero

b. Falso

 9. ¿Cuál es el apodo del grupo de científicos que se asocia de manera más notable
con el UML?

a. La pandilla de los cuatro

b. Los tres mosqueteros

c. Los tres amigos

d. El dúo dinámico

10. Los diagramas de secuencia son buenos para mostrar el estado de un objeto a
través de muchos casos de uso.

a. Verdadero

b. Falso

11 KIMMEL Apendice A.indd 210 11/4/07 7:19:33 PM

 www.FreeLibros.me

APÉNDICE A Examen final 211

11. ¿Qué símbolo representa un actor?

a. Una línea

b. Una línea dirigida

c. Una figura de palillos

d. Un óvalo que contiene texto

12. Un actor puede ser una persona o algo que actúa sobre un sistema.

a. Verdadero

b. Falso

13. ¿Qué símbolo representa una asociación? (Seleccione la mejor respuesta.)

a. Una línea.

b. Una línea con un triángulo que apunta hacia el elemento dependiente.

c. Una línea punteada con una flecha que apunta hacia el elemento dependiente.

d. Una línea punteada con una flecha que apunta hacia el elemento del que se
depende.

14. Los estereotipos son más comunes en

a. los actores.

b. los conectores.

c. los casos de uso.

d. Ninguno de los anteriores

15. Se usa una relación de inclusión para modelar características opcionales en las
que se reutiliza el comportamiento modelado por otro caso de uso.

a. Verdadero

b. Falso

16. Se usa una relación de extensión para modelar el comportamiento captado por
otro caso de uso.

a. Verdadero

b. Falso

17. Generalización es sinónimo de

a. polimorfismo.

b. agregación.

c. herencia.

d. interfaces.

11 KIMMEL Apendice A.indd 211 11/4/07 7:19:34 PM

 www.FreeLibros.me

Manual de UML 212

18. Toda capacidad de un sistema debe representarse por un caso de uso.

a. Verdadero

b. Falso

19. En una relación de inclusión, la flecha apunta hacia el

a. caso de uso básico.

b. caso de uso de inclusión.

20. Es importante implementar primero los casos de uso difíciles para mitigar pronto
el riesgo.

a. Verdadero

b. Falso

21. Sinónimos para transición son conector y flujo.

a. Verdadero

b. Falso

22. En general, los diagramas de actividades constan de (elija todo lo aplicable)

a. nodos.

b. transiciones.

c. decisiones.

d. estímulos.

23. Las excepciones no se permiten en los diagramas de actividades.

a. Verdadero

b. Falso

24. En un nodo de unión y en uno de fusión se usan

a. símbolos diferentes.

b. símbolos idénticos.

c. símbolos idénticos o diferentes, dependiendo del contexto.

d. Todos los símbolos de nodos son los mismos

25. Los flujos múltiples que entran a un nodo de acción no son

a. una fusión implícita.

b. una unión implícita.

11 KIMMEL Apendice A.indd 212 11/4/07 7:19:34 PM

 www.FreeLibros.me

APÉNDICE A Examen final 213

26. Los flujos esperan en una fusión hasta que

a. todos los flujos hayan llegado.

b. el primer flujo haya llegado.

c. usted le dice que salga.

d. Depende

27. La metáfora de carril todavía se usa

a. Verdadero

b. Falso

28. Pueden existir acciones sólo en una partición de la actividad al mismo tiempo.

a. Verdadero

b. Falso

29. Un nodo de unión y bifurcación se representa por

a. un óvalo.

b. un círculo.

c. un rectángulo.

d. un diamante.

30. Los diagramas de actividades son idénticos a los de flujo.

a. Verdadero

b. Falso

31. Un diagrama de colaboración es un ejemplo de

a. un diagrama de secuencia.

b. un diagrama de clases.

c. un diagrama de actividad.

d. un diagrama de interacción.

32. Un diagrama de colaboración muestra cómo evoluciona el estado de un objeto
sobre muchos casos de uso.

a. Verdadero

b. Falso

11 KIMMEL Apendice A.indd 213 11/4/07 7:19:34 PM

 www.FreeLibros.me

Manual de UML 214

33. A los diagramas de colaboración se les dio el nuevo nombre de diagramas de co-
municación en el UML versión 2.0.

a. Verdadero

b. Falso

34. Los diagramas de secuencia no se pueden usar para modelar comportamiento
asíncrono y de encaminamiento múltiple.

a. Verdadero

b. Falso

35. En los marcos de interacción se usa un (o una) ________________ (llene el espa-
cio en blanco) para controlar cuándo y cuál fragmento del cuadro ejecutar.

a. fusión

b. unión

c. guardián

d. mensaje asíncrono

36. El marco de interacción alt se usa para

a. modelar un comportamiento opcional.

b. modelar un comportamiento de encaminamiento múltiple.

c. modelar lógica condicional.

d. captar condiciones de error.

37. Los diagramas de secuencia y los de comunicación muestran vistas complemen-
tarias.

a. Verdadero

b. Falso

38. Un símbolo de activación muestra

a. la duración de un objeto en un diagrama de comunicación.

b. la creación de un objeto.

c. la duración de un objeto en un diagrama de secuencia.

d. la destrucción de un objeto.

39. Un esquema de numeración anidada es UML válido que se usa en

a. diagramas de secuencias.

b. diagramas de actividades.

c. casos de uso.

d. diagramas de comunicación.

11 KIMMEL Apendice A.indd 214 11/4/07 7:19:34 PM

 www.FreeLibros.me

APÉNDICE A Examen final 215

40. Los diagramas de secuencias son perfectos para modelar líneas de código.

a. Verdadero

b. Falso

41. Se usa el mismo símbolo básico para las enumeraciones y las interfaces.

a. Verdadero

b. Falso

42. Al agregar clases a un diagrama, usted debe mostrar campos y

a. métodos.

b. sólo campos.

c. propiedades.

d. propiedades y métodos.

43. Una propiedad se puede modelar como una característica de una clase y

a. una subclase.

b. una clase de asociación.

c. una clase dependiente.

d. una interfaz.

44. Al modelar atributos, se

a. requiere que modele métodos atributos.

b. recomienda que no muestre métodos atributos.

c. recomienda que muestre los campos subyacentes para esos atributos.

d. Ninguno de los anteriores

45. Los tipos simples se deben modelar como características y los complejos como
(seleccione la mejor)

a. características también.

b. clases asociación.

c. atributos.

d. características o clases asociación.

46. Una asociación unidireccional tiene una flecha en uno de los extremos, conocido
como la fuente. El otro extremo se conoce como el objetivo.

a. Verdadero

b. Falso

11 KIMMEL Apendice A.indd 215 11/4/07 7:19:34 PM

 www.FreeLibros.me

Manual de UML 216

47. Una agregación es lo más semejante a una

a. herencia.

b. asociación.

c. composición.

d. generalización.

48. ¿Cuál es la diferencia más importante entre una agregación y una composición?

a. Composición significa que la clase totalidad, o compuesta, será responsable de
la creación y destrucción de la parte o clase contenida.

b. Agregación significa que la clase agregada totalidad será responsable de la
creación y destrucción de la parte o clase contenida.

c. Composición significa que la clase totalidad, o compuesta, es la única clase
que puede tener un caso de la clase parte en cualquier momento dado.

d. Agregación significa que la clase totalidad, o agregada, es la única clase que
puede tener un caso de la clase parte en cualquier momento dado.

e. a y c

f. b y d

49. Realización significa

a. polimorfismo.

b. asociación.

c. herencia de interfaz.

d. composición.

50. Una asociación nombrada se modela como un(a)

a. método.

b. propiedad.

c. campo y una propiedad.

d. dependencia.

51. Una subclase tiene acceso a los miembros protegidos de una superclase.

a. Verdadero

b. Falso

52. Una clase hijo sólo puede tener una clase padre.

a. Verdadero

b. Falso

11 KIMMEL Apendice A.indd 216 11/4/07 7:19:34 PM

 www.FreeLibros.me

APÉNDICE A Examen final 217

53. ¿Cuál de las proposiciones siguientes es falsa?

a. La generalización se refiere a subtipos.

b. La clasificación se refiere a subtipos.

c. La generalización se refiere a ejemplos de objetos.

d. La clasificación se refiere a ejemplos de objetos.

e. Ninguna de las anteriores

54. La realización se refiere a

a. herencia de clase.

b. herencia de interfaz.

c. promover los miembros constituyentes en una clase compuesta.

d. agregación.

55. Se puede tener una aproximación de herencia múltiple a través de

a. una asociación y la promoción de propiedades constituyentes.

b. una realización.

c. una composición y la promoción de propiedades constituyentes.

d. una agregación y la promoción de propiedades constituyentes.

56. La clasificación dinámica —en donde un tipo de objeto se cambia en el tiempo de
ejecución— se puede modelar usando

a. generalización.

b. asociación.

c. realización.

d. composición.

57. A una clase asociación no se le menciona como una clase de vinculación.

a. Verdadero

b. Falso

58. Un parámetro usado para retornar a un tipo único se conoce como

a. una realización.

b. un calificador asociación.

c. una condición posterior a una asociación.

d. una asociación dirigida.

11 KIMMEL Apendice A.indd 217 11/4/07 7:19:35 PM

 www.FreeLibros.me

Manual de UML 218

59. Seleccione las proposiciones correctas.

a. Una interfaz proporcionada significa que una clase implementa una interfaz.

b. Una interfaz requerida significa que una clase depende de una interfaz.

c. Una interfaz proporcionada significa que una clase depende de una interfaz.

d. Una interfaz requerida significa que una clase implementa una interfaz.

60. Cuando un símbolo de clasificador está subrayado, significa que

a. el símbolo representa un objeto.

b. el símbolo representa una clase abstracta.

c. el símbolo representa una interfaz.

d. el símbolo es un valor derivado.

61. Los esquemas de estados (o diagramas de máquinas de estados) son buenos para

a. trazar diagramas de sistemas.

b. trazar diagramas de objetos y mensajes para un solo caso de uso.

c. comprender un solo caso de uso.

d. especificar el comportamiento de un objeto a través de varios casos de uso.

62. No se deben usar las máquinas de estados para examinar las interfaces gráficas de
los usuarios (GUI) y los controladores de tiempo real.

a. Verdadero

b. Falso

63. Se usa una conexión para

a. combinar varias transiciones entrantes en una sola transición saliente.

b. dividir una sola transición entrante en varias transiciones salientes.

c. Tanto a como b

d. Ninguna de las anteriores

64. Se usan los pseudoestados de historia para restablecer los estados anteriores.

a. Verdadero

b. Falso

65. Una actividad de hacer se ejecuta

a. en el transcurso de un tiempo, y una común se ejecuta de inmediato, pero se
puede interrumpir.

b. de inmediato, y una común se ejecuta en el transcurso de un tiempo y se puede
interrumpir.

11 KIMMEL Apendice A.indd 218 11/4/07 7:19:35 PM

 www.FreeLibros.me

APÉNDICE A Examen final 219

c. en el transcurso de un tiempo y se puede interrumpir, y una común se ejecuta de inmediato.

d. en el transcurso de un tiempo, y una común se ejecuta de inmediato, pero no se puede inte-
rrumpir.

66. Las transiciones son líneas dirigidas rotuladas con

a. un disparador opcional, un evento y un efecto.

b. un disparador, un evento opcional y un efecto.

c. un disparador, un evento y un efecto opcional.

d. opcionalmente, un disparador, un evento y un efecto.

67. Las transiciones externas hacen que se ejecuten una actividad de entrada y una de
salida.

a. Verdadero

b. Falso

68. Las autotransiciones hacen que se ejecuten una actividad de entrada y una de sa-
lida.

a. Verdadero

b. Falso

69. Un estado compuesto ortogonal

a. está dividido en regiones y sólo se puede activar una de ellas a la vez.

b. está dividido en regiones y sólo se puede activar un subestado a la vez.

c. está dividido en regiones y sólo se puede activar un subestado por región a la vez.

d. está compuesto de una sola región, y se pueden activar múltiples subestados en forma simul-
tánea.

70. Un estado compuesto no ortogonal

a. está compuesto de regiones, y sólo se puede activar una de ellas a la vez.

b. no está dividido en regiones, y sólo se puede activar un subestado a la vez.

c. no está dividido en regiones, y se pueden activar múltiples subestados a la vez.

d. está dividido en regiones, y se puede activar un subestado por región a la vez.

71. Todo modelo debe contener por lo menos un diagrama de componentes.

a. Verdadero

b. Falso

11 KIMMEL Apendice A.indd 219 11/4/07 7:19:35 PM

 www.FreeLibros.me

Manual de UML 220

72. Un método de abajo hacia arriba para los diagramas de componentes significa que
usted

a. define primero los componentes y los descompone en partes constituyentes.

b. define las partes constituyentes y coloca los componentes en la parte superior
de esas partes constituyentes.

c. Ninguno de las anteriores

73. Un método de abajo hacia arriba para diseñar puede ser valioso porque (seleccio-
ne todo lo que sea aplicable)

a. los componentes en realidad no se necesitan.

b. usted logra más tracción al resolver primero los problemas del dominio.

c. la estructuración de infraestructura es cara y tardada.

d. las clases del dominio siempre se pueden organizar en componentes en un mo-
mento posterior.

74. Los símbolos de los componentes se pueden representar usando un clasificador
con el estereotipo «componente».

a. Verdadero

b. Falso

75. Una interfaz requerida se puede representar por medio de la mitad de una paleta
de caramelo con nombre

a. o por una paleta de caramelo.

b. o por una dependencia en un clasificador con el estereotipo «interfaz».

c. o por la conexión a una interfaz con una dependencia.

d. sólo usando la mitad de la paleta de caramelo.

76. Una interfaz proporcionada es aquella que realiza un componente.

a. Verdadero

b. Falso

77. Una interfaz requerida se puede representar por medio de la mitad de una paleta
de caramelo con nombre y es equivalente a una dependencia entre un componente
y una interfaz.

a. Verdadero

b. Falso

78. Los componentes pueden no contener componentes anidados.

a. Verdadero

b. Falso

11 KIMMEL Apendice A.indd 220 11/4/07 7:19:35 PM

 www.FreeLibros.me

APÉNDICE A Examen final 221

79. Como regla general, usted sólo usa componentes y diagramas de componentes
para sistemas con 100 o más clases del dominio.

a. Verdadero, pero ésta es una directriz general. Los componentes pueden ayudarle a organizar
una solución y a estructurar elementos susceptibles de volver a usarse que se pueden vender
por separado.

b. Falso, porque la estructuración de componentes siempre es más barata a largo plazo.

80. Para cada clase del dominio en una arquitectura basada en componentes, usted
puede necesitar de dos a tres clases de soporte.

a. Verdadero

b. Falso

81. Un modelo sólo está completo cuando contiene por lo menos uno de cada tipo de
diagrama.

a. Verdadero

b. Falso

82. Los diagramas de componentes sólo son necesarios para los sistemas grandes.

a. Verdadero

b. Falso

83. Debo seleccionar un método de arriba hacia abajo o de abajo hacia arriba para
modelar, pero no puedo combinar las técnicas.

a. Verdadero

b. Falso

84. Se ha argumentado que la especialización conduce a ganancias en la producti-
vidad.

a. Verdadero

b. Falso

85. Los patrones de diseño no son parte de la especificación UML.

a. Verdadero

b. Falso

86. La refactorización es parte de la especificación UML.

a. Verdadero

b. Falso

87. Unos cuantos expertos están de acuerdo en que los patrones y las refactorizacio-
nes mejorarán la implementación del software.

a. Verdadero

b. Falso

11 KIMMEL Apendice A.indd 221 11/4/07 7:19:35 PM

 www.FreeLibros.me

Manual de UML 222

88. El UML es un estándar, y todos están de acuerdo en que debe usarse.

a. Verdadero

b. Falso

89. Es esencial usar una herramienta para validar los modelos.

a. Verdadero

b. Falso

90. Todas las herramientas de modelado del UML son capaces de generar de manera
eficaz aplicaciones enteras, completas.

a. Verdadero

b. Falso

91. Un nodo siempre representa un dispositivo físico.

a. Verdadero

b. Falso

92. Un nodo puede representar (seleccione todo lo que sea aplicable)

a. una computadora.

b. cualquier dispositivo físico.

c. un contexto de ejecución, como un servidor de aplicaciones.

d. Todo lo anterior

93. Los estereotipos que se aplican a los nodos son (seleccione todo lo que sea apli-
cable)

a. «dispositivo».

b. «componente».

c. «entornodeejecución».

d. «manifestar».

94. No se usan etiquetas para agregar detalles a un nodo.

a. Verdadero

b. Falso

95. Un servidor de bases de datos es un ejemplo de un nodo.

a. Verdadero

b. Falso

96. ¿Cuál símbolo usan los artefactos?

a. De paquete

b. De clase

11 KIMMEL Apendice A.indd 222 11/4/07 7:19:35 PM

 www.FreeLibros.me

APÉNDICE A Examen final 223

c. De actividad

d. De objeto

 97. Un artefacto se puede representar como texto en un nodo, una clase en un nodo
y con un conector de realización y un símbolo externo de clase.

a. Verdadero

b. Falso

 98. El conector y el estereotipo para un artefacto mostrado fuera de un nodo es

a. de realización y manifestar.

b. de dependencia y desplegar.

c. de asociación y desplegar.

d. de dependencia y manifestar.

 99. Cuando se muestra un artefacto conectado a un componente, ¿cuál estereotipo se
aplica?

a. «desplegar»

b. «usar»

c. «manifestar»

d. «extiende»

100. ¿Cuál conector se usa para mostrar comunicación entre los nodos?

a. De dependencia

b. De generalización

c. De asociación

d. De vínculo

Respuestas

 1. b

 2. b

 3. b

 4. c

 5. a

 6. b

 7. b

 8. b

 9. c

10. b

11. c

12. a

13. a

14. b

15. b

16. b

17. c

18. b

11 KIMMEL Apendice A.indd 223 11/4/07 7:19:35 PM

 www.FreeLibros.me

Manual de UML 224

19. b

20. a

21. b

22. a y d

23. b

24. a

25. a

26. a

27. a

28. b

29. c

30. b

31. d

32. b

33. a

34. b

35. c

36. c

37. b

38. c

39. d

40. b

41. a

42. a

43. b

44. b

45. d

46. a

47. c

48. ?

49. c

50. c

51. a

52. b

53. b y c

54. b

55. c

56. b

57. b

58. b

59. a y b

60. a

61. d

62. b

63. c

64. a

65. c

66. d

67. a

68. a

69. c

70. b

71. b

72. b

73. b, c y d

74. a

75. c

76. a

77. a

78. b

79. a

80. b

81. b

82. b

83. b

84. a

85. a

86. b

87. b

88. b

89. b

90. b

91. b

92. d

93. a y c

94. b

95. a

96. b

97. b

98. b

99. c

100. c

11 KIMMEL Apendice A.indd 224 11/4/07 7:19:36 PM

 www.FreeLibros.me

225

BIBLIOGRAFÍA
SELECCIONADA

Ambler, Scott. The Object Primer: Agile Model-Driven Development whith UML
2.0, 3a. ed. New York: Wiley, 2004.

Booch, Grady. Object Solutions. Reading, MA: Addison-Wesley, 2005.
Booch, Grady, Ivar Jacobson y James Rumbaugh. The Unified Modeling Language,

2a. ed. Reading, MA: Addison-Wesley, 2005.
Eriksson, Hans-Erik, Magnus Penker, Brian Lyons y David Fado. UML 2 Toolkit.

Indianapolis: Wiley, 2004.
Fowler, Martin. UML Distilled Third Edition: A Brief Guide to the Standard Object

Modeling Language. Reading, MA: Addison-Wesley, 2004.
Love, John F. McDonald’s: Behind the Arches. New York: Bantam, 1995.
Övergaard, Gunnar y Karen Palmkvist. Use Cases: Patterns and Blueprints. Rea-

ding, MA: Addison-Wesley, 2005.

11 KIMMEL Apendice A.indd 225 11/4/07 7:19:36 PM

 www.FreeLibros.me

11 KIMMEL Apendice A.indd 226 11/4/07 7:19:36 PM

 www.FreeLibros.me

227

Símbolos
– símbolo (menos), 107
símbolo (número), 107
+ símbolo (más), 107
« y » (comillas angulares), 24

A
A Pattern Language (Christopher Alexander),

189
Acción, nodos de (diagramas de actividades), 52,

53, 56-62
adición de condiciones previas/condiciones

posteriores, 58-62
modelado de las subactividades, 62
nombramiento de las acciones, 57-58

Aceptar, señal de (diagramas de actividades), 67
Activación de las líneas de vida, 84-85
Actividad, nodo final de (diagramas de

actividades), 71-72
Actividad, particiones de la (V. Carriles

[diagramas de actividades])
Actividades (diagramas de esquemas de estados),

165
Actividades comunes, 161
Actividades de hacer, 161-162
Actividades internas (diagramas de esquemas de

estados), 163

Actor, símbolos de, 7, 21
definición, 36-39
Esaw
función de los, 18
líneas de vida fijas a los, 83, 84

Agile, proceso, 14, 92
Agregación, relaciones de, 112-114, 143

(V. también Composición,
relaciones de)

Alexander, Christopher, 189
Ambler, Scott, 176
Anotaciones:

diagramas de casos de uso, 27-28
(V. también Documentación
[diagramas de casos de uso])

diagramas de clases, 118
Antepasado (como término), 132
Arreglos:

de asociaciones, 145-147
de atributos, 110, 111

Artefactos (diagramas de despliegue), 201-204,
205

Asociación calificada, 147
Asociación dirigida, 146, 151
Asociación dirigida/direccional, 113
Asociación, relaciones de, 145-150

casos de uso, 22
diagramas de clases, 108-109, 112, 113

ÍNDICE

12 KIMMEL Indice.indd 227 11/4/07 7:21:05 PM

 www.FreeLibros.me

Manual de UML 228

Atributos, 103
arreglos y multiplicidad, 110, 111
con asociación, 108-109
declaración de, 107-108, 107-109
decoración de los, 106-107
en un símbolo de clasificador, 106-107
primitivos como, 121
unicidad de los, 110-111
uso de, 107-111

B
Babbage, Charles, 4
Balancing Agility and Discipline (Barry Boehm),

14
Behind the Golden Arches, 73
Bifurcación, nodos de (diagramas de

actividades), 56, 63
Boehm, Barry, 14
Booch, Grady, 4, 187
Broccoli, Albert, 136
Bucle, marco de, 89-90
Búsqueda, motor de, 92-93

C
C++, 4
Cambio, eventos de, 164
Campos, 107, 145
Característica(s):

como procesos, 48
de clases, 103
significado del término, 106-107
símbolos de identificación de, 107

Carriles (diagramas de actividades), 63-68
Casos de uso de diagramas múltiples, 39-43
Casos de uso, diagramas de (casos de uso), 7,

17-44
adición de documentación de soporte a los,

28-29
anotación de los, 27-32
como listas de cosas por hacer, 19
comunicación con los, 20

conectores en los, 22-25
creación de los, 32-34
decisión sobre el número de, 34
definición de los actores en los, 36-39
división de los, en múltiples diagramas,

39-43
ejemplo usando los, 34-43
escenarios de éxito y falla en los, 92
establecimiento de prioridades de las

capacidades con los, 19-20
finalidad de los, 17
impulsión del diseño con, 43-44
inserción de notas en los, 27-28
objetivo de los, 42
sencillez de los, 18-19
sencillez engañosa de las, 18-19
símbolo de caso de uso, 21
símbolos de actor en los, 21
texto con los, 13, 19
uso de directrices para documentar, 29-32
y la documentación de sus ideas, 42

Casos de uso, óvalos de los, 7, 18
Casos de uso, símbolos de (en los diagramas de

casos de uso), 21
Chitty Chitty Bang Bang (película), 136-137
CLAB (crear, leer, actualizar y borrar),

comportamiento, 51
Clase base, 114
Clases asociación, 146-150

calificadas, 147
dirigidas, 146, 151

Clases entidades, 124-127
Clases fronteras, 124-125, 128
Clases, diagramas de, 8-9, 101-128

adición de detalles a las clases, 153
adición de operaciones a las clases,

111-112
atributos, 107-111
características, 103
clases de control, 127
clases entidades, 126-127

12 KIMMEL Indice.indd 228 11/4/07 7:21:05 PM

 www.FreeLibros.me

ÍNDICE 229

clases fronteras, 128
clasificador, 103-107
comentarios, 118
decoración de las clases, 106-107
enumeraciones, 121-122
espacios de nombres, 122-123
estereotipos, 117
identificación de las clases necesarias,

123-128
interfaces, 104-105
metaclases, 105-106
notas, 118-119
objetos, diagramas de, 104
paquetes, 118
primitivos, 120-121
relaciones en los, 111, 113-117
restricciones, 118-120
tipos de datos, 105
tipos genéricos, 105
tipos parametrizados, 105

Clases:
adición de detalles a las, 153
asociación, 146-150
características de las, 103
clasificadores, 103-107
de control, 124, 125, 127
decoración de las, 106
descubrimiento de las, 102
dominio, 176
en los diagramas de clases, 8-9
entidades, 124-127
fronteras, 124-125, 128
línea de vida que representa, 84
metaclases, 105-106
relaciones entre (V. Relaciones)

Clasificación dinámica, 133-136
Clasificación, algoritmos de, 105
Clasificación:

dinámica, 133-136
generalización en comparación con,

132-133

Clasificador, papel del (diagramas de
colaboración), 94

Clasificadores, 103-107
atributos en los, 106-107
operaciones en los, 111
paleta de caramelo, media y completa, 179

Clavijas (en los diagramas de actividades),
55-56

Clientes, comunicación con los, 20
Cobol, 4
Codificación, iniciación de la, 96-97
Colaboración (comunicación), diagramas de, 9,

11, 82, 94-95
Comentarios (diagramas de clases), 118
Comillas angulares (« y »), 24
Compleción, transición de, 164
Componentes, 176
Componentes, diagramas de, 11-12, 175-182

especificación de las interfaces, 179-180
método de diseño de abajo hacia arriba, 178
método de diseño de arriba hacia abajo, 177
para los consumidores, 180-181
para los productores, 182-183

Comportamiento de estado, patrón de, 133-136,
190-191

Comportamiento, máquinas de estados de, 159,
166-167

Comportamientos, 103
Composición, relaciones de, 112-114, 143-145
Computadoras, historia de las, 4
Comunicación, diagramas de (V. Colaboración,

diagramas de)
Comunicación, trayectorias de (diagramas de

despliegue), 204-205
Condiciones guardianes:

diagramas de actividades, 52-54, 58-62
diagramas de esquemas de estados,

164-165
diagramas de secuencia, 90

Condiciones posteriores (diagramas de
actividades), 56, 58-62

12 KIMMEL Indice.indd 229 11/4/07 7:21:06 PM

 www.FreeLibros.me

Manual de UML 230

Condiciones previas (diagramas de actividades),
56, 58-62

Conectores:
diagramas de casos de uso, 22-25
diagramas de clases, 112-117
diagramas de colaboración, 94
diagramas de despliegue, 204
estereotipos asociados con los, 117
paleta de caramelo, media y completa, 179

Conexión, estado de, 159-160
Conmutador anidado, declaración de, 169
Consumidores, diagramas de componentes para

los, 180-181
Control, clases de, 124-125, 127
Control, flujo de (diagramas de actividades),

52-53
Controlador de visión del modelo (mvc), 127
CRC, fichas (V. Responsabilidad y colaborador

de las clases, fichas de)
Creación, patrones de, 133
Crear, leer, actualizar y borrar (clab),

comportamiento, 51

D
Datos, tipos de, 105
De arriba hacia abajo, procedimiento de diseño

de, 177
Decisión, diamantes de (diagramas de flujo), 56,

62-63
Decisión, nodos de (diagramas de actividades),

56, 62-63
Decoración de las clases, 106-107
Dependencia, relaciones de, 150-152

casos de uso, 22, 25-27, 32
diagramas de clases, 112, 116-117
estereotipos ampliar, 26-27
estereotipos incluir, 25-26
estereotipos para las, 151-152
inserción de referencias a las, 32

Desarrollo del software, llevar al exterior el, 5

Design Patterns (Erich Gamma), 97, 127, 133, 171
Despliegue de aplicaciones vivientes, entorno de,

205
Diagramas de actividades, 7-8, 47-77

acciones que se extienden sobre las
particiones, 67

bifurcaciones, 63
carriles, 63-68
condiciones guardianes, 52-54
condiciones previas y condiciones

posteriores, 58-62
creación de los, 72-73
determinación del número de, 77
diagramas de flujo en comparación con los,

48, 51
ejemplos de, 51
en la reingeniería de procesos, 73-76
flujo de control, 52-53
manera de mostrar las excepciones en los.

70-71
manera de mostrar los flujos en los, 54-56
meta de los, 47
nodo inicial, 52
nodos de acción, 56-62
nodos de decisión, 62-63
nodos de fusión, 62-64
nombramiento de las acciones, 57-58
parámetros de entrada, 70
partición de la responsabilidad, 63-68
particiones multidimensionales, 67-68
señal de tiempo, 67-69
subactividades, 62
terminación de los, 71-72
uniones, 63
usos de los, 48-51

Diagramas de flujo:
diagramas de actividades en comparación

con los, 48, 51
diamantes de decisión en los, 62

Diagramas estáticos, 101, 131 (V. también
Clases, diagramas de)

12 KIMMEL Indice.indd 230 11/4/07 7:21:06 PM

 www.FreeLibros.me

ÍNDICE 231

Diagramas redundantes, 81-82
Diagramas, 7-12

cuándo crear los, 12
de actividades, 7-8
de casos de uso, 7
de clases, 8-9
de componentes, 11-12
de estados, 10-11
de interacción, 9-10
de topología del despliegue, 9-10
elección de los, 188
tamaño y complejidad de los, 13
texto que suplementa los, 13

Directrices (como documentación de los casos de
uso), 29-32

Diseño impulsado por los casos de uso, 43-44
Diseño por contrato, 58-59
Diseño, patrones de, 127, 133-134
Diseño:

de abajo hacia arriba, 178
de arriba hacia abajo, 177
impulsado por casos de uso, 43-44

Disparadores, 164, 165
Documentación (diagramas de casos de uso),

13, 28-32, 42
de necesidades primarias y secundarias, 20
directrices para la, 29-32
formas de la, 28
notas como, 27-28

Documentación (en general):
(V. también Comentarios; Notas)
cantidad de, 187-188
con los modelos, 192-193
edición de la, 188

Dominio, clases del, 176
Dominio, expertos del, 49, 125

E
Eckert, Presper, 4
Edición de la documentación, 188
Enumeraciones (diagramas de clases), 121-122

Es un(a), relaciones de, 114-115, 132-133
Esaw, 1-2, 10-11
Espacios de nombres (diagramas de clases), 118,

122-123
Especialización (equipos para desarrollo de

software), 189
Esquemas de numeración anidada, 95
Establecimiento de prioridades de las

capacidades, con los diagramas de casos de
uso, 19-20

Estado final, 159
Estado inicial, 159
Estados activos, 161-162
Estados compuestos, 162-163
Estados inactivos, 161
Estados no ortogonales, 162
Estados ortogonales, 162-163
Estados simples, 162
Estados, esquemas de, diagramas de

(diagramas de estados/máquinas de estados),
10-11, 157-171

actividades internas, 163
estado de conexión, 159-160
estado de historia profunda, 160-161
estado de historia superficial, 160-161
estado de selección, 159, 160
estado de terminación, 159
estado final, 159
estado inicial, 159
estados activos/inactivos, 161-162
estados de historia, 160-161
estados simples/compuestos, 162-163
implementación de los, 168-171
máquinas de estados de comportamiento,

166-167
máquinas de estados de protocolo, 167-168
símbolos para los, 158-159
transiciones, 164-166
vinculación con las submáquinas, 163

Estados, patrones de, 169, 171, 189-191
Estados, símbolo de, 158

12 KIMMEL Indice.indd 231 11/4/07 7:21:06 PM

 www.FreeLibros.me

Manual de UML 232

Estereotipos, 24-25
diagramas de clases, 117
extender, 26-27
incluir, 25-26
para dependencias, 151-152
tipos de datos, 105

Estímulo (V. Control, flujo de)
Eventos temporizadores, 164
Excepciones (diagramas de actividades),

70-71
Excepciones, manejador de (diagramas de

actividades), 70-71
Extensión, casos de uso de, 25-27
eXtreme Programming (xp), 6, 14

F
Fleming, Ian, 136
Flujo (V. Control, flujo de)
Flujo, nodo final del (diagramas de actividades),

71-72
Fowler, Martin, 97, 187, 192
Fragmentos combinados (V. Interacciones,

marcos de)
Fuente (del conector), 113, 150
Fusión, nodos de (diagramas de actividades),

62-64

G
Gamma, Erich, 97, 127, 133, 171, 187
Gates, Bill, 3
Generalización, relaciones de:

(V. también Herencia, relaciones de)
casos de uso, 22-23
diagramas de clases, 112, 114, 115

Genéricos, 105
Gramática, 102-103

H
Herencia de interfaz, 139-143
Herencia múltiple, 135-138
Herencia simple, 132

Herencia, 104-105
múltiple, 135-138
simple, 132, 135

Herencia, relaciones de, 132-143
(V. también Generalización, relaciones de)
diagramas de clases, 112, 114-115
herencia de interfaz, 139-143
herencia múltiple, 135-138
herencia simple, 132
patrón de comportamiento de estado,

133-135
Hijo (como término), 114, 132
Historia profunda, estado de, 160-161
Historia superficial, estado de, 160-161
Historia, estados de, 160-161
Hopper, Grace, 4
Hornos de microondas, 161

I
Idiomas, 10
Inclusión, caso de uso de, 25-26
Ingeniería automovilística, 4
Interacción, diagramas de, 9-10, 81-97

diagramas de colaboración (comunicación),
82, 94-95

diagramas de colaboración, 9-11
diagramas de secuencia, 9-10, 82-94
y escritura del código, 96-97

Interacción, marco alternativo de, 90-91
Interacciones, marcos de (fragmentos

combinados), 87-91
Interfaces proporcionadas, 141, 179
Interfaces requeridas, 141, 179, 180
Interfaces:

diagramas de clases, 104-105
implementación de las, 142
proporcionadas, 141, 179
requeridas, 141, 179-180

Interfaz, herencia de, 139-143
(V. también Generalización, relaciones de)
interfaces proporcionadas, 141

12 KIMMEL Indice.indd 232 11/4/07 7:21:06 PM

 www.FreeLibros.me

ÍNDICE 233

interfaces requeridas, 141
modelado en pizarrón blanco, 139-140
reglas para la, 141-143

J
Jacobson, Ivar, 4, 187

L
Lectura-escritura, comportamiento de, 51
Líneas de vida (diagramas de secuencia), 83-84

activación de las, 84-85
escalonamiento de las, 91

Listas de cosas por hacer, diagramas de casos de
uso como, 19

Llamada anidada, 85
Llamada, eventos de, 164

M
Macrofase (modelado), 111
Macroprocedimiento, 19, 97
Mansfield, Richard, 124
Más (+), símbolo, 107
Mauchly, John, 4
McCarthy, James, 188
McDonald’s, 73
Menos (–), símbolo, 107
Mensajes (diagramas de secuencia):

definición, 85
descubrimiento de los, 92-94
envío de, 85-87
hallados, 85
perdidos, 85

Mensajes hallados, 85
Mensajes perdidos, 85
Metaclases, 105-106
Metadatos, 106
Métodos:

comportamientos como, 103
decoración de los, 106-107
descubrimiento de los, 102
uso del término, 111

Microfase (modelado), 111
Microprocedimiento, 19, 187
Microsoft:

SOA, 14
y el costo del software, 6

Modelado, herramientas para el, 5-6, 13
Modelado, lenguajes de:

desarrollo de los, 4
proceso en comparación con los, 14

Modelado:
(V. también los temas específicos)
actividades primarias asociadas con el, 139
expertos en, 187
los hacer y los no hacer para el, 186-189
macrofases y microfases en el, 111
meta del, 10
razones para el, 5
uso de patrones conocidos de estados,

189-191
y el desarrollo futuro del software, 5

Modelos:
adición de documentación a los, 192-193
definición de, 2
evaluación de la compleción del, 12
notas en los, 118
refactorización, 192
texto que suplementa a los, 13
uso de los, 6
validación de los, 193
valor de los, 2

Motown-jobs.com (ejemplo), 34-44
búsqueda del diseño para, 92-94
condiciones guardianes, 53-54
definición de los actores, 36-39
diagrama de secuencia para, 86
división en diagramas múltiples, 39-43

MSDN, 6
Multiplicidad:

atributos, 110
conectores, 24

MVC (controlador de visión del modelo), 127

12 KIMMEL Indice.indd 233 11/4/07 7:21:06 PM

 www.FreeLibros.me

Manual de UML 234

N
Navegación, 113
Nieto (como término), 132
Nodo inicial (diagramas de actividades), 52
Nodos (diagramas de despliegue), 198-200
Nodos conectores (diagramas de actividades),

54-55
Nombramiento de las acciones (diagramas de

actividades), 57-58
Notas:

diagramas de casos de uso, 27-28
(V. también Documentación [diagramas
de casos de uso])

diagramas de clases, 118-119
diagramas de secuencia, 87-88

Numeración, esquemas de, 95
Número (#), símbolo, 107

O
Object Constraint Language (ocl), 87, 118
Object Management Group (omg), 3
Objetivo (del conector), 150-151
Objetos, diagramas de, 104
Objetos, líneas de vida de (diagramas de

secuencia), 83-84, 84-85
Objetos:

Descubrimiento de, con los diagramas de
secuencia, 92-94

En los diagramas de actividades, 55
OCL (V. Object Constraint Language)
OMG (Object Management Group), 3
Opción, efecto (diagramas de esquemas de

estados), 165-166
Opdike, William, 97
Operaciones, 111
Orientados a objetos, análisis y diseño:

principio básico del, 48
reto para el, 124
soporte uml para el, 17

Outsourcing del desarrollo de software, 5
Óvalos (V. Casos de uso, óvalos de los)

P
Padre (como término), 114
Paleta de caramelo, completa, 179
Paleta de caramelo, media, 179
Papel, especialización del, 93
Paquete, símbolo de, 118
Particiones (V. Carriles [diagramas de

actividades])
Particiones multidimensionales de la actividad,

67-68
Patrones estructurales, 133
Plantillas (C++)
Polimorfismo, 115, 132
Posibilidad de ser sustituido, 115
Primitivos (diagramas de clases), 120-121
Problema, dominio del, 48
Proceso unificado de modelado, 4
Proceso(s):

características como, 48
lenguajes de modelado en comparación con

el, 14
Proceso, reingeniería del, 73
Productores, diagramas de componentes para,

182-183
Propiedad, 107
Protocolo, máquinas de estado de, 159-160,

167-168

R
Radar, estufa de, 161
Rational Unified Process (rup), 14, 92
Realización, relaciones de:

diagramas de clases, 112, 115-116
Refactoring (Martin Fowler), 97, 192
Refactorización, 97, 192
Reingeniería del proceso, 73-76
Relaciones:

de agregación, 112-114, 143
de asociación, 22, 108-109, 112-113,

145-150
de composición, 112-114, 143-145

12 KIMMEL Indice.indd 234 11/4/07 7:21:07 PM

 www.FreeLibros.me

ÍNDICE 235

de dependencia, 25-27, 32, 112, 116-117,
150-152

de es un(a), 114-115, 132-133
de generalización, 22-23, 112, 114-115
de herencia, 112, 114-115, 132-143
de realización, 112, 115-116
en los casos de uso, 22-23, 25-27, 32
en los diagramas de clases, 111, 113-117

Responsabilidad y colaborador de las clases
(crc), fichas de, 125-126

Restricciones:
diagramas de clases, 118-120
diagramas de secuencia, 87

Retroalimentación, 13
Reutilización de los diagramas, 163
Roomba®, aspiradora, 33
Rose xde, 6
Rumbaugh, James, 4, 187
rup (V. Rational Unified Process)

S
Secuencia, diagramas de, 9-10, 82-94

activación de las líneas de vida, 84-85
descubrimiento de objetos/mensajes con

los, 92-94
envío de mensajes, 85-87
líneas de vida de objetos, 83-84
marcos de interacciones, 87-91
notas, 87-88
restricciones, 87
utilidad de los, 91-92

Selección, estado de, 159-160
Señal a ruido, razón baja, 125
Señal a ruido, razón, 125
Señal de enviar (diagramas de actividades),

67, 69
Señal, 152
Señal, eventos de 164
Service Oriented Architecture (soa), 14
Smalltalk, 4
SOA (Service Oriented Architecture), 14

Sobrecarga de operadores, 121
Software, diseño de:

(V. también Modelado)
complejidad del, 186
evolución del, 3-5

Solución, dominio de la, 48
Spencer, Percy, 161
Stroustrop, Bjarne, 4, 152
Subactividad(es):

en los diagramas de actividades, 62
reingeniería, 74-76

Subclase, 114
Submáquinas, vinculación con las, 163
Superclase, 114
Superestado (V. Estados compuestos)

T
Tabla de estados, 169
Terminación, estado de, 159
Texto (diagramas de casos de uso), 13, 19, 28, 32

(V. también Documentación [diagramas de
casos de uso])

The C++ Programming Language (Gjarne,
Stroustrop), 152

The Object Primer (Scott Ambler), 176
Tiempo, señales de (diagramas de actividades),

67-69
Tipos parametrizados, 105
Together, 6
Topología del despliegue, diagramas de, 12,

197-205
artefactos, manera de mostrar en los,

201-205
nodos en los, 198-200
trayectorias de comunicación, 204-205

Transición sin disparador, 164
Transiciones (diagramas de esquemas de

estados), 158, 164-166
Trazo de diagramas sobre pizarrón blanco,

139-140
Turing, Aolan, 4

12 KIMMEL Indice.indd 235 11/4/07 7:21:07 PM

 www.FreeLibros.me

Manual de UML 236

U
Unified Modeling Language (uml), 2

como un lenguaje, 2-3, 82
comunicación precisa en el, 102
desarrollo del, 4
descomposición/recomposición de

problemas con, 49
gramática del, 103
y evolución del diseño de software, 3-5

Unified Process, 14
Uniform Resource Locators (url), 28
Unión, nodos de (diagramas de actividades), 63
Usuarios, comunicación con los, 20

V
Validación de los modelos, 193
Visio, 3, 6

adición de documentación, 29

estados compuestos, 162
estereotipo extender, 25
marco de interacción, 89
nodos conectores con, 54-55
simulación de la señal de tiempo, 68
simulación de partición multidimensional,

67
subactividades, 62
vinculación con las submáquinas, 163
y la mitad de una paleta de caramelo, 179

X
XP (V. eXtreme Programming)

12 KIMMEL Indice.indd 236 11/4/07 7:21:07 PM

 www.FreeLibros.me

12 KIMMEL Indice.indd 237 11/4/07 7:21:07 PM

 www.FreeLibros.me

12 KIMMEL Indice.indd 238 11/4/07 7:21:07 PM

 www.FreeLibros.me

	Manual de UML
	Página legal
	Contenido
	Reconociemiento
	Introducción
	1. Una imagen vale más que mil (...)
	Comprensión de los modelos
	Comprensión del UML
	La evolución del diseño de software
	Si nadie está modelando, ¿por qué debe hacerlo usted?

	Modelado y el futuro del desarrollo de software
	Herramientas para modelado
	Uso de los modelos
	Creación de diagramas
	Revisión de los tipos de diagramas

	Hallar la línea .nal
	¿Cuántos diagramas debo crear?
	¿Cuán grande debe ser un diagrama?
	¿Cuánto texto debe complementar mis modelos?
	Obtenga una segunda opinión
	Contraste de los lenguajes de modelado con el proceso
	Examen
	Respuestas

	2. El principio con casos de uso
	Cómo hacer el caso para las casos de uso
	Establecimiento de prioridad de las capacidades
	Comunicación con los no tecnó.los

	Uso de los símbolos de los casos de uso
	Símbolos de actores
	Casos de uso
	Conectores
	Caso de uso de inclusión y de extensión
	Anotaciones en los diagramas de casos de uso

	Creación de los diagramas de casos de uso
	¿Cuántos diagramas son su.cientes?
	Ejemplos de diagramas de casos de uso

	Diseño controlado con casos de uso
	Examen
	Respuestas

	3. Diagramación de características como procesos
	Elaboración de las características como procesos
	Un viaje hacia el código
	Comprensión de los usos de los diagramas de actividades
	Uso de lo símbolos de los diagramas de actividades
	Nodo inicial
	Flujo de control
	Acciones
	Nodos de decisión y de fusión
	Bifurcaciones y uniones de transición
	Partición de la responsabilidad con carriles
	Indicación de las señales cronometradas
	Configuración de los parámetros de entrada
	Forma de mostrar las excepciones en los diagramas de actividades
	Terminación de los diagramas de actividades
	Creación de los diagramas de actividades
	Reingeniería del proceso
	Reingeniería de una subactividad

	Saber cuándo renunciar
	Examen
	Respuestas

	4. Comportamientos con diagramas de interacción
	Elementos de los diagramas de secuencia
	Uso de las líneas de vida de objetos
	Activación de una línea de vida
	Envío de mensajes
	Adición de restricciones y notas
	Uso de marcos de interacción

	Comprensión de lo que nos dicen las secuencias
	Descubrimiento de objetos y mensajes
	Elementos de los diagramas de colaboración (o comunicación)
	Igualación del diseño con el código
	Examen
	Respuestas

	5. ¿Cuáles son las cosas que describen mi problema?
	Elementos de los diagramas básicos de clase
	Comprensión de las clases y los objetos
	Modelado de relaciones en los diagramas de clases
	Estereotipado de las clases
	Uso de paquetes
	Uso de notas y comentarios
	Restricciones

	Modelado de primitivos
	Modelado de enumeraciones
	Indicación de espacios de nombres
	Cómo saber qué clases necesita
	Uso de un enfoque ingenuo
	Descubra otros bene.cios del análisis de dominios

	Examen
	Respuestas

	6. Cómo se relacionan las clases
	Modelado de la herencia
	Uso de le herencia simple
	Uso de la herencia múltiple
	Modelado de la herencia de interfaces
	Boceto de diagrama
	Uso de la realización

	Descripción de la agregación y la composición
	Asociaciones y las clases asociaciones
	Examen de las relaciones de dependencia
	Adición de detalles a las clases
	Examen
	Respuestas

	7. Uso de los diagramas de esquemas de estado
	Elementos de un diagrama de estado
	Examen de los símbolos de estado
	Examen de las transiciones
	Creación de máquinas de estado de comportamiento
	Creación de máquinas de estado de protocolo
	Implementación de diagramas de estado
	Examen
	Respuestas

	8 Modelado de componentes
	Introducción del diseño basado en componentes
	Diseño componentes-interfaz
	Diseño a partir de las clases

	Modelado de un componente
	Especicación de las interfaces proporcionadas y requeridas
	Examen de los estilos de modelado de componentes
	Trazado de los diagramas de componentes para consumidores
	Trazado de los diagramas de componentes para productores

	Examen
	Respuestas

	9. Ajuste y finalización
	Modelado de los hacer y los no hacer
	No tenga esperando a los programadores
	Trabaje de una macrovista hacia una microvista
	Documente en forma económica
	Encuentre un editor
	Sea selectivo acerca de los diagramas que elige crear
	No dependa de la generación del código
	Modele y estructure disminuyendo el riesgo
	Si es obvio, no lo modele
	Haga hincapié en la especialización
	Uso de patrones de estado conocidos
	Refactorización de su modelo
	Modo de agregar documentación de soporte
	Validación de su modelo
	Examen
	Respuestas

	10. Visualización de su topología de despliegue
	Modelado de nodos
	Manera de mostrar artefactos en nodos
	Adición de trayectorias de comunicación
	Examen
	Respuestas

	Apéndice: Examen final
	Respuestas

	Bibliografía seleccionada
	Índice

