
Lógica de

programación

Ilrpo-: 0000¿3 2^r^3 Informática

oos.n

jon
ef /

1

¿.lÓSIC-A >

¿Ai-Goen Hoi>

Lógica de
Programación

Ornar Iván Trejos Buriticá

lú

■'•(K'FKbiuai’ '■Kí NICA OEL NORTE

%
Vía do adquisición:-S»VÍT'5i<^.
Documonlo No.QPAzf'.-PP-'-^r

Valor unitario: __-vÍvP..------
Codigo do Darras:P-SÍ--’Í5r---.

Anexos:...........

Trejos Buriticá, Omar Ivan
Lógica de programación - 1 a edición Bogota Ediciones de la U, 2017
432 p , 24 cm.
ISBN 978-958-762-720-6 e-ISBN 978-958-762-721-3

1 Programación 2. Lógicas Variables, constantes y operadores
4. Algoritmos 5. Ciclos 6 Matrices I Tit
519.7cd 21 ed

Area: Informática
Primera edición: Bogotá, Colombia, noviembre de 2017
ISBN. 978-958-762-720-6

© Ornar Iván Trejos Buriticá
(Foros de discusión, blog del libro y materiales complementarios del autor
en www.edicionesdeiau com)

© Ediciones de la U - Carrera 27 #27-43 - Tels. (57+1) 3203510 - 3203499
www.edicionesdelau.com - E-mail: editor@edicionesdelau.com
Bogotá, Colombia

Ediciones de la U es una empresa editorial que, con una visión moderna y estratégica de las
tecnologías, desarrolla, promueve, distribuye y comercializa contenidos, herramientas de
formación, libros técnicos y profesionales, e-books, e-learning o aprendizaje en línea, realizados
por autores con amplia experiencia en las diferentes areas profesionales e investigativas, para
brindar a nuestros usuarios soluciones útiles y prácticas que contribuyan al dominio de sus
campos de trabajo y a su mejor desempeño en un mundo global, cambiante y cada vez más
competitivo

Coordinación editorial: Adriana Gutiérrez M.
Carátula: Ediciones de la U
Impresión: Digiprint Editores SAS
Calle 63 #70D-34, Pbx. (57+1) 7217756

Impresoy hecho en Colombia
Printed and made in Colombia

No esta permitida la reproducción total o parcial de este libro, ni su
tratamiento informático, ni la transmisión de ninguna forma o por cualquier
medio, ya sea electrónico, mecánico, por fotocopia, por registro y otros
medios, sin el permiso previo y por escrito de los titulares del Copyright.

http://www.edicionesdeiau
http://www.edicionesdelau.com
mailto:editor@edicionesdelau.com

Apreciad@ cliente:

Es gratificante poner en sus manos estas obras, por esta
razón le invitamos a que se registre en nuestra web:

WWW.edicionesdelau.com y obtenga benefi­
cios adicionales como:

■ Complementos digitales de las obras

■ Actualizaciones de las publicaciones

■ Interactuar con los autoresa bavés del blog

■ Información de nuevas publicaciones de su interés

■ Notidas y eventos

Adquiere nuestras publicaciones en formato e-book

Visítanos en:

www.edkionesdelau.com

Sus pedidos a:
Carrera 27 # 27-43 ♦ BarrioTeusaquIllo
PBX. (57-113203510 • (57-1)3203499»Móvll:310-6256033
coniierclal@edlclonesdelau.com -gerencla@edldonesdelau.com
Bogotá - Colombia

Av. Coyoacán 1812 A. Acacias Benito Juárez C.P. 03240
PBX. (52) 55-63051703 • Cel. 0445544439418
janethcr@gruporamadelau.com
México D. F. - México

http://WWW.edicionesdelau.com
http://www.edkionesdelau.com
mailto:coniierclal@edlclonesdelau.com
mailto:gerencla@edldonesdelau.com
mailto:janethcr@gruporamadelau.com

Contenido

Introducción .. 15

¿Como usar este libro?... . 17

Para el profesor . 17
Para el estudiante . 17
¿Que es programar’ . 18

Capitulo 1. La Lógica.... .. 19

11 Hablando de Lógica 19
1 2 Fundamentos conceptuales . . 21

1 3 Evaluación 24
1 4 Taller . . .24

Capitulo 2. Metodología para solucionar un problema computable27

2 1 El objetivo
2 2 El algoritmo
2 3 La Prueba de escritorio
2 4 Algoritmos informales
2 5 Algoritmos computacionales

2 5 1 Transcripción

2 5 2 Digitación.
25 3 Compilación
2 5 4 Ejecución o puesta en marcha

2 6 Verificación de resultados
2 7 Ejercicios propuestos sobre algoritmos informales

27
28
30
31
31
32
32
32
34
34
35

7

INTRODUCCION \lJ\LOCICADI 1 ROGILVMACION 0\I \U lUN TllPJOS BURmC\

Capítulos Variables, constantes y operadores 37

3 1 Variable 37
3 1 1 Tipo entero 38
3 1 2 Tipo real 38
3 1 3 Tipo carácter 38

3 2 Asignaciones 39
3 3 Ejercicios 43
3 3 Operadores 45
3 4 Ejercicios 50

Capitulo 4 Estructuras básicas y técnicas para representar algoritmos 57

41 El concepto de estructura 57
4 2 Consideraciones algorítmicas

sobre el pensamiento humano 58
42 1 Secuencia 58
42 2 Decision 59
42 3 Ciclos 60

4 3 Estructuras básicas expresadas técnicamente 60
43 1 Las secuencias de ordenes 60
43 2 Las decisiones 62
43 3 Los ciclos 65

4 4 Técnicas para representar algoritmos 68
441 Diagramas de flujo 68
44 2 Diagramas rectangulares estructurados 77
43 4 Cuadro comparativo 91

4 4 Ejercicios 92

Capítulos La tecnología 95

51 Lenguajes de bajo nivel 96
5 2 Lenguajes de alto nivel 97

521 Lenguajes interpretados 97
522 Lenguajes compilados 98

5 3 Errores en un programa 99

8

CONTTNIDO

531 Errores humanos... 100
5 3 2. Errores de Concepcion 100
53 3 Errores lógicos...101
5 34 Errores de procedimiento... 101
53 5 Errores detectados por un compilador...102
53.6 Errores de sintaxis..103
5 3.7 Errores de precaución... 103

5 4 Desarrollo histórico de la programación.. 103

Capítulo 6. Metodología, técnica y tecnología para
solucionar un problema computable.. 109

ó.l.Concepcion del problema 109
61.1. Clarificación del objetivo...110
6.1.2. Algoritmo..110
61.3 Prueba de escritorio.. 110

6.2. Técnicas de representación ...110
6 2.1 Diagramas de flujo...110
6 2.2 Diagramacion rectangular estructurada............ .. .111
6 2 3. Seudocodigo.. 111

6 3 Transcripción o codificación. 111
64 Primer enunciado.. 111
6 5 Segundo enunciado............... 124
6 6 Tercer enunciado 137

Capítulo 7. Decisiones... 149

7.1. Estructura Si-Entonces-Sino.. 149
7.11 Decisiones simples 150
7.12. Decisiones en cascada 150
7 1 2 Decisiones en secuencia ...155
7.1 3 Decisiones anidadas157

7.2 Estructura casos. 159
7 2 1. Estructura casos simple........................159
7 2 2. Estructuras casos (anidadas)..164

7 3 Ejercicios

IimODUCCiÓN A LA LÓGICA DE l’ROCÍRAMACIÓN - OMAR IVÁN TrIJOS BURITICÁ.

Capítulos. Ciclos.. 171

8.1. Concepto general... 171
8.2. Tipos de ciclos... 176

8.2.1. Ciclo Mientras..176
8.2.2. Ciclo Poro... 777
8.2.3. Ciclo Hago Hosfo...178

8.2.4. Ciclo Haga Mientras... 179

8.3. Ejemplos usando todas las estructuras de ciclos..................................... 179
8.3.1. Ejemplo 1..179
8.3.2. Ejemplo 2..182
8.3.3. Ejemplos..186
8.3.4. Ejemplo 4..189
8.3.5. Ejemplos.. 192
8.3.6. Ejemplo 6.. 196

8.4. Ciclos anidados.. 200
8.4.1. Ejemplo!.. 201
8.4.2. Ejemplo 2.. 211
8.4.3. Ejemplos.. 217

8.5. Ejercicios..226

Capítulo 9. Arreglos... 231

9.1. Concepto general..231

9.2. índices 234
9.2.1. Definición...234
9.2.2. Características....... .. 238

9.3. Vectores... 239
9.3.1. Características.. '•................239
9.3.2. Ejemplo ineficiente sin vectores No. 1..241
9.3.3. Ejemplo con vectores No. 1..246
9.3.4. Ejemplo con vectores No. 2..260

9.3.5. Ejemplo con vectores No. 3..273

9.4. Ejercicios...

10

Contenido

Capitulo 10 Matrices 301

101 Definición 301
10 2 Características de una matriz 307
10 3 Ejemplo con matrices No 1 308
10 4 Ejemplo con matrices No 2 326
10 5 Ejemplo con matrices No 3 339
10 6 Ejercicios 356

Capitulen Funciones 361

11 1 Concepto general 361
112 Problemas reales de la programación 365
11 3 Macro algoritmo 367
11 4 Variables globales y variables locales 372
11 5 Ejemplo 373

11 51 Ejemplo No 2 380
116 Ejemplo 391
11 8 Menus 394
11 9 Ejercicios 410

Capitulo 1 2 Consejos y reflexiones sobre programación 415

121 Acerca de la lógica 415
12 2 Acerca de la metodología para solucionar un problema 417
12 3 Acerca de las variables y los operadores 420
12 4 Acerca de las estructuras básicas 421
12 5 Acerca de las técnicas de representación de algoritmos 424
12 6 Acerca de la tecnología 426
12 7 Acerca de las decisiones 427
12 8 Acerca de los ciclos 428
12 9 Acerca de los vectores 429
12 10 Acerca de las matrices 429
1211 Acerca de las funciones 430

II

A Natalia y a Juan José,
¡¡¡mi nnaravilloso todo!!!

13

Introducción

Durante muchos años he dedicado gran parte de mi tiempo no solo a la ense­
ñanza de la Lógica de Programación, sino al análisis de la enseñanza de dicha
Lógica debido, precisamente, a que me he encontrado con que muchas per­
sonas confunden la Programación con la Lógica de Programación La primera
involucra el conocimiento de técnicas e instrucciones de un determinado len­
guaje a través de los cuales se hace sencillo lograr que el computador obtenga
unos resultados mucho mas rápido que nosotros La segunda involucra, de
una manera técnica y organizada, los conceptos que nos permiten diseñar, en
términos generales, la solución a problemas que pueden llegar a ser imple-
mentados a través de un computador

El estudio de la Lógica de Programación no exige ningún conocimiento previo
de computadores ni de tecnología en general, tampoco exige la presencia de
algún lenguaje de programación específico, aunque no puedo negarle que este
podría permitirle, solo después de que usted maneje bien los conceptos de Logi
ca de Programación, la implementacion de las soluciones lógicas a sus objetivos

Fueron muchos los alumnos que con el tiempo me fueron solicitando que les
ensenara cuales eran los conceptos realmente básicos para aprender a progra­
mar, o sea, aquellos conceptos con los cuales es suficiente para enfrentarse a
cualquier lenguaje de programación o, mejor aun. enfrentarse a lograr cual
quier objetivo a través de un computador Poco a poco, fui buscando solucio­
nes a las preguntas que mis alumnos me planteaban y veía que, en sus dudas,
siempre estaba presente la búsqueda de conceptos esenciales que los liberara
de las ataduras que tienen los lenguajes de programación cuando estos son lo
primero que se conoce en computadores

Luego de muchos años de estudio de estos factores, pude condensar en este
libro los que, considero son los conceptos fundamentales para aprender real
mente a programar, o sea, lo que he llamado la esencia de la Lógica de Progra
maaon, pues busco que usted conozca estos elementos conceptuales y, luego

15

Introducción a u\ lógica or programación - Omar 1\án Truos Duiin icÁ

de dominarlos, se enfrente sin ningún problema no solo a cualquier objetivo
que pueda ser alcanzable a través de computadores, sino además a cualquier
lenguaje de programación.

Puedo garantizarle que, si usted lee este libro hoja por hoja y desarrolla ios ejer­
cicios aquí planteados, al llegar al final del mismo, podrá entender que progra­
mar no es más que buscar soluciones muy lógicas utilizando unos conceptos
muy sencillos. Espero, pues, que este libro cumpla el objetivo planteado, pues
pensando en usted fue como se concibió. No se vaya a afanar por leerlo de
una sola vez; tómese su tiempo para razonar y asimilar los conceptos que aquí
se plantean. No olvide que, para resolver problemas computables, usted no
aplica su propia lógica, sino que toma prestada una lógica que no es la natural.

Este libro en ninguna de sus partes le mostrará conceptos complejos, debido
precisamente a que la lógica de programación es la unión de muchos (pero mu­
chos) conceptos sencillos para el diseño de soluciones muy (pero muy) lógicas.

Ornar Iván Trejos Buriticá, PhD

16

¿Cómo usar este libro?

En primera instancia, le recomiendo que lo lea pausadamente No se afane en
avanzar, la apropiación y asimilación de los conceptos pertinentes a la lógica de
programación implica tiempo, pues no son exactamente los mismos conceptos
que subyacen a la lógica natural y deliberativa que tenemos los seres humanos

Lea y vuelva a leer, piense en lo que ha leído y, ante todo, realice (o, por lo menos,
intente realizar) los ejercicios propuestos Pregunte cuando tenga dudas y siem
pre propóngase terminar los ejercicios No los deje a medio camino, pues cada
vez que usted lleve un ejercicio hasta el final vera como su lógica humana se
amplia para acudir a la lógica computacionai en los casos donde corresponda

Para el profesor

Utilice este libro al ritmo que sus estudiantes le permitan Usted y yo sabemos
que lo mas importante no es avanzar en un contenido, sino que los estudiantes
realmente aprendan lo que se puede asimilar de ese contenido Recuerde que
asimilar una nueva lógica toma tiempo y lo que para algunos puede ser muy
obvio para otros puede ser complejo Esta consideración sera de gran utilidad
para intentar comprender los diferentes niveles de aprendizaje y apropiación
de la lógica por parte de cada uno de los estudiantes que son y serán nuestra
razón de ser

Para el estudiante

Siga el ritmo que le indique el profesor Revise los ejercicios resueltos, resuelva
los ejercicios propuestos y, siempre, sin excepción, pregunte No se quede con
dudas Por simples que le parezcan, recuerde que, cuando se trata de Logi
ca, las dudas son también lógicas, pero si no se resuelven, simplemente van
quedando lagunas cuya resolución posteriormente puede llegar a ser mas

17

INTRODUCCION A U\ LOGICA DL PROGRAMACION - 0\UR 1\ \N TrUOS BURIUCA

compleja. Comparta soluciones con sus compañeros. Es muy enriquecedor
alimentarse de la lógica de los demás y aportarles lo que, desde nuestra lógica,
se pueda aportar. La forma excelsa para aprender a nadar es nadando; asimis­
mo, el camino óptimo para asimilar la lógica de programación es practicando,
practicando y practicando.

¿Qué es programar?

Programar es encontrar soluciones, basadas en lógica de programación, que
permiten que el computador alcance por nosotros un determinado objetivo.
El artífice de que el computador logre dichos objetivos es la persona que lo
programó.

18

Capítulo 1
La Lógica

1.1. Hablando de Lógica

Recuerdo que, en mi niñez, alguna vez me abroché mal la camisa, en un mo­
mento en que toda mi familia estaba afanada por salir. Una familiar me vio la
camisa mal abrochada y me dijo fuertemente que me había abrochado mal
la camisa, que si era que yo no tenía lógica. Luego de acomodármela ade­
cuadamente, o sea, de manera que cada botón coincidiera con su respectivo
ojal, comencé a pensar que era posible que no tuviera lógica, pues me parecía
sorprendente que no me hubiera dado cuenta de que para que la camisa es­
tuviera colocada correctamente solo hay una forma y es que coincidan par
boton-ojal Llegué a otra conclusión y es el hecho de que es más fácil ponerse
bien una camisa que ponérsela mal o, dicho en otras palabras, es muchísimo
más fácil colocársela correctamente en lo que a botones y ojales corresponde.

Fui creciendo y poco a poco me di cuenta de que son muchas las cosas que,
pareciendo obvias, por un extraño error no hacemos bien y vuelve a mi memo­
ria la voz de mi familiar diciendo "¿¿¿Usted no tiene lógica o qué’??". Estudié
mi carrera universitaria Ingeniería de Sistemas porque allí encontré por qué
era tan importante aquello de la lógica Luego de buscar muchos significados
de la palabra lógica, llegué a una que al fín me convenció. Le pregunté a una
amiga "¿Qué es la lógica...?" Ella respondió en un lenguaje muy común- "Pues
lógica es... es.... es.... es como algo muy lógico". Su respuesta no me satisfizo, pues
había incluido en la definición el término que quería definir, lo cual significa
que no me había dicho nada. Cuando pregunté por que era difícil definirlo,
ella respondió: "No es fácil definir algo tan lógico". Ella tenía clara la idea del
significado, simplemente no era capaz de definirlo.

Luego le pregunté a don Luis, un viejo tendero que por diez años lo había visto
llegar todas las mañanas a abrir su tienda desde donde atendía a su clientela.

19

iNOHODUCCIOS A lv\ I (1GIC\ Dl I UOGRAMACION OsiAlt IWN Till JOS BUIIITIC\

ÉI me respondió Lo único que puedo deares que lo que es logico es todo aquello
que nunca es ilogico Esa definición me pareció bastante racional, pero seguía
siendo lejana de lo que yo había esperado Yo veia que el proceso de abrir su
tienda tenía unos pasos definidos y siempre los hacia de forma bastante lógica

Después le pregunte a un profesor de la materia Español y el me entrego
una excelente definición de esas tomadas de un diccionario Lógica es la
rama del conocimiento que nos permite definir que algo esta respaldado por la
razón como bien deducido o bien pensado Para mi era una buena definición
y me bastaba con que apareciera en el diccionario Pequeño Larousse para no
discutirla Sin embargo me exigía mas reflexiones de las necesarias para poder
entenderla, pues me parecía increíble que la definición de la palabra lógica
fuera tan compleja, o sea, que su definición no fuera lógica Eso mismo me
había motivado a buscar una definición sencilla y lógica que no me exigiera
muchas reflexiones adicionales

Buscando una definición que me dejara satisfecho, fui a preguntarle a un
matemático Yo suponía que el podría definir que era la lógica Cuando
le pregunte, me respondió "Lógica es la ciencia que estudia la estructura,
fundamentos y uso de las expresiones del conocimiento humano Esa era una
definición muy exacta pero, al igual que la definición del Pequeño Larousse, me
exigía demasiados razonamientos como para poder digerirla

Me anime a preguntarle a alguien, un desconocido, que era la lógica y su
respuesta desprevenida me gusto porque la entendí fácilmente La lógica es
como una sene coherente de ideas y razonamientos Compartí su definición y
me pareció apropiada Ademas que pude descubrir que todas las personas a
quienes les preguntaba teman muy claro el concepto de lógica, asi algunas de
esas personas no la pudieron definir de manera clara

Finalmente, busque a un campesino al que los avances tecnológicos no lo
hubieran tocado aun Alguien para quien el mundo moderno era un conjunto
de problemas en vez de soluciones Le pregunte ¿Que es la lógica? y
mirándome con extraneza me dijo Mire patron, pues eso es la forma mas OBVIA
y FÁCIL de hacer cualquier cosa Entonces vi que, de todas las definiciones que
había recogido, esta era la que me parecía mas lógica Concluí que eso es la
LÓGICA

Los libros de tecnología citan que, para resolver un problema a través del
computador, se requiere tener muy buena lógica Creo que la base para ello es
ser muy lógicos, o sea, poder vislumbrar el camino mas obvio y mas fácil para
lograr un objetivo Este libro busca orientar su lógica natural de manera que
para usted sea muy sencillo hablar de la lógica computacional

20

Cap 1 - La Lógica

1.2. Fundamentos conceptuales

Vamos a comenzar por plantear una opinion sobre María ¿y quien es Mana’
Es la figura que nos va a acompañar en esta explicación Se lo voy a decir
muy claro "Mana es alta" Inmediatamente usted, querido lector, se imaginara
una mujer con mas de 1,70 m de estatura, que puede ser mas alta que usted
o que, por lo menos, es de su misma estatura (si es que usted se considera
alto). Apenas yo digo "María es alta', usted deberá hacer unos razonamientos
lógicos y concluyentes para captar lo que yo le quise decir ¿Que fue lo que
yo le describí de Mana? Muy fácil, describí un atributo de ella ¿Que es un
atributo? Es una característica que identifica a un ente informático ¿Y que es
un ente informático? Todo aquello que se puede describir basándose en sus
características

¿Que características tiene un atributo? La primera consiste en que obedece a
una sene de razonamientos humanos, lo cual quiere significar que debe existir
todo un juego de razonamientos previos La segunda característica es que es
muy relativo Si Mana mide 1,65 y vive en Occidente, puede no ser tan alta, si
ella vive en Europa, sena una persona baja y si de pronto ella vive en Oriente, se­
na una persona notoriamente alta Los atributos siempre van a estar sujetos a la
mirada relativa con la que observa quien emane el concepto Similar es el caso
que se presenta cuando un hombre dice que una mujer es muy hermosa, pues
lo que para el es una mujer hermosa, es posible que para otros no lo sea tanto

Como se puede ver, estas dos características, en union con un conjunto de
conceptos y vivencias provenientes de la cultura de la region en donde hemos
crecido, logran que se afiance mas lo relativo de un atributo Debido a esta
relatividad conceptual sobre los atributos, estos son inmanejables porque van
a depender del observador que los este usando

Se ha hecho necesario a través de la Historia que los atributos sean medidos
a través de escalas, ya que esto los hace manejables y dejan de ser relativos
(sin decir con esto que se vuelvan absolutos) Es por ello que surge la gran
vedete de la Informática que es el dato Nuestra frase inicial 'Mana es alta" se
puede cambiar a decir"Maria mide 1,73 m' A pesar de que los razonamientos
y las conclusiones podrían ser los mismos, se pueden dejar al libre concepto de
quien los observe ¿Que es un dato? Es un atributo "codificado" en unos térmi­
nos que sean entendibles a un sistema de información, que sean manejables y
comparables y que son, en gran medida, absolutos

Un atributo es"codificado' si ha sido convertido a una escala determinada para
poder ser mas manejable, lo cual quiere decir que se puede operar con otros

21

It^ODUCClÓN A lA IDGICA DI I’HOCiRyVMACION - OmAK I\ \N TiUJÜS BURITICÁ

atributos de la misma escala, es decir, se pueden realizar comparaciones y ob­
tener resultados de ellas. Un dato en solitario no significa nada, excepto que se
tenga claro cuál es el atributo que se está describiendo. Si yo le dijera: "Amigo
lector, le cuento que el dato es 4", ¿qué pensaría usted que significa este dato?
La cantidad de carros del autor o la cantidad de libros del autor o la cantidad
de amigos del autor o... realmente usted no tendría certeza de su significado.
Viene un concepto que aclara las cosas.

Nuestra frase inicial "María es alta" que luego se convirtió en "María mide 1,73
m", podríamos ahora plantearla como "La estatura de María es 1,73". En este
momento, ya tenemos identificado de manera clara y con un nombre el atri­
buto que se intenta describir. Este es el concepto de campo, que es el nombre
que se le coloca a un dato para identificar el atributo que se propone describir.
Así, nuestra frase'la estatura de María es l,73"presenta tres campos bien iden­
tificados. El 1° de ellos es la estatura, campo con el que se ha estado realizando
toda la explicación; el 2° corresponde a! nombre de la persona de quien se
está hablando, que es María en este ejemplo, y el 3° es el sexo, pues se puede
suponer que María es de sexo femenino. La tabla 1 presenta la información de
manera organizada.

Tabla 1. Información organizada

1 Nombre de la Estatura de la
I persona persona

Sexo de la I
persona {

’ María 1,73 m Femenino

Se tiene aquí un conjunto de campos de forma que en cada campo está con­
signado un dato, en donde todos los datos pertenecen a un mismo ente infor­
mático. Con esto le acabo de entregar la definición de lo que es un registro.
En esas condiciones se le puede colocar un nombre identificador al registro
del ejemplo y lo vamos a llamar Persona. También se le pueden adicionar otros
campos y llenarlos con datos del mismo ente informático, tal como se muestra
en la tabla 2.

Tabla 2. Información organizada con más campos

Registro Persona ¡

Nombre Estatura Sexo
Fecha de

nacimiento
No. cédula Salario j

María 1,73 m Femenino 21-ago-78 42.522.301 560.000,00

Se puede pensar en organizar de una forma más apropiada la información que
corresponde a María buscando que sea más presentable y más manejable. Una
versión del registro de estudio mejor organizado se presenta en la tabla 3.

22

Caí» i - La Lógica

Tabla 3. Registro organizado

Registro Persona

No cédula Nombre Sexo
Fecha de

nacimiento
Estatura Salario

42 522 301 Marfa Femenino 21 ago 78 1,73 m 560 000 00

¿Cuantos campos pueden pertenecer a un registro? Todos los que usted ne­
cesite, es decir, todos los campos en donde los datos sean útiles para usted
Una característica adicional que debe cumplir un registro es que debe ser ma­
nejado como una sola unidad, es decir, que todos los campos que lo confor­
man se encuentren en el mismo lugar físico o logico de manera que pueda ser
manipulado como un todo Ahora, ¿qué sucedería si ademas de los datos de
Mana tenemos también los datos de Luis, Pedro, Aníbal, Marta, Elena y Julián
obteniendo de cada uno los mismos campos que obtuvimos de Mana? Pues
simplemente que se ha conformado un archivo, que es un conjunto de regís
tros que tienen la misma estructura y que se puede manejar como una sola
unidad Hablar de registros con la misma estructura quiere decir que tienen los
mismos campos pero no los mismos datos La tabla 4 presenta la información
de vanas personas

Tabla 4 Archivo de vanas personas

Registro Persona j

No cédula Nombre Sexo
Fecha de

nacimiento
Estatura Salario j

42 522 301 María Femenino 21 ago 78 1,73 m 960 00000
10544 676 Luis Masculino 20 ene 75 1 60 m 800 00000

16 432435 Pedro Masculino 25 feb 70 1 55 m 980000 00

10398 789 Aníbal Masculino 18-abr-55 1,98 m 890 000,00

41 884556 Marta Femenino 20 jul-79 1,77 m 900000,00

38 756986 Elena Femenino 16 sep 65 l,58m 999 000,00

Si lo que se necesita es almacenar tanta información que debemos guardarla
en vanos archivos pero que esten interrelacionados, entonces se esta hablan­
do de una base de datos, que es un conjunto de archivos o tablas organizados
bajo unas técnicas especiñcas de normalización

Estas definiciones nos han llevado desde un concepto completamente huma
no, como es el atributo, hasta un concepto absolutamente técnico, como es
la base de datos Si miramos el trasfondo de toda esta secuencia, podemos
descubrir cual es su objetivo El objetivo es hablar de información. ¿Como se
puede definir la información? Información es un conjunto de datos suficien­
temente organizados y entendibles (algunas veces se organizan a través de la
tecnología)

23

Cw*. 1 • La Lógica

Escriba su estatura.
Escríba su edad y su fecha de nacimiento.
Escriba su número de identificación.
Organice toda esa información en forma de registro.
Escriba los mismos datos de cuatro amigos suyos.
Organice la información en forma de tabla.

25

Capítulo 2
Metodología para solucionar

un problema computable

Siempre que vamos a resolver un problema, nos enfrentamos con la dificultad
de tener que encontrar precisamente eso una solución. Pocas veces nos de­
tenemos a pensar que existe un camino estructural que nos permite resolver
cualquier problema (en términos generales) teniendo, como es obvio, que
entrar en la minucia del detalle dependiendo del problema.

2.1. El objetivo

¿Cuál es el primer paso que debemos dar cuando nos enfrentamos a un pro­
blema? Lo primero que debemos tener muy claro es: ¿cuál es el problema a
resolver? Es evidente que no podemos avanzar hacia la casa de un amigo si
no sabemos en donde vive porque las posibilidades de que lleguemos son
casi nulas De manera que lo primero a conocer muy bien es el problema cuya
solución la vamos a denotar con el nombre OBJETIVO.

Tener claro el objetivo nos va a permitir obtener dos beneficiosque, a la postre,
serán mas grandes de lo que podemos pensar:

a Nos permite saber hacia dónde vamos
b Nos permite saber donde debemos parar

Estas dos definiciones parecieran ser lo mismo pero no lo son Usted puede
tener muy claro hacia donde va pero podría no saber hasta donde debe llegar
o, dicho en otras palabras, podría no saber en donde debe parar o podría saber
en donde debe parar pero no tener ni idea por cual ruta llegar. El OBJETIVO se
ha de convertir en la razón de ser en la solución de un problema

27

IríraoDUCcioN a lógica de programación Omar I\ \n Trltos Burítica

Alguna vez, antes de irme a estudiar a la ciudad de Bogota, mi padre, en una
de esas tardes en las cuales se sentaba a aconsejarme, me dijo ' Te vas a ir a
Bogota con el objetivo de estudiar Vas a tener toda la libertad del mundo para
hacer todo lo que quieras pero, eso sí, independiente de todo lo que hagas en la
capital, metete en tu cabeza que la clave del éxito para cualquier cosa en la vida es
no perder de vista el objetivo cualquiera que este sea Desde allí entendí que
realmente tener un objetivo claro, verdaderamente claro, exageradamente
claro, es mas importante que cualquier otra cosa, porque gracias a ello puede
uno ir detras de dicho objetivo hasta lograrlo Cada paso que se de, debe ir en
pos del OBJETIVO

En nuestro caso, podemos decir que, para llegar a la solución de un problema,
la clave esta en tener muy claro cuál es el objetivo y no perderlo nunca de
vista Tal vez usted tendrá alguna inquietud en cuanto a la insistencia de este
topico, pero la realidad es que muchas veces creemos tener claro el objetivo y,
solo cuando nos empeñamos en lograrlo, vemos que no era asi

2.2. El algoritmo

Tener claro el objetivo nos permite algo adicional Aquí voy a utilizar una frase
que, aunque un poco romántica, nos va a ilustrar claramente el OBJETIVO es
el faro que, solo cuando esta bien claro, nos ilumina el camino para lograrlo
Cuando el objetivo esta suficientemente claro, podemos vislumbrar un camino
logico para llegar hasta el Ese camino logico va a tener un nombre, dada la
orientación de este libro, y ese nombre es ALGORITMO

¿Que es un ALGORITMO? Es un conjunto de pasos secuenciales y ordenados
que permiten lograr un objetivo Que sean pasos secuenciales significa que
deben ser ejecutados uno después de otro y que sean pasos ordenados quiere
decir que deben llevar un orden que, en algunos casos, podría ser obligatorio
Como puede notar, el ALGORITMO permite lograr un OBJETIVO, o sea, que este
es el camino que necesitamos para lograrlo

De nuevo, ¿cuando podemos vislumbrar claramente el algoritmo? Solo cuando
el OBJETIVO esta realmente claro Siempre que usted, en el desarrollo de la
solución de un problema, vea que en algún momento no sabe para donde
coger, no sabe que hacer o se siente perdido, no busque mas, simplemente
quiere decir que realmente usted no tenía tan claro el objetivo como había
pensado

¿Como se estructura un objetivo? Muy sencillo, esto le va a parecer muy obvio,
pero aun asi se lo voy a decir Un algoritmo se estructura comenzando en un

28

Cam 2 Metodología i \ra solucionar un j rowjíma

inicio y terminando en un fin Mucho de lo que encuentre en este libro notara
que es exageradamente logico, pero no olvide que ese es el tema que evoca el
titulo de este libro

Veamos, entonces, un ejemplo desarrollar un algoritmo que nos permita ad-
quirirel libro f/corone/nof/enequ/en/eescr/ba de Gabriel García Marquez

Objetivo: adquirir el libro El coronel no tiene quien le escriba de Gabriel García
Marquez Mucha atención al objetivo Solamente es adquirirlo, en ningún mo
mentó el objetivo es leerlo o resumirlo ni nada, solamente adquirirlo

Algoritmo: salimos del lugar en donde estemos y nos dirigimos hacia una li­
brería En caso de que ya estemos en una librería, solicitamos si tienen el libro
Si lo tienen, lo adquirimos y si no lo tienen, vamos a otra librería en donde
repetimos el proceso

Explicado asi, el algoritmo no va a pasar de ser un breve texto explicativo que
nos va a permitir lograr algo y que, en este caso, es la adquisición de un libro
determinado Pero podríamos organizar este algoritmo de manera que fuera
un poco mas estético y, por que no decirlo, un poco mas entendible, comen
zando por el hecho de que esta vez le vamos a colocar un nombre al algoritmo
y que lo vamos a generalizar para conseguir cualquier libro siempre y cuando
este completamente definido

Algoritmo Adquisicion_Libro
Inicio
1 Saber cual es el libro que se quiere adquirir

2 Desplazarnos hacia una librería
3 Preguntar SI tienen el libro que necesitamos

4 Si lo tienen
adquirirlo y parar allí (den tro de este algoritmo)

Si no lo tienen
iralpasoZ

Fin

Note algunas puntualizaciones al respecto de este algoritmo

a Casi todas las lineas van numeradas, pero no todas

29

ISTRODUCCtON A L;\ LOGICA DI I ROGRAMACION OmaK 1\\N TiUJOS BUUmCX

b En la linea 1, se debe cumplir esa orden para poder continuar con el resto
del algoritmo, porque se asume en el algoritmo que no solo se pasa por
encima de las lineas, sino que se realizan las tareas allí indicadas

c Si realizamos todos los pasos que indica este algoritmo, podremos ob­
tener el libro que sea porque la connotación de este es absolutamente
genérico sin restricciones, ya que en ningún momento se esta diciendo
que nos desplacemos hacia una librería que quede en la ciudad

d Si luego de recorrer todas las librerías de todos los países de todo el mun­
do vimos que no pudimos conseguir el libro, entonces podemos obtener
dos conclusiones una es que el libro que buscábamos no lo tiene nin­
guna librería porque esta agotado y la otra es que el libro es posible que
nunca haya existido

e Si probamos este ejemplo con el libro en mención (o sea El coronel no
tiene quien le escriba) tendremos un alto porcentaje de segundad de que
lo conseguiremos a menos que esté agotado

Este tipo de algoritmos son conocidos como informales, es decir, aquellos
algoritmos (según los libros) que no pueden ser implementados a través de
un computador Yo sena un poco menos drástico Yo dina que son algoritmos
informales aquellos que no son fácilmente implementables en un computa­
dor Segundo, y precisamente debido a que son algoritmos informales, deben
hacerse una cantidad de reflexiones antes y después de ellos Reflexiones que
tienen una connotación puramente humana

2.3. La Prueba de escritorio

En la reflexión e se hablo de una prueba Textualmente dice 'Si probamos este
ejemplo ", lo cual significa que todo algoritmo debe ser probado antes de ser
ejecutado con el proposito de que tengamos una alta certeza en cuanto al
logro del objetivo Precisamente este es el tercer concepto que abordaremos y
que se conoce como prueba de escritorio

¿Que es la prueba de escritorio’ Es la simulación de la puesta en marcha de un al
goritmo Con la prueba de escritorio podemos determinar si el algoritmo que he­
mos diseñado logra el objetivo propuesto De no ser asi, podremos concluir que
se debe corregir el algoritmo hasta lograr que satisfaga el objetivo propuesto

Por lo que usted ha podido observar en el algoritmo de ejemplo, cada linea nu
merada del algoritmo puede considerarse a su vez como otro algoritmo, ya que

30

Cai’ 2 - Mi itddoi ogia i»\Ry\ solucionar un PRoni i ma

el solo hecho de saber cual es el libro que se quiere adquirir nos obliga a reali­
zar una sene de pasos ordenados y secuenciales para poderlo lograr Entonces,
surge una inquietud ¿que tan detallado debe ser un algoritmo? Su respuesta,
como todo lo que va a encontrar en este libro, es muy lógica y muy sencilla

Un algoritmo debe tener el nivel de detalle suficiente como para que no exista
ninguna duda en su puesta en marcha, es decir, como para que cada línea
pueda ser realizada sin el mas mínimo asomo de inquietud Esto quiere decir
que algunos algoritmos pueden ser mas entendibles para unas personas que
para otras, dada su misma definición racional

Como todo dentro del conocimiento humano requiere una clasificación y los
conceptos de los cuales estamos hablando no son la excepción, los algoritmos
se podrían clasificar en las categorías que se explican a continuación

2.4. Algoritmos informales

Definidos como todos aquellos algoritmos que no son realizables a través de
un computador (al menos, no fácilmente) Son aquellos algoritmos en donde
el ejecutor real es el ser humano, como el algoritmo para dar un beso, el algo­
ritmo para fritar unos huevos o el algoritmo para conseguir un libro Escribo
que " al menos no fácilmente' porque la tecnología ha avanzado tanto que
muchos algoritmos que en el pasado no eran implementables a través de un
computador en la actualidad lo son y de manera mucho mas sencilla, como es
el caso del algoritmo para conseguir un libro que anteriormente se pensaba
en librerías y ahora se piensa en un concepto mas globalizado Internet con
sus buscadores, con mas posibilidad de conseguirlo y con menos trabajo De
manera que vamos a considerar aquellos algoritmos informales como los que
son preferiblemente realizables por el ser humano

2.5. Algoritmos computacionales

Se consideran como tales todos aquellos algoritmos que deben ser preferible­
mente implementados en un computador para aprovechar su velocidad de
procesamiento Un ejemplo de estos puede ser el algoritmo que genere los
primeros 100 números primos, recordando que un numero primo es aquel que
solo puede ser dividido exactamente entre la unidad y entre sí mismo que, si
bien podrían ser calculados utilizando un papel y un lápiz, la utilización de un
computador en union con el algoritmo adecuado nos va a dar un resultado mu
cho mas rápido y absolutamente confiable (lo cual depende de que el progra­
ma se base en un algoritmo confiable) Son precisamente estos algoritmos los
que vamos a tratar de definir y poner en practica en el desarrollo de este libro

11

INTRODUCCION A L.\ I OGICA DL I*ROOIU\M/\CION - Om\R 1\ÁN TRPJOb BUUiriCA

En eí desarrollo de ios algoritmos computacionales, los cuales nos van a ocupar
en lo sucesivo, la metodología para llegar a la solución final que permita lograr
un objetivo (igualmente computacional) continúa con los siguientes pasos-

2.5.1. Transcripción

Este es el proceso a través del cual "convertimos" un algoritmo, escrito en tér­
minos muy coloquiales e informales, en un listado de instrucciones entendí-
bles a un computador y que se ajustan a las reglas sintácticas de determinado
lenguaje de programación. Podríamos decir que es la "traduccion"de un algo­
ritmo con la "ortografía"de un lenguaje de programación.

¿Qué son las reglas sintácticas de un lenguaje de programación? Son todas las
restricciones técnicas (y algunas veces caprichosas) sobre las cuales está cons­
truido el lenguaje. Por ejemplo, y solo con el ánimo de ilustrar lo que acabo de
decir, sí estamos utilizando el lenguaje de programación C, la orden para leer
un dato se da con la instrucción c/n, así como está escrito y sin ningún tipo de
modificación por más mínima que esta pudiera ser. Será un error, entonces,
escribir esta instrucción como C/n o como dm.

El lenguaje C solo entiende la instrucción c/n tai como sus creadores la diseña­
ron. De tal forma que, para escribir un algoritmo computacional en términos
entendibles a un computador, lo único que necesitamos saber son las reglas
sintácticas de un lenguaje de programación cualquiera. El algoritmo escrito
con dichas reglas se llamará programa. ¿Qué es, pues, un programa? Es un
algoritmo escrito con las instrucciones, las restricciones y las regias de un len­
guaje de programación.

2.5.2. Digitación

Es el proceso a través del cual le escribimos al computador el programa que
hemos acabado de escribir en papel. Para ello nos valemos de un programa
llamado Editor de texto o Entorno Integrado de Desarrollo (IDE, por sus siglas
en inglés, Integrated Development Environment) que nos permite escribir un
programa y grabarlo. Visto neutralmente, un programa no es más que un texto
escrito bajo la óptica de algunas reglas preestablecidas por los creadores de un
lenguaje de programación.

2.5.3. Compilación

Es muy normal que al reescnbir un algoritmo con las reglas sintácticas de un
lenguaje de programación, es decir, al escribir un programa, omitamos algunas

32

C \l 2 - Ml IÜDOLOGIA I \RA SOLUCIONAU UN PROIILLMA

reglas y se nos vayan, sin querer, algunos errores Por ejemplo, que en alguna
parte del programa abrimos un paréntesis que luego se nos olvido cerrar Para
ello, el computador nos facilita una herramienta que revisa la sintaxis del pro­
grama, nos dice si tiene errores y, en los casos mas depurados, nos dice en que
lineas del programa están los errores y hasta nos sugiere la corrección

Entonces, ¿que es la compilación’ Es e! proceso a través del cual el computador
revisa que el programa que hemos digitado se ajuste a las reglas sintácticas de
un determinado lenguaje de programación ¿Quien realiza realmente el proce
so llamado compilación’ Lo realiza un programa llamado compilador, que es el
encargado de evaluar dos tipos de errores

a) Errores de sintaxis - Podríamos asociar los errores de sintaxis en un len
guaje de programación con los errores de ortografía en nuestro idioma
Son aquellos errores representados en la omision de alguna o algunas re­
glas sintácticas (hablando de un lenguaje de programación) Por ejemplo,
es normal que algunas veces, en medio de una expresión matemática,
abramos un paréntesis que luego se nos olvida cerrar En ese caso, al mo­
mento de compilar, el compilador nos indicara precisamente ese error

b) Errores de precaución - Algunos compiladores nos hacen, por decirlo asi,
cierto tipo de recomendaciones para efectos de mejoramiento o asegu
ramiento de nuestros programas Este topico lo veremos de manera mas
detallada en la medida que se vayan desarrollando los temas de este libro

¿Por que se habla de algunos compiladores’ Pues porque, dado que existen
vanos lenguajes de programación, cada lenguaje de programación tiene su
propio compilador, o sea, su propio revisor sintáctico Podríamos decir de nue­
vo (y aunque sea mal dicho sirve en este caso) que la sintaxis es a un lenguaje
de programación como la ortografía es a un idioma

¿Por que existen vanos lenguajes de programación’ Esto si obedece a dos fac
tores el primero es la especificidad de los lenguajes, ya que son desarrollados
para que cumplan de la mejor manera ciertos objetivos (refiriéndonos al mundo
de la informática) y el segundo es un factor netamente comercial, pues los len
guajes de programación son producidos por empresas fabricantes de soñware

En un programa, los errores son de tres tipos errores de sintaxis y errores de
precaución que, como ya se dijo, son revisados por el compilador Son los erro­
res fáciles porque los compiladores actuales no solo le dicen a uno cual es el
error, sino que ademas le indican, mas o menos en donde esta e incluso aigu
ñas veces le sugieren la corrección Los errores difíciles realmente de encontrar
en un programa son el tercer tipo de error y son los errores lógicos, ya que

33

INTRODUCCION A LA LOGICA DL PROGR,\MACION • OmaR 1\ VN TrUÜS BuRH IC A

el compilador no (e va a discutir acerca de lo que usted quiere hacer y como
quiere hacerlo

Y en donde se detectan los errores lógicos? Pues en la prueba de escritorio
Allí y solo allí usted podra determinar si su algoritmo esta realmente bien o no, es
decir, SI logra o no el objetivo propuesto Ha de tenerse especial cuidado cuando
un algoritmo sea transcrito, ya que el cambio de cada linea de un algoritmo por
su correspondiente instrucción en un programa a veces cambia un poco la lógica
inicial SI no se conocen bien las reglas sintácticas del lenguaje de programación

2.5.4. Ejecución o puesta en marcha

Luego de que hemos realizado las correcciones pertinentes para que nuestro
compilador nos reporte cero errores de sintaxis y cero errores de precaución,
ya estamos en condiciones de poner a "correr" nuestro programa, o sea, en
condiciones de ser ejecutado por el computador Si lo que queríamos inicial-
mente (o sea, nuestro objetivo) era generar los 100 primeros números pares,
entonces al momento de la ejecución deberán aparecer en pantalla los 100
primeros números pares

2.6. Verificación de resultados

Este ultimo paso es útil ya que, con lo que nos entregue la ejecución del pro­
grama, podremos saber si se cumplió el objetivo inicial o no En caso de que
no se haya cumplido el objetivo inicial (al llegar a este punto), podría ser por
algunas de las siguientes razones

a No teníamos claro el objetivo y fallamos en todo el proceso

b No realizamos bien la Prueba de Escritorio y nos la saltamos creyendo que
el algoritmo estaba bien

c No conocíamos bien las reglas sintácticas del lenguaje con el que pensá­
bamos trabajar y el programa transcrito final termino siendo una repre­
sentación técnica diferente del algoritmo inicial

Lo que si podemos asegurar es que, si mantenemos esta metodología paso a
paso y cada uno lo realizamos concienzudamente, siempre al realizar la verifi­
cación de resultados se va a satisfacer con estos el objetivo inicial

34

Caí» 2 - Mctodologia i \ra solucionar un PROtiLPMA

2.7. Ejercicios propuestos sobre algoritmos informales

La única forma como uno puede realmente aprender a nadar o a tirarse desde
un paracaídas es haciéndolo, por eso lo invito a que se siente pacientemente
a desarrollar estos algoritmos pensados para que usted encuentre una gran
coincidencia entre unos y otros a pesar de tener objetivos diferentes Se que
surgirán muchas dudas en cuanto a algunos de ellos, pero también estoy
seguro de que, si usted lee este libro detenidamente, va a despejar todas las
dudas que tenga Por eso, tome al azar cualquiera de los siguientes enunciados
y sientese a practicar y a poner a funcionar, un poquito, esa lógica humana que
tan pocas veces ejercitamos

• Desarrollar un algoritmo que permita adquirir una revista.
• Desarrollar un algoritmo que permita entrara una casa que esta con llave
• Desarrollar un algoritmo que permita dar un beso.
• Desarrollar un algoritmo que permita empacar un regalo
• Desarrollar un algoritmo que permita encender un vehículo
• Desarrollar un algoritmo que permita fritar un huevo
• Desarrollar un algoritmo que permita mirar por un telescopio
• Desarrollar un algoritmo que permita botar la basura
• Desarrollar un algoritmo que permita tomar un baño
• Desarrollar un algoritmo que permita estudiar para un examen
• Desarrollar un algoritmo que permita tocar determinada canción con un

instrumento musical
• Desarrollar un algoritmo que permita viajar en avion
• Desarrollar un algoritmo que permita encender un bombillo
• Desarrollar un algoritmo que permita encender una vela
• Desarrollar un algoritmo que permita apagar una vela
• Desarrollar un algoritmo que permita apagar un bombillo
• Desarrollar un algoritmo que permita parquear un vehículo
• Desarrollar un algoritmo que permita almorzar
• Desarrollar un algoritmo que permita ir de la casa al trabajo
• Desarrollar un algoritmo que permita colocarse una camisa
• Desarrollar un algoritmo que permita quitarse la camisa
• Desarrollar un algoritmo que permita escuchar un determinado disco
• Desarrollar un algoritmo que permita abrir una ventana
• Desarrollar un algoritmo que permita ir a la tienda a comprar algo

Introducción a la i ógica dl programación - Omar I\án Trijos BuiuncÁ

• Desarrollar un algoritmo que permita tomar una fotografía.
• Desarrollar un algoritmo que permita hacer deporte.
• Desarrollar un algoritmo que permita cortarse el cabello.
• Desarrollar un algoritmo que permita hacer un avión con una hoja de

papel.
• Desarrollar un algoritmo que permíta manejar una bicicleta.
• Desarrollar un algoritmo que permita manejar una motocicleta.
• Desarrollar un algoritmo que permita manejar un monociclo.
• Desarrollar un algoritmo que permita maquillarse.
• Desarrollar un algoritmo que permíta hacer un pastel.
• Desarrollar un algoritmo que permita hacer un almuerzo.
• Desarrollar un algoritmo que permita adquirir un pantalón.
• Desarrollar un algoritmo que permita hacer un mercado pequeño.
• Desarrollar un algoritmo que permita leer el periódico.
• Desarrollar un algoritmo que permita saludar a un amigo.
• Desarrollar un algoritmo que permíta arrullar a un bebé hasta que se

duerma.
• Desarrollar un algoritmo que permita hacer un gol en fútbol.
• Desarrollar un algoritmo que permita jugar ping-pong.
• Desarrollar un algoritmo que permíta nadar.
• Desarrollar un algoritmo que permita tirarse desde un avión con un

paracaídas.
• Desarrollar un algoritmo que permita tirarse desde un avión sin un

paracaídas.
• Desarrollar un algoritmo que permita descifrar un jeroglífico.
• Desarrollar un algoritmo que permita amarrarse un zapato.
• Desarrollar un algoritmo que permita quitarse los zapatos.
• Desarrollar un algoritmo que permita silbar.
• Desarrollar un algoritmo que permita elevar una cometa.
• Desarrollar un algoritmo que permita desarrollar algoritmos.

36

Capítulo 3
Variables, constantes y operadores

3.1. Variable

Informalmente, algo variable es algo que puede cambiar de un momento a
otro Técnicamente, una variable es un campo de memoria al que se le pue­
de cambiar su contenido cuantas veces sea necesario Primera aclaración un
campo de memoria es un pedacito de la memoria principal del computador
en donde podemos guardar un dato Segunda aclaración a pesar de que en la
memoria es donde se guarda la información, exactamente esta se almacena en
variables Esto le ha de representar a usted que es, a través de variables, como
se puede utilizar la memoria del computador

¿Ha notado usted que la maleta de una guitarra es diferente a la maleta de un
violin o de una trompeta’ Sabe entonces ¿que es lo que diferencia la maleta de
un instrumento musical de la maleta de otro instrumento musical’ Pues pre
cisamente la única diferencia es su contenido, es decir, el instrumento en si Y
esto, ¿que tiene que ver con el tema que estamos tratando’ Pues muy sencillo
la diferencia entre una variable y otra radica precisamente en su contenido o,
mas bien, en el tipo de su contenido

Para poder utilizar variables en el desarrollo de un programa de computador
se debe primero decir que tipo de dato se va a almacenar, pues las variables
son como unas cajitas de diferentes tamaños y, por tal motivo, se deben de­
clarar previamente para que el computador las dimensione de acuerdo a las
necesidades ¿Cuales son los tipos de datos que pueden ser almacenados en
una variable’ A pesar del avance de la tecnología, los tipos de datos de las
variables se explican a continuación

Introducción a la lógica dl programación - Omar 1\án Tkijos Buriticá.

3.1.1. Tipo entero

Un dato de tipo entero es un número que no tiene punto decimal, por lo tan­
to, en sus operaciones jamás va a generar decimales. Por ejemplo 25, -96 y 0.
El hecho de que los datos de tipo entero no generen decimales significa que
operan con un juego de regias llamado aritmética entera. Una variable que se
declare de tipo entero podrá almacenar solamente datos de tipo entero.

3.1.2. Tipo real

Un dato de tipo real es un número que tiene punto decimal, por lo tanto, en
sus operaciones puede generar decimales. Por ejemplo 12.3, -78.56 o 45.0. El
hecho de que los datos de tipo real generen decimales significa que operan
con un juego de reglas llamado aritmética real. Una variable que se declare de
tipo real podrá almacenar solamente datos de tipo real.

Por lo dicho en las anteriores dos definiciones, ¿qué tipo de dato sería 5.7 (así,
con el punto y todo). Pensaríamos que es un entero, pero en realidad no. La
definición de dato entero es que no tiene punto decimal y la de dato real es
que tiene punto decimal, por lo tanto, 5. es un dato real.

3.1.3. Tipo carácter

Un dato tipo carácter es un equivalente del código ASCII (American Standard
Code for Interchange Information). ¿Qué es el código ASCII? Es el código
internacional de equivalencias internas en el sistema binario. A nivel mundial,
los computadores están construidos en un sistema numérico llamado sistema
binario, sistema que se basa solamente en la utilización de unos (1) y ceros
(0). Este sistema tiene una relación directa con el sistema decimal y, por lo
tanto, fue adoptado, ya que permite aprovechar características físicas de los
componentes electrónicos. Dada la gran importancia que poco a poco fueron
adquiriendo los computadores, se adoptó un solo código interno para la
interpretación de todas y cada una de las teclas de su teclado.

De esta forma, cuando usted presiona en su teclado la letra A, realmente se
genera por dentro de su computador el número 65 pero expresado en código
binario, es decir, 0100 0001, y cuando usted presiona la tecla 1, se genera
internamente el número 49, pero expresado igualmente en código binario, es
decir, 0011 0001.

Cada una de las teclas que usted presione tendrá un equivalente interno y por
supuesto expresado (internamente) en sistema binario. Cada cero o cada uno

38

Cap. 3 - VARtAllLLS, CONSTAÍ^TES y OPLTUDORIiS

utilizado en este sistema se conoce como bit (abreviatura de binary digit) y un
conjunto de 8 bits (medida en la cual se expresa el código ASCII) se conoce
como un byte (pronúnclese bait).

Como el código ASCII está expresado en bytes y cada byte tiene 8 bits y cada
bit puede tener un 0 o un 1 (o sea, dos estados), entonces se puede concluir
gue el código completo consta de
labia completa de equivalencias ASCII.

Tabla 5. Fragmento del código ASCII

Como puede usted notar, estas son apenas algunas de las 256 equivalencias
que tiene la tabla A5CII. Es obvio pensar que también tienen equivalencia los
caracteres especiales como la coma, el punto o el paréntesis.

Cuando se tiene un conjunto de caracteres, se dice técnicamente que se tie­
ne una cadena, por lo tanto, el nombre del autor "OMAR" es una cadena. El
contenido de una cadena no es evaluado por el computador y se acostumbra
acotarlo o encerrarlo entre comillas dobles; así, la cadena "5 - 7 es igual a 8", a
pesar de no ser lógica ni correcta matemáticamente, es válida para el compu­
tador ya que él, en ningún momento, evalúa las cadenas.

3.2. Asignaciones

¿Cómo se llevan los datos a las variables?, o sea, ¿cómo se "cargan" las
variables? Pues a través de un signo muy conocido por usted y es el signo =.

39

INTRODUCCION A IJV LOGIC \ DI I ROCiR,\M \CION OM \R I\ \N TIUJOS BUUmC \

Este Signo tiene, en el caso de los algoritmos computacionales y programas,
una connotación un poco diferente a la que se le da en matemáticas El signo
igual (=) significa que el computador va a realizar lo que esta a la derecha del
igual y lo va a almacenar en la variable que se encuentre a la izquierda del igual

De manera que ya usted puede ver claramente en esta definición que a la
izquierda del igual solo puede haber una variable y al lado derecho del igual
puede haber una constante, una variable o una expresión De manera que
cualquiera de los siguientes esquemas es valido

a = 8 Le indica al computador que guarde la constante 8 en la variable a

b = a Le indica a(computador que guarde en la variable b el contenido de la
variable a que en la instrucción había sido 'cargada con 8, por lo tanto,
en la variable b queda el valor de 8 al igual que en la variable a

c = a + ble indica al computador que guarde en la variable c el resultado de
sumar el contenido de la variable a con el contenido de la variable b
Como la variable a tema el contenido 8 y la variable b también tenía el
contenido 8, entonces el computador sumara 8+8 y ese 16 de resulta
do lo almacenara en la variable c

Puede notarse en este ejemplo que en la variable a se ha almacenado una
constante, en la variable b se ha almacenado el contenido de otra variable y en
la variable c se ha almacenado el resultado de una expresión Y que pasara si
luego de tener estas tres instrucciones adicionamos la siguiente

b = 9 Pues, muy sencillo, el anterior contenido de la variable b que era 8 va
a ser reemplazado por el nuevo contenido de la variable b que es 9
Esto significa que, cada vez que se asigna un nuevo valor (proveniente
de una constante, una variable o como resultado de una expresión), el
valor anterior de la misma variable se pierde

De esta forma, si se quisieran escribir los contenidos de las variables a, b y c, el
computador nos reportaría para a el contenido 8, para b el contenido 9 y para
c el contenido 16

Todo lo que debe tener en cuenta con la asignación o carga de las variables es
lo siguiente

a Al lado izquierdo del igual solo puede haber una variable

b Al lado derecho del igual puede haber una constante, una variable o una
expresión

40

Caí» 3 - Vaiuamles, constantes y operadores

c. El computador siempre resuelve lo de la derecha del igual y su resultado
lo almacena en la variable que este a la izquierda del mismo.

d. Cada vez que se le entra un nuevo valor a una variable, el valor anterior se
pierde.

De acuerdo a lo dicho, vamos a resolver el siguiente conjunto de instrucciones:

Entero: A, B, C Declara de tipo entero las variables A, B y C, de manera que

A= 10

solo podrán almacenar datos enteros.

Almacena la constante 10 en la variable A

B=15 Almacena la constante 15 en la variable B.

II
u

Almacena la constante 20 en la variable C.

A = A + B Almacena en la variable A el resultado de sumar el contenido
de A más el contenido de B, o sea, 10+15, que es igual a 25.

B = B + 8 Almacena en la variable B el resultado de sumar el contenido
de B con la constante 8, o sea, 15+8, que es igual a 23.

C = C + A Almacena en la variable C el resultado de sumar el contenido
de la variable C más el contenido de la variable A, o sea, 20+25,
que es igual a 45. Recuerde que en esta línea se utiliza el último
valor almacenado en la variable A.

A = A + 5 Almacena en la variable C el resultado de sumar el contenido de
la variable A más la constante 5, es decir, 25+5, que es igual a 30.

B = B + 3 Almacena en la variable B el resultado de sumar el contenido de
la variable B más la constante 3, o sea, 23+3, que es igual a 26.

C = C + 2 Almacena en la variable C el resultado de sumar el contenido de
la variable C más la constante 2, o sea, 45+2, que es igual a 47.

C
D

<II
<

Almacena en la variable A el resultado de restarle al contenido
de la variable A el contenido de la variable B, o sea, 30-26, que
es igual a 4

B = A-B Almacena en la variable B el resultado de restarle al contenido
de la variable A el contenido de la variable B, o sea, 4-26, que es
igual a -22

41

INTRODUCCION A LA LOCiICA DI PROORAMAC ION - OmaR K \N TlUJOii BUIU HC \

C = A - B Almacena en la variable C el resultado de restarle aí contenido
de la variable A el contenido de la variable B, o sea, 4- (-22), que
por propiedades algebraicas es igual a 4+22, o sea, 26

Los resultados finales en las tres variables son

Variable A 4
Variable 8 -22
Variable C 26

No olvide que para el manejo de variables cada nuevo valor que se le asigne
a una variable borra el valor anterior Nótese que en este conjunto de instruc­
ciones las tres ultimas son iguales en su forma pero no en sus resultados Para
hacerlo mas breve, el seguimiento de este conjunto de instrucciones podría­
mos detallarlo de la siguiente forma

Variables

Entero A, B, C

A = 10

A

10

B C

B = 15 10 15
C = 20 +6 15 20
A = A + B 25 35 20
B = B + 8 25 23 20
C = C + A 25 23 45
A = A + 5 30 23 45
B = B + 3 30 26 45
C = C + 2 30 26 47

m<II
<

4 26 47

C
D II > 1 co 4 22 42

co1

<II
u

4 -22 26

Era evidente que teníamos que llegar al mismo resultado Esto que acabamos
de hacer es precisamente la PRUEBA DE ESCRITORIO de este conjunto de ins­
trucciones También puede notarse que cada nuevo valor asignado a cada va­
riable reemplaza el valor anterior de la misma variable, por esa razón, por cada
nuevo resultado (en una determinada variable), se va tachando el resultado
anterior para indicar que ese ya no es valido

42

Cap 3 - Variaiilcs, con?tantcs y opcradorls

3.3. Ejercicios

1.

a = 10
b = 20
c = 5
a = a + 3
b=b+4-a
c=a+b+c
a = a + c
b = 4
c=c+3-b+2

¿Qué valores quedan almacenados en las variables a, b y c?

2.

a = 5
b = 18
c=15
d = 25
a = a + 10
b=b+5-c
c = c + 4 + b
d=d+b+a
a = a + 1
b = b + c
c = b + c
d = b + b

¿Qué valores quedan almacenados en las variables a, b, c y d?

3.

a = 9
b = 6
a = a+4
b = b + 2
a = a + 10

43

iNTRODUCCtÓN A I-.\ I tK.tCA DI l»ROGR/\MACION - OsL\K I\ÁN TRUOS BURITICÁ

b = b - 25
a = a - 20
b = b + 5
a = a + 4
b = b + 2
a = a + 10
b = b-10

¿Qué valores quedan almacenados en las variables a y b?

4.

a = 18
b = 18
c = 18
d = 18
a = a + b
b = a - b
c = a + b
d = a-b
a = a-b
b = a + b
c = a-b

d = a + b

¿Qué valores quedan almacenados en las variables a, b, c y d?

5.

a = 10
b = 5
a = a-5
b = b + 6
a = a +18
b = b-23
a = a-21
b = b-5
a = a-4

44

Caí* 3 - VARiAnuns, constaniis y oi'Cradores

b=b-2
3 = 3 + 10
b = b + 10

¿Qué valores quedan almacenados en las variables a y b?

a = 8
b = 7
c = 5
d = 8
a=a+b-c+d
b=a+b-c+d
c=a+b-c+d
d=a+b-c+d
a=a+b-c+d
b=a+b“C+d
c=a+b-c+d
d=a+b-c+d

¿Que valores quedan almacenados en las variables a, b c y d?

6.

3.3. Operadores

Los operadores son signos que nos permiten expresar relaciones entre
variables y/o constantes, relaciones de las cuales normalmente se desprende
un resultado. Ya hemos manejado dos operadores, que son el de la suma (+)
y el de la resta (-), pero no son los únicos. En un algoritmo computacional,
también se pueden utilizar los siguientes operadores

^ Para expresar la potenciación
* Para expresar la multiplicación
/ Para expresar la división

Debo anotar que la notación para potenciación que vamos a utilizar en este
libro no es estándar para todos los lenguajes de programación y, en algunos
casos, el mismo signo tiene otro significado. Por tal motivo, sugiero que, cuan­
do vaya a utilizar este operador en un programa determinado donde necesite

45

iNTRODUCCtÓN A LA LÓGICA DF PROGR/\MACIÓN ■ OmAR IvÁN TrIJÜS BuRITICÁ

realizar operaciones de potenciación, consulte primero el manual del lenguaje
en el cual esté trabajando. Por lo menos io vamos a utilizar en el desarrollo de
este libro.

Algo que debemos tener en cuenta cuando vamos a escribir una expresión es
que el computador solo entiende las expresiones en formato linealizado, esto
quiere decir que son expresiones escritas en una sola línea. De tal manera que
si queremos escribir la ecuación:

no se la podemos entregar al computador tal y cual como está aquí escrita,
sino que debemos "transformarla" de manera que quede escrita en una sola
línea. Supondríamos en primera instancia que su equivalente (en una sola lí­
nea) sería:

var = a + b/ c + d

Sin embargo, aunque a primera vista pareciera ser la misma ecuación, esta ex­
presión podría tener varias interpretaciones. Le pregunto a usted amigo lector,
la ecuación computacional:

var = a + b/ c + d

¿a cuál de las siguientes ecuaciones reales correspondería?

a + b
var=

c+cl

a + b ,
var= +«

c

var=o+ +d

c+d

Gran pregunta... pues es muy obvio que cada una de estas ecuaciones va a dar
un resultado diferente. Para solucionar esta gran Inquietud, todos los computa­
dores tienen implementada una jerarquía de operadores que no es más que un
conjunto de reglas que le permiten a un computador evaluar de una forma (y solo
una) una expresión aritmética para que no haya espacio para ambigüedades.

Lo primero que el computador evalúa y realiza son las potencias, revisándolas
de derecha a izquierda. Lo segundo que el computador evalúa y realiza son las

46

Caí*. 3 - Variadles, conítantes y oj’craiwres

multiplicaciones y divisiones y lo último que revisa son las sumas y restas.Tanto
para el nivel de multiplicaciones y divisiones como para el nivel de sumas y
restas, la evaluación es totalmente indistinta; esto quiere decir que, en la medida
que va encontrando sumas y restas (si están en este nivel), las va ejecutando.

Veamos entonces el ejemplo inicial:

var = a + b/ c + d

Será interpretado por el computador de la siguiente manera. Primero evalúa
en esta expresión si existen potencias. Como no las hay, pasa al siguiente nivel
y vuelve a recorrer la expresión evaluando si existen (indistintamente y no
necesariamente en ese orden) multiplicaciones y divisiones y encuentra que
existe una división, de manera que lo primero que realiza es la división de
b/c. Luego vuelva a recorrer la expresión buscando (en el tercer nivel) sumas
y restas (indistintamente y no necesariamente en ese orden) y encuentra la
suma de a más lo que ya había calculado y luego realiza la suma de este último
resultado más d.

¿Quées lo que se persigue con estajerarquía de operadores? Pues sencillamente
que cuando el computador vaya a resolver una expresión, en donde por
supuesto participen operadores aritméticos, siempre tenga listos los valores
que va a operar. De esta forma, la evaluación de la expresión en mención se
hace en los siguientes pasos:

var = a + b/ c + d

Por lo tanto, escribir la expresión así

var = a + b/ c + d

SOLAMENTE equivale a la expresión

b ;
var=í7+ +a

c

47

INTRODUCCION A LOGICA DI I'RüGRAMACIÜN - OkIAR I\ \N TrFJOS BURH ICA

Y SÍ queremos alterar esa jerarquía porque la expresión que queríamos escribir
no era esta, ¿qué hacemos? Para eso se hicieron ios paréntesis... precisamente
para alterar esta jerarquía.

El hecho de que los computadores se basen en esta jerarquía de operadores
para realizar sus operaciones es lo único que garantiza que, para una
determinada expresión, el resultado en cualquier computador sea el mismo.
Cuando se utilizan paréntesis, el computador detecta el primer paréntesis
más interno y dentro de él aplica la tabla de jerarquía de operadores. ¿Cómo
sabe el computador que se encuentra dentro de un "paréntesis más interno"?
El computador considera un par de paréntesis como "más interno" cuando
dentro de ellos no existe ningún otro par de paréntesis.

Haciendo uso de la facilidad de los paréntesis, podemos entonces expresar
computacionalmente las siguientes fórmulas así:

Puede usted, querido lector, suponer el papel tan importante que hacen
aquí los paréntesis, precisamente porque, cuando a través de ellos se altera
la jerarquía de operadores, es cuando se llega a las fórmulas que queremos
que el computador realice. Igualmente, ha de saber que un paréntesis mal
colocado finalmente hace que los resultados que calcule el computador sean
diferentes a los esperados. Veamos el siguiente ejemplo:

VAR = (a + b/c-d)/(a + b/(cAd+d/(a-b/c*d)))

Recuerde, el computador busca los paréntesis más internos, sobre ellos aplica la
tabla de jerarquía de operadores (primero potencias, segundo multiplicaciones
y divisiones y tercero sumas y restas). Luego el orden de resolución de esta
ecuación, suponiendo que son variables que tienen ya unos valores asignados,
es el siguiente:

var=í7+ +f/ var=
c + r/

VAR = a + b / c + d
c

VAR = (a + b) / (c + d)

c
var=í7 +

h
c+ci

VAR = a + b / (c + d) VAR = {a + b) / c + d

48

Cap 3 - Variadles, constantes y operadores

VAR *=(j + b/ c d)/(a + b/ (c''il+d/(a-b/c*d)))

XII

LvJ LivJ
Lv—I

L VI -I

—VIII—I

El objetivo fundamental de mantener esta jerarquía es que, cuando el compu­
tador vaya a realizar una operación entre dos operandos, siempre va a tener
definidos los operandos. Veámoslo paso a paso y vamos reemplazando por
cada uno de los resultados que va encontrando el computador señalando
cada resultado por el número ordinal del paso.

Primero se ubica en el primer paréntesis más interno y dentro de él aplica la
jerarquía de operaciones:

VAR = (a + b/c-d)/(a + b/(cAd+d/(a-b/c*d}))
VAR = (a + l-d)/(a + b/(cAd+d/{a-b/c*d)))
VAR = (II-d)/(a + b/(cAd+d/(a-b/c*d)))
VAR = (III) / {a -H b / (c A d+ d / (a - b / c * d)))

Luego se ubica en el siguiente paréntesis mas interno Recuerde que un parén­
tesis es "más interno" si no tiene más paréntesis adentro.

VAR = (111) / (a + b / (c A d+ d / (a - IV * d)))
VAR = (III) / {a + b / (c A d-t- d / (a - V}))
VAR = (lll)/(a + b/(cAd+d/(VI)))

Sigue buscando y resolviendo los paréntesis que vayan quedando, aplicando
en cada uno la tabla de jerarquía de operadores:

VAR = (lll)/{a + b/(cAd+d/VI))
VAR = {III)/(a + b/(VII + d/VI))

49

iNTRODUCCtüN A LA LOGICA OI l>ROGR/\MACION - OmAR I\ÁN TRIJOS BURmCÁ.

VAR = (lll)/(a + b/{VII+Vtll))
VAR = (lll)/(a + b/(IX))

En la medida en que se van resolviendo completamente los paréntesis, estos
van desapareciendo y la expresión se va simplifícando:

VAR = (III)/{a + b/IX)
VAR = (III)/(a + X)
VAR = (III)/{XI)

Finalmente, la expresión queda reducida a resolver:

VAR = III / XI
VAR = XII

Bueno, y si quisiéramos saber esta fórmula linealizada a qué fórmula algebraica
correspondería no es sino seguir los mismos pasos que siguió el computador
para resolverla y llegaremos a la siguiente fórmula:

VAR = (a + b/c-d)/(a + b/(c^d+d/(a-b/c*d)))

Equivale algebraicamente a:

a + - d
c

b

b ^ ,
a - * a

c

3.4. Ejercicios
Todos los siguientes ejercicios deberán desarrollarse utilizando las reglas de la
aritmética entera.

l.a = 10

50

b = 20
c = 10

a = a + 15

b = b+12
c = a*c

¿Qué valores quedan en las variables a, b y c?

2. a = 3

b = 8
c= 1
a = 5
b = 9
c = 7
a = a + 1
b = b + 2
c = c-i-3

¿Qué valores quedan en las variables a, b y c?

3. a = 10

b = 5
c = 10
a = a + b-5
b = a + b-5
c = a4-b-S
a = a4-5*b/2
b=a+5"b/2
c = a4-5*b/2

¿Qué valores quedan en las variables a, b y c?

4. a = 5

b = 5
c = 5
a = a + a
b = b -t- b
c = c-i-c
a=a+b+c
b=a+b+c

Cap. 3 - Variarles, constantes y ophudores

51

IrmODUCCION A IJV LÓGICA DL PROGRAMACION - OmaR I\AN TRUOS BURITICA

c=a+b+c

¿Qué valores quedan en las variables a, b y c?

5. a = 10

b = 10
c=10
a = a + 5
b = a + 3
c = a + 2
a = b + 4
b = b + 5
c = c + 8

¿Qué valores quedan en las variables a, b y c?

6. a = 10

b = l
c = 4
a = a + c
b = a + c
c = a + c
a = c + 5
b = c + b
c=a+b+c

¿Qué valores quedan en las variables a, b y c?

7. a = l

b = l
c = l
a = a + a
b = b + a
c = c + a
a = a + a
b = b + a

c = c + a

52

Ir^ODUCClÓN A LA LOGICA DL I'ROGR/\MACIÜN - OSIAR l\ÁN TRIJOS BURITICA

c=a+b+c

¿Qué valores quedan en las variables a, b y c?

5. a = 10

b = 10
c = 10
a = a + 5
b = a + 3
c = a + 2
a = b + 4
b = b + 5
c = c + 8

¿Qué valores quedan en las variables a, b y c?

6. a = 10

b = 1
c = 4
a = a + c
b = a + c
c = a + c
a = c + 5
b = c + b
c=a+b+c

¿Qué valores quedan en las variables a, b y c?

7. a = l

b = 1
c = 1
a = a + a
b=íb + a

c = c + a
a = a + a
b = b + a
c = c + a

52

Caí* 3 - VAiuAm.ns, coNSTAtírrs v opoudorls

¿Qué valores quedan en las variables a, b y c?

8. a = 10

b = 50
c = 30
a = a - b
b = b-c
c = c-a
a = a -1
b = b-a
c=c+a-b

¿Qué valores quedan en las variables a, b y c?

9. a = 1

b = 2
c = 3
a = a + b
b = a - b
c = a*b
a = a - b
b = a + b
c = a*b

¿Qué valores quedan en las variables a, b y c?

10. a = 1

b = 2
c = 3
a = a + 2
b=a+2+b
c=a+2+c
a = a/2
b = b/2
c = c/2

¿Qué valores quedan en las variables a, b y c?

53

iNTKODUCCtÓN A IÜGICA DC PROGRAMACION - OMAR I\ \N TRIJOS BURITICÁ

"Linealizar" las siguientes expresiones (no se olvide que llnealizar significa es­
cribir una expresión algebraica en una sola línea). En cada uno de los siguien­
tes ejercicios, escribir el orden en que el computador realizaría las operaciones.

¿7 +

+ C

a + ¿ +

a

a-\-b
a

a~b

Í7 + 6 +

Cl +

c + a

54

Caj«. 3 - Variaülls, constantes y operadores

15.

x =
a + b-\-c

b
a +

c

16.

a + b-h ^

x=
a + b^^

d

17.

X =

¿7 4* d
c
a

18.

:c =

a b +
b c
a b

b c

55

Capítulo 4
Estructuras básicas y técnicas para

representar algoritmos

4.1 El concepto de estructura

Una estructura se define como un esquema que nos permite representar de
manera simplificada alguna idea y que, bajo condiciones normales, es cons­
tante. Ello significa que, de alguna manera, el pensamiento del ser humano, en
lo que se refiere a los algoritmos, esta enmarcado en algún tipo de estructuras
que no solo le permiten tener un medio mas simplificado y a la mano para
expresar las ideas, sino que además permite "restringir" un poco el horizonte
de la lógica algorítmica.

Es pertinente, pues, hacer un breve paréntesis para explicar por qué es
importante "restringir" un poco el horizonte de la lógica algorítmica.
Comencemos con dos breves preguntas:

1 ¿Con cuántos algoritmos las señoras de la casa pueden preparar los
fríjoles?

2. ¿Cuántas personas ve usted cerca que lleven puesta una camisa y un pan­
talón exactamente igual al suyo?

La primera pregunta se resuelve preguntándoles a tres o cuatro señoras acerca
de su forma de preparar los fríjoles. Tenga la segundad de que todas van a
tener una manera diferente (o sea, un algoritmo diferente) para prepararlos
SI los vemos detalladamente, pero lo que va a ser coincidente en todas tam­
bién es que logran el mismo objetivo, que es dejar listos los fríjoles para ser
degustados. Esto nos va a demostrar, en primera instancia, que cada persona
concibe algorítmicamente el mismo proceso de manera diferente, pero que

I^^TRODUCaüN A LÓGICA DL PROGRAMACION - OmaR I\ \N TrUOS BURmcÁ

pueden llegar al mismo objetivo sin importar el camino que hayan escogido
para lograrlo.

La segunda es todavía más reveladora y la voy a hacer en otro sentido. ¿Sabe
usted por qué ninguna, o casi ninguna, persona lleva puesta una camisa y un
pantalón exactamente igual al suyo? Pues sencillamente porque todas las per­
sonas están cumpliendo, en condiciones normales, con el objetivo de estar
vestidos más no exactamente de la misma forma.

Esa variabilidad en cuanto a la concepción de un determinado algoritmo es
lo que llevó a pensar en que la parte técnica también podría llegar a ser igual­
mente variable o, más bien, exageradamente variable. ¿Qué pasaba si una
persona concebía un algoritmo computacíonal en unas condiciones lógicas
que prácticamente solo ella la entendiera? Pues precisamente que el día que
esa persona fuera despedida de la empresa o se fuera o falleciera, la empresa
se vería en un verdadero y grande problema.

A nivel informal, la variabilidad de ópticas en cuanto a la concepción del mundo
es lo que le ha permitido a este avanzar y es de allí que se han podido extractar
tecnologías, modas, teorías y muchos avances del mundo moderno; pero a
nivel técnico, sí resulta muy importante que la lógica para desarrollar un algo­
ritmo computadonal sea tan clara y tan "estándar" (si se puede decir asQ que
se pueda lograr que un programa desarrollado por una persona sea fácilmente
entendióle por cualquier otra, dado que podríamos llegar a encontrarnos con
programas tan confusos que solo llegarían a ser entendióles por su creador.

Esa es la razón fundamental por la cual se buscó "uniformar" la lógica para de­
sarrollar algoritmos computacionales y poder llegar a unas estructuras básicas
sobre las cuales se pueda decir que está fundamentada dicha lógica.

4.2. Consideraciones algorítmicas
sobre el pensamiento humano

Luego de analizar desde muchos ángulos el pensamiento humano, y teniendo
en cuenta los cónceptos de algoritmo Informal y algoritmo computacíonal, se
llegó a la conclusión de que dicho pensamiento se mueve entre tres estructu­
ras básicas:

4.2.1. Secuencia

Cuando usted está planeando ir este fin de semana a pasear con la familia, lo
que en su mente se va dibujando poco a poco es una secuencia de acciones a

58

Cm> 4 - CyrRUCTUIUb básicas y TLCNICAS PAÍIA RCPRISrNTAR AI GOIUTMOS

realizar y que le permitan pasar un fin de semana bien bueno. Cuando usted
tiene que pensar que debe ir hasta el paradero de buses a tomar el transporte,
lo que va organizando en su mente es una secuencia de acciones que le per­
mitan acercarse al paradero, esperar el bus correcto y tomarlo para irse para su
casa. Pues bien, esa es la primera estructura sobre la cual se mueve el pensa­
miento humano y es la estructura llamada SECUENCIA.

Permanentemente, usted está inmerso en esta estructura y, generalmente,
usted primero planea cada secuencia de acciones (consciente o inconsciente­
mente) antes de ejecutarlas. Cada una de las cosas que hacemos diariamente
no son mas que secuencias de acciones que hemos planeado para poder cum­
plir con nuestros objetivos en la sociedad.

4.2.2. Decisión

Usted ha llegado al paradero de buses, ve cómo pasan y pasan buses pero
ninguno tiene la ruta que necesita porque usted vive en ese barrio para el cual
hay un servicio de transporte muy deficiente. Por cada bus que pasa, usted
le mira la ruta y, al ver que no es, espera el siguiente bus y así sucesivamente
hasta que ve llegar al bus que usted necesita.

Usted esta planeando el fin de semana, pero no sabe si pasar el domingo en el
balneario que queda a una hora de la ciudad en donde vive o aprovechar e ir
hasta la finca de aquel tío que hace mucho tiempo que no visita y que queda
también a una hora. En cada alternativa, encuentra ventajas y desventajas y
usted sabe que visitar al tío es bueno porque hace mucho tiempo que no lo ve,
pero también sabe que la finca del tío no tiene piscina y el balneario sí y que le
gustaría ver a su familia divertirse en ella

Usted va a ver las noticias en algún noticiero de las 9 30 de la noche, pero aún
no sabe en qué noticiero verlas, pues a esa hora presentan un noticiero dife­
rente en cada uno de los canales de televisión.

Precisamente usted esta adportas de conocer la segunda estructura sobre la
cual se basa el pensamiento (o razonamiento) humano. Esta es la estructura de
DECISIÓN.

Gracias a la cual usted puede escoger lo que para usted sea la mejor alternativa
de entre vanas opciones, y hago hincapié en esto, porque cuando usted tiene
(como erradamente dicen los periodistas) una sola alternativa, pues sencillamen­
te no tiene alternativa y no hay caminos para escoger. La decisión se da siempre
que usted tenga que escoger de entre, por lo menos, dos caminos lógicos.

Introducción a la i üoica uc i’kogiu\maciün - Omar I\án Tkijos Buritica

4.2.3. Ciclos

Usted acostumbra todos los días a ver el noticiero de las 9:30 de la noche, acos­
tumbra a ir al trabajo a la misma hora y a esperar el bus en el mismo paradero,
acostumbra saludar de la misma forma a su esposa y acostumbra dormir en el
mismo lado y en la misma posición. Usted sencillamente vive practicando la
tercera estructura y son los CICLOS.

Que no es más que la estructura que nos permite repetir una o varias acciones
una cantidad definida de veces dependiendo de una condición.Todos los días
usted almuerza en su casa, según lo cual estará en el ciclo de ir a almorzar
siempre, pero en pleno almuerzo, el hecho de que usted lleve muchas veces
la cuchara del plato a su boca representa que usted estará haciendo lo mis­
mo mientras en el plato exista todavía algo más para comer. Puede notar que
permanentemente (e infortunadamente) estamos también realizando tareas
cíclicas. Cuando nos aferramos mucho a estos ciclos de vida, es cuando la vida
se nos vuelve tremendamente monótona.

Por ahora, lo que importa es que usted tenga claro que todo lo que usted hace,
sin importar qué sea, cualquier acción o conjunto de acciones que usted haga
siempre estarán enmarcadas en estas tres estructuras: secuencias de acciones,
decisión de acción y ciclos de acciones.

También conviene que sepa que tomar una decisión depende de una
determinada condición y que repetir un conjunto de acciones depende de
que se cumpla o se deje de cumplir igualmente una condición.

4.3. Estructuras básicas expresadas técnicamente

Precisamente, y con el ánimo de facilitar unos patrones técnicos que permitan des­
cribir las ideas lógicas de una manera uniforme, se han desarrollado unos esque­
mas que nos van a permitir escribir las estructuras mencionadas anteriormente.

4.3.1. Las secuencias de órdenes

Para escribir una secuencia de órdenes o acciones, todo lo que tiene que hacer
es colocar una nueva orden o una nueva acción después de la última que haya
colocado. De esta manera, se entiende la secuencialidad y la ordinalidad en la
ejecución de esas acciones.

Vamos a desarrollar un algoritmo que nos permita asomarnos a la ventana, pero
vamos a asumir que la ventana a donde nos queremos asomar ya está abierta y
que no estamos muy distantes de la ventana. Entonces podríamos decir:

6ü

C \l* 4 - CSTRUCTURAS liASICAS Y TLCNICAS P\RA REPJU3rNTAR ALGORmiOS

Algoritmo para asomarnos a la ventana
Inicio

Ubicar la ventana por la que nos queremos asomar
Levantarnos del tugaren donde estemos sentados
Avanzar hacia la ventana
Llegar hasta tener la ventana muy muy cerquita
Asomarnos por la ventana

Fin

Tal vez usted puede notar que el enunciado de este ejercicio tiene unas condi
Clones que parecen inoficiosas La razón de la presencia de estas condiciones es
que, solo por el ejemplo, no quena que intervinieran otro tipo de estructuras

En el ejemplo dado, usted puede ver que cada acción esta antes de una y des­
pués de otra (excepto por supuesto la primera y la ultima) También puede
notar que, para que este algoritmo nos permita asomarnos a la ventana, todo
lo que tenemos que hacer es realizar cada acción en el orden en que están
planteadas y sencillamente realizar una a la vez Eso nos va a permitir lograr el
objetivo propuesto

Si queremos realizar el algoritmo para colocarnos una camisa (asumimos que
la camisa esta en nuestro ropero doblada y abrochada), entonces

Algoritmo para colocarnos una camisa
Inicio

Dirigirnos a nuestro ropero
Abriré! ropero
Tomar una camisa
Desabrocharla
Abrirla camisa
Meter un brozo por una de sus mangas
Meter el otro brazo por la otra de sus mangas
Ajustarla camisa al tronco
Abotonarla (boton a boton)

Fin

Al igual que en el ejemplo anterior, todo lo que tenemos que hacer es ejecutar
cada acción en el orden indicado y hacerlo paso a paso y entonces podremos
lograr el objetivo de colocarnos la camisa

61

I^írRO[)UCClÓN A lA IÓGICA DL rROGR/\.'L\CION - OmaK I\’AN TiUJOS Buuri ICÁ

Puede usted notar que, para utilizar la estructura de secuencia (que a veces pa­
rece ser tan obvia}, todo lo que tenemos que hacer es ir colocando una acción
tras otra y, por supuesto, ser muy racionales en el orden de dichas acciones,
porque estoy seguro que, hasta el momento, usted ha podido notar que, en
cuestión de algoritmos, el orden de los factores sí altera el resultado.

4.3.2. Las decisiones

Siempre que tenemos que tomar una decisión o, más bien, siempre que
tengamos que utilizar la estructura de decisiones, vamos a depender de una
condición. La condición es la que nos permite que podamos decidir cuál es el
camino lógico correcto a tomar.

Vamos a desarrollar el mismo algoritmo de asomarnos a la ventana, pero esta
vez no le vamos a colocar las condiciones de que estamos cerca de la ventana
y de que esta está abierta. Para ello, vamos a incorporar unas líneas de decisión
que nos permitan tener un algoritmo más genérico y que nos permitan lograr
mejor el objetivo, así:

Algoritmo para asomarnos a la ventana
Inicio

Ubicarla ventana por la que nos queremos asomar
Si estamos sentados

Levantarnos del lugar en donde estemos sentados

Orientarnos hacia la ventana

Sino
Orientarnos hacia la ventana

Avanzar hacia la ventana
Llegar hasta tenerla ventana muy muy cerquita

Si está cerrada
Abrirla

Asomarnos por la ventana
Fin

Ya puede usted notar que nuestro algoritmo ha cambiado un poco y, por lo
tanto, ahora tiene unas condiciones que le permiten ser una secuencia de ac­
ciones más racional. En estas condiciones, el algoritmo se convierte en algo
más depurado y mucho más aproximado a la realidad. Note usted varias cosas
en este algoritmo:

Caí* 4 CsTKUCTURAS HASICAS \ TtCNlCAS l \RA RU’RESCNTAR algoritmos

1 Las palabras Si que aparecen son exclusivamente condicionales y no afir­
mativas como pudiera pensarse en algunos casos

2 Después de cada Si condicional va una condición, que es la que permite
que se haga una cosa u otra La condición regula las acciones que vienen
después y que dependen del Si condicional inicial En la decision

Si estamos sentados
Levantarnos del tugar en donde estemos sentados
Or/enfornos hacia la ventana

Sino
Or/enfornos hacia la ventana

Notamos que estar sentados es la condición de la cual depende si hacemos las
dos acciones (en caso de que la condición sea VERDADERA)

Levantarnos del lugar en donde estemos sentados
Orientarnos hacia la ventana

O SI solo hacemos la acción (en caso de que la condición sea FALSA)

Or/enfornos hacia la venfono

3 Puede usted notar que una decision completa involucra

Una pregunta que evalúa una condición

Un conjunto de acciones a realizar en caso de que la condición
sea evaluada como VERDADERA

Un conjunto de acciones a realizar en caso de que la condición
sea evaluada como FALSA

Esta ultima parte, dentro del numeral 3, es la razón de ser de la existencia de
la acción Sino

4 No siempre que exista un condicional Si debe existir un Sino asociado a él
Siempre que exista un Sino es porque esta asociado a un 5/ condicional
determinado Tal es el caso de la decision

5/ esffl cerrada
Abrirla

INTRODUCCION A LA IOGICA DC PROGRAMACION - OmAR 1\ \N TrIJÜS BURmc\

En donde, Si la ventana esta abierta no hay que hacer mas que asomarse por ella,
pero SI esta cerrada debemos primero abrirla para poder asomarnos por ella

Retomando el segundo ejemplo, y sabiendo que contamos con una estructura
para mejorar los algoritmos, podremos adecuarlo de manera que el algoritmo
para colocarnos una camisa quede de la siguiente forma

Algoritmo para colocarnos una camisa
Inicio

Dirigirnos a nuestro ropero
Si esta cerrado

Abrirlo
Tomar una camisa
Si esta abrochada

Desabrocharla
Abrir la camisa

Si esta doblada

Desdoblarla

Meter un brazo por una de sus mangas
Meter el otro brazo por la otra de sus mangas
Ajustarla camisa al tronco
Si es una camisa de botones
Abotonarla (boton a boton)
Ajustarla al cuerpo

Sino

Ajustarla de manera que quede bien puesta
Fin

Claramente aquí se puede notar una utilización alta de condicionales Si que no
tienen mucha necesidad de tener un Sino por las razones lógicas del mismo algo
ritmo Es obvio que usted podra tener muchos "reparos a este algoritmo porque
alguno o algunos de los pasos aquí consignados no coinciden con su lógica, pero
tenga en cuenta que todos ios algoritmos planteados en este libro son solo una
idea del autor y que si su idea propia (amigo lector) es acertada, es decir, logra los
mismos objetivos, asi el algoritmo sea diferente, estara completamente correcto

Se que han de existir muchas diferencias de concepción, sobre todo en cuanto
a este tipo de algoritmos informales, pero lo importante es que usted se vaya

64

Cap 4 Estuuctukasuasic\syilcnicasi\ka KLPiuarNTAR ai ooiim-tos

acostumbrando a una filosofía propia de los algoritmos para expresar cual
quieridea

4.3.3. Los cíelos

Vamos a suponer, para ampliar nuestros ejemplos, que usted es un supervisor
de una fabrica y que cada media hora, a lo largo de todo el día, debe estar
vigilando determinada acción a través de una ventana El algoritmo para cum
plir su objetivo, que es el de Vigilar (como supervisor de la fabrica), parte de
una unidad muy sencilla y es Asomarse por una ventana En palabras sencillas,
usted tendrá que asomarse por una ventana mientras no termine el día cada
media hora y durante el tiempo que usted no este asomado, lo que tiene que
hacer es seguir en su puesto de trabajo De esta forma, y partiendo de lo que ya
tenemos, usted podra estructurar un algoritmo de la siguiente manera

Algoritmo para Vigilar desde una ventana
Inicio

Llegar pun tual a la hora de inicio de la jornada laboral
Ubicarnos en nuestro escritorio
Mientras no sea el ñn del día

Ubicar la ventana por la que nos queremos asomar
Si estamos sentados

Levantarnos del lugar en donde estemos sentados
Orientarnos hacia la ventana

Sino
Orientarnos hacia la ventana

Avanzar hacia la ventana
Llegar hasta tenerla ventana muy muy cerquita
Si esta cerrada

Abrirla
Asomarnos por la ventana
Regresar a nuestro escritorio
Mientras no haya pasado Media Hora

Permanecer en nuestro escritorio
Fin_Mientras

Fin_Mientras

65

INTRODUCCION \ I-A LOCION DL 1 ROORAM NCIÜN OMAR 1\ \N TrDüS BURITICN

Vanos factores nuevos entran en este algoritmo

1 La palabra Mientras establece (en relación con una condición) el inicio de
un conjunto de acciones que se repiten precisamente Mientras esa condi
Clon lo permíta

2 Todo Mientras (por efectos de clarificación del algoritmo) debe tener
un finalizador que indique hasta donde llega el bloque de acciones que
debemos repetir

3 La indentacion o lo que corrientemente se conoce como el sangrado del
texto es decir, el hecho de que algunas acciones esten mas adentro de la
hoja que otras, representa que existen bloques de acciones que tienen
una característica

Las acciones contenidas entre el Inicio y el Fin indican que son las acciones que
conforman el algoritmo en mención

Las acciones comprendidas entre Mientras no sea Fin del día y su corres­
pondiente Fin_Mientras son el conjunto o bloque que se debe repetir (o
Iterar) precisamente mientras la condición sea Verdadera o sea Mientras
no sea ñn del día

La acción comprendida entre Mientras no haya pasado Media Hora y su
correspondiente Fin_Mientras es la acción que se deberá realizar hasta
cuando se complete media hora

4 Cada ciclo de acciones que se inicie con Mientras deberá tener un F/n_
Mientras asociado y a su vez cada Fin_Mientras deberá finalizar con uno y
solo un ciclo iniciado con Mientras

Supongamos que usted es el inspector de calidad de un almacén de ropa y su
trabajo consiste en medirse algunas de las camisas que están en los roperos
del almacén para verificar su ajuste en cuanto a la talla Entonces, mientras no
termine su jornada de trabajo, usted lo que hara sera ir de ropero en ropero
tomando una camisa y midiéndosela De esta forma, si partimos del algoritmo
de colocarnos una camisa que ya tenemos, entonces este nuevo objetivo pue
de cumplirse de la siguiente forma

66

Cm* 4 - CsTRUCTURAi IIASICAi* Y Tl CNICAS 1*\UA III PIU:srNT\R ALGORITMOS

Algoritmo Inspeccionarlas camisas en un almacén de ropa
Inicio

Llegar puntuales al inicio de la jornada laboral
Mientras no sea ñn de la jornada laboral

Dirigirnos a un ropero
Si esta cerrado

Abrirlo
Tomar una camisa
Si esta abrochada

Desabrocharla
Abrir la camisa

Si esta doblada
Desdoblarla

Meter un brazo por una de sus mangas
Meter el otro brazo por la otra de sus mangas
Ajustar la camisa al tronco
Si es una camisa de botones

Abotonarla (boton a boton)
Ajustarla al cuerpo

Sino
Ajustarla de manera que quede bien puesta

Emitir el concepto de calidad sobre la camisa
Fin_Mientras

Fin

Las apreciaciones acerca de este algoritmo coinciden en su mayoría con las
apreciaciones acerca del algoritmo anterior (dentro de este mismo tema) Es
de anotar que asi como, por claridad, se utiliza un Fin_Mientras para indicar
en donde termina el bloque de instrucciones que se deben operar, es conve­
niente utilizar un Fin_Si para indicar hasta donde llega completamente una
decision y, en union con la indentacion de acciones, tener claridad en cuanto a
los bloques" de acciones que se formen dentro del algoritmo

Estos algoritmos informales están expresados tal como desprevenidamente
cualquier persona los expresaría y puede entonces suponer usted que la va­
riabilidad de algoritmos que cumplan los mismos objetivos sería inmensa si
no existieran unas técnicas uniformes para facilitar la expresión de estas ideas,
particularmente en algoritmos computacionales

67

EonQDirosKxswiwiJKMCKiNimiKiKAMiuNDK hIDuvit tuihiTnuos B\;mimADi/

4.4. Técnicas para representar algoritmos

4.4.1. Diagramas de flujo

Un diagrama de flujo parte de unos símbolos que nos permiten decir lo mismo
que dijimos hace un momento en los algoritmos pero de una manera gráfica
y, por supuesto, un poco mas entendible Los siguientes son algunos de los
símbolos (y el significado de ellos) que se han acordado utilizar dentro de los
diagramas de flujo o flujogramas

I--------------- 1 Un rectángulo representa un proceso que es una acción
o una orden a ejecutarse de manera clara y concreta Un
ejemplo típico de proceso es la asignación de un valor a
una variable

Este símbolo nos permite representar una decision En
su interior, podemos escribir la condición de la cual de
pende la decision y por sus extremos derecho (o izquier
do) e inferior se pueden colocar las salidas para los casos
en que la condición sea falsa o sea verdadera

Este símbolo nos permite expresar un proceso de entra-
7 da o salida, teniendo en cuenta que una entrada en un
/ algoritmo se concibe como el proceso a través del cual

se recibe información y una salida es el proceso a través
del cual se entrega información

Este símbolo permite representar la escritura de un
resultado o lo que técnicamente se conoce como una
salida

Este símbolo representa el inicio o el fin de un algoritmo
Todo lo que se tiene que hacer es escribir la palabra Ini
c/o o f/n y ubicarlo apropiadamente dentro del diagrama
de flujo

Este símbolo permite que coloquemos en el los parame
tros de inicio de un ciclo cuando se ajustan a una de las

68

C \1’ 4 CSTOUCTUltAS IIASICAS ^ TLCNICASI \RA IU.1 REM NTAR tiUmREHIIOD

O □

r I

a

formas establecidas por las normas de programación En
el capitulo de ciclos desglosaremos un poco mas esta
definición

Este símbolo representa una entrada de datos utilizando
el teclado del computador Todo lo que tenemos que
escribir en su interior es el nombre de la variable (o las
variables) en donde queremos que se almacene el dato
que entra por el teclado

Estos símbolos se conocen como conectores lógicos
Nos permiten representar la continuación de un diagra
ma de flujo cuando este es tan largo que no cabe en una
sola hoja

Este símbolo permite representar una lectura de datos
Representa una tarjeta perforada, pues esta técnica fue
establecida cuando aun se leían los datos a través de tar
jetas perforadas Actualmente, este símbolo representa
sencillamente una lectura

Este símbolo genera una salida de datos Representa una
cinta perforada porque, al igual que el símbolo anterior,
esta técnica fue establecida cuando aun se generaba la
salida de datos a través de una tarjeta perforada En la
actualidad, este símbolo representa sencillamente una
salida o una escritura de datos

Este símbolo representa una salida de datos pero escrita
en la pantalla del computador Es un símbolo un poco
mas moderno para efectos de los diagramas de flujo

Las flechas son los símbolos que nos van a permitir
representar la forma de conexión entre los demas sím
bolos, determinando igualmente el flujo de ejecución o
realización de acciones

69

INTRODUCCION A IjV LOGICA DL PROGRAAUCION - OMAR I\ \N TrUOS BuRITICA

Estos símbolos (en unión con otros símbolos que para efectos de nuestro libro
tal vez no haya necesidad de citar) fueron utilizados por mucho tiempo para
representar gráficamente una idea o un algoritmo. ¿Cómo se utiliza entonces
esta simbología? Tomemos el caso de los dos algoritmos que construimos
mientras conocíamos las estructuras básicas. El enunciado final buscaba
desarrollar un algoritmo que nos permitiera Vigilar una empresa desde una
ventana asomándonos cada media hora por ello. El algoritmo lo habíamos
planteado como sigue a continuación:

Algoritmo para Vigilar desde una ventana

Inicio
Llegar puntual a la hora de inicio de la jornada laboral
Ubicarnos en nuestro escritorio
Mientras no sea el fin del día

Ubicar la ventana por la que nos queremos asomar

Si estamos sentados
Levantarnos del lugar en donde estemos sentados

Orientarnos hacia la ventana

Sino
Orientarnos hacia la ventana

Avanzar hacia la ventana
Llegar hasta tenerla ventana muy muy cerquita

Si está cerrada
Abrirla

Asomarnos por la ventana
Regresar a nuestro escritorio
Mientras no haya pasado Media Hora

Permanecer en nuestro escritorio

Fin^Mientras
Fin_Mientras

Fin

Si queremos llevarlo a la simbología de diagramas de flujo, su equivalente sería

el siguiente:

70

Cap 4 - Estructuras h \sicas y t lcnicas p\rw Ru•RI^L^^■AR ALCORiTNtos

Dtagrama de flujo para Vigilar desde una ventana

71

ImTtODUCCION A L,\ LOGICA III 1’ROGR.WIACION - OmaR I\ \N TilPJOS BUUmC A

cp

72

Cap 4 Cstkuctuiias u,v>icas y tlcnjc\s f\RA nrpRLSi mAR alcorttmos

Cabe destacar algunos detalles significativos en este diagrama de flujo

1 Toda decision, como es obvio, tiene dos caminos un camino nos lleva
a la acción o a las acciones a realizar en el caso de que la respuesta a la
pregunta sea verdadera y el otro camino es el que nos dice que debemos
hacer en caso de que la respuesta a la pregunta sea falsa

2 Lo que en el algoritmo eran unos ciclos, en el diagrama se cambiaron por
unas decisiones en donde uno de los caminos se devuelve (instrucciones
atras) Al realizar un seguimiento de este diagrama de flujo, usted notara
que se podra devolver tantas veces como lo permita la condición de la
decision que queda al final y que solo se va a salir de ese ciclo cuando
la condición sea verdadera, o sea, que el ciclo se mantiene mientras la
condición sea falsa, lo cual concuerda con la teoría de los ciclos

3 En la ultima decision, el camino Falso nos lleva a una burbuja que tiene un
numero 1 adentro Numero que también esta al principio del diagrama,
pero con la flecha en el otro sentido (es decir, no saliendo del diagrama,
sino entrando a el) Se utiliza esta notación solo para simplificar un poco
el diagrama de flujo

4 Con el diagrama de flujo, usted puede ver un gráfico de la solución y con
ello hacerse una idea clara de la secuencia de pasos que necesitaría para
alcanzar el objetivo

5 Siempre que vaya a desarrollar un diagrama de flujo, trate de ser muy or­
ganizado y muy estético, pues no se olvide que si vamos a representar un
algoritmo computacional (en donde se busca que el computador logre
un objetivo por nosotros), al momento de la transcripción sera muy im­
portante el orden que usted haya tenido en la utilización de esta técnica

6 Cuando diseñe un ciclo, no se olvide verificar que, lógicamente, la deci
sion por la cual reemplace el ciclo al momento de diseñar su diagrama
de flujo tenga el mismo comportamiento, es decir, permita que bajo las
mismas condiciones una acción o un conjunto de acciones se repitan una
cantidad finita de veces

7 Si el algoritmo que usted tiene para lograr este mismo objetivo es dife­
rente, tenga presente que el diagrama de flujo también va a ser diferente,
ya que este es un reflejo gráfico de aquel

8 Es muy importante que sepa que el simple hecho de cambiar la cabeza
de una determinada flecha cambia completamente el algoritmo Puede

73

usted notar que la utilización de los símbolos resulta ser una tarea muy
simplificada, pero lo que sí es delicado es la colocación de las flechas, ya
que ellas son las que representan el sentido con que se va a "mover" el
flujo de nuestra lógica.

Para clarificar aún más lo que hasta ahora hemos dicho, vamos a diseñar el
diagrama de flujo del algoritmo para inspeccionar las camisas en un almacén
de ropa. Para ello, y tal como lo hicimos en el algoritmo anterior, partamos de
la solución final que dimos a este algoritmo en donde involucrábamos secuen­
cias de acciones, decisiones y ciclos.

Algoritmo para Inspeccionarlas camisas en un almacén de ropa

Inicio
Llegar puntuales al inicio de la jornada laboral
Mientras no sea fín de la jornada laboral

Dirigirnos a un ropero
Si está cerrado

Abrirlo
Tomar una camisa
Si está abrochada

Desabrocharla
Abrir la camisa

Si está doblada
Desdoblarla

Meter un brazo por una de sus mangas
Meter el otro brazo por la otra de sus mangas

Ajustarla camisa al tronco
Si es una camisa de botones

Abotonarla (botón a botón)

Ajustarla al cuerpo

Sino
Ajustarla de manera que quede bien puesta

Emitir el concepto de calidad sobre la camisa

Fin^Mientras
Fin

Llevado a la simbología de un diagrama de flujo, su equivalente sería el

siguiente:

Introducción a la lógica dl programación - 0\ur I\án Truos Burii ica

74

Cap 4 - Estructuraí uasicas y tlcnicas para íu priípniar ALooRmios

75

INTRODUCCION A LA LOGICA DL I’ROCiR/\M \CION - OmaH I\ \N TrUOS BuRFI ICA

F

76

Caí* 4-CirRUCTUKASIl\SIC\S\ TICNICASI \UA IUJRU5PJT\K ucokitmos

Estoy seguro de que usted no estara de acuerdo conmigo en algunos de los pa­
sos o acciones de este algoritmo {o del anterior), pero no se preocupe Cada uno
de nosotros actúa bajo una lógica propia pero enmarcada dentro de unas normas
que son generales a todas SI usted no esta de acuerdo con los diagramas expues­
tos hasta aquí sera muy normal, pues eso le demuestra que su algoritmo puede
ser diferente al mío y diferente al de cualquier otra persona Sin embargo, estoy
seguro que tanto su algoritmo como el mío lograran el objetivo en ambos casos

Diagrame su propia idea de estos dos algoritmos y vera, con segundad, que su
diagrama es completamente diferente a los expuestos en este libro No olvide
que en este libro aparecen solo las soluciones de una persona El hecho de que
sus soluciones no coincidan con las mías no necesariamente quiere decir que
su solución este mal Recurra siempre a la Prueba de Escritorio antes de dudar
de sus soluciones y, ademas, verifique las soluciones de este libro valiéndose
de la misma herramienta

4.4.2. Diagramas rectangulares estructurados

Una de las dificultades de los diagramas de flujo radica en que asi como brinda
la posibilidad de representar gráficamente el flujo de una idea o el recorrido'
de la solución a un problema también abre el espacio para que un progra­
mador desordenado ponga flechas de flujo a diestra y siniestra y, finalmente,
obtenga una representación mas compleja que la idea misma

Precisamente, la técnica de Diagramas Rectangulares Estructurados (DRE) nos per­
mite tener unas herramientas gráficas para representar la solución a un problema
con la ventaja de que nos brinda la posibilidad de que seamos desordenados en
nuestra concepción Gráficamente, se basa en representar todo el algoritmo den­
tro del marco de un rectángulo y, a diferencia de la técnica anterior, la DRE se basa
en la utilización de tres símbolos que corresponden a cada una de las estructuras
básicas de la lógica de programación Estas representaciones son las siguientes

Para representar secuencias de instrucciones,
todo lo que tenemos que hacer es colocar cada
instrucción en una linea "enmarcada'

Para representar una decision, se utiliza este
símbolo en donde por el lado izquierdo pode­
mos colocar las acciones o instrucciones que
corresponderían ejecutar en el caso de que la
condición fuera verdadera y por el lado dere­
cho colocaríamos las acciones o instrucciones
a ejecutar cuando la condición fuera falsa

77

IhTTRODUCCION A L,\ LOGICA DI PROGRAMACION OmAR 1\ \N TrUOS BuRHICA

Para representar un ciclo, sencillamente en la
esquina superior izquierda del bloque corres­
pondiente colocamos la condición y dentro del
bloque colocamos las instrucciones o acciones
que se deben repetir y que, a su vez, por su
puesto, dependen de la condición

Pero, definitivamente, la utilización efectiva de esta técnica de representación
se ve con un ejemplo Vamos a estructurar en diagramacion rectangular es
tructurada los dos algoritmos de ejemplo que ya representamos en la técnica
de diagrama de flujo Para ello, volvamos a recordar el primer enunciado y
su correspondiente solución a nivel algorítmico Se trataba de desarrollar un
algoritmo que nos permitiera cada media hora durante la jornada de trabajo
laboral vigilar desde una ventana El algoritmo que fue planteado como
solución final fue el siguiente

Algoritmo para Vigilar desde una ventana
Inicio

Llegar puntual a la hora de inicio de la jornada laboral
Ubicarnos en nuestro escritorio
Mientras no sea el fín del día

Ubicar la ventana por la que nos queremos asomar
Si estamos sentados

Levantarnos del lugar en donde estemos sentados
Orientarnos hacia la ventana

Sino
Orientarnos hacia la ventana

Avanzar hacia la ventana
Llegar hasta tenerla ventana muy muy cerquita
Si esta cerrada

Abrirla
Asomarnos por la ventana
Regresar a nuestro escritorio
Mientras no haya pasado Media Hora

Permanecer en nuestro escritorio
Fin_Mientras

Fin_Mientras
Fin

Condición
del ciclo Conjunto de

instrucciones a
repetir

78

Cai' 4 - Estructuras h,\sicas ^ ti cnicas i*\ra ri priíi ntar ai gorttmos

Ahora bien, llevado este algoritmo a nivel de diagramacion rectangular estruc­
turada. el resultado sería el siguiente-

Algoritmo para Vigilar desde una ventana

Llegar puntual a ia hora de inicio de la jornada laboral

Ubicarnos en nuestro escritorio

Mientras no sea

Ubicar la ventana por ia que nos vamos a
asomar

^'"'''''^^.^^¿Estar^s sentados^

Levantarnos del
lugar en donde
estemos Orientarnos hacia

la ventana
Orientarnos hacia
la ventana

Avanzar hacia la ventana

Acercarse bastante a la ventana
^■\^Esta cerrada la

Abrirla |

Asomarnos por la ventana

Regresar a nuestro escritorio

Mientras no haya pasado

Permanecer en nuestro
escritorio

FIN

79

IkTRODLCCION a L\ LOGICA DL 1‘ROGRAMACIO'J Om \R I\ TrUOS BuRHIC \

Es imperante hacer algunas precisiones acerca de este diagrama

a Puede usted notar que la correspondencia entre nuestra idea y su repre­
sentación (bajo esta técnica) es mucho mas exacta que en el caso del día
grama de flujo en donde tuvimos que hacer algunos pequeños cambios
logicos para que el diagrama correspondiera a la solución planteada

b La técnica de diagramacion rectangular estructurada obliga a ser mucho
mas ordenado y no da ningún espacio para que nuestro algoritmo sea
inentendible, dado que las estructuras son relativamente rígidas

c Para la utilización de esta técnica, solo tenemos que conocer tres símbo­
los y, con ellos, representamos todo lo que queramos, dado que nuestra
lógica se basa en esas tres estructuras

d Enmarcar nuestra idea en un rectángulo nos brinda una concepción mas
concreta de la solución planteada

e Realizar una prueba de escritorio con un diagrama basado en esta técnica
se reduce a seguir la secuencia de instrucciones y (al igual que con los día
gramas de flujo) a realizar una a una y tal como están allí las instrucciones
o acciones, las decisiones y la revision de las condiciones de los ciclos

Tomemos el segundo algoritmo y realicemos su correspondiente diagrama
rectangular estructurado El enunciado buscaba diseñar un algoritmo para
inspeccionar la calidad de las camisas en un almacén de ropa La solución al­
gorítmica que se planteo fue la siguiente

Algoritmo para Inspeccionar las camisas en un almacén de ropa
Inicio

Llegar puntuales al inicio de la jornada laboral
Mientras no sea fin de la jornada laboral

Dirigirnos a un ropero
Si esta cerrado

Abrirlo
Tomar una camisa
Si esta abrochada

Desabrocharla
Abrirla camisa

Si esta doblada
Desdoblarla

Meter un brazo por una de sus mangas
Meter el otro brazo por la otra de sus mangas

80

Caí* 4 - CyntucruRAS hasic.\s y ti cnicas i*\ra iu PfiLsrNTAii algoritmos

Ajustar la camisa al tronco
Si es una camisa de botones

Abotonarla (boton a botan)
Ajustarla al cuerpo

Sino
Ajustarla de manera que quede bien puesta

Emitir el concepto de calidad sobre la camisa
Fin_Mientras

Fin

Llevándolo a su equivalente en diagramacion rectangular estructurada, ob­
tendríamos el siguiente diagrama*

81

I^r^l0DucclÓN a ia i ogica di progR/\mación - Omar Ivan Truos BuRmcA

Es importante anotar que cuando exista una decisión podremos tener o no
acciones o instrucciones por alguno de sus ramales. Con ello quiero decir que
es absolutamente correcto tener una decisión que tenga acciones en el caso
de que la condición sea evaluada como verdadera y no tenga nada en el caso
de que sea evaluada como falsa dicha condición. Cabe anotar que también es
correcto tener una decisión dentro de otra decisión o tener un ciclo dentro de
otro ciclo o tener una decisión de un ciclo o un ciclo dentro de una decisión,
puesto que ninguna de las estructuras es excluyante.

4.4.3. Seudocódigos

La tercera técnica para representar algoritmos es la más obvia y seguramen­
te usted no le va a encontrar nada nuevo: es la técnica de los seudocódigos.
¿Qué es un seudocódigo...? Pues sencillamente es la representación textual de
un algoritmo de manera que dicho texto se encuentre enmarcado en algu­
nas normas técnicas que faciliten su posterior transcripción a un lenguaje de
programación.

Por lo dicho anteriormente, es evidente que la técnica de seudocódigo está muy
orientada hacia los algoritmos computacionales. Cuando se habla de algunas
normas, estamos diciendo que existen unos requisitos que, si bien pueden ser
violados, facilitan la posterior transcripción del algoritmo a un lenguaje de pro­
gramación para ser cumplidos a cabalidad. No debemos perder el faro que todas
estas técnicas nos deben facilitar para la posterior transcripción de los algoritmos.

Para escribir pues un algoritmo bajo la forma de seudocódigo, algunas de las
normas son las siguientes:

Primera norma. Siempre se le ha de colocar un nombre al algoritmo de ma­
nera que sea lo primero que se lea. Es conveniente acostumbrarse a que dicho
nombre sea altamente mnemónico, o sea, que su nombre haga una referencia
aproximada a lo que hace. Si a un seudocódigo lo llamamos Seudocódigo X,
es posible que más adelante no nos sea muy claro su objetivo; pero si lo llama­
mos Seudocódigo Liquidar, es muy factible que cada vez que lo veamos nos
acordemos de que su objetivo era la liquidación de un determinado valor.

Pero si lo llamamos Seudocódigo LiqSaINe, es muy posible que cada vez que
veamos este nombre nos acordemos de que ese seudocódigo es el que nos
permite Liquidar el Salario Neto. Resulta muy conveniente, por todas las ra­
zones que usted se imagine, que el nombre de los algoritmos expresados en
seudocódigos sea lo más mnemónico posible, pues no sabemos cuándo ten­
dremos que retomarlos y es allí en donde vamos a ver la gran importancia del
buen nombre de un algoritmo.

82

Cm* 4 - CSTKUCTURAS UASIC-VS ^ T1CNICAS P\RA RLI’RLSrNTAIl ALGOfirTMOS

Segunda norma. Luego de colocado el nombre del seudocódigo, debemos a
continuación declarar las variables con las cuales vamos a trabajar durante el
programa. Todas las variables que vayan a ser utilizadas deben ser declaradas

Declararlas significa escribir el tipo de dato que van a almacenar y el nombre
que dichas variables van a llevar. No se olvide que vamos a trabajar con tres tipos
estándar de datos, como son los datos de tipo entero, datos de tipo real y datos
de tipo carácter, que tienen cada uno unas características y unas restricciones

Tercera norma. Todo el cuerpo del algoritmo deberá ir "encerrado" entre las
palabras Inicio y Fin indicando en donde comienza y en donde termina el
seudocódigo.

Cuarta norma.

a. Cuando quiera que salga un título en la pantalla, todo lo que tiene que
hacer es utilizar la orden Escriba y, a continuación, colocar entre comillas
dobles lo que quiera que salga en pantalla. Por ejemplo.

Escriba "Esta es una demostración"
Generara en pantalla el título Esta es una demostración

b Si usted quiere que lo que salga en pantalla sea el contenido de una varia­
ble, todo lo que tiene que hacer es utilizar la orden Escriba y, a continua­
ción, y sin comillas dobles, el nombre de la variable que quiere escribir.
Por ejemplo

N = 5
Escriba N
Mostrará en pantalla el valor 5

c Si quiere que en pantalla salga un título y a continuación salga el conte­
nido de la variable, todo lo que tiene que hacer es colocar el título entre
comillas dobles y, luego de haberlas cerrado, colocar el nombre de la va­
riable que usted quiere escribir al lado del título Por ejemplo:

N = 8
Escriba "El valor es" N
Generará en pantalla El valor es 8

d. Si quiere mostrar en pantalla el contenido de vanas variables, entonces sim­
plemente a continuación de la orden Escriba y separadas por comas puede
escribir los nombres de las variables que usted quiere escribir. Por ejemplo-

83

INTRODUCCION A Ij\ LOGICA DI PROGRAMACION - OmaR I\ÁN TuIJOS BuIUTICA

N = 8
M = 4
Escriba "Los valores son" N, M
Escribirá en pantalla Los valores son 8 4

Quinta norma.

a. Cuando usted vaya a leer un dato para que sea almacenado en una va­
riable determinada, utilice la orden Lea. Para no tener que escribir (por
ejemplo):

Lea un dato entero y guárdelo en la variable N que también es entera

Solo tiene que escribir

LeaN

y el computador lo entenderá correctamente.

b. Cuando necesite leer más de un dato para ser almacenado en diferentes
variables, todo lo que tiene que hacer es utilizar la orden Lea y escribir las
variables separadas por comas. Por ejemplo:

Lea a, b

Suponiendo que tanto a como b son variables de tipo entero, esta orden le
indicará al computador que lea un dato entero y lo almacene en la variable a y
luego que lea otro dato entero y lo almacene en la variable b.

c. No necesariamente, cuando se lean dos o más variables utilizando una
sola orden Lea, estas deben ser del mismo tipo. Por ejemplo:

Lea var_e, var_r, var_c

Asumiendo que var_e es una variable de tipo entero, var_r es una variable de
tipo real y var_c es una variable de tipo carácter, esta orden le indicará al com­
putador que lea un valor entero y lo almacene en la variable var_e, luego que
lea un valor real y lo almacene en la variable var_ry luego que lea un carácter
y lo almacene en la variable var_c.

Sexta norma. Cuando necesite tomar una decisión, deberá utilizar la orden Si,
a continuación escribir la condición correspondiente y luego las instrucciones
que se han de realizar en caso de que la condición sea Verdadera. En caso de
que la condición sea Falsa y tenga Instrucciones a realizarse cuando asi sea,

H4

Cap 4 - CsniUCIURAi. y ti CNICAS l’AtW lU Piu^t NTAK ai OOKtTMOS

entonces deberá existir una alternativa Sino Al finalizar toda la decisión, debe­
rá existir un indicador Fin_Si La estructura entonces sera la siguiente:

Si Condición

Instrucciones a ejecutar sí la condición es Verdadera

Sino

nstrucciones a ejecutar si la condición es Falsa

Fin_Si

Las condiciones pueden ser expresadas utilizando los siguientes operadores
relaciónales, que son los símbolos que nos van a permitir obtener una res­
puesta Verdadera o Falsa.

> Mayor que
< Menor que
>= Mayor o igual a
<= Menor o igual a
= Igual a (también llamado igual decomparación)
o Diferente de

Es importante anotar que el signo igual (=), utilizado como operador relacio-
nal, tiene una función diferente que el signo igual {=) utilizado para asignarle
un valor a una variable. En el primer caso, sería utilizado para preguntar, por
ejemplo, si el contenido de la variable a es igual al valor 5 y en el segundo caso
estaríamos asignando a la variable o el valor 5. Son dos usos diferentes

Algunos lenguajes diferencian sintácticamente el igual de comparación del
igual de asignación precisamente para que el compilador no tenga la opcion
de realizar interpretaciones ambiguas En este libro, seré claro que la utiliza­
ción del igual de asignación sera en instrucciones de asignación y el igual de
comparación será utilizado en decisiones

85

Introdlcciosa LOGic\ HI progr\m\cion-Om\r IwnTjujosBurmica

También podemos conectar expresiones relaciónales {tales como a<b) a través
de los operadores booieanos que son unos signos que nos van a permitir
expresar dichas relaciones

Cuando eramos niños y nos decían, al mandarnos a la tienda, tráigame una
gaseosa y un pan de $1000, temamos vanas opciones

a Si no traíamos ninguna de las dos cosas, entonces no habíamos cumplido
la orden

b Si no traíamos la gaseosa pero si traíamos el pan de $1000, tampoco ha­
bíamos cumplido la orden

c Si traíamos la gaseosa pero no traíamos el pan de $1000, tampoco había­
mos cumplido la orden

d Si traíamos la gaseosa y también traíamos el pan de $1000, entonces allí
SI hablamos cumplido la orden completamente

Para este ejemplo, y tal como lo hacia nuestra progenitora, asumimos que
cumplir la orden es hacer el' mandado' completo Igualmente, vamos a asumir
la frase Hemos cumplido la orden como un Verdadero (V) y la frase No hemos
cumplido la orden como un Falso (F) De esta forma, podríamos organizar la
situación según se muestra en la tabla 6

Tabla 6 Tabla de verdad operador Y (ANO)

Condición 1 Condición 2 Condi
Tráigame una

gaseosa
Tráigame un
pan de $1000

y
Cond2

Explicación textual

F F
No cumplimos

completamente la orden

V F
No cumplimos

completamente la orden

V F
No cumplimos

completamente la orden

V V V
Sí cumplimos

completamente la orden

Puede notar usted que solamente habremos cumplido la orden completa­
mente SI hemos cumplido cada una de las condiciones Igualmente, observe
que en el titulo de la tercera columna hay una Y un poco mas grande que el
resto del texto Precisamente, esa es el primer operador booleano que vamos
a conocer Es el operador Y, que en la mayoría de los libros se conoce como el
operador AND y que precisamente aquí lo vamos a llamar AND

86

Cap 4 - Lsthuciuioxs ib\sic,\i y n cnicaí paR/\ ri puiíi ntar ai goritmos

Su tabla de verdad es la que esta expuesta en ese ejemplo, por lo cual po­
demos concluir que, cuando utilizamos un operador AND, solamente genera
Verdadero si ambas condiciones se cumplen (no olvide que se habla de ambas
condiciones porque el operador ANO puede "conectar" solamente dos condi­
ciones) y en cualquier otro caso genera Falso

Cuando nos decían Tráigame una gaseosa litro o una bolsa de leche nos estaban
dando las siguientes opciones-

a. Si no traemos ninguna de las dos cosas, entonces no hemos cumplido la
orden.

b Si no traemos la gaseosa litro y traemos la bolsa de leche, entonces he­
mos cumplido la orden

c. Si traemos la gaseosa litro y no traemos la bolsa de leche, entonces he­
mos cumplido la orden

d. Si traemos ambas cosas, hemos cumplido sobradamente la orden.

Podemos, pues, con este razonamiento organizar la siguiente tabla de verdad
(asumiendo que cumplir la orden se representara con Verdadero y no cumplirla
se representara con Falso). La tabla 7 presenta las situaciones posibles.

Tabla 7. Tabla de verdad operador O (OR)

Condición 1
Tráigame una
gaseosa litro

Condición 2
Tráigame una bolsa

de leche

Cond1
0

Cond2

Explicación
textual

F F No cumplimos la orden

F V V Cumplimos la orden

V V Cumplimos la orden

V V V Requete cumplimos la orden

Puede notar que en la tercera columna de esta tabla hay una O que une a la
Condlciónl con la Condición2 y que es precisamente el nombre del segundo
operador booleano. Técnicamente, lo vamos a llamar OR Cuando el operador
OR une dos condiciones, toda la expresión es verdadera si, al menos, una de las
dos es verdadera. Es obvio pensar que, en el caso en que las dos condiciones
sean verdaderas, entonces toda la expresión sera mas que verdadera

El tercer operador booleano es el operador NOT. Este operador actúa sobre una
sola expresión y lo que hace es que invierte el sentido de la condición, es decir,
cuando el operador NOT va antes de una condición, entonces toda la expresión
será verdadera si deja de cumplirse la condición Veámoslo con un ejemplo-

S7

INTRODUCCION A lA IOGICV OI PROGRAMACION - 0\UR I\ \N TrUOS BuRITICX

A=10
Si N0T(A=12)

En ía primera linea, estamos asignando el valor 10 a la variable A y en la se
gunda linea estamos preguntando que s/ A no es igual a 12, condición que es
verdadera debido a que la variable A es igual a 10 Luego, cuando escribimos
la siguiente condición

Si NOT (A > B)

Es como SI hubiéramos escrito

Si(A< = B}

O sea, dicho textualmente, ¿cuando A no es mayor que B ’ Pues cuando es
menor o igual a B

Con estos tres operadores booleanos podemos construir una gran cantidad de
decisiones y permitir que el computador las ejecute correctamente Cabe ano
tar que evaluar una decision y determinar si es verdadera o falsa es lo que mas
tiempo le toma a un computador, cuando dicha decision esta implementada
en un lenguaje de programación

Séptima norma. Se utilizara como estructura de ciclo basica la siguiente

Mientras Condición Haga

Cuerpo del ciclo

Fin_Mientras

Algunos libros escriben Mientras que en vez de Mientras solo, pero esas minu­
cias no son de importancia pues obedecen mas a capricho de autores que a
alguna razón de fondo frente a la lógica En el cuerpo del ciclo se colocan las
ordenes que se van a repetir (o iterar) mientras la condición sea Verdadera El
Fin_Mientras le indicara, posteriormente, hasta donde llega el bloque de ins­
trucciones u ordenes y asi determinar a partir de donde se devuelve el control
del algoritmo para evaluar la condición La forma de ejecución de los ciclos se
explicara apropiadamente en el capitulo de ciclos, asi como las otras formas
referenciales que existen para expresar ciclos

88

C \P 4 CsiHUcrURAS IIAMCAS Y TLCNICASI SRA REPiUil NTAR ALGORtTMOS

Octava norma. Cada vez que usted vaya a utilizar un conjunto de instruccio­
nes, deberá indicar claramente en donde comienza y en donde termina utili­
zando apropiadamente las palabras Imcio y Fin

Tal vez usted estara esperando que escribamos los dos ejemplos iniciales en
la forma de seudocodigo Efectivamente lo voy a hacer a continuación, pero
espero que usted vea que en algoritmos informales la utilización del seudoco-
digo no es muy practica ya que no existe mucha diferencia entre el algoritmo
como tal y su respectivo equivalente en seudocodigo (excepto algunos deta
lies que son mínimos comparados con las otras técnicas)

Vera una gran utilidad cuando estemos escribiendo algoritmos computaciona
les utilizando esta técnica Por ahora, la version en seudocodigo que le podría
brindar acerca de los dos algoritmos es la siguiente recuerde que el objetivo
era realizar un algoritmo que nos permitiera vigilar por una ventana asomán­
donos por ella cada media hora, por lo tanto, la version de este algoritmo en
seudocodigo es la siguiente

Algoritmo para Vigilar desde una venfono
Inicio

Llegar puntual a la hora de inicio de la jornada laboral
Ubicarnos en nuestro escritorio
Mientras no sea fín del día

Ubicarla ventana por la que nos queremos asomar
Si estamos sentados

Levan tamos del lugar en donde estemos sen todos
Or/enfornos hacia la ventana

Sino
Orientarnos hacia la ventana

Avanzar hacia la ventana
Llegar hasta tenerla ventana muy muy cerquita
Si esta cerrada

Abrirla
Asomarnos por la ventana
Regresar a nuestro escritorio
Mientras no haya pasado Media Hora

Permanecer en nuestro escritorio
Fin_Mientras

Fin_Mientras

Fin

INTRODUCCION A U IO(.IC\ Dl PROGIUWIACION - 0\l\R IwnTrPJOS BuRIIIC \

Y para el segundo algoritmo, en donde ei objetivo era inspeccionar las camisas
en un almacén de ropa emitiendo nuestro concepto acerca de su calidad, la
solución es la siguiente

Algoritmo para Inspeccionarlas camisas en un almacén de ropa
Inicio

Llegar puntuales al inicio de la jornada laboral
Mientras no sea ñn de la jornada laboral

Dirigirnos a un ropero
Si esta cerrado

Abrirlo
Tomar una camisa
Si esta abrochada

Desabrocharla
Abrir la camisa

Si esta doblada
Desdoblarla

Meter un brazo por una de sus mangas
Meter el otro brazo por la otra de sus mangas
Ajustar la camisa al tronco
Si es una camisa de botones

Abotonarla (boton a boton)
Ajustarla al cuerpo

Sino
Ajustarla de manera que quede bien puesta

Emitir el concepto de calidad sobre la camisa
Fin__Mientras

Fin

¿Que hay de diferente^ Pues nada, porque en este tipo de algoritmos los seu*
docodigos (como le dije en un párrafo anterior) son de muy poca utilidad No
se olvide que la técnica de los seudocodigos esta diseñada fundamentalmente
para ser utilizada en algoritmos computacionales

Es por eso que, en este momento, tal vez quede en su mente una nebulosa de
dudas acerca de la utilidad de la técnica en si, pero no hay nada de que pre­
ocuparse, pues precisamente la utilización eficiente de esta técnica sera unos
de los objetivos fundamentales de este libro para que usted, a través de ella,
pueda expresar cualquier algoritmo computacional y obtenga una solución
que luego sea fácilmente codificable en cualquier lenguaje de programación

90

Caí» 4 - CsTRucnuK,\ii}vsic\s^ tlcnicasi’sk,\ KuitrsiNiAR \LGonrrMos

4.3.4. Cuadro comparativo

I Nombre de la
' técnica

Diagrama
de flujo

Ventajas

a Permiievisualizargraficamente
el camino que sigue la solución a
un problema

b Por ser tan simplificado es muy
entendible

c No se necesitan muchos cono­
cimientos técnicos para utilizar
esta técnica

Diagramadon
rectangular
estructurada

Seudocódigo

Permite tener un marco referen­
cia! concreto y definido para la
representación de los algoritmos

Solo tiene tres esquemas que le
permiten a su vez representar las
tres estructuras básicas

Exige orden en la representación
de un algoritmo

Es muy entendible

La analogía entre la codificación
y el diagrama normalmente es di
recta y, por lo tanto muy sencilla

Permite expresar la solución
algorítmica a un problema en
nuestro propio lenguaje y casi
con nuestras propias reglas

La codificación se facilita dema­
siado dado que la transcripción
es directa

SI el programador es ordenado
esta puede llegar a ser la técnica
mas entendible

Desventajas {

Dado que los flujos (representados
con flechas) pueden ir de cualquier
lugar a cualquier lugar, da espado
para que el diagrama llegue a ser
caslinentendible

b Deben conocerse bien los símbolos
que se van a utilizar

c No todos los símbolos están
estandarizados

d Los ciclos deben ser reinterpretados
para poder ser diagramados en esta
técnica

e No siempre es muy entendible

f Algunas veces la analogía entre
el diagrama y la codificación en el
lenguaje de programación resulta
ser compleja
Exige una fundamentacion técnica
que permita representar (a solución
a cualquier problema a través de las
tres estructuras básicas

No una técnica muy popularizada

a Exige mucho orden para ser utiliza
da eficientemente

b Exige el mantenimiento claro de
los conceptos de algoritmos como
tales

c Las decisiones deben estar encasi­
lladas dentro de los alcances de los
operadores lógicos y operadores
booleanos

Aun a pesar de que algunos libros y algunos profesionales de la programa­
ción aceptan única y exclusivamente la técnica de los seudocodigos, mi con
cepto personal es que cada una de estas técnicas tiene unas ventajas y unas

■)l

iNTRODUCaüN A LA LOGICA DI PRCKiRAMACION - OMAR l\ \N TrLIOS BURITIC \

desventajas que las hacen comparables con las demas Considero de suprema
importancia darle prioridad de uso a la técnica que facilite la codificación, ya
que el computador no ejecutara los algoritmos escritos en estas técnicas, sino
escritos en términos de un lenguaje de programación y puedo garantizar que
la técnica que mas facilita la transcripción es el seudocodigo, sin desconocer
las ventajas de cada una de las otras técnicas

4.4. Ejercicios

Utilizando las técnicas explicadas, REPRESENTAR los siguientes algoritmos

1 Desarrollar un algoritmo que permita adquirir una revista
2 Desarrollar un algoritmo que permita entrar a una casa que esta con llave
3 Desarrollar un algoritmo que permita dar un beso
4 Desarrollar un algoritmo que permita empacar un regalo
5 Desarrollar un algoritmo que permita encender un vehículo
6 Desarrollar un algoritmo que permita fritar un huevo
7 Desarrollar un algoritmo que permita mirar por un telescopio
8 Desarrollar un algoritmo que permita botar la basura
9 Desarrollar un algoritmo que permita tomar un baño
10 Desarrollar un algoritmo que permita estudiar para un examen
11 Desarrollar un algoritmo que permita tocar determinada canción con un

instrumento musical
12 Desarrollar un algoritmo que permita viajar en avion
13 Desarrollar un algoritmo que permita encender un bombillo
14 Desarrollar un algoritmo que permita encender una vela
15 Desarrollar un algoritmo que permita apagar una vela
16 Desarrollar un algoritmo que permita apagar un bombillo
17 Desarrollar un algoritmo que permita parquear un vehículo

18 Desarrollar un algoritmo que permita almorzar
19 Desarrollar un algoritmo que permita ir de la casa al trabajo

20 Desarrollar un algoritmo que permita colocarse una camisa

21 Desarrollar un algoritmo que permita quitarse una camisa
22 Desarrollar un algoritmo que permita escuchar un determinado disco

23 Desarrollar un algoritmo que permita abrir una ventana
24 Desarrollar un algoritmo que permita ir a la tienda a comprar algo

C \I* 4 - EsTKUCl\llt\S MAMC \J. \ TICNICAS I \RA KD'RLSLOT\R ALGORITMOS

25 Desarrollar un algoritmo que permita tomar una fotografía
26 Desarrollar un algoritmo que permita hacer deporte
27 Desarrollar un algoritmo que permita cortarse el cabello
28 Desarrollar un algoritmo que permita hacer un avion con una hoja de

papel
29 Desarrollar un algoritmo que permita manejar una bicicleta
30 Desarrollar un algoritmo que permita manejar una motocicleta
31 Desarrollar un algoritmo que permita manejar un monociclo
32 Desarrollar un algoritmo que permita maquillarse
33 Desarrollar un algoritmo que permita hacer un pastel
34 Desarrollar un algoritmo que permita hacer un almuerzo
35 Desarrollar un algoritmo que permita adquirir un pantalón.
36 Desarrollar un algoritmo que permita hacer un mercado pequeño
37 Desarrollar un algoritmo que permita leer el periódico
38 Desarrollar un algoritmo que permita saludar a un amigo
39 Desarrollar un algoritmo que permita arrullar a un bebe hasta que se

duerma
40 Desarrollar un algoritmo que permita hacer un gol en fútbol
41 Desarrollar un algoritmo que permita jugar ping-pong
42 Desarrollar un algoritmo que permita nadar
43 Desarrollar un algoritmo que permita tirarse desde un avion con un

paracaídas
44 Desarrollar un algoritmo que permita tirarse desde un avion sin un

paracaídas
45 Desarrollar un algoritmo que permita descifrar un jeroglifico
46 Desarrollar un algoritmo que permita amarrarse un zapato
47 Desarrollar un algoritmo que permita quitarse los zapatos
48 Desarrollar un algoritmo que permita silbar
49 Desarrollar un algoritmo que permita elevar una cometa
50 Desarrollar un algoritmo que permita desarrollar algoritmos

Capítulo 5
La tecnología

Un mundo como el moderno, en donde casi todo se concibe a la luz de la tecno­
logía, en donde el hombre pasa a ser una presa fácil de las grandes fabricas des­
de donde lo parasitan argumentándole comodidad pero estableciéndole reglas
en su vida social, reglas basadas precisamente en la misma tecnología, es un
mundo en el cual se hace imposible no hablar de ella en cualquier libro técnico.

Sería pues imposible ignorar la tecnología cuando lo que se busca al hablar
de algoritmos computacionales es aprovecharla para poder lograr, de la
manera más eficiente, los objetivos que se hayan propuesto. El computador
como herramienta tecnológica nos brinda su velocidad para que, en unión
con nuestros algoritmos, se puedan obtener velozmente resultados que, de
otra forma, tomarían muchisísimo tiempo, sí, así como esta escrito, muchisísimo
tiempo Encontrar un dispositivo o un aparato que puede trabajaren términos
de millonésimas de segundo es muy útil y, mucho más, si podemos aprovechar
dicha velocidad para nuestra conveniencia

Ya en su momento, explicábamos que, luego de que se ha concebido apropia­
damente un algoritmo, es decir, luego de que hemos comprobado a través de
una "prueba de escritorio" que el algoritmo realmente sí nos permite alcanzar
el objetivo propuesto, entonces pasamos a una segunda etapa que correspon­
de a la intervención de la máquina en la solución de! problema inicial. Esta
etapa se inicia con la transcripción, que no es otra cosa que reescribir nuestro
algoritmo pero en términos de un determinado lenguaje de programación.
Pues bien, el lenguaje de programación lo podemos definir como ese puente
perfecto que permite que el computador ejecute lo que nosotros habíamos
concebido como un algoritmo (y además que lo haga a altas velocidades)

Un lenguaje de programación es, técnicamente hablando, un conjunto de
instrucciones que son entendibles y ejecutables por un computador. No

podemos esperar, por lo menos no por ahora, que el computador ejecute lo
que nosotros concebimos como algoritmo (aunque sena lo optimo) y por eso
debemos incorporar al desarrollo técnico un paso o un conjunto de pasos mas
y son lo que involucran los lenguajes de programación

Esto significa que si nosotros hemos desarrollado un algoritmo computacional
que es muy útil, de nada nos va a servir si no conocemos las reglas sintácticas
de un lenguaje de programación, si no escribimos el algoritmo con esas reglas,
SI no contamos con el compilador del lenguaje en el cual vamos a trabajar
y SI no sabemos interpretar los errores Por lo tanto, el contacto técnico que
vamos a tener con el computador va mucho mas alia de desarrollar soto el
algoritmo, ya que lo ideal es hacer realidad el algoritmo a través del lenguaje
de programación

lN'n<ODUccioN \ u 1OGICA Di I KociiuM\cios - Om\r Iwn Tiujos Bunmc\

5.1. Lenguajes de bajo nivel

Son aquellos lenguajes en los cuales sus instrucciones son para nosotros com­
plejas de entender pero que son extremadamente sencillas para ser entendí
das por el computador Tal es el caso del Lenguaje Assembler, según el cual
fas instrucciones están basadas en una sene de mnemonicos que no siempre
facilitan la transcripción Este lenguaje es el lenguaje verdadero de los com
potadores Esto quiere decir que, internamente, lo único que entienden los
computadores realmente son instrucciones del Lenguaje Assembler

La programación a bajo nivel fue la que se utilizo en los primeros años de la
Historia de la Programación Cada vez mas, los programadores teman que
ser mucho mas especializados dada la complejidad de entendimiento de las
instrucciones utilizadas en este lenguaje No se podía desconocer el inmenso
poderío de los lenguajes de bajo nivel, pero tampoco se podía desconocer la
complejidad de su estructura

Si usted encuentra una instrucción como la siguiente

mov bp, sp

No es muy fácil deducir que hace o para que le serviría en el desarrollo de un
programa Sin embargo, puede tener la segundad de que esta instrucción es
perfectamente clara para el computador, ya que su interpretación es inmedia­
ta El esquema 1 muestra la situación explicada

96

CaI' 5 - L\ TCCSOLOGIA

Esquema 1. Relación usuario-lenguaje de bajo nivel

Programa

Usuario 1-------- \ en
1--------/ lenguaje

debajo
Computador

nivel

5.2. Lenguajes de alto nivel

Precisamente, pensando en estas desventajas de la programación a bajo nivel
y sabiendo que quien realmente desarrollaba los programas era el ser humano
y no la maquina y que la maquina gracias a su velocidad era solo la encargada
de ejecutar la orden que se le diera, se pensó en crear unos lenguajes de pro­
gramación que fueran mas entendibles al ser humano, o sea, unos lenguajes
de programación en donde las ordenes fueran tan sencillas de comprender
que programar se convirtiera en algo realmente fácil.

Éstos lenguajes fueron llamados lenguajes de alto nivel, sabiendo que de to­
das maneras el computador necesitaría otro programa que tomara lo que se
escribiera y lo convirtiera a lenguaje de bajo nivel (ya que no podemos olvidar
que este es el verdadero lenguaje del computador). De allí surgió la idea de los
interpretadores y \os compiladores

5.2.1. Lenguajes interpretados

Son aquellos lenguajes de programación en donde existe un programa inter­
pretador, que es un programa que "toma" nuestro programa y lo convierte,
línea a línea, a lenguaje de bajo nivel y, así mismo, lo va ejecutando (o sea, línea
a línea). Estos lenguajes tenían como inconveniente que, si el programa tenía
un error en una de las últimas líneas, solo se detectaba dicho error cuando el
interpretador llegaba allí, luego de haberse ya ejecutado (posiblemente) un
gran bloque de instrucciones

Sin embargo, y para los inicios de la programación a través de lenguajes de
alto nivel, esta era la solución precisa para poder programar con lenguajes más
entendióles al ser humano que al computador. De esta manera, la utilización de
lenguajes interpretados tomó mucha popularidad por las grandes facilidades
que le brindaban al programador, que ya no tenía que invertir la mayor parte
de su tiempo en especializarse en entender instrucciones de alguna manera
complejas. El esquema 2 presenta la situación.

97

Intboduccios a Ij\ logic \ or program \cion - Okwr 1\ vn Trijos BuRrric\

Esquema 2 Relación usuario-lenguaje interpretado

[^ I Computador |

Se incorpora pues un elemento adicional como es el interpretador (linea
a linea) que le facilita el trabajo al programador, pues este ya puede utilizar
instrucciones mas entendibles como print que le representara Imprimir y que
con solo leerla da una idea de que hace la instrucción Esa es precisamente
la diferencia exacta entre las instrucciones de un lenguaje de bajo nivel y un
lenguaje de alto nivel y radica, dicho de una manera sencilla, en el hecho de
que las instrucciones son mas entendibies, los programas y el proceso de
transcripción son mas sencillos y menos exigentes técnicamente

Sin embargo, la dificultad presentada por los lenguajes interpretados, en
cuanto al hecho de que convertían línea a línea el programa y asi lo ejecutaban,
estableció el nesgo de que en programas comerciales, en donde es fácil
encontrar 15000 o 20000 lineas en un programa, era demasiado costoso a
nivel empresarial y demasiado riesgoso a nivel técnico saber que, en cualquier
momento, por un error determinado, el programa podía ser interrumpido (o
"abortado; como técnicamente se le dice) debido a que el interpretador iba
revisando linea a línea Esto llevo a pensaren un esquema mucho mas practico
y menos arriesgado tanto para programadores como para empresarios

5.2.2. Lenguajes compilados

Son aquellos lenguajes en donde un programa llamado compilador toma
TODO el programa que hemos escrito (que normalmente se denomina pro­
grama fuente), lo revisa y solo hasta donde este completamente bien, solo
hasta allí, lo convierte a su equivalente en lenguaje de bajo nivel para ser eje
cutado por el computador De esta manera, se reducía el nesgo de evaluación
que representaban los lenguajes compilados y se podía saber si TODAS las
instrucciones del programa eran correctas De hecho, era de suponer que, bajo
condiciones normales, el programa entonces no se abortaría cuando estuviera
en su momento de ejecución (cosa que no es 100% cierta) Lo que si se puede
decir es que la cantidad de interrupciones de los programas elaborados con
lenguajes compilados se redujo notoriamente frente a las interrupciones que
sufrían los programas elaborados con lenguajes interpretados

De allí que, cuando se compila el programa fuente, se genera un segundo
programa (que solo es entendible por el computador) conocido como objeto

98

C\i* 5- La ncNoiooiA

compilado y cuando se va a ejecutar, entonces este programa es "organizado"
de manera que cada instrucción sea perfectamente entendible y ejecutable
por el computador A este nuevo programa se le conoce como programa
ejecutable De esta manera, podemos resumir el proceso de utilización de los
lenguajes compilados según el esquema 3

Esquema 3 Relación usuario-lenguajes compilados

De aquí surgen entonces los pasos que inicialmente se habían explicado en
cuanto a la metodología para la solución de un problema cuando este se trata
de un algoritmo computacional Ya podemos también concluir que un lengua­
je de programación esta diseñado para facilitarnos el trabajo de hacer que el
computador haga algunas cosas por nosotros Entonces se pregunta uno ¿por
que existen tantos lenguajes de programación’ La respuesta es muy sencilla y
se puede plantear bajo dos criterios

La primera razón es estrictamente comercial, ya que detras de cada lenguaje
de programación existe una gran empresa vendiéndole al mercado informá­
tico su producto (que es el compilador y sus utilidades) Muchas empresas
se han dedicado al desarrollo de lenguajes de programación (entre otros
productos) y son en la actualidad una de las empresas mas grandes y mas
rentables del mundo El animo competitivo a nivel empresarial en el mundo
informático, y mas exactamente en lo que se refiere al desarrollo de lenguajes
de programación, es lo que ha hecho que exista una gran cantidad de lenguajes
de programación

La segunda razón es mas técnica y menos comercial, ya que no se puede
desconocer que los lenguajes de programación también se han desarrollado
para lograr de una manera mas fácil y eficiente unos objetivos específicos De
esta manera, algunas empresas se han especializado en colocar a disposición
de los programadores un conjunto de instrucciones que les permitan lograr
ciertos objetivos concretos de una forma muy sencilla y sin tanto rigor técnico

5.3. Errores en un programa
Cuando se dice que un compilador revisa un programa, se esta dando una
definición muy amplia de lo que realmente es esa revision Primero que nada,
vamos a revisar los dos tipos de errores que puede tener un programa Ellos
son los errores humanos y los errores detectadles por un compilador

yy

iNTROniCCIOS \ I.A LOGICA Ü1 1»R00IL\M,\C10N - 0\1\R IwnTIUJOS BuKIMC \

53.1. Errores humanos

Son todos aquellos errores que dependen exclusivamente de la participación
del ser humano en el proceso de escritura de un programa (a partir de un
algoritmo), obviamente Es evidente que son errores que no son detectados,
en estos tiempos, por un compilador, ya que dependen exclusivamente de la
vision, practica, experiencia y conocimientos que tenga un programador Los
errores humanos son de tres tipos

53.2. Errores de concepción

Este es el tipo de error que se presenta cuando el programador cree que tiene
el objetivo claramente identificado y entendido y resulta que no es asi (pero el
no lo sabe), con lo cual es evidente que, finalizado el programa, seguramente
habra logrado algo totalmente distinto a lo que inicialmente necesitaba lograr

Por ejemplo, un programador quiere implementar en un computador un pro­
grama que realice cierto tipo de liquidación de un estado de cuentas de un
cliente Averigua y se entera de que, en la empresa para la cual trabaja, la liqui­
dación de los clientes se hace de una manera diferente a la que hacen las demas
empresas, ya que en esta se tiene en cuenta el tiempo de vinculación con la
empresa para reducir su deuda final El programador investiga y creyó entender
como realmente lo hacían cuando en realidad no era asi, pues no capto la utili
zacion de un factor que de manera autocratica es establecido por el criterio del
gerente El resultado final es una liquidación que, a pesar de ser muy detallada
y muy completa, no coincide con lo que realmente se necesitaba en la empresa

Pareciera ser muy poco frecuente este error y resulta ser lo contrario, pues yo
le pregunto lo siguiente ¿quien le garantiza a usted que lo que usted cree que
entendioes porque realmente loentendio ?Pues nadie, porque no es fácil saber si
alguien capto realmente lo que le quisimos decir En este sentido, es importante
que se tenga en cuenta que debemos buscar muchos métodos para demostrar,
sobre todo a nosotros mismos, que si entendimos lo que queríamos entender

Para el caso de ese programador del ejemplo, ¿que debió hacer el antes de
empezar a programar^ Pues debió haber solicitado los datos completos
de vanos clientes y haber realizado MANUALMENTE la liquidación Solo de
esta manera hubiera sabido que no le era claro aquel factor que colocaba el
gerente o, por lo menos, hubiera encontrado un camino para aproximarse a
dicho factor De manera que este error podemos decir que es el mas difícil de
detectar si no establecemos los mecanismos para ello, sobre todo porque el
computador en ninguno de sus procedimientos va a detectarlos

ICO

5.3.3. Errores lógicos

Cap 5 - L \ TLCNoi ogia

Son loserroresquese presentan cuando no se ha comprobado apropiadamente
a través de la "prueba de escritorio" la efectividad de un algoritmo. Estos
errores solo son detectadles a través de dicha prueba, el computador nunca
nos va a hacer recomendaciones dentro del campo de la lógica Por eso es tan
importantequesepamosque, luego de reconocido el objetivoydedesarrollado
un algoritmo, es imprescindible realizarle una prueba de escritorio Cuando
esta no se realiza, es muy posible (extremadamente posible) que nuestro
algoritmo no satisfaga el objetivo propuesto.

Por ejemplo, en una empresa en donde primero se realiza un determinado
descuento sobre el valor bruto de una compra y luego se liquida la factura
para el cliente, sera importante que solo en ese orden el programador de turno
lo realice porque si primero liquida la factura del cliente y luego le aplica el
descuento, los resultados podran ser (y lo serán) completamente diferentes
a los esperados y, en ese momento, el computador no le va a decir qué fue lo
que hizo malo o lo que dejo de hacer.

5.3.4. Errores de procedimiento

Son los errores que se presentan cuando se tiene claro el objetivo y se ha
desarrollado un algoritmo aproximadamente bien pero no se realiza bien la
"prueba de escritorio" es decir, se hace la prueba de escritorio pero se hace
mal y no nos damos cuenta y, ademas de ello, quedamos convencidos que el
algoritmo quedó bien Por eso no solo es importante que se realice la prueba
de escritorio para evitar los errores lógicos, sino que ademas se realice bien,
apegada a las instrucciones. Recuerde que lo único que necesita para realizar
una buena prueba de escritorio es que usted, mientras la este realizando, no
"razone", o sea, que actué como si usted fuera un computador (que no piensa)
y de manera autómata realice y obedezca una a una las órdenes establecidas
en el algoritmo. Esa sera la única forma para usted de estar seguro de que rea­
lizó bien la prueba de escritorio porque este es otro de los factores que no es
fácil de detectar, ya que muchas veces podemos hacerlas y no tener la certeza
de SI lo hicimos bien o no.

Sin temor a equivocarme, puedo decirle que son los errores del ser humano los
mas difíciles de detectar en el desarrollo de un algoritmo, dado que dependen
solo de la metodología y del orden que tenga, para solucionar el problema, el
mismo ser humano. También podríamos decir que dichos errores son los mas
complejos porque su solución se remite a cambiar una concepción acerca de
un problema o incluso a realizar algunos ajustes a la lógica de programación

101

INTRODUCCION A L-\ LOGICA DI PUOGIL\NL\CION - OMAR I\AN TRIJOS BURRICA

para acercarnos más a la lógica computacional y abandonar un poco la lógica
humana. Los errores humanos son los mas difíciles porque ningún aparato nos
dice en dónde están. Tenga pues en cuenta que solo de usted va a depender
que no tenga que cometer estos errores, ya que al final resultan ser los mas
costosos SI se analizan desde una óptica estrictamente empresarial

5.3.5. Errores detectados por un compilador

Son los errores mas sencillos, ya que los compiladores modernos no solo nos di­
cen cuál es el error, sino que ademas nos orientan en donde puede estar dicho
error. Es muy importante que sepa que, en cuanto a los errores detectados por
un compilador, usted deberá saber dos cosas’

¿Quésignifican?Debidoa que normalmente los compiladores son desarrollados
fuera del país y los errores salen como un aviso en inglés, saber qué significan
simplemente es conocer su traducción literal y no más

¿Qué representan? Esto es lo más importante en un aviso de error generado
por un computador, ya que la representación de un error es lo que realmente
nos va a permitir corregirlo apropiadamente. Tomemos un breve ejemplo,
usted ha realizado un programa en el que ha utilizado variables de las cuales
se le olvidó declarar una variable que dentro del programa usted ha llamado
contal. En algún momento del programa, usted asigna el valor 35 a dicha
variable. Cuando lo compila le sale el siguiente error

Impossible assign value in variable contal

¿Qué significa? Imposible asignar valor en la variable conta 1 (no olvide que el
significado es la traducción literal).

¿Qué representa? Que el computador no puede asignar el valor porque la varia­
ble en mención (o sea, contal) no esta declarada y, por lo tanto, para él no existe.

La familiarización con el significado y la representación de los errores de un
determinado lenguaje de programación se da solamente en la medida en que
usted codifique muchos programas en dicho lenguaje Este puede ser un buen
termómetro para determinar si una persona realmente tiene experiencia en
un determinado lenguaje de programación o no.

Pasemos pues a describir los dos tipos de errores que genera un compilador
cuando está "revisando sintácticamente" un programa. Estos errores son:

102

5.3.6. Errores de sintaxis

Son las omisiones que cometemos cuando transcribimos el programa. Es nor­
mal que se nos olvide cerrar un paréntesis que hemos abierto o declarar una
variable. El compilador nos dice, a través de un aviso, cuál es el error y nos ubi­
ca aproximadamente en donde está. Cabe anotar que estos errores no dejan
que el programa sea ejecutado

Cap 5 - La TtCNOLOGiA

5.3.7. Errores de precaución

Son recomendaciones técnicas que el compilador nos hace para que el com­
putador nos garantice el correcto funcionamiento del programa. Podría decir­
se que no son errores como tales, pues el programa puede ej'ecutarse aun a
pesar de tener errores de precaución, con la pequeña diferencia de que es muy
posible que los resultados finales no sean los que esperamos

5.4. Desarrollo histórico de la programación

Como todas las ramas del conocimiento humano, la programación también ha
ido avanzando, haciendo que esta sea cada vez más simplifícada para el pro­
gramador y brindando día a día mas herramientas técnicas que permitan la uti­
lización de los computadores de una manera sencilla y simplificada. También
se han experimentado algunos cambios en cuanto a la concepción del mundo
de la programación y sus efectos y utilización en el mundo de la informática.

Cuando comienzan los computadores o lo que en esos tiempos era un compu­
tador. no existían, como es obvio, las facilidades tecnológicas que hoy existen,
razón por la cual el concepto de programación se realizaba a través de circuitos
eléctricos y electrónicos directamente, de tal manera que los"programadores"
de aquellos tiempos eran unos tremendos en electrónica, ya que las solucio­
nes las construían con partes como tales. Esa programación se conoció como
programación directa o real, dado que el contacto entre el programador y la
máquina era directo y requería un altísimo conocimiento técnico no solo de
partes electrónicas, sino también de lo que en ese entonces era la programa­
ción a bajo nivel.

Poco a poco, la tecnología fue avanzando, permitiendo que, en este campo,
el ser humano tuviera cada vez más y mejores herramientas de trabajo. Fue
entonces cuando se pensó en la programación tal y como se concibe en el
día de hoy, es decir, permitir que, a través de órdenes dadas al computador,
este pudiera realizar unas tareas a altas velocidades. Este concepto comenzó

103

a ser trabajado y poco a poco empezaron a surgir en el mercado lenguajes de
programación como tales Estos lenguajes permitían realizar un gran numero
de tareas con la simple utilización correcta de unas instrucciones La meto
dologia de la utilización de estas instrucciones fue en esos tiempos algo muy
libre, razón por la cual a esta etapa de la programación se le conocio como
programación libre

Bajo esta técnica de programación, la persona que estuviera al frente del com­
putador podía realizar todas las tareas que pudiera o, mas bien, que el lengua
je le permitiera, basándose solamente en su lógica propia aplicada a la libre
utilización de dichas instrucciones Aúna pesardeque en prinopioesta forma de
utilizar los lenguajes de programación fue la solución para muchos problemas
y de que el mundo había comenzado a ser mas eficiente en el tratamiento de
la información gracias precisamente a la utilización de ordenes para programar
los computadores, los problemas no esperaron para dejarse venir

Cuando un programador se sentaba con su lógica propia a resolver un
problema utilizando las instrucciones que un lenguaje de programación le
permitía, muchas veces (y casi siempre) llegaba a soluciones que solamente el
entendía y cuando este programador era sacado de la empresa o se retiraba o
se mona, entonces la empresa se veia en la penosa obligación de conseguir otro
programador que, en la mayoría de los casos, lo que hacia era volverá hacer todo
lo que el primero había hecho pero con su propia lógica, quedando la empresa
en manos de este nuevo programador y teniendo previsto el gran problema
que se originaria cuando este se retirara o se muriera o hubiera que echarlo

Fueallien dondecomenzoapensarseen la lógica estructurada de programación
o mas bien se comenzó a pensar que los programas, por diferentes que fueran,
obedecían a una sene de normas que eran comunes en cualquier algoritmo,
termino que se comienza a acuñar en esa época A través de muchos estudios,
se llego a la conclusion de que la lógica de programación se basaba solo en
tres estructuras, como son las secuencias, las decisiones y los ciclos Se puso a
prueba esta teoría y se descubrió que era cierta, pues ningún algoritmo se salía
de estas tres estructuras

Pensar en unas estructuras básicas del pensamiento al momento de la
programación facilito enormemente el hecho de que el programa desarrollado
por un programador fuera entendido sin mayores complicaciones por otro
También esta forma de programación restringió el desorden de algunos
programadores porque le coloco unos limites a la lógica computacional que
era la que había que utilizar cuando se necesitara escribir un programa A esta
forma de trabajo se le llamo programación estructurada, que no es masque la
técnica a través de la cual se utilizan los lenguajes de programación utilizando

iNmODUCCIüN A L,\ LOOICA 131 PROÜIUM \CION - OmAR K\N TriJOS BURriIC\

104

Cap 5 - La ticnolooia

las estructuras básicas y permitiendo que los programas sean mucho más
entendióles, ya que no son concebidos al libre albedrío del programador, sino
basados en unas normas técnicas

Esta técnica de programación comenzó a tomar mucha fuerza en el desarrollo
de la programación debido, precisamente, a que ya un programador podía
tomar los programas de otro y entenderlos con muchísima facilidad Se
desarrollaron lenguajes que permitieran precisamente la sana utilización de
estas estructuras y a estos se les llamo lenguajes estructurados Ademas, dichos
lenguajes se podría decir que casi obligaban al programador a no salirse del
marco conceptual de las estructuras básicas

El mundo y el ser humano, ávido de soluciones para sus necesidades, utilizaron
esta técnica de programación estructurada por mucho tiempo sin cuestionarla
hasta que las mismas necesidades de programación comenzaron a cuestionar
lo que hasta ese momento había funcionado tan perfectamente Se partió de
la teoría de que la programación no es mas que una interpretación del mundo
real y su simulación a través de un computador, por tal motivo, se pensó en
aproximar mucho mas los conceptos de programación al mundo real y fue allí
en donde se encontró que todo lo que nos rodea tiene unas características y
sirve para algo Por ejemplo, un lápiz tiene peso, color, olor, sabor (si se quiere),
longitud, espesor, torque, textura y muchas otras características Al mismo
tiempo, un lápiz sirve para escribir, para separar una hoja de un libro, para
rascarse la espalda, para defenderse de un atraco, para señalar un punto, para
dibujar, para manchar a alguien y para miles de cosas mas

Esta concepción llevo a una gran revolución en la historia de la programación,
pues se crearon dos vertientes dentro de la lógica de programación la
programación estructurada que ya definimos y la programación orientada
a objetos, por medio de la cual se podía modelar el mundo en el computador
tal y como es Su aporte principal era el concepto de objeto ¿Que es, pues, un
objeto’ En términos generales, un objeto no es mas que un ente informático
que tiene características (técnicamente llamadas atributos) y que sirve para
algo (técnicamente se dice que tiene unos métodos asociados)

Así se creo pues este concepto y se comenzarían a utilizar los objetos (en
programación), que como ya dijimos no son mas que tipos de datos con
atributos y métodos propios Toda una teoría se comenzó a derivar de esta nueva
Concepcion del mundo y se fue aplicando poco a poco en la programación, ya
que se empezaron a descubrir unas relaciones entre objetos, unas operaciones
entre objetos y, en general, un monton de conceptos nuevos en cuanto a lo
que inicialmente no habían sido mas que los objetos

105

INTTIODUCCIÜN A U\ LOGICA DC I ROGRAMACION OMAR I\ \N TrUOS BURITIC \

Mientras se desarrollaba esta teoría y se ponía en practica en muchos de los
lenguajes de programación comerciales, también se seguía utilizando la tecni
ca de programación estructurada, pues estas dos técnicas no eran excluyentes ^
Dependía pues del programador que tuviera una verdadera concepción acer
ca del problema que quena solucionar y la decision de saber por cual técnica
de programación (programación estructurada o programación orientada a
objetos) era mas apropiado resolverlo

Ello exigía simultáneamente que el programador no solo conociera muy bien
los conceptos de programación, sino que también conociera muy bien el pro
blema que iba a solucionar y las características de cada una de las técnicas de
programación Tema que ser un profesional integral de la programación, pues
ahora no solo se necesitaba que supiera de computadores o de electrónica o
que se supiera las instrucciones de un simple lenguaje Ahora tema que co­
nocer teorías y combinarlas de manera que pudiera llegar a la mejor solución
aprovechando la tecnología existente Debo decir que, cuando comenzó a
tomar fuerza la teoría de la programación orientada a objetos, no todos los
lenguajes de programación (o mejor, no todos sus compiladores) estaban
acondicionados para que aceptaran la nueva forma de programar

De esta manera, también era necesario que el programador supiera si el pro­
blema que iba a solucionar a través de un programa era implementable fácil
mente con el lenguaje de programación que tuviera a mano, pues debe usted
saber que no es fácil inducir la compra de un lenguaje de programación (o sea,
de su compilador) en una empresa cuando todo el sistema de información
esta basado en otro lenguaje de programación Esta filosofía de programación
fue tomando mucha fuerza y con ella se fueron fortaleciendo los lenguajes
que habían iniciado la aceptación de esas nuevas características Empresas
fabricantes que hasta ese momento habían sido competitivas se convirtieron
en verdaderos imperios de la informática La programación, definitivamente,
había dado un salto impresionante hacia la solución de muchos problemas
que eran, en algunos casos, mas complejos de resolver con programación es
tructurada que con programación orientada a objetos

Poco a poco, algunos fabricantes de lenguajes de programación se fueron
introduciendo en el mercado y aprovechando las características de la nueva
técnica de programación y fueron dejando de lado, de alguna manera, la pro
gramacion estructurada que algunos libros han llamado programación tradi
cional En ese avance tecnológico y con el animo de entregar al mercado de la
programación mejores herramientas de trabajo, se empezó a manejar un con­
cepto muy importante en programación como es el concepto de interfaz Una
interfaz no es mas que la forma como usted puede mostrar la información por
medio de algún dispositivo de salida Ya se sabia que cuanto mas clara y enten
dible fuera la información podría decirse que los programas serían mejores, ya

106

Cap 5 - L\ tecnología

que lo que finalmente el usuario de un programa necesitaba era que la infor­
mación que le arrojaba un computador fuera claramente entendible

Se fue notando, pues, por parte de las empresas fabricantes de lenguajes de
computadores, que el tiempo de un programador se iba en su mayor parte en
el diseño de las interfaces, o sea, en el diseño de la presentación de los datos
Por tal motivo, se pensó que, en union con la teoría de programación orien­
tada a objetos y con las herramientas que ella facilitaba, se hacia necesario
diseñar lenguajes de programación que facilitaran el diseño de interfaces para
que el programador invirtiera su tiempo mejor en el diseño de procesos o de
manipulación y tratamiento de datos

Fue entonces cuando entraron al mercado los lenguajes visuales y se mcor
poro al desarrollo de la programación la programación visual, que no es mas
que una forma de programar en donde se cuenta con una gran cantidad de
herramientas prediseñadas para facilitar, precisamente, el diseño de interfa­
ces Este tipo de programación ha llevado a que en el mundo de la informática
y exactamente en la programación se llegue a unos resultados mucho mas
convenientes y mejores a nivel técnico, pues en la actualidad se pueden obte
ner aplicaciones de computador mucho mas entendibles y manejables por el
usuario gracias a la filosofía incorporada por la programación visual

A este nivel, la programación requería menos conceptos técnicos y mas lógica
de programación, que era lo que realmente se necesitaba para desarrollar un
programa Es normal ver como una persona con unos modestos conocimien­
tos de computación puede, a través de lenguajes visuales, desarrollar aplica­
ciones verdaderamente útiles y ademas muy bien presentadas Lo que poco
a poco se fue afianzando fue la necesidad de tener unos conceptos de lógica
de programación bien fundamentados para poder aprovechar de una manera
eficiente los recursos que la informática le entregaba al computador

Como se busca modelar con el computador al mundo que nos rodea y en
ese avance la tecnología cada vez se ha ido mejorando mas y más, se espera
gue dentro de muy poco se podra hablar de una programación virtual en
donde el programador pueda ver en tres dimensiones (3D) todo el escenario
que necesita para crear sus aplicaciones Es muy posible que, cuando este libro
este en sus manos, algunos de estos lenguajes de programación ya esten en
el mercado

IU7

Capítulo 6
Metodología, técnica y

tecnología para solucionar
un problema computable

Hasta este momento tenemos una metodología para solucionar un problema,
conocemos unas técnicas para representar la solución y hemos hablado de
la tecnología a nivel de lenguajes de programación para que el computador
cumpla por nosotros el objetivo propuesto Todo esto se une en una teoría que
nos permite acercarnos a la lógica de programación y, por supuesto, gracias al
primer contacto que ya tenemos con los lenguajes, a la programación como
tal Es importante saber que cuando se habla de lógica de programación se
esta hablando de ese conjunto de normas técnicas que nos permiten que, de
una manera sencilla, nosotros desarrollemos un algoritmo entendible para
la solución de un problema Cuando se habla de programación como tal, se
habla de la utilización de lenguajes que permiten que nuestra solución sea
entendida y ejecutada por un computador

Precisamente, y con el animo de ilustrar toda la teoría que hasta el momento
hemos visto, vamos a plantear tres enunciados y vamos a resolverlos aplican­
do la metodología para solucionar un problema, utilizando las técnicas de
representación y codificándolos en unos lenguajes de programación

6.1. Concepción del problema

Es muy importante que cuando tengamos un enunciado podamos tener una
Concepcion acertada de el, de manera que podamos alcanzar su objetivo
(solución) y que ese objetivo sea el que realmente necesita ser solucionado La
Concepcion del problema es el camino para tener la certeza de que lo hemos
entendido correctamente y que lo que buscamos solucionar coincide con lo
que se busca solucionar en el problema

109

INTRODUCCION A L,\ LOGICA DT l>RO(iR/\M \CION - 0\UR IWN TrUOS BURmC\

6.1.1. Clarificación del objetivo

Por lo dicho en capítulos anteriores, es muy importante que a través de un razo
namiento teórico y textual nos sentemos a reflexionar en cuanto a ios alcances
de nuestro objetivo (enunciado como un problema), ya que con eso tendremos
muy claro no solo hacia donde debemos ir, sino hasta donde debemos llegar

6.1.2. Algoritmo

Es el conjunto de pasos que nos permiten llegar (ojala de la mejor de las for­
mas) a alcanzar el objetivo propuesto Debe ser organizado y, ante todo, orde
nado para que sea absolutamente entendible

6.1.3. Prueba de escritorio

Es la prueba rema de un algoritmo Nos permite saber si realmente esta bien o
no ¿Cuando un algoritmo esta bien"^ Solamente cuando realmente alcanza el
objetivo propuesto Si un algoritmo no alcanza el objetivo que inicialmente se
propuso, estara mal asi haga maravillas en su desarrollo

6.2. Técnicas de representación

Es importante que usted conozca y domine las técnicas de representación por
que con ello usted podra evaluar ventajas y desventajas reales (y para usted)
y podra determinar cual es la técnica mas apropiada para la representación
de sus algoritmos No esta de mas decir que cuando se quiere representar
un algoritmo solamente se utiliza una de las técnicas, pero para los objetivos
explicativos de este libro representaremos los algoritmos de este capitulo y
de otros subsiguientes con las tres técnicas, solo para que usted encuentre
diferencias entre ellos y esto le permita realizar una correcta evaluación y esta
blecer unos criterios firmes acerca de su utilización

6.2.1. Diagramas de flujo

Representados por signos en donde el hilo conductor de la lógica se basa en
la utilización de flechas que conectan pequeños gráficos (con significado) que
van a indicar la dirección del flujo de la idea

lio

6.2.2. Diagramación rectangular estructurada

Esquema en donde se utiliza un rectángulo como base y utilizando solo tres
tipos de notaciones se puede representar todo lo que para nosotros sea parte
de un algoritmo

6.2.3. Seudocódigo

Texto basado en unas normas técnicas que lo hace muy entendible y, sobre
todo, muy fácil de codificar y que representa, obviamente, la solución que ha­
yamos planteado a través de un algoritmo

Cai> 6 - MlTOÜOLOGIA TLCNÍCA y TLCNOLOGIA P\RA solucionar un PROniXMA

6.3.Transcripción o codificación

Es la representación de un algoritmo a través de un lenguaje de programación.
En este capitulo, utilizaremos los lenguajes Basic, Pascal, Cy Cobol como ejem­
plos y explicaremos brevemente y de manera muy somera, ya que no es el ob
jetivo del libro, algunos tópicos acerca de cada uno de los lenguajes También
es importante que usted sepa que, cuando vaya a desarrollar realmente progra­
mas aplicativos, solo va a tener que codificaren un solo lenguaje de programa­
ción En este libro lo haremos en cuatro lenguajes solo por el animo explicativo
del libro y para establecer algunas diferencias entre uno y otro lenguaje

6.4. Primer enunciado

Desarrollar un programa que permita leer un numero entero positivo y deter­
minar si es par

Concepción del problema

Claríñcación del objetivo
Se trata de recibir un numero entero (para lo cual utilizaremos una variable de
tipo entero), verificar que es un numero positivo y determinar si es un numero
par Recordemos, pues, que son números pares aquellos que son divisibles
exactamente entre dos, o sea, aquellos que al dividirlos entre 2 su residuo es
cero Algunos números pares son 18, 6, 4, 56 y 88 Algunos números que no
son pares son 45, 7,19, 23 y 99, ya que no cumplen con las condiciones de los

números pares

III

INTHODUCCION a L,\ LOGICA Dl PROCiRAM \CH)N - OmaR I\ \N TRUOS BURITICA

En caso de que el numero leído sea par, avisaremos a través de un título que el
número sí es par y, en caso de que no sea así, entonces haremos lo mismo avisan­
do que el número no es par. Apenas hayamos avisado a través de un titulo que el
número es par o que no lo es, entonces allí deberá terminar nuestro algoritmo.

Algoritmo

Algoritmo para determinar si un número es par
Inicio

Leer un número y guardarlo en una variable en tera
Si ese número es negativo

Escribir que ese número no sirve para nuestro propósito
Sino

Preguntar si el número es par
Si lo es entonces escribir que el numero leído es par
Si no lo es escribir que el número leído no es par

Fin

Ya de por sí debemos tener en cuenta que el algoritmo es en sí la esencia de
nuestra idea tal y como está representado aquí. Ahora lo que tenemos que
hacer es ir mutando nuestra idea para que se convierta en una solución más
aproximada a lo técnico que a lo informal. Comencemos pues con un análisis
detallado de cada una de las ordenes que aparecen en este algoritmo:

Si vamos a convertir este algoritmo en un programa, entonces el nombre
debe ser un poco más técnico De esta manera, no lo vamos a llamar A/gor/fmo
para determinar si un número es par, sino que lo vamos a llamar Algoritmo
Número_Par y será nuestra obligación recordar que el Algoritmo Número_Par
es el algoritmo que nos permite leer un número y determinar si es par.

Como vamos a tener la necesidad de utilizar una variable para que almacene
el número que se va a leer, entonces es necesario que al inicio del algoritmo
declaremos una variable de tipo entero a la cual vamos a llamar (por
conveniencia técnica) num, de esta forma, la cabecera de nuestro algoritmo
que estaba así:

Algoritmo para determinar si un número es par
Inicio

112

Se va a transformar en-

Algoritmo Numero_Par
Variables

Entero num
Inicio

Esto significa que durante el algoritmo vamos a utilizar una variable que la
vamos a llamar num, que solo podra almacenar datos de tipo entero y que,
cuando se utilice en operaciones, sus resultados se van a regir por las reglas de
la aritmética entera (es decir, sin decimales).

Como ya tenemos una variable en donde vamos a almacenar el numero que
se lea, entonces la orden Leer un número y guardarlo en una variable entera se
convertirá conceptualmente en Leer un numeroy guardarlo en la variable entera
num que, por lo dicho en capítulos anteriores, es lo mismo que decir Lea num
(orden dada al computador) Entonces, el algoritmo que, hasta el momento, era-

Algoritmo para determinar si un número es par
Inicio

Leer un numero y guardarlo en una variable entera

Se convierte ahora en:

Algoritmo Número_Par
Variables

Entero num
Inicio

Lea num

Como ya tenemos el valor guardado en una variable, entonces preguntar por
el número leído es lo mismo que preguntar por el contenido de la variable y
hemos de recordar que, cuando se utiliza el nombre de una variable en un
algoritmo, eso representara que nos estamos refiriendo al contenido de dicha
variable Igualmente, preguntar si un numero es negativo se reduce a pregun­
tar 51 dicho número es menor que 0 valiéndonos de un operador relacional (<
) En esas condiciones la pregunta

S/ ese numero es negativo
Escribir que ese número no sirve para nuestro proposito

Caí- 6 Mitodologia, tlcnica y ttcnoi ogu p\il\ solucionar un PRonuju

113

INTKODUCCIOS \ LA LOGICA DL PROGRAMACION - 0\L\lt IwnTrUOS DURHICA

Se convierte en

S; num < 0
Escriba El numero debe ser positivo'

Y, por lo tanto, nuestro algoritmo que originalmente era

Algoritmo para determinar si un numero es par
Inicio

Leer un numero y guardarlo en una variable entera
Si ese numero es negativo

Escribir que ese numero no sirve para nuestro proposito

Se ha transformado, hasta el momento, en

Algoritmo Numero_Par
Variables

Entero num

Inicio
Lea num
Si num <0

Escriba "El numero debe ser positivo'

Si esta ultima pregunta es falsa, querrá decir que el numero es mayor que o
igual a 0 y, por lo tanto, pasaremos a realizar la siguiente pregunta

Sino
Preguntar SI el numero es par
Si lo es entonces escribir que el numero leído es par
Si no lo es escribir que el numero leído no es par

Fin

Que consistirá en determinarsi el numero es par para avisar a través de un titulo
que SI lo es o que no lo es Pero, ¿como convertimos técnicamente la pregunta
Si el numero es par para que el computador la pueda ejecutar y obtener la
respuesta apropiada? Una de las formas es aprovechando las características de
la aritmética entera Recuerde que en esta aritmética no se generan decimales,
por lo tanto, si nosotros tomamos un numero y lo dividimos entre dos, eso nos
dara un resultado Si ese resultado lo multiplicamos por dos, ¿nos volverá a dar
el mismo numero inicial? Si, pero solamente cuando este haya sido par, ya que
SI hubiera sido impar al hacer la division entre dos se pierden sus decimales

114

Vamos a hacerlo con un ejemplo si dividimos 7 entre 2, ¿cuanto nos da?
(Recuerda que son datos enteros y que estamos trabajando con aritmética
entera por ser estos dos datos enteros) Pues el resultado es 3, ya que en
aritmética entera no se generan decimales Y si ahora tomamos este resultado
y lo multiplicamos por 2, nos va a dar 6 que no es igual al 7 inicial, por lo tanto,
podemos decir que como 6 no es igual a 7 entonces el 7 no es par

Tal vez usted pensara que todos sabemos cuando un numero es par o no Pero
no se olvide que el que va a ejecutar este algoritmo (convertido obviamente
en programa) es el computador y ese sí que no fue a la escuela como nosotros
Igualmente, y para continuar con nuestro ejemplo, si el numero 8 es dividido
entre 2, obtenemos el resultado 4 y si ese resultado es multiplicado por 2,
obtenemos el 8 inicial Por lo tanto, podemos decir que 8 es un numero par

Luego para determinar si un numero cualquiera es par, todo lo que tenemos
que hacer es dividirlo entre 2 y multiplicarlo por 2 Si al final se obtiene el
resultado inicial, es porque el numero es par Si no se obtiene el resultado
inicial, es porque el numero no es par De tal forma que nuestra pregunta

Sino
Preguntar si el numero es par
Si lo es entonces escribir que el numero leído es par
Si no lo es escribir que el numero leído no es par

Fin

Se convierte en

Sino
Sinum/2*2-num

Escriba "El numero leído es par

Sino
Escriba' El numero leído no es par

Fin

Cuando se vaya a resolver la pregunta 5/ num/2 2 - num no se olvide de la
jerarquía de operadores para que el resultado sea el correcto y, por en e a

respuesta a dicha pregunta

Entonces, nuestro algoritmo, que inicialmente era

Caí* 6 - Mítodoi ogia tlcnica y tecnoi ocia p\ra solucionah un i'roülcma

115

Algoritmo para determinar si un número es par
Inicio

Leer un número y guardarlo en una variable entera
Si ese número es negativo

Escribir que ese número no sirve para nuestro propósito
Sino

Preguntar si el número es par
Si lo es entonces escribir que el número leído es par
Si no lo es escribir que el número leído no es par

Fin

Se ha convertido ahora en un algoritmo técnico así:

Algoritmo Número_Par
Variables

Entero: num
Inicio

Lea num
Si num < 0

Escriba "El número debe ser positivo"
Sino

Sinum/2*2 = num
Escriba "El número leído es par"

Sino
Escriba "El número leído no es par"

Fin

¿Cuál es la verdadera diferencia entre uno y otro? Pues la diferencia es que la
segunda versión de este algoritmo es fácilmente codificable en un lenguaje de
programación y la primera versión no es tan fácilmente codificable dada la gran
cantidad de razonamientos que hay que hacer. Debo aclararle que la primera
versión es el algoritmo puro como tal y sin ningún tipo de retoque. La segunda
versión es el mismo algoritmo pero expresado bajo la técnica del seudocódigo
que no es más que una representación técnica textual de un algoritmo.

Prueba de escritorio

¿Cómo se hace realmente una prueba de escritorio? Muy sencillo. Usted va a
tener dos elementos que manejar en una prueba de escritorio: el primero es la
memoria en donde se van a manejar las variables que intervengan en el progra­
ma y el segundo es la pantalla (o unidad de salida, cualquiera que esta sea) por

InTKUIH'C (lU^ A 1 A I ikiICA I» >>IUKiRAM\ril)N - ÜMAK IS \N 1 UfJliS BUIUIU A

116

Caí* 6 * Mitodologia, tj cnic \ ^ ttcnologuv p\ra solucionar un prohu-ma

donde usted va a obtener los resultados de su algoritmo Entonces, desarrolle
paso a paso lo que diga el algoritmo utilizando las variables que el mismo le
indique y colocando en pantalla los títulos que el mismo algoritmo le indique

Sencillamente, suponga que usted es el computador Cuando llegue al Fin del
algoritmo, todo lo que tiene que hacer es mirar en la pantalla (o unidad de
salida que usted haya representado) y ver si lo que dice allí coincide con el
objetivo que inicialmente se había propuesto De ser así, su algoritmo estara
bien Si no es asi, el algoritmo estara mal y usted tendrá que corregirlo para
volver a realizarle una prueba de escritorio

De esta manera, si tomamos el algoritmo técnico final y le realizamos una
prueba de escritorio, obtenemos lo siguiente

Algoritmo Numero_Par
Variables

Entero num
Inicio

Lea num
Si num < 0

Escriba 'El numero debe ser positivo"
Sino

Si num/2 *2 = num
Escriba ‘El numero leído es par'

Sino
Escriba El numero leído no es par

Fin

Tal como lo indica el algoritmo en su parte inicial en memoria, tenemos una
variable que se llama num y en pantalla inicialmente estamos en blanco

Algoritmo Numero_Par
Variables

Entero num

PANTALLA MEMORIA

num

A partir de este momento somos computadores Solo vamos a hacer lo que el
algoritmo nos diga El algoritmo nos dice Lea num, entonces vamos a asumir

117

INTKOIJUCCION \ I^\ lOCiICA DC TROGIUM \C10N - OM \R IWNTiUJO-i BUKIHCX

que el numero 18 se recibe a través del teclado y se refleja automáticamente
en la pantalla Dicho numero es almacenado en la variable num porque asi
se lo hemos dicho a través del mismo algoritmo (no se olvide que Lea num
significa Lea un numero entero y guárdelo en la variable num)

MEMORIA

num
18

PANTALLA

18

A continuación, sigue la pregunta Si num < 0 Como sabemos que cuando se
refiera a la variable num realmente se esta refiriendo al contenido de la varia­
ble num, entonces internamente la pregunta sena Si 18 < 0.a lo cual podemos
responder (y así lo haría el computador) que es Falso Por lo cual optamos por
desarrollar las ordenes que se encuentran después del Sino (que son las orde­
nes que se deben ejecutar cuando la condición sea falsa, como en este caso)
Nuestra situación tanto de pantalla como de memoria siguen iguales, no ha
habido ningún cambio en ninguna délas dos Acontinuacion, y siguiendo con
el Sino, nos encontramos con la pregunta Si num/2 * 2 = num Para ello, lo
primero que debemos hacer es resolver la primera parte de la pregunta, o sea,
realizar la operación que se derive de num/2*2y obtener su resultado Asi,
reemplazando num por su contenido y aplicando la jerarquía de operadores,
obtenemos que la expresión y su resultado serian

num/2*2 = num
18/2*2= 18
9*2=18

18 = 18

Con lo cual la pregunta inicial que era Si num/2 *2 = num se convierte en Si
18 = 18, a lo cual nuestra respuesta (como computadores que somos en este
momento) es Verdadero, entonces procedemos a realizar la acción de escribir
en pantalla "El numero leído es par" tal como lo indica nuestro algoritmo

Luego en nuestra pantalla aparece

PANTALLA MEMORIA

18 num

El numero leído es 18
par

118

Caí* 6 - Mitodologia, tlcnica v tlcnologia tara solucionar un i’roulema

Verificamos finalmente lo que hay en pantalla y vemos que está el número 18
y después la frase f/número/eWo es por que es Verdad referente al número 18.
Como nuestro objetivo era desarrollar un programa que nos permitiera leer un
número y determinar sí era un número par, entonces podemos decir que este
algoritmo Sí cumple con el objetivo, o sea, que está bien.

Ahora usted deberá realizarle la prueba de escritorio a este algoritmo supo­
niendo que el número Inicial leído es el 25. No se olvide de la jerarquía de
los operadores y de que mientras usted esté haciendo una prueba solo debe
acatar y ejecutar las órdenes tal y como se las indique el algoritmo, pues es así
como el computador va a hacer realidad nuestros programas.

Técnicas de representación

Una vez desarrollado el algoritmo y habiéndosele realizado una correcta prue­
ba de escritorio, se procede a representarlo usando alguna de las técnicas vis­
tas. Hago hincapié en que son algunas porque para efectos de aprendizaje en
este libro representaremos este algoritmo usando las tres técnicas, pero en la
realidad se utiliza solamente una de ellas. Es muy importante que sepa que la
representación se debe hacer cuando el algoritmo está escrito técnicamente.
Para ello, recordemos que hemos, hasta el momento, desarrollado el mismo
algoritmo de dos formas- la forma informal y la forma técnica. ¿Se acuerda cuál
es la forma informal? Pues aquí se la presento de nuevo:

Algoritmo para determinar si un número es par
Inicio

Leer un númeroy guardarlo en una variable entera
Si ese número es negativo

Escribir que ese número no sirve para nuestro propósito

Sino

Preguntar si el número es par
Si lo es entonces escribir que el número leído es par
Si no lo es escribir que el número leído no es par

Fin

Como puede ver, la característica principal es que la forma informal nos da una
‘dea muy coloquial de nuestra solución, pero se sale mucho de los esquemas
técnicos que necesitamos para poder llevar este algoritmo a un computador.
Por eso, la forma técnica es la que nos permite realmente llevar al computador
lo que hemos considerado como solución a nuestro objetivo. ¿Cuál es la forma
técnica? Pues aquí se la presento también:

119

InTKODUCCIÓN a I (XiICA DI PROCKAMAl lÓN - OsiAK I\AN TRIJOS BuRIHCA

Algoritmo Número^Par
Variables

Entero: num
Inicio

Lea num
Si num < 0

Escriba “El número debe ser positivo"
Sino

Sinum/2*2-num
Escriba "El número leído es par"

Sino
Escriba "El número leído no es par"

Fin

En (a forma técnica, muchas de las órdenes son equivalentes a instrucciones de
un lenguaje de programación y ello es lo que nos permite que fácilmente po­
damos convertir el algoritmo en un programa. Esto significa que es esta última
forma la que vamos a representar utilizando las técnicas estudiadas.

Diagrama de flujo

I2Ü

Cap 6 - Mltodoí ogia, tlcnica ^ tlcnologia para solucionar un prodllnu

Díagramación rectangular estructurada

No se olvide que lo que va entre comillas dobles en la díagramación rectangu­
lar estructurada representa un título y así debe quedar bien sea en la pantalla
o en cualquier unidad de salida.

Seudocódígo

Podría surgiríe la pregunta ¿cómo se representa este algoritmo en seudocó-
digo’ Pues precisamente el algoritmo técnico (o escrito teniendo en cuenta
algunas normas técnicas) es el equivalente del algoritmo solución en seudocó-
digo. De acuerdo a esto (y por una vez más), el seudocódígo sería:

Algoritmo Número_Par
Variables

Entero: num
Inicio

Lea num
Si num < 0

Escriba "El número debe ser positivo"
Sino

Si num/2*2 = num
Escriba "El número leído es par"

Sino
Escriba “El número leído no es par"

Fin

121

iNTRODLCaON \ Iw\ LOGICA DL I'ROGKAMACION - 0\l\K I\ VN TRIJOS BURtTIC \

Transcripción o codifícación

Con el ammo de dar ejemplos concretos, voy a mostrarle a usted, querido lec­
tor, que cuando se va a programar lo mas importante no es el conocimiento de
un lenguaje de programación (ya que con su uso uno se va acostumbrando a
sus reglas), sino la lógica de programación que usted use para desarrollar solu
Clones algorítmicas encaminadas a lograr un objetivo De acuerdo con esto, la
diferencia entre un lenguaje y otro serán solo sus instrucciones debido a que
la lógica seguirá siendo la misma

Vamos pues a mostrar como sería el algoritmo del ejercicio escrito en términos
de cuatro lenguajes Basic, Pascal, C y Cobol El objetivo perseguido en esta
parte del libro no es que usted de una vez comience a programar utilizando
un lenguaje determinado El objetivo es que usted simplemente vea, con un
ejemplo sencillo, que utilizar cualquier lenguaje de programación es fácil si
tiene usted una lógica que le permita desarrollar y entender unos buenos al
gontmos y ademas tenga una somera idea de que es utilizar un lenguaje como
tal No voy a detenerme a explicar nada de la sintaxis de cada lenguaje, ya que
no es ese el objetivo del libro Con lo dicho anteriormente, recordemos (otra
vez) el algoritmo solución original

Algoritmo Numero^Par
Variables

Entero num
Inicio

Lea num
Si num < 0

Escriba "El numero debe ser positivo"
Sino

Sinum/2*2 = num
Escriba 'El numero leído es par"

Sino
Escriba "El numero leído no es par"

Fin

Version en Lenguaje Basic

input num
if num < 0 then

pnnt"EI numero debe ser positivo"
else

if mt(num/2*2) = num then
print"EI numero leído es par"

else
print "El numero leído no es par'

122

Cap. 6 - Mltodoi ogía, tlcnica y tlcnología p,\ra solucionar un prorulma

Versión en Lenguaje Pasca)

program numero_par;
var

num : integer;
begin

readln(num);
if (num < 0) then

writeln ('El número debe ser positivo');
else
if (num/2*2 = num) then

writeln ('El número leído es par');
else

writeln ('El número leído no es par');
end.

Versión en Lenguaje C

#include <iostream.h>
void mainO
í

int num;
cin » num;
if (num < 0)

i—-.

cout«"El número debe ser positivo";
else

if (num/2*2 == num)
cout «"El número leído es par";

else
cout«"El número leído no es par";

Versión en Lenguaje Cobo!

IDENTIFICATION DIVISION.
PROGRAMJD. NUMERO_PAR.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CLON.
OBJECT-COMPUTER. CLON.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 NUM PIC 99.
PROCEDURE DIVISION.

123

INICIO
ACCEPT NUM LINE 10 POSITION 10 NO BEEP
IFNUMISLESSTHANOTHEN

DISPLAY EL NUMERO DEBE SER POSITIVO
LINE 12 COL 10

ELSE
IF NUM / 2 * 2 IS EQUALTO NUM THEN

DISPLAY EL NUMERO LEÍDO ES PAR
LINE 12 COL 10

ELSE
DISPLAY EL NUMERO LEÍDO NOES PAR

LINE 12 COL 10
STOP RUN

Puede usted notar que la utilización de cualquier lenguaje de programación se
reduce casi a reemplazar algunas palabras clave por las que corresponden en
el lenguaje, pero la lógica como tal permanece allí intacta Por ahora solo me
interesa que, con un vistazo ligero, usted solamente compare que, en el fondo,
la utilización de cualquier lenguaje es lo mismo sin importar cual sea Siempre
tenga en cuenta que lo importante, lo realmente importante lo verdadera
mente importante, es la lógica con la cual usted desarrolle sus algoritmos

InPRODUCCION a Ij\ lOGICV OL 1 KOCjR.\M VCION Om\k IwnTrijos BuRmc\

6.5. Segundo enunciado

Leer dos números enteros positivos y determinar si el ultimo dígito de un nu
mero es igual al ultimo dígito del otro

Concepcion del problema

Clanñcacion del objetivo

Primero que nada vamos a determinar cual es el objetivo concreto de este
enunciado Según el, tendremos que leer dos números enteros (y, por lo tanto,
tendremos que almacenar cada uno en una variable diferente) y tendremos
que comparar mutuamente el ultimo dígito de un numero con el ultimo dígito
del otro numero En aras de que el enunciado este absolutamente claro dire
mos que, para este algoritmo, sera el ultimo dígito de un numero aquel que
tenga el menor peso decimal De esta forma, el ultimo dígito del numero 256
es el 6 y el ultimo dígito del numero 59 sera el 9

Ahora bien, si los dos números leídos son, por ejemplo, el 189 y el 65, entonces
tendremos que comparar el 9 (ultimo dígito del 189) con el 5 (ultimo dígito
del 65) Si fueran esos los dos números leídos entonces tendríamos que decir

124

C/\l* 6- MnODOLOGlA. TLCNICA^ TECNOIOGIA PARA SOLUCIONAR UN PRORLT-MA

que no son iguales Pero si los números leídos fueran el 37 y el 347, entonces
al comparar el 7 del 37 con el 7 del 347 tendríamos que decir que son iguales.

Tal vez usted piense que esta es una explicación que sobra puesto que el
enunciado posiblemente para usted sea muy claro, pero es muy bueno que
se acostumbre, aun con enunciados muy sencillos, a clarificar el objetivo de
manera que pueda usted explicarlo con absoluta certeza. Repito, no importa
que el enunciado sea sencillo o parezca sencillo. Lo importante es que usted
sepa claramente para dónde va para saber por dónde se va a ir.

Algoritmo

Version informal

Algoritmo para comparar el último dígito
Inicio

Leer un número entero y guardarlo en una variable entera
Leer otro número entero y guardarlo en otra variable entera
Guardar en una variable el último dígito del primer número leído
Guardaren otra variable el último dígito del último dígito leído
Comparar el contenido de estas dos últimas variables
Si son iguales

Escribir que los dos últimos dígitos son iguales
Si no son iguales

Escribir que los dos últimos dígitos no son iguales
Fin

Antes de desarrollar la versión técnica (o el seudocódigo), debemos pensar un
momento en la forma como le vamos a decir el computador que guarde en
una variable el último dígito de cualquier número. Para ello, nos vamos a valer de
los operadores aritméticos y, de esa manera, basado en operaciones, obtener
el último dígito de cualquier número (siempre que este sea positivo). Usted tal
vez se preguntara por qué tenemos que valernos de operaciones para obtener
el último dígito de un número y no podemos decirlo así explícitamente, sa­
biendo que el enunciado es tan claro. La razón es muy sencilla. El computador
no fue a la escuela y por eso el solo obedece ordenes claras y "ejecutables sin
razonamientos", es decir, órdenes que no involucren ningún razonamiento adi­
cional para ser realizadas.

Basado en ello, para nosotros es muy claro hablar de "ei último dígito de un nu­
mero cualquiera", pero para el computador no. Por esta razón, vamos a utilizar
las operaciones pertinentes para obtener el último dígito del número leído

125

Vamos a asumir que el numero leído sera almacenado en una variable que se
llamara num Si num contuviera el valor 156, entonces tendríamos que obtener
el dígito 6 Ademas, vamos a asumir que ese ultimo dígito sera almacenado en
una variable llamada ud (como de ultimo dígito) Entonces podríamos decir,
para este ejemplo especifico, que

ud = num -150

De nuevo, si asumimos que num vale 156, entonces el resultado sera el 6 que
estamos buscando Vemos que 150 es un numero constante, o sea, que si el
numero almacenado en num fuera 897, no nos serviría ese 150 para obtener
el ultimo dígito Lo que por ahora si podemos hacer es expresar ese 150 en
términos de num aprovechando las características de la aritmética entera El
numero 150 sena igual a dividir num entre 10 y posteriormente multiplicarlo
por 10 Recuerde que en aritmética entera se generan decimales

Por lo tanto, la expresión num / 10 * 10 es realizada por el computador de la
siguiente forma (teniendo en cuenta la jerarquía de operadores)

• Primero se realiza la division num / 10 En el ejemplo hemos asumido que
el valor almacenado en num es 156, entonces la division num / 10 nos da
como resultado 15

• Segundo se realiza la multiplicación de ese resultado por 10, lo cual para
el ejemplo nos daría 150 Y hemos obtenido el valor que buscábamos

Ahora vamos a reemplazar la expresión inicial por su equivalente usando la
variable num De esta manera tenemos

ud = num- 150

Como 150 es lo mismo que num /10* 10, entonces

ud = num-num/10* 10

Ahora realicémosle una prueba (paso a paso) asumiendo que la variable num
tiene el valor 854

ud = num-num/10* 10
ud = 854 - 854/10*10
ud = 854-85*10
ud = 854-850
ud = 4

Vemos que en la variable ud quedo almacenado el ultimo dígito del numero
Veamos otra prueba (paso a paso) asumiendo que el valor almacenado en la
variable num es 5468

INTRODUCCION A lw\ LOGIC\ DI l’iHKiRAMACION 0\I\R IwnTrIJOS BuRIHC A

126

Cap 6 Mltodologia, tlcníca ^ tpcnolocia p\ra solucionar un prodllnia

ud = num - num / W * 10
ud = 5468-5468/W*10
ud==5468 - 546*W
ud = 5468-5460
ud = 8

Pues podemos decir que hemos encontrado la forma genérica de almacenar en
una variable el ultimo dígito de un numero cualquiera (que era parte de lo que
estábamos buscando) No se olvide que el objetivo de este ejercicio es compa
rar el ultimo dígito de cada uno de dos números y determinar si son iguales
Esto que hasta el momento se ha hecho es solo la forma de facilitar el ejercicio
Esta solución solo tiene una restricción Vamos a asumir que el valor almacena
do en num es -563 Realicémosle la prueba (paso a paso) con la formula

ud = num-num/10*10
ud==-563-(563)/10*10
ud = -563-(-56)*10
ud= 563-(-560)
ud^-563+ 560
ud = -3

Esto significa que, para que esta formula sea utilizada correctamente, tenemos
que asegurarnos que el valor almacenado en la variable num es positivo

Ahora si volvamos a nuestro problema inicial para plantear el algoritmo téc­
nico (o dicho de una vez, el seudocodigo) Recordemos que el enunciado del
problema es Leer dos números enteros positivos y determinar si el ultimo dígito
de un numero es igual al ultimo dígito del otro De acuerdo a esto, podríamos
considerar el siguiente algoritmo como su version técnica (no se olvide que los
algoritmos expuestos aquí son la version personal del autor) Si usted desarro­
lla otro algoritmo que realice lo mismo (o sea, que logre el mismo objetivo) y
al hacerle la prueba de escritorio ve que realmente logra el objetivo, entonces
tanto su algoritmo como el mío estarán bien asi sean diferentes Para el desa
rrollo del algoritmo técnico (o seudocodigo) utilizaremos las variables

num 1 en donde almacenaremos el primer numero leído
num2 en donde almacenaremos el segundo numero leído
udl en donde se almacenara el ultimo dígito del primer numero leído

en donde se almacenara el ultimo dígito del segundo numero leído

Esta vez, para facilidad del usuario de este algoritmo, le avisaremos cuando
debe entrar los números utilizando la orden Escriba (no se olvide que estas son
ordenes que se le darían al computador)

Algoritmo Compara_Ult_digs
Variables

Entero: num 1, num2, udh ud2
Inicio

Escriba "Digite dos números enteros"
Lea num l,num2

Si num 1 < 0
numi =numl *(-1)

Si num2 < 0
num2 = num2*(-l)

ud 1 = num 1 - num 1/10*10
ud2 = num2 - num2/10 * 10
Si Ud1-ud2

Escriba
"El último dígito de un numero es igual al último dígito del otro"

Sino
Escriba
"El último dígito de un número no es igual al último dígito del otro"

Finest
Fin

Es de anotar que en el conjunto de instrucciones

Sinumi <0
numi =num1 *{-1)

Si num2 < 0
num2 = num2*('1)

lo que se busca es asegurarnos que el valor almacenado en las variables num 1
y num2 sea positivo, precisamente para que nuestra fórmula para obtener el
último dígito funcione bien.

Prueba de escritorio

Ya sabemos que la forma correcta de hacer una prueba de escritorio es reali­
zar todas y cada una de las instrucciones "sin razonarlas" llevando cuidadosa­
mente los cambios en la memoria y realizando lo pertinente en la pantalla.
Cuando termine la prueba de escritorio, o sea, cuando el algoritmo llegue a su
fin, entonces mire lo que haya quedado en pantalla y compare su coherencia
con el objetivo planteado por el enunciado.

INTRODUCCION A LOGICA DI PROGRAMACION - OmAR IwnTRUOS DURmCA

128

Cap 6 - MrroDOi ocia, tlcnica v tccnoi ogia para soi ucionar un pRonuLMA

Si ve que lo que está en pantalla satisface el objetivo, entonces su algoritmo
estará bien. Si no es así, entonces tendrá que revisar el algoritmo para que
pueda alcanzar el objetivo propuesto.

Vamos entonces a desarrollar la prueba de escritorio de este algoritmo
realizando paso a paso cada una de las instrucciones y representando lo que
vaya pasando tanto en memoria como en pantalla.

Algoritmo Compara_Ult_digs

Variables

Entero num 1, num2, ud 1, ud2

PANTALLA MEMORIA

numl num2 udl ud2

El algoritmo se inicia, para efectos de la prueba de escritorio, con una pantalla
en blanco y unas variables ubicadas en la memoria sin ningún contenido.

Inicio

Escriba "Digite dos números enteros"

PANTALLA MEMORIA

Digitedos números numl num2 udl ud2
enteros

Aparece en pantalla un titulo solicitando dos números enteros.

Lea num1,num2

PANTALLA MEMORIA

Digite dos números numl num2 udl ud2
enteros 18 -332
18
-332

iNTRODUCCtOS A I-A 1OGICA DC l•ROC;RAM \aON - OmAK I\ \N TrUOS BURTTICA

Para efectos de la prueba de escritorio, vamos a asumir que los números leídos
son 18 y -332. El computador los almacenará así- el primer valor en la varia­
ble numl y el segundo valor en la variable num2 porque en ese orden esta la
instrucción Lea num 1, num2 que significa Lea un número entero y guárdelo en
la variable num 1 y luego lea otro número entero y guárdelo en la variable num2.

Si num 1 < 0
numi =numl *(-1)

Como el contenido de la variable numi es igual a 18, entonces esta pregunta
es Falsa, por lo tanto, pasamos a la siguiente decision:

Si num2 < 0
num2 = num2*(-l)

Como el contenido de la variable num2 es igual a -332, entonces la pregunta
Si num2 < 0 es Verdadera. Por lo tanto, se ejecuta la orden que está allí, o sea,
num2 = num2 * (-1), quedando almacenado en la variable num2 el valor 332
y anulando el valor anterior de -332. No se olvide que, cada vez que entra un
nuevo valor a una variable, el valor anterior se borra.

PANTALLA MEMORIA

Oigite dos números num1 num2 udl ud2
enteros 18 -332
18 332
-332

La siguiente instrucción es:

udl = num1 -numi/10* 10

Tomando el valor almacenado en la variable numi, vamos a desarrollar esta
expresión paso a paso para, de esta forma, saber con certeza cuánto queda
almacenado en ia variable udl.

udl =numl-numl/10^10
ud1 = 18-18/10*W
udl =18-1*10
udl = 18-10
udl =8

De esta manera, vemos que en la variable udl queda almacenado el valor 8
(que corresponde al último dígito del valor contenido en la variable num 1).

130

Car 6 - MCTODOLOGÍA, TLCNICA y TCCNOLOCI'a 1V\RA SOLUCtONAR UN l>ROBl£MA

PANTALLA MEMORIA

Digite dos números numl num2udl ud2
enteros 18 -3^ 8
18 332
-332

Siguiente instrucción:

ud2 = num2-num2/10 * W

Conociendo que el valor almacenado en la variable num2 es 332, entonces
desarrollaremos paso a paso la expresión:

ud2 = num2 - num2 / W * 10
ud2 = 332-332/W^W
ud2 = 332-33^W
ud2 = 332-330
ud2 = 2

Así comprobamos que el valor que queda almacenado en ud2 es 2, que corres­
ponde al último dígito del valor almacenado en num2.

PANTALLA MEMORIA

Digite dos números numl num2ud1 ud2
enteros 18 -3-33 8 2
18 332
-332

Note usted que mientras se han realizado operaciones en la memoria, en la
pantalla no se registra ningún cambio.

Siguiente instrucción:

Siud1 = ud2

Escriba
"El último dígito de un número es igual al último dígito del otro"

Sino
Escriba
"El último dígito de un número no es igual al último dígito del otro"

131

INTRODUCCION A LA LOGICA DL PROGRAMAC ION - 0m\R I\ VN TRUOS BUIUTICA

Sabiendo que la variable udl contiene el valor 8 y que la variable ud2 contiene
el valor 2, internamente la decision es Si 8 = 2 Como es Falso, entonces deberá
hacerse lo que esta por el Sino de la decision, o sea, ejecutar la orden Escriba 'El
ultimo dígito de un numero no es igual al ultimo dígito del otro De esta manera,
obtenemos

PANTAtLA

DIgite dos números enteros
18
332

El ultimo dígito de un
numero no es igual al
ultimo díaito del otro

MEMORIA

numi num2ud1 ud2
18 -333- 8 2

332

Y nuestra ultima instrucción (si se le puede llamar asO es

Fin

Con lo cual damos por terminada la prueba de escritorio Ahora si verificamos
lo que quedo en pantalla (solamente) En pantalla quedó

ite dos números
leros

Digii
ente
18
332

El ultimo dígito de un
numero no es igual al
ultimo dígito del otro

Vemos pues que el algoritmo (basado solo en lo que queda en pantalla no
se le olvide) leyó dos números enteros y pudo determinar que el ultimo dígito
de un numero no es igual al ultimo dígito del otro y como el enunciado era
Leer dos números enteros positivos y determinar si el ultimo dígito de un numero
es igual al ultimo dígito del otro, entonces podremos decir que esta bien Ahora,
para estar totalmente seguro, usted realizara la prueba de escritorio asumiendo
que el valor almacenado en la variable num 1 es 459 y el valor almacenado en la
variable num2 es 6239 No olvide que la prueba de escritorio debe ser desarro­
llada paso a paso y ejecutada tal y como este en el algoritmo para poder tener
absoluta certeza de que el computador va a obtener los mismos resultados
que nosotros obtendríamos en esa prueba La representación gráfica nos faci­
lita tener una comprensión mejor del algoritmo y nos permite ademas tenerlo
escrito en términos más técnicos y entendibles a la mayoría de programadores

Cap 6 - Mltodología, ti cnica y tccnología p.\ra solucionar un prodlfma

Técnicas de representación

Diagrama de flujo

< Digitedos
números enteros 3

133

Introducción a l,\ lógica dt progR/Nmación - Omar I\’Án Trijos Buriticá

Diagramación rectangular estructurada

Seudocódígo

Algoritmo Compara_Ult_digs
Variables

Entero'.num 1, num2, udl, ud2
Inicio

Escriba "Digite dos números enteros"
Leanum 1, num2

Sinumi <0
numi =numl *(-1)

Si num2 < 0
num2 = num2*(-l)

ud1 = numl-numl/W*W
ud2 = num2 - num2 / W* W
Si udl = ud2

Escriba "El último dígito de un número es igual al último
dígito del otro"

Sino

134

CaJ* 6 - MITODOLOGÍA. TLCNICA y TICNOLOGÍA RXRA sol UCIONAR UN PROBLEMA

Escríba "El último dígito de un número no es igual al último
dígito del otro"

Fin

No se olvide que el seudocódigo no es más que la versión técnicamente escrita
del algoritmo original, de manera que ya para nosotros es conocido. Es impor­
tante que sepa que en la práctica real se usa el seudocódigo o el diagrama de
flujo o el diagrama rectangular para representar el algoritmo.

Transcripción o codificación

Lenguaje Basic

Print"Digita dos números enteros"
Input numl, num2
Ifnuml <0then

numl = numl * (-1)
Ifnum2<0then

num2 - num2 * (-1)
udl =numl - numl /10*10
ud2 = num2 - num2 / 10 * 10
ifudi =ud2

Print"EI último dig de un número es igual al último dig del otro"
else

Print "El último dig de un número no es igual al último
dig del otro"

Lenguaje Pascal

Program Compara_Ult_digs;
Var

numl, num2, udl, ud2: integer;
Begin

Writeln ('Digite dos números enteros');
Readin (numl, num2);

ifnuml < Othen
numl := numl * (-1);

if num2 < 0 then
num2 num2 * (-1);

udl := numl - numl /10 * 10;

135

INTRODUCCION A LA I OGIC\ DL l'ROCilUVMAClON - OMSK IwnTrIJOS BuHITIC\

otro').

dei

ud2 .= num2 - num2 /10 * 10,
If udl = ud2 then

Writein ('El ultimo dig de un numero es igual al ultimo dig del

else
Writein ('El último dig de un numero no es igual al ultimo dig

End
otro'),

Lenguaje C

#mclude <iostream.h>
void mainO
í
int numl, num2, udl, ud2

cout«"Digite dos números enteros",
cin » numl, num2,

if (numl < 0)
numl = numl * (-1);

If (num2 < 0)
num2 = num2*(-l),

udl =numl - numl /10*10,
ud2 = num2 - num2/10* 10,
If (udl ==ud2)

Cout «"El ultimo dig de un num es igual al ultimo dig del otro",
else

Cout << "El ultimo dig de un num no es igual al ultimo
dig del otro",

)

Lenguaje Cobol

IDENTIFICATION DIVISION
PROGRAMJD COMPARA_ULT_DIGS
ENVIRONMENT DIVISION
CONFIGURATION SECTION
SOURCE-COMPUTER CLON
OBJECT-COMPUTER CLON

136

Caí* 6 * Mihodolooia, técnica y tccnouogia para solucionar un proqllnl\

DATA DIVISION.
WORKING-STORAGE SECTION.
01 NUMl
01 NUM2
01 UDl
01 UD2

Pie 99.
Pie 99.
Pie 99
Pie 99.

PROCEDURE DIVISION.
INICIO.

DISPLAY"DIGITE DOS NÚMEROS ENTEROS"
UNE 10 COL 10
ACCEPT NUMl
UNE 12 COL 10
ACCEPT NUM2
UNE 14 COL 10
IF NUMl IS LESS THAN OTHEN

COMPUTE NUMl = NUMl *(-1)
IF NUM2 IS LESSTHAN OTHEN

COMPUTE NUM2 = NUM2 * (-1)
COMPUTE UDl = NUMl - NUMl / 10 *10
COMPUTE UD2 = NUM2 - NUM2 / 10 * 10
IF UDl IS EQUAL TO UD2 THEN

DISPLAY"EL ÚLTIMO DÍGITO DE UN NÚMERO
ES IGUAL AL ULTIMO DÍGITO DEL OTRO"
UNE 20 COL 10

ELSE
ESCRIBA"EL ULTIMO DÍGITO DE UN NÚMERO
NO ES IGUAL AL ÚLTIMO DÍGITO DEL OTRO"

6.6. Tercer enunciado

Leer un número entero y determinar cuántos dígitos tiene.

Concepción del problema

Clarificación del objetivo

El objetivo de este algoritmo en esencia busca solicitar un número entero y
contar cuantos dígitos tiene ¿Cómo lo vamos a lograr? Primero que nada

UNE 20 COL 10
STOP RUN.

137

INTRODUCCION \ IjS I OOICA DI I ROCi(U\M\CION - 0m\R I\ \N TRUOS BURITIC \

tengamos en cuenta que, si el numero leído fuera 15, tendríamos que detectar,
a través de nuestro algoritmo, que tiene 2 dígitos Si el numero leído fuera
5946, tendríamos que detectar que tiene 4 dígitos Si el numero fuera -958,
tendríamos que decir que tiene 3 dígitos Entonces, loque tenemos que hacer es
crear un procedimiento que nos permita saber cuantos dígitos tiene el numero

Algoritmo

Algoritmo para determinar la cantidad de dígitos de un numero entero

Inicio
Leer un numero entero
Guardar en una variable la cantidad de dígitos
Mostrar el contenido de esta variable en pantalla

Ya sabemos que este es el algoritmo informal y también sabemos que no es
este algoritmo el que podemos llevar, finalmente, a un computador, pues
involucra una sene de razonamientos que el mismo computador no tendría
Por ello, se hace importante que nosotros transformemos este algoritmo en
uno que pueda ser transcrito fácilmente a un lenguaje de programación Para
ello, lo primero que tendremos que tener en cuenta es que la parte de contar
los dígitos del numero requerirá de un proceso que posteriormente pueda ser
entendible por un computador cuando lo hayamos codificado

Vamos a aprovechar la aritmética entera de la cual disponemos para obtener
la cantidad de dígitos Supongamos que el numero leído fuera 1546 y ade
mas supongamos que va a existir una variable llamada Contador De Dígitos
(que abreviado sena cd) que va a contener la cantidad de dígitos que tenga el
numero Iniciamos la variable cd en ceros y tomamos el numero leído, al cual
vamos a llamar num por comodidad

Si dividimos el valor contenido en la variable num entre 10 y lo almacenamos
de nuevo en la misma variable, entonces quedara almacenado en ella el valor
154 (por características de aritmética entera) y ademas vamos a incrementar
en 1 el valor contenido en la variable cd

Fin

num
1546

cd
0

num
+546

cd
0

154

138

Cm* 6 - Mítodologia, n cnica y n cnologia paiia soi ucionar un i'kobixma

Si volvemos a dividir el nuevo número almacenado en la variable num entre
10, obtendremos el número 15 y además volvemos a incrementar el valor de la
variable cd en 1, entonces:

num cd
+546 0
464 1

15 2

Si volvemos a dividir el nuevo contenido de la variable num (que ahora es 15)
entre 10, obtendremos el número 1 y si volvemos a incrementar el contenido
de la variable cd en 1, obtendremos el valor 3:

num cd
+546 0
+54 1
+5 2
1 3

De la misma manera, si volvemos a dividir el contenido de la variable num
entre 10 y volvemos a incrementar el valor de la variable cd en 1, entonces
obtendremos:

num cd
4646 0
464 1
46 2

1 3
0 4

Ya como vemos que el valor contenido en la variable num ha llegado a cero y
que si siguiéramos dividiendo entre 10 sucesivamente seguiría dando como
resultado cero, entonces podemos detener allí esta secuencia de divisiones.
Puede usted notar que, por cada vez que dividíamos entre 10 el valor conteni­
do en la variable num, incrementábamos el valor de la variable cd. Al finalizar,
cuando el contenido de la variable num ha llegado por primera vez a cero, el
contenido de la variable cd ha llegado a un número que es igual a la cantidad
de dígitos que originalmente tenía la variable num.

Entonces, si quisiéramos resumir esto que hemos hecho, tendríamos que.

119

InTRODUCCIOM \LALOOIC\DI IR(KiRASt\CH)N-ONL\Rl\\NTRIJOsBLIWnC\

cd = 0
mientras num sea diferente de 0

num = num/W
cd=cd+1

Fin_Mientras

Que no es mas que lo que hemos acabado de hacer paso a paso Este fragmen­
to nos permite almacenar en la variable cd la cantidad de dígitos del numero
almacenado en num Y ¿que pasa si el numero almacenado en la variable num
es negativo’ Pues no pasa nada El algoritmo sigue sirviendo y entregando el
resultado correcto Por lo tanto, el algoritmo completo para determinar cuan
tos dígitos tiene un numero que previamente fue leído expresado en términos
técnicos es el siguiente

Algoritmo Cuenta_Digitos
Var

Entero num, cd

Inicio
Escriba “Digite un numero entero"
Lea num
cd=o
Mientras num <>0

num = num/10
cd=cd+1

Fin_mientras
Escriba "El numero digitado tiene" cd "dígitos"

Fin

Hemos utilizado el operador o para expresar di/erenfe de, pero en los seudo
códigos se puede adoptar el operador que corresponda a cualquier lenguaje
Lo importante es que se utilice un operador único y que este represente dife­
rente de sin ambigüedades

Prueba de escritorio

Tomemos el algoritmo resultante para realizarle la prueba de escritorio tal
como lo hemos hecho hasta el momento (y es como se debe hacer), o sea,
paso a paso El algoritmo inicia su proceso teniendo en memoria dos variables
{num, cd) y con una pantalla, teóricamente, en blanco

(40

Cai’ 6 Mitodoi ogi \ tlcnica y tecnología r\IG\ solución \r un problema

Algoritmo Cuenta_Dfgitos
Var

Entero num,cd
PANTALLA MEMORIA

num cd

A continuación, el algoritmo da la orden de escribir un titulo de petición y leer
un numero entero y guardarlo en la variable num (que también obviamente es
entera) Vamos a suponer que el numero leído es -523

Inicio
Escriba "Digite un numero entero'
Lea num

PANTALLA MEMORIA

Digite un numero num cd
entero 523

-523

A continuación, se inicializa la variable cd con el valor 0

cd=0

PANTALLA MEMORIA

Digite un numero num cd
entero 523 0

523

Seguidamente viene el ciclo

Mientras num <>0

num = num/W
cd = cd+1

Fin_mientras

i41

INTRODUCCION A LA LOGICA DP RROGR^VM \CION • OM \R I\ \N TrIJOS BURLOCA

En el cual inicialmentese preguntas/num< >0(en realidad, la pregunta es A/I/enfras
num< >0, que para efectos de la prueba de escritorio se reemplaza brevemente
por una decision) En esta pregunta se sabe,que, si la respuesta es Verdadera,
entonces se deberán ejecutar las ordenes que siguen Como en el caso inicial
la variable num contiene el valor -523 y este valor es diferente de 0, entonces la
respuesta es Verdadera, por lo tanto, entramos a realizar las dos instrucciones

num = num/W
cd=cd+ 1

De manera que en la variable num queda almacenado el valor -52 y en la va
riable cd queda almacenado el valor 0

PANTALLA

Oigite un numero
entero

-523

MEMORIA

num cd
-523 e
-52 1

Como ya el valor de la variable num no es el mismo que el inicial, volvemos al
planteamiento del ciclo y a realizar la misma pregunta, o sea, mientras num<
>0, encontrándonos con que el valor almacenado en la variable num es -52 y
que es realmente diferente de 0 Entonces esto quiere decir que volvemos a
ejecutar las ordenes

num = num/10
cd=cd+ 1

que conforman el cuerpo del ciclo, o sea, el conjunto de ordenes que se deben
ejecutar en caso de que la condición del ciclo sea Verdadera Al ejecutarlas, ob
tenemos que en la variable num queda almacenado el valor -5 y en la variable
cd queda almacenado el valor 2

PANTALLA

Digite un numero
entero

-523

MEMORIA

num cd
-523 e
-52 4
-5 2

Recuerde que cada vez que es cambiado el valor de una variable, el valor ante­
rior se pierde Por lo tanto, en estos momentos los valores que realmente hay
son en la variable num es -5 y en la variable cd es 2

142

Cai> 6 - Mitodoi ocjIa, n cnic \ y ucnologia solucionar un problema

En estas condiciones, y habiendo ejecutado el cuerpo del ciclo, volvemos a la
condición que determina el fin del ciclo Ante la pregunta Mientras num< >0,
vemos que la variable num contiene el valor -5 y que este es evidentemente
diferente de 0, entonces la respuesta es Verdadera, por lo tanto, volvemos a
ejecutar (una vez mas) las ordenes

num = num/W
cd = cd+1

Con lo cual quedara almacenado en la variable num el valor 0 y en la variable
cd el valor 3

PANTALLA MEMORIA

Digite un numero num cd
entero -523 0
523 -52 T

-5 2
0 3

Con lo cual, después de haber ejecutado las ordenes que conformaban el
cuerpo del ciclo, volvemos al inicio del mismo a verificar de nuevo la condi
Clon y vemos que esta vez, ante la pregunta de que el contenido de num sea
diferente de 0, la respuesta es Falso Por lo cual ya no volvemos a ejecutar las
ordenes que conforman el cuerpo del ciclo, sino que pasamos directamente a
ejecutar la orden que le sigue al ciclo, o sea, la que esta después del finalizador
Fin_Mientras, es decir, la orden

Escriba "El numero digitado tiene"cd "dígitos"

Con lo cual saldría en pantalla el titulo El numero digitado tiene 3 dígitos, lo
cual es cierto Tenga en cuenta que, cuando una variable aparece inmersa en
un título pero por fuera de las comillas dobles, esto quiere decir que saldra en
pantalla el contenido de la variable

PANTALLA MEMORIA

Digile un numero num cd
entero -523 0
523 -52 >

El numero digitado -5 2
tiene 3 dígitos 0 3

Después de lo cual lo único que nos queda es ejecutar la ultima orden y es
finalizar el algoritmo

INTRODUCCION A iw\ uxjIca df trogramacion - Omau 1\án Trijos BuiimcA

Ahora bien, recuperando nuestra condición de seres humanos, podemos ver que
lo que está escrito en pantalla es Verdad, es decir, si hemos digitado el número
-523, el algoritmo nos ha dicho algo cierto y es que este número tiene 3 dígitos.
Como el objetivo inicial era leer un número y determinar cuántos dígitos tenía
y este algoritmo lo hace correctamente, entonces podemos decir que esta bien.

Técnicas de representación

a. Diagrama de Flujo

144

Cap 6 - Mctüdologia, tlcnica y tecnología p\ra soi ucionaii un prodle.\u

No olvide que lo importante es que se vea claramente cuál es el flujo de la
solución.

Díagramacíón rectangular estructurada

Algoritmo Cuenta_Dígítos

"Digíte un número entero"

Lea num

cd = 0

Mientras
numoO

num = num /10

cd = cd + 1

"El número digitado tiene" cd "dígitos"

Fin

Seudocódigo

Algoritmo Cuenta_Dígitos
Var

Entero: num, cd
Inicio

Escriba "Digite un número entero"
Lea num
cd-o
Mientras num <>0

num = num/W
cd = cd+1

Fin_mientros
Escriba "El número digitado tiene" cd "dígitos"

Fin

145

Introducción a Iw\ lógica dl rrograxwción - Omar 1\án Trdos BuiimcÁ

Transcripción o Codificación

Lenguaje Basic

Print "DIgIte un número entero"
Input num
cd =0
while num o 0

num = num/10
cd = cd + 1

wend
Print "El número digitado tiene", cd, "dígitos"

Lenguaje Pasca!

Program Cuenta_Digitos;
Var

num, cd: integer;
begin

writeln('Digite un número entero');
readln(num);
cd = 0
while num <>0 do
begin

num := num div 10;
cd := cd + 1;

end;
writeln('EI número digitado tiene', cd, 'dígitos');

end.

Lenguaje C

#include <stdio.h>
void mainO
í

int num, cd;
cout «"Digite un número entero";
cín » num;
cd - 0;
while (num ! = 0)

]A6

CaI' 6 - MntlDOl OGIA, n CNICA Y TJ CSOLOGIA solucionar un probixma

num = num / 10,
cd ++,

}

cout« "El número digitado tiene"« cd «"dígitos",
}

Lenguaje Cobol

IDENTIFICATION DIVISION.
PROGRAMJD. CUENTA-DIGITOS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER CLON.
OBJECT-COMPUTER CLON
DATA DIVISION.
WORKING-STORAGE SEaiON
01 NUM Pie 9999.
01 CD Pie 9999.
PROCEDURE DIVISION
INICIO.

DISPLAY"DIGITE UN NUMERO ENTERO"LINE 10COL 10
ACCEPT NUM UNE 10 COL 50
COMPUTE CD = 0
PERFORM CONTEO UNTIL NUM = 0

STOP RUN
CONTEO.

COMPUTE NUM = NUM /10
ADD 1 TO CD.

Es importante aclarar que el objetivo buscado en este capitulo es que usted
tenga unos ejemplos claros de todo el proceso (al menos el que se hace en el
papel) que se ha de tener en cuenta cuando se va a desarrollar un algoritmo y
de él se va a derivar un programa

También me parece muy importante recordarle que en este libro en ningún
momento se busca que usted sepa de lenguajes de programación, pero lo
pue sí es importante, por ahora, es que usted vea que la codificación en cual­
quier lenguaje de programación es fácil, dado que sencillamente se trata de

DISPLAY "EL NUMERO DIGITADO TIENE"
DISPLAY CD
DI5PLAY"DÍGITOS"

UNE 14COL 10
UNE 14COL40
UNE 14COL 50

147

lNTROI)UCat)N A I-\ IOGICA DL PROOR/\MACION • OnL\R I\ VN TRI JOi BUKIHCA

reemplazar algunas palabras clave y utilizar una estructura establecida por los
creadores del lenguaje. Lo realmente importante detrás de un programa es la
lógica que se haya utilizado para el desarrollo del algoritmo.

En este capítulo, se ha acudido a unos lenguajes específicos que permiten
mostrar fácilmente (sin requerir un entorno integrado de desarrollo) que lo
que importa es la LÓGICA con que se diseñe la solución a un problema, o sea,
un programa.

I4K

Capítulo 7
Decisiones

Ya sabemos que una decision, a nivel de lógica de programación, es la esco-
gencia de uno de entre vanos caminos lógicos dependientes todos de una
condición Normalmente, algunos libros acotan en esta definición que se esco­
ge uno de entre dos caminos lógicos y, dado que todo el proceso del computa­
dor es binario, podemos decir que esos libros también tienen la razón

Por facilidades de representación, se han esquematizado en los algoritmos (y
asi mismo en los lenguajes de programación) dos estructuras de decision que
son la Estructura Si-Entonces-Sino, que es la que hemos estado utilizando en
los ejemplos hechos hasta el momento, y la Estructura Casos, que nos permite
realizar la escogencia de uno de entre vanos ramales lógicos dependientes de
una misma condición.

7.1. Estructura Si-Entonces-5ino

Esta es la estructura que hemos estado utilizando desde el comienzo de los
algoritmos Como ya se conoce, podemos decir que su utilidad, fundamen­
talmente, es permitir que el computador escoja uno de dos ramales lógicos
dependiendo de una determinada condición Es importante anotar que tomar
una decision, por simple que esta sea, le toma mucho tiempo al computador
realizarla ya que, aunque para nosotros es muy sencillo determinar si 9 es ma­
yor que 5, para el computador no lo es, pues debe realizar algunas operaciones
para obtener la respuesta correcta

De esta manera, es útil saber que es mas eficiente un programa que tenga
mas decisiones que otro que tenga menos, toda vez que ambos busquen
lograr el mismo objetivo Teóricamente, no hay mucho que decir acerca de las
decisiones, pero técnicamente es muy posible que usted llegue a encontrarse
con algunos términos que desde ya es muy importante que conozca y que no

149

INTRODUCCION A U\ LOGIC \ DI l>ROGR/\MACION - Osi \R I\ \N TKIJOS BURPIC \

son mas que formas de reorganización del mismo esquema de decision que
hemos utilizado hasta el momento

7.1.1. Decisiones simples

Obedecen a la siguiente estructura

Si (Condición)

Instrucciones a ejecutar
En caso de que la condición sea Verdadera

Sino

Instrucciones a ejecutar
En caso de que la condición sea Falsa

Fin_Si

Como puede ver, es la estructura mas sencilla para una toma de decisiones
Acerca de esta estructura podemos decir que no es obligatorio que cada vez
que exista un condicional Si tenga que existir una alternativa Sino, dado que
no siempre es importante generar una determinada acción en el caso de que la
condición sea Falsa Normalmente, es importante delimitar hasta donde llega
toda la estructura de decision y esa función la cumple el Fin^Si que aparece al
final de ella También vale la pena saber que en los lenguajes de programación
estos delimitadores se pueden escribir con determinados signos establecidos
por la sintaxis del mismo lenguaje

No se olvide que en una estructura de decision cuando se realizan las
instrucciones por la parte Verdadera no se hacen las instrucciones por la parte
Falsa y viceversa, es decir, cuando se realizan las instrucciones por la parte Falsa
no se hacen las instrucciones por la parte Verdadera

7.1.2. Decisiones en cascada

Este no es más que un esquema en donde el Sino de cada Si condicional da inicio a
un nuevo 5/ condicional y así sucesivamente Su esquema general es el siguiente

ISO

C\p 7 Decisiones

Si Condición /
Instrucciones a ejecutar en caso de que
la condición 1 sea Verdadera

Sino
Si Condicion2

Instrucciones a ejecutar en caso de que
la condicion2 sea Verdadera

Sino
Si CondiciónS

Instrucciones a ejecutar en caso de que
la condicionS sea Verdadera

Sino

Instrucciones a ejecutaren caso de que
la condiciónS sea Falsa

Este es el esquema utilizado para el caso en el que se dan 3 condiciones en
cascada, pero de acuerdo a las necesidades del algoritmo pueden ser mas
Todo dependerá del objetivo que se quiera lograr Para ilustrar un poco mejor
ia utilización de esta estructura, veamos un ejemplo en donde sea necesaria.

Ejemplo

Leer un numero entero y determinar si es de uno o dos o tres o cuatro dígitos
Validar que el numero no sea negativo

Programa Deciston_en_Cascada
Var

Entero num
Inicio

Escriba "Por favor, digite un numero enfero"
Lea num
Si num < 0

num = num *(-l)
Si num > - 1 ynum < = 9

Escriba "El número tiene 1 dígito"
Sino

Si num > = 10y num < = 99
Escriba "El numero tiene 2 dígitos"

Sino
Si num > - 100y num < - 999

Escriba "El numero tiene 3 dígitos"

151

lí^ODUCCIOS A LA LOGICA Dü PROGILVMACION - OSL\R IWN TrUOS DURITICA

Sino
Si num > = 1000y num < = 9999

Escriba "El número tiene 4 dígitos"
Sino

Escriba "El número tiene mas de 4
dígitos"
Fin

Vamos a realizarle una pequeña prueba de escritorio. En primera instancia, la
memoria inicia con una sola variable entera a la que hemos llamado num.

Programa Deasión_en_Cascada
Var

Entero . num
PANTALLA MEMORIA

num

Continúa el algoritmo colocando un titulo en pantalla y leyendo un dato en­
tero que será almacenado en la variable num. Vamos a asumir que el número
leído es igual a 326.

Inicio
Escriba "Por favor, digite un número entero"
Lea num

PANTALLA MEMORIA

Por favor, digite un num
numero entero 326
326

Se realiza la primera validación y es verificar si el número es negativo De ser
así, debe multiplicarse por el valor de (-1) para que se vuelva positivo. Como
el valor recibido es 326 y, por lo tanto, la condición 5/ num < 0 es falsa, entonces
se salta la orden num = num *(-1):

Si num < 0
num = num*(-1)

152

Cap 7 - Dlcisiones

A continuación comienza a evaluar cuántos dígitos tiene el número leído. Para
ello, va realizando preguntas por rangos, sabiendo que el rango de los núme­
ros de un dígito está entre 1 y 9, el rango de los números de dos dígitos está
entre 10 y 99, el rango de los números de tres dígitos está entre 100 y 999, el
rango de los números de 4 dígitos está entre 1000 y 9999 y sabiendo que por
encima de 9999 por ahora solo nos interesa decir que hay números con más de
4 dígitos (o sea, 5 o 6 o 7 o más dígitos).

Ante la pregunta Si num > ^ 1 y num < = 9 y sabiendo que la variable num
contiene el número 326, puede decirse que se resuelve así:

Si num > - 1 ynum < = 9
V y F

Vemos pues que 326 es mayor que 1 pero no es menor que 9, por lo tanto, la
primera parte de la decisión es Verdadera y la segunda parte es Falsa, por lo
tanto, acogiéndonos a la tabla de verdad del operador booleano Y vemos que
Vyf nos da Falso, por lo tanto, toda la decisión es Falsa. Por este motivo, el
computador se salta la orden Escriba "El número tiene 1 d/g/ío" y continúa con
el S/no de ta primera decisión.

Sinum>= lynum<^9
Escriba "El número tiene 1 dígito"

Sino
Si num > - Wynum< = 99

Escriba "El número tiene 2 dígitos"

Claramente la orden dice Sinum>= ÍOy num < = 99 y sabiendo que la variable
num contiene 326, entonces la decisión se convierte en:

Si326> = 10y326< = 99
V y F

Dado que 326 es mayor que 10 y que el mismo 326 no es menor que 99 y
sabiendo que están unidas las dos condiciones por un operador booleano Y,
entonces toda la decisión es Falsa, ya que así lo dice la tabla de verdad de este
operador. Por lo tanto, el computador se saltara la orden Escriba "el número es
de 3 dígitos"y va a continuar con el Sino de la segunda decisión que da origen
a una tercera condición.

Sino
Sinum>- WOynum < = 999

Escriba "El número tiene 3 dígitos"

153

En esta decision se pregunta Si num > = 100 y num < = 999 Como sabemos
que la variable num contiene 326, vemos que la decision (internamente) se
convierte en

Si num > = WOynum < = 999
Si326>=W0y326< = 999

V y V

Con lo cual vemos que ambas condiciones son verdaderas, por lo tanto, toda
la condición es Verdadera, debido a que según la Tabla de Verdad del operador
Y este genera Verdadero solo si sus dos entradas son Verdaderas, o sea, solo si
las condiciones que tiene a los lados son Verdaderas Por lo tanto, como esta
condición es Verdadera, entonces el computador ejecuta

Escriba "El numero tiene 3 dígitos"

INTRODUCCION A L/\ 1 OGIC\ Dt l'RUCilUWl \CION 0\l\R IWN TlUJOS BURinC\

PANTALLA MEMORIA

Por favor, digiteun num
numero entero 326
326
El numero tiene 3
dígitos

Como ejecuta esta instrucción por ser Verdadera, la condición entonces no
ejecuta ni evalúa lo que depende del Sino de esta condición De tal manera
que se "salta'lo siguiente

Sino
Si num > = lOOOynum < = 9999

Escribo "El número tiene 4 dígitos"
Sino

Escriba "El numero tiene mas de 4 dígitos"

Llegando directamente hasta el finalizador del algoritmo, que es lo ultimo que
ejecuta

Fin

Acogiéndonos a lo que en su momento habíamos indicado, podemos mirar
ahora el area de la pantalla y verificar si lo que aparece allí es conceptualmente
cierto o no. Como vemos que es cierto, entonces podemos decir que este al­
goritmo esta bien, al menos en lo que corresponde a la evaluación de números
de tres dígitos Realice ahora usted una prueba de escritorio con este algorit­
mo con cada uno de los siguiente números - 5,6498 y 32

154

C\p 7- DcasioNEs

Usted puede notar que la utilización de decisiones en cascada nos permite lle­
gar de una manera sencilla y fácil a lograr un determinado objetivo en donde
se involucren muchos condicionales interrelacionados

7.1.2. Decisiones en secuencia

Este es el tipo de estructura que se utiliza cuando se deben realizar vanas pre­
guntas en donde no es importante (normalmente) el Sino de cada decision Su
esquema general es el siguiente

Si Condición 1
Instrucciones a ejecutar en caso de que
La condición 1 sea Verdadera

Si condicion2
Instrucciones a ejecutar en caso de que
La condición! sea Verdadera

Si condicionB
Instrucciones a ejecutar en caso de que
La condicionS sea Verdadera

Si condicion4
Instrucciones a ejecutar en caso de que
La condicion4 sea Verdadera

No se olvide que pueden existir muchas mas condiciones El esquema aquí
presentado solamente muestra la estructura general para cuando sean 4 con­
diciones, pero SI se necesitan mas simplemente se pueden utilizar y ya Alguna
de las condiciones puede tener su correspondiente Sino Tenga en cuenta que
SI la ultima condición de un conjunto de decisiones en secuencia tiene Sino,
este solo se ejecutara en caso de que la ultima condición sea Falsa y no tendrá
nada que ver con las demas condiciones Al igual que el ejemplo anterior,
veamos un poco mas clara la utilización de la estructura con un ejemplo

Ejemplo

Leer un numero entero y determinar si es positivo o negativo o si es 0

No olvide que para todos los enunciados aquí planteados los algoritmos que
se presentan son solo una version de solución para dichos enunciados Con
esto quiero decirle una vez mas que, si usted ha desarrollado por su cuenta
los algoritmo aquí presentados y encuentra una solución diferente a lo que
aparece en este libro, entonces no se preocupe, sencillamente, realícele una
prueba de escritorio a su version y, si cumple el objetivo, entonces estara bien,

INTRODUCCION A lA LOCiICA DI I'ROOR/WWCION - OmAR IwN TRIJOS BUIUTICN

no importa que sea diferente al algoritmo que aparezca en este libro. Esta es
mí versión de la solución para este enunciado.

Programa DecisÍones_en_Secuenc¡a
Variables

Entero : num
Inicio

Escriba "Digite un número entero"
Lea num
Si num < 0

Escriba "El número digitado es negativo"
Si num >0

Escriba "El número digitado es positivo"
Si num = 0

Escriba "El número digitado es cero"
Fin

Sé que usted puede estar pensando que este algoritmo se pudo haber
solucionado con decisiones en cascada, pero tenga en cuenta que la razón
por la que utilizamos aquí decisiones en secuencia es que sabemos con toda
seguridad que un número cualquiera podrá tener tres estados (si se le puede
llamar asO: que sea menor que cero o sea negativo, que sea mayor que cero o
sea positivo o que sea igual a cero. Esa certeza es la que nos permite utilizar
esta estructura de decisión y no la anterior.

También puede estar pensando que en vez de haber planteado el algoritmo así:

Si num < 0
Escriba "El número digitado es negativo"

Si num > 0
Escriba "El número digitado es positivo"

Si num = 0
Escriba "El número digitado es cero"

se pudo haber planteado así:
Si num <0

Escriba "El número digitado es negativo"
Si num >0

Escribo "El número digitado es positivo"
Sino

Escriba "El número digitado es cero"

156

Cap 7 - Deosiones

Pero SI realizáramos la prueba de escritorio con el valor -5, por ejemplo, para
la variable num veríamos que, cuando pregunte Si num < 0, la respuesta sería
Verdadera y, por lo tanto, ejecutaría Escriba "El número digitado es negativo",
dejando en pantalla el título:

El número digitado es negativo

Pero, siguiendo con la prueba de escritorio, cuando se realice la pregunta Sí
num > 0, la respuesta tendrá que ser Falsa y entonces se ejecutará el Sino de
esta decision, o sea. Escriba "El número digitado es cero", lo cual nos dejaría en
pantalla los títulos*

El número digitado es negativo
El número digitado es cero

Que son títulos contradictorios, pues un número no puede ser negativo y ser
cero al mismo tiempo Por esta razón, la buena utilización de decisiones en
secuencia nos va a permitir no solo lograr los objetivos sino, además, lograrlos
de una buena forma técnica.

7.1.3. Decisiones anidadas

Estas se presentan en aquellos casos en los cuales una estructura completa de
decision se encuentra dentro de otra. Su esquema general es el siguiente'

Si CondÍción_Externa

Si Condiciónjnterna
Instrucciones a ejecutar en caso de que
La condición interna sea Verdadera

Sino
Instrucciones a ejecutar en caso de que
La condición interna sea Falsa

Fin_Si_lnterno

Sino

157

Instrucciones a ejecutaren caso de que
La condición externa sea Falsa

Fin_Si_Externo

O también se puede encontrar de la siguiente forma’

Si CondicÍón_Externa

INTRODUCCION A lA 10G1C\ DI PROGÍb\M\CION - OmAR IN VNTRUOS BuiimCA

Instrucciones a ejecutar en caso de que
La condición externa sea Verdadera

Sino

Si Condiciónjnterna
Instrucciones a ejecutar en caso de que
La condición interna sea Verdadera

Sino
Instrucciones a ejecutaren caso de que
La condición interna sea Falsa

Fin_Si_lnterno

Fin^Si^Externo

En este caso, podemos ver que en uno de los dos ramales lógicos de una estruc­
tura de decisión completa se encuentra otra estructura de decision completa
Los puntos suspensivos colocados en la estructura representan que pueden
existir más instrucciones. Veamos su utilización con un ejemplo.

Ejemplo

Leer un número entero y determinar si es positivo o negativo Si es positivo,
determinar si tiene dos dígitos y si es negativo, determinar si tiene tres dígitos.
Asumir que no puede entrar el número cero

158

Cap 7 - Decisiones

Programa Decisiones_Anidadas
Variables

Entero • n

Inicio
Escriba "Digite un numero entero"
Lea num
Si num > 0

Si num >= Wynum <=99
Escriba "El numero es positivo y tiene dos dígitos"

Sino
Escriba "El número es positivo y no tiene dos dígitos"

Fin_Si
Sino

Si num >=-999 y num <=-100
Escriba "El número es negativo y tiene tres dígitos"

Sino
Escriba "El numero es negativoyno tiene tres dígitos"

Fln_Si
Fin_Si

Realícele dos pruebas de escritorio a este algoritmo, la primera asumiendo que
el número leído es -52 y la segunda asumiendo que es 1650 Tenga mucho
cuidado con la ejecución de las decisiones que aquí se plantean

7.2. Estructura casos

Esta estructura permite abreviar una sene de decisiones en cascada o en se­
cuencia La inmensa mayoría de lenguajes de programación tiene una instruc­
ción equivalente para su implementacion y precisamente lo que se busca con
esta estructura es facilitar la toma de decisiones por parte del computador,
dado que este es el proceso que mas tiempo le toma La estructura casos toma
el contenido de una variable y lo evalúa acorde con unos posibles valores
ejecutando lo que se le indique en cada una de las opciones.

7.2.1. Estructura casos simple

Su estructura general es la siguiente

1S9

InTKODUCC IÜN a la logic \ DI i ROGIL\MACK)N - 0\1 \R I\ \N TKUOS BUKITIC \

Evalué (variable)
Si vale (valor_1) Instrucciones a ejecutaren caso de que la variable

sea igual a valor_ 1
Sí vale (valor_2) Instrucciones a ejecutar en caso de que la variable

sea igual a valor_2
Si vale (valor_3) Instrucciones a ejecutar en caso de que la variable

sea igual a valor_3

Si vale (valor_n) Instrucciones a ejecutar en caso de que la variable
sea igual a valor_n

Sino Instrucciones a ejecutaren caso de que la variable no sea
Igual a ninguno de los valores posibles (o sea valor_ 1
valor_2, valor_3, valor_4, , valor_n)

Fin_Evalue

Su forma de ejecución es muy sencilla Ai iniciar esta estructura, el computador
recibe la variable con un determinado contenido (o por lo menos dentro de
nuestros algoritmos nos debemos asegurar de ello), verifica si el contenido de la
variable es igual a uno de los posibles valores que se hayan considerado dentro
de la estructura De ser asi, ejecuta las ordenes que acompañen al valor deter
minado Si el contenido de la variable no es igual a ninguno de los contenidos,
entonces ejecuta las instrucciones que acompañan al Sino de esta estructura

Veamoslo con un ejemplo para una mejor clarificación de su uso y al tiempo
haremos una comparación con una secuencia de decisiones en cascada para
que se vea su diferencia

Ejemplo

Leer un numero entero y, si es de un dígito y ademas es menor que 5, escribir
su nombre en pantalla (el nombre del 1 es UNO, el nombre del 2 es DOS, etc)

I6U

Cap 7 - Decisiones

Versión 1.0 Algoritmo solución con decisiones

Programa Nom_Digito
Variables

Entero n
Inicio

Escriba "Digite un numero entero"
Lean
Sin<0

n = n*f 1)
5in=l

Escriba "Uno"
Sino

Sin =2
Escriba "Dos"

Sino
Sin = 3

Escriba "Tres"
Sino

Sin = 4
Escriba "Cuc7fro"

Sino
Sin = 5

Escriba 'Cinco"
Sino Escriba "El número es mayor

que cinco"
Fin_Si

Fin_5i
Fin_Si

Fin_5i
Fin_5i

Fin

161

INTRODUCCION A LA LOGICA DC l*ROGR^\M/\ClON - OMAU IwN TRIJOS BURCllC A

Algunas precisiones oportunas acerca de esta primera solución del problema
planteado:

a. Los indicadores Fin_SÍcorresponden a cada una de las decisiones que ini-
cialmente se colocaron No son obligatorios pero son muy útiles cuando
se escriben, sobre todo al momento de codificar el algoritmo.

b. La indentacíon del algoritmo (o sea, ese hecho de que cada conjunto o
bloque de instrucciones comienza unas columnas mas alia) es muy útil
para la claridad del programa y, de manera muy especial, al igual que el
numeral anterior, cuando se va a codificar el programa.

c. Esta versión incluye una sene de decisiones en cascada y, por lo tanto,
realizándole una prueba de escritorio podremos notar que logra el ob­
jetivo planteado Sin embargo, la utilización de la estructura casos nos
permite escribir el mismo algoritmo de una manera más entendible.

Versión 2.0 Algoritmo solución con estructura casos

Programa Nom_Digito
Variables

Entero : n
Inicio

Fin

Escríba “Digite un número entero"
Lean
5in<0

n = n*(-l)
Evalúe (n)

Si vale 1 Escribo “Uno"
Si vale 2: Escriba “Dos"
Si vale 3. Escriba "Tres"
Si vale 4: Escriba "Cuatro"
Si vale 5 Escribo "Cinco"
Sino Escriba "El numero es mayor que cinco"

Fin_Evalúe

En esta solución, utilizando la estructura casos, usted puede notar que

a. Este algoritmo logra el mismo objetivo que el algoritmo anterior, solo que
de una manera técnica más apropiada.

b. La presentación del algoritmo es mucho más entendible y precisamente
eso lo hace mucho más fácil de codificar que la anterior version

162

Cap 7 DrcisiONCS

c E! S/no que aparece al final de la estructura casos se ejecuta en caso de
que el contenido de la variable n no se igual ni a 1 ni a 2 ni a 3 ni a 4 ni a 5

d La indentacion vuelve a ser útil y para ello quiero mostrarle dentro de este
numeral como se verían ambas versiones sin indentacion

Versión 1.0 Algoritmo solución con decisiones sin ¡ndentacíón

Programa Nom_D¡gito
Variables

Entero n
Inicio
Escriba "Digite un numero entero"
Lean

Sin <0
n = n*(1)

Sin = 1
Escriba "Uno"
Sino
Sin = 2
Escriba ‘Dos"
Sino
Sin = 3
Escriba Tres"
Sino
Sin = 4
Escriba 'Cuatro"
Sino
Sin = 5
Escriba "Cinco"
Sino Escriba “El numero es mayor que cinco”
Fin_S¡
Fin^Si
Fin_Si
Fin_Si
Fin_Si
Fin

163

INTRODUCCION \ U\ LOGICA DI PKOGR/\M\aON 0m\K I\ \N TllUOS BUUiriC \

Version 2.0 Algoritmo solución con estructura casos sin indentacion

Programa Nom_Digito
Variables

Entero n

Inicio
Escriba Digite un numero entero
Lean

Si n<0
n = n*(-l)

Evalué (n)
Si vale 1 Escriba Uno"
Si vale 2 Escriba 'Dos
Si vale 3 Escriba "Tres"
Si vale 4 Escriba Cuofro
Si vale 5 Escriba Cinco
Sino Escriba
Fin_Evalue
Fin

El numero es mayor que cinco

No me podra negar usted que los algoritmos vistos sin indentacion (o sea, sin
estética) son mínimamente mas complejos de entenderlos que si se presentan
de una manera técnica mas apropiada Recuerde que la utilidad grande de la
indentacion se refleja al momento de codificar los algoritmos en algún lenguaje
de programación pues allí el hecho de que su algoritmo este bien y que la prue­
ba de escritorio le haya arrojado unos resultados muy confiables puede llegar a
truncarse por una mala codificación o peor aun por una mala agrupación de ins­
trucciones No esta de mas recordarle que cuando se agrupan las instrucciones
como no son, los resultados del algoritmo pueden ser completamente diferentes

7.2.2. Estructuras casos (anidadas)

Esta estructura se utiliza cuando una de las opciones de la estructura casos
general da origen a otra estructura casos y otro conjunto de instrucciones
Veamos un ejemplo de esto

Ejemplo

Leer un entero y, si es igual a cualquier dígito comprendido entre 1 y 5, escribir
su nombre Si es igual a cinco, ademas de escribir su nombre, leer otro dígito y, si

!64

Cap 7 Dpcisiones

este ultimo esta entre 1 y 5, escribir su componente decimal Si entro un 3, enton­
ces escribir "Cincuenta y Tres"; si entro un 1, entonces escribir "Cincuenta y Uno"

Programa Casos_Anidados
Variables

Entero num, dig
Inicio

Escriba 'Digite un numero entero"
Lea num

Si num < 0
num = num *(1)

Evalué (num)
Si vale 1 Escriba "Uno"
Si vale 2 Escriba "Dos"
Si vale 3 Escriba "Tres"
Si vale 4 Escriba "Cuatro"
Si vale 5 Escriba' Cinco"

Escriba "Digite otro numero entero"
Lea dig
Evalué (dig)

Si vale I Escriba "Cincuenta y Uno"
Si vale 2 Escriba "Cincuenta y Dos'
Sivale3 Escnba'CincuentayTres"
Si vale 4 Escriba "Gncuenfa y Cuatro"
SivaleS Escriba 'Cincuenta y Cinco"
Sino Escriba “El num es mayor que 5"

Fin_Evalue
Sino Escriba 'El numero es mayor que cinco"

Fin_Evalue
Fin

Acerca de este algoritmo, es poco lo que se puede aclarar, pues como usted
puede ver es bastante claro, sin embargo, debe tener en cuenta que cada Eva-
/uetiene su correspondiente Sino (y solo uno) y su correspondiente Fin_Evalue.
No se olvide que para la buena utilización de esta estructura es muy importan
te que usted sea una persona organizada y ordenada y vera como programar
se vuelve un verdadero paseo

165

INTRODUCCION A lA I OülC \ DI i ROC RAMACION OSLVU I\ \N TlUJOS BURmC \

7.3. Ejercicios
Algunas posibles soluciones a los siguientes ejercicios se pueden encontrar en
el libro A/gonfmos del mismo autor

1 Leer un numero entero y determinar si es un numero terminado en 4

2 Leer un numero entero y determinar si tiene 3 dígitos

3 Leer un numero entero y determinar si es negativo

4 Leer un numero entero de dos dígitos y determinar a cuanto es igual la
suma de sus dígitos

5 Leer un numero entero de dos dígitos y determinar si ambos dígitos son
pares

6 Leer un numero entero de dos dígitos menor que 20 y determinar si es
primo

7 Leer un numero entero de dos dígitos y determinar si es primo y ademas
SI es negativo

8 Leer un numero entero de dos dígitos y determinar si sus dos dígitos son
primos

9 Leer un numero entero de dos dígitos y determinar si un dígito es multi
pío del otro

10 Leer un numero entero de dos dígitos y determinar si los dos dígitos son
iguales

11 Leer dos números enteros y determinar cual es el mayor

12 Leer dos números enteros de dos dígitos y determinar si tienen dígitos
comunes

13 Leer dos números enteros de dos dígitos y determinar si la suma de los
dos números origina un numero par

14 Leer dos números enteros de dos dígitos y determinar a cuanto es igual la
suma de todos los dígitos

15 Leer un numero entero de tres dígitos y determinar a cuanto es igual la
suma de sus dígitos

166

Caí* 7 - DrcisiONCs.

1 ó.Leer un número entero de tres dígitos y determinar si al menos dos de sus
tres dígitos son iguales.

17.Leer un número entero de tres dígitos y determinar en que posición está
el mayor dígito

18 Leer un númeroenterodetres dígitos ydetermmarsi algún dígito es múl­
tiplo de los otros.

19 Leer tres números enteros y determinar cuál es el mayor Usar solamente
dos variables

20.Leer tres números enteros y mostrarlos ascendentemente.

21 Leer tres números enteros de dos dígitos cada uno y determinar en cual
de ellos se encuentra el mayor dígito

22.Leer un número entero de tres dígitos y determinar si el primer dígito es
igual al último.

23 Leer un número entero de tres dígitos y determinar cuantos dígitos pri­
mos tiene.

24. Leer un número entero de tres dígitos y determinar cuantos dígitos pares
tiene

25. Leer un número entero de tres dígitos y determinar si alguno de sus dígi­
tos es igual a la suma de los otros dos.

26 Leer un número entero de cuatro dígitos y determinar a cuánto es igual la
suma de sus dígitos.

27. Leer un número entero de cuatro dígitos y determinar cuantos dígitos
pares tiene

28. Leer un número entero menor que 50 y positivo y determinar si es un
número primo.

29. Leer un número entero de cinco dígitos y determinar si es un numero
capicúa. Ej. 15651,59895

30. Leer un número entero de cuatro dígitos y determinar si el segundo dígito
es igual al penúltimo.

167

I^m<OnUCCIOSAL,\LOGICADl I’ROCR/WWCIÜN Om\R l\ \N TiUJOí) BURtTlCA

31 Leer un numero entero y determina si es igual a 10

32 Leer un numero entero y determinar si es múltiplo de 7

33 Leer un numero entero y determinar si termina en 7

34 Leer un numero entero menor que 1000 y determinar cuantos dígitos
tiene

35 Leer un numero entero de dos dígitos, guardar cada dígito en una vana
ble diferente y luego mostrarlas en pantalla

36 Leer un numero entero de 4 dígitos y determinar si tiene mas dígitos pa
res o impares

37 Leer dos números enteros y determinar cual es múltiplo de cual

38 Leer tres números enteros y determinar si el ultimo dígito de los tres nú­
meros es igual

39 Leer tres números enteros y determinar si el penúltimo dígito de los tres
números es igual

40 Leer dos números enteros y, si la diferencia entre los dos es menor o igual
a 10, entonces mostrar en pantalla todos los enteros comprendidos entre
el menor y el mayor de los números leídos

41 Leer dos números enteros y determinar si la diferencia entre los dos es un
numero primo

42 Leer dos números enteros y determinar si la diferencia entre los dos es un
numero par

43 Leer dos números enteros y determinar si la diferencia entre los dos es un
numero divisor exacto de alguno de los dos números

44 Leer un numero entero de 4 dígitos y determinar si el primer dígito es
múltiplo de alguno de los otros dígitos

45 Leer un numero entero de 2 dígitos y, si es par, mostrar en pantalla la
suma de sus dígitos, si es primo y menor que 10, mostrar en pantalla su
ultimo dígito y, si es múltiplo de 5 y menor que 30, mostrar en pantalla el
primer dígito

168

Cap 7 - Decisiones

46 Leer un numero entero de 2 dígitos y, si termina en 1, mostrar en pantalla
su primer dígito, si termina en 2, mostrar en pantalla la suma de sus dígi
tos y, SI termina en 3, mostrar en pantalla el producto de sus dos dígitos

47 Leer dos números enteros y, si la diferencia entre los dos números es par,
mostrar en pantalla la suma de los dígitos de los números, si dicha dife­
rencia es un numero primo menor que 10, entonces mostrar en pantalla
el producto de los dos números y, si la diferencia entre ellos termina en 4,
mostrar en pantalla todos los dígitos por separado

48 Leer un numero entero y, si es menor que 100, determinar si es primo

49 Leer un numero entero y, si es múltiplo de 4, determinar si su ultimo digi
to es primo

50 Leer un numero entero y, si es múltiplo de 4, mostraren pantalla su mitad,
SI es múltiplo de 5, mostrar en pantalla su cuadrado y, si es múltiplo de 6,
mostrar en pantalla su primer dígito Asumir que el numero no es mayor
que 100

169

Capítulo 8
Ciclos

Ya hemos utilizado no solo esta palabra, sino una estructura asociada que nos
permite representar un conjunto de instrucciones que debe repetirse una can­
tidad determinada de veces, normalmente, dependiente de una condición Los
ciclos nos van a permitir iterar todo un proceso tantas veces como nosotros (o
el usuario) lo determinemos

8.1. Concepto general

Un ciclo puede definirse como una estructura que nos permite repetir o iterar
un conjunto de instrucciones y que tiene las siguientes características

a El conjunto de instrucciones debe ser finito

b La cantidad de veces que se repita dicho conjunto de instrucciones
también debe ser finita En algunos casos, esta cantidad de veces va a
depender de una condición explícita y, en otros casos, va a depender de
una condición implícita Una condición es explícita cuando depende so
lamente de la misma ejecución del programa sin que sea importante la
participación del usuario Asimismo, una condición es implícita cuando
depende solamente de la voluntad del usuario y, por lo tanto, la cantidad
de Iteraciones o repeticiones del ciclo podría llegar a ser diferente cada
vez, pues sería posible que cambiara con cada usuario

c Deben estar claramente demarcados el inicio y el fin del ciclo En los ca
sos en los cuales solo exista una instrucción a iterar, no serán necesarias
dichas marcas

d Dentro de un ciclo, podra ir cualquiera de las otras estructuras que se han
estudiado incluyendo otros ciclos

Introduccion a i^\ logic\ or i>rogil\m\cion - 0\i \k h \n Trijos Buitmc\

Vamos a desarrollar un ejemplo sin ciclos para notar la gran utilidad de estruc­
turar nuestros algoritmos con ciclos

Ejemplo

Mostrar los números del 1 al 100 de 1 en 1

Versión ¡nefídente No. 1

Programa Versjnef_ 1
Inicio

Escriban"
Escriba “2"
Escriba "3"
Escriba "4"
Escriba "5"
Escriba "6"
Escriba "7"
Escriba "8"
Escriba "9"
Escriba "10"
Escriba "11"
Escriba "12"
Escriba "13"
Escriba "14"
Escriba "15"
Escriba "16"
Escriba "17"

Escriba "98"
Escriba "99"
Escriba “WO"

Fin

172

Cap 8 Ciclos

Como puede ver en esta version no se han utilizado variables y los puntos sus­
pensivos representan toda esa cantidad de instrucciones que hacen falta, pues
en total serian 100 Instrucciones Escriba Es evidente que se logra el objetivo
planteado, pero imagine que en vez de ir el enunciado hasta 100 fuera hasta
1000 o fuera hasta 10000

Nuestro algoritmo se convertiría no solo en una cantidad ineficiente de ins­
trucciones, sino que, ademas, por cada vez que existiera una modificación,
prácticamente tendría que existir un algoritmo diferente, pues tendríamos
que adicionarle mas y mas líneas de ordenes Veamos a continuación otra for­
ma ineficiente de solucionar este mismo problema sin utilizar ciclos

Version ineficiente No. 2

Programa Vers_lnef_2
Variables

Entero N
Inicio

/

Escriba N
SiN< = W0

N = N+1
Escriba N

SiN<=W0
W = N+ 1

Escriba N
5iN<=W0

N = N+ I
Escriba N
5iN< = W0

N = N+1
Escriba N
SiN<=W0

W = W+ 1
Escriba N
SiN<= WO

N = N+ 1
Escriba N
SiN<=W0

N = N+1

173

INTRODUCCION A l^\ LOGICA DI I'ROC.ILWWCION - OMAR I\ \N TiUJüS BURIDCA

Escriba N
SiN<=100

N = N+ 1
Escriba N
SiN< = W0

N = N+ ;
Escriba N

SiN<= 100
N = N+ 1

Escriba N
SiN< = W0

N = N+ 1
Escriba N

Fin

Como puede ver, tendríamos que escribir 99 veces el esquema

SíA/<= /OO
N = N+1

Escriba N

para poder lograr el objetivo, con lo cual esta segunda version ineficiente
resultaría ser mucho mas larga que la anterior y, dada la gran cantidad de
decisiones que debe tomar el computador, sena a su vez más ineficiente Lo
que sí podemos hacer es tomar el esquema repetitivo de esta última versión y
escribirlo dentro de un ciclo que controle que se repita dicho esquema hasta
cuando se hayan escrito todos los números enteros del a 100 de 1 en 1.

¿Cómo lo haremos’ Pues muy sencillo Simplemente note que tenemos que
decirle al computador que inicie una variable en 1 y que mientras el contenido
de esta variable sea menor o igual que 100 que escriba su contenido y que lo
incremente en 1. De esta manera, el contenido de la variable irá de 1 en 1 desde
1 hasta 100, escribiendo cada vez que cambie de número, es decir, cumpliendo
el objetivo planteado. Note usted que acabo de decirle el algoritmo informal;
ahora todo lo que tenemos que hacer es llevarlo a un algoritmo técnico para
que posteriormente sea fácil codificarlo en un lenguaje de programación

174

Cap 8 - Ciclos

De manera que la siguiente es la version técnica eficiente de la solución al
enunciado planteado

Versión eficiente con ciclos

Programa Nums_ 1_W0
Variables

Entero: N
Inicio

N= I
Mientras N < = 100

Escriba N
N = N+ 1

Fin_mientras
Fin

Evidentemente, el algoritmo así presentado es mucho más claro No se puede
negar que tanto esta solución como las demás soluciones, a pesar de ser inefi­
cientes, también cumplen con el objetivo planteado Acerca de esta versión,
podemos hacer algunas reflexiones'

a Es mucho más fácil de codificar en un determinado lenguaje de progra­
mación, pues es una solución mucho más compacta

b. Es mucho más entendióle y, por lo tanto, es mucho mas fácil de concebir
como solución.

c No necesita muchas líneas de código para lograr el objetivo

d Cuando necesiten mostrar los números del 1 al ÍOOOO, todo lo que tenemos
que hacer es cambiar el número 100 que aparece al inicio del ciclo por
el número 70000 y el mismo algoritmo funcionara bien. No tendremos
necesidad de adicionar líneas de codigo

e Cuando necesiten mostrar los números del 45 al 951, simplemente tendre­
mos que reemplazar la línea que dice N = 1 por N = 45 y, en donde aparece
el numero 700, cambiarlo por el número 951 y el algoritmo lograra bien
este nuevo objetivo.

f Finalmente, la solución planteada con ciclos al enunciado Mostrarlos nú­
meros del 1 al 100 de 1 en 1 se ha convertido en una solución mucho mas
genérica que, cambiando los valores tope del mismo ciclo, será Mostrar
todos los enteros comprendidos entre dos números asumiendo que el primer
número es el menor y el segundo es el mayor.

175

INTRODUCCION A Li\ LOGICA DI l’ROGRASWCION - OM \R I\ \N TRUüS BURII IC\

Con estas reflexiones, podemos justificar plenamente la utilización de ciclos
dentro de un algoritmo y, en lo posible, buscar hacer un uso muy eficiente de
esta estructura

8.2. Tipos de ciclos

Solo para facilitar la escritura de algunos algoritmos y con el animo deque des­
de el balcón de la lógica de programación se puedan tener mas herramientas
que faciliten la estructuración de los ciclos, la mayoría de los lenguajes de
programación tienen tres formas de presentación de los ciclos Ellas son

a Ciclo M/enfros
b Ciclo Para
c Ocio Haga Hasta

Precisamente, vamos a revisar la estructura de construcción de cada uno de los
ciclos tal como son concebidos por la mayoría de lenguajes de programación
y, posteriormente, los utilizaremos para representar el mismo algoritmo con
cada una de las estructuras

8.2.1. C\c\o Mientras

Este es el ciclo que hemos utilizado desde que comenzamos a hablar de al
goritmos Es el esquema general de trabajo para todos los ciclos Esto quiere
decir que, si usted entiende claramente la lógica de funcionamiento de este
ciclo, se le va a facilitar entender no solo los otros ciclos que aquí se expli­
can, sino cualquier otro ciclo que encuentre en algún otro libro de lógica de
programación Es útil que sepa que este ciclo también es llamado en algunos
libros el Ciclo Mientras Que, pero su filosofía es la misma del Ciclo Mientras que
vamos a explicar aquí y que hemos venido utilizando

Su estructura general es la siguiente

Mientras Condición

Cuerpo del Ciclo

Fin_Mientras

Su forma de ejecución (textualmente explicada) es muy sencilla Mientras se
cumpla que la condición sea Verdadera entonces se ejecutara el Cuerpo del Ciclo De

I76

Cap 8 Ciclos

manera que también podríamos decir que el cuerpo del ciclo se repetirá tantas
veces como lo permita la condición o mientras dicha condición sea Verdadera
En condiciones normales la cantidad de veces que se repita el cuerpo del ciclo
sera siempre una cantidad finita y deberá existir, dentro del mismo cuerpo del
ciclo, una o mas instrucciones que nos permitan aproximarnos a la condición, o
sea que propendan porque en algún momento la condición sea Falsa

8.2.2. Ciclo Pora

El Ocio Para tiene la siguiente estructura

Para Var=topejnicial hasta tope_ñnal Paso Valor

Cuerpo del Gc/o

Fin_Para

En este ciclo, su forma de ejecución es la siguiente Var representa una variable
que va a tomar valores iniciando en tope_iniaal y terminando en tope_ñnal
avanzando con un Paso de Valor En los casos en los que no se especifica el
valor del paso, la mayoría de los lenguajes de programación asume el mere
mentó de 1 El Cuerpo del Ciclo se ejecutara una vez por cada valor que tome la
variable Var Veamos con un ejemplo cual sería la aplicación de este ciclo

Ejemplo

Escribir los números impares comprendidos entre 1 y 20

Es evidente que este ejemplo lo podemos desarrollar usando el ciclo Mientras,
pero para efectos didácticos lo vamos a desarrollar usando el ciclo Para

Programa Ejem_Ciclo_Para
Variables

Entero Num
Inicio

Para Num = 1 hasta 20 Paso 2
Escriba Num

Fin_Para
Fin

!77

INTRODUCCION \ lA LOGICA DI I UOCIUWt \C ION Om\R I\ \N TkUOS BURmC\

Puede usted notar que este algoritmo es muy breve gracias a la presencia del
ciclo Para en su contexto, ya que, si se hubiera estructurado utilizando el ciclo
Mientras, una version de solución hubiera podido ser la siguiente

Programa Ejem_Ciclo_Mientras
Variables

Entero Num
Inicio

Num = 1
Mientras Num < = 20

Escriba Num
Num = Num + 2

Fin_Mientras
Fin

Ambas versiones logran el mismo objetivo, lo cual significa que ambas versio
nes son correctas Es importante anotar que dentro de lo normal cada ciclo
siempre va a tener una variable que es la que almacena el valor de inicio de!
ciclo, es la que va a estar presente en la evaluación de la condición y es la que
se incrementa para que en algún momento la condición sea Falsa

Es evidente que esta variable es muy importante, por ello, este tipo de vana
bles se ha caracterizado con el nombre de índice del ciclo Podríamos decir que
el índice del ciclo es la variable que permite la ejecución del cuerpo del ciclo
Un ciclo puede llegar a tener vanos índices al tiempo

Como los índices no son mas que variables, entonces vanos ciclos pueden te­
ner e! mismo índice siempre que se utilice este en un ciclo solo hasta cuando
haya terminado la ejecución del ciclo anterior

8.2.3. C\c\o Haga Hasta

Esta es otra de las formas que traen algunos de los lenguajes de programación
para expresar un ciclo Su estructura general es la siguiente

Haga

Cuerpo del Ciclo

178

Caí* 8 - Ciclos

Hasta Condición

En este ciclo, el cuerpo del mismo se va a ejecutar hasta cuando se cumpla una
condición, esto quiere decir que el conjunto de instrucciones que conforman
el cuerpo del ciclo se va a repetir mientras la evaluación de la condición sea
Falsa Es un ciclo muy parecido al ciclo Mientras, con la diferencia de que en
este las instrucciones se repiten mientras la condición sea falsa y no verdadera,
como sena en el ciclo Mientras

8.2.4. Cíelo Haga Mientras

Muy parecido al esquema anterior, algunos lenguajes de programación cuen
tan con esta otra estructura para representar un ciclo

Haga

Cuerpo del Ciclo

Mientras Condición

Podría decirse que esta es una inversion de la estructura del ciclo Mientras En
este ciclo, el cuerpo del mismo se repite mientras la condición sea Verdadera y
su única diferencia con el ciclo Mientras es que en el ciclo Haga Mientras primero
se ejecuta el cuerpo del ciclo y luego se evalúa la condición, en cambio en el ci
do Mientras primero se evalúa la condición y luego se ejecuta el cuerpo del ciclo

83. Ejemplos usando todas las estructuras de ciclos

8.3.1. Ejemplo 1

Leer un numero entero y determinar cuantos dígitos tiene

Es Util recordar que los datos enteros se manejan con aritmética entera, con­
cepto que sera muy útil para la concepción de este algoritmo, ya que la canti­
dad de dígitos que tiene un numero entero es igual a la cantidad de veces que
se pueda dividir el numero entre 10 sin que el cociente sea cero Entonces, lo

179

I^íT^^ODUCCIÜNAlw\LOGIC\DI I’RüGRANUCION OsUU Is \N TRDOS BURÍTICV

que vamos a hacer en este algoritmo es leer un numero, inicializar una variable
(que actuara como contador_de_digitos), dividir progresivamente el numero
entre 10 hasta cuando sea igual a cero y, por cada vez que se divida entre 10,
vamos a incrementar el contenido de la variable contador_de_dígitos en 1
De esta manera, cuando el numero haya llegado a cero, tendremos en la va­
riable contador_de_digitos la cantidad de dígitos que originalmente tema el
numero

En caso de que el numero original sea negativo también funciona esta lógica
No se olvide que siempre que vaya a desarrollar un algoritmo primero debe
clarifícar el objetivo para que sepa hacia donde va y hasta donde debe llegar

Usando ciclo Mientras

Programa Ejemplo_ 1
Variables

Entero Numero, Cuenta_Digitos
Inicio

Escriba "Digite un numero entero'
Lea Numero

Cuenta_Digitos = 0

//Declara Variables

//Solicita un dato entero
//Lee un enteroyioalmacena
//en la variable Numero

// Iniciahza el contador en cero

Mientras Numero <>0 //Mientras Numero sea diferente de 0
Numero = Numero/10 //Divida entre 10

Cuenta_Digitos = Cuenta_Digitos +1 // y cuente
Fin_Mientras

Escriba 'Tiene", Cuenta_Digitos, "dígitos" //Escriba cant de dígitos
Fin

Note usted que al lado derecho del algoritmo técnico esta prácticamente es­
crito el algoritmo informal para mayor claridad en el momento que usted le
desarrolle una prueba de escritorio Igualmente, la doble barra inclinada (//)
representa el inicio de un comentario Los comentarios son textos explicativos
de las ordenes o de bloques de ordenes de los algoritmos No tienen inciden­
cia en su ejecución Todos los lenguajes tienen un equivalente para escribir
comentarios En nuestro caso, vamos a utilizar la doble barra inclinada que es
utilizada en lenguaje C

Cap. 8 - Ciclos

Usando ciclo Para

Este algoritmo no es "fácilmente" Implementable con un ciclo Para.Tenga en
cuenta que la utilización de uno y otro ciclo es precisamente para que se haga
mucho más sencilla la implementadón de su algoritmo. La razón por la cual no
es fácilmente implementable con este ciclo se remite a su estructura, ya que
este ciclo necesita un valor exacto de inicio, un valor exacto de finalización y
un incremento y, en este caso, no es fácil encontrar estos tres valores.

Usando ciclo Haga Hasta

Programa Ejemplo_ 1
Variables

Entero: Numero, Cuenta_Digitos //Declaración de Variables
Inicio

Fin

Escriba “Digite un número"
Lea Numero

Cuenta_Digitos = 0
Haga

Numero - Numero/10
Cuenta_Digitos=Cuenta_DÍgiU?s+1

Hasta que Numero = 0
Escríba 'Tiene" Caenta_Digitos, "Dígitos"

//Título de Aviso
// Lea un en tero y guárdelo

en Numero
//Inicializa Cuenta_Digitos en 0

//Inicia el ciclo
//Divida entre 10
//y cuente

// Hasta que Numero sea igual a 0
//Escriba el resultado

Cabe anotar que la estructuración de un algoritmo utilizando un ciclo Haga
Hasta implica razonar muy bien la condición del ciclo, ya que como puede ver­
se es diferente a la condición utilizada en el ciclo Mientras.

Ciclo Mientras Mientras Numero <>0
Ciclo Haga Hasta Hasta que Numero = 0

Normalmente, si realizamos dos soluciones para un mismo algoritmo pero en
una de ellas utilizamos un ciclo Mientras y en otra utilizamos un ciclo Haga Has­
ta, podríamos decir que las condiciones deben ser contrarias (a nivel lógico).

181

INTHODUCCIUN \ L-\ LOGICM)! I“RO(i1G\M \Clt)N OVL\R IwN Truoj. Buunic \

Usando ciclo Haga Mientras

Programa Ejemplo_ 1
Variables

Entero Numero, Cuenta_Digitos //Declaración de Variables
Inicio

Escriba "Digite un numero" //Titulo de Aviso
Lea Numero //Lea un entero y guárdelo en Numero

Cuenta_Digitos = 0 //Inicializa Cuenta_Digitos en 0

Haga //Inicia el ciclo
Numero = Numero/10 //Divida entre 10
Cuenta_Digitos = Cuenta_Digitos + / //y cuente

Mientras Numero > 0 //Mientras Numero sea mayor que 0

Escriba "Tiene", Cuenta_Digitos, "Dígitos ’//Escriba el resultado
Fin

Esta version es muy aproximada a la anterior, pero la condición esta vez es
diferente Tenga en cuenta que utilizar cualquier estructura de ciclos requiere
razonar muy bien la condición que se ha de usar para que, a nivel logico, el
algoritmo entregue los resultados esperados

8.3.2. Ejemplo 2

Leer dos números enteros y mostrar todos los enteros comprendidos entre el
menor y el mayor

En este ejemplo, vamos a generar todos los números enteros comprendidos
entre dos números leídos Nótese que el algoritmo en ningún momento nos
indica cual es el mayor y cual es el menor, lo cual significa que tenemos que
averiguarlo antes de generar los números porque lo que el algoritmo si dice es
que deben escribirse ascendentemente (ya que reza mostrarlos enteros com
prendidos entre el menor y el mayor) Verifique si el objetivo es completamente
claro para usted y de esta forma, ahora si, puede revisar las soluciones aquí
planteadas a este ejemplo

Conceptualmente, primero vamos a detectar cual de los dos números es el
menor y cual es el mayor Luego haremos una variable Auxiliar igual al numero
menor y, a medida que la vayamos incrementando en 1, vamos a ir escribiendo
su contenido hasta cuando esta variable alcance el valor del numero mayor

182

C\P 8-Clcios

Usando ciclo Mientras

Programa Ejemplo_2
Variables

Entero. Numero 1, Numero2, Auxiliar //Declaración de Variables
Inicio

Escriba "Digite un Entero" //Solicita el primer numero
Lea Numero 1 // Lo lee y lo almacena en Numero 1

Escriba "Digite otro Entero" //Solicita el segundo numero
Lea Numero2 //Lo lee y lo almacena en Numero2

Si Numero 1 < Numero2 //Si el primer número es el menor

Auxiliar = Numeral //Haga Auxiliar igual a Numero I

Mientras Auxiliar < = Numero2 //MientrasAuxiliar<=Numero2
Escriba Auxiliar //Escriba el contenido de Auxiliar
Auxiliar = Auxiliar + 1 //e incremente Auxiliar

Fm_Mientras
Fin_5i

Si Numero2 > Numero I //Si el 2° número es el menor
Auxiliar = Numero2 //Haga Auxiliar igual a Numero2
Mientras Auxiliar < = Numeral //MientrasAuxiliar<=Numero2

Escriba Auxiliar //Escriba el contenido de Auxiliar
Auxiliar=Auxiliar + 1 //e incremente Auxiliar

Fin_Mientras
Fin_Si

SiNumerol =Numero2 //Si los dos números son iguales
Escriba 'Los números son iguales" //Avise que son iguales

Fin

Usando ciclo Para

Programa Ejemplo_2
'Variables

Entero Num I, Num2, Aux // Declaración de variables
Inicio

181

INTRODUCCION A L,\ LOGIC \ DL l■ROOR/\^L\CION - OMAR IwN TiUJOS BURITICA

Fin

Escriba "Digite un Entero"
Lea Num /

Escriba "Digite otro Entero"
Lea Num2

//Solicita el primero numero
//Lo lee y lo almacena en Num I

//Solicita el segundo numero
//Lo lee y lo almacena en Num2

SiNuml <Num2 //SiNuml eselmenor
//Haga que Aux vaya de Num 1 a Num2 de I en 1
Para Aux = Num 1 hasta Num2 Paso 1

Escriba Auxiliar //y escriba cada valor de Aux

Fin_Si
Si Num2 < Num 1 //Si Num2 es el menor

//Haga que Aux vaya de Num2 a Num 1 de 1 en 1
Para Aux = Num2 hasta Num 1 Paso 1

Escriba Auxiliar //y escriba cada valor de Aux
Fm_5i
Si Num 1 = Num2 //Si los dos números son iguales

Escriba los números son iguales' //Avise que son iguales
Fin_Si

Usando ciclo Haga Hasta

Programa Ejemplo_2
Variables

Entero Num1,Num2,Aux
Inicio

Escriba "Digite un Entero"
Lea Num 1
Escriba “Digite otro Entero"
Lea Num2
Si Num 1 < Num2

Aux = Num1
Haga

Escriba Aux
Aux = Aux + 1

Hasta que Aux = Num2
Fin_Si

//Solicita el primero numero
//Lo lee y lo almacena en Num I
//Solicita el segundo numero
//Lo lee y lo almacena en Num2
//Si Numi es el menor
//Inicie Aux con el valor de Num I

//Escriba el contenido de Aux
//e incremente dicho contenido
//Hasta que Aux alcance o Num2

184

Cap 8 - Ciclos

Si Num2 < Num 1
Aux = Num2
Haga

Escriba Aux
Aux = Aux+ 1

Hasta que Aux = Num 1
Si Num 1 = Num2

//Si Num2 es el menor
//Inicie Aux con elvalordeNum2

//Escriba el contenido de Aux
//e incremente dicho contenido
//Hasta que Aux alcance a Num 1
//Si los dos números son iguales

Escriba "Los números son iguales" //Avise que son iguales

Usando ciclo Haga Mientras

Programa Ejemplo_2
Variables

Entero Num1,Num2,Aux
Inicio

Escriba "Digite un Entero"
Lea Num 1
Escriba "Digite otro Entero"
Lea Num2
Si Num / < Num2

Aux = Num 1
Haga

Escriba Aux
Aux = Aux + /

Mientras Aux <= Num2

Fin_5i
Si Num2<Numl

Aux = Num2
Haga

Escriba Aux
Aux = Aux + I

Mientras Aux <= Num I
Si Numi = A/u/t)2

// Solicita el primer número
//Lo leeyio almacena en Num I

//Solicita el 2° número
//Lo lee y lo almacena en Num2
//Si Num 1 es el menor
//Inicie Aux con el valor de Num 1

//Escriba el contenido de Aux
//e incremente dicho contenido
//Mientras que Aux sea <=Num2

//Si Num2 es el menor
//Inicie Aux con el valordeNum2

//Escriba el contenido de Aux
//e incremente dicho contenido
//Mientras que Aux sea <=Num 1
//Si los dos números son iguales

Escriba "Los números son iguales" //Avise que son iguales

185

INTIIODUCCION A 1ÜGICA DL PKOCilGWIACION Om \R 1\ \N TrUOS BURI IIC\

8.3.3. Ejemplo 3

Leer dos números enteros y determinar cual de los dos tiene mas dígitos

Para la solución de este problema, podemos remitirnos al algoritmo que nos
permitía saber cuantos dígitos tema un numero, ya que en el fondo este es
casi lo mismo Fundamentalmente, el objetivo de este es contar los dígitos que
tiene un numero, luego contar los dígitos que tiene otro numero y comparar
ambos resultados para decir cual de los dos tiene mas dígitos

Usando ciclo Mientras

Programa Ejemplo_3
Variables

Entero Numl, //Almacenara el primer numero
Num2, //Almacenara el segundo numero
Auxl, //Almacenaraprovisionalmente a Num 1
Aux2, //Almacenara provisionalmen te a Num2
ContDig 1, //Almacenara cantidad de dig de Num I
ContDig2 //Almacenara cantidad de dig de Num2

Inicio
Escriba "Digite un entero"
Lea Num 7

//Solicita un dato entero
// Lo lee y lo almacena en Num 7

//Solicita otro dato entero
//Lo lee y lo almacena en Num2

Escriba "Digne otro entero"
Lea Num2

Auxl = Numl
ContDigl = 0

Mientras Auxl <>0

//Guarde en Aux! elcontenidodeNumI
//Inicialice ContDig 1 en 0

//Mientras Auxl sea difte de cero
Auxl =Auxl/IO
Con t Dig I = ContDig I + I

//Divida Auxl entre 10
//y cuente

Fin_Mientras
Aux2 = Num2
Con tDig 2 = 0

//Guarde en Aux2 el contenido de Num2
//Inicialice ContDig2 en 0

Mientras Aux2 o 0 //Mientras Aux2 sea difte de cero
Aux2 = Aux2/W //DividaAux2entre W
ContDig2 - ContDig2 + 7 //y cuente

186

Caí* 8 - Ciclos

Fin_Mientras

Si ContDig 1 > ContDig2 //Si el primer numero tiene más dígitos
Escriba Num 1, "tiene más dígitos que" Num2 //Avise

Si ContDigl < ContDig2 //Si el segundo número tiene más dígitos
Escriba Num2, "tiene más dígitos que" Num / //Avise

Si ContDig 1 = ContDig2 //Si los dos números tienen la misma cantidad
//de dígitos, entonces avise

Escriba Num 1, "tiene la misma cantidad de dígitos que", Num2

Como puede ver, nos hemos basado en el algoritmo que determinaba cuántos
dígitos tenía un número para desarrollar este algoritmo.

Usando ciclo Para

Este algoritmo no es implementable con un ciclo Para por las mismas razones
que no era implementable el algoritmo en el cual nos basamos para desarro­
llar esta solución. Debo anotar que en casos muy particulares como el lengua­
je C este algoritmo es implementable pero debido a que la filosofía de este
lenguaje en cuanto al ciclo Para es un poquito diferente y además porque las
"herramientas" de programación que brinda este lenguaje son un poco más
flexibles que en otros lenguajes

Usando ciclo Haga Hasta

Programa Ejemplo_3
Variables

Entero: NumI, // Almacenará el primer número
Num2,
Auxl,
Aux2,
ContDigl,
ContDig2

Inicio

Escriba "Digite un entero"
Lea Num 1

Escriba "Digite otro entero"
Lea Num2

//Almacenara el segundo número
//Almacenaraprovisionalmente a Num 1
//Almacenará provisionalmente a Num2
//Almacenará lo cant de dígitos de Numl
//Almacenará la cantdedígltosdeNum2

//Solicita un dato entero
//Lo lee y lo almacena en Num 1

//Solicita otro dato entero
//Lo lee y lo almacena en Num2

187

INTKODUCC1ü‘J a Iw\ i OOICA DI l-KOOR.\MACION - 0\L\lt I\ VN TRUüí> DUUI PICA

Auxl = Numl //Guardeen Auxl elcontenidodeNuml
ContDigl = 0 //IniaaliceContDigl en 0

Haga
Auxl =Auxl/W //DividaAuxl entre W
ContDig 1 = ContDig 1+1 //y cuente

HastaqueAuxl = 0 //Hasta que Auxl seaigualaO

Aux2 = Num2 //Guarde en Aux2 el contenido de Num2
ContDÍg2 = 0 //Inidalice ContDig2 en 0
Haga

Aux2 = Aux2/10 //Divida Aux2 entre 10
ContDig2 = ContDig2 + l //ycuente

Hasta que Aux2 = 0 //Hasta que Aux2 sea igual a 0

Si ContDig 1 > ContDig2 //Si el primer numero tiene mas dígitos
Escriba Num 1, "tiene mas dígitos que", Num2 //Avise
Si ContDig 1 < ContDig2 //Si el segundo numero tiene mas dígitos

Escriba Num2, "tiene más dígitos que", Num 1 //Avise

Sí ContDig 1 = ContDig2 //Si los dos números tienen la misma
//cantidad de dígitos

EscnbaNuml, "tiene la misma cantidad de dígitos que" Num2 //Avise

Usando ciclo Haga Mientras

Programa Ejemplo_3
Variables

Entero: Num 1, //Almacenará el primer número
Num2,
Auxl,
Aux2,
ContDigl,
ContDig2

Inicio
Escriba "Digite un entero"
Lea Num 1

Escriba "Digite otro entero"

//Almacenara el segundo número
//Almacenará provisionalmente a Num 1
//Almacenará provisionalmente a Num2
//Almacenara la cant de dígitos de Num 1
//Almacenara la cantdedígitos de Num2

//Solicita un dato entero
// Lo lee y lo almacena en Num 1

//Solicita otro dato entero

188

Cap 8 - Ciclos

Lea Num2 //Lo lee y lo almacena en Num2

Auxl =Numl //GuardaenAuxl elcontenidodeNumI
ContDig 1 = 0 //Inicialice ContDig 1 en 0

Haga
Auxl =Auxl/10 //Divida Auxl entre 10
ContDigl = ContDigl+ 1 //y cuente

Mientras Aux1 <>0 //Mientras Auxl sea diferente de cero

Aux2 = Num2 //Guarda en Aux2 el contenido de Num2
ContDig2 = 0 //Inicialice ContDig2 en cero

Haga
Aux2 = Aux2/10 //Divida Aux2 entre 10
ContDig2=ContDig2+1 //y cuente

Mientras Aux2 <>0 // mientras Aux2 sea diferente de cero

Fin

SiContDigl > ContDig2 //Si el primer numero tiene mas dígitos
Escriba Num 1,' tiene mas dígitos que", Num2 //Avise

Si ContDig 1 < ContDig2 //Si el segundo numero tiene mas dígitos
Escriba Num2, "tiene mas dígitos que", Num 1 //Avise

Si ContDig 1 = ContDig2 //Si los 2 núms tienen la misma cantidad
//de dígitos

Escriba Num 1, 'tiene la misma cantidad de dígitos que" Num2 //Avise

8.3.4. Ejemplo 4

Leer números enteros hasta que digiten 0 y determinar a cuanto es igual el
promedio de los números leídos que hayan sido positivos

De nuevo, y ai igual que en todos los ejercicios, vamos a clarificar el objetivo
Necesitamos leer números enteros y a medida que vamos leyendo estos núme­
ros los vamos contando y los vamos acumulando en sendas variables Cuando
digiten el numero 0, eso significara que en ese momento debemos obtener el
resultado entero de dividir el resultado de haber acumulado todos los núme­
ros entre el resultado de haberlos contado, es decir, lo que vamos a dividir es la
sumatoria de números entre la cantidad de números y ese resultado es lo que
debemos mostrar en pantalla porque es el dato que nos están solicitando

189

INTRODUCCION \ L.\ LOGIC \ DL I>ROGR.\M \ClüN - 0\t \!l I\ \N TRIJOS BURH ICA

Usando ciclo Mientras

Programa Ejemplo_4
Variables

Entero Num,

Acum,

Cont

Real Promedio

Inicio
Acum - 0
Con f = 0 // Inicialice el con tador en cero

Escriba "Digite enteros y ñnalice con 0"//Aviso para solicitarlos nums
LeaNum //Lea el primer numero
Mientras Num <>0 //Mientras los números que entren

//sean diferentes de cero
Si Num > 0 //Si el ultimo numero leído es positivo

Acum=Acum + Num //Acumule el último número leído
Cont = Cont+1 //ycuentelo

Fin__Si

Lea Num //Lea un nuevo numero
Fin_Mientras //Fin del ciclo

Promedio = Acum/Con t// Calcule el promedio
Escnba "El promedio es" Promedio //Muestre el promedio en pantalla

Fin

Hemos utilizado la primera orden Lea Num para recibir el primer numero y con
esto poder entrar al ciclo

Usando ciclo Para

Si se supiera con exactitud cuantos números se van a leer, entonces si sena
implementable este algoritmo con el ciclo Para, pero como el algoritmo dice

//Almacenara cada uno de los
//números leídos
//Almacenara la suma de los números
//leídos diferentes de cero
//Almacenara la cantidad de números
//leídos diferentes de cero
//Almacenara el resultado de dividir la
//sumatoria de números entre la
//cantidad de números

//Inicialice el acumulador en cero

190

Cap 8 - Ciclos

que Hasta que digiten 0, entonces este algoritmo no es ¡mplementable con un
ciclo Para.

Usando ciclo Haga Hasta

Programa Ejemplo_4
Variables

Entero: Num, //Almacenara cada uno de los
//números leídos

Acum, //Almacenará la suma de los números
//leídos diferentes de cero

Cont //Almacenará la cantidad de números
//leídos diferentes de cero

Real Promedio //Almacenará el resultado de dividir la
//sumatoria de números entre la
//cantidad de números
Inicio

Acum = 0 //Inicialice el acumulador en cero
Cont=0 //Inicialice el contador en cero

Escriba "Digite enteros y finalice con 0"//Aviso para solicitar los núms
Lea Num // Lea el primer número
Haga

Acum = Acum + Num //Acumule el último número leído
Cont = Conf + 1 // Cuéntelo
Lea Num //Lea el siguiente número

Hasta que Num = 0 // Hasta que el último número leído sea
//igual a 0

Promedio=Acum / Cont//Calcule el promedio
Escriba "El promedio es", Promedio // Muestre el promedio en

pantalla
Fin

Usando ciclo Haga Mientras

Programa Ejemplo_4
Variables

Entero: Num, //Almacenará cada uno de los

191

IWRÜDUCCIÜN A I-;\ LOGICVDL I’ROGIUM \CK)N • OsiAK I\\nTR!JOS BURinC\

//números leídos
Acum, //Almacenara la suma de los números

//leídos diferentes de cero
Cont //Almacenara la cantidad de números

//leídos diferentes de cero
Real Promedio //Almacenara el resultado de dividir la

//sumatoria de números entre la
//cantidad de números
Inicio

Acum = 0 //Inicialice el acumulador en cero
Cont = 0 //Inicialice el contador en cero

Escriba "Digite enteros y ñnalice con 0"//Aviso para solicitar los núms
Lea Num //Lea el primer número

Haga
Acum = Acum + Num // Acumule el ultimo número

leído
Cont = Cont+ 7 //Cuéntelo
Lea Num //Lea el siguiente número

Mientras Num <>0 // Mientras el último número leído sea
//diferente de 0

Promedio = Acum / Cont// Calcule el promedio
Escriba "Elpromedio es", Promedio // Muestre el promedio en

pantalla
Fin

8.3.5. Ejemplos

Leer un número entero y calcular su factoría!.

Primero que nada vamos a ver qué es el factorial de un número. Se define como
factorial de un número N cualquiera el resultado de multiplicar sucesivamente
todos los enteros comprendidos entre 1 y ese número N. No se aplica esta de­
finición cuando dicho número N es negativo y, en caso de que ese número N
sea 0, se asume que el factorial de 0 es 1. De esta forma, el factorial de 6 es el
resultado de multiplicar 1 *2*3*4*5*6, lo cual nos da como resultado 720,
igualmente, el factorial de 3 es igual a multiplicar 1 * 2 * 3, que es igual a 6; el
factorial de 0 es 1 y el factorial de -8 no está definido o mejor no esta incluido
en la definición.

192

Cap 8 - Ciclos

Ya con esta definición lo que tendremos que hacer es implementarla a nivel
de un algoritmo Para ello, primero que nada vamos a leer dicho número N y
validando que dicho numero sea positivo, utilizando otra variable a manera
de contador, vamos a generar la secuencia de números enteros comprendida
entre 1 y N, solo que a medida que la vayamos generando vamos a ir multipli
cando los números generados, resultado que sera almacenado en una variable
Facto que sera la que al final se mostrara en pantalla para cumplir con el obje
tivo del enunciado

Usando ciclo Mientras

Programa Ejemplo_5
Variables

Entero N, //Almacenara el numero leído que es el
//número al cual se le quiere calcular el
//factorial

Cont, //Esta variable es la que nos va a permitir
//generar la secuencia de todos los enteros
//comprendidos entre I y el numero leído (a
//manera de contador)

Facto //Almacenara el resultado del factorial
Inicio

Escriba "Digite un numero entero" //Solicita un numero entero
Lea N // Lo lee y lo almacena en N

SiN <0 //Si el numero es negativo entonces avisa
Escriba El factorial no esta deñnido pora números negativos"

Facto = 1
Cont= 1
Mientras Cont < = N

Facto - Facto * Cont

Cont = Cont + 1
Fin_Mientras

//Inicializa el factorial en 1
//Inicializa el contador en I

//Mientras el contador sea menor que el
//numero leído
//Multiplique Facto por cada valor
//que tome Cont
//Incremente el valor de Cont
//Fin del ciclo

Escriba "El factorial de', N, "es", Facto //Escriba el resultado
Fin

193

ISTHOOL'CCtON A U\ LOGICA OI l*l«KiR.\NL\CK)N - OsiAR l\ \N TrIJOS DURITICA

Usando ciclo Para

Programa Ejemplo_5
Variables

Entero: N, //Almacenará el número leído que es el
//número al cual se le quiere calcular el
//factorial

Cont, //Esta variable es la que nos va a permitir
//generarla secuencia de todos los enteros
//comprendidos entre 1 y el numero leído (a
//manera de contador)

Facto //Almacenara el resultado del factorial
Inicio

Escriba “Digite un número entero" //Solicita un número entero
LeaN //Lo lee y lo almacena en N

SiN<0 //Si el número es negativo entonces avisa
Escriba "El factorial no está deñnido para números negativos"

Facto= 1 //Inicializa el factorial en I

ParaCont= 1 hastaNfPaso 1) //Genera la secuencia de núms enteros
//desdel hastaeinúmeroleídode I en 1
//y cada valor lo va almacenando en Cont

Facto = Facto * Cont //Multiplique Facto por valor
//que tome Cont

Fin_Para //Fin Ciclo Para
Escriba “El factorial de", N, “es", Facto // Escriba el factorial

Fin

Usando ciclo Haga Hasta

Programa Ejemplo_5
Variables

Entero: N, //Almacenará el número leído que es el
//número al cual se le quiere calcular el
//factorial

Cont, //Esta variable es la que nos va a permitir
//generar la secuencia de todos los enteros

194

Cap 8 - Ciclos

//comprendidos entre 1 y el número leído (a
// manera de contador)

Facto //Almacenará el resultado del factorial
Inicio

Escriba "Digite un número entero" //Solicita un número entero
Lea N // Lo lee y lo almacena en N

SiN<0 //Si el número es negativo entonces avisa
Escriba "El factorial no esta definido para números negativos"

Facto = I //Inicializa el factorial en I
Cont= 1 //Inicializa el contador en 1
Haga

Facto = Facto * Cont //Multiplique Facto porcada valor
//que vaya tomando Cont

Cont = Cont + 1 //Incremente el valor de Cont
Hasta que Cont > N //Hasta que el valor almacenado en Cont sea

//mayor que el valor almacenado en N

Escriba "El factorial de" N, "es", Facto //Escriba el resultado
Fin

Usando ciclo Haga Mientras

Programa Ejemplo_5
Variables

Entero: N, //Almacenará el número leído que es el
//número al cual se le quiere calcular el
//factorial

Cont, //Esta variable es la que nos va a permitir
//generar la secuencia de todos los enteros
//comprendidos entre 1 y el número leído (a

//manera de contador)
Facto //Almacenara el resultado del factorial

Inicio
Escriba "Digite un numero entero" //Solicita un número entero
LeaN //Lo lee y lo almacena en N

195

INTRODUCCION A L,\ 1 OGICA DI l’ROC.IU\M \CION - OMAK I\ \N TRUOS BURPIICA

SiN<0 //Si el número es negativo entonces avisa
Escriba "El factorial no está deñnido para números negativos"

Facto = 1 // Inicializa el factorial en 1
Cont= 1 //Inicializa el contador en 1

Haga
Facto = Facto * Cont //Multiplique Facto porcada valor

//que vaya tomando Cont
Cont = Cont+ 1 //Incremente el valor de Cont

Mientras Cont < = N //Mientras que el valor almacenado en Cont
//sea menor o igual al valor almacenado en N

Escriba “El factorial de", N. "es",Facto //Escriba el resultado
Fin

8.3.6. Ejemplo 6

Leer un número (asumir que es una base) y leer otro número (asumir que es un
exponente) y elevar dicha base a dicho exponente.

Al igual que en todos los casos anteriores, lo que necesitamos esta vez es leer
dos números (asumiremos que el primero es una base y que el segundo es
un exponente). Se trata de elevar dicha base a dicho exponente. Recordemos
pues que si la base fuera 5 y el exponente fuera 4 entonces tendríamos que
calcular a cuánto es igual 5** ° S • S • S * S que quiere decir muluplicarcl números cuatro veces

Por lo tanto, necesitaremos que una variable actúe como contador para que
nos permita controlar las veces que la base se va a multiplicar La restricción
fundamental que hemos de tener en cuenta es que el exponente sea positivo,
ya que b n es diferente de b -n.

Usando ciclo Mientras

Programa Ejemplo_6
Variables

Entero: Base, //Almacenará el número que se tomará como
//base

Exp, //Almacenará el número que se tomará como
//exponente

Aux, // Variable que va a almacenar

196

Cap 8 Ciclos

Resul

//progresivamente todos los valores
//comprendidos entre 1 yelvalordel
//exponente

// Variable que almacenara el resultado ñnal de
// haber multiplicado la base tan tas veces como
//lo diga el exponente

Inicio
Escriba "Digite una base"

Lea Base

Escriba “Digite un exponente"
Lea Exp

//Solicita una base
//y la lee

//Solicita un exponente
//y lo lee

Si Exp < 0 //En caso de que el exponente sea negativo
Escriba "Exponente Errado" //Avisa

Sino //Si el exponente es cero o es positivo
Resul = 1 // Inicializa Resul en 1
Aux = 1 //Inicializa la auxiliar en 1
Mientras Aux <= Exp //Mientras contenido de variable auxiliar

//sea menor o igual que el contenido déla
//variable que almacena el exponente

Resul = Resul ^ Base //Multiplica
Aux~Aux+ I //e incremente el valor de la auxiliar

Fin_Mientras
Escriba "Resultado =" Resul //Muestra el resultado

Usando ciclo Para

Programa Ejemplo_6
Variables

Entero Base, //Almacenara el numero que se tomara como
//base

Exp, //Almacenara el numero que se tomara como
//exponente

Aux, // Variable que va a almacenar
//progresivamente todos los valores

197

INTRODUCCION A I^\ LOGICA DL I>RÜGR/\MACION - 0\l \R l\ \N TrPJOS BURITICV

//comprendidos entre 1 yelvalordel
//exponente

Resul // Variable que almacenara el resultado ñnal de
// haber multiplicado la base tantas veces como
//lo diga el exponente

Inicio
Escriba "Digite una base" //Solicita una base
Leo Base //y la lee

Escriba "Digite un exponente" //Solicita un exponente
LeaExp //y lo lee

Si Exp < 0 //En caso de que el exponente sea negativo
Escriba "Exponente Errado" //Avisa

Sino //Si el exponente es cero o es positivo
Resul =1 //Inicializa Resul en 1
//Inicia un ciclo desde 1 hasta el valor
//que tiene almacenado la variable Exp
//guardando cada valor en la variable Aux

Para Aux = 1 hasta Exp (Paso 1)
Resul = Resul* Base //Porcada valordeAuxmultiplica

//lo que contenga la variable Resul por lo
//que almacena la variable Base

Fin_Para

Escriba "Resultado =" Resul //Muestra en pantalla el resultado
Fin

Usando ciclo Haga Hasta

Programa Ejemplo_6
Variables

Entero. Base, //Almacenará el número que se tomará como
//base

Exp, //Almacenara el numero que se tomara como
//exponente

Aux, // Variable que va a almacenar
//progresivamente todos los valores

198

Cap 8 - Ciclos

//comprendidos entre 1 yelvalordel
//exponente

Resul // Variable que almacenara el resultado ñnal de
//haber multiplicado la base tantas veces como
//lo diga el exponente

Inicio

Escriba "Digite una base” //Solicito una base
Lea Base //y la lee

Escriba “Digite un exponente” //Solicita un exponente
LeaExp //y lo lee

Si Exp < 0 //En caso de que el exponente sea negativo
Escriba "Exponente Errado" //Avisa

Sino //Si el exponente es cero o es positivo
Resul = 1 //Inicializa Resul en 1
Aux= 1 // Inicializa la auxiliar en 1

Haga
Resul = Resul * Base //Multiplica
Aux = Aux+ I //e incrementa el valor de Aux

Hasta que Aux > Exp //Hasta que Aux sea mayor que Exp
Escriba “Resultado =", Resul //Escriba el resultado ñnal

Fin

Usando ciclo Haga Mientras

Programa Ejemplo_6
Variables

Entero Base, //Almacenara el numero que se tomara como
// base

Exp, //Almacenara el número que se tomara como
//exponente

Aux, // Variable que va a almacenar
//progresivamente todos los valores
// comprendidos entre I yelvalordel
//exponente

Resul // Variable que almacenara el resultado ñnal de

199

InTKüDUCCIOS \1^\IüOIC\D1 I'ROGIUMACIÜN Osi \R I\ \N TlUJOS BUIUIIC \

//haber multiplicado la base tantas veces como
//lo diga el exponente

Inicio
Escriba "Digite una base' //Solicita una base
Lea Base //y la lee

Escriba "Digite un exponente” //Solicita un exponente
LeaExp //y lo lee

Si Exp < 0 //En coso de que el exponente sea negativo
Escriba "Exponente Errado" //Aviso

Sino //Si el exponente es cero o es positivo
Resul = 1 //Inicializa Resul en 1
Aux=1 //Inicializa la auxiliaren!

Haga
Resul = Resul * Base //Multiplica
Aux = Aux+ ! //e incrementa el valor de Aux

Mientras Aux <= Exp //Mientras que Aux sea <= que Exp

Escriba “Resultado Resul //Escriba el resultado final
Fin

A esta altura de! libro, usted podra ver la gran utilidad que tiene la imple-
mentacion de ciclos en nuestros algoritmos dado que ellos facilitan no solo
la comprensión de la solución, sino que ademas nos permiten obtener unos
algoritmos muy flexibles a los cambios, pues con solo cambiar el valor de
inicio del ciclo o el valor final del ciclo o el incremento del ciclo, con eso es
suficiente para que ese mismo ciclo pueda cumplir de una manera eficiente
otros objetivos

8.4. Ciclos anidados

Una vanante muy interesante en cuanto a la concepción de ciclos corresponde
a los ciclos anidados Se define como ciclos anidados la estructura en la cual un
ciclo esta dentro de otro (completamente) Esto significa que, si se tratara de
una estructura Mientras anidada, su esquema sena el siguiente

Mientras Condición 1

2(J0

Cap 8 - Ciclos

Mientras Condiaon2

Cuerpo del ciclo más interno

Fin_Mientras Interno

Fin_Mientras Externo

Su forma de ejecución es muy sencilla mientras sea verdadera la condicionl, el
ciclo externo va a ejecutar el cuerpo del ciclo dentro del cual se encuentra un
ciclo interno que está regido por la condicion2, de tal manera que se ejecutará
completamente el ciclo interno mientras la condicion2 sea verdadera Cuando
esta condición2 sea falsa, se ejecutaran el resto de instrucciones del ciclo
externo y se volverá a la condición! para evaluar si aún es verdadera para
volver a entrar en el cuerpo de dicho ciclo. Veamos esta teoría aplicada con un
ejemplo al cual le haremos su respectiva prueba de escritorio.

8.4.1. Ejemplo 1

Leer números hasta que digiten 0 y a cada valor leído calcularle su factorial

Clarificacíón del objetivo

No se olvide que la solución presentada en este libro es solo una de las posi­
bles soluciones a cada uno de los enunciados planteados como objetivos. Si
usted ha desarrollado soluciones para estos algoritmos y encuentra que son
diferentes no se preocupe. Realícele pruebas de escritorio y si cumplen con el
objetivo entonces su algoritmo estara tan bien como el mío.

Para solucionar este algoritmo, vamos a tener en cuenta la solución ya presen­
tada para calcular el factorial de un numero En esencia, nuestro algoritmo va a
leer números hasta que digiten cero y, mientras esta condición sea verdadera,
se calculará el factorial (o sea, se aplicará el algoritmo ya resuelto de cálculo del
factorial de un numero) a cada uno de los números leídos

No se olvide que el factorial de un entero es el resultado de multiplicar suce­
sivamente todos los enteros comprendidos entre 1 y el número dado No esta
definido el factorial para números negativos y el factorial de 0 es 1.

:oi

Algoritmo

Programa Oclos_Anidados_ 1
Variables

Entero Num, //Almacenara cada uno de los números
//diferentes de cero que sean digitados

Facto, //Almacenara el factorial de cada uno de los
//números digitados

Cont //Almacenara la secuencia de enteros
//comprendidos entre 1 yel ultimo numero
//leído, todo vez que este ultimo numero sea
//positivo

Inicio
Escriba “Digite números y ñnalice con 0"//Solicitar números
Lea Num //Lea el primer dato

Mientras Num <>0 //Mientras el dato leído sea diferente de 0
Si Num < 0 //Si el dato leído es negativo avise

Escriba "No esta deñnido el factorial para nums negativos"

Sino //Sino
Facto = 1 //Inicialice la variable Facto en I
//Con un ciclo Para almacene sucesivamente en la
//variable Cont todos los enteros comprendidos entre 1
//y el numero leído

Para Cont = 1 hasta Num (paso 1)
Facto = Facto * Cont //Multiplique progresivamente

//cada uno de los valores
//enteros comprendidos entre /
//y el numero leído

Escriba "Factorial de", Num, Facto
//Escriba resultado

Fin_Si
Lea Num //Lea el siguiente numero

Fin_Mientras //Fin Ciclo Mientras
Fin

Inthodiccios a i>\ LOGIC\ ni i’rocjIlwi \cioN - Om\r IwnTrijos BUiimCA

202

Cap 8 - Ciclos

Note usted que la utilización de ciclos anidados no tiene restricciones en cuan­
to a los ciclos que se utilicen. En este ejemplo, vemos como dentro de un ciclo
Mientras puede Ir sin ningún problema un ciclo Para. En general, usted en un
algoritmo puede combinar cualquier tipo de ciclos.

Prueba de escritorio

De nuevo y tal como lo hicimos en ejemplos anteriores, vamos a desarrollar
una prueba de escritorio (paso a paso) con el objetivo de entender claramente
el concepto de los ciclos anidados. Iniclalmente, tendremos las mismas dos
partes para la prueba de escritorio que hemos tenido en todas ellas: la pantalla
y la memoria.

PANTALLA MEMORIA

Comenzamos la prueba de escritorio con la declaración de las variables en
memoria.

Programa Ciclos_Anidados_1
Variables

Entero: Num, //Almacenara cada uno de los números
//diferentes de cero que sean digitados

Facto, //Almacenará el factorial de cada uno de los
//números digitados

Cont //Almacenará la secuencia de enteros
//comprendidos entre I y el último número
//leído, todo vez que este último número sea
//positivo

PANTALLA _________ MEMORIA

Num Pacto Cont

En la parte de ejecución, nuestro algoritmo comienza avisándole al usuario
para que ingrese unos datos y sepa cómo finalizar. A continuación, lee el

203

INTRODUCCION A Ij\ 1 OGICA DI I'ROGRAMACION - 0\l \R l\ \N TiUJOS BURITICA

primer entero y lo almacena en la variable Num Vamos a asumir que el primer
entero digitado es un 4.

Inicio
Escriba "Digite números y finalice con 0" //Solicita números
Lea Num //Lea el primer dato

PANTALLA MEMORIA

Digite números y Num Pacto Cont
finalice conO

4
4

Como primera medida, con el número leído se verifica que sea diferente de
cero y, como esta proposición es verdadera, se procede a entrar en el ciclo

Mientras Num <>0 //Mientras el dato leído sea diferente de 0

Se verifica igualmente si el número leído es menor que cero (o sea si es ne­
gativo). Como el número 4 no es negativo, entonces se procede a realizar el
conjunto de instrucciones que se encuentran por el lado del Sino

Si Num < 0
Escriba "No está deñnido factorial para nums negativos"

Sino
Facto = 1

De acuerdo a esto, inicializamos la variable Facto con el valor de 1 para iniciar el
ciclo Para que es el que realmente nos va a permitir calcular el factorial.

PANTALLA MEMORIA

Digite números y Num Pacto Cont
finalice conO
4

4 1

El ciclo Para planteado tiene como índice a la variable Conf y le asigna inicial-
mente el valor de 1. El contenido de esta variable deberá llegar hasta el valor
actual de Num (o sea, 4) incrementándola cada vez de 1 en 1

204

Cap 8 - Ciclos

PANTALLA MEMORIA

Digite números y Num Facto Cont
finalice con 0
4

4 1 1

Para Cont = 1 hasta Num (paso 1)
Facto = Facto * Cont

Y por cada valor que vaya tomando la variable Conf vamos realizando la ope­
ración asignación Facto = Facto * Cont. De esta manera, las asignaciones suce­
sivas serán:

Cuando Conf vale 1, entonces Facto vale 1.

PANTALLA MEMORIA

DIgite números y Num Facto Cont
finalice con 0
4

4 4 1
1

Al incrementar el valor de Conf en 1, entonces Conf queda valiendo 2 y, por lo
tanto, Facto es igual a 2.

PANTALLA

Digite números y
finalice conO
4

MEMORIA

Num Facto Cont
4 4 4
4 4 2

2

Al incrementar el valor de Conf en 1, entonces Cont queda ahora valiendo 3 y,
por lo tanto. Facto es igual a 6 puesto que Facto = Focfo *Conf.

PANTALLA

Digite números y
finalice conO
4

MEMORIA

Num Facto Cont
4 4 4
4 4 2
4 2- 3

205

InTKODUCUOS a I OGIt \ 1)1 I’ROGil/WWC ION - Om \h I\ \n Tiujos BuKinc a

Al incrementar el valor de Cont (de nuevo) en 1, su actual contenido pasa a ser
4 Recuerde usted que el ciclo decía inicialmente Para Cont= 1 hasta Num, eso
significa que como Num vale 4 y en este momento Conf también vale 4, enton
ces esta es la ultima iteración del ciclo Para planteado, o sea, que es la ultima
vez que hacemos Facto = Facto * Cont Con lo que acabo de decir pasaríamos
a la siguiente instrucción dentro del ciclo Mientras externo Es importante que
note que hemos desarrollado el ciclo Pora y que, aunque ya casi terminamos
de ejecutarlo, no hemos terminado la ejecución del ciclo externo Mientras

PANTALLA

Dlgite números y
finalice conO
4

MEMORIA

Num Facto Cont
4 4-4
4 4-2
4 2-3
4 6 4
4 24

De esta forma, se ejecutaría la siguiente orden que se encuentra después del
ciclo En las ordenes Escriba no se olvide que en donde aparezcan nombres de
variables se coloca el contenido actual de ellas

Escriba “El factorial de" Num, "es" Facto
Fin_5i

PANTALLA MEMORIA

Dígite números y Num Facto Cont
finalice conO 4 4-4-
4 4 4-2
El factorial de 4 es 24 4 2-3

4 24

Resultado que efectivamente es cierto, con lo cual terminamos la decision pa­
sando a la siguiente instrucción que se encuentra después de ella y que corres­
ponde a leer otro entero Luego de lo cual volveríamos a evaluar la condición
del ciclo Mientras para saber si ya se ha terminado o no

Lea Num
Fin_Mientras

Y para el caso de la prueba de escritorio que estamos desarrollando, suponga­
mos que el nuevo valor leído es -5 que, por la orden dada, quedaría almacena­
do en la variable Num

206

C\p 8 - Ciclos

PANTALLA MEMORIA

•5 Num Facto Cont
No está deñnido el •5
factortal para números
negativos

He borrado los contenidos sucesivos de las variables Facto y Cont solo por hacer
mas clara la prueba de escritorio a partir del momento en que entra un nuevo
valor Esto no tiene ninguna implicación en el desarrollo de ESTA prueba de
escritorio, ya que al leer un nuevo valor (según el algoritmo) se repite todo el
proceso con él. Tenga usted mucho cuidado cuando vaya a borrar deliberada­
mente contenidos de variables. Le sugiero que mejor nunca lo haga. En este
libro se hace por cuestión de espacio, no por otra razón, pero admito que no
es lo más conveniente.

Con este valor, volvemos a evaluar la condición que aparece en el inicio del
ciclo, o sea,

Mientras NumoO

Como vemos que el valor almacenado en la variable Num es diferente de cero
(porque es igual a -5), entonces volvemos a ejecutar el cuerpo del ciclo. Lo
primero que encontramos es una decisión acerca de si el número es negativo
(o sea, menor que cero). Como puede verse, el contenido de la variable Num en
este momento es -5, lo cual indica que la decisión es verdadera.

Sí Num < 0
Escriba "No está definido factorial para núms negativos"

Por lo tanto, se ejecuta la orden Escriba que se encuentra por el lado verdadero
de la decision y se ignora el correspondiente Sino.

PANTALLA MEMORIA

-5 Num Facto Cont
No está definido el •5
factorial para números
negativos

De esta manera, la ejecución del algoritmo pasara a la siguiente instrucción
que se encuentra después del final de la decision (o sea, inmediatamente des­
pués del Fin_Sí) y que es Lea Num, o sea, que lea otro número entero Esta vez
supongamos que el número leído es 3.

207

INTRODI C C ion \ I \ I OCilC \ 131 I IUKjIUM \Clt)N - Ovt \R I\ \N Trijos BURri It \

PANTALLA

3

MEMORIA

Num Facto Cont
3

De esta forma, con el nuevo valor almacenado en la variable Num, volvemos a
evaluar la condición del ciclo, o sea.

Mientras Num <>0

Como el valor actual de Num es 3, entonces volvemos a entrar al ciclo (externo)
Note usted que aun no nos hemos salido del ciclo externo y que, si el numero
leído es positivo, tendremos que entrar también al ciclo interno

Si Num < 0
Escriba No esta deñnido factorial para nums negativos”

La primera decision que se encuentra es si el numero es negativo Como vemos
que Num almacena un numero 3 y el 3 no es negativo, entonces se ejecutaran
las ordenes que se encuentran por el Sino de la decision

Sino
Facto = 1

Ya sabemos que inicializamos la variable Facto con el valor de 1 y asi mismo ha
cemos con la variable Conf, que según el ciclo Para planteado ira desde 1 hasta
el valor actual de Num (o sea, hasta 3) de 1 en 1 para realizar progresivamente
la operación Facto = Facto * Conf

Para Cont = 1 hasta Num (paso I)
Facto = Facto * Cont

MEMORIA

Num Facto Cont
3 4- 1
3 1

PANTALLA

3

Nos quedamos en este ciclo Para realizando las iteraciones que sean ne­
cesarias hasta cuando Conf llegue al valor actual de Num De esta manera.

208

Caí* 8 - Ciclos

incrementamos e! valor de Conten 1 y queda valiendo 2, razón por la cual la
operación Facto = Facto * Cont es igual a 2.

MEMORIA

Num Fado Cont
3 4-4
3 4 2
3 2

PANTALLA

3

Al incrementar el valor de Cont en 1 (continuando con la ejecución del ciclo
Para), obtenemos en la variable Cont el valor 3, que es el tope al cual debía
llegar puesto que el ciclo estaba estructurado para que Cont fuera desde 1
hasta el valor actual de Num que es 3. Por lo tanto, esta es la última iteración
del ciclo Para (interno).

MEMORIA

Num Facto Cont
3 4 4
3 4 3
3 2 3
3 6

PANTALLA

3

Como ya se llegó al tope planteado por el ciclo para entonces pasamos a la
siguiente instrucción, o sea,

Escriba "El factorial de", Num, "es". Facto

Con lo cual aparecería en pantalla:

PANTALLA

3
El factorial de 3 es 6

MEMORIA

Num Pacto Cont
3 1- 1
3 4 2
3 2- 3
3 6

Lo cual vemos que es cierto, pues el factorial de 3 realmente es 6. Con esta or­
den, llegamos al final de la decisión, o sea, al Fin_Si, pero no hemos terminado
la prueba de escritorio pues después de este Fin_5¡ ejecutamos la orden Lea
Num, para lo cual vamos a asumir que esta vez digitan el número 0.

20‘J

INTRODUCCION \L\LOGlC\Df I'ROORAM \C10N Osi \K lUN TrUOS BURITICA

PANTALU

3

El factorial de 3 es 6

0

MEMORIA

Num Facto Cont

3

3 I 2

Con lo cual volvemos a evaluar la condición que se encuentra en el ciclo Míen
iras y que dice

Mientras Num <>0

Como vemos que esta vez el valor almacenado en Num es 0 (o sea, que no es
diferente de cero), entonces esto quiere decir que la condición es falsa y, por
lo tanto, nos salimos hasta la siguiente instrucción después del Fin^Mientras,
que es

Fin

Y que representa que hemos llegado al final de esta prueba de escritorio Ve­
mos que los resultados obtenidos en pantalla en las diferentes ejecuciones
fueron

Digite números y finalice con 0
4
El factorial de 4 es 24
-5
No esta definido el factorial para números negativos
3
El factorial de 3 es 6
0

Realizando manualmente las operaciones, podemos ver que el factorial de
4 realmente es 24, que no esta definido el factorial para números negativos
(como por ejemplo el -5), que el factorial de 3 es 6 y que cuando se dígito
cero se finalizo tal como se indico al inicio del algoritmo Con esto podemos
decir que el algoritmo planteado aquí es correcto No se olvide que cuando un
ciclo esta dentro de otro su orden de ejecución es muy importante para que
realmente se obtengan los resultados esperados

210

Cap 8 - Ciclos

8.4.2. Ejemplo 2

Mostrar las tablas de multiplicar del 1 al 3.

Clarífícacíón del objetivo

Todos hemos conocido desde nuestra primaria las tablas de multiplicar. El ob­
jetivo de este algoritmo es mostrar en pantalla la tabla del 1, la tabla del 2 y la
tabla del 3 tal como nos las enseñaron, o sea'

El objetivo es, básicamente, mostrar en pantalla las tablas tal como se han
mostrado aquí Para ello, nos vamos a valer de dos ciclos anidados El ciclo
externo nos va a permitir controlar que solo salga hasta la tabla del 3, es decir,
que el índice del ciclo externo va a ir de 1 a 3, y el ciclo interno es el que nos va a
permitir que se generen los números del 1 al 10 para que al realizar la multipli­
cación entre el índice del ciclo externo y el índice del ciclo interno obtengamos
los resultados esperados Para facilidad de una posterior prueba de escritorio,
vamos a utilizar ciclos, dado que en este caso todos los topes son concretos.

De nuevo, se trata solo de tener un ciclo externo con una variable que va a ir
desde 1 hasta 3 y otro ciclo interno con una variable que va a ir desde 1 hasta
10. Dentro del ciclo interno estará ubicada una orden que permita mostrar en
pantalla lo solicitado.

1x1= 1
1 x2= 2
1x3= 3
1 x4= 4
1x5= 5
1 x6= 6
1 x7= 7
1 x8= 8
1 x9= 9
1 xl0= 10

2x1 =
2x2 =
2x3 =
2x4 =
2x5 =

2
4
6
8
10

211

INTRODUCCION A l^\ I ÜGIC\ DI l>ROGR/\M\UON - OmaR 1\ \N TrIJOS BUKI HCA

Algoritmo

Programa Oclos_Anidados_2
Variables

Entero: M1,

M2.

R

Inicio

//Indice del ciclo externo, almacenara el valor del
//multiplicando
//Indice del ciclo interno, almacenará el valor del
//multiplicador
//Almacena el resultado de multiplicarcada vez el
//multiplicando por el Multiplicador

Escriba 'Tablas de Multiplicar del 1 al 3"//Anuncia lo que va a escribir

//Ciclo externo cuya variable va desde I hasta 3
Para MI = 1 hasta 3 (Paso I)

//Ciclo inferno cuya variable va desde 1 hasta W
Para M2 = 1 hasta 10 (Paso 1)

R = M1 *M2 //Resultado de cada Multiplicación
Escriba M1, "x", M2, "=" R//Muestra el resultado

Fin_Para //Fin del ciclo interno
Fin_Para // Fin del ciclo externo

Fin //Fin del Algoritmo

Prueba de escritorio

Teniendo nuestro algoritmo ya planteado, vamos a desarrollarle una prueba
de escritorio completa para acercarnos un poco más al concepto de ciclos ani­
dados. Primero que nada, ubicamos en memoria tres variables dado que así es
como comienza el algoritmo.

Programa Ciclos_Anidados_2
Variables

Entero: MI, M2,R

PANTALLA MEMORIA

MI M2 R

Aparece en pantalla un aviso que anuncia qué es lo que se va a mostrar a
continuación.

212

Cap 8 - Ciclos

Inicio

Escriba 'Tablas de Multiplicar del 1 al 3"

PANTALLA MEMORIA

Tablas de Multiplicar MI M2 R
del 1 al 3

El ciclo externo involucra una variable /W? que va a tomarvalores comenzando
en 1 y terminando en 3 (inclusive) de 1 en 1 Asi mismo, el ciclo interno incluye
una variable M2 que va a tomar valores comenzando en 1 y terminando en
10 (inclusive) de 1 en 1 Dentro del ciclo mas interno ejecutara el resultado
de multiplicar M / por M2 y lo almacenara en la variable R mostrando todo en
pantalla

Para MI = 1 hasta 3 (Paso 1)
Para M2 = 1 hasta W (Paso I)

R = M1 *M2
Escriba MI, ‘x:M2/'=';R

De esta manera, mientras MI toma el valor de 1, M2 tomara valores entre 1 y
10 (sin que cambie para nada el valor de M/) Entonces, cuando M2 valga 1 la
ejecución sera

PLANTILLA MEMORIA

Tablas de Multiplicar
del 1 al 3

MI M2 R
1 1 1

1x1 = 1

Cuando M2 tome el valor de 2 (manteniéndose el valor de 1 en MI)

PLANTILLA MEMORIA

Tablas de Multiplicar
del 1 al 3

MI M2 R
1 -1 4
1 2 2

1x1=1
1 x2 = 2

Cuando M2 tome el valor de 3 (manteniéndose el valor de 1 en MI)

213

INTRODUCCION A I^\ I ÓGICA DI 1‘RIK.IUMACION - OmAK I\ÁN TUUOS BURII ICÁ

PLANTILLA MEMORIA

Tablas de Multiplicar MI M2 R
del 1 al 3 1 4 4

1 2 2
1x1 = 1 1 3 3
1 x2 = 2
1x3 = 3

Cuando M2 tome el valor de 4 (manteniéndose el valor de 1 en MI):

Tablas de Multiplicar
del 1 al 3

1x1 = 1
1x2 = 2
1x3 = 3
1 x4 = 4

MI M2 R
1 1 1
1 2 2
1 -3 3
1 4 4

Cuando M2 tome el valor de 5 (manteniéndose el valor de 1 en MI):

PANTALLA MEMORIA

Tablas de Multiplicar MI M2 R
del 1 al 3 1 1 4

1 2 2
1x1 = 1 1 3 3
1x2 = 2 1 4 4
1x3 = 3 1 5 5
1x4 = 4
1x5 = 5

Cuando M2 tome el valor de 6 (manteniéndose el valor de 1 en MI):

PANTALLA

Tablas de Multiplicar
del 1 al 3

1x1 = 1
1 x2 = 2
1x3 = 3
1 x4 = 4
1x5 = 5
1x6 = 6

MEMORIA

MI M2 R
1 I \

2

4 4
5 5
6 6

Cuando M2 tome el valor de 7 (manteniéndose el valor de 1 en MI):

MI M2 R

¡ 1 1
1 4
1 S

4

1 6 6

214

Cap. 8 - Ciclos

Cuando M2 tome el valor de 8 (manteniéndose el valor de 1 en MI):

PANTALLA MEMORIA

Tablas de Multiplicar
del 1 al 3

MI M2 R
1 4 4

1x1=1
1x2 = 2
1x3 = 3
1 x4 = 4

1 3 3
1 4 4
1 5 5
1 6 6
1 7 7
1 8 8

1x5 = 5
1x6 = 6
1x7 = 7
1x8 = 8

Cuando M2 tome el valor de 9 (manteniéndose el valor de 1 en MI):

PANTALLA MEMORIA

Tabbs de Multiplicar
del 1 al 3

1x3 = 3
1 x4 = 4
1x5 = 5
1x6 = 6
1x7 = 7
1x8 = 8
1x9 = 9

MI M2
1 4

i
1 s
1 6

1 8
1 9

R

2
3
4
5
6

8
9

Cuando M2 tome el valor de 10 (manteniéndose el valor de 1 en MI):

PANTALLA________ MEMORIA

Tablas de Multiplicar
del 1 al 3

MI M2 R
1 1 1

1x1 = 1
1 2 2
1 3 3

1x2 = 2 1 4 4
1x3 = 3
1x4 = 4

1 5 5
1 6 6

1x5 = 5
1 x6=6
1x7 = 7

1 7 7
1 8 8
1 9 9

1x8 = 8
1x9 = 9
1 X 10= 10

1 10 10

Como la variable M2 ya llegó a su tope (que era 10), entonces nos salimos del
ciclo interno (que incluye sus instrucciones) y volvemos al ciclo externo, o sea,
a incrementar la variable Mí en 1, de manera que quedaría con el valor de 2.

215

iN'mODUCCIOS A U\ I OGICA t>l I’ROGRANWCION - 0m\R I\AN TrIJOS BuRÍTICÁ

Como esta variable aún no ha llegado a su tope, entonces volvemos a entrar
al cuerpo del ciclo externo que incluye un ciclo interno en donde una variable
MI va a almacenar enteros empezando en 1 y terminando en 10 y ejecután­
dose (dentro de este ciclo interno) las órdenes de multiplicar y mostrar los
resultados en pantalla. De esta forma, MI toma el valor de 2 mientras M2 va
desde 1 hasta 10

Cuando M2 tome el valor de 1 (manteniéndose el valor de 2 en Ml)\

PANTALU

1x6 = 6
1x7 = 7
1 x8 = 8
1 x9=9
1 X 10=10

2x1 = 1

MEMORIA

Cuando M2 tome el valor de 2 (manteniéndose el valor de 2 en M1)-

PANTALLA MEMORIA

1x6 = 6
1x7 = 7

MI M2 R

1 7 7
1 8 8

1 x8 = 8
1 x9 = 9
1x10=10

1 9 9
4 40 40
2 4 2

2x1=2
2x2 = 4

2 2 4

Así iremos sucesivamente manteniendo el valor que almacena MI pero incre­
mentando el valor de M2 progresivamente a medida que vamos haciendo la
multiplicación y vamos mostrando los resultados De esta forma, al finalizar la
ejecución del ciclo interno, tendremos tanto en memoria como en pantalla

Igualmente, puede usted realizar la prueba de escritorio en donde MI se in­
crementa en 1 quedando con el valor de 3 y M2 vuelve a tomar valores desde
1 hasta 10 generando la tabla de multiplicar del 10. Luego de esto, M2 llega
a su tope, tal como sucedió en dos oportunidades más, solo que esta vez Mí
también llega a su tope, por lo cual nos salimos del ciclo externo y ejecutamos
la orden que se encuentra inmediatamente después del Fm^Ciclo correspon­
diente. Esa orden no es más que el Fin del algoritmo. Al final, obtendremos
el resultado esperado, o sea, tener en pantalla las tablas de multiplicar del 1

Cap 8 - Cicuds

al 3 Si hubiéramos querido tener todas las tablas de multiplicar, todo lo que
tendríamos que hacer es cambiar la orden

Para MI = 1 hasta 3 (Paso 1)

por

ParaMl = / hasta W(Paso 1)

Y nuestro algoritmo quedaría generando todas las tablas de multiplicar

8.4.3. Ejemplo 3

Leer un numero entero y mostrar todos los enteros comprendidos entre 1 y
cada uno de los dígitos del numero leído

Clarifícación del objetivo

Antes de plantearle una solución a este enunciado, no se olvide que los algorit­
mos presentados en este libro son solo una version de solución a los problemas
aquí planteados Esto quiere decir que si usted desarrolla un algoritmo que no es
igual a los presentados en este libro pero al realizarle la correspondiente prueba
de escritorio usted ve que también cumple con el objetivo, entonces esto quie­
re decir que su algoritmo esta bien, sin importar que sea diferente al presentado
en este libro Es muy importante que usted tenga esto en cuenta, dado que
muchas personas me preguntan lo mismo. Por ahora, no se olvide que lo que
importa es lograr el objetivo planteado utilizando un camino algorítmico

En este ejercicio, vamos a leer un numero entero St es negativo, lo multiplica
mos por (-1) para facilitar las operaciones y las validaciones Recordemos que
la formula

Dig = num - num/70*70

va a almacenar en la variable Dig el ultimo dígito de un numero entero Si por
ejemplo num es igual a 1543, entonces

Dig = num - num / 70 * 70
Dig=1543-1543/W*W
Dig= 1543-154*W
Dig =1543 1540
Dig = 3

217

ImHODUCCION \ 1^ 1 OGICV DL l'ROGR.\M \C10N - Osr \R I\ \N TKIJOJ. BUKHICA

Que corresponde al ultimo dígito del valor tornado como ejemplo Entonces lo
que vamos a hacer es que dentro de un ciclo vamos a ir obteniendo el ultimo
dígito del numero y vamos a ir dividiendo progresivamente el numero entre
10 De esta manera, habremos obtenido todos los dígitos por separado Al
tiempo que obtenemos cada dígito, a través de otro ciclo, vamos generando
los números comprendidos entre 1 y el dígito obtenido Todos los resultados
se irán escribiendo en pantalla

Algoritmo

Programa Ciclos_Anidados_3
Variables

Entero Num, //Almacenara el numero leído
Dig, //Almacenara cada uno de los dígitos

//que tenga el numero leído
Aux //Almacenara cada uno de los enteros

//comprendidos entre 1 ycada unode
//los dígitos del numero leído

Inicio
Escriba "Digite un numero entero" //Solicita un numero entero, lo lee
Lea Num //y lo almacena en la variable Num

//Si el numero es negativo
//lo volvemos positivo para facilitar los
//cálculos

Si Num < 0

Num = Num *(-1)

Mientras Num <>0 //Mientras el contenido del numero
//leído sea diferente de cero

Dig = Num-Num/W* W //Almacene el ultimo dígito en la

// variable Dig
ParaAux= 1 hasta Dig (Paso 1)//Genere la secuencia de enteros

//comprendidos entre lyeldigito
//obtenido y cada valor
//almacénelo en
//la variable Aux

Escriba Aux //Muestre cada uno de los valores que
//tome la variable Aux

Fin_Para

218

Cap 8-Ciclos

Num = Num/W //Divida el número original entre 10
// (para "quitarle"aritméticamente el
//último dígito)

Fin_Mientras //Fin del ado inicial
Fin //Fin del Algoritmo

Prueba de escritorio

Nuestra prueba de escritorio comienza con la declaración de tres variables en
pantalla, tal como se ha hecho en los otros ejercicios.

Programa Ciclos_Anidados_3
Variables

Entero: Num,
Dig,
Aux

PANTALLA MEMORIA

MI M2 R
4 40 40

2x1=2
2 4 2
2 2 4

2x2 = 4
2x3 = 6
2x4 = 8

2 3 6
2 4 8
2 5 40

2x5 = 10
2x6=12

2 6 42
2 ? 14

2x8=16 2 9 18

2x10 = 20

Inicio

Escriba "Digite un número entero"
Lea Num

Se solicita un dato entero, se lee y se almacena en la variable Num. Para efectos de
nuestra prueba de escritorio, vamos a asumir que el número digitado es el 354.

PANTALLA MEMORIA

Num Dig Aux

219

INTUODUCCIüN \ LOGIC \ OI l’UOGIL\M \CION ♦ Osi \lt I\ VN TUIJOJ. BURIIICA

A continuación, se pregunta si el contenido de la variable Num es negativo y
entonces se multiplica por -1 para facilitar los cálculos Como en este caso el
contenido de la variable Num es positivo, entonces la decision es Falsa, por lo
tanto, nos saltamos la instrucción a ejecutar en caso de que la decision fuera
Verdadera Continuamos con el ciclo Mientras que esta a continuación

Si Num < 0
Num - Num *(-1)

El ciclo comienza estableciendo una condición para entrar en el mientras el
contenido de la variable Num sea diferente de cero Como en este caso el valor
de la variable Num es 354, entonces la condición es Verdadera, por lo tanto,
entramos al ciclo planteado

Mientras Num <>0

Lo primero que vamos a realizar es la operación

Dig = Num - Num / W * W

Según la cual se obtiene el ultimo dígito del contenido de la variable Num De
esta forma, como Num vale 354, entonces

Dig = Num - Num / W* W
Dig=^354-354/W^10
Dig = 354~35^W
Dig = 354 -350
Dig = 4

Y efectivamente obtenemos el ultimo dígito del contenido de la variable Num
A continuación, siguiendo con nuestro algoritmo, generaremos un ciclo en
donde la variable Aux va a tomar valores desde 1 hasta el valor actual de Dig
(o sea, 4} incrementándola de 1 en 1, ciclo dentro del cual se ira escribiendo
progresivamente el valor almacenado en la variable Aux

Para Aux = 1 hasta Dig (Paso 1)
Escriba Aux

Fin_Para

De esta forma, cuando Aux tenga el valor de 1, entonces se escribirá

220

Cap 8-Ciclos

PANTALLA MEMORIA

Digite un numero Num Dig Aux
entero 354
3S4

Cuando Aux tenga el valor de 2, entonces se escribirá:

PANTALLA

DIgite un numero
entero
354
1

MEMORIA

Num Dig Aux
354 4 1

Cuando/Aux tenga el valor de 3, entonces se escribirá:

PANTALLA MEMORIA

Digite un numero Num Dig Aux
entero
354

354 4 4

1 2

Cuando Aux tenga el valor de 4, habra llegado al tope planteado, pues el ciclo
inicialmente decía que Aux tomaría valores entre 1 y el valor actual de Dig que
es 4, luego esta sena su última iteración, por lo cual escribirá

PANTALLA MEMORIA

Digite un numero Num Dig Aux
entero 354 4 4
354 2
1 23 3

Como ya se finalizó el ciclo Para planteado, entonces continuamos con la ins­
trucción que se encuentra después del Fin_Para‘

Num = Num/W

Sabiendo que el contenido de la variable Num es 354, el resultado de esta ex­
presión sena:

221

INTRODUCCION \ UUOGlC\ DL I ROCilUMUION 0\l\R IwnTrIJOS BURinC\

Num = Num/10
Num = 354/W
Num - 35

PANTALLA MEMORIA

Digite un numero Num Dig Aux
entero 354 4 i
354 -3
1234 3

4

Instrucción con la cual termina el ciclo, pues encontramos a continuación el
Fin__Mientras correspondiente

Fin_Mientras

De tal manera que volvemos a la condición del ciclo Mientras para evaluarla y
saber si se continua ejecutando el cuerpo del ciclo o se finaliza definitivamente
la ejecución del mismo Al volver al ciclo que decía

Mientras Num <>0

Como el contenido actual de la variable Num es 35, entonces la condición es
Verdadera, por lo tanto, volvemos a ejecutar el cuerpo del ciclo Por lo tanto,
ejecutamos la orden

Dig = Num-Num/10*10

Cuyo desarrollo sena

Dig = Num-Num/10* 10
Dig = 35-35/10*10
Dig = 35-3*10
Dig = 35-30
Dig = 5

Dejando almacenado en la variable Dig el valor 5

PANTALLA MEMORIA

Dlgfte un numero
entero

Num Dig Aux
3-54 4 4-

354
1 234

35 ^

4

222

Cap 8 - Ciclos

A continuación, vamos a generar un ciclo, utilizando la variable Aux como
índice, para que tome valores entre 1 y el valor actual de Dig (que es 5) con
incrementos de 1. De esta manera, cuando Aux valga 1, entonces en pantalla
se escribirá su contenido:

Digite un numero Num Dig Aux
entero 3-54 4 1
354 35 5
1234
1

Cuando Aux valga 2, entonces en pantalla se escribirá:

DIgite un numero Num Dig Aux
entero 354 4 4
354 35 5 2
1234
1 2

Cuando Aux valga 3, entonces en pantalla se escribirá:

PANTALLA MEMORIA

Oigite un numero
entero
3S4
1234
123

Cuando Aux valga 4, entonces en pantalla se escribirá-

PANTALLA

Digite un numero
entero
354
1234
1234

Cuando Aux valga 5, entonces habrá llegado a su tope, pues los valores to­
mados por la variable Aux llegarían hasta el valor actual de la variable Dig. De
manera que esta sería su última iteración y en pantalla se escribirá-

223

Introducción a la lógica dl I'rogranlvcion - Omak I\án Trijüs BuamcÁ.

PANTALLA MEMORIA

Digite un número Num Dig Aux
entero -3-54 4 4
354 35 5 2
1234 3
1 2345 4

5

Al haber terminado el ciclo Para, continuamos de nuevo con la instrucción que
se encuentra después de su fin_Para respectivo, que es una asignación cuyo
desarrollo sería;

Num = Num/W
Num=35/W
Num = 3

Quedando en memoria almacenado en la variable Num el valor 3.

PANTALLA MEMORIA

Digite un numero
entero

354

Num Dig Aux

3-54 4 4

1234 35 5 a

Con lo cual, y dado que encontramos el fin del ciclo Mientras, debemos volver
a este para evaluar si su condición sigue siendo Verdadera.

Mientras Num <>0

Como en este momento el contenido de la variable Num es Verdadero, dado
que Num almacena un número 3, entonces volvemos a ejecutar una vez más el
cuerpo del ciclo que inicia con una instrucción de asignación cuyo desarrollo es:

Dig = Num-Num/W*W
Dig = 3-3/m*W
Dig = 3-0*W
Dig = 3-0
Dig = 3

Quedando almacenado en la variable Dig (en memoria obviamente) el valor 3:

Cap 8 - Cjclos

PANTALU MEMORIA

DIgite un numero Num Dig Aux
entero
354

3-54 4
35 5

1234 3 3
1 2345

A continuación generamos, utilizando un ciclo Para, una secuencia de enteros
comprendidos entre 1 y el valor actual de Dig (que es 3) con incrementos de 1
escribiendo cada contenido en la pantalla. Así, cuando Aux valga 1, entonces
se escribirá en pantalla:

Para Aux - 1 hasta Dig (Paso 1)
Escriba Aux

Fin_Para

PANTALU

Digile un numero
entero
354
1 234
1 2345
1

MEMORIA

Num Dig Aux
354 4 1

35 5
3 3

Cuando Aux valga 2, entonces se escribirá en pantalla*

PANTALU MEMORIA

DIgite un numero Num Dig Aux
entero 354 4 4
354 35 5 2
1 234 3 3
1 2345
1 2

Cuando Aux valga 3, entonces se escribirá en pantalla el valor 3 y habrá finali­
zado el ciclo, pues este debería ir desde 1 hasta el valor actual de Dig que es 3.

PANTALU MEMORIA

Dlgite un numero Num Dig Aux
entero 354 4 4
354 35 5 a
1234 3 3 3
1 2345
1 23

225

INTRODUCCION A Ij\ LOGIC \ DI I'ROGIL\M \C10N - OMAR I\ VN TIUJOS BUIUTICA

23. Leer un número entero y determinar si la suma de sus dígitos es también
un número primo.

24. Leer un número entero y determinar a cuanto es igual al suma de sus
dígitos pares.

25. Leer un número entero y determinar a cuanto es igual el promedio entero
de sus dígitos.

26. Leer un número entero y determinar cual es el mayor de sus dígitos

27. Leer 2 números enteros y determinar cual de los dos tiene mayor canti­
dad de dígitos

28. Leer 2 números enteros y determinar cual de los dos tiene mayor cantidad
de dígitos primos.

29. Leer un número entero y determinar a cuánto es igual el primero de sus
dígitos.

BO.Leer un número entero y mostrar todos sus componentes numéricos, o
sea, aquellos para quienes él sea un múltiplo

31. Leer números hasta que digiten 0 y determinar a cuánto es igual el
promedio de los números terminados en 5

32. Leer números hasta que digiten 0 y determinar a cuanto es igual el
promedio entero de ios número primos leídos.

33.Si 32768 es el tope superior para los números entero cortos, determinar
cuál es el número primo más cercano por debajo de él.

34. Generar los números del 1 al 10 utilizando un ciclo que vaya de 10 a 1

35. Leer dos números enteros y determinar a cuánto es igual el producto
mutuo del primer dígito de cada uno.

36. Mostrar en pantalla la tabla de multiplicar del número 5.

37. Generar todas las tablas de multiplicar del 1 al 10.

38. Leer un número entero y mostrar en pantalla su tabla de multiplicar.

39.Se define la sene de Fibonacci como la sene que comienza con los dígitos
1 y 0 y va sumando progresivamente los dos últimos elementos de la
serie, así:

228

Caí» 8 - Ciclos

0 1 1 2 3 5 8 13 21 34.....

Utilizando el concepto de ciclo, generar la sene de Fibonacci hasta llegar
o sobrepasar el número 10000.

40.Leer un número de dos dígitos y determinar si pertenece a la serie de
Fibonacci.

41 .Determinar a cuánto es igual la suma de los elementos de la sene de Fibo­
nacci entre 0 y 100.

42 Determinar a cuánto es igual el promedio entero de ios elementos de la
sene de Fibonacci entre 0 y 1000

43. Determinar cuántos elementos de la sene de Fibonacci se encuentran
entre 1000 y 2000

44. Leer un número y calcularle su factorial

45. Leer un número y calcularle el factorial a todos los enteros comprendidos
entre 1 y el número leído.

46. Leer un número entero y calcular el promedio entero de los factoriales de
los enteros comprendidos entre 1 y el número leído

47. Leer un número entero y calcular a cuánto es igual la sumatoria de todos
los factoriales de los números comprendidos entre 1 y el número leído

48. Utilizando ciclos anidados, generar las siguientes parejas de enteros.

0 1
1 1

2 2
3 2
4 3
5 3
6 4
7 4
8 5
9 5

INTRODUCCION A lA lOGICA DI I'ROGIUMACION - OmaR IwN TRIJOS BURIIICA

49. Utili2ando ciclos anidados, generar las siguientes ternas de números:

1 1 1

2 1 2
3 1 3
4 2 1
5 2 2
6 2 3
7 3 1
8 3 2
9 3 3

50. UtiIizando ciclos anidados, generar las siguientes parejas de números

0 1
1 1
2 1
3 1
4 2
5 2
6 2
7 2

230

Capítulo 9
Arreglos

9.1. Concepto general

Un arreglo es un conjunto de variables en donde cada una de ellas puede ser
referenciada utilizando su posición relativa, es decir, su ubicación en relación
con el primer elemento de dicho conjunto Estoy seguro que mas de una vez
usted habra notado que el cajero de un banco, para referirse a una de las perso­
nas que hacen cola para hacer una consignación, puede decir"Venga la quinta
persona'y habra notado como una persona que no estaba de primera pasa a
ser atendida por el Vanos razonamientos se involucran inconscientemente en
esta situación

• En primera instancia, sabemos que la'quinta persona"se ubica contando
a partir de la primera Esto es algo muy obvio, pero para el tema que nos
ocupa en el momento es importantísimo

• Normalmente, todas las personas, sin equivocación, voltean a mirar a una
sola persona que es, con toda segundad, la que ocupa la quinta posición
en la fíla

• EI"quintopuesto'enlacolatienequeestarocupadoporalguien Nopue
de estar vacio, pues esa tuvo que haber sido una de las razones para que
el cajero se refiriera a dicha persona con tanta segundad

• La cola de personas no es infinita Tiene una cantidad determinada de
clientes

• Delante de la quinta persona debe haber cuatro personas y después de
ella puede haber muchas o ninguna persona

INTRODUCCION A LA LOGICA DI I'ROOR-\M \CION - Om \R l\\N TrIJOS QuiUTlCV

• Si existen vanas colas, solo atendera el llamado del cajero la "quinta per
sona"de la cola a la que el se refiera

• Si en algún momento otro cajero dijera "Vea, todas las personas de esa
cola pásense a esta caja", entonces todo el conjunto de personas atendería
el llamado de ese otro cajero, lo cual significaría que en cualquier momen­
to ese conjunto de personas puede ser manejado como una sola unidad

Estos razonamientos, vuelvo a repetir, son muy obvios En nuestro caso, nos
van a permitir caracterizar algunos elementos técnicos en referencia a los arre­
glos partiendo de unos conceptos muy simplificados y "domésticos"

Cuando yo estaba en la escuela desatendía la costumbre de llevar todos los
días los zapatos embolados y. por lo tanto, casi todas las mañanas escuchaba
como, desde la Dirección y mientras todos estábamos perfectamente formados,
la directora decía'"Alla, el tercer niño de la quinta fila, acerqúese a la oficina de
la Dirección". Siempre, en ese momento, todos comenzaban a contar las filas y
luego, cuando habían ubicado la "quinta fila", comenzaban a buscar cual era el
"tercer niño" Obviamente era yo. Si la directora solo hubiera dicho alguna vez
"Venga el tercer niño para aca" se habría generado una confusion que me habría
permitido pasar inadvertido, pues, como había vanas filas, entonces muchos
"terceros niños" se hubieran sentido aludidos Sin embargo, en esta anécdota,
que cuento con algo de vergüenza, también se involucran vanos razonamientos

• Es evidente que todos los niños estaban formados en vanas filas o, para
mejor decirlo, existían vanas filas en donde cada fila estaba formada por
vanos niños

• Cualquier niño era fácilmente ubicable diciendo sencillamente en que fila
y en que posición dentro de esa fila se encontraba Y dicha ubicación no
daba espacio a la duda, ya que cada uno tema una única posición dentro
de la formación

• Las filas se contaban partiendo de la primera en adelante y la posición
de los niños dentro de cada fila se contaba partiendo del primer niño en
adelante

• La escuela tema una cantidad finita de niños que formaban todas las ma­
ñanas, o sea, que tanto la cantidad de filas como la cantidad de niños en
cada fila era finita

• Antes de la "quinta fila" existían cuatro filas mas y después de la "quinta
fila" podían existir mas filas o ninguna fila Antes del tercer niño existían

232

Cap 9 Arhcglos

dos niños mas y después del tercer niño (en este caso) existían muchos
niños mas, aunque pudiera no haber existido ninguno

• Si en algún momento la directora dijera "Todos los niños fórmense en el
patio de alia", entonces podría manejar todo el grupo de niños como una
sola unidad

• Cuando se referían a una fila determinada, esta debía existir (con toda
segundad) Cuando se referían a un niño determinado en una fila deter­
minada, y valga mucho esa redundancia, este también debería existir

• En algún momento, la directora de la escuela pudo haber dicho'la terce­
ra fila fórmese en ese lado de alla"y solo la tercera fila se habría movido,
quedando el resto de la formación en su estado original

Que pasa si frente a un colegio cuyo edificio tiene vanos pisos y cada piso tiene
vanos salones una persona se para y dice "Necesito al quinto estudiante" Se­
guramente, todos en el colegio se van a preguntar a partir de donde comien
zan a contar para saber quien es el quinto estudiante y lo mas posible es que
nadie va a salir Pero si esa persona se para frente al colegio y dice "Necesito al
quinto estudiante que esta sentado en la tercera fila del cuarto salon del sexto
piso de este colegio", entonces con segundad alguien va a salir porque fue
ubicado apropiadamente

Hemos tenido tres ejemplos una cola en un banco, una formación en filas de
los niños de una escuela y la ubicación de un estudiante en un colegio En cada
caso, podemos ver como para ubicar efectivamente a una persona necesita
mos utilizar referencias diferentes Esto quiere decir

a Para ubicar a una persona dentro de una cola, todo lo que tenemos que
hacer es utilizar UNA y solo UNA referencia Es claro pues referirnos a la
TERCERA persona o a la QUINTA persona dentro de una cola, pues no ha­
bría duda en su ubicación

b Para ubicar a un niño dentro de la población estudiantil de una escuela,
cuando esta esta formada en el patio, necesitamos utilizar DOS y solo
DOS referencias De manera que, al referirnos al TERCER niño de la QUIN
TA fila, estamos determinando exactamente la posición incuestionable
de un determinado niño

c Para ubicar a un estudiante en un colegio cuyo edificio tiene vanos pisos
y cada piso tiene vanos salones, necesitamos entonces utilizar vanas refe­
rencias Cuando se dice"Necesito al QUINTO estudiante que esta sentado

213

INTRODUCCIOS A [w\ LOGIC \ 1)1 PROGRAM \CION OmAR IUNTRIJOS BURITICA

en la TERCERA fila del CUARTO salon del SEXTO piso" nos estamos refi­
riendo exactamente a una persona de manera incuestionable

Es curioso pensar que esta persona pudo haber sido la misma, solo que para
referirnos a ella tuvimos que ubicarla exactamente de manera diferente en
cada una de las situaciones En los tres casos, las características son similares
aun a pesar de que no es igual la distribución de los elementos (o personas
para este caso)

9.2. índices

9.2.1. Definición

Se conocen como índices todas aquellas variables que nos sirven para ubicar
perfectamente un elemento dentro de un arreglo De esta forma, en el ejem
pío de la cola de personasen vez de decir "la quinta persona'podríamos haber
dicho la "persona No 5" o, para decirlo de una manera mas técnica, la persona
sub 5. En el ejemplo del "tercer niño de la quinta fila", podríamos haber dicho
también el niño No 3 de la fila No 5, igualmente con el animo de decirlo de una
manera mas técnica, el "niño sub 3 de la fila sub 2" Cada dato numérico utilizado
para ubicar estos elementos dentro de un arreglo se conoce como Indice

Cuando el mdice es reemplazado por una variable cuyo contenido es el dato
entero que necesitamos, entonces esta variable se conoce como subíndice
De esta forma, si en el ejemplo de la cola tenemos una variable que se llama
Num y Num contiene el numero 5, entonces podríamos habernos referido a la
"quinta persona" como la "Persona sub Num" (eso si, teniendo la segundad de
que Num contiene solo el numero 5) Luego de esta manera, si la cola tiene 10
personas, entonces un algoritmo de atención para las 10 personas sena

Para Num = / hasta 10
Atienda a Persona sub Num

O escrito de una forma mas resumida, y de paso mas técnica, podríamos decir
que.

Para Num = 1 hasta 10
Atienda a Persona (Num)

Y de esta manera, sabiendo que la variable Num puede tomar valores desde
1 hasta 10, pero que cada vez que tome un valor atiende a una determinada
persona, se podra concluir que

234

Cap 9-ARRrcLOs

Cuando Num valga 1

atendera a la Persona (1) que corresponde a la primera persona
Cuando Num valga 2

atendera a la Persona (2) que corresponde a la segunda persona
Cuando Num valga 3

atendera a la Persona (3) que corresponde a la tercera persona
Cuando Num valga 4

a tendera a la Persona (4) que corresponde a la cuarta persona
Cuando Num valga 5

atendera a la Persona (5) que corresponde a la quinta persona
Cuando Num valga 6

atendera a la Persona (6) que corresponde a la sexta persona
Cuando Num valga 7

atendera a la Persona (7) que corresponde a la séptima persona
Cuando Num valga 8

atendera a la Persona (8) que corresponde a la octava persona
Cuando Num valga 9

atendera a la Persona (9) que corresponde a la novena persona
Cuando Num valga 10

atendera a la Persona (10) que corresponde a la décima persona

Como puede ver, e! manejo de la cola, sin importar cuantas personas tenga, se
va a reducir al manejo de un ciclo con una variable importantísima que actua­
ra como subíndice Igualmente, supongamos que en la escuela existían solo
5 cursos y que cada curso tenía 10 estudiantes Para referenciar a cada fila,
vamos a utilizar la variable Fila y para referenciar a cada niño dentro de la fila,
vamos a utilizar la variable Pos como para hacer referencia a la posición en la
cual se encuentre Igualmente, vamos a asumir que N\f\o{Fila){Pos) represen­
tara al niño que se encuentre en la fila Fila y dentro de ella en la posición Pos

De manera que, si queremos revisar la presentación de cada nino, podríamos
utilizar el siguiente fragmento de algoritmo

Para Fila = 1 hasta 5
Para Pos = 1 hasta 10

Revise al Niño (Fila) (Pos)

INTRODUCCION ,\ U\U)Ciir\ OI l*R(K.IU\MACION - 0\l \R IwnTiUJOS BURRlt A

Con lo cual, si le hacemos una pequeña "prueba de escrilorio"a este algoritmo,
obtendremos que inicialmente Fila tendrá el valor de 1 Mientras mantiene
este valor, Pos va a tomar valores entre 1 y 10 De esta forma

Cuando Pos valga 1
se revisará al Niño (1)(1)o seo el primer niño de la primera ñla

Cuando Pos valga 2
se revisara al Niño (1)(2) o sea el segundo niño de la primera filo

Cuando Pos valga 3
se revisará al Niño (I)(3)o sea el tercer niño de la primero fila

Cuando Pos valga 4
se revisara al Niño (1)(4) o sea el cuarto niño de la primera fila

Cuando Pos valga 5
se revisará al Niño (1)(5) o sea el quin to niño de la primero fila

Cuando Pos valga 6
se revisará al Niño (1) (6) o sea el sexto niño de la primera ñla

Cuando Pos valgo 7
se revisara al Niño (1)(7) o sea el séptimo niño de la primera ñla

Cuando Pos valga 8
se revisara al Niño (I)(8)oseael octavo niño de la primera filo

Cuando Pos valga 9
se revisará al Niño (1)(9)osea el noveno niño de la primera ñla

Cuando Pos valga W
se revisará al Niño (1) (W)osea el décimo niño de la primera fila

Al llegar a esta punto, la variable Fila se incrementara en 1 y entonces, mientras
esta variable tiene el valor de 2, la variable Pos tendrá valores desde 1 hasta 10,
luego:

Cuando Pos valga 1
se revisará al Niño (2)(l)oseael primer niño de la segunda fila

Cuando Pos valga 2
se revisará al Niño (2)(2)o sea el segundo niño de la segunda fila

Cuando Pos valga 3
se revisará al Niño (2)(3)oseael tercer niño de la segunda filo

236

Cap 9-Arreglos

Cuando Pos valga 9

se revisara al Niño (2) (9) o sea el noveno niño déla segunda fila
Cuando Pos valga W

serevisaráalNiño(2) (10) o sea el décimo niño de la segunda fila

Cuando se llegue a este punto, entonces la variable Fila se incrementará en
1 y entonces, mientras esta variable tiene el valor de 3, la variable Pos tendrá
valores desde 1 hasta 10. luego:

Cuando Pos valga 1

se revisará alNiño(3)(1)oseael primer niño de la tercera ñla
Cuando Pos valga 2

se revisara al Niño (3)(2)o sea el segundo niño de la tercera ñla
Cuando Pos valga 3

se revisara al Niño (3) (3) osea el tercer niño de la tercera ñla

Cuando Pos valga 9
se revisara al Niño (3)(9)oseael noveno niño de la tercera ñla

Cuando Pos valga 10
se revisará al Niño (3)(10)oseael décimo niño de la tercera ñla

De nuevo, en este momento, se incrementaría el contenido de la variable Fila
en 1 y, por lo tanto, almacenaría el valor 4. De manera que, mientras esta varia­
ble sea igual a 4, la variable Pos tomará valores desde 1 hasta 10, por lo tanto:

Cuando Pos valga 1
se revisará al Niño (4)(1)oseael primer niño de la cuarta ñla

Cuando Pos valga 2
se revisará al Niño (4) (2) o sea el segundo niño de la cuarta ñla

Cuando Pos valga 3
se revisará al Niño (4)(3)oseael tercer niño de la cuarta ñla

237

INTRODUCCION \1 SLOGICVÜl t ROGlUWtACION OM \K I\\N TrUOS BUUniC\

Cuando Pos valga 9
se revisara al Niño (4) (9) osea el noveno nino de la cuarta ñla

Cuando Pos valga W
se revisara al Niño (4) (W)osea el décimo niño de la cuarta ñla

Finalmente, mientras la variable Fila vale 5, la variable Pos tomara valores des
de 1 hasta 10 y por lo tanto

Cuando Pos valga 1
se revisara al Niño (5) (1 Joseael primer nino de la quinta ñla

Cuando Pos valga 2
se revisara al Nino (5)(2)oseael segundo nino de la quinta ñla

Cuando Pos valga 3
se revisara al Nino (5)(3)o sea el tercer niño de la quinta fila

Cuando Pos valga 4
se revisara al Nino (5)(3)o sea el tercer nino de la quinta ñla

Cuando Pos valga 9
se revisara al Nino (5) (9) o sea el noveno nino de la quinta ñla

Cuando Pos valga 10
se revisara al Nino (5) (W) o sea el deamo nino de la quinta fila que
correspondería dentro del ejemplo al ultimo niño de la escuela

9.2.2. Características

Fundamentalmente, los índices se conciben como números estrictamente
enteros debido a que referenciar una posición dentro de un arreglo siempre
se dara en términos enteros Cuando usted hace una cola en un banco, usted
puede quedar de primero, de segundo, de tercero, etc o lo que es lo mismo
puede quedar de 1, de 2, de 3, etc Lo que no se puede concebir es que usted
quede de 1 4 o de 4 6 dentro de la cola Por esta razón es que se han concep
tualizado los índices como datos estrictamente enteros

Asimismo, debido a que normalmente los datos de un arreglo se manejan
como un conjunto, se acostumbra, por facilidad y flexibilidad de los algorit
mos, a trabajar los índices a través de variables de tipo entero Facilitan las
expresiones en donde se involucren los elementos de los arreglos y flexibilizan

238

Cap 9 - Arreglos

los algoritmos, debido a que cambiar el tope final de un ciclo, cuyos valores
sirven para que se generen las posiciones correspondientes de un arreglo,
es suficiente para que el mismo algoritmo sirva para un arreglo con otras
dimensiones

Tal como se ha visto es muy normal, también por conveniencia técnica, que
se utilicen activamente ciclos para facilitar el manejo de esas variables que
actuaran como índices

9.3. Vectores

9.3.1. Características

Un vector es un arreglo en donde la ubicación exacta de cada uno de sus ele
mentos necesita solamente la utilización de un subíndice Tal es el ejemplo de
una cola de personas en donde cada una de ellas se puede ubicar exactamente
con un solo numerito 'Venga la quinta persona","Acerqúese la tercera perso­
na", etc He resaltado en letra cursiva la palabra exacta y exactamente porque
ellas representan la diferencia con los otros tipos de arreglos

Un vector siempre tendrá

Tipo.- Por lo que se ha dicho, en un vector, los datos que se han de almacenar
siempre serán del mismo tipo, por lo cual es supremamente importante espe
cificar de que tipo van a ser los datos almacenados en el No se olvide que los
tipos de datos estándar son entero, real y carácter, cada uno con características
propias que fueron explicadas en los primeros capítulos En esta parte es im
portante anotar que el conjunto de datos almacenado en un vector siempre
sera homogéneo, o sea, que todos los datos son del mismo tipo

Nombre.- Sabiendo que todos los datos almacenados en un vector van a per
tenecer a un mismo arreglo, entonces dicho arreglo deberá tener un nombre
ajustado a las mismas reglas con que se le colocan los nombres a las variables
convencionales No ha de olvidarse que un arreglo, en el fondo, es una variable
dividida en vanos pedacitos donde cada pedacito puede almacenar un dato
diferente en su contenido mas no en su tipo

Dimension.- Se refiere a la cantidad de elementos que van a ser utilizados en
el vector Dimensionar un vector significa definir cuantos elementos se van a
utilizar En este aspecto, debemos conocer lo mejor posible el objetivo porque,
cuando el algoritmo se haya convertido en programa y se encuentre en eje­
cución, no podremos cambiar la cantidad de elementos de que consta dicho

INTRODUCCION A U\ I OCilCA DI i'ROaiU\M.\CK)N - OaL\R 1\ \N TKUOS BURII IC\

vector. Esa tal vez sera una de las desventajas de la utilización de los arreglos
en general y es que su dimensionamiento nos va a arriesgar a subdimensionar
o a sobredimensionar, es decir, a definir mas campos de memoria o menos
campos de memoria de los que necesitemos.

Tamaño.- El tamaño es la cantidad total de campos de memoria que van a
ser utilizados. En el caso de los vectores, no existe ninguna diferencia entre la
dimensión y el tamaño, diferencia que se hará muy clara cuando expliquemos
las matrices.

Destinación.- Es muy importante, tal como lo hicimos con el objetivo, que se­
pamos cual va a ser la utilización del vector que vayamos a usar Asi como para
nosotros en algún algoritmo era claro que la variable Cont_Par era la que iba
a contener la cantidad de números pares que se generarán en algún proceso,
así también va a ser muy importante que sepa con claridad cuál va a ser el uso
de un determinado vector. De esta manera, siempre que hagamos referencia al
vector sabremos a qué conjunto de datos nos estamos refiriendo.

índice.- Siempre que vamos a usar un vector es natural pensar que
necesitaremos una variable de tipo entero que será utilizada a manera de
subíndice, o sea, que es la que nos va a almacenar cada una de las posiciones
posibles que tenga el vector. Dicha variable solo tiene que cumplir con el
requisito de ser una variable entera Es importante que recuerde que, por ser el
subíndice una variable, esta, dentro del programa, podrá tener todos los usos
que le queramos dar dentro del contexto del mismo algoritmo, ademas de ser
utilizada como subíndice.

Justificación.-Se justiñca la utilización de vectores cuando se dan algunas de
las siguientes razones:

1. En algún momento se necesita manejar una cantidad de datos como
todo un conjunto.

2. Se necesitan almacenar datos que posteriormente se van a volver a
utilizar.

3. Se necesitan realizar cálculos de manera que los resultados progresivos
se vayan a necesitar más adelante.

4. Se necesita realizar un determinado proceso con un conjunto de datos,"al
tiempo".

5. Se necesitan realizar cálculos tan complejos que resulte más óptimo al­
macenar los resultados provisionales que volverlos a calcular

240

Cap 9 - Arreglos

6 En general, cada vez que necesitemos hacer operaciones con conjuntos
de datos.

7 Siempre que se necesite desarrollar algoritmos con conjuntos de datos
cuya cantidad pueda en algún momento, no dentro de una misma ejecu­
ción, cambiar

Vamos a desarrollar un algoritmo ineficiente, sin tener en cuenta el concepto
de vectores, para que posteriormente usted note la diferencia y entienda la
gran utilidad que tienen estos dentro de las aplicaciones de programación

9.3.2. Ejemplo ineficiente sin vectores No. 1

Leer 10 números enteros y determinar cual es el promedio entero de dichos
números

Clarificación del objetivo

Como vamos a desarrollar una solución sin tener en cuenta el concepto de
vectores, entonces lo primero que vemos fácilmente es que necesitamos, por
lo menos, 10 variables que nos permitan almacenar cada uno de los números
leídos Igualmente, necesitaremos otra variable que nos permita almacenar el
promedio entero de dichos números En el contexto del algoritmo en sí, lo que
vamos a hacer es que vamos a leer 10 números enteros, cada uno se almace­
nara en una variable diferente y, cuando se hayan leído todos los números, los
sumaremos y dividiremos entre 10 dicha suma, almacenando el resultado final
en la variable destinada para tal fin y escribiendo su contenido en pantalla.

Algoritmo

Programa EjemJr)ef_sin_Vect_ 1
Var

Entero a,
b,
c,
d,
e,
f,

9/
h.
I,

J.

//Almacenara el primer número leído
//Almacenara el segundo número leído
//Almacenara el tercer numero leído
//Almacenara el cuorfo numero leído
//Almacenara el quinto numero leído
//Almacenara el sexto numero leído
//Almacenara el séptimo número leído
//Almacenara el octavo numero leído
//Almacenara el noveno numero leído
//Almacenara el décimo numero leído

241

iNrUODUCCION A LA IUOIC \ 01 I'ROOIUM.U ION - OM \H I\ \N TlUJOS BulU IICA

Prom

Iniao
Escriba "Digite W números enteros"
Lea a
Leab
Leac
Lead
Leae
Leaf
Leag
Leah
Lea I
Leaj
Prom = 0
Prom = Prom + a

Prom - Prom + b
Prom - Prom + c
Prom = Prom + d
Prom = Prom + e
Prom - Prom + f
Prom - Prom + g
Prom = Prom + h
Prom - Prom +1

Prom = Prom + j
Prom = Prom/10

//Almacenará el promedio entero de todos
//los números leídos

//Solicite 10 números enteros
//y léalos

//Inicialice la variable Prom en Ceros
//Sumeprogresivamente cada uno délos
//valores leídos

//Calcule el promedio de los números
//leídos
//Escriba dicho promedio en pantallaEscriba Prom

Fin

También hubiéramos podido escribir este algoritmo de la siguiente forma

Programa Ejem_lnef_sin_Vect_ 1
Var

242

Entero: a,

b.

//Almacenará el primer numero leído
//Almacenara el segundo número leído

Cap 9-Arreglos

I,

h
Prom

f.

g>
h,

c,
d,

//Almacenará el tercer número leído
//Almacenara el cuarto número leído
//Almacenará el quinto número leído
//Almacenará el sexto número leído
//Almacenará el séptimo número leído
//Almacenará el octavo número leído
//Almacenara el noveno número leído
//Almacenará el décimo número leído
//Almacenará el promedio entero de todos
//los números leídos

Inicio

Prom = (a + b + c + d + e + f+g-i-i+j + k)/10 // Calcule el promedio

Resulta ser tan simplificada la prueba de escritorio de este algoritmo que a
simple vista podemos ver que está bien, es decir, vemos que cumple plena­
mente con el objetivo planteado. Sin embargo, a pesar de que eso es verdad,
este algoritmo tiene como desventaja principal el hecho de que solamente
sirve para calcular el promedio de 10 números enteros digitados por el usuario.
Usted tal vez dirá que ese precisamente era el objetivo a cumplir, pero, sabien­
do la gran utilidad que tiene el cálculo de un promedio, en cualquier momento
sena muy útil tener un algoritmo mas flexible, o sea, que permitiera calcular el
promedio de 10 datos o de 25 datos o de cualquier cantidad de datos.

Si se quisiera ajustar este algoritmo para que permita leer 15 números enteros y
calcular su promedio, entonces tendríamos que aumentar otras cinco variables
y ajustar los cálculos correspondientes en lo que se refiere al promedio. En ese
caso, el cambio puede no ser mucho, pero que tal que se quiera lograr el mismo
objetivo pero con 1000 datos enteros. Entonces allí sí tendríamos un verdadero
problema porque a nuestra solución inicial tendríamos que adicionarle 990
variables más y hacer los ajustes correspondientes para que en los cálculos el
algoritmotuviera en cuentael resto de variables Como puede ver, este algoritmo,
a pesar de que cumple con el objetivo, es demasiado rígido y, por lo tanto, es
muy poco flexible, lo cual lo hacer ser un algoritmo altamente Ineficiente.

Escriba Prom //Escríbalo en pantalla
Fin

24.1

IMHODUCCIOS \ L\ LOGIC \ 1)1 I’IMKilGVM \CION -0\l\K i\ \N TiUJOS BUKII IC\

Entonces, ¿cómo haríamos para que ademas de cumplirse el objetivo se logre
obtener un algoritmo eficiente..?

Programa Ejem_Efic_con_Vect_ 1
Variables

Entero. Vector(W), //Almacenara los W datos enteros que
//se lean

Indice, //Servirá como variable subíndice
Promedio //Almacenara el promedio entero de

//los números leídos
Inicio

Escriba "Digite 70 números enteros" //Avisa que va o leer W enteros

Paralndice= 1 hasta 10 //yloslee
Lea Vector (Indice)

Fin_Para

Promedio = 0 //Inicializa el promedio en cero

Para Indice = 1 hasta 10 //Acumula provisionalmente todos los
// valores en la variable Promedio

Prom = Prom + l^ecfor (Indice)
Fin_Para

Prom = Prom /10 // Calcula el promedio como tal

Escriba "El promedio entero es", Prom //Muestra el promedio en pantalla
Fin

Usted podrá notar que la estructura de este algoritmo es la misma pero es ver­
daderamente mas eficiente que la version anterior debido a que, si queremos
que este algoritmo sirva para calcular el promedio entero de 1000 números,
todo lo que tenemos que hacer es cambiar el número 10 por el número 1000
tantas veces como aparezca Sin embargo, podemos hacerlo todavía mas efi­
ciente de la siguiente forma:

Programa Ejem_Eñc_con_Vect_ 1
Variables

Entero. Vector(10), //Almacenara los 10 datos enteros que

//se lean

244

Cap 9 - Aríu.glos

Indice, // Servirá como variable subíndice
Promedio, //Almacenara el promedio entero de

//los números leídos
Tope //Almacenará la cantidad de números

//a leer
Inicio

Tope= 10

Escriba "Digite", Tope, "números enteros"//Avisa que leerá 10 enteros

Para Indice = 1 hasta Tope //y los lee
Lea Vector (Indice)

Fin_Para

Promedio = O //Inicializa el promedio en cero
Para Indice = 1 hasta Tope //Acumula provisionalmente todos los

// valores en la variable Promedio
Prom = Prom + Vector (Indice)

Fin_Para

Prom = Prom/Tope //Calcula el promedio como tal
Escriba "El promedio entero es", Prom //Muestra el promedio en pantalla

Fin

Ahora note usted que, para hacer que esta nueva version del mismo algoritmo
nos permita leer 1000 números enteros y calcularles su promedio, entonces
solo tendremos que cambiar la instrucción

Tope= 10

por

Tope= 1000

Y sera suficiente para que nuestro algoritmo haya quedado en condiciones de
cumplir el mismo objetivo pero con una cantidad diferente de datos Esa es la
esencia de la utilización de los vectores (y en general de los arreglos) que nos
permiten desarrollar unos algoritmos altamente flexibles

En este último algoritmo, se que usted puede pensar que siendo así sena mucho
mas fácil que el mismo usuario digitara la cantidad de datos a leer Pero tenga
en cuenta que, como la declaración de variables es lo primero que se hace en el

Intuoducciüna u\locj1C\ m i’110GR/\\i \c ion - Om \i< I\\nTiujüsBuriiic\

algoritmo, entonces de todas maneras tendríamos que dimensionar un vector
de una cantidad grande de posiciones enteras (por ejemplo, un vector de 50000
posiciones), con lo cual es posible que estemos dentro de las necesidades del
usuario Sin embargo, dimensionar un vector tan grande nos obliga a pensar
que, SI el usuario solo va a necesitar 10 posiciones, entonces, de alguna manera,
se van a desperdiciar las 49990 demas posiciones y si el usuario, por casualidad,
necesita mas de 50000 datos, entonces este vector no nos va a servir

Esta es la desventaja que en renglones anteriores mencionábamos acerca de
los arreglos en general y es que, como hay que dimensionarlos al momento de
su declaración, corremos el nesgo de separar mucha mas memoria de la que
necesitamos o mucha menos Ahora si, con esta conceptualizacion, veamos un
ejemplo eficiente de utilización de vectores

9.3.3. Ejemplo con vectores No. 1

Desarrollar un programa que permita leer 10 números enteros y determinar en
que posición entro el numero mayor

Clarifícacíon del objetivo

Fundamentalmente, el objetivo de este algoritmo radica en tener 10 nume
ros almacenados en memoria y determinar, asumiendo el orden de lectura,
en que posición esta el mayor de los números leídos Debe tenerse en cuenta
que, para saber cual es el dato mayor de un conjunto de datos, debemos tener
dicho conjunto completo Por ejemplo, para que usted sepa cual es el mas alto
de su familia, entonces tendrá que haber conocido a toda su familia ¿cierto^
Por esa misma razón, en este caso,"conocer" significa almacenar los datos, por
lo cual, para poder determinar cual es el mayor, primero los debemos almace­
nar y tenerlos de manera que puedan ser manejables Precisamente esto es lo
que justifica la utilización de un vector en este ejercicio

Algoritmo

Nunca olvide que los algoritmos que se presentan en este libro no son mas
que una version solución planteada por el autor Recuerde que, si usted desa­
rrolla un algoritmo que cumpla el mismo objetivo de alguno de los algoritmos
aquí presentado y nota que es diferente al que aparezca en este libro, eso no
quiere decir que su algoritmo este mal o que el algoritmo de este libro este
mal Sencillamente que son dos algoritmos diferentes que cumplen el mismo
objetivo y que eso es completamente normal

246

Cap 9-ARRrcLOS

Programa Posic_Mayor
Variables

Entero: Vector(10), //Almacenara los 10 números enteros

Indice,
Pos^May

//que se van a leer
//Servirá como variable subíndice
//Almacenara la posición del número
//mayor que se vaya encontrando
//provisionalmenteydelnúmero mayor
//absoluto cuando se hoya finalizado el
//ciclo de búsqueda del mayor

Inicio
Escriba "Digite 10 números enteros" //Avisa que va a leer 10 números

//enteros
Para Indice = 1 hasta 10 //Genera un ciclo apoyado en la

//variable índice que tomara valores

Lea Vector (Indice)
//desde 1 hasta 10
//Lea un entero y guárdelo en el vector
//en la posición quesea igual al valor
//almacenado en la variable Indice

Fin_Para //Fin del ciclo

Pos_May - 1 //Se inicializa la variable Pos_May con
//el valor 1 para asumir,
//provisionalmente, que el mayor se
//encuentra en la primera posición. La
//intención es ir comparando
//progresivamente con este dato cada
//uno de los restantes datos que se
//encuentran almacenados en el vector

Para Indice = 2 hasta 10 //Genera un ciclo desde 2 hasta 10
//para comparar contra el primer dato
//el resto de datos

Si Vector (Indice) > Vector (Pos_May)
//Si el dato almacenado en el vector en
//la posición donde vaya el índice en el
//momento es mayor que el dato que
//provisionalmente es el mayor

247

INTRODUCCION A L.\ I t)OICU)i I’ROORAMACION 0m\R I\ \N TrIJOS BURITIC \

Pos_May = Indice//eso quiere dear que el mayor que
//estaba en la posiaon que decía la

//variable Pos_Mayya no es el mayor
//y que el nuevo mayor esta en la
//posición en donde esta el índice, por
//lo cual la variable Pos_May debe ser
//igual al contenido de la variable
//Indice

Fin_Si // Fin de la decision
Fin^Para //Fin del ciclo

//Al ñnal escribirá el valor solicitado y
//es la posición en la cual esta el
//numero mayor de entre los números
//leídos Esa posición esta almacenada
//en la variable Pos_May

Escriba 'El numero mayor esta en la posición", Pos_May
Fin //Fin del algoritmo

Prueba de escritorio

Vamos a desarrollar una prueba paso a paso tal como la haría el computador
internamente

Como es natural pensar, lo primero que se hace en este algoritmo es declarar
las variables, o sea, separar el espacio de memoria que se va a utilizar Por tal
motivo, separamos en memoria espacio para 10 datos enteros que serán ma
nejados a través del nombre de un vector y sus respectivas posiciones, espacio
para una variable que se llamara Indice y otra que se llamara Pos_May y que
almacenara la posición en la que se encuentre el numero mayor

Para facilitar la distribución estética de las variables, vamos a desarrollar
la prueba de escritorio colocando los diferentes valores de cada variable
horizontalmente

248

Caí* 9-Arreglos

Programa Posic_Mayor
Variables

Entero Vector(W),
Indice,
Pos^May

PANTALLA MEMORIA

v«u,,| 1 1 1 1 1 1 1 I 1 1

0) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Pos_May------ •

Nuestro algoritmo comienza anunciando en pantalla lo que se dispone a leer
y, por supuesto, leyéndolo

Inicio

Escriba "Digite W números enteros"
Para Indice = 1 hasta W

Lea Vector (Indice)
Fin_Para

PANTALLA MEMORIA

Digite 10 números
enteros

Vectorj *^1111111111

(1) (21 (3) (4) (5) (6) (7) (8) (9) (10)

Indice-----------»1

Pos_May-------»

Se coloco en pantalla el título correspondiente, se inicio el ciclo comenzando
con la variable Indice en 1 (hemos de llevar hasta 10 el contenido de esta varia­
ble) y se recibió el primer numero (supongamos que es 15) Como el contenido
de la variable Indice es igual a 1 y la orden es Lea Vector (Indice), o sea, Lea un
dato entero y guárdelo en Vector en la posición Indice, entonces el dato recibido
se almacena en Vector (1) Como se encuentra el fin del ciclo (Fin_Para), en­
tonces se regresa a incrementar en 1 el valor de la variable Indice, o sea, que
su contenido es igual a 2 Razón por la cual al leer el siguiente numero este
quedara almacenado en el vector l^ectoren la posición 2 No se olvide que para
efectos de la prueba de escritorio vamos a asumir algunos valores Suponga­
mos pues que el siguiente valor leído es igual a 20

249

iNTnODUCC'lÓN A U\ LOGICA DI l-ROf.lUMACION - OmAK I\AN TiUJOS BuKI IICA

PANTALLA MEMORIA

Digite 10 números
enteros

V«or|.s|20Í 1 1 1 M M 1

20 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice---------- 1 2

Pos May—■

Cuando Indice valga 3 y asumiendo que el valor leído sea 9. entonces:

PANTALLA MEMORIA

Cuando Indice valga 4 y asumiendo que el valor leído sea 11, entonces:

PANTALLA MEMORIA

Oigite 10 números
enteros

Vector 1 '5 1 20 1 9 1 11 1 1 1 1 1 1 1

20 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
9
11 Indice---------- -4 2 3 4

Pos_Müy ——•

Cuando Indice valga 5 y asumiendo que el valor leído sea 26, entonces;

Vector 15 20

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice---------- *4 2 3 4-5

Pos_May——

Cuando Indice valga 6 y asumiendo que el valor leído sea 31, entonces este
valor se almacenará en el vector en la posición 6:

Digile 10 números
enteros Vector 26 31

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice---------4 -2 -3 -4 -5 6

Pos_May------»

250

C\i> 9-Arreglos

Cuando Indice valga 7 y asumiendo que el valor leído sea 19, entonces este
valor se almacenara en el vector en la posición 7

PANTALLA MEMORIA

Vector I 15 I 20 I 9 I 11 I 26 I 31 I 19 I | | |

(1) {2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice---------- ►4- ? 5 4- s -6 7

Pos.May------ »

Cuando Indice valga 8 y asumiendo que el valor leído sea 20, entonces este
valor se almacenara en el vector en la posición 8

PANTALLA MEMORIA

Vector I 15 I 20 I 9 I 11 I 26 I 31 I 19 I 20 I | |

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice-----------2 3 4- 5 6 78

Pos May—-•

26

19
20

26

19

Cuando Indice valga 9 y asumiendo que el valor leído sea 6, entonces este valor
se almacenara en el vector en la posición 9

PAITTALLA MEMORIA

Vector I 15| 20 I 9 I 11 I 26 I 31 I 19 |20 |6 | |

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice----------- 4S44-5-C789

Pos_May~-^

19
20
6

Y cuando la variable Indice valga 10, asumiendo que el valor leído sea 8, en
tonces este valor se almacenara en el vector en la posición 10 Ademas, como
la variable Indice llega al tope planteado inicialmente, entonces la ejecución
continua con el resto de instrucciones, obviamente saliéndose del ciclo

Vector

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice------- — 4- 234-56789- 10

Pos_May------ •!

251

Wmonuccios \ ia i uc.it \ m I’koc.iummion-Ommc IwnTkijos Dukmk \

Como puede ver, de esta manera queda "cargado' con datos el vector y todo lo
que tuvimos que hacer fue utilizar apropiadamente un ciclo para que a través
de una variable se controlaran las posiciones en donde progresivamente se
iban a ir almacenando cada uno de los valores digitados

El algoritmo continua inicializando la variable Pos_May con el valor de 1

Pos_May = /

PANTALLA MEMOniA

19
20
6
8

Vector

(1) (2) (3) (4) (5) (6)

Indice—— 4- 334-56580-10

Pos May------ ■ 1

19 20

(7} (8)

6 8

(9) (10)

Luego continua realizando un ciclo Para utilizando la variable Indice que va a
tomar valores desde 2 hasta 10 y que va a servir como referencia para compa
rar desde el elemento Sub 2 hasta el elemento Sub W del vector con el primer
elemento

Para Indice = 2 hasta) 0
Si Vector (Indice) > Vector (Pos_May)

Pos_May - Indice

Fin_Si
Fin_Para

19 20 6

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice —

Pos_May -

Cuando la variable Indice valga 2, entonces la pregunta

Si Vector (Indice) > Vector (Pos_May)

se traducirá en

5/ Vector (2)> Vector (1)

252

C\p9 AllRCGtOS

Dado que la variable Pos_/Way vale 1 Como l^ecfor(2; es igual a 20 y Vector Í7;
es igual a 15, entonces internamente la pregunta se convierte en

Si 20 >15

Lo cual es Verdadero, por lo tanto, se ejecuta la orden

Pos_May = Indice

Con lo cual la variable Pos_May queda con el valor 2 Como a continuación
encontramos tanto el fin de la decision como el fin del ciclo, entonces esto nos
indica que debemos incrementar el contenido de la variable Indice en 1, con lo
cual queda en dicha variable el valor 3

Vector 19 20 3
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice---------- '3 3

Pos_May——4 2

Vuelve a hacerse la pregunta

Si Vector (Indice) > Vector (Pos_May)

Como la variable Indice es igual a 3 y la variable Pos_May es igual a 2, entonces
esta pregunta se convierte en

5/ Vector(3)> Vector(2}

Por los valores almacenados en el vector vemos que la pregunta se convierte en

5/ 9 > 20

Como es falso, y dado que a continuación de esta decision sigue el fin de ella y el
fin del ciclo, entonces volvemos a incrementar el valor de la variable Indice en 1

Vector 15 20 19 20

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice---------"3- 3- 4

Pos.May---- *4 2 __________________

2S4

INTRODUCCION A lA tÓCilCA DI l'ROCilUXMACION - 0\t/\R l\ÁN TrUOS BURIIU A

De la misma manera, volvemos a desarrollar la decisión:

Si Vector (Indice) > Vector (Pos_May)

Como la variable Indice es igual a 4y la variable Pos_Mayes igual a 2, entonces
esta pregunta se convierte en:

Si Vector (4)> Vector (2)

Por los valores almacenados en el vector vemos que la pregunta se convierte
en:

sm> 20

Note usted, a esta altura de la prueba de escritorio, que este algoritmo va com­
parando cada número con el último que haya encontrado como mayor. Como
esta última decisión también es Falsa, y luego de haber encontrado el fin de la
decisión y el fin el ciclo, entonces volvemos a incrementar en 1 el valor alma­
cenado en la variable Indice.

PANTALLA MEMORIA

Vector I 15 I 20 I 9 I 11 I 26| 31 I ig| 20 I 6 | 8 |

6 (1) (2) (3) (4) {5} (6) (7) (8) (9) (10)

Indice---------- -i- 3-4 5

Volvemos a hacer la pregunta:

Si Vector (Indice) > Vector (Pos_May)

Como la variable Indice es igual a 5 y la variable Pos_May es igual a 2, entonces
esta pregunta se convierte en:

Si Vector (5)> Vector (2)

Por los valores almacenados en el vector vemos que la pregunta se convierte
en:

Si 26 > 20

Como es Verdadero, entonces se ejecuta la asignación:

Pos_May = Indice

254

C\p 9-Akreglos

Con lo cual en la variable Pos_May queda almacenado el valor 5. Como luego
de esta asignación encontramos el fin de la decision y el fin del ciclo, entonces
incrementamos de nuevo el valor de la variable Indice en 1.

Vector 19 20 6 8

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice--------- .2- 3-456

Pos_May------- 4- 2 5

Volvemos a ejecutar la decision.

Si Vector (Indice) > Vector (Pos_May)

Como la variable Indice es igual a 6 y la variable Pos_May es igual a 5, entonces
esta pregunta se convierte en

Sí Vector (6) > Vector(5}

Por los valores almacenados en el vector vemos que la pregunta se convierte
en

Si31 >26

Como vemos que es Verdadero, entonces almacenamos en la variable Pos_
May el contenido almacenado en la variable Indice Volvemos entonces a in­
crementar el contenido de la variable Indice en 1

PANTALLA ___________________________MEMORIA________________________

Vector I 15|20| 9 |ll |26|3l |19|20|6 |a |

6 (1) (2) (3) (41 (5) (6) (71 (8) (9) (10)

Indice---------- 2- 3- 4 5 6 7

Pos_May-------4 2 5 6 _______________________________

Ejecutamos la decision

Si Vector (Indice) > Vector (Pos_May)

255

iN’inoDtruoN A iw\ uKitcA 1)1 i’iu)(jR/\M\cios - Om\r IwN Trijüs BuRinc\

Como la variable Indice es igual a 7 y la variable Pos_May es igual a 6, entonces
esta pregunta se convierte en:

Si Vector (7) > Vector (6)

Por los valores almacenados en el vector vemos que la pregunta se convierte
en:

Si 19>3I

Como es Falso, entonces volvemos a incrementar el valor almacenado en la
variable Indice.

PANTALLA MEMORIA

Vector I isj 20 j 9 I n I 26 j 31 I 19 j 20| 6 j 3 |

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice-----------2- 3-4 5 6 7-8

Pos_May —— 12 5 6

6
8

Ejecutamos de nuevo la decisión:

Si Vector (Indice) > Vector (Pos_May)

Como la variable Indice es igual a 8 y la variable Pos_May es igual a 6, entonces
esta pregunta se convierte en-

S/ Vector (8)> Vector(6)

Por los valores almacenados en el vector vemos que la pregunta se convierte
en:

Si20>31

Igualmente al caso anterior, esta decisión es Falsa, razón por la cual, y luego
de haber encontrado el fin de la decision y el fin del ciclo, incrementamos el
contenido de la variable Indice

PANTALLA MEMORIA

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice----------- 2- 3- 4 5 6 7-8-9

Pos.May------ .4 2 5 6

256

Cap 9 - Arheolos

Se realiza una vez mas la decision

Si Vector (Indice) > Vector (Pos_May)

Como la variable Indice es igual a 9 y la variable Pos_May es igual a 6, entonces
esta pregunta se convierte en

5/ Vector (9) > Vector (6}

Por los valores almacenados en el vector vemos que la pregunta se convierte
en

5i2>31

Como es Falsa la respuesta, entonces incrementamos de nuevo el contenido
de la variable Indice

PANTALUV MEMORIA

6
6

(1) (2) {3} {4} (5) (6) (7) (8) {9) (10)

Indice--------- -2- 3- 4 5 6 7- 8--9 10

Pos.May------ 4 3 5 6

Se ejecuta de nuevo la decision

Sí Vector {Indice) > Vector (Pos_May)

Como la variable Indice es igual a 10 y la variable Pos_May es igual a 6, entonces
esta pregunta se convierte en

Sí Vector (W)> Vector (6)

Por los valores almacenados en el vector vemos que la pregunta se convierte
en

Si8>3l

Cuya respuesta también es Falsa Con esto hemos llegado al final del ciclo, pues
inicialmente el ciclo planteaba la generación de números entre 2 y el numero
10 para la variable Indice Como esta variable ya vale 10 y se ha ejecutado con
este valor el ciclo, entonces continuamos con la instrucción que se encuentra
después del Fin_Para que representa el fin del ciclo y que es la instrucción que
nos muestra el resultado solicitado en pantalla

257

iN’niODUCCION \ l^\ 1 OOIC \ DI PROGIUMACIüN - OsWR IWN TrUOS BuRTIICV

Escriba ' El numero mayor esta en la posiciónPos_May

Con lo cual se escribiría en pantalla lo que esta entre comillas dobles seguido
por el contenido de la variable Pos_May

PANTALLA MEMORIA

6

Ei numero mayor esta
en laposicioné

Vector

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Indice —-.3- 3- 4 5 6 3- S--9 10

Pos_May~-*4 3 5 6

Por ultimo, lo que encontramos es el fin del algoritmo

Fin

Hemos terminado la prueba de escritorio y solo nos queda determinar si el
algoritmo cumplió su objetivo inicial, que era leer 10 números enteros y de
terminar en que posición estaba el mayor de los números leídos Vemos que,
efectivamente, el numero 31 es el mayor de los números que se encuentran
almacenados en el vector y que corresponden a los números leídos Con esto
podemos concluir que el algoritmo esta correcto y que es solución al objetivo
planteado inicialmente

¿Y que tal que se quisiera decir, ademas de la posición del mayor, cual es el
numero mayor ’ Entonces el algoritmo que originalmente es asi

Programa Posic_Mayor
Variables

Entero Vector! 10),
Indice,
Pos_May

Inicio

Escriba "Digite 10 números enteros"

Para Indice = 1 hasta 10
Lea Vector (Indice)

Fin_Para
Pos_May = 1
Para Indice = 2 hasta W

Si Vector (Indice) > Vector (Pos_May)

258

Cap 9-Arreglos

Pos_May - Indice
Fin_Si

Fin_Para

Escriba “El número mayor esta en la posición", Pos_May
Fin

Deberá quedar así (he resaltado los cambios para que se noten mas):

Programa Posic_Mayor
Variables

Entero' Vector(W),
Indice,
Pos_May,

Auxiliar //Variable que almacenará el número
//que se vaya encontrando como
//mayor

Inicio

Escriba "Digite 10 números enteros”

Para Indice = 1 hasta 10
Lea Vector (Indice)

Fin_Para

Pos_May= 1
Auxiliar = Vector (1) II Almacena el contenido que hay en la

//primera posición del vector

Para Indice - 2 hasta 10

Si Vector (Indice) > Vector (Pos_May)
Pos_May - Indice
Auxiliar = Vector (Indice)
// Guarda provisionalmen te en la
// variable Auxiliar el valor almacenado
//en el Vector en la posición Indice

Fin_Si

Fin^Para

iNniODUCCIOS \ I j\ I OGIC \ DÍ PH()(.IC\M \C ION - Om\k I\ \n Tríjos Burhk \

Escriba "El número mayor es", Auxiliar, "y esta en la posición", Pos_May
//Muestra el número mayoryla
//posición en la cual se encuentra

Fin

¿Y si el objetivo hubiera sido determinar si el numero mayor de 10 números
leídos es par...? Entonces los cambios también serian muy sencillos. La última
línea de escritura en donde está:

Escriba "El número mayor es". Auxiliar, "y esta en la posición", Pos^May

//posición en la cual se encuentra

se reemplazaría por:

Si Auxiliar/2 ^2 = Auxiliar
Escriba "El numero mayor es". Auxiliar, "y es par"

//Muestra el numero mayor y la
//posición en la cual se encuentra

Sino
Escriba "El número mayor es igual a", Auxiliar, "y no es par"

Como puede ver, realizando algunos leves cambios en un algoritmo se pueden
obtener otros y, por lo tanto, lograr otros objetivos

9.3.4. Ejemplo con vectores No. 2

Leer 10 números enteros. Luego leer 1 numero entero y determinar si este últi­
mo número está entre ios 10 primeros números leídos

Clarificación del objetivo

De acuerdo al enunciado, primero vamos a leer 10 datos enteros y los vamos
a almacenar en un vector (obviamente de 10 posiciones). Luego de tener al­
macenados los 10 enteros, vamos a leer otro número que sera almacenado
en otra variable. Se tratará entonces de preguntar si el contenido de la últi­
ma variable es igual al contenido de alguna de las posiciones del vector Si
la respuesta a dicha pregunta es Verdadera, entonces deberemos avisar por
pantalla y asimismo en caso de que sea Falsa.

260

Cap 9-Arrlglos

Algoritmo

No olvide que cada algoritmo presentado aquí es apenas una de las posibles
soluciones que pueda tenerse para alcanzar el objetivo.

Programa Búsqueda
Variables

Entero: V (10), //Almacenará los 10 números que el
//usuario va a digitar

Ind, //Esta es la variable que nos va a
//servir como subíndice del vector

Num, //Almacenará el número que se va a
//buscar

S //El contenido de esta variable nos va
//a indicar si el número se encontró o
//no

Inicio
Escriba "Digite 10 números enteros" //Solicítalos 10 números enteros

Paralnd= 1 hasta WPaso 1 //Y los lee almacenando cada uno en
// una posición diferente del vector

LeaV(lnd)
Fin_Para

Escriba "Ahora digite un número" //Solicita el número a buscar
Lea Num //y lo lee almacenándolo en la variable

//Num
S = 0 //Inicializa la variable "misteriosa" en 0
Para Ind = 1 hasta 10 Paso 1 // Recorre el vector desde la primera

//posición hasta la última preguntando
//si el contenido de cada posición es
//igual al contenido de la variable Num

Si V(Ind)-Num

Escriba "El dato", Num. "esta en los 10 nums digitados"

S=1

Fin_Si //Si dicha respuesta es Verdadera,
//entonces lo muestra en pantalla y

261

ll^rKODUCCION A 1 (KilC A Of I'RUCiKAMAC ION - OMAR 1\ \N TRIJOS BURHIC \

//almacena en la variable "misteriosa"
//el valor 1

Fin_Para
// Cuando haya terminado el ciclo,
//pregunta por el valor almacenado en
//la variable S. Si este valor aún es
//cero, quiere decir que no encontró el
//número buscado y por lo tanto lo
//avisa en pantalla

5iS = 0
Escriba "El número" Num, "noestáenlos W números digitados"

Fm_Si
Fin

Puede usted notar el uso de la variable S. Esta variable, a lo largo de todo
el algoritmo, toma solo dos valores 1 o 0. Esto representa que la variable es
utilizada a manera de interruptor (o también llamada switche). Esta forma de
manejo de variables nos permite conocer respuestas que de otra forma sena
muy difícil saberlas a nivel algorítmico.

Prueba de escritorio

Vamos a desarrollar paso a paso esta prueba no sin antes recomendarle que
observe, en el desarrollo de la misma, el recorrido gráfico. La prueba, obvia­
mente, inicia con la declaración de variables en memoria.

Programa Búsqueda
Variables

fníero; V(W),
Ind,

Num
S

PANTALLA MEMORIA

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind------- -

Num —— S —

262

Cat 9-Arreglos

Lo primero que se hará en el algoritmo será "cargar" el vector con datos. Para
ello, en pantalla saldrá un título, a continuación se leerán los datos y cada dato
numérico se almacenará en cada una de las "casillas" del vector.

Inicio
Escriba "Digite W números enteros"
Paralnd= 1 hasta lOPaso 1

LeaV(lnd)
Fin_Para

Se coloca el título en pantalla. Se inicia la variable Ind en 1 (e ¡remos mere-
mentándola de 1 en 1 hasta llegar a 10) y a continuación se lee un entero y se
almacena en el vector V en la posición 1. Supongamos que el número leído es
18, entonces:

PANTALLA MEMORIA

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind —— 1
Num —— S — —

A continuación, se incrementa el contenido de la variable Ind en 1 y se lee un
nuevo dato almacenándose en el vector V en la posición 2. Supongamos que
el número leído sea 45, entonces:

PANTALU MEMORIA

13
45 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind------- .4 2
Num------- - S------- -

Incrementamos el contenido de la variable Ind en 1 y volvemos a leer otro dato
almacenándolo en el vector Ven la posición 3. Asumamos que el valor leído es 9.

Digite 10 números
enteros

IMHOIU'CCION \ i \ i (KiR \ Of PIUKiUAMAtlDN - 0\i\R IWN TRIJOS BURÍTR \

//almacena en la variable “misteriosa"
//el valor I

Fin_Para
//Cuando haya terminado el ciclo,
//pregunta por el valor almacenado en
// la variable S. Si este valor aun es
//cero, quiere decir que no encontró el
//número buscado y por lo tanto lo
//avisa en pantalla

SiS = 0
Escriba "El número", Num, "no esta en los 10 números digitados"

Ftn_Si
Fin

Puede usted notar el uso de la variable S. Esta variable, a lo largo de todo
el algoritmo, toma solo dos valores 1 o 0. Esto representa que la variable es
utilizada a manera de interruptor (o también llamada switché). Esta forma de
manejo de variables nos permite conocer respuestas que de otra forma sena
muy difícil saberlas a nivel algorítmico

Prueba de escritorio

Vamos a desarrollar paso a paso esta prueba no sin antes recomendarle que
observe, en el desarrollo de la misma, el recorrido gráfico. La prueba, obvia­
mente, inicia con la declaración de variables en memoria.

Programa Búsqueda
Variables

Entero ■ V(W),
Ind,

Num
S

PANTALLA MEMORIA

n) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind------- -

Num------- - S —

262

Cap 9-Arreglos

Lo primero que se hará en el algoritmo será "cargar" el vector con datos. Para
ello, en pantalla saldrá un título, a continuación se leerán los datos y cada dato
numérico se almacenará en cada una de las "casillas" del vector.

Inicio
Escriba "Digite]0 números enteros"
Para Ind - / hasta WPaso 1

LeaV(lnd)
fin_Para

Se coloca el título en pantalla. Se inicia la variable Ind en 1 (e iremos incre­
mentándola de 1 en 1 hasta llegar a 10) y a continuación se lee un entero y se
almacena en e! vector V en la posición 1. Supongamos que el número leído es
18, entonces:

PANTALLA MEMORIA

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind —— 1
Num—— S------- -

A continuación, se incrementa el contenido de la variable Ind en 1 y se lee un
nuevo dato almacenándose en el vector V en la posición 2. Supongamos que
el número leído sea 45, entonces:

Digite 10 números
enteros
18

Digite 10 números
enteros
18

Ind -
Num -

(l) (2) (3) (4) (5) (6) (7) (8) (9) (10)

-4 2

Incrementamos el contenido de la variable Ind en 1 y volvemos a leer otro dato
almacenándolo en el vector V en la posición 3. Asumamos que el valor leído es 9.

Ind
Num — —

(1) (2) (3) (4) (5)

1 2 3

(6) (7) (8) (9) (10)

S------- -

263

INTUODUCCION a L/\ LOGICA DL 1‘UOORAMAtlON - OmAK I\ANTiirJOS BUIUIIC \

incrementamos e! contenido de la variable Ind en 1 y volvemos a leer otro dato
almacenándolo en el vector V en la posición 4. Asumamos que el valor leído
es 90.

Ind -
Num -

(1) (2) (3) (4) (5) (6) (7) (81 (9) (10)

-12 3 4

Volvemos a incrementar en 1 el contenido de la variable Ind y leemos un dato
entero que quedará almacenado en el vector Ven la posición 4 Asumamos
que el valor leído es 65.

PANTALLA MEMORIA

Se incrementa el contenido de la variable Ind, la cual queda con el valor 6, y se
lee un nuevo dato que se almacenará en el vector V en la posición 6. Asuma­
mos que el valor leído es 2.

Ind -
Num •

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

—.4 2 3 4- S 6

Incrementamos de nuevo el contenido de Ind en 1 y leemos un nuevo dato

Ind -
Num -

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

-4 3 3 4- 5- 6- 7

264

Cap 9-Arreglos

Volvemos a incrementar el contenido de la variable Ind y volvemos a leer un
nuevo dato que quedará almacenado en el vector Ven la posición 8.

PANTALLA MEMORIA

6S
is
10

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind-------.4 a 3 4. 5- 6- 7 8
Num-------- S —-•

Incrementamos de nuevo el contenido de la variable /nden 1 y leemos un dato
entero que quedará almacenado en el vector V en la posición 9. Asumamos
que el valor leído es 36.

PANTALLA MEMORIA

65
2
55
10
36

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind--------4 234.5-6-789
Num------ - S ——

Por último, incrementamos el contenido de la variable Ind y llegamos al tope
(10) Leemos el último dato que va a ser almacenado en el vector V en la posi­
ción 10.

0) (2) (3) (4) (5) (6) (7) (8) (9) (10)

----- 4 3 3 4. 5- 6- 7 8^9 10

Como hemos llegado al tope del ciclo, entonces continuamos con las instruc­
ciones que se encuentran después del Fin_Para correspondiente al ciclo que
acabamos de terminar. Estas instrucciones son una orden de escritura para
solicitar un número y la lectura de un número entero que se ha de almacenar
en la variable Num. Supongamos que ese número leído es el número 10.

Escriba "Ahora digite un número"

Lea Num

265

INTRODUCCION \ Lj\ L0GIC\ DI I ROCpIUM\C1üN Om\R IwnTRIJOS BURIUCA

60
Ahora digiteun
numero
10

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

8 9 10

ínicializamos la variable S en 0 y generamos un ciclo que va desde 1 hasta 10
sobre la variable IncJ, ciclo que nos servirá para comparar el contenido de la
variable Num (que es el numero que queremos buscar) con cada uno de los
números almacenados en el vector V

5 = 0
Poralnd= 1 hasta 10 Paso 1

5iV(/ndJ = Num
Escriba El numero, Num, siestaenloslOnumerosdigitados"

S= /
Fin_Si

Fin_Para

PANTALLA MEMORIA

te un

V 16 45 9 90 65 2 55 10 36 60

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind------- - 1
Num------- - 10 S------- - 0

De esta forma, cuando el contenido de la variable Ind sea 1 la decision

SiV(lnd) = Num

se convertirá en

5iV(1} = Num

y como el vector V en la posición 1 almacena el numero 18 y el contenido
de la variable Num es 10, entonces la decision internamente en ultimas, se
convierte en

Si 18= 10

Como ia respuesta es Falso, entonces, luego de encontrar el f/n_S/ y el Fin^PofO,
volvemos a incrementar el contenido de la variable Ind en 1 y volvemos a hacer
la pregunta correspondiente

266

Cap 9 - Arreglos

Ahora digite un
numero
10

18 45 9 90 65

«I (2) (3) (4) {$) (6) 17) (8) (9) (10)

Ind------- .4 2
Num—10 S —-• 0

De esta forma, cuando el contenido de la variable Ind sea 2 la decision

SiV(lnd} = Num

se convertirá en

SiV(2) = Num

y como el vector V en la posición 2 almacena el número 45 y el contenido
de la variable Num es 10, entonces la decisión internamente, en últimas, se
convierte en

5/45= 10

Como la respuesta es Falso, entonces, luego de encontrar el Fin_Si y el Fin_Para,
volvemos a incrementar el contenido de la variable Ind en 1 y volvemos a hacer
la pregunta correspondiente.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind —-4. a 3
Num--------10 S------- - 0

De esta forma, cuando el contenido de la variable Ind sea 3, la decision

SiV{lnd) = Num

se convertirá en

SiV(3) = Num

y como el vector l/en la posición 3 almacena el número 9 y el contenido de la va­
riable Num es 10, entonces la decision internamente, en últimas, se convierte en

5/9= 10

267

INTRODUCCION A 1^ I OGICA 01 I’iKKiRAMAUON - 0\l\R IWN TRUOS BURHICA

Como la respuesta es Falso, entonces, luego de encontrar el Fin_Si y el Fin_Para,
volvemos a incrementar el contenido de la variable Ind en ^ y volvemos a hacer
la pregunta correspondiente.

PANTALLA MEMORIA

V
Ahora digite un
numero
10

18 45

(1) (2)
-4 2 3
- 10

9 90

(3) (4)

4

65 I 2 I 55 I 10 I 36 I 60

(5) (6) 17) (8) (9) (10)

S------- - 0

Cuando el contenido de la variable Ind sea 4, la decision 5iV(lnd) = Num
se convertirá en SiV(4) = Num
y como el vector V en la posición 4 almacena el número 90 y el contenido
de la variable Num es 10, entonces la decision internamente, en ultimas, se
convierte en

Si 90= 10

Como la respuesta es Falso, entonces, luego de encontrar el Fin_Si y el Fin_Para,
volvemos a incrementar el contenido de la variable Ind en 1 y volvemos a hacer
la pregunta correspondiente

PANTALLA MEMORIA

Cuando el contenido de la variable Ind sea 5, la decisión 5/ V(lnd) = Num
se convertirá en SiV(5) = Num

y como el vector V en la posición 5 almacena el número 65 y el contenido
de la variable Num es 10, entonces la decisión internamente, en últimas, se
convierte en

Si65= 10

Como la respuesta es Falso, entonces, luego de encontrar el Fin_Si y el Fin_Para,
volvemos a Incrementar el contenido de la variable Ind en 1 y volvemos a hacer
la pregunta correspondiente.

268

Cap 9 - Arreglos

Ind -
Num-

(1) (2) (3) (4) (5) {6} (7) (8) (9) {10)

-.12 3 4 5-6

Cuando el contenido de la variable Ind sea 6, la decision SiV(lnd) = Num
se convertirá en SiV{6) = Num
y como el vector Ven la posición 6 almacena el numero 2 y el contenido de la
variable Num es 10, entonces la decision internamente, en ultimas, se convier­
te en

Si2= 10

Como la respuesta es Falso, entonces, luego de encontrar el Fin_Si y el Fin_Para,
volvemos a incrementar el contenido de la variable Ind en 1 y volvemos a hacer
la pregunta correspondiente

PANTALLA MEMORIA

Ahora digite un
numero
10

Ind
Nun

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

------- .4 2 3 4 S- 6- 7
1------- - 10 S--------- 0

Cuando el contenido de la variable Ind sea 7, la decision SiV(lnd) = Num
se convertirá en 5iV(7) = Num
y como el vector V en la posición 7 almacena el numero 55 y el contenido de la
variable Num es 10, entonces la decision internamente, en ultimas, se convier­
te en 5/55= 10 Como la respuesta es Falso, entonces, luego de encontrar el
F/n_S/ y el Fin_Para, volvemos a incrementar e! contenido de la variable Ind en
1 y volvemos a hacer la pregunta correspondiente

PANTALLA MEMORIA

Ahora digite un
numero
10

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind —-T 2 3 4 5-6- 7 8
Num—- 10 S-------- 0

269

INTRODUCCION A L.N LOGICA DL l'ROGRAMACION - OSWR I\ \N TRUÜS BURTHCA

Cuando el contenido de Ind sea 8, entonces la decision SiV(lnd) = Num
se convierte en Si V (8) = Num
y haciendo uso de sus respectivos contenidos la misma decision representa

Si W= 10

Como la respuesta es Verdadero, entonces se ejecutan las ordenes que es­
tán dentro de la parte verdadera de la decision, o sea, las siguientes dos
instrucciones:

Escriba "El número", Num, "si está en los 10 números digitados"
S=1

Por lo tanto, se coloca el título en pantalla y se cambia el valor de S a 1.

Ahora digite un
numero
10
El numero 10 sí está
en los 10 números
digitados

18 45

(1) (2) (3) (4) (5) (6) (7) (8) (9) {10)

0 1
Ind--------4 a 3 4 5- 6- 7 8
Num—— 10 S

Encontramos de nuevo el Fin_Si y el Fin_Para correspondiente, con lo cual vol­
vemos de todas formas a incrementar en 1 e! contenido de la variable Ind y
volvemos a hacer la pregunta

PANTALLA MEMORIA

Ahora digiteun
numero
10
El numero lOsíestá
en los 10 números
digitados

(1) (2) {3) (4) (S) {6) (7) (8) (9) {10)

Ind —- 1 23456789
Num------- - 10 S--------- 0 1

Cuando el contenido de Ind sea igual a 9, entonces la decision Si V(lnd) = Num
se convierte en S/Vf9^ = /Vum y como V(9) es igual a 36 y Num es iguala 10,
entonces la decisión finalmente es:

Si 36 =10

Como la respuesta es Falso, entonces volvemos a incrementar (por última vez)
el contenido de la variable Ind.

270

Cap 9-Arrcolos

PANTALLA MEMORIA

Ahora dig ite un
numero
10
El numero 10 si está
en los 10 números
digitados

(1) (2) (3) {4) (5) (6) (7) (8) (9) (10)

Ind------- .V 2-3-4>S-6-T:B9-10
Num------- - 10 S ——O 1

Cuando el contenido de Ind sea igual a 10, entonces la decisión Si V (Ind) =
Num se convierte en SÍV(W) = Num y como l/(10) es igual a 36 y Num es igual
a 10. entonces la decisión finalmente es:

Si 60=10

Como la respuesta es Falso y ya llegamos al tope del ciclo, entonces seguimos
con la instrucción que está después del Fin_Para correspondiente.

SiS = 0

Escriba "El número", Num, "no está en los 10 números digitados"
Fin_S¡

Podemos ver que el contenido actual de la variable S es 1, por lo tanto, la pre­
gunta 5/ 5 0 es Falsa y. por lo tanto, pasamos a la instrucción que está después
del Fin_Si y es el Fin del algoritmo.

Fin

Puede usted notar que el algoritmo falla en el hecho de que, a pesar de que
se encuentre el valor buscado, él sigue buscando sabiendo que el objetivo era
sencillamente decir si el dato buscado está o no. Para ello, le sugiero que le
haga una prueba de escritorio a la siguiente versión solución de este mismo
problema.

Programa Búsqueda
Variables

Entero: V(10), //Almacenara los 10 números que el
//usuario va a digitar

Ind, //Esta es la variable que nos va a

//servir como subíndice del vector
Num, //Almacenara el número que se va a

//buscar

271

INTRODUCCION A Ij\ LÜOICA DI I’ROGRAMACIÜN - OmAR I\ \N TrIJOS BURmCA

S //El contenido de esta variable nos va
//a indicar SI el número se encontró o
//no.

Inicio
Escriba "Digits W números enteros" //Solicítalos W números enteros

Paralnd= 1 hasta WPaso I //Y los lee almacenando cada uno en
//una posición diferente del vector

LeaV(lnd)
Fin_Para

Escriba "Ahora digits un número" //Solicita el número a buscar
Lea Num //y lo lee almacenándolo en la variable Num

5 = 0 //Inicioliza la variable "misteriosa"en 0

lnd= 1

Mientras Ind <=WYS = 0
SiV(lnd)-Num

Escriba "El número", Num,
"si está en los W números leídos"

5=7
Fin_Si

Fin_Mientras

SiS = 0
Escriba "El número buscado no está"

Fin^Si

Fin

La parte resaltada busca condicionar el ciclo a que la variable Ind no haya lle­
gado hasta 10 y, al mismo tiempo, a que no se haya encontrado el dato bus­
cado, pues esa es la única forma de que S mantenga el valor 0, pues apenas se
encuentre el contenido de la variable S cambiará a 1. Usted tal vez se pregun­
tará: ¿y qué pasa si se quisiera implementar el mismo control pero esta vez
utilizando el ciclo Para...l Entonces, basados en el ciclo Pora, que era:

Para Ind = 7 hasta 7 0 Paso I
SiV(lnd) = Num

272

Cap 9-Arreglos

Escriba "£lnúmero"Num, "si está en los Wnumerosdigitados"
S=l

Fin_Si
Fin_pQra

Con el control que se propone quedaría:

Paralnd= 1 hasta 10 Paso 1
SiV(lnd) = Num

Escriba "Elnúmero", Num, "si está en los Wnúmerosdigitados"
S=1
lnd=11

Fin_Si
Fm_Para

Siendo su único cambio la línea u orden que se encuentra en negrilla. Sugiero
que le realice una buena prueba de escritorio para que vea la diferencia en la
ejecución de este algoritmo incluyendo el control que se le ha incorporado.

9.3.5. Ejemplo con vectores No. 3

Leer 10 números enteros. Luego, leer 1 número entero y determinar cuántas
veces esta entre los 10 primeros, además decir en qué posiciones está

Clarificación del objetivo

Como usted puede notar, el algoritmo anterior se podrá tomar como base para
desarrollar otro algoritmo que nos permita lograr este objetivo. En esencia, lo
que se busca es leer 10 números enteros, que obviamente serán almacenados
en un vector, y luego leer otro número entero con el objetivo de buscarlo en­
tre los 10 números leídos y determinar no solo la cantidad de veces que esta
repetido, sino también en qué posiciones se encuentra Esto quiere decir que
SI el vector se "cargara" con los siguientes números

Vector
V

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

273

INTRODUCCION A U\ lOOlCN DL l'ROCiRVMCCION - OMAK IwnTrUOS BURIMCA

y el numero leído fuera 16, entonces en pantalla deberá aparecer

El numero 16 se encuentra en
las siguientes posiciones
3
6
8
En total esta 3 veces

Algoritmo

Es obvio pensar en la gran similitud que tendrá este algoritmo con el anterior
Solo por ejercicio, vamos a desarrollarlo usando solamente ciclos Mientras

Programa Busqueda_Detallada
Variables

Entero V(10),//Almacenara los 10 números leídos
Ind, //Servirá como índice de los ciclos para

//manejar las diferentes posiciones del vector
Num, //Almacenara el numero a buscar
Cont //Almacenara la cantidad de veces que este el

//numero en el vector y servirá para determinar
//si el número estaba o no

Inicio

Escriba "Digite 10 números enteros" //Solicita los 10 números

lnd= 1

Mientras Ind <= 10

Lea V{ Ind)

Ind = Ind + 1
Fin_Mientras

//Inicializa la variable Ind en 1 para hacer
//referencia a la primer posición
//Mientras no se haya llegado a la última

//posición del vector
//Lea un dato entero y guárdelo en la posición
//Ind del vector V

//Pase a la siguiente posición del vector

//Fin del Ciclo

Escriba "Digite un número entero" //Solicita el numero a buscar
Lea Num //Lo lee y lo almacena en la variable Num

Cont = 0 //Inicializa el contador en ceros

274

Cap 9-Arreglos

Ind = 1 //Inicializa la variable Ind en 1 para hacer
//referencia a la primera posición

Mientras Ind <=10 //Mientras no se haya llegado a la última
//posición en el vector

Si Num = V(Ind) //Sieinúmerobuscadoesigualainúmero
//almacenado en posición Ind del vector V
//Escriba en dónde lo encontró

Escriba "El numero", Num, "esta en la posición", Ind
Cont = Cont + 1 //Incremente el contador pues lo ha

//encontrado una vez (mas)
//Fin de la decision

//Pase a la siguiente posición en el vector
//Fin del Ciclo

//Si el contadores cero o sea si en ningún
//momento lo encontró entonces avise

Escriba "El número no se encuentra"
Sino //Si el numero estaba entonces muestre en

//pantalla cuantas veces estaba
Escriba "En total esta", Cont, "veces"

Fin_Si
Ein //Fin del algoritmo

Prueba de escritorio

De nuevo vamos a desarrollar una prueba de escritorio paso a paso apoyán­
donos en el soporte gráfico para conceptualizar mejor el flujo del algoritmo
Primero que nada declaramos en memoria las variables que se van a necesitar

Programa Busqueda_Detalíada
Variables

Entero V(W), Ind, Num, Cont

PANTALLA MEMORIA

V

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind —
Num—— Cont—•

Fin_Si

Ind = lnd+1
Fin_Mientras

Si Cont = 0

275

INTRODUCCION A lA I OGIC\ D1 i’ROGRAMVCION - OsL\R lUN TUIJOS BUIUTICV

Seguidamente, se inicia el algoritmo escribiendo en pantalla un aviso solici
tandoquesedigiten 10 números Luego se inicia la variable/nden 1 y mientras
esta variable no haya llegado a 10 (o sea, mientras no se haya llegado a la ulti
ma posición del vector), se va a leer un dato y se almacenara en el vector Ven
la posición Ind y luego se va a incrementar Ind en 1

Inicio
Escribo "Digite 10 números enteros"
lnd= 1
Mientras Ind <= 10

Lea V(Ind)
Ind = Ind + 1

Fin_Mientras

Oigite 10 números
enteros

Ind
Nur

MEMORIA

15

0) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Cont—•

Cuando /nd valga 1, entonces el dato se almacenara en el vector Ven la posi­
ción 1 Luego de esto, se incrementara en 1 el contenido de la variable Ind y
se verifica si todavía Ind es menor o igual que 10 Como es Verdadero, entonces
volvemos a leer otro dato

DIgite 10 números
enteros
15

Ind -
Num -

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

-4 2

Cuando Ind valga 2, entonces el dato se almacenara en el vector V en la posi­
ción 2 Luego de esto, se incrementara en 1 el contenido de la variable Ind y
se verifica si todavía Ind es menor o igual que 10 Como es Verdadero, entonces
volvemos a leer otro dato

276

Cap 9-Arreglos

Digite 10 números
enteros

Ind •
Num

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

— 4 3 3

Cuando Ind valga 3, entonces el dato se almacenará en el vector V en la posi­
ción 3. Luego de esto, se incrementará en 1 el contenido de la variable Ind y
se verifica si todavía Ind es menor o igual que 10. Como es Verdadero, entonces
volvemos a leer otro dato.

Digite 10 números
enteros

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Cont —•
Ind —.4 3 3 4
Num —.

Cuando Ind valga 4, entonces el dato se almacenará en el vector V en la posi­
ción 4. Luego de esto, se incrementará en 1 el contenido de la variable Ind y
se verifica si todavía Ind es menor o igual que 10. Como es Verdadero, entonces
volvemos a leer otro dato.

Digite 10 números
enteros

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

-4334 5

Cuando Ind valga 5, entonces el dato se almacenará en el vector V en la posi­
ción 5. Luego de esto, se incrementara en 1 el contenido de la variable Ind y
se verifica si todavía Ind es menor o igual que 10 Como es Verdadero, entonces
volvemos a leer otro dato.

277

INTRODUCCION A 1 OGICA DI I-R001U\M\ClüN - OMAR IwnTrUOS BURIRCA

PANTALLA MEMORIA

24

16

V

Ind
Nur

15 20

(1) (2)

L 2 3

(3) (4) (5) (6) (7) 18)

4 5 6
Cont —•

(9) (10)

Cuando Ind valga 6, entonces el dato se almacenará en el vector V en la posi­
ción 6. Luego de esto, se incrementará en 1 el contenido de la variable Ind y
se verifica si todavía Ind es menor o igual que 10. Como es Verdadero, entonces
volvemos a leer otro dato.

PANTALLA MEMORIA

24

19

V

Ind
Nur

15 20 16 24 23 16 19

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 2 3 4 5 6 7

Cuando Ind valga 7, entonces el dato se almacenara en el vector V en la posi­
ción 7. Luego de esto, se incrementará en 1 el contenido de la variable Ind y
se verifica si todavía Ind es menor o igual que 10 Como es Verdadero, entonces
volvemos a leer otro dato

PANTALLA MEMORIA

24
23
16
19
16

0) (2)

12 3 4

(3) (4) (5) (6) (7) (8) (9) (10)

5 6 7 8
Cont —■

Cuando Ind valga 8, entonces el dato se almacenará en el vector V en la posi­
ción 8. Luego de esto, se incrementará en 1 el contenido de la variable Ind y
se verifica si todavía Ind es menor o igual que 10. Como es Verdadero, entonces
volvemos a leer otro dato.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind —-4 2 3 4
Num —•

7 8 9
Cont-

278

Cap 9 - Arreglos

Cuando Ind valga 9, entonces el dato se almacenará en el vector V en la posi­
ción 9. Luego de esto, se incrementará en 1 el contenido de la variable Ind y
se verifica si todavía Ind es menor o igual que 10. Como es Verdadero, entonces
volvemos a leer otro dato

PANTALLA

16
25

V

Ind

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

T 2 3 4 5 6 7 8 9 10
Cont —•

Y cuando Ind valga 10, entonces el dato se almacenará en el vector V en la
posición 10 Como este valor era el tope del ciclo, entonces este se finaliza y
se continúa con la instrucción que se encuentra después de su respectivo Fin_
Para Continuando con la instrucción correspondiente, aparecerá en pantalla
un título solicitando un número y seguidamente se deberá leer un número
entero que ha de quedar almacenado en la variable Wum. Vamos pues a asumir
que el número leído para ser buscado es el número 16.

Escriba "Digite un número entero”
Lea Num

PANTALLA MEMORIA

Oigite
entero
16

un numero (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind —■ 1
Num —■ 16 Cont —» 0

Luego de leído el número a buscar, iniciamos la variable Conf con el valor 0,
dado que esta es la variable que nos va a permitir contar cuántas veces esta el
numero buscado entre los 10 números leídos. Igualmente, se inicializa (de nue­
vo) la variable Ind en 1 para hacer referencia a la primera posición del vector
y con ella misma controlar el recorrido a lo largo de las diferentes posiciones
del mismo. Seguidamente, se inicia un ciclo Mientras, en donde su condición
establece Mientras no se haya llegado a la última posición del vector (o como
quien dice Mientras Ind <- 0). En este ciclo, se va a evaluar sí el contenido del
vector V en la posición Ind es igual al numero que estamos buscando. De ser
3SÍ, entonces se escribirá en pantalla que el número que buscamos esta en la
posición que esté almacenada en la variable Ind y, a continuación, se incre-
fTientará en 1 el contenido de la variable Conf, que es la que va a almacenar la

279

iNfTKüDUCClON A b\ IOGIC\ l« i'ROGR/\M\CIO'J OmAK I\\N TIUJOS BuumCA

cantidad de veces que se encuentre el numero en el vector De otra parte, sea
Verdadera o Falsa la pregunta SiNum = V(lnd), se incrementara de todas ma
ñeras el contenido de la variable Ind para pasar a evaluar el valor almacenado
en la siguiente casilla del vector Asi se seguirá progresivamente hasta llegara
la ultima posición, tal como lo indica la condición del ciclo

Conf = 0
tnd= 1
Mientras Ind <= W

SiNum = V(lnd)
Escriba El numero', Num, esta en la posición, Ind
Cont = Cont+ I

Fin_Si
Ind = Ind + I

Fin_Mientras

PANTALLA MEMORIA

Digite un numero
entero
16

(1) (2) (3) (4) (5) (6) (7) {8) (9) (10)

• i 2

Cuando /nd valga 1, la decision S; Num = V(lnd) se convierte en 5/Num = V(I
) y como el contenido del vector V en la posición 1 es 15, entonces la decision
se convierte en Si 16 = 15, lo cual es Falso Entonces se incrementa en 1 el con
tenido de la variable Ind y se vuelve a evaluar la condición del ciclo, pues se ha
encontrado el correspondiente Fin_Mientras

PANTALLA MEMORIA

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind----- .40-3
Num —. 16 Cont —- 0

Cuando Ind valga 2, la decision Si Num = V (Ind) se convierte en 5/ Num = V{2
) y como el contenido del vector V en la posición 2 es 20, entonces la decision
se convierte en Si 16=20, lo cual es Falso Entonces se incrementa en 1 el con
tenido de la variable Indyse vuelve a evaluar la condición del ciclo, pues se ha
encontrado el correspondiente Fin_Mientras

280

Cap 9-Arreglos

16
El numero 16 esta en
la posición 3

20 16 24 23 19 16

Ind —
Num -

(1) (2) (3) (4) (5) (6) (7) (6) (9) (10)

Cont— 0 1
.43-34
-16

Cuando Ind valga 3, la decisión Si Num = V(lnd)se convierte en Si Num = V(3
) y como el contenido del vector V en la posición 3 es 16, entonces la decisión
se convierte en Si 16 = 16, lo cual es Verdadero. Por lo tanto, ejecutamos las
órdenes:

Escriba "El número", Num, "está en la posición", Ind
Cont = Cont + 1

O sea, que en pantalla aparece el aviso correspondiente diciendo que el núme­
ro buscado está en la posición que es igual al contenido de la variable Ind (que
en este momento vale 3) y se incrementa en 1 el contenido de la variable Conf.
Posteriormente, se incrementará en 1 el contenido de la misma variable Ind

PANTALLA MEMORIA

V 1 15 1 20 1 16 1 24 1 23 16 | 19 | 16 25 | B2

El numero I6esta en
la posición 3

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind —.4 3-3 4 5
Num —■ 16 Cont —. 0 1

Cuando Ind valga 4, la decisión Sí Num = V(lnd)se convierte en Si Num = V(4
) y como el contenido del vector V en la posición 4 es 24, entonces la decisión
se convierte en 5/16 = 24, lo cual es Falso. Entonces se incrementa en 1 el con­
tenido de la variable Ind y se vuelve a evaluar la condición del ciclo, pues se ha
encontrado el correspondiente Fin_Mientras.

PANTALLA MEMORIA

16 esta en
3

Ind —
Num-

0) (2) (3) (4) (5) (6) 17) (8) (9) (10)

Cont —■ 0 1
. 1 2-3 4 5 6
-16

Cuando Ind valga 5, la decisión 5/ Num ^■V (Ind) se convierte en Si Num = V(5
) y como el contenido del vector V en la posición 5 es 23, entonces la decision

281

iN'TKOmiCCION \ J^MOGIC \ l>l IMMKillAM \CIUN - OM \K I\ \N TkUOS BURlllCX

se convierte en Si 16 = 23, lo cual es Falso Entonces se incrementa en 1 el con
tenido de la variable Ind y se vuelve a evaluar la condición del ciclo, pues se ha
encontrado el correspondiente Fin_Mientras

PANTALLA MEMORIA

Cuando/nd valga 6, la decision SiNum = V(lnd)se convierte en SiNum = V(6
) y como el contenido del vectorV en la posición 6 es 16, entonces la decision
se convierte en Si 16 = 16, lo cual es Verdadero Por lo tanto, se ejecutan las
ordenes

Escriba 'El numero". Num, "esta en la posiaon", Ind
Cont = Cont+ 1

Es decir, se escribe en pantalla que el valor almacenado en la variable Num
(que es el dato que estamos buscando) esta en la posición 6 (que es igual al
contenido de la variable/nd) y luego se incrementara el contenido de la variable
Conf (que es la que va a almacenar la cantidad de veces que se encuentra
el dato buscado) Después de esto, se incrementara en 1 el contenido de la
variable Ind y se volverá a evaluar la condición del ciclo para repetir el mismo
proceso pero con el dato que se encuentra enseguida de la posición actual

PANTALLA MEMORIA

El numero 16 esta en
la posición 3
El numero 17 esta en
la posición 6

15 20 16 24 23 16 19 16 25 12

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind----- .1 2 3 4 5 6 7 8
Num——16 Cont—«0 1 2

Cuando Ind valga 7, la decision Si Num = V(lnd)se convierte en Si Num = V(7
) y como el contenido del vector V en la posición 7 es 19, entonces la decision
se convierte en Si 16=19, lo cual es Falso Entonces se incrementa en 1 el con­
tenido de la variable Ind y se vuelve a evaluar la condición del ciclo, pues se ha
encontrado el correspondiente Fin_Mientras

282

Cm* 9-Aiu<lglos

PANTALLA MEMORIA

El numero 16 está en
la posición 3
El numero 17 está en
la posición 6
El numero 16 está en
la posición 6

24 23

Ind —
Num -

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

.042
2-34S6789

i Cont-

Cuando/nd valga 8, la decision Si Num = V(lnd)se convierte en Sí Num = V(8
) y como el contenido del vector V en la posición 8 es 16, entonces la decision
se convierte en 5/16 = 16, lo cual es Verdadero Por lo tanto, se ejecutan las
ordenes

Escriba "El numero", Num, "esta en la posición", Ind
Cont = Cont + 1

Es decir, se escribe en pantalla que el valor almacenado en la variable Num
(que es el dato que estamos buscando) esta en la posición 8 (que es igual al
contenido de la variable Ind) y luego se incrementara el contenido de la vana
ble Conf (que es la que va a almacenar la cantidad de veces que se encuentra
el dato buscado) Después de esto, se incrementara en 1 el contenido de la
variable Ind y se volverá a evaluar la condición del ciclo para repetir el mismo
proceso pero con el dato que se encuentra enseguida de la posición actual

PANTALLA MEMORIA

El numero 16 está
la posición 3
El numero 17 está
la posición 6
El numero 16 está en
la posición 8

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Ind —.4 2- 3 4 5 6 789
Num—.16 Cont—— 0 4 2

Cuando Ind valga 9, la decision 5/ Num = V(lnd)se convierte en Si Num = V(9
) y como el contenido del vector V en la posición 9 es 25, entonces la decision
se convierte en 5/ /6 = 25, lo cual es Falso Entonces se incrementa en 1 el con­
tenido de la variable Ind y se vuelve a evaluar la condición del ciclo, pues se ha
encontrado el correspondiente Fin_Mientras

El numero 16 está en
la posición 3
El numero 17 esto en
la posición 6
El numero 16 está en
la posición 8

Ind -
Num -

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

.1 2-3456789- 10

2S3

INTRODUCCION \ l^\ l OGICA DI l'ROGRAMACION - 0\l \R i\ \N TltlJOS BURITICA

Cuando /nd valga 10, la decision Si Num = V(Ind) se convierte en 5/ Num = V(;o
J y como el contenido del vector Ven la posición 10 es 82, entonces la decision
se convierte en 5/16 = 82, lo cual es Falso En este punto finaliza el ciclo, dado
que se alcanza el ultimo valor planteado al inicio del mismo

Luego de que se ha realizado este ciclo, se pasa a la decision

SiCont = 0
Escriba "El numero no se encuentro ’

Sino
Escriba En total esta ¡Cont, veces”

Fin_5i

Con la cual podemos saber si el numero buscado fue encontrado o no Este
resultado depende del contenido de la variable Conf, pues si esta variable con
tiene un cero es porque el numero buscado no estuvo presente ni siquiera una
sola vez Si el contenido de esta variable es diferente de cero, entonces quiere
decir que el algoritmo encontró el numero buscado al menos una vez En este
caso, como el contenido de la variable Conf es 3, entonces se ejecuta

Sino
Escribo "En total esta", Cont, ‘veces"

Con lo cual aparecería en pantalla

PAITTALLA _____________________________ MEMORIA__________________

V I 15 I 20 I 16 I 24 I 23 I 16 | 19 | 16 | 25 |s2

(1) (2) (3) (4) (5) (6) (7) (8) |9) (10)

Ind----- 4 3- 3 4 5 6 7 8 9- 10
Num——16 Cont—— 0 4 3-3

El numero 16esta en
la posición 8
En total está 3 veces

Lo cual, por las características especificas de la prueba de escritorio, es verdad
Luego de esto, encontramos el fin del algoritmo

Fin

Y con ello termina el mismo Es momento entonces de evaluar los resultados y
compararlos con el objetivo propuesto Vemos que, si entre los dígitos

284

Cap 9 - Arreglos

queremos buscar el número 16, encontramos que este está 3 veces. También
vemos que la primera ocurrencia de este número se da en la posición 3, la
segunda ocurrencia se da en la posición 6 y la tercera ocurrencia se da en la
posición 8. Como esto precisamente coincide con los resultados entregados
por el algoritmo, entonces podemos garantizar que este algoritmo está bien.

Ejemplo con vectores No. 4

"Cargar" dos vectores cada uno con 5 datos enteros y determinar si los datos
almacenados en ambos vectores son exactamente los mismos tanto en conte­
nido como en posición.

Clarifícación del objetivo

Se trata entonces de comparar dos conjuntos de datos y determinar si ambos
conjuntos son exactamente iguales. Para ello, lo que vamos a hacer será leer 5
datos enteros y los almacenaremos en un vector, luego leeremos otros 5 da­
tos enteros y los almacenaremos en otro vector. Luego ímplementaremos un
proceso de comparación que nos permite determinar si ambos vectores son
exactamente iguales. Tenga en cuenta que la comparación entre vectores no
se puede hacer como se hace con las variables. Si usted tiene una variable X
con un contenido igual a 8

X = 8

y tiene una variable Y con un contenido igual a 8

Y = 8

entonces en cualquier momento usted puede preguntar

SiX=Y

Y el computador entenderá que deberá comparar los contenidos de dichas
variables dado que dichos contenidos son únicos. Pero si se tiene el vector VI
con los siguientes contenidos

Vector
VI

5 8 9 12 18

(1) (2) (3) (4) (5)

Y tenemos el vector V2 con los siguientes contenidos

Vector
V2

6 9 11 5 8

(1) (2) (3) (4) (5)

285

IríTROouccioN \ i^\ LOGic\ni irügiIí\\i\ciün-Omar I\\NTiujosBuRrnc\

No podremos realizar la pregunta

Si vi = V2

Dado que, como cada uno es un vector y no contiene datos únicos, entonces
realmente no sabría el computador (cuando este algoritmo se convierta en un
programa) que es lo que realmente tiene que comparar

Precisamente, para implementar dicha comparación, lo que vamos a hacer
sera comparar una a una y, análogamente, cada contenido de los vectores
Por lo dicho aquí, tendremos que recorrer los vectores, posición a posición,
valiéndonos de un ciclo que ira desde la primera hasta la ultima posición (en
este caso, de 1 hasta 5) Nuestra pregunta sera

5iV1(lnd) = V2(lnd)

Siendo Ind la variable que vamos a utilizar para referenciar el subíndice de po­
sición de cada uno de los datos Antes de iniciar con este ciclo de comparación,
asignaremos a una variable el valor 0 y esta variable actuara como un mterrup
tor, es decir, cambiara su valor solo si se encuentra que, en algún momento, la
decision planteada es Falsa Al finalizar el ciclo, veremos cual fue el valor de la
variable interruptor y con ello podremos determinar si los dos vectores eran
iguales o no Debemos tener en cuenta que el proceso de comparación de dos
vectores es diferente al proceso de comparación de dos variables, dado que
los vectores son conjuntos de variables y las variables solas no

Algoritmo

No olvide lo que a lo largo de este libro le he recordado es posible que usted
desarrolle un algoritmo que logre este mismo objetivo, si no es igual al que
aquí se expone, no se preocupe Todo lo que tiene que hacer es verificar si
cumple con el objetivo o no realizándole una buena prueba de escritorio Si su
solución cumple con el objetivo, entonces estara bien y si la solución expuesta
en este libro cumple con el objetivo, entonces también estara bien Siendo asi,
ambas soluciones serán correctas

Programa Compara_Vectores
Variables

Entero VI (5),// Vector en donde se almacenara el primer

//conjunto de 5 datos enteros
V2(5), // Vector en donde se almacenara el segundo

//conjunto de 5 datos enteros

286

Cap 9 - Arreglos

Ind, // Variable que servirá como subíndice
S // Variable que permitirá determinar si el

//contenido de ¡os dos vectores era
//exactamente igual o no

Inicio
Escriba “Digite el primer conjunto de 5 enteros"
Paralnd= 1 hastaS //Se solicitan 5 números enteros y se leen

Lea VI (Ind) //almacenando cada uno en una posición
FÍn_Para //diferente del vector VI

Escriba "Digite el segundo conjunto de 5 enteros"

Para Ind = 1 hasta 5
LeaV2(lnd)

Fin_Para

//Se solicitan los otros 5números enteros
//y se leen almacenando cada uno en una

//posición diferente del vector V2

S = 0
lnd= I

//Se inicializa la variable SenO
//Se inicia la variable Ind en 1 para hacer
//referencia al l‘>elemento de los vectores
//e iniciar allí la comparación

Mientras Ind <= 5 Y S = 0 //Mientras no llegue al ñnal del vector
// (o sea a su última posición} y
mientras la

//variableSsiga con el valor 0(o sea mientras
//los vectores sigan iguales en sus contenidos)

Si VI (Ind)i=V2(Ind)//Si el contenido del 1° vector en una
//posición es igual al contenido
//del 2° vector en la misma posición
//Cambie el contenido S a J

//Fin de la decisión
//Pase a la siguiente posición del vector
//Fin del Ciclo

s=;
Fin_5
Ind = lnd+1

FÍn_Mientras

SiS = 0 //Si esta variable aún permanece con el valor 0

//quiere decir que en ningún momenfo se le
// asignó el valor I o sea que en ningún
//momenfo el contenido de los vectores fue

2«7

Introducción a l.\ lógica di toooramacion - Omar Ivan Truos BuiimcÁ

//diferente por lo tanto los vectores son
//exactamente iguales

Escriba "El contenido de los dos vectores es exactamente igual"
Sino //Si la variable S vale 1 entonces quiere decir

//que en algún momento el contenido de los
//vectores fueron diferente por lo tanto no son
//exactamente iguales

Escriba “El contenido de los dos vectores es diferente”
FÍn_Si //Fin de la decisión

Fin //Fin del ciclo

Prueba de escritorio

Realice un seguimiento de esta prueba paso a paso tanto en lo que corres­
ponde al manejo de la pantalla como en lo que corresponde al manejo de
las variables en la memoria. Lo primero que hacemos es declarar las variables
correspondientes en memoria.

Programa Compara_Vectores
Variables

Entero: VI (5},
V2{5),
Ind,
S

A continuación, solicitamos 5 datos enteros y los leemos valiéndonos de un
ciclo que, utilizando la variable Ind, vaya desde 1 hasta 5 para referenciar cada
una de las posiciones dentro del vector. Con este ciclo queda "cargado"el vec­
tor 1/7.

288

i"L::on7c
^ ^ r' . '"ctinL^or I ^ ■ Arreglos

Inicio
Escriba "Digite el primer conjunto de 5 enteros"
Para Ind = 1 hasta 5

LeaVUlnd)
Fin_Para

PANTALLA MEMORIA

Cuando la variable Ind almacene el numero 1, y asumiendo que el numero leí­
do sea el 10, dicho numero quedara almacenado en el vector VI en la posición
1 Se incrementa entonces el valor de la variable Ind en 1

PANTALLA MEMORIA

Digiteel pr
conjunto d

imer
e S enteros VI

10
18

10 18

(1) (2) (3) (4) (5)

V2

(1) (2) (3) (4) (5)

Ind—4 2

S—.

Cuando la variable Ind almacene el numero 2, y asumiendo que el número leí­
do sea el 18, dicho numero quedara almacenado en el vector VI en la posición
2 Se incrementa entonces el valor de la variable Ind en 1

PANTALLA MEMORIA

Digiteel primer
conjunto de 5 enteros VI 10 18 9 Ind—.4 i- 3

16
9

(1) (2) (3| (4» (5)

V2 S—>

(1) (2) (3) (4) (5)

289

INTRODUCCION A U\ LOGICA OI PROGIUWtACION - 0\IAR IWNTIUJOS BUIUIICA

Cuando la variable Ind almacene el número 3, y asumiendo que el número leí­
do sea el 9, dicho número quedaré almacenado en el vector VI en la posición
3. Se incrementa entonces el valor de la variable Ind en 1.

PANTALLA MEMORIA

Cuando la variable Ind almacene el número 4, y asumiendo que el número leí­
do sea el 9, dicho número quedará almacenado en el vector VI en la posición
4. Se incrementa entonces el valor de la variable Ind en 1.

PANTALLA MEMORIA

Y cuando la variable Ind almacene el número 5, y asumiendo que el número
leído sea el 35, dicho número quedará almacenado en el vector VI en la posi­
ción 5. Como este es el tope hasta donde debía llegar la variable Ind, entonces
se finaliza este ciclo y se continúa con la instrucción que se encuentra después
del respectivo Fin^Para.

Terminada esta parte en donde se leen 5 datos enteros y se almacenan en el
primer vector, pasamos a la segunda parte, en donde solicitamos otros 5 datos
enteros pero esta vez los vamos a almacenar en el segundo vector (que hemos
llamado 1/2). Volvemos a generar los números del 1 al 5 utilizando la variable
Ind como índice y valiéndonos de un ciclo.

Escriba "Dlgite el segundo conjunto de 5 enteros"
Para Ind = 1 hasta 5

LeaV2(lnd)
Fin_Para

290

Cap. 9 - Ajireolos

PANTALLA MEMORIA

Digiteel primer
conjunto de 5 enteros VI 10 18 9 1 26 1 35 Ind—1

18 (1) (2) (3) (4) (5)

Digite el segundo
conjunto de S enteros
10

V2
'» 1 s —

(1) (2) (3) (4) (5)

Cuando la variable Ind almacene el número 1, y asumiendo que el número leí­
do sea el 10, dicho número quedará almacenado en el vector V2 en la posición
l.Se incrementa entonces el valor de la variable Ind en 1.

PAIfTALLA MEMORIA

(1) (2) (3) (4) {5)

{^) (2) (3) (4) {5)

Ind—.4 2

S------

Cuando la variable Ind almacene el número 2, y asumiendo que el número leí­
do sea el 18, dicho número quedará almacenado en el vector V2 en la posición
2. Se Incrementa entonces el valor de la variable Ind en 1.

Oigite el segundo
conjunto de 5 enteros

10 18 9 26 35

0) (2) (3) (4) {$)

(1) (2) (3) (4) (5)

Cuando la variable Ind almacene el número 3 y asumiendo que el número leí­
do sea el 9, dicho número quedará almacenado en el vector V2 en la posición
3. Se incrementa entonces el valor de la variable Ind en 1.

291

INTTRODUCCION a L,\ logic \ D1 1 ROGIIAMNCION 0\IAK IWN TiUJOb BURHICX

DIgiteel segi
conjunto de

lundo
5 enteros

Ind — 4 3-3 4

(1) (2) (3) (4) (5)

0) (2) (3) (4) (5)

5 = 0
lnd= 1

Cuando la variable Ind almacene el numero 4 y asumiendo que el numero iei
do sea el 29, dicho numero quedara almacenado en el vector V2 en la posición
4 Se incrementa entonces el valor de la variable Ind en 1

PANTALLA MEMORIA

Y cuando la variable Ind almacene el numero 5 y asumiendo que el numero leí
do sea el 35, dicho numero quedara almacenado en el vector V2 en la posición
5 Con esto terminara este segundo ciclo, dado que el tope del mismo era 5 y
ya se llego a este valor

Con esto finalizamos la carga de los vectores, con lo cual ya podemos entrar
a determinar si son exactamente iguales o no Es natural pensar en este mo
mentó que ios dos vectores no son iguales y por ello pareciera ser inoficioso
este algoritmo, pero por ahora nos interesa cumplir con el objetivo, es decir,
demostrar que a través de este algoritmo un computador puede determinar
SI un conjunto de datos (almacenado en un vector) es igual a otro conjunto
de datos o no Por tal motivo, nuestro algoritmo continua almacenando en las
variables S e Ind los valores 0 y 1 respectivamente

Luego se plantea un ciclo que debe permanecer mientras el contenido de la
variable Ind sea menor o igual que 5 (o sea, mientras no se haya llegado a la

292

Cap 9-Arreglos

posición del ultimo dato en los vectores) y mientras la variable S siga alma
cenando el numero 0 Dentro de este ciclo, se preguntara si el contenido del
vector VI en la posición Ind es diferente ai valor almacenado en el vector V2 en
la misma posición (para cualquier valor que almacene la variable Ind)

En el instante en que esto sea Verdadero, entonces se cambiara el dato almacena
do en la variable 5, que estaba en 0, por un 1 y con esto se"abortaria'el ciclo que
se esta ejecutando, dado que la condición dice Mientras Ind <=5YS=0 Sea pues
Verdadera o Falsa la decision, se le adicionara 1 al valor almacenado en la variable
Ind para poder hacer referencia a la siguiente posición dentro de los vectores

S = 0
lnd= 1
Mientras lnd<=sy S = 0

SiVUInd)>=V2(lnd}
S=1

Fin_Si
Ind = Ind + 1

Fin_Mientras

DIgiteel segur
conjunto de 5
10

indo
enteros

10 18 9 26 35

(1) (2) (3) (4) (5)

(1) (2) (3) (4) (5)

Cuando la variable /nd valga 1, la decision Si VI (Ind) '= V2 i Ind) se convierte en

StVW)’=V2(1)

Es de anotar que el signo != lo estamos utilizando en este libro para repre
sentar Diferente de tal como se usa en el lenguaje C El lector podra utilizar
cualquier otra equivalencia para este operador relacional (tales como < > o
sencillamente diferente de) Como el contenido del vector VI en la posición 1
es 10 y el contenido del vector V2 en la posición 1 es 10, entonces la decision
se transforma, internamente, en

Si 101= W

293

InTKODUCCION a I^\ I OGICA DL I’KOCiIUMACION - OmaU I\ \N TRUOS BuRI Pit \

Es dear, si 10 es diferente de 10. Como la respuesta a esta decision es Falso,
entonces continuamos con la instrucción que se encuentra después del res­
pectivo Fin_Si y que corresponde a incrementar en 1 el valor almacenado en la
variable Ind, quedando con el valorZ

Como seguidamente encontramos el Fin del ciclo, entonces volvemos a eva
luar la condición de dicho ciclo para entrar de nuevo al cuerpo del mismo,
debido a que el contenido de la variable Ind es menor que 5 y también debido
a que el contenido de la variable S sigue siendo 0.

Oigite el segundo
conjunto de 5 enteros

(1) (2) (3) 14) (5)

(1) (2) (3) (4) (5)

Cuando la variable Ind valga 2, la decision Si VI (Ind) >= V2 (Ind) se convierte
en.

SiVl (2)! = V2(2)

Como el contenido del vector VI en la posición 2 es 18 y el contenido del vec­
tor V2 en la posición 2 es 18, la instrucción se convierte internamente en

Sil8!= 18

Como la respuesta a esta decisión es Falso, entonces ejecutamos la orden que
está después del Fin_Si, o sea, incrementamos en 1 el contenido de la variable
Ind, que ahora quedará con el valor 3

PANTALLA MEMORIA

294

Caí’ 9 - AluiEGLOS

Cuando la variable /nd valga 3, la decision Si VI (lnd)!= V2 (Ind) se convierte en-

SiVl(3}i=V2(3)

Como el contenido del vector VI en la posición 3 es 9 y el contenido del vector
V2 en la posición 3 es 9, la instrucción se convierte internamente en*

Si9! = 9

Como la respuesta a esta decisión es Falso, entonces ejecutamos la orden que
esta después del Ftn_Si, o sea, incrementamos en 1 el contenido de la variable
Ind, que ahora quedará con el valor 4.

PANTALLA MEMORIA

Cuando la variable Ind valga 4, la decision Si VI (Ind) '= V2 (Ind) se convierte
en

SiVU4)i=V2(4)

Como el contenido del vector VI en la posición 4 es 26 y el contenido del vec­
tor V2 en la posición 4 es 29, la instrucción se convierte internamente en

Si 261 = 29

Como la respuesta a esta decision es Verdadero, entonces se ejecuta la orden-

5= /

Con lo cual se modifica el contenido de la variable S. Seguidamente, ejecuta­
mos la orden que incrementa en 1 el contenido de la variable Ind Volvemos,
entonces, a evaluar la condición del ciclo y vemos que Ind todavía es menor
que 5 pero esta vez S ya no es igual a 0, por lo tanto, la primera parte de la
condición es Verdadera, pero la segunda parte de la condición es Falsa Como

295

INTRODUCCION A L,\ I ÜG!C\Di I’ROORAM \CION - OMAR I\ \N TRIJOS BURHICA

están unidas por un operador Y, entonces, basados en su tabla de verdad, ve­
mos que Verdadero Y Falso nos da como resultado total Falso

Por lo tanto, esto indica que finalizamos la ejecución del cuerpo del ciclo y
pasamos a la instrucción que esta después del correspondiente f/n_/W/eníras

PANTALLA MEMORIA

Con las variables en memoria, tal como están aquí, se realiza la siguiente
decision.

SiS = 0

Escriba "El contenido de los dos vectores es exactamente igual”
Sino

Escriba "El contenido de los dos vectores es diferente"
Fin_Si

Se pregunta si el contenido de la variable S es igual a 0. Como vemos, dicho
contenido es 1, por lo tanto, la respuesta a dicha decisión es Falso. Se ejecuta la
instrucción que está seguidamente al Sino de esta decisión. Por lo tanto, saldrá
en pantalla;

PANTALLA MEMORIA

Lo cual es Verdadero, dado que realmente los dos vectores no son exactamen­
te iguales. Después de esto llegamos al fin del algoritmo.

296

Cap 9 - Arreglos

Fin

Es importante que note usted el papel que desempeña en este algoritmo la
variable S, que es la que finalmente nos permite determinar si los dos vectores
son iguales (en contenido) o no Como se puede notar, el resultado del algorit­
mo es cierto y por ahora podemos decir que, en el caso en el cual los vectores
tengan contenidos diferentes, este algoritmo lo determinará acertadamente.
Ahora realícele una prueba de escritorio a este algoritmo asumiendo que el
contenido de los dos vectores es exactamente igual para saber si el algoritmo
en ese caso también lo determina. Si es así, entonces podremos decir que el
algoritmo aquí presentado está bien.

9.4. Ejercicios

1. Leer 10 enteros, almacenarlos en un vector y determinar en qué posición
del vector está el mayor número leído.

2 Leer 10 enteros, almacenarlos en un vector y determinar en qué posición
del vector está el mayor número par leído

3. Leer 10 enteros, almacenarlos en un vector y determinar en qué posición
del vector está el mayor número primo leído.

4. Cargar un vector de 10 posiciones con los 10 primeros elementos de la
sene de Fibonacci y mostrarlo en pantalla.

5 Almacenar en un vector de 10 posiciones los 10 números primos com­
prendidos entre 100 y 300. Luego mostrarlos en pantalla.

6. Leer dos números enteros y almacenar en un vector los 10 primeros nú­
meros primos comprendidos entre el menor y el mayor. Luego mostrarlos
en pantalla.

7. Leer 10 números enteros, almacenarlos en un vector y determinar en qué
posiciones se encuentra el número mayor.

8 Leer 10 números enteros, almacenarlos en un vector y determinar en que
posiciones se encuentran los números terminados en 4

9. Leer 10 números enteros, almacenarlos en un vector y determinar cuán­
tas veces está repetido el mayor.

10. Leer 10 números enteros, almacenarlos en un vector y determinar en qué
posiciones se encuentran los números con mas de 3 dígitos.

297

iN-ntOmiCtlON A lw\ UK.IC\ Dl l•ROOIL\\IACION - 0m\R 1\VNTkUOS. DlmillCA

11 Leer 10 números enteros, almacenarlos en un vector y determinar cuan­
tos números tienen, de los almacenados allí, menos de 3 dígitos.

12 Leer 10 números enteros, almacenarlos en un vector y determinar a cuan­
to es igual el promedio entero de los datos del vector

13. Leer 10 números enteros, almacenarlos en un vector y determinar si el
promedio entero de estos datos esta almacenado en el vector

14. Leer 10 números enteros, almacenarlos en un vector y determinar cuán­
tas veces se repite el promedio entero de los datos dentro del vector

15. Leer 10 números enteros, almacenarlos en un vector y determinar cuan­
tos datos almacenados son múltiplos de 3.

16 Leer 10 números enteros, almacenarlos en un vector y determinar cuales
son los datos almacenados múltiplos de 3.

17.Leer 10 números enteros, almacenarlos en un vector y determinar cuan­
tos números negativos hay

1 S.Leer 10 números enteros, almacenarlos en un vector y determinar en que
posiciones están ios números positivos

19 Leer 10 números enteros, almacenarlos en un vector y determinar cuál es
el numero menor

20.Leer 10 números enteros, almacenarlos en un vector y determinar en que
posición está el menor número primo

21 .Leer 10 números enteros, almacenarlos en un vector y determinar en que
posición está el número cuya suma de digitos sea la mayor

22. Leer 10 números enteros, almacenarlos en un vector y determinar cuales
son los números múltiplos de 5 y en que posiciones están.

23. Leer 10 números enteros, almacenarlos en un vector y determinar si exis­
te al menos un número repetido.

24. Leer 10 números enteros, almacenarlos en un vector y determinar en que
posición está el número con más dígitos

25. Leer 10 números enteros, almacenarlos en un vector y determinar cuan
tos de los números leídos son números primos terminados en 3.

2^8

Cap 9 - Aiuu oLos

26.Leer 10 números enteros, almacenarlos en un vector y calcularle el facto­
rial a cada uno de los números leídos almacenándolos en otro vector.

27 Leer 10 números enteros, almacenarlos en un vector y determinar a
cuanto es igual el promedio entero de los factoriales de cada uno de los
números leídos.

28. Leer 10 números enteros, almacenarlos en un vector y mostrar en pan­
talla todos los enteros comprendidos entre 1 y cada uno de los números
almacenados en el vector.

29. Leer 10 números enteros, almacenarlos en un vector y mostrar en panta­
lla todos los enteros comprendidos entre 1 y cada uno de los dígitos de
cada uno de los números almacenados en el vector

BO.Leer 10 números enteros, almacenarlos en un vector. Luego leer un en­
tero y determinar si este ultimo entero se encuentra entre los 10 valores
almacenados en el vector

31 Leer 10 números enteros, almacenarlos en un vector Luego leer un entero
y determinar cuántos divisores exactos tiene este último número entre
los valores almacenados en el vector.

32. Leer 10 números enteros, almacenarlos en un vector. Luego leer un entero
y determinar cuantos números de los almacenados en el vector terminan
en el mismo dígito que el último valor leído.

33. Leer 10 números enteros, almacenarlos en un vector y determinar a
cuánto es igual la suma de los dígitos pares de cada uno de los números
leídos.

34. Leer 10 números enteros, almacenarlos en un vector y determinar cuántas
veces en e! vector se encuentra el dígito 2. No se olvide que el dígito 2
puede estar vanas veces en un mismo número

35. Leer 10 números enteros, almacenarlos en un vector y determinar si el
promedio entero de dichos números es un numero primo.

36 Leer 10 números enteros, almacenarlos en un vector y determinar cuantos
dígitos primos hay en los números leídos.

37.Leer 10 números enteros, almacenarlos en un vector y determinar a
cuantos es igual el cuadrado de cada uno de los números leídos

299

INTKOOUCCIOS A LA LOGICV ÜL I’KOGIUMACION - OM \K I\ VN TllUOS BuitinCA

38 Leer 10 números enteros, almacenarlos en un vector y determinar si la
semisuma entre el valor mayor y el valor menor es un número primo.

39. Leer 10 números enteros, almacenarlos en un vector y determinar si la
semisuma entre el valor mayor y el valor menor es un número par

40. Leer 10 números enteros, almacenarlos en un vector y determinar cuantos
números de los almacenados en dicho vector terminan en 15.

41 .Leer 10 números enteros, almacenarlos en un vectory determinar cuantos
números de los almacenados en dicho vector comienzan con 3

42 Leer 10 números enteros, almacenarlos en un vector y determinar cuantos
números con cantidad par de dígitos pares hay almacenados en dicho
vector.

43. Leer 10 números enteros, almacenarlos en un vector y determinar en que
posiciones se encuentra el número con mayor cantidad de dígitos primos

44. Leer 10 números enteros, almacenarlos en un vector y determinar
cuántos de los números almacenados en dicho vector pertenecen a los
100 primeros elementos de la sene de Fibonacci.

45. Leer 10 números enteros, almacenarlos en un vectory determinar cuantos
números de los almacenados en dicho vector comienzan por 34.

46. Leer 10 números enteros, almacenarlos en un vector y determinar cuantos
números de los almacenados en dicho vector son primos y comienzan
por 5.

47. Leer 10 números enteros, almacenarlos en un vector y determinar en
que posiciones se encuentran los números múltiplos de 10 No utilizar el
número 10 en ninguna operación.

48. Leer 10 números enteros, almacenarlos en un vector y determinar en qué
posición se encuentra el número primo con mayor cantidad de dígitos
pares.

49. Leer 10 números enteros, almacenarlos en un vector y determinar cuantos
números terminan en dígito primo

50. Leer 10 números enteros, almacenarlos en un vector y determinar cuántos
números de los almacenados en dicho vector comienzan en dígito primo

300

Capítulo 10
Matrices

10.1. Definición

Una matriz es un conjunto de datos organizados en forma de filas y columnas
en donde para referenciar cada dato necesitaremos establecer claramente en
que fila y en que columna se encuentra Tomemos la siguiente matriz de datos
enteros como ejemplo

Nro de fila
(1) (2) (3) (4) (5) (6) -

(1) 10 32 -61 24 19 66

(2) 25 36 2 12 100 1

(3) 15 20 26 30 35 18

(4) 10 21 23 26 85 17

Nro de columna

La anterior es, pues, una matriz de números enteros cuyos datos están orga
nizados en 4 filas y 6 columnas De esta manera, para ubicar exactamente un
dato, solo tendremos que referenciar su posición en cuanto a filas y columnas
y sabremos exactamente a que dato nos estamos refiriendo Note usted que se
necesita tdnto de la ubicación exacta de la fila como de la ubicación de la co­
lumna para que no exista ninguna duda en cuanto al dato al cual nos estemos
refiriendo Por ejemplo, ¿cual es el dato que queda en la tercera fila f Usted
seguramente dirá que en la tercera fila están los datos 15, 20, 26, 30, 35 y 18
De manera que no podría preguntarse de manera individual por el dato de la
tercera fila, sino por los datos de la tercera fila

Introducción a ua i óoica di programación - Omar I\ \n Thijos Buiutica

De acuerdo a esto, la posición de un dato en una matriz siempre estará deter­
minada por el número de su fila y el número de su columna. Así, por ejemplo,
¿cuál es el dato que se encuentra en la fila 3 columna 2? Pues el número 20.

Nro. de fila i (1) {2) (3) (4) (5) (6) Nro de columna

(1)

(2)

{3)

(4)

10 32 -61 24 19 66

25 36 2 12 100 1

15 20 26 30 35 18

10 21 23 26 85 17

¿Cuál es el dato que se encuentra en la fila 2 columna 4? Respuesta: el número 12.

Nro. de fila i (1) (2) (3) {4) (5) (6) Nro. de columna

(1) 10 32 -61 24 19 66

{3)
25 36 2 Í2 100 1

(3) 15 20 26 30 35 18

(4) 10 21 23 26 85 17

¿Cuál es el dato que se encuentra en la fila 1 columna 6? Respuesta: el número 66.

Nro. de fila
(1) (2) (3) (4) (5) fs;

ií; 10 32 -61 24 19 66

(2) 25 36 2 12 100 1

(3) 15 20 26 30 35 18

(4) 10 21 23 26 85 17

Nro de columna

302

Cap IO-Mahuces

¿Cuál es el dato que se encuentra en la fila 5 columna 3? Respuesta: no existe
fila 5. Para cada una de las preguntas, usted puede notar que existe una única
respuesta, pues se ha dado exactamente la posición en fila y columna de cada
uno de los datos solicitados. Si quisiéramos mostrar en pantalla el contenido
de la primera casíllita de la primera fila de esta matriz y asumiendo que toda la
matriz se llama M, entonces simplemente diríamos:

Escríba M(1,1)

Esto significaría que escriba en pantalla el contenido de la matriz M en la fila 1
columna 1. Siempre que se use esta notación, el primer número representará
el número de la fila y el segundo representará el número de la columna. Ejecu­
tada esta orden, saldrá en pantalla el número 10. Asimismo, si se da la orden:

Escriba M{ 3,4}

estaremos mostrando en pantalla el número que se encuentra en la matriz M
en la fila 3 columna 4, o sea, que nos referimos al número 30. De esta manera,
podremos referenciar todos y cada uno de los datos almacenados en la matriz.
Sí quisiéramos escribir todos los datos almacenados en la segunda fila, enton­
ces dinamos:

Escriba M (2,1), M (2,2). M (2,3), M (2,4),M(2,5), M(2,6)

Con lo cual saldrían en pantalla los siguientes datos:

25 36 2 12 100 1

Note usted que en la orden

Escriba M (2. 1), M (2,2). M (2,3), M (2,4), M (2,5), M(2,6)

el valor que referencia la fila se mantiene constante mientras que el valor que
referencia la columna varía desde la primera hasta la última (en este caso, la
primera columna es 1 y la última es 6). De tal manera que, si quisiéramos in­
corporar variables adicionales para simplificar la escritura de los datos de la
segunda fila, podríamos decir

Para Col = 1 basta 6
Escriba M (2, Col)

Fin_Para

103

IhTTRODUCaON A U\ ! ÜGICA Dl I'ROGIUNUCtUN - OMAK |\ \N TrUÍXS BUKI TICA

0 escrito con un ciclo Mientras sena*

Col= /
Mientras Col<-6

Escriba M (2, Col)
Col = Col + 1

Fm^Mientras

He colocado unos puntos suspensivos para indicar que estos conjuntos de
Instrucciones son parte de un algoritmo. Note usted que, utilizando apropia­
damente un ciclo, su variable índice nos va a servir para referenciar progresi­
vamente las columnas de la matriz y permitir que en pantalla aparezcan todos
los números de la segunda fila.

SI quisiéramos mostrar en pantalla todos los números de todas las filas, ten­
dríamos dos formas. La primera e Ineficiente que sería

Escriba M (1, 1), M (1,2), M(1,3),M(1,4), M(1,5), M (1.6)
Escriba M (2,1), M (2,2), M (2,3), M (2,4), M (2,5), M (2,6)

Escriba M(3, 1), M (3,2), M (3,3),M (3,4), M (3,5), M(3,6)
Escriba M (4, 1), M (4,2), M (4,3), M (4,4),M (4,5), M(4,6)

Puede usted notar que, ai mostrar los datos por fila, mientras se mantiene
constante el valor de referencia de una fila se avanza en las columnas desde 1
hasta 6. Por lo tanto, en una segunda version Ineficiente de este conjunto de
Instrucciones podríamos escribir lo mismo de la siguiente forma

Para Col = 1 hasta 6
Escriba M(1, Col)

Fin_Para
Para Col = 1 hasta 6

Escriba M (2, Col)
Fin_Para
Para Col = 1 hasta 6

Escriba M (3, Col)
Fin_Para

304

Cm» IO-Mattucxs

Para Col = 1 hasta 6
Escriba M (4, Col)

Fin^Para

0 si quisiéramos escribir los datos, columna a columna, entonces se podría
utilizar:

Para Col = 1 hasta 6

Escriba M(1, Col),M(2, Col), M(3, Col),M(4, Col)
Fin_Para

Ya puede usted notar que en cualquiera de los dos casos se repiten instruc­
ciones o conjuntos de instrucciones, lo que hace suponer que con dos ciclos
anidados (o sea, adicionando un ciclo Interno a la estructura planteada) podre­
mos recorrer todos los datos de la matriz mostrándolos en pantalla.

De acuerdo a esto, podremos recorrer la matriz en mención utilizando los dos
ciclos siguientes*

ParaFil= 1 hasta 4
Para Col = I hasta 6

Escriba M(Fil, Col)
Fin_Para

Fin^Para

0 también se hubiera podido plantear de la siguiente forma (utilizando ciclos
Mierytras anidados)*

305

INTRODUCCION A I^\ I OC.ICA Di l’ROCilUMAC ION - OMAR IwnI RIJOS BuiimCS

Fll= 1
Mientras Fil< = 4

Col= 1
Mientras Col< = 6

Escribo M (Fil, Col)
Col = Col + 1

Fin_Mientras
Fit = Fil+ 1

Fin_Mientras

Deberá el lector desarrollar una prueba de escritorio de cada uno de estos
conjuntos de instrucciones con el animo de que pueda conceptualizar de una
manera más clara el funcionamiento estos ciclos anidados en unión con la idea
de una matriz.

En estos ejemplos, hemos asumido que tenemos una matriz de 4 filas y 6
columnas con datos ¿Qué sucede si en vez de querer mostrar ios datos en
pantalla quisiéramos leer datos y almacenarlos en la matriz’ Entonces lo que
tendríamos que hacer es cambiar la orden

Escriba M {FiC Col)

por Leo M (Fil, Col)

De esta manera cuando, por ejemplo, la variable Fil almacene el valor 2 y la va­
riable Col almacene el valor 3, la orden Escriba M(Fil, Col) se entenderá como
Leo un entero y guárdelo en la matriz Men la Fila Fil (que vale 2) Columna Col (que
vale 3), o sea, en la posición (2,3), sabiendo que el primer entero siempre
representa la fila y el segundo entero siempre representa la columna.

De esta forma, si utilizamos el siguiente conjunto de instrucciones-

306

Fil=l

Mientras Fil< = 4

Cap 10 Mahuccs

Col=1
Mientras Col < = 6

LeaM(Fil,Col)
Col = Col+1

Fin_Mientras
Fil = Fil+ 1

Fin_Mientras

estaremos leyendo 24 enteros y cada uno de ellos ira quedando almacenado
en una 'casillita" independiente dentro de la matriz en el orden de las filas,
es decir, primero llena todas las "casillas" de una fila, luego continúa con la
siguiente fila hasta llegar a la cuarta fila que es la ultima (considerando que se­
guimos hablando de la misma matriz 4x6 con la que hemos construido todos
los ejemplos hasta el momento)

10.2. Características de una matriz

Siempre que vayamos a utilizar una matriz es importante que tengamos en
cuenta que los datos en ella están organizados en forma de filas y columnas
Esto es importante porque ello precisamente es lo que justifica la utilización
del concepto de matriz dentro de un algoritmo Una matriz tendrá las siguien­
tes características

Nombre.- Toda matriz, por ser un conjunto de variables, deberá tener un
identificador que permita referirse a ella en cualquier momento dentro del al­
goritmo Dicho nombre se ajusta a todas las normas y reglas que existen para
cualquier variable Dentro de las particularidades del nombre de una matriz,
es importante que este sea altamente mnemonico, o sea, que fácilmente haga
referencia a su contenido Esto sera muy útil al utilizar la matriz en un determi
nado algoritmo

Tipo.- Este representa cual es el tipo de dato que se va a almacenar en cada
una de las casillitas de la matriz Es importante anotar que tanto una matriz
como un vector son conjuntos de datos homogéneos, esto quiere decir que
todos los datos almacenados en ellos deben ser del mismo tipo De tal forma
que usted no podra pensar en que tiene una matriz de 8 filas por 5 columnas
y que en las primeras cuatro filas va a almacenar datos de tipo entero y en las
otras cuatro va a almacenar datos de tipo real

■Í07

IvreODUCUON A I^\ IOGIC\ Dl I’ROC.RiWIAClON - 0^tAI< IUNTiUJOS BURITICA

Dimensión.- Se refiere específicamente a la cantidad de filas y columnas que
va a tener la matriz. Es muy útil que tenga en cuenta que"dimensionar"una
matriz no es más que determinar claramente cuántas filas y cuantas columnas
va a tener antes de comenzar cualquier orden.También es bueno que recuerde
que el hecho de que se dimensione una matriz no implica la obligatoriedad de
utilizar todas las filas o todas las columnas de ella. Por ejemplo, si usted dimen-
siona una matriz de 1000 filas por 1000 columnas, puede utilizar dentro de un
algoritmo las primeras 15 filas y 12 columnas. Esta es precisamente una de las
grandes desventajas de los arreglos, dado que no siempre vamos a saber con
certeza cuantas filas y cuántas columnas vamos a necesitar y más de una vez
vamos a pecar por exceso, debido a que es posible que dimensionemos mas
columnas o más filas de las que realmente necesitábamos, o por defecto, pues
también nos pueden hacer falta y haber dimensionado menos de las que eran.

Tamaño.- Se refiera al resultado de multiplicar la cantidad total de filas por la
cantidad total de columnas de una matriz. De esta manera, una matriz de 4 filas
por 6 columnas tendrá un tamaño de 24 posiciones. Se denomina tamaño rela­
tivo la cantidad total de posiciones que se usan de una matriz. Por ejemplo, si se
tiene una matriz 6x9 (recuerde que el primer número representa la cantidad de
filas y el segundo, la cantidad de columnas) y de ella usted solo utiliza las 4 pri­
meras filas y las 7 primeras columnas, entonces su tamaño absoluto es 6x9, o sea,
54 posiciones y su tamaño relativo es 4x7, o sea, 28 posiciones. Es obvio pensar
que el tamaño relativo es menor o igual que el tamaño absoluto, nunca es mayor.

Destinación.- Es muy importante que cuando utilice una matriz dentro de un
algoritmo sepa por qué la necesita y tenga sentido incorporar en él un conjun­
to de campos de memoria con formato de filas y columnas.

10.3. Ejemplo con matrices No. 1

Enunciado

Leer una matriz 3x4 y determinar en qué posición está el mayor numero par.

Clarificación del objetivo

Fundamentalmente, se trata de leer 12 datos enteros, almacenarlos en una
matriz que tenga 3 filas y 4 columnas y buscar en qué posición está el mayor
número par. Recordemos entonces que un número par es aquel que es divisi­
ble exactamente entre 2 y siendo N cualquier número Si N/2 *2 = /V, entonces
N es un número par asumiendo obviamente que N es además un entero para
que al realizar las correspondientes operaciones se aplique aritmética entera y
no se generen decimales.

308

Cap 10-Matricls

¿Como vamos a determinar cual es el mayor numero par’ Recorremos una a una
las posiciones dentro de la matriz y vamos preguntando en cada una de ellas sí
su contenido es par, o sea, si se cumple con la decision Si N/2 *2 = N, tomando
como N cualquier numero almacenado en la matriz (o sea, que N es un M f/,; j
para cualquier valor de / comprendido entre 1 y el tope máximo de las filas y para
cualquier valor de j comprendido entre 1 y el tope máximo de las columnas)

En caso de que algún contenido de la matriz sea par, entonces lo comparamos
con una variable que va a almacenar el mayor numero par y si dicho contenido
es mayor que el que previamente se había almacenado en esa variable, enton­
ces se cambia el dato almacenado en ella por el nuevo valor mayor que se aca­
ba de encontrar Al tiempo que seleccionamos el mayor par que encontremos,
vamos almacenando su posición en dos variables, debido a que tenemos que
almacenar tanto la columna como la fila del numero que encontremos

Finalizado esto, mostramos en pantalla lo que nos solicitan, que es la posición
del mayor numero par y de paso podemos decir cual era ese numero encon­
trado La variable que va a almacenar el mayor numero par ha de ser inicializa-
da en un numero muy pequeño para garantizar la efectividad del algoritmo
Pudiera ser inicializada en cero si tenemos la garantía de que todos los datos
leídos van a ser positivos Para efectos de garantizar la efectividad de este al­
goritmo, vamos a miciahzar dicha variable con el numero -30000, un numero
verdaderamente pequeño

Algoritmo

Algoritmo Ejem_Matriz_ 1
Variables

Entero M(3,4), //Almacenara los 12 datos leídos
Fil, //Se utilizara como índice para las filas
Col, //Se utilizara como índice para las columnas
Mayor_Par, //Almacenaraelmayornumeroparhallado
Fil_Mayor_Par, //Almacenara la fila en donde se encuentra el

//mayor numero par hallado
ColJAayorJPar,// Almacenara la columna en donde se

//encuentra el mayor numero par hallado

Inicio
Escriba Digite 12 números enteros //Solicítalos 12 números
ParaFil- 1 hasta3 //y los almacena en una matriz de 3 filas por

Para Col = 1 hasta 4 //4columnas,dejandocadanumeroencada
Lea M(Fil, Col) //una de las posiciones de la matriz

309

iNrraODLTCCIÜS A 1 OGICA DI t'KOCiRy\\UCK)N - OMAR I\ \N TRIJOS BURITIC\

Fin

Fin_Para
Fin_Para

Mayor_Par =-30000 //Seinicializalavanablequevaaalmacenar
//el mayor numero par en un número muy muy
//pequeño

Para Fil = 1 hasta 3 //Con estos dos ocios se recorre la matriz (por
//filas) preguntando en cada posición si su
//contenido es par y además si es mayor que
//el último mayor número par encontrado

Para Col = / hasta 4
5iM(Fil, Col)/2 *2 = M (Fil, Col) Y M (Fil, Col) >Mayor_Par

Mayor_Par = M (Fil, Col) // En caso de que
Fil_Mayor_Par - Fil //sea Verdadera se
Co!_Mayor_Par=Col //almacena tanto el

//número encontrado
//comolañiayla
//columna en donde se
//encontró

Fin_Si

Fin_Para
Fin_Para
Si Mayor_Par=-30000 //Si esta venable aún almacena -30000ello

//querrá dearquelamatnzno tenía números
//pares

Escriba "No existen números pares en la matriz"
Sino //Si esta variable tiene un valor diferente se

//mostrará en pantalla no soto el número sino
//¡aposición en dondeseencontró

Escriba "Mayorpar ",Mayor_Par, "yestáen fíla"Fil, "columna", Col

Fin_St

Prueba de escritorio

Lo primero que haremos sera declarar en memoria las variables que van a ser
necesarias para el desarrollo de este algoritmo.

310

Cap 10-Matoces

Algoritmo Matnces_ 1
Variables

Entero: M(3,4),

Fil.
Col,
Mayor_Par,
Fil_Mayor_Par,
Col_Mayor_Par,

PANTALLA MEMORIA

Malnz M
(1) (2) (3) (4)

(1)

(2)

(3)

Fil—
Col-
Mayor_Par —•
Fil_Mayor Par—
Col_Mayor_Par—

A continuación, solicitamos los datos del ejercicio y procedemos a leerlos al­
macenándolos uno a uno en la matriz destinada para ello. Este almacenamien­
to se hace en el siguiente orden: se inicia un ciclo con la variable Fil que tomará
valores entre 1 y 3 para hacer referencia a cada una de las filas del vector, den­
tro de este ciclo se tiene otro ciclo en donde la variable Col tomará valores
entre 1 y 4 para hacer referencia a cada una de las posiciones que existen en
cada fila de la matriz, o sea, como quien dice, para hacer referencia a cada una
de las columnas de la matriz. Dentro de estos dos ciclos se ejecutará la orden
Lea M (Fil, Col) que significará Lea un entero y almacénelo en la matriz Men la
ñla Fil columna Col.

Inicio

Escriba "Digite 12 números enteros"

Para Fil = 1 hasta 3
Para Col = 1 hasta 4

LeaM(Fil,Col)

Fin_Para
Fin_Para

INTROUUCCIOS a L.\ 1()C.IC\ i)i PROGlUNL\CK)N-OsiAR IunTRIJOS BuiUlltA

PANTALLA

Oigite 12 números
enteros
15

MEMORIA

Matnz M
(1) (2) {3) (4)

(1)

(2)

(3)

15 Fil— 1
Col— 1
Mayor_Par —
Fil_Mayor_Par—
Col_Mayor_Par—

Se inicia la variable Fil con el valor 1 para comenzar el ciclo externo Se inicia
igualmente el ciclo interno, entonces cuando Co/valga 1, se leerá un entero
(supongamos que es el número 15) y se almacenara en la matriz M en la fila 1
columna 1.

PANTALLA

Oigile 12 números
enteros
15
7

MEMORIA

Matnz M
(1) (2) (3) (4)

0)

(2)

(3)

15 7 Fil—. 1
Col-4 2
Mayor_Par —
Fil_Mayor_Par—
Col_Mayor_Par—

Cuando Col valga 2, se leerá otro entero (supongamos que es el número 7) y se
almacenará en la matriz M en la fila 1 columna 2. Recuerde que estamos eje­
cutando el ciclo interno, pues solo volvemos al ciclo externo cuando el interno
haya terminado.

PANTALLA MEMORIA

Digile 12 números Matriz M
enteros (1) (2] (3 (4:
15
7 (1) 15 51 Fll^ 1
51 Col-4 2 3

(2) Mayor Par-»
Fil Mayor Par—

(3) Col_Mayor_Par—

312

C\p lO-M/vmiCES

Cuando Col valga 3, se leerá otro entero (supongamos que es el número 51) y
se almacenará en la matriz M en la fila 1 columna 3.

MEMORIA

Matnz M
(1) (2) (3) (4)

(1) 15 7 51 16 Fil—. 1
Col—4- 3 3 4

(2) Mayor_Par —
Fil Mayor Par—

(3) Col_Mayor_Par—

Cuando Col valga 4, se leerá otro entero (supongamos que es el número 16)
y se almacenará en la matriz M en la fila 1 columna 4. Con esto finalizaríamos
el almacenamiento de datos en una fila (por eso es que se dice que estamos
recorriendo la matriz por filas). Como ya llegamos al tope final del ciclo interno
pues este iba a generar números entre 1 y 4 utilizando la variable Col como
índice, entonces nos salimos del ciclo interno y vamos al ciclo externo e in­
crementamos en 1 el contenido de la variable Fil (o sea, que esta queda con el
valor 2), con lo cual comenzaríamos a llenar la segunda fila de la matriz.

PANTALLA MEMORIA

Digite 12 números
enteros
15
7
51
16
11

Matriz M
(1) (2) (3) (4)

(1) 15 7 51 16 Fil—4 2
Col- 1

(2) 11 Mayor_Par —
Fil Mayor Par—

(3) Col_Mayor_Par—

Se incremente en 1 el contenido de la variable Fil y se reinicia el ciclo interno,
o sea, que la variable Col comienza de nuevo con el valor 1. De esta manera,
al ejecutar la orden de lectura y asumiendo que el valor leído fuera el número
11, este se almacenaría en la matriz M en la fila 2 columna 1 Luego de esto,
incrementamos en 1 el contenido de la variable Col.

313

It^KODUCClÓN A U\ IÓGICA DI 1‘ROGIUMACIÓN - OmAK I\’ÁN TUUOS. BuRITICÁ

PANTALLA MEMORIA

Digite 12 números Malnz M
enteros (1) (2) {3 (4;

7 (1) 15 7 51 16 Fil^4 2
51 Col—4 2
16 (2) 11 23 Mayor Par —•
11 Fil Mayor Par—

(3) Col_Mayor_Par—

Cuando la variable Col sea igual a 2, entonces se leerá un dato entero {suponga­
mos que es el número 23) y se almacenará en la matriz M en la fila 2 columna 2.

PANTALL A

Digite 12 números
enteros
15
7
51
16
11
23
25

MEMORIA

(1)
Vatnz M
(2) (3 (4)

(1) 15 7 51 16 Fil—.4 2
Col—4 3 3

(2) 11 23 25 Mayor_Par —
Fil Mayor Par—

(3) Col_Mayor_Par-

Cuando la variable Col sea igual a 3, entonces se leerá un dato entero (suponga­
mos que es el número 25) y se almacenará en la matriz M en la fila 2 columna 3.

PANTALL A

Digite 12 números
enteros
15
7
51
16
11
23
25
10

MEMORIA

Matnz M
(1) (2) (3) (4)

(1)

(2)

(3)

15 7 51 16 Fil-^4 2
Col—4 3 3 4
Mayor_Par —
FiI_Mayor_Paf—
CoI_Mayor_Par—

11 23 25 10

Cuando la variable Col sea igual a 4, entonces se leerá un dato entero (supon­
gamos que es el número 10) y se almacenará en la matriz M en la fila 2 columna
4. En este momento, se habrá llegado al tope del ciclo interno y se vuelve al
ciclo externo para incrementar en 1 el contenido de la variable FII. Volvemos
entonces a iniciar el ciclo interno, o sea, que la variable Col volverá a tomar
valores desde 1 hasta 4.

314

Cap. 10-Matricls

PANTALLA

DIgKe 12 números
enteros
15
7
51
16
11
23
25
10
9

MEMORIA

Matriz M
(1) (2) (3) (4)

(1)

(2)

(3)

15 7 51 16 R—.4 a 3
Col—1
Mayor_Par —
Fil Mayor Par—»
Col_Mayor_Par—

11 23 25 10

9

Cuando Co/valga 1, entonces se leerá un dato entero (supongamos que es 9)
y se almacenará en la matriz M en la fila 3 columna 1. Incrementamos en 1 el
contenido de la variable Col y volvemos a leer un dato.

PANTALLA MEMORIA

Matnz M
(1) (2) (3) (4)

(1)

(2)

(3)

15 7 51 16 Fil_4 2 3
Col-. 4 2
Mayor_Par —•
Fil_Mayor_Par-»
Col_Mayor_Par—•

11 23 25 10

9 38

Cuando Col valga 2, entonces se leerá un dato entero (supongamos que es 38)
y se almacenará en la matriz M en la fila 3 columna 2. Incrementamos en 1 el
contenido de la variable Col y volvemos a leer un dato.

PANTALLA MEMORIA

Matriz M
(1) (2) (3) (4)

(1)

(2)

(3)

15 7 51 16 Fil—4 3 3
Col-» 4 2 3
Mayor_Par -•
Fil_Mayor_Par-»
Col_Mayor_Par-»

11 23 25 10

9 36 54

Cuando Col valga 3, entonces se leerá un dato entero (supongamos que es 54)
y se almacenará en la matriz M en la fila 3 columna 3. Incrementamos en 1 el
contenido de la variable Col y volvemos a leer un dato.

315

INTRODUCCION \ L,\ LOGICX DI i’ROOR/\M\ClüN - OmAR IwN TrUOS BURmCA

PANTALLA

25
10
9
38
54
22

MEMORIA

Malnz M
(1) (2) (3 (4)

ÍD 15 7 51 16 Fil—4- 2 3
Col—4 2 3 4

(2) 11 23 25 10 Mayor_Par —
Fil Mavor Par—

(3)
9 38 54 22

Col_Mayor_Par-

Finalmente, cuando Col valga 4, entonces se almacenara el dato leído que asu
mimos es el numero 22 En ese instante terminaremos el ciclo interno, pues
hemos llegado al tope de este ciclo y también hemos llegado al tope del ciclo
externo, razón por la cual continuamos con la instrucción que esta después del
ciclo Para externo

Inicializamos la variable Mayor_Par con el numero -30000, dado que en este
numero se va a almacenar el mayor numero par almacenado en la matriz, en
tonces lo iniciamos con un valor muy pequeño para poder realizar unas com
paraciones efectivas Para ello, debemos tener la certeza de que el numero
-30000 no fue digitado entre los números leídos Vamos a asumir que en nin
gun momento y bajo ninguna prueba de escritorio se leerá el numero -30000
como parte de los números leídos

Seguidamente, daremos inicio a un ciclo, utilizando la variable Fi/como índice,
que va a tomar valores entre 1 y 3 {de 1 en 1), y dentro de este ciclo generamos
otro ciclo utilizando la variable Col como índice, que va a tomar valores entre 1
y 4 De esta manera, establecemos los topes de las variables que van a permitir
que se recorra la matriz por filas En cada posición vamos a preguntar si su con
tenido es par y si ademas es mayor que el ultimo numero par encontrado De
ser así, almacenamos no solo el numero encontrado, sino la fila y la columna en
donde se encuentra dicho numero, es decir, su posición exacta

Mayor_Par = -30000
Para Fil- 1 hasta 3
Para Col = 1 hasta 4

Si M (FiI, CoD/2 *2 = M (FiI, Col) Y M (Fil, Col) > Mayor_Par
Mayor_Par=M (Fil, Col)
FiLMayor_Par-Fil
Col_Mayor_Par - Col

316

Cap 10-Matrices

Fin_Si
Fin_Para

Fin_Para

PANTALLA MEMORIA

Matnz M
(1) (2) (3) (4)

(1) 15 7 51 16 Fil —1
Col—1

(2) 11 23 25 10 Mayor_Par — -30000

(3)
9 38 54 22

RI_Mayor_Par—
Co1_Mayor_Par—

Cuando la variable F//valga 1 y la variable Co/valga 1,1a decisión

SiM(Fil,Col}/2*2 = M(Fil,Col)YM(FilXol)>Mayor_Par

se convertirá en

SiM(K1)/2*2^M(L 1)YM(1,1)>Mayor_Par

Que a su vez es

Sí 15/2*2=15Y15>-30000

Vemos que tanto la primera decisión como la segunda son Falsas, dado que 15
no es par y además no es mayor que -30000. Por lo tanto, incrementamos en
1 el contenido de la variable Col que corresponde al índice del ciclo interno y
volvemos a tomar la decisión.

PANTALLA MEMORIA

Malriz M
(1) (2) (3) (4)

(1) 15 7 51 16 Fil—1
Col-4 2

(2) 11 23 25 10 Mayor_Par — -30000

(3) Fil Mayor Par—
9 38 54 22 Col_Mayor_Par-»

317

IhrreODUCCIÜS VU\LÜG1C\DI l‘ROGIL\MACION-ONUnIUNTRIJOSBUKmC\

Cuando la variable Fil valga 1 y la variable Col valga 2, la decision

SiM (FiI, Col)/2 *2 = M (Fil, Col) YM (Fil, Col) > Mayor_Par

se convertirá en

SiM{1,2)/2^2 = M(l,2)YM(l,2)>Mayor_Par

Que a su vez es

Si7/2*2 = 7Y7>-30000

Vemos que tanto la primera decision como la segunda son Falsas, dado que 7
no es par y ademas no es mayor que -30000 Por lo tanto, incrementamos en
1 el contenido de la variable Col que corresponde al índice del ciclo interno y
volvemos a tomar la decision

PANTALLA MEMORIA

Malnz M
(1) (2) (3) (4)

(1) 15 7 51 16 Fil—1
Col—4 2 3

(2)
11 23 25 10

Mayor_Par — -30000

(3)
9 36 54 22

Fil_Mayor_Par—
Col_Mayor_Par—♦

Cuando la variable Fil valga 1 y la variable Col valga 3. la decision

SiM(Fil, CoD/2 *2 = M(Fil, Col) YM(Fil, Col) > Mayor^Par

se convertirá en

SiM(U3)/2*2 = M(K3)YM(1,3)> Mayor^ar

Que a su vez es

5i5l/2*2 = 51Y5l> 30000

Vemos que tanto la primera decision como la segunda son Falsas, dado que 7
no es par y ademas no es mayor que -30000 Por lo tanto, incrementamos en
1 el contenido de la variable Col que corresponde al índice de) ciclo interno y
volvemos a tomar la decision

318

Cap 10 Matriccs

PANTALLA MEMORIA

Mainz M
(1) (2) (3) (4)

(1) 1S 7 51 16 Fil^1
Col—4- 2 3-4

(2) 11 23 25 10 Mayor_Par-* 30000

(3)
9 38 54 22

Fil_Mayor_Par—•
Col_Mayor_Par—

Cuando la variable Fil valga 1 y la variable Col valga 4, la decision

SiM(Ñl,Col}/2*2-M(Fil,Col)YM(Fil,Col)> Mayor^Par

se convertirá en

SiM(1,4}/2*2 = M(h4)YM(l,4}>Mayor_Par

Que a su vez es

Si 16/2*2= 16Y16 >-30000

Podemos notar entonces que el numero 16 es par y ademas es mayor que
el numero -30000 (tomando como base la recta de números enteros), por lo
tanto, como ambas condiciones son verdaderas, entonces toda la decision es
verdadera, dado que están unidas a través de un operador booleano Y Por lo
tanto, ejecutamos las ordenes

Mayor_Par=M (Fil, Col)
Fil_Mayor_Par = Fil
Col_Mayor_Par - Col

Que, tomando los valores correspondientes de Ftl y Col, se convertirán en

Mayor_Par= 16
Fil_Mayor_Par = 1
Col_Mayor_Par - 4

En este instante, hemos llegado al tope de Col (que era 4), por lo tanto, nos
salimos al ciclo externo e incrementamos en 1 el contenido de la variable Fil
para volver a reiniciar el ciclo interno desde 1 hasta 4

319

INTRODUCCION \ l^\ LOGIC\ Or I ROCRAMACION - OmAK Iun TIUJOS BU1UTIC\

PANTALLA MEMORIA

Malnz M
(1) (2) (3 (4)

(1) 15 7 51 16 Fil- + 2
Col— 1

(2)
16 11 23 25 10

Mayor_Par —30000

(3) 9 38 54 22 Fil_Mayor_Par— 1
Col_Mayor_Par— 4

Cuando la variable Fil valga 2 y la variable Col valga 1, la decision

SiM(Fil,Col}/2*2 = M{Fil,Col)YM(Fil,Col}> Mayor_Par

se convertirá en

SiM(2, 1)/2*2 = M(2, l)YM(2,l)>Mayor_Par

Que a su vez es

Si 11/2*2=11 Y11 > 16

Vemos que tanto la primera decision como la segunda son Falsas, dado que 11
no es par y ademas no es mayor que -30000 Por lo tanto incrementamos en
1 el contenido de la variable Col que corresponde al índice del ciclo interno y
volvemos a tomar la decision

PANTALLA MEMORIA

Matnz M
{1) (2) (3) (4)

(1) 15 7 51 16 Fil—4- 2
Col—+ 2

(2)
16 11 23 25 10

Mayof_Par -»-30000

(3) 9 38 54 22 Fil_Mayor_Par— 1

Cuando la variable f//valga 2 y la variable Col valga 2, la decision

SiM(Fil, Col)/2*2 = M(Fil, Col) YM(Fil, Col) > Mayor_Par

se convertirá en

320

C\p IO-Mahuces

SiMi2.2)/2*2 = Mi2.2)YM(2.2)>MQyor_Par

Que a su vez es

S\23/2*2 = 23 Y23 >16

Vemos que tanto la primera decisión como la segunda son Falsas, dado que 23
no es par y además no es mayor que -30000. Por lo tanto, incrementamos en
1 el contenido de la variable Col que corresponde al índice del ciclo interno y
volvemos a tomar la decisión.

PANTALLA MEMORIA

36
54
22

Matnz M
(1) (2) (3) (-1)

(1) 15 7 SI 16 Fil—4 2
Col-4- 3 3

(2)
16 11 23 25 10 Mayor_Par — -30600

(3) 9 38 54 22 Fil_Mayor_Par—• 1
Col_Mayor_Par— 4

Cuando la variable F//valga 2 y la variable Col valga 3, la decisión

Sí M (Fil, Col}/2 *2 = M (Fil, Col) YM (Fil, Col) > Mayor_Par

se convertirá en

SiM(2,3)/2*2 = M(2,3)YM(2,3)>Mayor_Par

Que a su vez es

Si25/2^2 = 25Y25> 16

Vemos que tanto la primera decision como la segunda son Falsas, dado que 25
no es par y además no es mayor que -30000. Por lo tanto, incrementamos en
1 el contenido de la variable Col que corresponde al índice del ciclo interno y
volvemos a tomar la decisión.

32!

INTRODUCCION A U\ 1 ÜOICA DL l'KOüRANUClüN - OmaR h \N TRUOS BurITICA

PANTALU MEMORIA

Matnz M
{1) (2) (3 (4)

(1) 15 7 51 16 Fil~.+ 2
Col- 4 2 3-4

(2)
16 11 23 25 10 Mayor_Par — -30000

(3) 9 38 54 22 Fil_Mayor_Par— 1
Col_Mayor_Par— 4

Cuando la variable Fil valga 2 y la variable Col valga 4, la decisión

SiM(Fii CoD/2 *2 = NI(Fii Col) YM(Fil, Col) > Mayor_Par

se convertirá en

SiM(2,4}/2*2 = M(2,4)YM{2,4)>Mayor_Par

Que a su vez es

5/70/2*2= 10Y10>16

Podemos notar que el número 10 es par, o sea, que la primera decisión es
verdadera, pero la segunda decision es Falsa, dado que el número 10 no es
mayor que el número 16, por lo tanto, como están unidas con un operador
booleano Y y según este para que toda la condición sea Verdadera tendrían
que ser Verdaderas sus partes, entonces toda la condición es Falsa. Por lo tanto,
nos salimos del ciclo interno, debido a que ya llegamos a su tope, y volvemos
al ciclo externo a incrementar en 1 el contenido de la variable Fil. Con esto
volvemos a entrar y ejecutar el ciclo interno iniciando la variable Col en 1 y
llevándola de 1 en 1 hasta 4.

PANTALLA MEMORIA

(1)
vlatnz M
(2) (3 (4)

54
22

ÍD 15 7 51 16 Fil—4 2 3
Col— 1

(2)
16 11 23 25 10

Mayor_Par — -30000

Í3) 9 38 54 22 Fil_Mayor__Par— 1
Col_Mayot_Par— 4

322

Cap 10-Matriccs

Cuando la variable Fi¡ valga 3 y la variable Col valga 1, la decisión

SiM(Fil, Col)/2*2 = M(Fil,Col}YM(Fil, Col) > Mayor_Par

se convertirá en

StM(3,1)/2*2 = M(3, l)YM(3,l}>Mayor_Par

Que a su vez es

Si9/2*2 = 9Y9> 16

Podemos notar que el numero 9 no es par ni tampoco es mayor que 16, por lo
tanto, toda la condición es Falsa Incrementamos entonces en 1 el contenido
de la variable Col.

PANTALLA MEMORIA

Malnz M
(1) (2) (3) (4)

(1) 15 7 51 16 Fil^4 2 3
Col—4 2

(2)
16

11 23 25 10 Mayor_Par — -30000

(3) 9 36 54 22 ñl_Mayor_Par— 1
Col_Mayor_Par— 4

Cuando la variable Fil valga 3 y la variable Col valga 2, la decision

StM(Fil,Col)/2>^2 = M(Fil,Col)YM(FiiCol)> Mayor_Par

se convertirá en

SiM(3,2)/2*2 = M(3,2)YM(3,2}>Mayor_Par

Que a su vez es

St38/2*2 = 38Y38>16

Podemos notar que el número 38 es par y a la vez es mayor que el número 16,
por lo tanto, ejecutamos las órdenes*

Mayor_Par = M (Fil, Col)
Fil_Mayor_Par - Fil
Col_Mayor_Par = Col

323

INTRODUCCION A L.\ I OGICA DI PROGRAMACION - 0M/\R I\ \N TrIJOS BURITICA

Que tomando sus correspondientes valores se convierten en:

Mayor_Par = 38
Fil_Mayor_Par=3
Col_Mayor_Par = 2

Y volvemos a Incrementar en 1 el contenido de la variable Col.

PANTALLA MEMORIA

Matriz M
(1) (2) (3 (4)

(1) 15 7 51 16 Fil—.4- 2 3
Col-4 2 3

(2) 11 23 25 10 Mayor Par—30000 16
38

(3) Fil Mayor Par— 4 3
9 36 54 22 Co1_Mayor_Par— 4 2

Cuando la variable Fil valga 3 y la variable Col valga 3, la decisión

5/ M (Fil, Coi)/2 *2 = M (Fil, Col) YM(Fil, Col) > Mayor_Par

se convertirá en

SiM(3,3)/2*2 = M(3,3}YM(3,3}>Mayor_Par

Que a su vez es

Si54/2 *2 = 54 Y54>38

Como el número 54 es par y además es mayor que 38, entonces se ejecutan
las órdenes:

Mayor_Par=^M (Fil, Col)
Fil_Mayor_Par - Fil
Col_Mayor_Par - Col

Que tomando sus correspondientes valores se convierten en:

324

Mayor_Par-54
Fil_Mayor_Par ~ 3
Col_Mayor_Par - 3

Cap lO-MATWCts

Y volvemos a incrementar en 1 el contenido de la variable Col.

PANTALLA MEMORIA

Matriz M
(1) (2) (3 (4)

(1) 15 7 51 16 Fil—.4- 2 3
Col—I- 2 3 4

(2) 11 23 25 10 Mayor Par—-30000 46
38 54

(3) Fil Mayor Par- 4 3 3
Col_Mayor_Par- 4 3 3

Cuando la variable Fil valga 3 y la variable Col valga 4, la decisión

Si M (FiI, CoI)/2 *2 = M f ñ/, Col) YM (Fil, Col) > Mayor_Par

se convertirá en

StM(3,4)/2*2 = M(3,4)YM(3,4)> Mayor_Par

Que a su vez es

5/22/2 *2 = 22/22 >54

La primera decision es verdadera, debido a que el número 22 es par, pero la
segunda condición es falsa, pues 22 no es mayor que 54; entonces, debido a la
presencia del operador booleano Y, toda la expresión es Falsa Con esto hemos
llegado al tope del ciclo interno y también hemos llegado al tope del ciclo
externo; entonces, a continuación, nos salimos de ambos ciclos y ejecutamos
la orden que se encuentra después del Fin_Para del ciclo externo.

Preguntamos entonces por el contenido de la variable Mayor_Par, debido a
que, SI esta variable todavía almacena el número -30000 (y teniendo nosotros
toda la segundad de que este número en ningún momento fue digitado), esto
querrá decir que en toda la matriz no había números pares y, por lo tanto, así lo
avisaremos al usuario del programa En este caso, esta decisión es Falsa, debido
a que el contenido actual de la variable Mayor_Par es 54, entonces se ejecuta
el correspondiente Sino de esta pregunta. Por tanto, escribiríamos en pantalla
la información solicitada desde el principio tomando los últimos valores de las
variables correspondientes.

INTRODUCCION A 1^ LOGICA Di I■ROGIU\^t\CION - OmaU IunTrUOS BUUmCA

Si Mayor_Par = -30000
Escriba "No existen números pares en la matriz"

Sino
Escriba "Mayor par es" Mayor_Par, "y esta en fila", Fil, "columna"

Fin_Si

PANTALU

38
54
22

El mayor par es 54 y esta
en la Illa 3 columna 3

MEMORIA

Matriz M
(1) (2) (3 (4)

(1) 15 7 51 16 Fil—.4- 2 3
Col—4 2 3 4

(2) 11 23 25 10 Mayor Par—30000 46
38 54

(3) Fil Mayor Par— 4 3 3
9 38 54 22 Col_Mayor_Par—4 2 3

Finalmente, encontramos el fin del algoritmo y con ello termina nuestra prue­
ba de escritorio.

Fin

Ahora podemos ver que si los datos leídos hubieran sido los que aparecen
en la matriz. El algoritmo, efectivamente, hubiera detectado el mayor par y la
posición en la cual se encontraba, pues el número 54 es el mayor par (de este
grupo de números) y realmente se encuentra en la fila 3 columna 3 de esta
matriz. Por lo tanto, podemos decir que este algoritmo esta correcto.

10.4. Ejemplo con matrices No. 2

Enunciado

Leer una matriz 4x4 y determinar a cuanto es igual la suma de los elementos
que se encuentran en su diagonal

Clarífícadón del objetivo

Se define como matriz cuadrada toda aquella matriz en donde la cantidad
de filas es igual a la cantidad de columnas De define como diagonal de una
matriz todos los elementos que se encuentran en posiciones en donde la fila
es Igual a la columna. Por ejemplo, si tenemos la siguiente matriz M de 4x4 (o
sea, de 4 filas y 4 columnas)

326

Cap 10-Matiuces

Los números 18, 54, 58, 32 corresponden a los que están ubicados en la dia­
gonal de esta matriz. ¿Por qué? Pues sencillamente porque son los números
ubicados en las posiciones en donde la fila es igual a la columna El número 18
esta en la fila 1 columna l,el número 54 está en la fila 2 columna 2, el número
58 está en la fila 3 columna 3 y el número 32 está en la fila 4columna 4. Por esta
razón es que se hablaba al principio de las matrices cuadradas, dado que son
las que realmente tienen definida la diagonal.

Columnas.. >

Filas > {1)

(2)

(3)

(4)

(1) (2) (3) (4)

18 16 25 24

15 54 65 12

54 45 SB 21

45 41 74 32

De acuerdo a lo dicho anteriormente, nuestro algoritmo busca realmente leer
todos los datos de una matriz de datos enteros de 4 filas por 4 columnas y
sumar solo los elementos que se encuentran en la diagonal. Luego lo que pri­
mero vamos a hacer será leer todos y cada uno de los datos que han de quedar
almacenados en la matriz generando dos ciclos anidados: uno externo que
permita referenciar las filas y otro interno que permita referenciar las columnas
(dentro de cada fila). Cuando ya la matriz esté completamente llena de datos, o
sea, cuando ambos ciclos hayan terminado, entonces procederemos a generar
un ciclo con una sola variable que vaya desde 1 hasta 4 y con esa misma va­
riable vamos a referenciar filas y columnas al mismo tiempo. De manera que si
esa es la variable Ind, entonces cada elemento a sumar (en un acumulador por
supuesto) será el elemento M (Ind, Ind), entonces con ello estaremos referen-
ciando solamente a los elementos de la diagonal.

327

IfíTRODUCCION A L-\ LOGICA OI l’ROGRASWCION - OMAR I\ \N TrPJOS DuRITICA

Cuando se haya realizado el recorrido, entonces todo lo que tenemos que ha­
cer es mostrar en pantalla el valor acumulado en la variable correspondiente y
con ello habremos cumplido con nuestro objetivo

Algoritmo

Programa Suma_Diagonal
Variables

Entero. M(4,4),

l.
l
Diag

Inicio

//Matriz en donde se almacenaran los
//datos leídos
//índice de referencia
//índice de referencia

// Variable que almacenara el resultado
// de sumar todos los elemen tos de la
//diagonal

Escriba "Digite 16 números enteros"
1= I

Mientras l<= 4

J=1

Mientras J <= 4

LeaM(IJ)

J=J+1

Fin_Mientras
1 = 1+ I

Fin_Mientras
Diag = 0
1= 1

Mientras l<= 4

//Solicita los datos a leer
//Inicializa la variable I en el
//índice de la primera ñla
//Mientras no haya llegado a la
//última fíla

// Comienza en la primera
//posición dentro de la ñla
//Mientras no haya llegado a la
//ultima columna dentro de la ñla
//Lea un entero y almacénelo
//en la matrizM Columna IFila J

//Pase a la siguiente columna dentro de

//la fíla
//Fin del ciclo interno
//Pase a la siguiente fíla
//Fin del ciclo externo
//Inicialice la variable Diag en 0

//Inicialice la variable I en /
//Mientras no haya llegado a lo

//ultima posición

328

Cap IO-Mattuccs

Diag = Diag + M(I,I) //Acumule en la variable Diag
//la suma de los elementos de
//la diagonal

1 = 1+1 //Pase a la siguienteposiaon
Fm_Mientras //Fin delaclo de recorrido

//Muestreeiresultadosolicitado
//en pantalla

Escriba 'la suma de los elementos de la diagonal es igual a”, Diag
Fin //Fin del algoritmo

Prueba de escritorio

Al igual que todos los algoritmos, lo primero que hacemos es declarar en me­
moria todas las variables que vamos a necesitar.

Programa Suma_Diagonal
Variables

Entero M(4,4),l,J,Diag

PANTALLA MEMORIA

1)
Matnz M

19) i:\) (4)

(1) l >

(2) J >

(3) Diag >

(4)

Una vez declaradas en memoria las variables que necesitamos en nuestro al­
goritmo, siguen las instrucciones

Inicio
Escriba "Digite 16 números enteros"
1= 1
Mientras l<= 4

J=1
Mientras J <= 4

ieaM(U)
J = J+ 1

329

IMHODLC CION \L\I()C.IC\D1 I’KOOKAM \CION OMAK I\\N TllUOS BURrilC \

Fin^Mientras
/ = /+ /

Fin_Mientras

Según las cuales estaríamos leyendo 16 números enteros y los estaríamos al­
macenando en cada una de las posiciones de la matriz Iniciamos, pues, la va
riable I en 1 y, mientras el contenido de esta variable sea menor o igual que 4,
vamos a desarrollar el conjunto de instrucciones que se encuentran dentro de
este ciclo Este conjunto de instrucciones comienza asignando 1 a la variable
J y, mientras el contenido de esta variable sea menor o igual que 4, se deberá
leer un dato entero y almacenarse en la matriz M en posición I columna J y
luego se deberá incrementar el contenido de la variable J en 1 Cuando se ter
mine este ciclo interno, se deberá incrementar el contenido de la variable 1 y se
deberá volver a evaluar la condición del ciclo externo De esta manera, cuando
la variable I valga 1 y la variable J valga 1, se leerá un dato entero Supongamos
que es el numero 18, luego de lo cual incrementaremos el valor de J en 1

PANTALLA

Digite 16 números
enleros
18

MEMORIA

t 1)
Matriz M

(2) (3) Í4)

(1)
18

1 > 1

{2) J > 1

(3) Diag >

(4)

Incrementamos en 1 el contenido de la variable J y volvemos a evaluar la
condición mientras J sea menor o igual que 4 Como es Verdadero, entonces
volvemos a leer otro dato y lo almacenamos en la posición correspondiente
Supongamos que el otro dato leído sea el numero 35

PANTALLA

Digile 16 números
enleros
18
35

MEMORIA

1 1)
Matriz M

Í2) (3) M 1

(1)
18 35

1 > 1

(2) J > 4- 2

(3) Diag >

(4)

330

Cap 10-Motuces

No se olvide que cada dato se almacenara en la fila 1 columna J Volvemos a
incrementar en 1 el valor almacenado en J y volvemos a evaluar la condición
de este ciclo interno Como vemos que aun es Verdadera, debido a que el valor
almacenado en J sigue siendo menor o igual que 4, entonces volvemos a leer
otro dato y lo almacenamos en la fila 1 columna 3

MEMORIA

(1 1
Malnz M

f 9 1 l'K\

(1)
18 35 10

I > 1

(2) J > 4- 2 3

(3) □lag >

(4)

De nuevo, incrementamos por ultima vez el contenido de la variable J y lee­
mos un dato para ser almacenado en la fila 1 columna 4 Supongamos que el
numero leído es el 13

PANTALLA

Digile 16 números
enteros
18
35
10
13

MEMORIA

f 1
Matriz M

i7\ m Í4l

(1)
18 35 10 14

1 > 1

Í2) J > 4 2 3 4

(3) Diag >

(4)

En este instante, al volver a incrementar en 1 el contenido de la variable J, ve­
mos que ya no se cumple la condición de que siga siendo menor o igual que 4,
por lo tanto, nos salimos de este ciclo interno para ejecutar la instrucción que
sigue después de su correspondiente Fm_Mientras

Dicha instrucción representa incrementar en 1 el contenido de la variable I,
por lo tanto, realizamos este incremento y volvemos a evaluar la condición de
dicho ciclo externo Como vemos que es Verdadera, dado que el contenido
de la variable 1 aun es menor o igual que 4, entonces volvemos a inicializar la
variable J en 1 para entrar en su correspondiente ciclo Cuando esta variable
valga 1 (de nuevo), entonces se leerá un dato entero y se almacenara en la

INTRODUCCION A LA IÓOICA DL I'ROOR,\MAUON - OMAR I\ÁN TrUOS BURmCA

fila 2 columna 1, debido a que estos son los valores de I y J respectivamente.
Supongamos que el nuevo dato leído sea 23.

’ PANTALLA

Digite 16 numeras
enteros
18
35
10
13
23

MEMORIA

(1)
Matriz M

í3 1 MI

(1)
18 35 10 14

1 > 4 2

(2)
23

J > 1

(3) Diag >

(4)

Incrementamos el valor almacenado en J en 1 y evaluamos la condición de
este ciclo. Como es Verdadera, entonces volvemos a leer otro dato (suponga­
mos que es el número 8) y lo almacenamos en la fila 2 columna 2.

PANTALLA

Oigite 16 números
enteros
18
35
10
13
23
8

MEMORIA

í 1 1
Malnz M

<2) i 3) Í41

(1)
18 35 10 14

(2)
23 8

(3)

(4)

I > 4 2

J > 4 2

Diag >

De nuevo incrementamos en 1 el contenido de la variable J y volvemos a eva­
luar la condición. Como dicho contenido sigue siendo menor que 4, entonces
volvemos a leer otro dato y lo almacenamos en la posición correspondiente.

PANTALLA MEMORIA

Digite 16 números
enteros 1 1 1

Matriz M
(2) (3) MI

18
35 (1)

18 35 10 14
1 > 4 2

10
13 (2)

23 8 11
J > 4 2- 3

8
11

(3) Dlag >

(4)

______1

332

Cap IO-Matriccs

Luego incrementamos de nuevo el contenido de la variable J en 1 y realizamos
una lectura de un dato que quedaría almacenado en la fila 2 columna 4. Su­
pongamos que se lee un 45.

PANTALLA

Oigite 16 números
enteros
18
35
10
13
23
8
11
45

MEMORIA

(\
Matnz M

(21 (3 1 (41

(1)
18 35 10 14

I > + 2

(2)
23 8 11 45

J >42-3 4

(3) Diag >

(4)

En este momento, al volver a incrementar en 1 el contenido de la variable J,
vemos que ya no cumple la condición de seguir siendo menor o igual que 4
(pues valdría 5) y entonces nos salimos de este ciclo interno. Incrementamos
en 1 el contenido de la variable l y volvemos a evaluar la condición del ciclo
externo. Como dicho contenido es menor o igual que 4, entonces entramos al
ciclo interno, es decir, volvemos a inicializar la variable J en 1 y como dicho va­
lor es menor o igual que 4, entonces leemos un dato entero y lo almacenamos
en la fila 3 columna 1.

PANTALU MEMORIA

(1
Matriz M

f?1 Í31 Í4 1

(1)
18 35 10 14

l.> 4 3 3

(2)
23 6 11 45

J > 1

(3) 11 Diag >

(4)

Incrementamos el contenido de la variable J en 1 y evaluamos la condición del
ciclo interno. Como el valor almacenado en J es menor o igual que 4, volvemos
a leer un dato (supongamos que es el número 88) y lo almacenamos en la fila
3 columna 3.

33.3

lNTROI)t'CCK)\ A Iw\ LOGICA DL I’ROt.RAMACION - OMAR I\ \N TiUJOi BuiUTICA

PANTALLA MEMORIA

()
Matriz M

(?) r31 M t

(1) 16 35 10 14

(2) 23 6 11 45

(3) 11 68

(4)

I > 4 2 3

J > 4 2

Diag >

De nuevo incrementamos en 1 el contenido de la variable J y al evaluar la con­
dición del ciclo Interno vemos que sigue siendo menor que 4. por lo tanto,
leemos otro dato y lo almacenamos en la posición correspondiente.

PANTALLA MEMORIA

Matriz M
i 1 1 í) ¡ 3 t Í4 t

(1)
18 35 10 14

(2) 23 6 11 45

(3) 11 86 16

(4)

I > 4 2 3

J > 4 2 3

Diag >

Se incrementa el contenido de la variable J y se evalúa la condición del ciclo
Interno. Como es Verdadera, entonces leemos otro dato y lo almacenamos en
la matriz M en la fila 3 columna 3.

l 1)
Matriz M

1?) Í3 1 (A)

(1)
18 35 10 14 1 > 4 2 3 4

(2)
23 6 11 45

J > 1

(3) 11 68 16 51 Diag >

(4)

Al volver a incrementar en 1 el contenido de la variable J, vemos que la condi­
ción deja de ser Verdadera y, por lo tanto, nos salimos de este ciclo interno e

334

Cap 10-Matrices

incrementamos en 1 el contenido de la variable I, después de lo cual evalua­
mos la condición del ciclo externo. Como el valor almacenado en la variable
I sigue siendo Verdadero, entonces volvemos a inicializar la variable J en 1 y
volvemos a leer un dato entero que, para este caso, vamos a asumir que es el
número 13 y lo almacenamos en la fila 4 columna 1.

PANTALLA MEMORIA

Malnz M
m 17) íi íA\

(1)

(2)

(3)

(4)

18 35 10 14
1 > 4 2 3 4

J > 1

Diag >

23 8 11 45

11 86 16 51

13

Realizamos las mismas operaciones para llenar la cuarta fila de manera que se
obtenga llenar la matriz completamente.

PANTALU

PANTALLA

MEMORIA

1)
Matriz M

(7) Í3 l IA\

(1)
16 35 10 14 1 > 4 a 3 4

(2)
23 8 11 45

J > 4 2

(3) 11 66 16 51 Diag >

(4) 13 22

MEMORIA

Malnz M
í) ¡ 7 \ Í3 l MI

(1)
18 35 10 14

(2)
23 8 11 45

{3} 11 88 16 51

(4) 13 22 57 35

I > 4- 2 3 4

J >42-3 4

DIag >

115

Introducción A l,\ loc.ic\ dl i’rogr/\macion - Osuvu InanTkuos BuamcA

PANTALLA MEMORIA

Matnz M
t \ 1 1 1 3 t 141

(1)
18 35 10 14

(2)
23 8 11 45

(3) 11 68 16 51

(4) 13 22 57

I >4-334

J >4-2-3 4

Diag >

Teniendo ya la matriz llena, vemos que, al incrementar en 1 el contenido de la
variable J, esta ya no es menor o igual que 4, razón por la cual nos salimos al
ciclo externo e incrementamos de nuevo el valor almacenado en la variable I,
con lo cual vemos igualmente que dicho valor no es menor o igual que 4 por
lo cual nos salimos también de este ciclo externo. El conjunto de instrucciones
que sigue nos va a permitir reaiizar la suma de los elementos que se encuen­
tran ubicados en la diagonal de la matriz Inicializamos la variable Diag en 0 y la
variable I en 1. A continuación evaluamos la condición y vemos efectivamente
que I es menor o igual que 4, por lo tanto, realizamos la operación de suma
DÍag = Diag + M(l, I) e incrementamos en 1 el contenido de la variable I.

Diag - 0
1=1
Mientras l<= 4

Diag = D¡ag + M{l,t)
1 = 1+ 1

Fin_Mientras

PANTALLA MEMORIA

51
13
22
57
35

Matriz M
1 1) 1) Í3 1 Í4 t

(1)
18 35 10 14

(2)
23 8 11 45

(3) 11 88 16 51

(4) 13 22 57 35

I > 4- 2 3 4

J >4-2-3 4

Diag >

336

Cap 10-Matiuces

Como la variable I almacena el valor 1 entonces la expresión Diag=Diag+M(I,I)
seconvierte en D,ag = q¡qq + m(1,1)

Como e! valor almacenado en la fila 1 columna 1 de la matriz M es 18, entonces
finalmente la expresión se convierte en Diag = Diag + 18

Seguidamente incrementamos en 1 el contenido de la variable I y evaluamos
la condición de este ciclo Vemos que el valor almacenado en I es menor o igual
que 4, por lo tanto, volvemos a resolver la expresión Diag = Diag + M(I,I)

PANTALLA

22
57
35

MEMORIA

Matnz M
m (2) (31 (41

I > 1

J >

Diag > Q 16

(1)
16 35 10 14

(2) 23 6 11 45

(3) 11 86 16 51

Í4) 13 22 57 35

Como la vanable I almacena el valor 1, entonces la expresión Diag=Diag+M(I,I)
se convierte en Dtag = Diag + M(2,2)

Como el valor almacenado en la fila 2 columna 2 de la matriz

M es 8, entonces finalmente la expresión se convierte en Diag = Diag +
W quedando almacenado en la variable Diag el numero 26

Seguidamente incrementamos en 1 el contenido de la variable I y evaluamos
la condición de este ciclo Vemos que el valor almacenado en I es menor o igual
que 4, por lo tanto, volvemos a resolver la expresión Diag = Diag + M(l,l)

PANTALLA MEMORIA

(1
Malnz M

(2) (3 1_ (4 1

(1)
18 35 10 14 I > 4 2

(2) 23 8 11 45 J >

{3) 11 66 16 51 Diag > 0 46
26

(4) 13 22 57 35

317

ÍNTnODUCClON A l-\ I UOICA 1)1 l’KOQIUMACION - OmAK 1\ \N TRLIO!» BUIUTICA

Como la variable I almacena el valor 1, entonces la expresión Diag=Diag + M(I,I)
se convierte en Diag = Diag + M(3,3)

Como el valor almacenado en la fila 3 columna 3 de la matriz M es 8, entonces
finalmente la expresión se convierte en Diag = Diag + 16
quedando almacenado en la variable Diag el número 42.

Seguidamente incrementamos en 1 el contenido de la variable I y evaluamos
la condición de este ciclo. Vemos que el valor almacenado en I es menor o igual
que 4, por lo tanto, volvemos a resolver la expresión Dtag = Diag + M(I,I)

MEMORIA

Matriz M
(2) (3) (4>

(1)

(2)

(3)

(4)

18 35 10 14

23 8 11 45

11 68 16 51

13 22 57 35

Como la variable I almacena el valor4, entonces la expresión Diag=Diag+M(I,I)
se convierte en Diag-Dtag + M(4,4}

Como el valor almacenado en la fila 4 columna 4 de la matriz

M es 8, entonces finalmente la expresión se convierte en Diag = Diag + 35
quedando almacenado en la variable Diag el número 77.

Volvemos a incrementar el contenido de la variable I y vemos que ya no se
cumple la condición de que dicho contenido sea menor o igual que 4, razón
por la cual nos salimos de este ciclo y pasamos a la instrucción:

Escriba "La suma de los elementos de la diagonal es igual a", Diag

Con la cual saldrá en pantalla:

338

Caí» 10* Matrices

PANTALLA MEMORIA

í l
Matnz M

(2) (3) Í4 1

(1)
18 35 10 14

I > 4 3 3 4

{2)
23 6 11 45

J . >

(3) 11 88 16 51 DIag > 0 45
26 43

(4) 13 22 57 35 77

Después de lo cual encontramos el fin del algoritmo

Fin

Al revisar los resultados vemos que efectivamente el número mostrado en
pantalla al final es igual a la suma de los datos que quedaron ubicados en la
diagonal de la matriz, por lo tanto, podemos dar fe de que este algoritmo cum­
ple con el objetivo planteado que era Leer una matriz 4x4 y determinar a cuánto
es igual la suma de los elementos que se encuentran en su diagonal.

10.5. Ejemplo con matrices No. 3

Enunciado

Leer una matriz 4x3 y determinar cuantas veces se repite el mayor de los nú­
meros almacenados en ella.

Clarificación del objetivo

Ya sabemos que deben leerse 12 números enteros e irse almacenando uno a
uno en las diferentes posiciones de la matriz. Para ello, y tal como lo hemos
hecho en los casos anteriores, utilizamos dos ciclos anidados que nos permitan
recorrer por filas la matriz ai tiempo que vamos leyendo datos enteros y los
vamos almacenando en cada una de sus posiciones.

Luego de tener "cargada" la matriz, buscamos cuál es el mayor dato almacena­
do en ella y, por lo tanto, para ello, utilizamos una variable que inidaiizamos en
un valor muy pequeño y contra ella vamos comparando uno a uno los datos
almacenados en la matriz Cada vez que encontremos que un dalo es mayor
que el numero almacenado en la matriz, entonces deberemos guardar en di­
cha variable ese ultimo número mayor encontrado. Este proceso lo haremos al
tiempo que recorremos toda la matriz desde la primera fila hasta la última fila
posición a posición.

319

INTRODUCCION A LA IOGICA DI PROGRAM \CJON - 0\UR I\ \N TrIJOS BURITICA

Cuando ya se haya recorrido toda la matriz y tengamos almacenado el número
mayor, entonces volveremos a recorrer la matriz para poder contar cuantas
veces se repite dicho número en ella, evaluando si cada dato de la matriz es
igual al dato almacenado en la variable que nos va a guardar el mayor número
encontrado. Es importante que tenga en cuenta que este proceso solo se po­
dra realizar cuando se tenga completamente identificado el número mayor
Quiero decir con esto que no podemos contar la cantidad de veces que se
encuentra el mayor al tiempo que lo buscamos.

Algoritmo

Programa Cuenta_Mayor
Variables

Entero: M (4,3),

!.
J,
May^Num,

Cont_May

Inicio
Escriba "Dlgite 12 números enteros"

Para i = 1 hasta 4

ParaJ= 1 hasta 3

LeaM(l,J)

Fm_Para

Fin_Para

May_Num - -30000

//Matriz que almacenara los números
//leídos
//índice de referencia

//índice de referencia

// Variable que almacenará el mayor de
//los números almacenados en la

//matriz
// Variable que almacenara la cantidad
//de veces que se encuentra el mayor
// valor en la matriz

//Solicita los datos que va a leer
// Con este índice se van a
// referenciar las ñlas
// Con este índice se van a
//referendarios columnas
//Lea un dato en tero y almacénelo

//en la matriz Men la fíla I

//columna J
//Fin del ciclo interno
//Fin del ciclo externo
//Inicializamosesta variable en un

// valor muy muy pequeño

340

Cap 10-Matrices

Para I = I hasta 4

ParaJ= 1 hasta 3

Si M(I,J)> May_Num

//en la variable May_Num

// Desde la primera hasta la
//última ñla
//Desde la primera hasta la
//ultimaposición en cada fíla
//Si algún valoren la matriz es
//mayorqueelvaloralmacenado

May_Num = M (I, J) //Entonces ese es el

//nuevo valor mayor
//Fin de la decision
//Fin del ciclo interno
//Fin del ciclo externo
//Iniaalizamos el contador en ceros
//índice que va a referenaar desde

//laprimera hasta la cuarta fila
//índice que va a referenaar desde
//la primera hasta la tercera fila

SiM(l,J} = May_Num //Si algún valor en la matriz es
//igual al numero
//que se encontró como mayor

Cont_May=Cont_May+1 // entonces

Fin_Si
Fin_Para

Fin_Para
Cont_May = 0
Para 1= 1 hasta 4

ParaJ= 1 hasta 3

cuéntelo

Fin_Si // Fin de la decision
Fin_Para //Fin del ciclo interno

Fin_Para // Fin del ciclo externo
//Mostrarla información soliatada

Escriba "Eínum mayores" May_Num. "y se encuentra", Cont_May, "veces"

Basado en el enunciado, no era obligatorio mostrar cual era el numero mayor que
se había encontrado, pero teniéndolo a la mano no esta de mas mostrarlo Lo que
SI es importante mostrar en pantalla, dado que es la información que se solicita
en el enunciado, es la cantidad de veces que esta el numero mayor en esta matriz.

Prueba de escritorio

Como en todos los algoritmos, lo primero que hacemos es declararen memoria
las variables que vamos a necesitar

341

INTRODUCCION A l^U OGICA DI l’ROGRy\M \CION - 0\UR IwnTrUOS BuumC\

Programa Cuenta_Mayor
Variables

Entero M(4,3),
I,
l
May_Num,
Cont_May

PANTALLA

22
57
35

La suma de los
elementos de la diagonal
es igual a 77

MEMORIA

Malnz M
1 1 1 1) 1 3) <4)

(1)
18 35 10 14

1 > 4 3 3 4

(2) 23 8 11 45 J >

(3) 11 88 16 51 Otag > G 48
26 43

(4) 13 22 57 35 77

Solicitamos 12 números enteros y ios vamos leyendo valiéndonos de dos
ciclos anidados que nos permiten recorrer, por filas, la matriz al tiempo que
vamos almacenando cada dato en cada una de las posiciones de la matriz Este
ciclo involucra una variable que nos permite referenciar las filas y otra que nos
permite referenciar las columnas Como la variable que referenciara las filas
es el índice del ciclo externo y la variable que referenciara las columnas es el
índice del ciclo interno, entonces nuestro recorrido llenara inicialmente toda la
primera fila, luego llenara toda la segunda fila, luego llenara toda la tercera fila
y por ultimo llenara toda la cuarta fila con los datos que progresivamente vaya
digitando el usuario

Como en los ejercicios anteriores se ha hecho una prueba de escritorio al con
junto de instrucciones que nos permiten llenar de datos enteros la matriz, va­
mos a "saltarnos"esta parte del algoritmo, debido a que ya tenemos la certeza
de que si funciona y de que si nos permite llenar la matriz con datos

Inicio
Escriba "Digite 12 números enteros"
Paral= 1 hasta 4

ParaJ= 1 hasta 3
LeaM(U)

Fin^Para
Fm_Para

342

Caí» 10-Matrices

PANTALLA MEMORIA

(\
Matnz M

17) m f 4 1

O)
18 35 10 14

I >4234

(2) 23 8 11 45 J >

(3) 11 68 16 51 DIag >0 48
28 42

(4) 13 22 57 35 77

Continuando con nuestro algoritmo, inicializamos la variable May_Num con
un número muy pequeño (para este caso, hemos escogido el número -30000).
Luego de esto, vamos a generar, valiéndonos de un ciclo externo, los números
del 1 al 4 que se irán almacenando progresivamente en la variable I y que ser­
virá para referenciar la posición de las filas. Dentro de este ciclo, generaremos
otro ciclo que utilizará a la variable J como índice, la cual tomará valores entre
1 y 3 y servirá para referenciar las columnas dentro de cada fila.

Dentro del ciclo interno, preguntaremos si cada uno de los datos almacenados
en la matriz M en la fila I columna J es mayor que el valor que esté almace­
nado en la variable May_Num. Si es así, entonces dicho valor deberá quedar
almacenado en la variable May^Num. De cualquier forma, después se deberá
incrementar en 1 el contenido de J para repetir el proceso.

May_Num =-30000
Para I = 1 hasta 4

ParaJ= 1 hasta 3
Si M(I,J)> May_Num

May_Num = M(U)
Fin_Si

Fin^Para
Fin_Para

143

INTRODUCCION A U\ lOCiICA DI l*ROC.R/\M\C10N - OmAR I\AN TRUOí BuRIT1C\

PANTALLA MEMORIA

(1)
Vlatnz M

(2) (3)

(1)
1 >

(2)
J >

May_Num >
(3)

(4) Cont_May >

Cuando la variable I vale 1 y la variable J vale 1. entonces la decision 5/M(I.J)
> May_Num se convierte er\5iM(1, 1)> May_Num, o sea, Si 5 > -30000.
Como es Verdadero, entonces ejecutamos la orden Moy_Num = M (I, J), que
se convierte en May_Num = 5. Incrementamos en 1 el valor almacenado en la
variable J y como su nuevo valor sigue siendo menor o igual que 3, entonces
volvemos a evaluar la decision

PANTALLA

Digite 12 números
enteros
5
23
12
14
21
5
23
22
21
23
J2_____________

MEMORIA

Matriz M
(1) (2) (3)

(1)

(2)

(3)

(4)

5 23 12 I > 4 3 3 4

J > 4 3 3

May_Num >

Cont_May >

14 21 5

23 22 21

23 12 10

Cuando la variable I vale 1 y la variable J vale 2, entonces la decisión SiM(l, J)
> May_Num se convierte en Si M (1,2) > May_Num, o sea, Si 23 > 5
Como es Verdadero, entonces ejecutamos la orden May_Num = M (l,J), que
se convierte en May_Num = 23 Seguidamente incrementamos en 1 el valor
almacenado en la variable J y como su nuevo valor sigue siendo menor o igual
que 3, entonces volvemos a evaluar la decisión

344

Cai> IO-Matkicd.

PANTALLA MEMORIA

Matnz M
(1) (2) (3)

(1)

(2)

(3)

(4)

5 23 12 1 > 1

J > 1

May_Num >*30000

Cont_May >

14 21 5

23 22 21

23 12 10

Cuando la variable I vale 1 y la variable J vale 3, entonces la decisión SiM(I,J)
>May_Numsecon\/\eneenSiM(l,3)>May_Num,oseB, Si 12 > 23.
Como es Falso, entonces nos saltamos la orden de asignación y como ya la
variable J tiene el valor 3 (que era su tope), volvemos al ciclo externo e incre­
mentamos en 1 el valor almacenado en la variable I. Como esta variable no ha
llegado aún a su tope, entonces volvemos a asignarle a la variable J el valor 1 y
vamos a generar de nuevo el ciclo interno con valores para J desde 1 hasta 3.

PANTALLA MEMORIA

Matnz M
(1) (2) (3)

5 23 12 I > 1
(1)

J > 4 2
(2) 14 21 5

May Num >-30000
(3) 23 22 21 5

(4) 23 12 10 Cont_May >

Cuando la variable I vale 2 y la variable J vale 1, entonces la decisión Si M (l,J)
> May_Num se convierte en Si M (2, 1)> May_Num, o sea, S¡ 14 > 23.
Como es Falso entonces incrementamos en 1 el contenido de la variable J.

145

INTRODUCCION \ L,\LOGIC\ »L l’ROtjR/WI \UON 0m\R IWNTRUOS BuRITICX

PANTALLA MEMORIA

Matriz M
(1) (2) (3)

23 5 23 12 I > 1
12 (1)
10 J > 4 2 3

(2) 14 21 5
May Num >*30000

(3) 23 22 21 5 23

(-1) 23 12 10 Cont_May >

Cuando la variable I vale 2 y la variable J vale 2, entonces la decision 5/ M(I.J)
>May_Nümiecor\\neneQr\SíM(2,2)>May_Num,osea, Si 21 >23
Como es Falso, entonces incrementamos en 1 el contenido de la variable J

PANTALLA MEMORIA

Vlatnz M
(1) (2) (3)

23 5 23 12 I > 4 2
12 (1)
10 J > 1

(2) 14 21 5
May Num >-30000

(3) 23 22 21 § 23

(4) 23 12 10 Cont_May >

Cuando la variable I vale 2 y la variable J vale 3, entonces la decision SiM(U)
> May_Num secom\erte en Si M (2,3) >May_Num, oses, Si 5 > 23
Como es Falso, entonces incrementamos en 1 el contenido de la variable J En
este instante, la variable J ha llegado a su tope razón por la cual nos salimos
del ciclo interno y vamos al ciclo externo a incrementar en 1 el contenido de
la variable I Como dicho contenido todavía es menor o igual que 4, entonces
volvemos a iniciar el ciclo interno asignándole valores a J desde 1 hasta 3

346

Cap 10-Mattuccs

PANTALLA MEMORIA

Malnz M
(1) (2) (3)

23 5 23 12 1 > 4 2
12 (1)
10 J . > 4 2

(2) 14 21 5
May Num >-30000

(3) 23 22 21 5 23

(4) 23 12 10 Conl_May >

Cuando la variable 1 vale 3 y la variable J vale 1, entonces la decisión SiM(IJ)
> May_Numse con\/\ene enSiM (3, 1)> May_Num, o sea, Si 23 > 23.
Como es Falso, entonces incrementamos en 1 el contenido de la variable J.

PANTALLA MEMORIA

Malnz M
(1) (2) (3)

5 23 12 1 > 4 2
(1)

J..> 4 2 3
(2) 14 21 5

May Num >-30000
(3) 23 22 21 6 23

(4) 23 12 10 Cont_May .>

Cuando la variable 1 vale 3 y la variable J vale 2, entonces la decisión SÍM(I,J)
> May_Num se convierte enSiM(3,2)> May_Num, o sea, Si 22 > 23.
Como es Falso, entonces incrementamos en 1 el contenido de la variable J.

PANTALLA MEMORIA

Matriz hJ
(1) (2) (3)

23 5 23 12 1 > 4 2 3
12 (1)

J > 1
(2) 14 21 5

May Num >-30000
(3) 23 22 21 6 23

(4) 23 12 10 Cont_May >

347

INTRODUC CIÜN a I^\ IOGICA DI I'HCK.RAMACION - OmAH I\AN TIUJOS BUitmCA

Cuando la variable I vale 3 y la variable J vale 3, entonces la decisión SiM{IJ)
>May_Numsecom¡eneenSiM{3,3)>May_Num,ose3, Si 21 > 23.
Como es Falso, entonces volvemos al ciclo externo debido a que el índice del
ciclo interno ya llegó a su tope. Por tanto, incrementamos en ^ el contenido de
la variable I y volvemos a generar un ciclo desde 1 hasta 3 para referenciar las
posiciones dentro de la cuarta fila

PANTALLA __________________ MEMORIA

tílatnz M
(1) (2) (3)

23 5 23 12 I > 4- 2 3
12 (1)
10 J > 4- 2

(2) 14 21 5
May Num >-30000

(3) 23 22 21 5 23

(4) 23 12 10 Conl_May >

Cuando la variable I vale 4 y la variable J vale 1, entonces la decisión SiM (l,J)
> May_Num seconviene en Si M (4, 1)>May_Num, osea, Si 23 > 23.
Como es Falso, entonces volvemos a incrementar en 1 el contenido de la varia­
ble J.

PANTALLA MEMORIA

(1)
Matriz M

(2) (3)

0)
5 23 12 1.. > 4- 3 3

(2) 14 21 5
J > 4- 3- 3

May Num >-30000
5 23(3) 23 22 21

(4) 23 12 10 Cont_May >

Cuando la variable I vale 4 y la variable J vale 2, entonces la decisión Si M (l,-l)
> May_Num se convierte en SiM(4,2) >May_Num, o sea, Si 12 > 23.
Como es Falso, entonces volvemos a incrementar en 1 el contenido de la varia­
ble J.

348

C,\p IO-Matwccs

PANTALLA MEMORIA

Matnz M
(1) (2) (3)

23 5 23 12 I >4334
12 (1)
10 J.> 1

(2) 14 21 5
May Num >-30000

(3) 23 22 21 5 23

(4) 23 12 10 Cont_May >

Cuando la variable I vale 4 y la variable J vale 3, entonces la decisión SiM(l,J)
>May_Num se con\j\ene en Si M(4,3)>May_Num, osea Si 10 > 23.
Como es Falso, nos salimos del ciclo interno debido a que la variable J ya llegó
a su tope y nos salimos a su ciclo externo, debido a que la variable I también ya
llegó a su tope. Continuando con nuestro algoritmo y sabiendo que ya tene­
mos almacenado en la variable May_Num el mayor valor contenido en la ma­
triz (que es igual al número 23), entonces procedemos a buscar cuántas veces
está este valor en la misma matriz. Para ello, vamos a inicializar un contador en
ceros y de nuevo vamos a recorrer la matriz por filas, preguntando en cada uno
de los datos contenidos en ella si es igual al mayor valor obtenido.

Cont_May = 0
Para I - 1 hasta 4

ParaJ= 1 hasta 3
Si M(I,J) = May_Num

Cont_May = Cont_May + /
Fin_Si

Fin_Pora

Fin_Para

149

iNTHODUCnON A L.S 1 OGICA III I’ROCilWMACION - OmAH I\ÁN TIUJOS BUIimcA

PANTALLA MEMORIA

Malnz M
(1) (2) (3)

5 23 12 1 > 4 2 3 4
(1)

J > 4 2
(2) 14 21 5

May Num >-30000
(3) 23 22 21 5 23

(4) 23 12 10 Conl_May >

Cuando la variable I valga 1 y J valga 1,1a decisión Si M (l,J) = May_Num
se convertirá en Sí f /, i) = May_Num, lo cual significa Si 5 = 23, lo cual es Fal­
so. Por tanto, incrementamos en 1 el valor almacenado en la variable J.

PANTALLA MEMORIA

vlatnz M
(1) (2) (3)

5 23 12 1 > 4 2 3 4
(1)

J > 4 2 3
(2) 14 21 5

May Num >-30000
(3) 23 22 21 5 23

{4) 23 12 10 Conl_May >

Cuando la variable I valga 1 y J valga 2, la decisión SiM (l,J) = May_Num
seconvertiráenS//Wn,2J = /Woy_A/um,locualsignifica Si 23 = 23, lo
cual es Verdadero. Por lo tanto, incrementamos en 1 el contenido de la variable
Cont_May y volvemos a incrementar en 1 el contenido de la variable J.

PANTALLA MEMORIA

(1)
Vlalnz M

(2) (3)

(1)
5 23 12 I.. > 1

(2) 14 21 5
J > 1

May Num >-30000
5 23(3) 23 22 21

(4) 23 12 10 Cont_May > 0

350

Cap IO'Matricis

Cuando la variable I valga 1 y J valga 3, la decisión SiM(l,J) = May_Num
se convertirá en 5/ M 0,3 J = May_Num. lo cual significa Si 12 = 23. lo
cual es Falso. Por tanto, nos salimos del ciclo interno debido a que la variable
J ya llegó a su tope. Incrementamos de nuevo el contenido de la variable I
y volvemos a generar el ciclo interno desde 1 hasta 3 utilizando al variable J
como índice.

PANTALLA MEMORIA

Matriz M
(1) (2) (3)

5 23 12 1 > 1
(1)

J.. > 4 2
(2) 14 21 5

May Num >-30800
(3) 23 22 21 6 23

(4) 23 12 10 Cont_May > 0

Cuando la variable I valga 2yJ valga 1, la decisión SiM (I, J) = May_Num
se convertirá en S/Mf 2, U = May_Num, lo cual significa Si 14 = 23, lo
cual es Falso. Por lo tanto, incrementamos en 1 el valor almacenado en la varia­
ble J.

PANTALLA MEMORIA

(1)
vlatriz ^

(2) (3)

(1)
5 23 12 1 > 1

(2) 14 21 5
J > 4 2 3

May Num >*30000
5 23(3) 23 22 21

(4) 23 12 10 Conl_May >01

Cuando la variable I valga 2 y J valga 2, la decisión SÍM(U) = May_Num
se convertirá en 5/M f 2,2 J = May_Wum, lo cual significa Si 21 =23, lo
cual es Falso. Por lo tanto, incrementamos en 1 el valor almacenado en la varia­
ble J.

351

iNTRODUCaÓN A lw\ I OUICA IlL PROGRAMACIÓN - OMAR I\\NTrUOS BURITICA

PANTALLA MEMORIA

Matriz M
(1) (2) (3)

5 23 12 1 >42
(1)

J > 1
(2) 14 21 5

May Num >-30000
(3) 23 22 21 5 23

(4) 23 12 10 Cont_May > 0 1

Cuando la variable I valga 2 y J valga 3, la decisión Si M (I. J) = May_Num
se convertirá en SiM (2,3) = May_Num, ¡o cual signiñca Si 5 = 23, lo
cual es Falso. Por lo tanto, nos salimos del ciclo interno debido a que de nuevo
la variable J llegó a su tope. Incrementamos de nuevo el valor almacenado en
1 y volvemos a entrar al ciclo interno.

PANTALLA MEMORIA

(1)
vlalnz M

(2) (3)

(1)
5 23 12 1 >433

(2) 14 21 5
J...> 1

May Num >-30000
5 23(3) 23 22 21

(4) 23 12 10 Cont_May > 0 1

Cuando la variable I valga 3 y J valga 1, la decisión Si M (l,J} = May^Num
se convertirá en 5/MC3,7 J = Moy_A/um, lo cual significa Si 23 = 23, lo
cual es Verdadero, razón por la cual se incrementa en 1 el valor almacenado en
ConLMoy. Volvemos pues a incrementar en 1 el contenido de J.

352

Cap. 10-Matrices

PANTALLA MEMORIA

Matnz M
(11 (2) (3)

23 5 23 12 1 >4-23
12 (1)
10 J > 4 2

(2) 14 21 5
May Num >-30000

(3) 23 22 21 S 23

(4) 23 12 10 Cont_May.. >0 4 2

Cuando la variable I valga 3 y J valga 2, la decisión Si M (l,J) = May_Num
se convertirá en S/M (3,2J = May_A/um, lo cuai significa Si 22 = 23, lo
cual es Falso. Entonces simplemente incrementamos en 1 el valor almacenado
en J.

PANTALLA MEMORIA

Matnz M
(1) (2) (3)

5 23 12 1 >423
(1)

J > 4 2 3
(2) 14 21 5

May Num >-30000
(3) 23 22 21 § 23

(4) 23 12 10 Conl_May >042

Cuando la variable I valga 3 y J valga 3, la decisión SiM (l,J) = May_Num
se convertirá en 5/M (3,3 J = May_WL/m, lo cual significa Si 21 =23, lo
cual es Falso. Entonces nos salimos del ciclo interno, pues J volvió a llegar a su
tope. Seguidamente incrementamos en 1 el valor almacenado en 1 y volvemos
a generar el ciclo interno.

353

Isn-RODUCCIÓN A LOGICA DL l'ROGRA\UCK)N - 0\(AU IVÁN TRUOS BuRITICÁ

PANTALLA MEMORIA

Matriz M
(1) (2) (3)

23 5 23 12 1 >4-234
12 (1)
10 J > 1

(2) 14 21 5
May Num >-30000

(3) 23 22 21 § 23

(4) 23 12 10 Cont_May. >042

Cuando la variable I valga 4 y J valga 1, la decisión SiM(l,J) = May_Num
se convertirá enSiM(4,1) = May_Num, lo cual significa Si 23 = 23, lo
cual es Verdadero, por lo tanto, incrementamos en 1 el valor almacenado en la
variable Cont_May.

PANTALLA MEMORIA

Matriz M
(1) (2) (3)

23
12 5 23 12 1 ...> 4 2 3 4
10 (1)

J > 42
(2) 14 21 5

May Num >-30000
(3) 23 22 21 S 23

(4) 23 12 10 Cont May>0 4 2
3

Cuando la variable I valga 4 y J valga 2, la decisión SiM (l,J)~ May^Num
se convertirá en SZ/WM, 2^ = Moy_A/um, lo cual significa Si 12 = 23, lo
cual es Falso, por lo tanto, incrementamos en 1 el valor almacenado en J.

354

Cap. 10 - Matrices

PANTALLA MEMORIA

(1)
Malnz M

(2) (3)

(1)
5 23 12 I > 4 2 3 4

(2) 14 21 5
J .> 43 3

(3) 23 22 21
May Num >-30QQO

S 23

(4) 23 12 10 Cont_May.>9 423

Cuando la variable I valga 4 y J valga 3, la decisión SiM(l,J) = May_Num
se convertirá en Si M (4,3) = May_Num, lo cual significa SiW = 23, que
es Falso, por lo tanto, nos salimos tanto del ciclo interno como del ciclo exter­
no, debido a que ambas variables ya llegaron a sus correspondientes topes.
Finalmente, la última orden muestra en pantalla el valor solicitado:

Escriba "El número mayor es", May_Num. "y se encuentra", Cont_May, "veces"

23
12
10

El numero mayores 23 y
se encuentra 3 veces

Matnz M
(1) (2) (3)

5 23 12 I >4234
(1)

J > 42 3
(2) 14 21 5

May Num >-30099
(3) 23 22 21 5 23

(4) 23 12 10 Conl_May>942 3

Con lo cual solo quedaría "ejecutar" el fin del algoritmo.

Fin

Vemos pues que realmente, de los números leídos, el número 23 es el mayor
y está 3 veces en la matriz, con lo cual podemos decir que este algoritmo sí
cumple con el objetivo planteado inicialmente.

.155

IvniOnUCCION \ IA L0GIC\ DL I KO(i!tA\l\CION OmaU lUNTllIJOSBUUmCA

10.6. Ejercidos

Notas Aclaratorias:

a En los siguientes enunciados cuando se diga Leer una matriz mxn entera
significa leer mxn datos enteros y almacenarlos en m filas y n columnas
para cualquier valor positivo de m y de n

b Cuando el enunciado diga Posiaon Exacta se refiere a la fila y a la columna
del dato especificado

1 Leer una matriz 4x4 entera y determinar en que fila y en que columna se
encuentra el numero mayor

2 Leer una matriz 4x4 entera y determinar cuantas veces se repite en ella el
numero mayor

3 Leer una matriz 3x4 entera y determinar en que posiciones exactas se
encuentran los números pares

4 Leer una matriz 4x3 entera y determinar en que posiciones exactas se
encuentran ios números primos

5 Leer una matriz 4x3 entera, calcular la suma de ios elementos de cada fila
y determinar cual es la fila que tiene la mayor suma

6 Leer una matriz 4x4 entera y calcular el promedio de los números mayo
res de cada fila

7 Leer una matriz 4x4 entera y determinar en que posiciones están los en
teros terminados en 0

8 Leer una matriz 4x4 entera y determinar cuantos enteros terminados en 0
hay almacenados en ella

9 Leer una matriz 3x4 entera y determinar cuantos de los números almace
nados son primos y terminan en 3

10 Leer una matriz 5x3 entera y determinar en que fila esta el mayor numero
primo

11 Leer una matriz 5x3 entera y determinar en que columna esta el menor
numero par

12 Leer una matriz 5x5 entera y determinar en que fila esta el mayor numero
terminado en 6

356

Cap 10-Matwccs

13.Leer una matriz 5x3 entera y determinar en que columna está el mayor
número que comienza con el dígito 4.

14 Leer una matriz 5x5 entera y determinar cuantos números almacenados
en ella tienen más de 3 dígitos.

15.Leer una matriz 5x4 entera y determinar cuántos números almacenados
en ella terminan en 34.

ló.Leer una matriz 5x4 entera y determinar cuantos números almacenados
en ella tienen un solo dígito.

17.Leer una matriz 5x4 entera y determinar cuántos múltiplos de 5 hay alma­
cenados en ella.

IS.Leer una matriz 5x5 entera y determinar en que posición exacta se en­
cuentra el mayor múltiplo de 8.

19. Leer dos matrices 4x5 enteras y determinar si sus contenidos son exacta­
mente iguales.

20. Leer dos matrices 4x5 enteras, luego leer un entero y determinar si cada
uno de los elementos de una de las matrices es igual a cada uno de los
elementos de la otra matriz multiplicado por el entero leído.

21. Leer dos matrices 4x5 enteras y determinar cuántos datos tienen en
común.

22 Leer dos matrices 4x5 enteras y determinar si el número mayor almacena­
do en la primera esta en la segunda.

23. Leer dos matrices 4x5 enteras y determinar si el número mayor de una de
las matrices es igual al número mayor de la otra matriz.

24. Leer dos matrices 4x5 enteras y determinar si el mayor número primo de
una de las matrices también se encuentra en la otra matriz.

25. Leer dos matrices 4x5 enteras y determinar s¡ el mayor número primo de
una de las matrices es también el mayor número primo de la otra matriz.

26. Leer dos matrices 4x5 enteras y determinar si la cantidad de números pa­
res almacenados en una matriz es igual a la cantidad de números pares
almacenados en la otra matriz

357

InTRODUCCIOM a Iv\ LOGICA m I'ROGIUMAC ION - Omau I\ \n Truos Durhica

27.Leer dos matrices 4x5 enteras y determinar si la cantidad de números pri­
mos almacenados en una matriz es igual a la cantidad de números primos
almacenados en la otra matriz

28 Leer una matriz 4x6 entera y determinar en que posiciones se encuentran
los números cuyo penúltimo dígito sea el 5.

29Xeer una matriz 4x6 entera y determinar si alguno de sus números esta
repetido al menos 3 veces

BO.Leer una matriz 4x6 entera y determinar cuantas veces esta en ella el nú­
mero menor

31 .Leer una matriz 4x6 entera y determinar en que posiciones están los me­
nores por fila.

32. Leer una matriz 4x6 entera y determinar en que posiciones están los me­
nores primos por fila.

33. Leer una matriz 4x6 entera y determinar en que posiciones están los me­
nores pares por fila.

34. Leer una matriz 4x6 entera y determinar cuantos de los números alma­
cenados en ella pertenecen a los 100 primeros elementos de la sene de
Fibonacci.

35. Leer dos matrices 4x6 enteras y determinar cual es el mayor dato almace­
nado en ella que pertenezca a la sene de Fibonacci.

36. Leer dos matrices 4x6 enteras y determinar si el mayor número almace­
nado en una de ellas que pertenezca a la sene de Fibonacci es igual al
mayor número almacenado en la otra matriz que pertenezca a la sene de
Fibonacci.

37. Leer dos matrices 4x6 enteras y determinar si el número mayor de una
matriz se encuentra en la misma posición exacta en la otra matriz

38. Leer dos matrices 4x6 enteras y determinar si el mayor número primo de
una matriz esta repetido en la otra matriz.

39. Leer dos matrices 4x6 enteras y determinar si el promedio de las"esqui-
nas"de una matriz es igual al promedio de las "esquinas" de la otra matriz

358

Cap 10-Matrjccs

40 Leer dos matrices 5x5 enteras y determinar si el promedio entero de los
elementos de la diagonal de una matriz es igual al promedio de los ele­
mentos de la diagonal de la otra matriz

41 Leer dos matrices 5x5 enteras y determinar si el promedio entero de to­
dos los elementos que no están en la diagonal de una matriz es igual al
promedio entero de todos los elementos que no están en la diagonal de
la otra matriz

42 Leer dos matrices 5x5 enteras y determinar si el promedio entero de los
números primos de una matriz se encuentra almacenado en la otra matriz

43 Leer dos matrices 5x5 enteras y determinar si el promedio entero de los
números pares de una matriz es igual al promedio de los números pares
de la otra matriz

44 Leer dos matrices 5x5 enteras y determinar si el promedio entero de los
números terminados en 4 de una matrizse encuentra al menos 3 veces en
la otra matriz

45 Leer dos matrices 5x5 enteras y determinar si el promedio entero de los
números mayores de cada fila de una matriz es igual al promedio de los
números mayores de cada fila de la otra matriz

46 Leer dos matrices 5x5 enteras y determinar si el promedio entero de los
números menores por cada fila de una matriz corresponde a alguno de
los datos almacenados en las 'esquinas"de la otra matriz

47 Leer dos matrices 5x5 enteras y determinar si el promedio de los mayores
números primos por cada fila de una matriz es igual al promedio de los
mayores números primos por cada columna de la otra matriz

48 Leer dos matrices 5x5 entera y determinar si el promedio de los mayores
elementos que pertenecen a la sene de Fibonacci de cada fila de una ma­
triz es igual al promedio de los mayores elementos que pertenecen a la
sene de Fibonacci de cada fila de la otra matriz

49 Leer una matriz 3x3 entera y determinar si el promedio de todos los datos
almacenados en ella se encuentra también almacenado

50 Leer una matriz 5x5 y determinar si el promedio de los elementos que se
encuentran en su diagonal esta almacenado en ella Mostrar en pantalla
en que posiciones exactas se encuentra dicho dato

Capítulo 11
Funciones

11.1. Concepto general

Ningún concepto a nivel de la programación es mas importante que el con­
cepto de función Sm temor a equivocarme, puedo garantizarle que la función
es lo que podríamos llamar la gran "vedette" de la programación Esto por aho­
ra no sera muy significativo para usted, pues tendrá que depurar muy bien el
concepto de función como tal para que vea que tan sencillo se vuelve progra­
mar basados en esta poderosísima herramienta

Antes de entrar a definir que es una función, quiero exponerle un breve texto
para que lo lea detenidamente

Receta para preparar unos huevos fritos

Ingredientes

- 2 huevos crudos
- Va de cucharadita de so!
- Una cucharadita de aceite

Preparación:

Coloqúese una cacerola a calentar en medio Échese la cucharadita de aceite hasta
cuando este bien caliente Quiébrense los huevos y vacíese su contenido en la cace­
rola Esperar hasta cuando la clara este bien blanca Echar por encima del huevo de
manera que quede repartida uniformemente la sal que se incluyo en los ingredientes

Resultado:

Unos ricos huevos en cacerola que pueden ser acompañados con un pan

161

InTRODLCCION a Ij\ logic \ D1 1 KOOIIAM \C1UN - Om \R I\ \N TrIJOS BuRI riCA

Estoy absolutamente seguro de que en este momento del libro usted estara
un poco desconcertado pues no sabra por que he comenzado este capitulo
explicando algo que cada uno de nosotros de alguna manera sabe, como es
preparar unos huevos fritos Antes de entrar un poco mas en materia, no esta
de mas reescnbir la receta anterior de la siguiente forma

Receta para preparar unos huevos fritos

Ingredientes

- 2 huevos crudos
• V4 de cucharadita de sal

- Una cucharadita de aceite

Preparación

Coloqúese una cacerola a calentar en medio

Échese la cucharadita de aceite hasta cuando este bien caliente

Quiébrense los huevos y vacíese su contenido en la cacerola

Esperar hasta cuando la clara este bien blanca

Echar por encima del huevo de forma que quede repartida uniformemente la
sal que se incluyo en los ingredientes

Resultado:

Unos ricos huevos en cacerola que pueden ser acompañados con un pan

Solo es un pequeño cambio como para que de alguna manera se vaya asocian
do con lo que hasta el momento hemos visto De acuerdo a todo lo anterior,
entonces tenemos la receta para preparar unos huevos fritos o, dicho mejor en
nuestros términos, el algoritmo para preparar unos huevos fritos

Acerca de esta receta (o algoritmo) vamos a plantear algunas precisiones

a La receta tiene un nombre especifico que, en condiciones normales, no lo
tiene ninguna otra receta Esto quiere decir algo que, aunque parece re­
dundante, sera muy importante plantearlo desde ahora y es que la única
receta que debe llamarse receta para preparar unos huevos fritos es la que
nos enseña a preparar unos huevos fritos Obvio, ¿cierto. 2

362

Cap 11 - Funciones

b Para la preparación efectiva de esta receta, podemos ver que se necesitan
unos ingredientes sin los cuales sena imposible realizarla, por lo menos,
tal como esta explicada en el texto de la misma Estos ingredientes serán
diferentes por cada receta, aunque puedan existir recetas que tengan los
mismos ingredientes y su diferencia radicara en el texto de la misma, o sea,
en su preparación real Es importante anotar que los ingredientes tienen
unas características en tamaño, en peso y en medida Igualmente, es útil
anotar que los ingredientes no se explican detalladamente, por ejemplo
se supone, en esta receta, que estamos hablando de huevos de gallina

c La preparación no es mas que un conjunto de pasos secuenciales y or­
denados que nos permiten lograr el objetivo inicial (que en este caso era
preparar unos huevos fritos) Estos pasos no se pueden alterar ya que ha­
cerlo no nos garantizaría que el resultado final fuera el esperado

d El resultado final de la receta debe lograr el objetivo inicial planteado y
ese resultado final es el que puede ser utilizado para todo aquello en lo
cual consideremos que puede sernos útil

Bien, de acuerdo a lo dicho anteriormente, nuestra receta también podríamos
haberla escrito de la siguiente forma para estar acorde con las normas algorit
micas de seudocodigo planteadas a lo largo de este libro

Receta para preparar unos huevos fritos (2 huevos crudos, Vi de cucharadita de
sal, una cucharadita de aceite)

Inicio
Colocar cacerola a calentar en medio
Echar la cucharadita de aceite

Mientras el aceite no este bien caliente
Esperar

Fin_Mientras

Quebrarlos huevos (uno a uno)
Vaciar su contenido en la cacerola
Mientras la clara no este bien blanca

Esperar
Fin_Mientras

Echar la sal por encima del huevo
Verificar que quede repartida uniformemente

Fin

ÍMHÜDUCCIDN A l^\ IOC IC\ Di I KOGIIAM \CION - 0\IMI IwnTRIJOS BuRIHCC

Resultado:

Unos neos huevos en cacerola que pueden ser acompañados con un pan

Note usted que, vista asi, la receta inicial puede ser vista, ahora si oficialmente,
como un algoritmo Un algoritmo que tiene unas características

a Tiene un nombre especifico y único

b Tiene unos ingredientes que son los que permiten que la receta se realice

c Tiene un conjunto de pasos que son la receta en si

d Tiene un resultado final que es el objetivo de la receta

Siendo asi, podríamos representar también este algoritmo con el siguiente
diagrama de bloques

Basados en lo concluido con esta receta, podemos escribir la siguiente
definición

FUNCIÓN - Conjunto de ordenes que tiene las siguientes características

Receta para
preparar unos
huevos fritos

Huevos fritos

364

Cap 11 - Funcionls

• Permite lograr un objetivo.

• Tiene un nombre único identificativo.

• Puede necesitar parámetros para lograr dicho objetivo.

• Nos puede retornar un resultado que deberá concordar con el objetivo
propuesto.

• Puede ser manejado como una sola unidad.

Conociendo usted la estética y características de este libro, sé que debe estarse
preguntando por qué esta definición, que pareciera ser una mas en la teoría
de la programación, se ha colocado con tanta rimbombancia y de manera tan
destacadamente notoria.

No es un "decoradito"que le coloqué al libro para que usted no se me fuera a
aburrir. No. Es precisamente la definición más importante que tiene la progra­
mación. pues no en vano le dije al inicio de este capitulo que el concepto de
función se podía considerar como la gran "vedeffe"de la programación.. Voy a
explicarle el porque.

11.2. Problemas reales de la programación

Cuando se desarrolla un programa, el programador se enfrenta a vanos pro­
blemas entre los cuales se encuentran los errores que en uno de los capítulos
anteriores le expliqué. Ya hablábamos pues de los errores de sintaxis y los errores
de precaución En ese momento le decía yo que los errores más difíciles de en­
contrar eran los errores lógicos y que dichos errores solo se podían enfrentar de­
sarrollando una excelente prueba de escritorio. Sin embargo, no es fácil concebir
una prueba de escritorio cuando hemos desarrollado un algoritmo que tiene
más de 1000 líneas. {¡¡|Ojo'", mas de mil líneas), pues de manera muy fácil pode­
mos "perdernos" en la ejecución de dicha prueba o sencillamente hacerla mal.

También cabe anotar que, cuando se desarrolla un programa extenso, muchas
veces nos encontramos con que parte de él puede sernos útil en otro progra­
ma, pero con frecuencia lo que nos toca hacer es volver a copiar las líneas que
creemos pueden tener cabida en el otro algoritmo. De esta manera, podemos
resumir los problemas reales de la programación en tres tópicos:

a. Necesidad de simplificar la ¡dea general para lograr un objetivo

Cuando usted se enfrenta a un objetivo, cualquiera que este sea, no sabemos
en primera instancia cuántas líneas (u órdenes) va a tener nuestro algoritmo

365

INTTRODUCCION a la LOGICA DI rHOGlUMACIÓN - OsiAll I\ÁN TrIJOí DURITICÁ

Cuando hemos escrito un algoritmo que, teóricamente, suponemos logrará
dicho objetivo, muchas veces nos encontramos con la gran sorpresa de que
hemos desarrollado una solución muchísimo más larga de lo que esperába­
mos. Basado en esto, concebir una sola idea que sea solución para lograr un
objetivo es más complejo que concebir la misma idea pero fragmentada o di­
vidida en pedacitos funcionales, dado que cuando algo complejo se subdivide
en fracciones simples y no se pierde ninguna característica inicial entonces eso
complejo se convierte en algo igualmente simple.

b. Simplificación de la prueba de escritorio y, por lo tanto, detección muy
sencilla de errores

Dado el cuestionamiento anterior, podemos ver que, si tenemos un algoritmo
muy extenso, entonces nuestra prueba de escritorio también será igualmente
extensa y el riesgo de que nos quede mal hecho o de que omitamos pasos o
de que cometamos algún error en la ejecución simulada es muy alto y, por lo
tanto, en la medida en que un algoritmo es extenso, se reduce la confiabilidad
de la prueba de escritorio no porque la teoría falle, sino porque en la realidad
no es tan fácil realizarle pruebas de escritorio a algoritmos de muchas órdenes
y a la vez de muchas variables.

c. Reutílización del código fuente

Siempre que desarrollamos un algoritmo, nos encontramos con que parte de
lo que hicimos nos puede servir para otro algoritmo, pero casi siempre nos
toca volver a copiar lo que hicimos y, de esa manera, incorporarlo en el nuevo
algoritmo. Una de las necesidades más grandes que se comenzaron a sentir
fue la necesidad de poder utilizar en posteriores programas lo que en un mo­
mento dado se estuviera haciendo, sin necesidad de hacerle ningún cambio.
Esta necesidad es lo que ha llevado a desarrollar la teoría de la programación
buscando nuevas y mejores formas de reutilizar el código fuente, o sea, lo
que nosotros escribimos como solución y que hemos llamado algoritmos
computacíonales.

Estos tres problemas son los que llevaron a los diseñadores de lenguajes de
programación a construir una "célula" fundamental, un núcleo de trabajo que
permitiera a los programadores superar los tres grandes problemas que tiene
la programación (o por lo menos facilitarle el camino para ello). Esta célula es
lo que se llama función. Es Importante anotar que en algunos lenguajes de
programación tiene otros nombres pero la esencia es la misma y no es más
que un conjunto de instrucciones que llevan un nombre único, que puede
recibir parámetros (o ingredientes) para lograr su objetivo y que nos puede

retornar un valor.

366

Cap i i Funcionls

11.3. Macro algoritmo

Este concepto ha permitido colocar a las funciones en el puesto que les co­
rresponde, pues con el podemos desarrollar algoritmos en donde, basados en
funciones, llegamos claramente a

a Simplificar el algoritmo

b Simplificar la prueba de escritorio y, por lo tanto, encontrar fácilmente
errores lógicos

c Reutilizar el codigo fuente

¿Que es pues el macro algoritmo? Es un algoritmo dividido en unidades fun
Clónales en donde cada una de ellas logra un pequeño objetivo dentro de toda
la solución y en conjunto dichas unidades logran el objetivo general Vamos a
verlo con un ejemplo

Ejemplo Almacenar 10 números enteros en un vector y mostrar cual es el ma­
yor de los números leídos

Ajustándonos a lo que hasta antes de este capítulo se había explicado, un po­
sible algoritmo solución a este objetivo podría ser el siguiente

Algoritmo Buscar_Mayor
Variables

Entero V(10), //Almacenara los 10 datos enteros

Ind,
Mayor

//Servirá como índice del Vector
//Almacenara el mayor de los números
//leídos

Inicio
Escriba Digite 10 números enteros
lnd= 1
Mientras Ind <= 10

Fin_Mientras
Mayor=V{1)

Lea V(lnd)

Ind = lnd+1

//Solicita los 10 datos enteros
//Comienza en la primera posición
//Mientras no haya llegado a la
// ultima posición del vector
//Lea un entero y guárdelo en la
//posición Ind del Vector
// Incremente la posición
//Fin del ciclo
//Inicialice la variable Mayor

367

INTRODUCCION A LA I ÜGIC \ DI PROGRAMACION - OmAR I\AN TrIJOS BuRH ICA

Fin_Mientras

Fin_Si
Ind - Ind + 1

lnd = 2
Mientras Id < = 10

Si V (Ind)> Mayor

Mayor=V(lnd)

//con el contenido del Vector
//en la primera posición
//Comience en la segunda posición
//Mientras no haya llegado a la
// última posición del vector
//Si el contenido del vector en la
//posición Ind es mayor que el
// contenido de la variable Mayor
//En tonces V (Ind) será el nuevo
//mayor
//Fin de la decisión
//Pase a la siguiente posición
//del vector
//Fin del ciclo

Escriba "El mayor número leído es", Mayor //Muestre el resultado
//Fin del algoritmoFin

Usted podrá notar que este es un algoritmo común y comente. Ahora bien,
vamos a suponer tres cosas que nos serán muy útiles en este ejercicio-

1. Supongamos que este es un algoritmo muy extenso.
2. Supongamos que este es un algoritmo muy complejo
3. Supongamos que este es un algoritmo exageradamente útil.

Note usted que este algoritmo de ejemplo, al cual es necesario que le hagamos
las suposiciones aquí expuestas, se divide fundamentalmente en tres partes- en
la primera parte se leen 10 datos enteros y se almacena cada uno en un vector, en
la segunda parte se busca cual es el número mayor de entre los números leídos
y en la tercera parte se muestra el resultado final. Se que coincidimos en el aná­
lisis de este algoritmo y en su subdivisión en estas tres partes tan lógicas. Bueno,
pues precisamente ese es el macro algoritmo. Escribámoslo técnicamente:

Macro Algoritmo Buscar_Mayor
Inicio

Lectura_de_Datos

Búsqueda_del_Mayor

Muestra_de_Resultado

Fin

368

Cap 11 - FuNaoNcs

Es evidente que nuestro algoritmo se simplificó muchísimo (y mucho más si
partimos de las suposiciones hechas inidalmente). Ahora bien, cabría la pre­
gunta ¿qué contiene cada uno de estos procesos? Pues veamos cómo quedaría
el algoritmo completo.

Algoritmo Buscar_mayor
Variables

Entero: V{10),
¡nd,
Mayor

Función Principal

Inicio
Lectura_De_Datos
Búsqueda_del_Mayor
Muestra_de_Resultado

Fm

Fundón Lectura_De_Datos

Inicio
Escriba "Digite W números enteros"
lnd= I
Mientras lnd<=W

LeaV(lnd)
lnd~lnd+ 1

Fin_Mientras
Fin

Función Búsqueda_del_Mayor

Inicio
Mayor=V{ 1)
!nd = 2
Mientras Id <= 10

Si V (Ind)> Mayor
Mayor = V(lnd)

Fin_5i
Ind = Ind + 1

Fin_Mientras
Fin

369

iNTROnUCCIOS \ U\ LOOK A 1)1 I RO01UM\CIUN - OmAR IWNTrUOS BUR1T1C\

Función Muestra_del_Resultado

Iniao
Escriba "El mayor numero leído es", Mayor

Fin

Estoy seguro de que usted debe estar pensando que el algoritmo no se acorto,
sino que se alargo y puede que tenga razón si lo miramos en la cantidad de
lineas que tienen las dos versiones del mismo algoritmo Quiero exponerle
algunas reflexiones acerca de esta version del algoritmo

a Note que existe una función principal cuyo objetivo es permitir la coordi
nación de los llamados a las demas funciones

b También notara que este algoritmo esta organizado en unas unidades
funcionales donde cada una cumple un pequeño objetivo frente al ob
jetivo general Como puede ver usted, la función principal se encarga de
llamar a las demas funciones la Función Lectura_De_Datos cumple con
el objetivo de leer los datos y almacenarlos en el vector, la Función Bus-
queda_del_Mayor cumple con el objetivo de encontrar cual es el mayor
de los números almacenados en el vector y la función Muestra_deLRe-
sultado se encarga de entregarnos el valor solicitado

c Esta forma de escribir el programa nos permite (mirando la función prin
cipal) entender mucho mas fácil la idea general de solución de este algo
ritmo y, por lo tanto, eso nos simplifica el camino en el momento en el
que, de alguna forma, le queramos hacer ajustes, mejoras o correcciones

d Realizarle una prueba de escritorio al algoritmo inicial (que no se olvide
que estamos suponiendo que es un algoritmo extenso y muy complejo)
se reduce ahora a realizar tres pruebas de escritorio sencillas

La primera prueba sera a la Función Lectura_De_Datos, que como ya sabe
mos busca como objetivo leer 10 datos enteros y almacenarlos en un vector
Si al realizar dicha prueba vemos que SOLO esta función cumple su pequeño
objetivo, entonces no tendremos que preocuparnos mas de ella

La segunda prueba de escritorio sera a la Función Búsqueda_dei_Mayor, cuyo
objetivo es encontrar el mayor numero almacenado en un vector de 10 posi­
ciones enteras Si al realizar esta prueba vemos que la función cumple con este
objetivo, entonces no tendremos que preocuparnos mas por ella

La tercera prueba (y en este caso la mas sencilla) sera a la Función Muestra_deL
Resultado, cuyo objetivo sera mostrar en pantalla un dato entero almacenado

370

Cap 11 - Funcioncs

en una variable llamada Mayor Si al realizar la prueba de escritorio vemos que
realmente se cumple el objetivo, entonces no tendremos que preocuparnos
mas ni por la función ni por el objetivo al igual que en todos los casos

a Como puede notar, si al realizarle independientemente las respectivas
pruebas de escritorio a estas tres funciones cada una cumple su objetivo
(independientemente), entonces ya habremos desarrollado el algoritmo
completo, pues la union de las tres es lo que nos permite lograr el objeti­
vo general del mismo

b Si alguien nos dijera que nuestro algoritmo no esta funcionando bien, o
sea, que no cumple con el objetivo general de encontrar el número ma­
yor de entre los 10 números leídos, entonces esto querrá decir, sin lugar a
dudas, que el error tiene que estar en la función que se encarga de selec­
cionar el mayor, dado que este proceso se realiza solo en esta función y
no en ninguna de las otras dos

c Si nos encontramos con que al ejecutar el algoritmo al final nos muestra
en pantalla que el numero mayores un numero que estamos seguros que
no estaba entre los numero leídos originalmente, entonces esto querrá
decir que el error con toda segundad esta en la lectura de datos y que,
seguramente, los datos que se están almacenando en el vector no corres­
ponden a los datos leídos

d Si vemos que no nos muestra ningún resultado nuestro algoritmo al mo­
mento de ejecutarlo, entonces esto quiere decir que el error tiene que
estar en la Función Muestra_de_Resultado

e Si todas las pruebas de escritorio han sido exitosas, entonces la función
principal estara bien, pues es la que llama a las otras tres funciones, y todo
lo que tendremos que revisar es el orden de los llamados

No podemos desconocer todas las ventajas que surgen cuando utilizamos
el concepto de función para simplificar la solución de un problema y hacerlo
mucho mas sencillo en su concepción y su posterior ejecución Es importante
anotar que cuando se habla aquí de ejecución se hace referencia al caso en
el cual el algoritmo se encuentre debidamente codificado y transcrito en un
lenguaje de programación

Utilizando un diagrama de bloques, podríamos representar el algoritmo plan­
teado de la siguiente manera

371

Introduccios a 1v\ I oolCA Di rnooR/\MACiON - Omar I\an Truos Burr ica

Algoritmo Buscar _Mayor

Variables

Vector

(1) (2) (3) {4) (5) (6) (7) (8) (9) (10)

Ind > Mayor >

Función Principal Función
Lectura_de_03tos

Función
Busqueda_deLMayor

Función
Mueslra.deLResultado

Como se puede notar, en un programa hecho con funciones el esquema grá­
fico para el desarrollo de la prueba de escritorio cambia un poquito. Sé que
usted se estará preguntando qué podría ir dentro del cajoncito de cada fun­
ción. Precisamente vamos a entrar en un concepto muy interesante que nos
va a permitir hacer mucho más flexible y mucho más sencilla la programación.

11.4. Variables globales y variables locales

Hasta el momento, hemos hablado de variables en general y sencillamente las
hemos definido al inicio de cada algoritmo y comenzamos a trabajar con ellas
y listo. Ahora vamos a tecnificar un poco más la definición de las variables para
que podamos llegar a construir funciones realmente flexibles y reutilizables

Una variable global es aquella que se declara por fuera de cualquier función
y, por lo tanto, puede ser reconocida en cualquier función. En el ejemplo que
tratamos en este momento podemos ver que las variables Vector {10), /ndy
Mayor son variables globales porque están declaradas por fuera de cualquier
función (incluyendo la función principal). Por eso, estas variables las utilizamos
indiscriminadamente en cualquiera de las funciones.

Una variable local es aquella que se declara dentro de alguna función y solo
puede ser reconocida en esa función. En el ejemplo aún no hemos comenza­
do a utilizar variables locales. Esta definición implica que una función puede
tener Internamente declarada una variable con un nombre determinado y
otra función también puede tener Internamente declarada otra variable con el

372

Cap 11 - Funciones

mismo nombre y no habra ningún error, ya que cada variable es diferente y es
reconocida en la función en donde se declare Eso es como Mana la de los Díaz
y Mana la de los Perez

Supongo que usted hasta este momento del libro ya ha encontrado que es
muy importante ver lo que se explica con un ejemplo Por eso vamos a desa
rrollar un ejemplo sencillo en el cual se va a hacer necesario que usted se ima
gine que es un algoritmo muy complejo y difícil ya que solo así le encontrara,
por ahora, sentido a muchos de los conceptos nuevos que aquí le presento

11.5. Ejemplo

Leer dos números enteros y mostrar el resultado de su suma

Clarificación del objetivo

Como puede ver el objetivo es muy sencillo y bien podría solucionarse de la
siguiente forma

Algoritmo 5uma_Senalla
Variables

Entero Numl,
Num2,
Res

Inicio
Escriba Digite dos datos enteros'

Lea Num 1, Num2
Resultado = Num 1 + Num2
Escriba Resultado

Fin

De resolverlo así, pues, no tendría mucho sentido extender esta explicación,
pero lo importante es que por ahora usted suponga que este es un algoritmo
complejo, pues basado en su desarrollo sobre funciones vamos a explicar que
son las variables globales y locales Vamos pues a desarrollar este mismo algo
ritmo (o sea, a leer dos números enteros y mostrar su suma} pero utilizando

funciones

Algoritmo

Algoritmo Suma_con_Funciones

INTRODUCCION A LA LOGICA DI l'RÜGRAM \C10N OMAR I\ \N TRUOS BURHICA

Función Principal

Variables
Entero // Estas son variables locales para la

//Función Principal lo cual quiere decir
//que pueden ser utilizadas solo dentro
//de ella pues solo allí serán
//reconocidas

Num 1, //Almacenara uno de los números
Num2, //Almacenara el otro de los números
Res //Almacenara el resultado de la suma

Inicio

Escriba "Digne dos números enteros" //Solicita los dos enteros
Lea Num 1, Num2 //y los lee
Res = Sumar {Num 1, Num2) //El contenido de la variable Res

//sera igual a lo que retorne la función

Escriba Res
Fin

//Sumar a la cual se le han enviado
//dos parametros (como quien dice dos
//ingredientes) que deberá sumarlos
//Escriba el resultado de la suma
//Fin de la función principal

Función Sumar (Entero a. Entero b) II Función Sumar que para lograr

//su objetivo siempre va a
//necesitar dos datos enteros

Variables
Entero. Res // Variable que almacenara la suma de

//los dos datos (ingredientes) recibidos
//por la función Sumar

Inicio
Res = a + b //Se le asigna a la variables Res

//la suma del contenido de a mas el
//contenido de b

Retorne (Res) //Se le ordena a la función que
//devuelva el valor almacenado

// en la variable local Res

Fin //Fin de la función Sumar

374

Cap 11 - Funcioncs

Sé que aún puede tener la Inquretud del porqué he complicado tanto un algo­
ritmo tan sencillo pero no se preocupe, siga leyendo y verá que el objetivo es
puramente pedagógico y busca precisamente que usted tenga muy claro cada
uno de los elementos que Intervienen en una función y el manejo de variables.
También estoy seguro de que en este instante usted se sentirá como si no su­
piera absolutamente nada de programación y como si todo lo que hasta el mo­
mento ha estudiado se hubiera desvanecido No se preocupe, a continuación
vamos a desarrollar (paso a paso) la prueba de escritorio detallada y notara que
lo que aquí presentamos en este momento aparentemente confuso no es más
que el pináculo de aplicación de todo lo que hasta el momento hemos visto.

Prueba de escritorio

Como puede ver, nuestro algoritmo no tiene variables globales debido a que
todas las variables que se involucran en él están declaradas dentro de alguna
función (no se olvide que la función principal no es más que otra función con
la única diferencia de que es la primera que se va a ejecutar). Vamos a tener
pues en la memoria dos funciones la Función Principal y la Función Sumar,
cada una con sus respectivas variables.

Algoritmo Suma_con_Funciones

PANTALLA MEMORIA

Algoritmo
Suma_con_Funciones

Fundón Principal Fundón Sumar

Variablos Locales Parámotros

Numi Num2 Res
a b

Variables Locales

Ros

Como puede ver, ya nuestra memoria no es, como hasta el momento había
sucedido, un espacio solo para unas variables y no más. Ahora la memoria se
convierte en el area en donde convergen funciones, variables locales y varia­
bles globales (si las hay) y nuestro objetivo con las pruebas de escritorio es
manejar la memoria tal como lo haría el computador.

Aunque haciendo honor a esta última frase que acabo de escribir, debo admitir
que inicialmente en la memoria del computador solo existe la función principal
y que las demás se van colocando en ella (junto con sus variables) en la medida

375

en que se vayan llamando. Iniciamos pues nuestro algoritmo solicitando dos
números enteros y almacenándolos el primero en la variable Num 1 y el segun­
do en la variable A/um2. Vamos a suponer que dichos números son el 15 y el 18.

Fundón Principal

Variables
Entero: Num 1,

Num2,
Res

Inicio

Escriba "Digite dos números enteros"
Lea Num 1, Num2

INTRODUCCION A U LÓGICA DC PROGRAM \CION - OmaR 1\ \N TRDOS BURUIC A

PANTALLA

Digite dos números enteros

15
18

MEMORIA

Algoritmo
Suma_con_Funciones

Función Principal Función Sumar

Vanables Locales Parámelros
a b

Num1 Num2 Res
15 18

Vanables Locales

Res

Como puede notarse y tal como se había explicado, el primer número (15)
quedó almacenado en la variable Numi y el segundo número (18) quedó al­
macenado en la variable Num2. A continuación, en nuestro algoritmo aparece
la orden según ia cual en la variable Res se almacenará el valor que retorne la
función Sumar, a la cual se le envían como parámetros (o Ingredientes para que
logre su objetivo) los contenidos de cada una de las variables Numl y Num2.

Res = Sumar (Num i, Num2)

Al hacer el llamado a la función Sumar, entonces se activa esta función y se le
envían como parámetros los contenidos de las variables Numl y Num2 que se

376

Cap 11 - Funciones

almacenan respectivamente en las variables a y b En estos momentos se sus­
pende momentáneamente la ejecución de la Función Principal debido a que
como la variable Res es igual al valor que retorne la Función Sumar entonces
tendremos primero que ejecutarla antes de continuar Realmente no es que se
suspenda, sino que la variable Res de la función principal queda a la espera de
lo que le retorne la Función Sumar Entonces, para ejecutar la Función Sumar
primero almacenamos en la variable a el valor que tema la variable Numi y en
la variable b el valor que tenía la variable Num2

Función Sumar (Entero a, Entero b)
Variables

Entero Res
Inicio

Res = a + b
Retorne (Res)

Fin

PANTALLA

DIgite dos números enteros

15
18

MEMORIA

Algoritmo
Suma_con_Funclones

Función Principal Función Sumar

Variables Locales Parámetros
a b

Num1 Num2 Res 15 IB
15 18

Vanables Locales

Res

Se puede notar que en la función Sumar la primera orden es almacenar en la
variable Res el resultado de sumar los contenidos de las variables a y b Tenga
en cuenta que como a almacena el valor original de Numl y b almacena el
valor original de Num2, entonces ejecutar la suma a + b es igual que ejecutar
la suma Numl + Num2 Luego la orden Res = a + b se convierte en Res = 15 +
18, lo cual indica que en la variable Res queda almacenado el valor 33

177

INTRODUCCION A LOGICA DI PUOC RAM\CION - Om\R ÍV\N TrIJOS DUUITICA

PANTALLA

Digite dos números enteros

15
18

MEMORIA

Algoritmo
Suma_con_Funciones

Fundón Principal Función Sumar

Venables Locales Parametros

Numl Num2 Res
a b
15 18

15 18
Vartables Locales

Res >33

Seguidamente encontramos en la función Sumar la orden Retorne (Res), lo
cual indica que la función Sumar va a devolver el valor almacenado en Res, que
es 33 Allí, en el momento de retornar un valor, es donde termina la función
Sumar Tenga en cuenta que la variable Res que aparece en la Función Principal
es diferente a la variable Res que aparece en la Función Sumar, debido a que
cada una es variable local para su respectiva función (no se olvide que eso es
como Mana la de los Díaz y Mana la de los Perez)

Ahora si podemos volver a la Función Principal pues ya la Función Sumar ha
devuelto un valor ¿A quien se lo devuelve^ ¿Se acuerda usted que suspendi­
mos la prueba de escritorio de la Función Principal pues se necesitaba saber
cual era el valor que se iba a almacenar en la variable Res (local para la función
principal)"? Pues bien, ahora es el momento de retomar esa orden en donde se
había hecho la suspension y era la orden

Res = Sumar (Num 1, Num2)

Como la Función Sumar al habérsele enviado los parametros Numl y Num2 (o
sea, 15 y 18 respectivamente) retorno el valor 33, entonces internamente esta
orden se convierte en

Res = 33

Que no es mas que una orden sencilla de asignación (no se olvide que ese
cambio se hace internamente) Ya con esto podemos ver entonces que en la
variable Res de la Función Principal queda almacenado el valor 33 Y como la
orden que sigue a continuación dentro de la Función Principal es mostrar en
pantalla el valor almacenado en la variable Res

378

Cap II Funciones

Escriba Res

Entonces nuestra prueba de escritorio termina realizándolo asi

PANTALLA

Digile dos numeras enteros

15
18

33

MEMORIA

Algoritmo
Suma_con_Funciones

Función Principal Función Sumar

Vanables Locales Parametros

Num1 Num2 Res
a b
15 18

15 18 33
Vanables Locales

Res >33

Quedando pendiente solamente dar por terminada esta prueba de escritorio,
pues hemos llegado al fin de la Función Principal

Fin

Ahora sí podemos ver en la pantalla que el valor final es igual a la suma de los
dos números iniciales y precisamente ese era el objetivo Leer dos números
enteros y mostrar su suma Se que a esta altura usted debe estar pensando que
no se justificaba hacer tanto para lograr un objetivo tan sencillo (y tiene toda
la razón) No se olvide que el objetivo de este ejemplo es solamente didáctico,
pues ahora sí vamos a ver un ejemplo que va a tener mucha utilidad, pero
antes quiero plantearle algunas reflexiones acerca de este ejemplo

a No existen para el caso presentado variables globales

b Se utilizan variables locales en cada una de las funciones

c Una de las funciones (la Función Sumar) necesita unos parametros que son
como los ingredientes con ios cuales esa función puede lograr su objetivo
Recuerde que dicho objetivo era retornar el resultado de sumar dos núme­
ros, entonces lo que necesita para poder cumplirlo son los dos números

d Cuando una función retorna un valor, entonces allí termina la función

179

Intkoduccion \lAIOC.1CA 1)1 IKociR/\\t\cu)S-Osi\RIwnTkuosBURniC\

e Una función (en este caso la Función Prinapaí) puede llamar a otra (en
este caso la Función Sumar)

f Cualquier función puede llamar a otra función, solo se debe tener en
cuenta que si una función A llama a una función B, entonces dicha fun­
ción B no debe llamar explícitamente a la función A ya que con su retorno
es suficiente

g Una función A puede llamar a una función B y esa función B puede llamar
a una función C y así sucesivamente Cada retorno regresara el control del
programa a la función llamadora

h Un algoritmo puede tener muchas funciones Todo dependerá del obje
tivo que se quiera lograr y del conocimiento de esta técnica por parte del
programador

I El fin de la función principal es el fin de todo el algoritmo

Ahora si, basados en todo lo que hasta ahora hemos visto, vamos a ver un
ejemplo que le brinde a usted un panorama mas practico no sin desconocer la
importancia de los ejemplos didácticos que van hasta el momento

11.5.1. Ejemplo No. 2

Leer un numero y si es un numero par, calcular su factorial, mostrarlo en pan
talla y determinar si también es par

Clarificación del objetivo

Como ya podemos suponer, el objetivo de este algoritmo es leer un numero
entero y sencillamente calcularle su factorial en el caso de que dicho nume
ro sea par Primero que nada tendremos que determinar si el numero es par
Para ello, recordemos que un numero es par si al dividirlo entre 2 y volverlo a
multiplicar por 2 nos da como resultado el mismo numero Este razonamiento
esta basado en las características y propiedades de la aritmética entera, según
la cual ninguna operación genera decimales Siendo así, entonces podremos
saber que el numero 8 es par si cumple con la condición establecida

8=8/2*2

Resolviendo esta expresión por jerarquía de operadores sabemos que primero
que nada se haría la division y luego se realizaría la multiplicación, luego

380

Cap 11 - Fltnciones

8=8/2*2
8 = 4*2
8 = 8

Al ver que desarrollando esta expresión obtenemos el mismo valor inicial, en­
tonces podemos implementar un algoritmo que concluya que el numero 8 es
par Sin embargo, hagamos la prueba con un numero impar para que usted
vea que pasa

9=9/2*2
9 = 4*2
9 = 8

Vemos que el resultado de la expresión, basados en la aritmética entera, no es
igual al valor inicial planteado, por lo tanto, nuestro algoritmo podría concluir
que 9 no es par

Siguiendo con la clarificación del objetivo, recordemos que el factorial de un
numero es la multiplicación sucesiva de todos los enteros comprendidos entre
1 y dicho numero, partiendo de que dicho numero sea positivo. No esta defini­
do el factorial para los números negativos y el factorial de 0 es 1 De esta forma,
el factorial de 4 es igual al resultado de multiplicar

Ix2x3x4= 24

El factorial de -6 no esta definido y, como dice la definición, el factorial de 0
es 1

Con estos conceptos ya podemos saber que lo que tenemos que organizar es
un algoritmo que nos permita leer un numero entero, verificar si es un numero
par y si lo es, entonces calcularle su factorial, al cual también se le debe verifi­
car SI es un numero par

Algoritmo

Ya esta vez no vamos a mostrar un algoritmo y no mas, tal como en la mayoría
de las veces Esta vez vamos a explicar el porque de la solución final Primero
que nada vamos a construir una función que nos permita recibir, como pa­
rámetro, un numero entero y determinar si es par o impar Ese determinar lo
haremos de la siguiente forma la función retornara un numero 1 si el numero
es par y retornara un numero 0 si el numero es impar De esta manera, una
solución a esta función podría ser

iNTKOnUCUON A l^\ LOGICA Di I’ROOIUM\UON - OsUK IwnTUUOS BURinC\

Función Bs_Par (Entero n) // Función Es_Par que recibe como
//parametro un valor entero

Inicio

Sin/2*2 = n // Pregun ta si el valor recibido es par
//entonces que retorne un 1
//Sino

Retorne (1)
Sino

Retorne (0) //que retorne unO
//Fin de la decision
//Fin de la función

Fin_Si
Fin

Usted tai vez se preguntara a quien se le retorna ese 1 o ese 0... Pues muy
sencillo, se le retorna a la función que llame a esta función porque es claro que,
para que esta función se ejecute, otra función la tiene que llamar.

Vamos a hacerle una pequeña prueba de escritorio a esta función Suponga­
mos que llamamos a la Función Es_Par y se le envía el valor 5, o sea, que el
llamado es de la siguiente forma

Es_Par{5)

No se olvide que una función se llama escribiendo sencillamente su nombre
La palabra función se ha colocado en este libro solo para fines didácticos, pues
es muy importante que a lo largo de el usted vaya reconociendo las verdadera
unidades fundamentales de trabajo de un algoritmo.

Siendo ese el llamado, entonces la variable n se cargara con el número 5 e
internamente nuestra función preguntará

5i5/2*2 = 5

Lo cual es Falso, dado que 5/2 *‘2 es igual a 4, entonces la función retornara un
0 tal como la habíamos planteado, pues se había dicho que debería retornar 0
en caso de que el número no fuera par

Ahora vamos a probar en el caso de que el llamado a la Función Es_Par sea el
siguiente'

Es_Par(8)

Entonces el parámetro (ingrediente) llamado n se cargara con el valor 8 y, por
lo tanto, la función tomará la siguiente decision*

Si 8/2*2 = 8

382

Cap 11 - Funciones

Lo cual es Verdadero, pues 8/2 *2 es igual a 8 por propiedades de la aritmética
entera. Con esto podemos garantizar que la Función Es_Par nos permite de­
terminar SI un número es par o no. En caso de que el número que le enviemos
como parámetro sea par, esta función retornará 1 y en caso de que dicho pa­
rámetro no sea par, entonces nos retornará un 0. Con esto ya no tenemos que
preocuparnos por la decisión de si un número es par o no.

Ahora vamos a construir una función a la cual le enviemos un parámetro en­
tero y ella nos retorne el factorial de ese número. Esta función nos retornará
un número entero positivo en caso de que el parámetro que le enviemos sea
igualmente positivo, nos retornará un número 1 en caso de que el paráme­
tro que le enviemos sea un 0 y nos retornará un número -1 en caso de que
le enviemos un valor negativo. Como ya sabemos que no existen factoriales
negativos, eso querrá decir que, si al llamar la función ella nos retorna un -1,
es porque el parámetro que le habíamos enviado era negativo y con ello po­
dremos detectarlo. Una posible solución a esta función podría ser:

Función Factorial (Entero n) //Función Factorial que recibirá como
//parámetro un entero

Variables Locales
Entero: Facto,

//Declaración de las variables locales
//Almacenará el valor del factorial

Cont //Permitirá generarlos números desde I
//hasta el parámetro recibido que es a
// quien se le debe calcular el factorial

Inicio

Cont = Cont + 1

Fin

Sin<0

Facto = 1
Conf= /
Mientras Con < = n

Fin_Mientras
Retorne (Facto)

Retorne (‘1)

Facto = Facto* Cont

//Si el parametro recibido es negativo
//Retorna un -1 que luego será interpretado
//desde la función llamadora
//Inicie la variable Facto en I
//Inicie la variable Cont en 1
//Mientras Cont no haya llegado al
//número recibido como parámetro

Cont //Multiplique sucesivamente todos los
//enteros
//comprendidos entre lyeinúmero
//recibido como parámetro
//Fin del ciclo Mientras
//Retorne el valor almacenado en la
//variable Facto
//Fin de la función

183

INTRODUCCION A L.\ LOGIC \ DL PROGRAM \C10N - OMAR I\ \N TRUOS BuRPHCA

Fundón Bs_Par (Entero n) // Funaon Es_Par que recibe como
//parametro un valor entero

Inicio

Sm/2*2 = n //Pregunta si el valor recibido es par
//entonces que retorne un /
//Sino

Retorne (1)
Sino

Retorne (0) //que retorne unO
//Fin de la decision
//Fin de la función

Fin_Si
Fin

Usted tal vez se preguntara a quien se le retorna ese 1 o ese 0 Pues muy
sencillo, se le retorna a la función que llame a esta función porque es claro que,
para que esta función se ejecute, otra función la tiene que llamar

Vamos a hacerle una pequeña prueba de escritorio a esta función Suponga
mos que llamamos a la Función Es_Par y se le envía el valor 5, o sea, que el
llamado es de la siguiente forma

Es_Par(5)

No se olvide que una función se llama escribiendo sencillamente su nombre
La palabra función se ha colocado en este libro solo para fines didácticos, pues
es muy importante que a lo largo de el usted vaya reconociendo las verdadera
unidades fundamentales de trabajo de un algoritmo

Siendo ese el llamado, entonces la variable n se cargara con el numero 5 e
internamente nuestra función preguntara

Si5/2*2 = 5

Lo cual es Falso, dado que 5/2 *2 es igual a 4, entonces la función retornara un
0 tal como la habíamos planteado, pues se había dicho que debería retornar 0
en caso de que el numero no fuera par

Ahora vamos a probar en el caso de que el llamado a la Función Es_Par sea el
siguiente

Es_Par(8)

Entonces el parametro (ingrediente) llamado n se cargara con el valor 8 y, por
lo tanto, la función tomará la siguiente decision

Si8/2^2 = 8

382

Cap i 1 - FtfNCiONES

Lo cual es Verdadero, pues 8/2 *2 es igual a 8 por propiedades de la aritmética
entera. Con esto podemos garantizar que la Función Es_Par nos permite de­
terminar SI un número es par o no. En caso de que el número que le enviemos
como parámetro sea par, esta función retornará 1 y en caso de que dicho pa­
rámetro no sea par, entonces nos retornara un 0. Con esto ya no tenemos que
preocuparnos por la decisión de si un número es paro no.

Ahora vamos a construir una función a la cual le enviemos un parámetro en­
tero y ella nos retorne el factorial de ese número. Esta función nos retornara
un número entero positivo en caso de que el parámetro que le enviemos sea
igualmente positivo, nos retornara un número 1 en caso de que el paráme­
tro que le enviemos sea un 0 y nos retornará un número -1 en caso de que
le enviemos un valor negativo. Como ya sabemos que no existen factoriales
negativos, eso querrá decir que, si al llamar la función ella nos retorna un -1,
es porque el parametro que le habíamos enviado era negativo y con ello po­
dremos detectarlo. Una posible solución a esta función podría ser.

Función Factorial (Entero n) //Función Factorial que recibirá como
//parámetro un entero

Variables Locales
Entero • Facto,

//Declaración de las variables locales
//Almacenara el valor del factorial

Cont //Permitirá generarlos números desde I
//hasta el parametro recibido que es a
//quien se le debe calcular el factorial

Inicio

Cont = Cont + 1

Fin

Sin<0

Facto -1
Cont= 1
Mientras Con < = n

Fin_Mientras
Retorne (Facto)

Retorne (-1)

Facto = Facto * Cont

//Si el parametro recibido es negativo
//Retorna un -1 que luego será interpretado
//desde la función llamadora
//Inicie la variable Facto en I
//Inicie la variable Cont en 1
//Mientras Cont no haya llegado al
//número recibido como parametro

Cont //Multiplique sucesivamente todos los
//enteros
//comprendidos entre 1 yeinúmero
//recibido como parametro
// Fin del ciclo Mientras
// Retorne el valor almacenado en la
//variable Facto

//Fin de la función

INTRODUCCION \ L.\ l OGICA DP 1 ROGRy\M\CION OMAR K VN TRUOS BURITICA

Vamos a desarrollar una pequeña prueba de escritorio a esta función para ver
SI cumple con el objetivo planteado, que es el de calcular el factorial del nu­
mero que se le envíe como parametro Vamos a comenzar suponiendo que a la
función se le llama enviándosele el valor entero -4

Factorial (4)

La función Factorial recibirá ese numero -4 en el parametro n y procederá a su
ejecución que, luego de declarar las variables locales Facto y Cont, procederá a
preguntar si n (o sea, el valor recibido como parametro) es menor que 0 Como
esto es Verdadero, entonces la función retorna el numero -1 y allí termina No
se olvide que, apenas en una función se encuentra una orden Retorne, la fun­
ción llega en su ejecución hasta allí Ya desde la función llamadora analizaría
mos el resultado que nos retorne la función Factorial y sabemos que, en caso
de que retorne el numero -1, esto querrá decir que el valor que se le envío era
negativo y podremos decirle al usuario que No están definidos los factoriales de
números negativos

Veamos cual sena el resultado que retornaría la función Factorial en caso de
que el llamado fuera

Factorial (5)

En este caso, nuestra prueba iniciaría almacenando este valor 5 en la variable n
que lo recibiría y declarando las variables locales de la función

Función Factorial (Entero n)
Variables Locales

Entero Facto,
Cont

Función Factorial

Parametros

n >5

Variables Locales

Fado >
Conl >

384

Cap 11 - Funciones

Nuestra función comienza, pues, preguntando:

Inicio

Sin <0
Retorne (-1)

Lo cual es Falso, dado que en la variable n está almacenado el valor 5. Por lo
tanto, la prueba continúa con el resto de la función. Se micializa la variable
Facto en 1 y la variable Conf en 1.

Facto -1
Cont= 1

Función Factorial

Parémetros

n >5

Vanables Locales

Facto . > 1
Conl > 1

Nuestra función continúa con las órdenes:

Mientras Cont< = n
Facto = Fflcfo * Conf
Conf = Conf + í

Fin_Mientras

Se pregunta si el contenido de la variable Conf (que es 1) es menor que el con­
tenido de la variable n (que es 5). Como es Verdadero, entonces se ejecuta la
operación:

Facto = Facto * Conf

385

K'lnoin u ION A I-.S MK<iCA HI I’Koi.KWiAi ION - Omar I\an Trijos Bliriir Á

Luego en la variable Focfo queda almacenado el número 1.

Función Factorial

Parámetros

n >5

Variables Locales

Fado > 4 1
Cont > 1

Se incrementa en 1 el contenido de la variable Conf y se vuelve a preguntar si
dicho valor es menor o igual que el valor almacenado en n (que sigue siendo
5). Como es Verdadero, entonces se vuelve a ejecutar la multiplicación Facto =
Facto* Cont.

Función Factorial

Parametros

n >5

Variables Locales

Fado .>442
Cont >4 2

Se vuelve a incrementar en ^ el contenido de la variable Conf y volvemos a
evaluar la condición del ciclo Mientras. Como el valor almacenado en Conf si­
gue siendo menor que n, entonces volvemos a hacer la multiplicación Facto =
Facto * Cont.

Función Factorial

Vanables Locales

Fado >4 4 3 6
Cont... >4 2 3

386

Cap 11 - Fuscioses

Volvemos a incrementar en 1 el contenido de la variable Conf y de nuevo se
evalúa la condición del ciclo. El valor almacenado en Conf sigue siendo menor
o igual que el valor almacenado en n, por lo tanto, se ejecuta de nuevo la ope­
ración Facto = Facto * Cont.

Función Factorial

Parametros

n. > 5

Venables Locales

Fado > 4- 4- 2 6 24
Cont >4234

Se vuelve a incrementar en 1 el contenido de la variable Conf {que esta vez
ya valdrá 5) y se pregunta de nuevo la condición del ciclo. Como Conf sigue
siendo menor o igual que n, pues ambas almacenarían el valor 5, entonces se
ejecuta por última vez la operación que se encuentra en el cuerpo de! ciclo, o
sea, Facto = Facto * Cont.

Función Factorial

Parametros

n >5

Vanables /.oca/es

Fado >4 4 2 6 24 120
Cont >4 2 3 4 5

Se vuelve a incrementar en 1 el contenido de la variable Conf y vemos que
como almacenaría un número 6 no se cumple la condición del ciclo, o sea,
que Conf <= n, pues n sigue valiendo 5, por lo tanto, nos salimos del ciclo y
ejecutamos la orden que esta después del Fin_Mientras-

Retome (Facto)

Fin

Que no es más que retornar el valor almacenado en la variable Facto. En este
caso retornaría el valor 120, que efectivamente corresponde al factorial del

3S7

IsTHoni (c ION A (A KK.K \ 01 I'U(KpR\m\U()n - Omak Iwn Tkijos Buiunc \

valor recibido que fue el número 5. En el caso de que el llamado a la función
Factorial sea

Sencillamente en la variable n se cargará este parametro, se inicializara la va­
riable Facto en 1 y la variable Conf en 1. Cuando se llegue al ciclo a la primera
vez que se evalúe la condición del mismo (o sea, Cont <= n) como Cont vale
1 y vale O, entonces la condición sera Falsa y pasaremos a la instrucción que
está después del Fin_Mientras. Esta instrucción ordena retornar el valor alma­
cenado en Facto, que para este caso sería el numero 1. Con ello se cumpliría
también con esta función que cuando se le envíe el número O ella retorna el
número 1 como su factorial.

Podemos pues concluir que la función Factorial asi como esta concebida real­
mente nos permite que le enviemos un número y ella nos calcula su corres­
pondiente factorial.

Ahora sí vamos a desarrollar el algoritmo completo basado en estas dos fun­
ciones, de las cuales ya no tenemos que preocuparnos, pues ya tenemos la
absoluta certeza de que la función Es_Par permite determinar si un número es
par y la función Factorial nos permite calcular el factorial de un número.

Algoritmo Determina_Facto_Par

Función Principal

Variables Locales
Entero: Num, //Almacenará el número

Factorial (0)

Auxl,
Aux2

//original leído
// Variables Auxiliares

Inicio

Escriba "Digite un número entero"
Lea Num

Auxl =Es_Par(Num)

//lo lee y lo almacena en Num
//Auxl es igual a lo que retorne
//la función Es^Par enviándole

//como parámetro el valor

//Solicita un número entero

Si Auxl O

//almacenado en Num
//Si ese valor retornado es cero

Escriba "El número leído es impar" //entonces el número

//no es par

388

Cap i 1 - Funciomls

//Sino(elnúmerosiespar)
Aux2 = Factorial (Num) //Aux2 es igual ai valor

//que retorne la función
//Factorial enviándole
// como parametro el
//contenido de la
//variable Num

Si Aux2 = -7 //Si ese valor retornado

//por la función Factonal
//es-1 entonces quiere
//decir que el número
//original era negativo

Escnba"Noestadeñnidoel factorial para numerosnegativos"
Sino //Sino entonces se

//muestra en pantalla
// que el factorial del
//valoralmacenado en
// Num es igual al valor
//almacenado en Aux2
//que fue lo que retorno
//la función Factorial

Escriba "El factorial de", Num, "es", Aux2

Fin_Si

Fin_Si
Fin

Fundón Bs_Par (Entero n)
metro un

//Función Es_Par que recibe como para
//valorentero

Inicio

Fin

Sin/2*2 = n
Retorne (1)

Sino
Retorne (0)

Fin^Si

// Pregunta si el valor recibido es par
//entonces que retorne un 7

//Sino
//que retorne un 0
//Fin de la decision
//Fin de la función

ImRODLCUOS \l \HKilCAOI I'WK.U-WI \C M)N - 0\« \R IWN TlllJOS BUIUIIC \

Función Factorial (Entero n) //Función Factorial que recibirá como
//parámetro un entero

Variables Locales // Declaración de las variables locales

Entero. Facto, //Almacenara el valor del factorial

Cont //Permitirá generar los números desde 1

//hasta el parámetro recibido que es a
//quien se le debe calcular el factorial

Inicio

Sin<0 //Si el parametro recibido es negativo
Retorne (-1) // Retorna un -1 que luego sera

//interpretado desde la función llamadora
Facto = I //Inicie la variable Facto en 1
Cont = 1 //Inicie la variable Cont en /
Mientras Con < = n //Mientras Cont no llegue al numero

//recibido como parametro
Facto = Facto *Cont //Multiplique sucesivamente todos

//los enteros

Cont = Cont + / //comprendidos entre 1 y el numero
//recibido como parametro

Fin_Mientras //Fin del ciclo Mientras

Retorne (Facto) //Retorne el valor almacenado en la
//variable Facto

Fin //Fin de la función

Ahora usted sí podrá ver lo tan útil que resulta ser para un programador utilizar
el concepto de función, pues, como puede ver en este algoritmo, ya no tene­
mos que realizar una prueba de escritorio detallada a todo el algoritmo, ya que
este se basa en las funciones Es_Par y Factorial y como al hacerle su correspon­
diente prueba de escritorio a cada una de ellas funcionaron perfectamente,
podemos garantizar que el algoritmo compieto también está bien. Le sugiero
solo como una confirmación que le haga usted la prueba de escritorio a todo
el algoritmo.Tenga muy en cuenta los valores que se retornan de cada función.

Adicionalmente, en este algoritmo hemos obtenido una ganancia que yo
estoy seguro de que usted todavía no ha reflexionado. Tenemos dos funcio­
nes muy confiables que pueden llegar a ser utilizadas sin ningún temor en
cualquier otro programa. Cabe anotar que en el programa anterior no era

39»

Caí* 1! - Funcionls

estrictamente necesario utilizar las variables ^uxí yAux2 pero facilitan la clari­
dad del algoritmo

11.6. Ejemplo

Leer números hasta que digiten 0 y determinar a cuanto es igual el promedio
de los factoriales de los números pares positivos.

Clarificación del objetivo

Vamos a leer vanos números, no sabemos cuántos, y en la medida en que los
leamos iremos acumulando la suma de los factoriales de los números pares al
tiempo que los iremos contando Cuando nos digiten el valor 0, entonces reali­
zaremos la división entre el valor acumulado de los factoriales de los números
pares y la cantidad de números pares que entraron y ese es el resultado que
nos solicita este enunciado.

Puede usted notar que, de alguna manera, este ejercicio tiene una leve rela­
ción con el ejercicio anterior, pues vamos a necesitar determinar si un número
es par y también vamos a necesitar el calculo del factorial del número. En estas
condiciones se hará muy sencillo desarrollar este algoritmo, pues nos vamos a
apoyar en las mismas funciones (óigase bien, las mismas funciones) que utili­
zamos en el ejercicio anterior

Algoritmo

Algoritmo Prom_Facto_Pares

Función Principal

Variables Locales

Entero Num,

Acum_Facto,

Cont_Pares,

Promedio

Inicio

// Variables locales de
//la función principal
//Almacenara cada uno de los números

//leídos
//Almacenara la suma de todos los
// factoriales de los números pares
//Almacenara la cantidad de números
//pares a los cuales seles calculó su factorial
//Almacenara el promedio solicitado

//Solicita números e indica que finalicen

//con 0

son absolutamente correctas y todo lo que tenemos que hacer al momento
de desarrollar la prueba de escritorio es tener en cuenta que el llamado a la
función se reemplaza internamente por el valor que ella retorne. Quedara pen­
diente para usted desarrollar la prueba de escritorio de este algoritmo.

iNTROnUí CION \ I A 1 (H.IC A 01 l-KOOIOWIAC IOS - Om \K I\ \N TuIJOS BURITICA

11.8. Menus

Concepto general

Un menú sencillamente es un conjunto de opciones que se le presentan a un
usuario para que el de manera voluntaria y libre, escoja cual ejecutar. Al igual
que cuando vamos a un restaurante el mesero nos presenta una lista de opcio­
nes (platos) para que nosotros escojamos, en nuestro ejemplo presentaremos
un menú de opción leída dado que es la estructura que el seudocodigo nos
permite. Los lenguajes de programación nos facilitan herramientas para cons­
truir menus de botones, de barras deslizantes y menús gráficos, pero por ahora
nos concentraremos en la parte lógica del diseño de un menú. Para ello, vamos
a ejemplificar el concepto a través de un ejemplo muy sencillo.

Ejemplo

Brindar las siguientes opciones a través de un menú:

1. Leer un número entero.

2. Determinar SI dicho número es primo

3. Determinar si dicho número es par.

4. Determinar si la suma de todos los enteros comprendidos entre 1 y dicho
número es un número par

5. Determinar si la suma de todos los enteros comprendidos entre 1 y dicho
número es un número primo.

6. Determinar el factorial de dicho número entero.

Es importante que se tenga en cuenta que siempre que nosotros brindemos
un menú de opciones deberá existir una que permita terminar con el progra­
ma, o sea, salir del menú, que se interpretaría sencillamente como salir del pro­
grama. Como usted puede ver, nuestro enunciado ya no es tan sencillo como
lo fue en otras oportunidades. Para su solución, vamos a analizarlo opción por
opción.

394

Cap 11 - Funcionls

1 Opción. Leer un número entero

Para cumplir con este objetivo, vamos a construir una función que nos permita
leer un numero entero y retornarlo a la función llamadora Es evidente que
esta función no necesitara ningún tipo de parametros, de tal manera que una
posible solución sena la siguiente

Función Lectura_Num {) //Nombre de la función
Variables Locales // Declaración de las variables locales

Entero N //Vanablequealmacenaraeinumeroaleer

Por lo simplificada de la función, podemos ver que efectivamente lograra el
objetivo de leer un numero entero y retornarlo

2°. Opción. Determinar si dicho número es primo

Para cumplir efectivamente con este objetivo se hace necesario que constru­
yamos una función que nos permita recibir como parametro un numero ente­
ro y que retorne el valor 1 si dicho parametro es un numero primo y 0 si dicho
parametro no es un numero primo Recordemos entonces, primero que nada,
¿qué es un numeropnmo^ Un numero primo es un número que solo es divisible
exactamente entre 1 y si mismo Por ejemplo el numero 19 es primo porque
solo es divisible exactamente entre 1 y 19 El numero 18 no es primo porque
lo dividen exactamente los números 1,2,3,6,9 y 18 Esta es la definición que
por mucho tiempo hemos manejado y que ahora pretendemos programar a
través de una función

Vamos a realizarle un pequeño cambio a la definición sin apartarnos de la esen­
cia de ella, pero lo que necesitamos es facilitar el algoritmo y con el, facilitar
su respectiva función Siendo N un numero cualquiera, los posibles divisores
exactos de N están en el rango de 1 a N (eso es evidente) Sin embargo, sabien­
do que todos, absolutamente todos los números son divisibles exactamente
entre 1 y N (siendo N cualquier numero), entonces los divisores exactos de un
numero N cualquiera que nos interesan estarán en el rango de 2 a N-1

Podríamos decir que si un numero N no tiene divisores exactos en el rango
de 2 a N-1, entonces con toda segundad es un numero primo y lo contrario

Inicio

Escriba "Digite un numero entero"
LeaN

//Solicita un numero entero
//y lo lee almacenándolo en la
//variable N
// Retorna el valor leído
//Fin de la función

Retorne! N)
Fin

InIHODUCUON U MOÍ.ICADI PK(K IUM\Cli)N 0\1\!< IwnTuIJüS BUKlMtA

también es cierto, es decir, si un numero tiene al menos un divisor exacto en e!
rango de 2 a N-1, entonces el numero no es primo

Verifiquemos lo anterior con un ejemplo el numero 19 es primo porque no
tiene ningún divisor exacto en el rango de 2 a 18, o sea, no hay ningún numero
que divida exactamente a 19 que sea mayor o igual que 2 y menor o igual que
18 Por eso podemos decir con toda certeza que el 19 es primo y es verdad El
numero 24, en cambio, no es primo porque en el rango de 2 a 23 el numero
24 tiene los siguientes divisores 2, 3, 4, 6, 8 y 12 Por esta razón, podemos
asegurar que el numero 24 no es primo y también es cierto

Por lo tanto, nuestra función se reduce a determinar si el numero que se reciba
como parametro tiene divisores exactos en ese rango (o sea, 2 a N-1, siendo N
el numero a verificar) De ser asi, entonces se retornara 0, pues si tiene divisores
exactos en ese rango significa que el numero recibido como parametro no es
un numero primo, y de no ser asi, se retornara 1, pues si no tiene divisores
exactos en ese rango es porque los únicos números que lo dividen exactamen
te son el 1 y el mismo numero N, sea cual fuere

Para optimizar un poco esta función, vamos a involucrarle dos pequeños cam
bios con el proposito de lograr el objetivo de una manera mucho mas eficiente

a El rango de 2 a N-1 lo vamos a reducir de 2 a N/2, dado que ningún nu
mero tiene un divisor exacto de su mitad entera en adelante El numero
1000, por ejemplo, no tiene ningún divisor exacto entre 501 y 999

b No vamos a esperar llegar hasta N/2 en el caso de que se encuentre al
menos un divisor, pues con ese simple hecho el numero N a evaluar ya no
sena primo y sena suficiente para retornar la respuesta solicitada

Con estos dos pequeños cambios tendremos de una manera altamente efi
cíente la respuesta a nuestro pequeño objetivo Para que el ciclo que inicial
mente va a ir desde 1 hasta N/2 se interrumpa en cualquier momento, vamos
a utilizar una variable que actuara a manera de interruptor y sera la que nos va
a permitir que nuestro objetivo se logre eficientemente Sin mas preámbulos,
una solución a esta función podra ser la siguiente

Función Es_Primo (Entero N)

Variables Locales
Entero Ind, //Servirá para que se generen los

//números enteros de 2 a N/2
S //Variable que actuara como interruptor

//y que servirá de retorno

396

Cap i 1 - Funciones

Inicio
lnd = 2
5=1

MientrasInd< = N/2 Y5=1

5iN/lnd*lnd = N

5 = 0
Fin_5i
Ind = Ind + 1

Fin_Mientras
Retorne (5)

// Inicia la variable Ind en 2
//Inicia el interruptor en 1
//Mientras no se haya llegado a la mitad
//del número y mientras no se haya
//encontrado ningún divisor exacto
//Si el valor almacenado en Ind es un
// divisor exacto de N
//Cambie el valor del interruptor
//Fin de la decisión
//Pase al siguiente número dentro del rango
//Fin del ciclo
//Retorne el valor almacenado en 5
//Fin de la función

Vamos a efectuarle una pequeña prueba de escritorio a esta función para
verificar que efectivamente funcione bien. Nuestra función comienza almace­
nando el parámetro que se le envía en la variable N. Supongamos que se le
envía el número 12 No se olvide que esta función retornará 1 si el número
(parametro) es primo o 0 si no lo es. Con la última aclaración quiero recordar
que esta función no va a mostrar nada en pantalla, solo va a retornar un 1 o un
0 dependiendo del valor que se reciba como parámetro.

Función Es _Primo

Parámetros
N >12

Variables Locales
Ind. >2
S > 1

Función Es_Primo (Entero N)

Variables Locales
Entero: Ind,

S

197

IN-I-RÜIUCCION \ L-\ KK.IC \ O! I ItOGfLVNUCIDN - 0\l\K IwnTKIJOS BURrilC \

Inicio

lnd = 2
5= /

Seguidamente asignamos a la variable Ind el valor 2 y a la variable S el valor 1 y
procedemos a entrar en el ciclo mientras que se plantea

Mientras Ind < = N/2 Y S = 1
5iN/lnd*lnd = N

S = 0
Fin_Si
Ind = lnd+ I

Fin^Mientras

Conociendo los valores almacenados en las variables respectivas, se evalúa la
condición Mientras Ind < = N/2 YS - I y vemos que el valor almacenado en
Ind efectivamente es menor o igual que N/2, dado que Ind es igual a 2 y N/2 es
igual a 6, y ademas se ve que el valor almacenado en S es igual a 1, por lo tanto
toda la condición es Verdadera Entonces efectuamos la pregunta

SiN/lnd*lnd=N

Reemplazando por los valores respectivos la decision se convierte en

Si 12/2*2= 12

Lo cual es efectivamente Verdadero porque se esta preguntando en el fondo si
el numero 12 es divisible exactamente entre 2 y asi es, por lo tanto, ejecutamos
la orden

5 = 0

Seguidamente, luego del Fin_5i correspondiente, ejecutamos la orden de in­
crementar en 1 el valor almacenado en la variable Ind

Función Es _Pnmo

Parametros
N >12

Variables Locales
Ind >23
S >4 0

398

Cap 11 - Funciones

Como encontramos seguidamente el Fin_Mientras correspondiente, entonces
volvemos a evaluar la condición del ciclo

Mientras lnd< = N/2 YS = 1

Y vemos que el contenido de Ind sigue siendo menor o igual que el valor N/2
(o sea, que 3 es menor o igual que 6), pero vemos que el valor de S ya no es
1 y, por lo tanto, como las dos condiciones están unidas por un operador Y,
entonces toda la condición es Falsa. Pasamos entonces a la instrucción que se
encuentra después del Fin_Mientras correspondiente, o sea:

Retorne (S)
Fin

Con lo cual retornaríamos el valor almacenado en S (que esta vez sería el nú­
mero 0) y que coincide con la definición, pues habíamos dicho que en caso de
que el parámetro no fuera un número primo entonces debía retornarse 0. De
manera que para el caso de que el numero no sea primo la función "funciona"
(y valga esa redundancia).

Veamos ahora una prueba de escritorio para el caso en que el parámetro
recibido sea primo La función deberá retornar un numero 1 indicando que
efectivamente el número es primo. Supongamos que el valor recibido como
parametro es el número 7 (que es primo), entonces nuestra pequeña prueba
de escritorio comenzaría asignando dicho número a la variable Wy declarando
las variables IndySe iniciándolas con los valores 2 y 1 respectivamente

Fundón Es _Primo

Parametros
N >7

Variables Locales
Ind > 2
S > 1

Nuestra función continúa con el planteamiento de un ciclo que depende de
que el contenido de Ind sea menor o igual que N/2 y que el contenido de S sea
1. Como por esta vez la condición del ciclo es Verdadera, entonces ejecutamos
la decision que sigue

w)

IsTKODUrciuN \iw\lOGic\DPI'ROc.iGwiACioN-Om\KIwnTuuosBuitmc\

Mientras lnd< = N/2 YS = 1
5iN/lnd*lnd = N

5 = 0
Fin_Si
lnd = lnd-i-1

Fin_Mientras

La pregunta SiN/lnd*lnd = Nse convierte en Si 7/2 *2 = 7,o sea, si 7 es divisi­
ble exactamente entre 2, lo cual es Falso, por lo tanto, pasamos a la instrucción
que se encuentra después del Fin_5i correspondiente e incrementamos en 1 el
contenido de la variable Ind.

Función Es _Pnmo

Parametros
N >7

Vanables Locales
Ind >2-3
S > 1

Como lo que sigue es el Fin_Mientras correspondiente, entonces volvemos a
evaluar la condición del ciclo.

Mientras Ind < = N/2 Y5 = 1

Vemos pues que sigue siendo Verdadera, pues el contenido de Ind es menor o
igual que N/2, dado que ambos valores valen 3 y el contenido de la variable S
sigue siendo 1. Por lo tanto, volvemos a entrar al ciclo y hacemos la decision

SiN/lnd*lnd = N

O sea, que preguntamos si el número 7 (que corresponde al contenido de N)
es divisible exactamente entre 3 (que corresponde al contenido de Ind). Como
la respuesta a esta decision es Falso, entonces pasamos a la instrucción que se
encuentra después del F¡n_Si correspondiente, o sea, que volvemos a incre­
mentar en 1 el contenido de Ind, quedando esta variable con el valor 4

400

Cap 11 - Funciones

Función Es _Primo

Parámetros'
N..>7

Variables Locales
Ind >2-3 4
S. . > 1

Como seguidamente encontramos el fin del ciclo, volvemos a evaluar la con­
dición el ciclo, o sea:

Mientras Ind < = N/2 Y 5=1

Vemos entonces que el contenido de Ind (que es igual a 4) ya no es menor ni
igual que el resultado N/2 (pues este es igual a 3), por lo tanto, esta parte de la
decisión es Falsa; aunque e! contenido de S sigue siendo 1, como están unidas
por un operador Y, toda la decisión es Falsa y, por lo tanto, nos salimos del ci­
clo, pasando a ejecutar la instrucción que se encuentra después del respectivo
Fin_Mientras.

Retorne (5)
Fin

Con lo cual retornamos el valor almacenado en S, que es igual a 1, con lo cual
se confirma el propósito inicial, pues habíamos dicho que se retornaría 1 si el
valor recibido como parámetro es primo. Con esta prueba de escritorio pode­
mos garantizar que la función Es^Pnmo sí nos permite determinar si el valor
recibido como parametro es un número primo o no. Solo existe una condición
para su utilización exitosa y es que el valor recibido sea un número positivo.

3^ opción. Determinar si dicho número es par

Para determinar si un dato es par o no, ya no tenemos que preocuparnos, pues
ya desarrollamos una función que se encarga de esto y la vamos a utilizar en
este programa. Me refiero a la función:

Función Es_Par (Entero n) II Función Es_Par que reabe como
IIparámetro un valor entero

Inicio
Sin/2*2 = n // Pregan ta si el valor recibido es par

IVIKODICCION \I \IOC.IC\ni H«XIt\M\U(JN-OM\Kl\\N IlUJOsBuRlllC\

Retorne (1) //entonces que retorne un 1
//SinoSino

Retorne (0) //que retorne un 0
//Fin de la decision
//Fin de la función

Fin^Si
Fin

Como a esta función ya se le hizo la prueba de escritorio y tenemos la absoluta
certeza de que funciona, entonces no tenemos que hacer mayor cosa Solo
utilizarla bien dentro de nuestro programa

4^ Opción. Determinar si la suma de todos los enteros comprendidos en­
tre 1 y dicho número es un numero par

Para cumplir este objetivo, todo lo que tenemos que hacer es sumar todos
los números enteros comprendidos entre 1 y el numero leído y ese resultado,
que deberá quedar en una variable almacenado, enviarlo como parametro a la
función £s_Por y ella se encargara de decirnos st este numero es paro no

5^ Opción. Determinar si la suma de todos ios enteros comprendidos en­
tre 1 y dicho número es un numero primo

Al igual que en el objetivo anterior, debemos sumar todos los números enteros
comprendidos entre ^ y el numero leído y enviar ese resultado como parame­
tro a la función Es_Primo que acabamos de construir Esa función se encargara
de retornarnos la respuesta acerca de si el numero es primo o no

6^ Opción. Determinar el factorial de dicho número entero

Para calcular el factorial, ya tenemos una función probada que nos permite
obtener ese resultado Es la función Factorial y todo lo que tenemos que hacer
es utilizarla bien

Función Factorial (Entero n) //Función Factorial que recibirá como

//parametro un entero

Variables Locales
Entero Facto,

//Declaración de las variables locales

//Almacenara el valor del factorial

Cont //Permitirá generarlos números desde 1

//hasta el parametro recibido que es a
//quien se le debe calcular el factorial

Inicio

Si n<0 //Si el parametro recibido es negativo
Retorne (I) //Retorna un-I que luego sera

402

Cap 11 FuNciosts

Fin_Mientras
Retorne (Facto)

Facto = 1
Cont= 1

Mientras Con < = n

Facto = Facto * Cont

Cont = Cont+ 1

//interpretado desde la función llamadora
//Inicie la variable Facto en 1
//Inicie la variable Cont en I
//Mientras Cont no haya llegado al
// numero recibido como parametro
//Multiplique sucesivamente todos
//los enteros
//comprendidos entre I yeinumero
// recibido como parametro
//Fin del ciclo Mientras

Fin
//Retorne valor almacenado en la variable Facto

//Fin de la función

Como a esta función ya se le había hecho su correspondiente prueba de escri­
torio y ya tenemos absoluta certeza de sus resultados, no tenemos que preo­
cuparnos de ella

Como puede ver, "armar' un algoritmo a partir del concepto de funciones defi­
nitivamente se simplifica pues, cada vez que usted desarrolla una función, va a
ser muy posible que en algoritmos futuros la pueda utilizary estara ahorrando
trabajo en el logro de los objetivos de ese nuevo algoritmo Encontrar los erro­
res, como ya vimos, es muy sencillo cuando se utiliza esa filosofía de trabajo y,
sobre todo, comprender la lógica del algoritmo se hace todavía mas sencillo

El enunciado inicial es

Brindar las siguientes opciones a través de un menu

1 Leer un numero entero

2 Determinar si dicho numero es primo.

3 Determinar SI dicho numero es par

4 Determinar si la «urna de todos los enteros comprendidos entre 1 y dicho
numero es un numero par

5. Determinar si la suma de todos los enteros comprendidos entre 1 y dicho
numero es un numero primo

6 Determinar el factorial de dicho numero entero

INTRODUCCION A 1j\ LüCjICA DI PROGRAM \CI()N - OmaR I\ \N TRIJOS BURITICA

El algoritmo completo soludon para este enunciado podría ser el siguiente.

Algoritmo Menu_de_Opaones
Fundón Prindpal
Variables Locales

Entero: Num,
Opción,

Acum

Inicio

//Almacenará el numero leido
//Almacenara la opción escogida por el
//usuario

//Acumulara la suma de 1 hasta el
//número leído

Opción = 0 //Inicializamos la variable Opción con

//cualquier valor para que la condición
//del ciclo inicial mente sea Verdadera

Mientras Opción o 7 //Mientras no presionen la opcion de Salir
EscribaLeer un número entero" //Muestre las opciones
Escriba "2. Determinar si dicho número es primo"

Escriba "3. Determinar si dicho número es par"

Escriba"4 Determinar si la suma de laNespar"
Escriba "5. Determinar si la suma del a Nes primo"
Escriba "6 Calcular el factorial del número leido"

Escriba "7. Salir”
Lea Opcion // Recibe la opcion que quiere

//el usuario
Evalúe (Opcion) //Evalúe lo que el usuario dígito

Si vale 1 • //Si escogió la opción 1
Num = Lectura_Num () //Entonces llame a la

//función que lee un
//entero y loque
//retorne almacénelo

//en la variable Num
Si vale 2: //Si el usuario escogió

//la opción 2

Si Es_Primo (Num) = 1 //Si lo que retorne la
//función Es_Pnmo

404

Cap 11 - Funciones

//enviándole como
//parámetro el valor
//almacenado en la
//variable Num es igual
//a 1 quiere decir que el
//número leído es primo

Escriba “El número es primo"
Sino

Escriba “El número no es primo"
Fin_5i

Si vale 3: //Si el usuario escogió

//la opción 3
Si Es_Par (Num) = / //Si lo que retorne la

//función Es_Par
//enviándole
// como parámetro el
// valor almacenado en
// la variable Num es
//igual a 1 quiere decir
//que el número leído
//es Par

Escriba "El número es par"

Sino
Escriba "El número no es par"

Fin_Si
Si vale 4: //Si el usuario escogió

//la opción 4

Acum = 0 //Inicialice esta
//variable en 0

Para Ind - 1 hasta Num //Acumule en ella
//el valor
// resultante de sumar
//todos los
//en teros compren didos
//entre 1 y el valor leído

405

InTUODUC C ion \ Iw\ I OOlCA DL PKOOIl \\t \CIC)N - 0\I \R I\ \N TiUJOS BUIU HCA

Acum - Acum + Ind
Fin_Para

Si Es^Par (Acum) = 1 //Si el valor retornado
//por la función Es_Par
// a I enviársele como

//parametroelcontenido
//deAcum es / entonces
// eso quiere decir que
//el valor de esa suma
//es par

Escriba 'la suma de 1 a", Num, “es par"
Sino

Escriba ‘la suma de 1 a", Num, “no es par"
Fin_Si

Si vale 5: //Si el usuario escoge la

//opción 5
Acum = 0 //Inicialice esta variable

//con 0
Para lnd= 1 hasta Num //Acumule en ella el

// valor resultante de
//sumar todos los
//enteroscomprendidos
//entre lyel valor leído

Acum - Acum + Ind

Fin_Para
Si Es_Primo (Acum) = / //Si el valor retornado

//porlafuncionEs_pnmo
//al enviársele como
//parámetro el
//contenido de Acum es
//1 entonces eso quiere

// decir que el valor de
//esa suma es un
//número primo

Escriba "La suma de I a" Num, "es un numero primo"

m

Cap 11 -Fuscionls

Fin

Sino

Escriba “La suma de 1 a" Num, "no es un primo”
Fin_5i

Si vale 6 //Si el usuario escogió

//la opcion 6
Si Factorial (Num) = -1 //Evalué si lo que retorna

//la función Factorial
//es igual a-1
//entonces quiere decir
//que el número original
//era un numero negativo

Bcnba “Noestan definidos factonales de num negat"
Sino //De no ser asi entonces

//muestre en pantalla
//el valor del factorial
//del numero leído

Escriba "El factorial de" Num, "es", Factorial (Num)
Fin_Si

Si vale 7 //St el usuario escogía
//la opcion 7

Escriba "Adiós" //Despedirse
Sino //Si el usuario no escogía

//ni la opción 1, ni la 2,
//ni la 3, ni la 4, ni la 5,
//ni la 6, ni la 7 quiere
//decir que se equivoco/
//entonces nos toca
//avisarle

Fin_Evalue

Fin_Mientras

Escriba "Opcion Errada"
//Fin de la estructura
//Evalué
//Fin del ciclo
//Fin de la Funoón Pnnapal
// (que significa en otras
//palabras fín del algoritmo)

407

INTKODUCCIOS \ 1^\ L01.1C A DI I'KOGIUM \CION - 0\t \R I\ \N TurJOb BulU HC \

Función Lectura_Num () //Nombre de la función

Variables Locales

Entero N
//Declaración de las variables locales

// Variable que almacenara el num a leer
Inicio

Escriba 'Digite un numero entero' //Solicita un numero entero
¿so N //y lo lee almacenándolo en la

Retorne (N)
Fin

//variable N

//Retorna el valor leído
// Fin de la función

Función Es_Par (Entero n) //Función Es^Parque recibe como
//parametro un valor entero

Inicio

5in/2*2 = n

Retorne (1)
Sino

Retorne (0)
Fin_Si

Fin

//Pregunta si el valor recibido es par
//entonces que retorne un 7
//Sino

//que retorne un 0
// Fin de la decision
//Fin de la función

Función Es_Primo (Entero N)
Variables Locales

Entero Ind, //Servirá para que se generen los
//números enteros de 2 a N/2

5 //Variable que actuara como interruptor

//y que servirá de retorno
Inicio

Ind = 2

S=l

Mientras Ind < = N/2 Y5 = 1

//Inicia la variable Ind en 2
//Inicia el interruptor en 1
//Mientras no se haya llegado a la mitad

//del numero y mientras no se haya
//encontradoningún divisorexacto

SiN/lnd*lnd = N //Si el valor almacenado en Ind es un

//divisorexacto de N

S = 0 // Cambie el valor del interruptor

408

Cap i 1 Funcioves

Fin_Si
tnd = lnd+ 1

Fin_Mientra5
Retorne (S)

// Fin de la decision
//Pase al siguiente numero dentro del rango
//Fin del ado
//Retorne el valor almacenado en 5
//Fin de la función

Función Factorial (Entero n)

Variables Locales

Entero Facto,
Cont

Inicio

// Función Factorial que recibirá como
//parametro un entero
//Declaración de las variables locales
// Almacenara el valor del factorial
//Permitirá generarlos números desde I
//hasta el parametro recibido que
//es a quien se le debe calcular
//el factorial

Sin<0 //Si el parametro recibido es negativo
Retorne(-1) //Retorna un-1 queluegosera

//interpretado desde la función llamadora
//Inicie la variable Facto en I
//Inicie la variable Cont en 1
//Mientras Cont no haya llegado al
//numero recibido como parametro

Facto = Facto * Cont //Multiplique sucesivamente todos
//los enteros

Conf = Conf+ 1 //comprendidos entre lyeinumero
//recibido como parametro

Fin_Mientras // Fin del ciclo Mientras
Retorne (Facto) //Retorne el valor almacenado en la

//variable Facto
//Fin de la función

Facto = 1
Cont= I
Mientras Con < = n

Usted deberá desarrollarle la prueba de escritorio a la Función Principal dado
que a las demas funciones ya se le hizo su correspondiente prueba Cuando
necesite el resultado de alguna de las demas funciones, todo lo que tiene que
hacer es colocar el resultado que usted sabe que debe retornar la función
pues esta ya ha sido probada

iNTHOincCION A I^IOGICA DL I’KOGUAM \Cll)S - OM \U IwnTKUOS BURIIICA

Es importante que tenga en cuenta que cuando se brinda un menú no existe
un orden en las opciones que escoja el usuario. Él podra escoger cualquier op­
ción y el algoritmo deberá funcionar. Igualmente, el usuario podra escoger una
y otra opcion tantas veces como quiera y solo se saldra del algoritmo cuando
escoja la opcion de Salir (para este caso la opcion 7). De la misma manera,
tenga en cuenta que todo menu deberá tener siempre una opcion para salir
naturalmente.

Usted deberá realizarle una prueba de escritorio a la Función Principal y ajustar
todo el algoritmo para cuando el número original sea negativo, pues este caso
no esta considerado en él intencionalmenie. Procure hacer todos los cambios
en la función principal y deje las demás funciones intactas.

11.9. Ejercicios

Nota aclaratoria: en los siguientes enunciados se deberá construir la función
solicitada y una Función Principal que haga uso de la función solicitada.

1. Construir una función que reciba como parámetro un entero y retorne su
último dígito.

2. Construir una función que reciba como parametro un entero y retorne sus
dos últimos dígitos.

3. Construir una función que reciba como parametro un entero y retorne la
cantidad de dígitos.

4. Construir una función que reciba como parámetro un entero y retorne la
cantidad de dígitos pares

5. Construir una función que reciba como parámetro un entero y retorne la
cantidad de dígitos primos.

6. Construir una función que reciba como parámetro un entero y retorne el
carácter al cual pertenece ese entero como código ASCII.

7. Construir una función que reciba como parámetro un carácter y retorne ei
código ASCII asociado a él.

8. Construir una función que reciba como parámetro un entero y retorne 1
si dicho entero está entre los 30 primeros elementos de la sene de Fibo­
nacci. Deberá retornar 0 si no es así.

410

Cap 11 - FuNCioNbs

9 Construir una función que reciba un entero y le calcule su factorial sa­
biendo que el factorial de un numero es el resultado de multiplicar suce­
sivamente todos los enteros comprendidos entre 1 y el numero dado El
factorial deOes 1 Noestan definidos los factorialesde números negativos

10 Construir una función que reciba como parametro un entero y retorne el
primer dígito de este entero

11 Construir una función que reciba como parametro un entero y un dígito y
retorne 1 si dicho entero es múltiplo de dicho dígito y 0 si no es asi

12 Construir una función que reciba como parametro un entero y un dígito y
retorne 1 si dicho dígito esta en dicho entero y 0 si no es asi

13 Construir una función que reciba como parametro un entero y un dígito
y retorne la cantidad de veces que se encuentra dicho dígito en dicho
entero

14 Construir una función que reciba como parametros dos números enteros
y retorne el valor del mayor

15 Construir una función que reciba como parametros dos números enteros
y retorne 1 si el primer numero es múltiplo del segundo y 0 si no

16 Construir una función que reciba como parametro un entero y retorne 1
SI corresponde al codigo ASCII de una letra minúscula (los códigos ASCII
de las letras minúsculas van desde 97, que es el codigo de la letra a, hasta
122, que es el codigo de la letra z) Deberá retornar 0 si no es asi

17 Construir una función que reciba como parametro un entero y retorne 1
SI corresponde al codigo ASCll de un dígito (los códigos ASCIl de las letras
minúsculas van desde 48, que es el codigo del dígito 0, hasta 57, que es el
codigo del dígito 9) Deberá retornar 0 si no es así

18 Construir una función que reciba como parametro un valor entero y re­
tornar 1 SI dicho valor es el factorial de alguno de los dígitos del numero
Deberá retornar 0 si no es asi

19 Construir una función que reciba como parametro un entero y retorne 1 si
dicho valor es un numero de mínimo 3 dígitos Deberá retornar 0 si no es asi

20 Construir una función que reciba como parametro un entero y retorne 1 si
en dicho valor todos los dígitos son iguales Deberá retornar 0 si no es así

411

Introducuün \ ij\ i uoic\di iroüium\cion Omar IwnTkuos BuRmc\

21 Construir una función que reciba como parametro un entero y retorne 1
SI en dicho valor el primer dígito es igual al ultimo Deberá retornar 0 si no
es asi

22 Construir una función que reciba como parametro un entero y retorne 1
SI dicho valor es múltiplo de 5 Deberá retornar 0 si no es asi

23 Construir una función que reciba como parametro dos enteros y retorne 1
SI la diferencia entre los dos valores es un numero primo Deberá retornar
0 si no es asi

24 Construir una función que reciba como parametro dos enteros de dos
dígitos cada uno y retorne 1 si son inversos Ejemplo 83 es inverso de 38
Deberá retornar 0 si no es asi

25 Construir una función que reciba como parametro un entero y un dígito
menor o igual a 5 y retorne el dígito del numero que se encuentre en la
posición especificada por el dígito que llego como parametro

26 Construir una función que reciba como parametro un vector de 10 posi
Clones enteras y retorne el mayor de los datos del vector

27 Construir una función que reciba como parametro un vector de 10 posi
Clones enteras y retorne la posición en la cual se encuentra el mayor de
los datos del vector

28 Construir una función que reciba como parametro un vector de 10 posi
Clones enteras y retorne la cantidad de números primos almacenados en
el vector

29 Construir una función que reciba como parametro un vector de 10 posi
Clones enteras y retorne la cantidad de números que pertenecen a los 30
primeros elementos de la sene de Fibonacci

30 Construir una función que reciba como parametro un vector de 10 posi
Clones enteras y retorne la posición del mayor numero primo almacenado
en el vector

31 Construir una función que reciba como parametro un vector de 10 posi
Clones enteras y retorne el promedio entero del vector

32 Construir una función que reciba como parametro un vector de 10 posi­
ciones enteras y retorne el promedio real del vector

412

Caí» II Funcionis

33 Construir una función que reciba como parametros un vector de 10 po
siciones enteras y un valor entero y retorne 1 si dicho valor entero se en­
cuentra en el vector Deberá retornar 0 si no es así

34 Construir una función que reciba como parametro un vector de 10 posi­
ciones enteras y retorne la posición del numero entero que tenga mayor
cantidad de dígitos

35 Construir una función que reciba como parametro un vector de 10 po
siciones enteras y retorne la posición en la que se encuentre el mayor
numero primo que termine en 3 almacenado en el vector

36 Construir una función que reciba como parametro un entero y retorne
ese elemento de la sene de Fibonacci

37 Construir una función que reciba como parametros dos enteros, el prime
ro actuara como base y el segundo como exponente, y retorne el resulta
do de elevar dicha base a dicho exponente

38 Construir una función que reciba como parametro un vector de 10 po
siciones enteras y retorne la cantidad de números terminados en 3 que
contiene el vector

39 Construir una función que reciba como parametros un vector de 10 po­
siciones enteras y un dígito y que retorne la cantidad de veces que dicho
dígito se encuentra en el vector No se olvide que un mismo dígito puede
estar vanas veces en un solo numero

40 Construir una función que reciba como parametro un vector de 10 po­
siciones enteras y un dígito y que retorne la cantidad de números del
vector que terminan en dicho dígito

41 Construir una función que reciba como parametro un vector de 10 po­
siciones enteras y un dígito y que retorne la cantidad de números del
vector en donde dicho dígito esta de penúltimo

42 Construir una función que reciba como parametro una matriz de 3x4
entera y retorne la cantidad de veces que se repite el mayor dato de la
matriz

43 Construir una función que reciba como parametro una matriz 3x4 entera
y retorne la cantidad de números primos almacenados en la matriz

INTUODUCCIÜN a Lr\ IOGIC \ DI I>R(KiRy\M \C ION - 0\1 \U l\ \N TlUJüS BURTHC \

44 Construir una función que reciba como parametro una matriz 3x4 entera
y retorne la cantidad de veces que se repite el mayor numero primo de la
matriz

45 Construir una función que reciba como parametros una matriz4x4 entera
y un valor entero y retorne la cantidad de veces que se repite dicho valor
en la matriz

46 Construir una función que reciba como parametro una matriz 4x4 entera
y retorne el numero de la fila en donde se encuentre por primera vez el
numero mayor de la matriz

47 Construir una función que reciba como parametro una matriz 4x4 entera
y retorne el numero de la columna en donde se encuentre por primera
vez el numero mayor de la matriz

48 Construir una función que reciba como parametro una matriz 4x4 entera
y retorne la posición exacta en donde se encuentre almacenado el mayor
numero primo

49 Construir una función que reciba una matriz 5x5 y retorne el valor de su
moda La moda de un conjunto de datos es el dato que mas se repite

50 Construir una función que reciba una matriz 5x5 y retorne la cantidad de
veces que se repite su moda

414

Capítulo 12
Consejos y reflexiones sobre

programación

En los siguientes párrafos pretendo condensar en una sene de consejos y
reflexiones toda mi experiencia como programador y como profesor de Ló­
gica de Programación Algunos de estos comentarios obedecen a criterios
puramente técnicos y otros sencillamente son recomendaciones que me han
hecho mucho mas fácil el trabajo de la programación y su correspondiente
convivencia con diferentes lenguajes de computador Por esta razón, espero
que este capitulo sea para usted un aporte significativo en su tarea de forma
Clon como programador

12.1. Acerca de la lógica

Siempre que usted vaya a resolver un problema, sea muy logico Esto quiere
decir que, sencillamente, guíese por sus mínimos razonamientos y busque
siempre el camino mas obvio y sencillo No existe un problema que se resuel­
va con lógica cuya solución no sea sencilla Antes de comenzar a pensaren
la lógica de programación, piense en su propia lógica Diseñe las soluciones
pensando en sus propias reglas y, luego sí, ajústese a las reglas que la lógica de
programación impone para facilitar la posterior codificación

Es muy importante que usted poco a poco destine parte de su tiempo a resol­
ver problemas, así no sean estrictamente de programación, dado que en esos
momentos en donde usted se sienta a pensar detenidamente en la búsqueda
de solución de un determinado problema, en esos momentos, es donde us­
ted realmente esta utilizando su cerebro Normalmente, nuestro cerebro se va
acostumbrando, y asi es como lo orienta la educación formal, a buscar entre
sus conocimientos las soluciones que se esten necesitando, pero muchas ve­
ces tenemos que crear soluciones y es allí en donde nos encontramos que son
muy pocas las veces en las que ponemos a funcionar nuestro cerebro

^I5

iNlTtODUtCION \ U\ lOGICV DL t IU)0R/\M/\C10N - Om\R IwN TrUOS BURITICV

Yo espero que usted, amigo lector, no se me vaya a ofender, ya que no es el
proposito de este párrafo incomodarlo Lo que si quiero es que usted piense
cuantas veces realmente se ha sentado a crear una solución de un problema y
encontrara que son muy pocas las veces, ya que en aquellas oportunidades en
donde ha tratado de hacerlo y, por ventura, ha encontrado la solución es por­
que su cerebro ha buscado en su biblioteca de conocimientos alguna solu
Clon analoga a problemas parecidos y la ha ajustado al problema en mención

Por tal motivo, es muy importante que de vez en cuando resuelva acertijos
matemáticos, problemas con palitos, dados, cartas e incluso hasta resolver
adivinanzas Este tipo de problemas le van permitiendo a usted buscar solu­
ciones espontaneas, originales, creadas por usted mismo y que ademas son
solución a un determinado problema planteado Todos esos juegos de lógica
que mas de una noche nos han puesto a pensar son los que van haciendo
que el cerebro cree soluciones y no las busque en las que ya conoce Es muy
importante que tenga en cuenta todo esto, dado que en programación usted
va a necesitar crear soluciones a problemas determinados basadas en sus con
ceptos y en el conocimiento que tenga de las herramientas y de los conceptos
aquí planteados

Siempre que usted se enfrente a un problema, no lo olvide, busque el camino
mas logico para resolverlo ¿Como saber cual es el camino mas logico’ Pues
sencillamente la solución mas obvia es la que demarca cual es el camino mas
logico Siempre busque la solución mas obvia antes de comenzar a aplicar
teorías y conceptos como los planteados en este libro La aplicación de dichas
teorías y conceptos debe ser un paso posterior Inicialmente, lo que usted
debe tener aproximadamente claro es un camino de solución y si se detiene a
pensar en el problema no sera raro que la mayoría de las veces tenga el camino
mas obvio de solución a dicho problema

La lógica es ese conjunto de razonamientos que nos permiten solucionar fácil­
mente determinados problemas o lograr fácilmente determinados objetivos
Cada persona puede tener un enfoque diferente en cuanto a dicha solución
y es muy importante, cuando se trabaja en equipo, escuchar cual es la solu­
ción de los otros Indiscutiblemente que para cada problema ha de existir una
solución optima, obvia y ademas muy sencilla ¿Por que razón cada persona
puede llegar a encontrar una solución diferente a un determinado proble­
ma 7 Son multiples las explicaciones, pero se debe destacar dentro de ellas el
entorno social, la preparación, el conocimiento, la convivencia y la utilización
de conceptos nuevos acerca de la misma lógica, su mismo entorno personal y
muchas mas razones que pueden hacer que una persona vea la solución de un
problema con una óptica diferente a como la podemos ver nosotros

416

Cap 12 - Cossrjos y rlflcxioncs sodrc phogramacion

Lo que para una persona es absolutamente ilógico para otra es completamen­
te lógico y es posible que ambas tengan la razón (o al menos crean tenerla) da­
das sus propias condiciones personales e intelectuales. Sin embargo, podemos
decir que si se mira un problema con una óptica aproximadamente neutral
nos podremos aproximar a la solución mas sencilla y obvia. ¿Cómo poder lle­
gar a obtener una óptica aproximadamente neutral..? Considero que solo hay
una forma de acercarse a este concepto y es estudiando conceptos que nos
permitan lograr este objetivo. No es fácil determinar en qué momento hemos
alcanzado una lógica aproximadamente normal, pero cuando el problema a
solucionar puede ser resuelto con la utilización de la tecnología, entonces esta
se convierte en el catalizador y en la regla de medida para saber hasta dónde
nuestra solución es realmente óptima o no

No olvide que la lógica computacional le permitirá buscarsoluciones que pue­
dan implementarse con tecnología. Por esta razón es que la buena utilización
de la misma nos va a permitir saber hasta donde nos hemos acercado a la so­
lución óptima. Me arriesgaría a decir que un problema que se solucione con
lógica computacional solo tendrá una y solo una solución óptima Es decir, la
solución más sencilla de implementar, la más obvia y la más entendible, a la luz
de los conceptos de la misma lógica computacional.

12.2. Acerca de la metodología
para solucionar un problema

Es muy posible que a esta altura usted se haya dado cuenta de algo en cuan­
to a la metodología para solucionar un problema y es que esta metodología
no solo se refiere a problemas de la lógica computacional, sino que involucra
cualquier problema. Note usted que los tres pasos explicados en este libro son,
ni mas ni menos, el secreto para que cualquier problema, sin importar de qué
orden sea, tenga, mínimamente, una buena solución.

El objetivo es lo principal en todo lo que nos proponemos hacer en nuestras
vidas; muchas empresas han fracasado solamente porque no tenían el objeti­
vo suficientemente claro, muchos propósitos se han ido al piso solo porque el
objetivo no era tan diafano como se pensaba. En cuestión de lógica de progra­
mación, el objetivo es lo principal. Recuerde "No de ningún paso hacia delante
SI no tiene exageradamente claro el objetivo". Cuando usted tiene claro el ob­
jetivo, entonces obtiene dos ganancias: sabe claramente qué es lo que quiere
hacer y sabe claramente hasta dónde debe llegar, o sea, en dónde debe parar
Pareciera que estas dos ganancias fueran lo mismo pero en realidad no lo son,
aunque no puedo negar que sí están fuertemente conexas

El objetivo marca el faro hacia el cual debemos enrutar todos nuestros es­
fuerzos y la clave para lograrlo es, precisamente, no perderlo de vista. Sin un
objetivo suficientemente claro, no podemos empezar a desarrollar nada, pues
es posible que estemos tomando un camino equivocado y no nos estemos
dando cuenta. ¿Cómo saber que el objetivo está realmente claro? Pues con
el solo hecho de que usted ha conceptualizado perfectamente lo que quiere
lograr, el hecho de que usted pueda explicar con absoluta seguridad que es
lo que pretende obtener, ya con eso usted podrá sentir que el objetivo está
completamente claro.

No dé ni un solo paso hasta tanto no tenga una absoluta certeza de lo que
usted quiere lograr No avance porque es posible que llegue a avanzar por el
camino equivocado y termine logrando algo muy distinto a lo que había sido
su objetivo original. Primero que nada, un objetivo claro y ahí sí podra usted
pensar en todos los demás elementos que conforman esta metodología

El objetivo es como ese faro! que ilumina una calle, inicialmente, oscura. Cuan­
do usted tiene bien claro el objetivo a lograr, inmediatamente el camino para
lograrlo automáticamente se aclara. Cuando a usted le dicen que debe ir hasta
ese edificio azul que se ve al fondo, inmediatamente comienza a buscar todos
los caminos para llegar a él y verá más de uno que le permita lograr llegar
hasta el edificio en mención. Eso es lo mismo que pasa cuando usted tiene un
objetivo claro. Ese camino para lograr un objetivo es lo que se llama algoritmo.
El algoritmo es el conjunto de acciones (en el caso de un seudocódigo, es el
conjunto de órdenes) que nos permiten lograr un objetivo Cuando hemos de­
purado nuestra lógica frente a la solución de vanos problemas, podemos decir
que dicho algoritmo se aproxima altamente a la solución óptima.

Cuando se trate de algoritmos computacionales, deberán ir orientados a facili­
tar la codificación posterior precisamente para tener toda la certeza de que el
computador va a ejecutar lo que nosotros hemos concebido como solución.
Trate de utilizar, en sus algoritmos, órdenes que sean de fácil conversión a
cualquier lenguaje de programación convencional No olvide que lo mas im­
portante en el desarrollo de soluciones computacionales es la lógica que se
haya utilizado para solucionar un determinado problema Siempre tenga en
cuenta que de una buena lógica utilizada en la construcción de los algoritmos
dependen los buenos programas, es decir, las buenas aplicaciones.

Igualmente, de nada sirve la presunción de que nuestros algoritmos están
bien, o sea, de que cumplen los objetivos planteados, si no nos lo demostra­
mos a nosotros mismos haciendo unas buenas "pruebas de escritorio". Siempre
debe tener en cuenta que un algoritmo al que no se le ha hecho una rigurosa
prueba de escritorio no es más que un conjunto de órdenes posiblemente

IniTIODUCCION A U lOGICA 131 I’ROGRAM \CION - Ost \K I\\N TtlfJOS BUKtTICA

4IK

Cap 12 - Consuos y rj acxioNrs soiike PROGllA^wclON

incoherente Lo único que le da verdadero respaldo a un algoritmo es la prue­
ba de escritorio, que es la que nos permite saber si realmente el algoritmo esta
cumpliendo el objetivo o si no

La prueba de escritorio nos brinda dos elementos que a mi juicio son lo mas
importante en la construcción de ios algoritmos en primera instancia, la prue­
ba de escritorio nos va a permitir saber si realmente el algoritmo cumple el
objetivo o no, o sea, en términos coloquiales, la prueba de escritorio nos per­
mite saber si el algoritmo esta bien En segundo lugar, la prueba de escritorio
nos va a permitir saber en donde esta el error o los errores de un determinado
algoritmo para ser corregido, porque no solo se necesita saber si cumple o no
con el objetivo un determinado algoritmo, sino ademas saber en donde están
las fallas y las razones por las cuales no esta cumpliendo el objetivo

Solo hasta cuando usted ha realizado una prueba de escritorio rigurosa y ha
confrontado los resultados finales con el objetivo inicial, solo hasta ese mo­
mento, podra realmente saber si su algoritmo estaba bien concebido o no
¿Como hacemos entonces para realizar una prueba de escritorio rigurosa?
Pues muy sencillo, escriba su algoritmo en formato de seudocodigo y coloque
en el papel un rectángulo para lo que va a pasar en la pantalla y otro rectán­
gulo para lo que va a pasar en la memoria En el rectángulo de la memoria,
coloque las variables que va a utilizar su algoritmo y comience a ejecutar linea
a linea cada orden escrita No suponga nada No se salte ninguna orden No
presuma ningún resultado Usted tendrá que ejecutar el algoritmo tal y como
el computador lo va a realizar Él no supone nada, no se salta ninguna línea ni
presume ningún resultado

Solo de esta forma podemos llegar a los mismos resultados que llegaría el
computador Esto quiere decir que, si al realizar una prueba de escritorio ve
mos que nuestro algoritmo arroja unos resultados que no coinciden con el
objetivo, entonces, si el computador ejecutara dicho algoritmo (convertido en
programa, por supuesto), también arrojaría resultados errados Vaya utilizando
las variables de memoria en la medida en que las va utilizando el algoritmo y
cada vez que le coloque un nuevo valor a una variable, tache el valor que tenía
almacenada antes dicha variable Sin suponer nada, ejecute una a una cada
instrucción del algoritmo y, cuando haya terminado, mire lo que queda en la
pantalla o mejor dicho en el rectángulo de la pantalla

Si lo que usted obtiene allí coincide con el objetivo inicial que buscaba lograr,
entonces su algoritmo estara bien y podra comenzar a codificarlo 5i usted
nota que los resultados presentados en su 'pantalla" no coinciden con los que
iniciaimente había planteado como objetivo, entonces esto querrá decir que
su algoritmo esta mal y que, por lo tanto, usted deberá corregir los errores que

la misma prueba de escritorio le indique en donde están No olvide que en el
instante de desarrollar una prueba de escritorio no se presume nada, no se
supone nada ni se salta ninguna instrucción

Podríamos concluir en este conjunto de reflexiones acerca de la metodología
para solucionar un problema que de la realización eficiente de las pruebas de
escritorio depende el tiempo que usted gane o pierda, de la buena construc­
ción de algoritmos dependen las buenas aplicaciones de programación y de la
claridad de los objetivos depende su prestigio como programador

iN-moDuccioN \ iw\ I OGic\ I3I i’RoolUM \cioN - Omar I\ \n Trijos Buritica

12.3. Acerca de las variables y los operadores

Cuando usted vaya a desarrollar un algoritmo, no pierda mucho tiempo pen­
sando en las variables que va a necesitar Comience por declarar las variables
que saltan a la vista Por ejemplo, si su algoritmo comienza diciendo Leer un
número entero y , ya con eso es suficiente para que usted sepa que va a necesi­
tar mínimamente una variable de tipo entero, dado que al leer un numero este
debe quedar almacenado en algún lugar de memoria y ese lugar indiscutible­
mente tiene que ser una variable Igualmente, del mismo enunciado se puede
concluir el tipo de dato que necesitamos

Cuando vaya a iniciar un algoritmo, declare las variables que saltan a la vista,
como cuando usted va a preparar un arroz con pollo salta a la vista que va a
necesitar arroz y pollo, pero también sabemos que no solo esos dos elementos
forman parte de un arroz con pollo, también necesitaremos sal, condimentos
y otros productos que no saltan a la vista de manera tan obvia como el arroz
y el pollo Entonces, inicialmente, declare las variables que saltan a la vista en
el mismo enunciado, no se detenga a pensar en las demas variables que va a
necesitar, pues estas van surgiendo en la medida que las va necesitando en el
desarrollo del mismo algoritmo

En este libro se han explicado y se han utilizado tres tipos de datos los datos de
tipo entero, los datos de tipo carácter y los datos de tipo real Cada uno tiene
unas características técnicas que permiten manipular y manejar variables con
ese tipo de datos Sin embargo, tenga en cuenta que muchos lenguajes de pro­
gramación cuentan con tipos de datos diferentes adicionales a los aquí explica­
dos y en mas de una oportunidad esos tipos de datos nos pueden facilitar de una
manera mucho mas simplificada el logro de un determinado objetivo Por eso es
muy bueno que usted tenga algún leve conocimiento de los tipos de datos que
permite el lenguaje de programación con el cual va a codificar sus algoritmos

No olvide tampoco que, siempre que usted almacene un valor determinado
en una variable, el valor anterior se pierde, pues el nuevo valor reemplaza el

420

Cap 12 - Consijos y (u.nxxioNns sobre programación

dato anterior Por eso, cuando usted necesite almacenar el dato anterior de
una variable, pues sencillamente tendrá que utilizar otra para que ese dato
no se pierda Igualmente, en algunos lenguajes es posible almacenar en una
variable de un tipo de dato otro tipo de dato, esto quiere decir que en algunos
lenguajes puede usted almacenar un entero en una variable de tipo carácter
Claro que recalco que esta es una particularidad de determinados lenguajes
de programación Por estas razones, es muy importante que usted conozca
algunas características del lenguaje de programación con el cual va a codificar
sus algoritmos, ya que podra utilizar apropiadamente algunos recursos de di­
cho lenguaje en la construcción de sus algoritmos

También es muy importante que tenga en cuenta que, por las características
técnicas de los tipos de datos en los lenguajes de programación, los datos de
tipo entero y real tienen unos topes de almacenamiento Para ello, es muy
bueno que usted conozca esos topes de almacenamiento y, si se da el caso
del siguiente enunciado Leer un numero entero y determinar si tiene mas de 40
dígitos, usted inmediatamente sepa que con los tipos de datos convencionales
no se puede desarrollar

En cuanto a la precedencia de ejecución de ios operadores, tenga en cuenta
que los que primero se resuelven son los paréntesis mas internos, o sea, aque­
llos paréntesis que no tienen mas paréntesis adentro Esto es aceptado por
todos los lenguajes de programación También es importante que sepa que
primero se desarrollan las potencias, luego las multiplicaciones y divisiones
y luego las sumas y restas Esta precedencia, tanto con paréntesis como con
operadores, es lo que permite que una misma operación, por compleja que
sea, tenga exactamente los mismos resultados en cualquier lenguaje de pro
gramacion, dado que se rigen por las mismas reglas

Cuando, al desarrollar una prueba de escritorio, tenga que resolver una expre­
sión que incluya paréntesis y operadores y obviamente variables, no vaya a
suponer nada, resuelva la operación tal y como lo haría el computador, de esta
manera, y solo asi, usted podra notar si los resultados son los correctos o no, es
decir, 51 la expresión sirve para lograr el objetivo o no

12.4. Acerca de las estructuras básicas
En el tiempo que me he desempeñado como programador y como profesor
de Lógica de Programación he notado que realmente la solución de ningún
problema se sale de estas tres estructuras Se que es un poco arriesgado ase­
gurarlo, pero también se que este libro busca exponer, como su nombre lo

421

indica, la esencia de la lógica de programación y puedo garantizarle que el
acertado manejo de estas tres estructuras es realmente la esencia en mención

La estructura de secuencias no es mas que la aceptación del principio mínimo
de trabajo de los algoritmos, es decir, el hecho de que cada orden se ejecuta
después de la anterior y antes de la posterior Ademas, todas las ordenes se van
a ejecutar secuencialmente, es decir, desde el principio hasta el fin Podríamos
decir que esta estructura es la que gobierna todo el concepto general de la
programación y, a la vez, permite mantener el hilo logico conceptual del dise
no de algoritmos

La segunda estructura esta formada por las decisiones Ya hemos definido
que no es mas que la escogencia de uno de entre dos ramales lógicos que
dependen de una condición Una decision esta formada por una formulación
de una condición Si esta es verdadera, entonces se ejecutaran las ordenes co
rrespondientes, si no lo es, entonces se ejecutaran las otras ordenes Es muy
importante que usted sepa que las ordenes a ejecutar en caso de que la con
dicion sea verdadera estarán escritas entre la formulación de la condición y la
palabra clave Sino (en caso de que se considere la parte falsa de la condición)
o la palabra Fin_Si (que finaliza la decision)

Las ordenes a ejecutar en el caso de que la condición sea falsa estarán com
prendidas entre la palabra clave Sino y el fin de la condición, o sea, el Fin_Si
correspondiente Para ello, tenga en cuenta que el planteamiento de una con
dicion no necesariamente involucra un Sino correspondiente, ya que existen
decisiones en donde, si su condición no se cumple, no nos interesa ejecutar
alguna orden determinada

Utilice apropiadamente los operadores relaciónales y los operadores boo
léanos, para ello recuerde que un operador relaciona! permite obtener una
respuesta de verdadero o falso y un operador booleano permite conectar ex­
presiones relaciónales La notación tanto para operadores relaciónales como
para operadores booleanos no es estándar, razón por la cual usted deberá
saber como se expresa cada una en el lenguaje de programación con el cual va
a codificar sus algoritmos Incluso puede utilizar esa notación en el desarrollo
de sus algoritmos, ya que de una vez se va acostumbrando a la notación propia
del lenguaje de programación que va a utilizar

Algunos lenguajes también permiten realizar operaciones de asignación en
medio de una expresión lógica y, por lo tanto, mas de una vez van a facilitar
el logro de un determinado objetivo Como usted puede ver, aunque no se
desmiente que el algoritmo es el soporte logico para lograr un objetivo, tam­
poco se puede negar la inmensa importancia del conocimiento del lenguaje

INTRODUCCION A LA lOGICA DL I ROGRAM \CION - Om\R I\ \N TuiJOb BURIllCA

422

Cat 12 - Conseios y RULoaoNcs sobre programación

de programación con el cual se van a convertir en programas lo que en el mo­
mento solo sean algoritmos expresados en seudocódigo Normalmente, cada
lenguaje cuenta con recursos y elementos que van a facilitar la construcción
de unos algoritmos y, por lo tanto, el logro de unos objetivos, aunque dificul­
ten un poco el logro de otros Eso es lo que justifica precisamente la existencia
de tantos lenguajes de programación en el medio informático

Como se pudo ver, para la toma de decisiones también se cuenta con una
estructura que nos permite escoger uno de entre vanos ramales lógicos (me
refiero a la estructura casos) Cada lenguaje de programación tiene una imple-
mentacion propia de esta estructura de decision, pero, en esencia, la lógica es
la misma, o sea, que vamos a encontrar una equivalencia entre lo que nosotros
programemos y la correspondiente codificación Siempre tenga en cuenta
que, para que el computador tome una decision, esta tendrá que expresarse
en términos de variables, constantes y operadores (tanto relaciónales como
booleanos)

Procure revisar bien sus algoritmos para que verifique si todas las decisiones
son absolutamente necesarias, dado que una de las ordenes que mas le toma
tiempo al computador es tomar una decision Obviamente que hablo en ter
minos del mismo computador, pues el trabaja en millonésimas de segundo y,
por lo tanto, lo que para nosotros pudiera parecer muy veloz para e! pudiera
parecer muy lento Si un computador demora un segundo en resolver una de­
cision, estara demorando demasiado, ya que en ese mismo lapso de tiempo
podra realizar millones de operaciones Por este motivo es muy importante
que usted tenga en cuenta que uno de los factores que permiten medir la efi
ciencia de un programa es la cantidad de decisiones que el mismo involucre

Muchas veces colocamos decisiones en nuestros algoritmos, a diestra y simes
tra, desconociendo que este factor va en detrimento de la misma solución
lógica del algoritmo Por lo tanto, siempre que usted haya terminado de de
sarrollar un algoritmo y lo haya probado y vea que cumple plenamente con el
objetivo, tómese un tiempito para revisar cuales decisiones pueden estar con
virtiendo su solución en algoritmo ineficiente, lo cual no contradice el logro
del objetivo, pues usted puede llegar hasta la plaza de su pueblo recorriendo
todas las calles o recorriendo solo aquellas que lo llevan alia en linea recta

Los ciclos son la tercera estructura y con ellos podemos, normalmente, lograr
desarrollar algoritmos mucho mas genéricos, es decir, sin las restricciones que
sí se necesitan cuando no se tiene esta estructura a disposición Los ciclos no
son mas que esquemas que nos permiten, en cualquier lenguaje de progra­
mación, repetir conjuntos de instrucciones una cantidad finita de veces de tal
forma que, acorde con un manejo correcto de variables, se pueda lograr mas

423

INTHODUCCION \ LA LOGICA l>l rROCR/\M \CION Omar h \N TlUJOS BURmCA

de un objetivo de manera absolutamente genenca y sm tener que estar atado
a condiciones especiales

Con los ciclos, todo lo que tenemos que hacer es tener mucho cuidado de
que las condiciones sean coherentes con el cuerpo de los mismos de manera
que se cumpla que el conjunto de instrucciones a repetir se itere una cantidad
definida de pasos Es muy útil recordar que la buena utilización de operadores
relaciónales y operadores booleanos es lo que nos permite lograr unos ciclos
eficientes y ante todo muy funcionales

12.5. Acerca de las técnicas
de representación de algoritmos

Hemos revisado los conceptos acerca de las diferentes técnicas de representa­
ción de algoritmos y hemos mostrado como quedarían algunos de ellos repre
sentados con dichas técnicas Las técnicas lo que van a permitir, cada una en su
estilo, es colocar a su disposición herramientas para que la representación se
haga mucho mas sencilla porque si usted se detiene a pensar un momento no
es tan fácil representar una idea por su misma naturaleza eterea e intangible
Por este motivo, la explicación de estas técnicas busca que usted pueda tener
unos elementos conceptuales que le permitan de una manera sencilla y sim-
plifícada representar sus ideas

La diagramacion libre permitió durante mucho tiempo que la idea general de
solución de un problema fuera expresada de manera gráfica Así se pudo, poco
a poco, ir estandarizando soluciones para determinados problemas comunes
Como se pudo ver, se explico un cuadro comparativo de las diferentes tec
nicas y allí se expusieron las ventajas y desventajas de la diagramacion libre
Considero que la diagramacion como tal tiene la ventaja de mostrar lo que
podríamos decir que es un "dibujo' que sirve como solución a un problema
determinado, o sea, que sirve para lograr un objetivo planteado

Aun a pesar de que realizar correcciones a un diagrama de flujo ya realizado es
una tarea en mas de una ocasión dispendiosa e incomoda, aun así, podría ase­
gurarles que uno entiende cualquier cosa de una manera mucho mas fácil si se
la explican a través de un gráfico Por esta razón, es mucho mas fací) entender
un mapa que entender una dirección Este es el factor realmente rescatable de
la técnica de diagramas de flujo; sin embargo, el gran problema que se presen­
taba al momento de realizarle una o mas correcciones es lo que ha desplazado
poco a poco la utilidad de esta técnica Ademas que resultaba ser muy desven­
tajoso, hablando en términos técnicos, el hecho de que el programador tenga

424

Cap 12 - Consdos y reflexioncs sodrl programación

toda la libertad de hacer lo que le venga en gana en el papel para representar
sus ideas, dado que si bien algunos programadores son muy ordenados otros
no lo son, y si después le corresponde a alguien codificar lo que en su momen­
to un programador altamente desordenado planteo a través de una maraña
de lineas y símbolos que el erróneamente llamo diagrama de flujo, se vera en
grandes aprietos para entenderlo

Por este motivo, poco a poco se fue viendo la necesidad de buscar otra forma
de expresión de los algoritmos Fue allí en donde nació la idea de la diagra-
macion rectangular estructurada que permitía que el programador expresara
cualquier idea de una manera aproximadamente grañca pero no con tanta
libertad como se hacia en los diagramas de flujo También presentaba la pe-
quena dificultad de realizar correcciones, pero se hacía de todas formas mucho
mas fácil la tarea de corregir que en los diagramas de flujo No se puede negar
que la representación gráfica como tal de un algoritmo a través de la diagra-
macion rectangular estructurada no es tan entendible a primera vista como
si lo es con los diagramas de flujo, pero si se debe aceptar que es mucho mas
técnica y por ello facilita mucho la posterior codificación, otro gran problema
que colocaban los diagramas de flujo

Bajo mi Optica diría que a alguien se le ocurrió quitarle las líneas a la diagrama-
cion rectangular estructurada y adicionarle unos nuevos estándares y prácti­
camente fue así como se llego al concepto del seudocodigo, que paso a ser la
solución optima dentro del objetivo de lograr una forma de representación de
ideas que permitiera fácilmente una posterior codificación, que tuviera unas
reglas establecidas por la misma lógica y que, ademas, fuera, desde todo pun­
to de vista, entendible

El seudocodigo abre un camino para una posterior codificación simplificada
y ademas es muy entendible, teniendo en cuenta que se circunscribe a unas
reglas lógicas que estandarizan el desarrollo del algoritmo como tal Sin des
conocer las inmensas bondades de las otras dos técnicas, considero que el
seudocodigo permite lograr de una manera muy sencilla la representación de
una determinada idea solución orientada al logro de un determinado objetivo

Finalmente, es muy bueno que usted conozca las tres técnicas y de vez en
cuando tas practique, dado que existen muchos autores de manuales y de
libros que utilizan indistintamente una u otra y entonces allí se hara muy im­
portante que las conozcamos para que podamos entender lo que nos quieren
representar técnicamente

INTRODUCCION A lA lOGICA OI l’ROCiIUM\CION - OmAR IWNTrIJOS BURHICA

12.6. Acerca de la tecnología

Usted ha podido notar que en el mundo actual existe un despliegue de tecno­
logía que no solo facilita sino que también condiciona la vida del ser humano
Los lenguajes de programación no son la excepción dentro de esa carrera co­
mercial en la cual se encuentran inmersos todos los fabricantes de tecnología
Con gran frecuencia se encuentra uno con la decepción de que el software de
desarrollo, o sea, los lenguajes de programación que existen en el mercado,
son modificados y, teóricamente, mejorados con tanta vertiginosidad que uno
escasamente alcanza a conocer algunas de sus bondades cuando ya las están
cambiando por otras

Por eso, no hay que preocuparse de que la tecnología vaya avanzando mucho
más rápido de como avanzan nuestros conocimientos, pues lo que nos corres­
ponde es tratar de estar a la vanguardia en dichos avances. ¿Como se hace para
estar al día con todos los lenguajes de programación? Pues si usted en algún
momento ha tenido este propósito es verdaderamente Imposible Permanen­
temente trate de mantenerse actualizado en cuanto a los avances del lenguaje
de programación con el que usted usualmente trabaja. Si está vinculado a una
empresa en donde se trabaja con un lenguaje determinado, pues entonces ha
de procurar aprovechar las políticas de actualización de la empresa para tratar
de mantenerse al día en las mejoras que dicho lenguaje vaya teniendo.

Sin embargo, tenga en cuenta que por más que se estudie es muy posible que
usted siempre esté un poco rezagado de las actualizaciones de los lenguajes
de programación, dado que esta tecnología nos llega luego de que ha pasado
algún tiempo de prueba y otro de comercialización en los países industriali­
zados. La ventaja de trabajar con un solo lenguaje de programación es que
de una u otra forma usted estará, por la simple necesidad de uso del mismo,
mucho más actualizado que lo normal (obviamente si la empresa tiene unas
políticas de actualización tecnológica apropiadas). La desventaja es que usted
se va a ir"encasillando"poco a poco en un solo lenguaje y, probablemente, ni
siquiera llegue a conocer las ventajas y los avances de otros lenguajes de pro­
gramación Sin embargo, ha de entender y aceptar usted que no es fácil para
una empresa estar cambiando su plataforma de desarrollo cada seis meses
solo porque salió un lenguaje de programación aparentemente mejor.

Por esta razón, se hace muy importante ir poco a poco conociendo las actuali­
zaciones en determinado lenguaje y, sin "casarse" de manera exclusiva con él,
sí tener alguna preferencia por un lenguaje que por los demás. Considero que
eso le permite a uno tener un poco más de destreza en la programación, así sea
orientando sus algoritmos a la ímplementacíón en un lenguaje determinado.

426

Cap. 12 - CONSOOS Y RnU3(IONES sodrl progra.mación

Tenga en cuenta que, cada vez que usted se sienta a desarrollar un algoritmo,
ha de buscar que dicho algoritmo sea lo más genérico posible no solo en su
concepción lógica, sino en su posterior Implementación, es decir, el algoritmo
debe estar escrito en términos que se facilite la codificación en cualquier len­
guaje. No puedo negarle que, en la medida en que uno se acostumbra a un
determinado lenguaje de programación, en esa misma medida se va acostum­
brando a la utilización de elementos y conceptos propios de dicho lenguaje en
la construcción de los algoritmos. ¿Bueno o malo...? Eso no sabría respondér­
selo, pues encuentro tantas cosas buenas como malas, pero sé que es así como
medianamente podemos llegara funcionar teniendo en cuenta que definitiva­
mente los lenguajes de programación avanzan mucho más rápido que nuestro
aprendizaje o al menos así sucede en el mercado informático colombiano.

Considero que la mejor fuente para tener una percepción de los avances de
los lenguajes de programación, así dicha percepción solo sean ideas de me­
joramiento mas no Instrucciones puntuales en sí, la constituyen las revistas
técnicas en donde explican bondades y beneficios de las mejoras de los len­
guajes de programación. Estas revistas lo que permiten es que tengamos una
Idea del camino que están siguiendo los avances en el desarrollo de las herra­
mientas de programación. Ya si nos interesa conocer en detalle dichas mejoras,
entonces tendríamos que trabajar con el lenguaje en mención y de esta forma
podríamos conocer, de manera apllcativa, cuáles han sido dichos avances.

Utilice preferiblemente uno o dos lenguajes de programación si es indepen­
diente. Si la utilización de dicho lenguaje de programación está determinada
por la empresa, entonces estudie todas sus bondades. Estoy seguro que más
de una vez se encontrará con muchas instrucciones del mismo lenguaje des­
conocidas para usted y que le sacarán de más de un lío programático.

12.7. Acerca de las decisiones
En cuanto a las decisiones, realmente es poco lo que hay que acotar, dado
que en la sección "Acerca de las estructuras básicas" se ha dicho la mayoría.
Tal vez podría agregar que no se ate solo a la estructura Si-Entonces-Sino, pues
también tenga en cuenta que la estructura casos le va a permitir simplificar
más de un conjunto de decisiones y hacer que su algoritmo sea mucho más
entendible y fácil de codificar.

Siempre evalúe bien las condiciones de las decisiones y realícele la prueba de
escritorio a las decisiones tal y como se ha recomendado en todo este libro,
es decir, sin suponer absolutamente nada y sin saltarse ningún paso, debido
a que se puede encontrar, más de una vez, con que saltarse una instrucción

427

ÍKI1<()I)LIC C IOS A l-.\ l DCilt \ DI I’KOCilUMACION - OMAU 1\ \N ThIJOS BuKI TIC \

que involucre una decision va a significar un cambio realmente profundo en el
desarrollo del algoritmo y en su posterior ejecución Revise que las decisiones
que aparezcan en su algoritmo realmente sean necesarias y omita todas aque­
llas que, por razones estrictamente lógicas, esten sobrando.

Las decisiones son el único camino que tenemos en la programación para es­
coger uno de entre dos ramales lógicos, por eso es una de las herramientas
que debemos utilizar de manera eficiente, pues su excesivo uso, tal como ya
se expuso, representa ineficiencia en la construcción del algoritmo Cuantas
menos decisiones tenga un algoritmo mas eficiente sera la ejecución de su
correspondiente programa.

12.8. Acerca de los ciclos

Como Vimos, existen diferentes tipos de ciclos y la mayoría de ellos están con­
templados en los lenguajes de programación Normalmente me preguntan
¿cuál de las estructuras cíclicas es la mejor? A lo cual yo respondo que real­
mente esta pregunta no se puede resolver en cuanto a una comparación y
escogencia del mejor ciclo Comencemos por decir que en la inmensa mayoría
de las veces todos los ciclos son equivalentes Como vimos, existían unos casos
que no permitían una implementacion de algunos ciclos, pero, en general, la
mayoría de las veces son equivalentes.

No puedo negarle que uno poco a poco se va acostumbrando a la permanente
utilización de uno o dos esquemas de ciclos, pero ello no es porque sean mejo­
res o no, sencillamente es porque uno se acostumbra a ellos y no más. Cuando
necesite un ciclo en un algoritmo, simplemente utilice aquel que usted vea mas
a la mano, es decir, aquel que vea mas lógico, aquel con el cual usted vea que le
resulta más fácil Implementar el conjunto de instrucciones a repetir. No se ate
obligatoriamente a un esquema de ciclos, pero no se extrañe si con el tiempo
nota que utiliza uno o dos esquemas de ciclos muchos mas que los otros.

La forma de escritura de algunos esquemas de ciclos en determinados lengua­
jes de programación puede llegar a ser un poco confusa y, en muchos casos,
casi caprichosa.Tenemos que acostumbrarnos a ello si estamos trabajando con
un lenguaje de estos o si nos toca trabajar con ellos. La sintaxis (que no es más
que la forma como se escriben las órdenes en un lenguaje de programación)
está diseñada por los creadores del lenguaje y, por lo tanto, no es cambiable a
nuestro gusto, aunque puedo garantizarle que no se preocupe si usted se acos­
tumbra a (o le toca) trabajar con un determinado lenguaje de programación;
por más difícil que sea, usted en pocos días verá que su sintaxis es entendióle y
hasta llegará a defenderla, al fin y al cabo somos unos "animales de costumbre".

428

Caí 12 - Consdos Y iutli3^ionií sourl PRooRAmcioN

12.9. Acerca de los vectores

Los vectores establecen una herramienta de programación tan fuerte que mas
de una vez vamos a recurrir a ellos para que nuestros algoritmos sean realmen­
te eficientes No sobredimensione los vectores, esto quiere decir que no utilice
vectores con una dimension exagerada para no correr el nesgo de quedarse
corto de memoria Trate de ser lo mas exacto en la dimension de los vectores,
pues tenga en cuenta que sobredimensionarlos implica estar reservando es
pacios de memoria que probablemente nunca se van a utilizar en la practica

Se que usted estara pensando que no existe una técnica que permita darle a
los vectores una dimension dependiendo de las necesidades instantáneas de
ejecución del programa La verdad es que sí existe una técnica y no es exacta­
mente con vectores, pero no son tema de este libro, sin embargo, en la medida
en que usted utilice bien los vectores, empezara a notar como sus programas
no solo pueden llegar a aprovechar eficientemente los recursos del computa
dor, sino que lograra objetivos cada vez mas genéricos y con menos esfuerzo
tecnológico

Siempre que utilice un vector tenga en cuenta la buena utilización de una va­
riable que servirá como subíndice para referenciar cada uno de los elementos
almacenados en el vector No olvide que cuando se hace referencia sV[i]se
esta citando el valor que se encuentra almacenado en el vector Ven la posición
I y cuando se hace referencia a / sencillamente se esta citando la posición de un
determinado dato del vector

Este ejemplo es valido si asumimos que estamos dentro de un algoritmo en
donde estamos utilizando un vector que hemos llamado V y que utiliza un
subíndice que hemos llamado / De la buena utilización de subíndices en ios
vectores depende la buena aplicación de los mismos en los algoritmos

12.10. Acerca de las matrices
Las matrices, al igual que los vectores, tienen una precaución en su utilización
y es que no se vayan a sobredimensionar por el temor de quedarnos cortos de
memoria Siempre trate al máximo de que la dimension de las matrices que
utilice sea lo masjusta posible, precisamente para que usted no este reservan
do todo un espacio que posteriormente dentro del algoritmo no va a utilizar
Trate, al igual que con las variables y los vectores, de que los nombres de las
matrices sean lo mas mnemonicos posibles, pues de esto también dependerá
que en cualquier momento usted vea un algoritmo y se ubique en cuanto a
su concepción lógica Tenga también en cuenta que la utilización de matrices

ISTKOOUCC ION \ I-.\ I one \ D1 l>R(KiR.\MAUON - 0\l \R I\ VN TRUOí BuRITIC \

normalmente exigirá la utilización de dos subíndices, uno para las filas y otro
para las columnas, y que no necesariamente estos dos subíndices tienen que
llamarse / y j Sencillamente necesitan ser dos variables enteras y nada mas Al
igual que con los vectores, de la buena utilización de los subíndices de una ma
triz obtendremos la buena aplicación del concepto de matriz dentro de nues­
tros algoritmos No utilice matrices en donde no las vaya a necesitar, siempre
verifique si realmente el enunciado exige la presencia de matrices o no para
que no tenga que estar reservando espacios de memoria que no va a usar

Si los datos que usted lee deben ser almacenados, por alguna razón, en forma
de filas y columnas, entonces usted necesitara una matriz Si necesita que, ade
mas de la consideración anterior, sus datos permanezcan para una posterior
utilización, entonces usted también necesitara en ese momento la utilización
de una matriz Siempre encontrara razones lógicas que van a validar o a recha
zar la utilización de matrices dentro de la estructura lógica de un algoritmo

12.11. Acerca de las funciones

Las funciones son, como yo les llamo en todos los cursos de programación que
he dictado, la gran "vedette' de la programación, pues con las funciones, como
pudimos ver en el contexto del libro, se solucionan los que considero que son
los problemas mas grandes que tiene la programación y que precisamente
no son técnicos, sino de concepción humana Cuando usted vaya a construir
una función, tenga en cuenta que cuanto mas genérica la construya mas le
va a servir para mas adelante ¿Como lograr funciones verdaderamente ge­
néricas’Verificando que parametros necesita Solo allí usted podra encontrar
el verdadero sentido de las funciones y su gran utilidad En mi concepto, la
programación conceptualmente no ha entregado una estructura mas practica
y mas simplificada que el concepto de función Yo dina que hasta de allí en
adelante la programación no ha evolucionado, pues toda la teoría actual de
la programación se basa en esa unidad de trabajo, en esa "célula" funcional
Por tal motivo, yo le dina que, si al leer usted este libro y llegar a este punto
encuentra que no solo ha entendido claramente que es una variable, que es
una secuencia, que es una decision, que es un ciclo, que es un vector y que es
una matriz y, ademas, ha entendido claramente que es una función y como
se aplican en ella todos los conceptos anteriores, entonces este libro logro su
objetivo inicial, que era colocar a su disposición todos los elementos básicos
que constituyen la esencia de la lógica de programación

430

Bibliografía

Artículos

A, Azad and D. Smith. Teaching an introductory programming language In a
general education course. 2014, Journal of Information Technology Education:
Innovations in Practice, Vol. 13, págs. 57-67.2014

AM Vega and A. Espinel. Aspectos fundamentales para la enseñanza de la
programación basica en ingeniería. Revista Avances en Sistemas e Informática,
Vol. 7, pp 7-13. Marzo 2010,

C Romero and M. Rosero. Modelo de Enseñanza y su relación con los procesos
metacognitivos en programación de sistemas. Asoc. Colombiana de Faculta­
des de Ingeniería ACOFI. Bogota. Revista Educ. en Ingeniería, pág. 3. Jumo 2014

H Paz-Penagos ¿How to develop metacognition through problem solving In
higher education? Revista de Ingeniería e Investigación, Vol. 31, págs. 75-80.
2009.

H Paz-Penagos. Aprendizaje autonomo y estilo cognitivo- diseño didáctico,
metodología y evaluación. Revista Educación en Ingeníela, Vol. 9, págs. 53-65.
2014

S. Fincher. ¿What are we doing when we teach programming? 29th ASEE/IEEE
Frontiers in Education Conference. San Juan, Puerto Rico. 10-13 de Noviembre
de 1999, Sesión 12M

Libros

Attard et al. Student Centered Learning An insight into theory and practice.
Bucarest • Lifelong learning programme - European Community, 2010.

C Boyer Historia de la Matemática Madrid (España):Alianza Editorial,2010.

431

Isniom {CIOS \ ia i (k<ic a i)i i'rckiRamvc ios - Osc\u IunTuuos Buiuiica

D Ausubel Sicología Educativa Un punto de vista cognoscitivo Ciudad de Mexico
Trillas, 1986

DeilelandDeitel C++Programming New York Prentice Hall 2013

G Small El cerebro digital Madrid Editorial Urano, 2011

H Schildt C Programming Mexico McGrawHill 2010

H Schildt C++Programming Vancouver McGrawHill,2010

J Bruner Actos de significado Mas alia de la revolución cognitiva Madrid Alianza
Editorial, 2009

J S Bruner Hacia un teoría de la instrucción Ciudad de Mexico Hispanoamericana,
1969

L Vigotsky, Lev El desarrollo de los procesos sicológicos superiores Mexico Eitorial
Grijalbo, 1981

M Costa and F Costa Metodología da pesquisa preguntas e resposas laEd Sao
Paulo DoAutor, 2013

M Felleisen etal Howto design programs 2a Ed Boston MIT Press, 2013

01 Trejos Buritica Algoritmos Problemas Básicos Pereira (Colombia) Papiro, 2008

OI Trejos Aprendizaje en Ingeniería un problema de comunicación Pereira (Colom
bia) Tesis Doctoral - UniversidadTecnologica de Pereira, 2012

OI Trejos Fundamentos de Programación Pereira Papiro, 2006

OITrejos Significado y Competencias Pereira Papiro, 2013

O Farrel Enhancing student learning through assesament New York Electronic Press,
2012

P Van Roy Concepts, Techniques and Models of Computer Programming Estocolmo
Universite Catholique de Louvain, 2008

P Van Roy Techniques and methods in programming computer Louvaine University
Press, 2008

Stewart Historia de las Matemáticas en los últimos 10000 años Barcelona (España)
Editorial Critica, 2012

432

