Iinfroduccion InftroAQuccl

cle CiE@NCIQ deio . .
computacion ale CIENCIA de

de Ld mdNipuldcioN de ddtof .

d Ld teorid de Ld computdcion C 0 m p U t 0 c
Disefiado para el curso introductorio a la ciencia de la computacién, este libro tiene como objetivo ;
cubrir lo que todo estudiante de ingenieria e informdtica necesita saber antes de pasar a cursos i
mas especializados. El autor desarrolla el texto en cinco partes: Computadoras y datos, de Ld mdN I puU LdcioN .
Hardware, Software, Organizacién de datos y Temas avanzados (compresién de datos, d L q 't eor i d d o |_ CI COM
seguridad y teoria de la computacién), a fin de abordar, uno a uno, los principales temas basicos.

Ademas de lo anterior, esta obra presenta las siguientes caracteristicas:

* Desde un principio estudia la representacion de datos, esto incluye
texto, imagenes, audio, video y nimeros.
* Hace hincapié en los conceptos y no en
los modelos matemdticos.
* Las redes y los sistemas operativos se
tratan en capitulos aparte para
incluir las tendencias actuales.
* Cuenta con ayudas visuales

en los temas mas dificiles.

Behrouz A.

MEXICO Y AMERICA CENTRAL EL CARIBE ESPANA
Tel. 52(55)5281-2906 Tel (787) 641-1192 Tool 1)446-3350 ISBN 970-b8kL-285-Y
Fax52(55)5280-8970 Fax(78 6419119 Fax 445-6218
THOMSON editor@thomsonlearning.com.mx '-!ll'l:llhﬂﬂ@}(.\qtli net clientes@paraninlo.es
e México, D.F., MEXICO San Juan, PUERTO RICO__ Madrid, Espaia
9li78

AMERICA DEL SUR PACTO ANDINO
themson@thomsonlearning.com.ar Tel.(571)340-8470,

Buenos Aires, ARGENTINA ax.(571)34 9706862853

Introducciéon a la ciencia
de la computacion

De la manipulacion de datos a la teoria
de la computacion

Introduccion a la ciencia
de la computacion

De la manipulacion de datos a la teoria
de la computacién

Behrouz A. Forouzan
De Anza College

con celaboracion de

Sophia Chung Fegan

THOMSON

Australia » Brasil » Canada » Espaiia » Estados Unidos » México » Reino Unido » Singapur

Vicepresidenie
editorial y de produccién:
Miguel Angel Tolede Castellanos

Editor de desarrollo:
Pedro de la Garza Rosales

Traducciodn:
Lorena Peralta

COPYRIGHT © 2003 por
Infernational Thomson Editores,
S. A.de C. V., una divisidon

de Thomson Learning, Inc.
Thomson Learning™ es una marca
registrada usada bajo permisa.

Impreso en México
Printed in Mexico

THOMSON

—p——

Introduccion a la ciencia de la computacion

Behorouz A. Forouzan

Gerente de produccidn:
René Garay Argueta

Editora de produccion:
Alma Castrejon Alcocer

Supervisora de manufactura:
Claudia Calderén Valderrama

DERECHOS RESERVADOS.

Queda prohibida la reproduccion o
transmisién total o parcial del texto
de la presente obra bajo cualesguiera
formas, electronica o mecanica,
incluyendo ¢l fotocopiada,

ol almacenamiento en algln sistema
de recuperacién de informacién,

o el grabado, sin sl consentimiento

1234050403 previo y por escrito de! editor.

Para mayor informacion
cortactenos en: Séneca 53
Col. Polance

México, D. F. 11560

Puede visitar nuestro sitio en
htip:/iwerw thomsonlearning.com.mx

Division Iberoamericana

México y América Central:
Thomson Laarning

Séneca 53

Col. Polanco

México, D.F. 11560

Tel 52 (55) 52 81 28 06

Fax 52 (55) 52 81 26 56
editor@thomsonlearning.comn.mx

El Caribe:
Thomson Learning
598 Aldebaran
Altamira Sar Juan,
Puerto Rico

Tel (787) 641 1112
Fax (787) 641 11 18
thomson@coqui.net

Cono Sur:
Tel/Fax (54 114) 582 26 84

De la manipulacion de datos a la teorfa de Ja computacion

Revisién técnica:
Jorge Valeriano Assem
UNAM-Facultad de ingenieria

Traducido del libre Foundations of
Computer Science, From Data
Manipulation to Theory of
Coemputation publicade en Inglés por
Brooks Cole, ©2003

ISBN 0-534-37968-0

Datos para catalogacion bibliografica:

Forouzan, Behrouz A. introduccion a
la ciencia de la computacion.

ISBN 970-686-285-4

1. Introduccion a la ciencia de la
computacidn. 2. De |la manipulacidn
de datos a la teoria de la
computacién.

América del Sur:
Thomsen Learning

Calle 39 No. 24-09

La Soledad

Begoia, Colombia

Tel (571) 340 94 70

Fax (571) 340 94 75
clithornson@andinet.com

Espana:

Thomson Learning

Calle Magallanes ndm. 25
28015 Madrid, Espana
Tef 34 (0)91 446 33 50
Fax 34 (0)91 445 62 18
clientes@paraninic.es

Buenos Alres, Argentina Esta obra se termind de imprimir en el 2003
sdeluque@thomsonlearning.comar en los talleres de Grupo GEO Impresores S.A. de C.V.

A mi esposa Faezeh

— Behrouz Forouzan

PARTE! DATOS Y COMPUTADORAS 1

Capitulo 1 Introduccién 2
11 La computadora como una caja negra 3
Procesador de datos 3
Procesador de datos programable 3
1.2 Flmodelo de von Neumamn 5
Cuatro subsisternas 5
Concepto de programa almacenado 6
Fjecucién secuencial de instrucciones 6
1.3 Hardware de la computadora 6
1.4 Datos 6
Almacenamiento de datos 6
Organizacidén de daios 7
1.5 Software de la computadora 7
Los programas deben almacenarse 7
Una secuencia de instrucciones 7
Algoritmos 8
Lenguajes 8§
Ingenieria de software 8
Sistemas operativos 8
1.6 Historia 9
Madquinas mecdnicas (antes de 1930) 9
Nacimiento de las computadoras electrénicas (1930-1950) 9
1.7 Términos clave 11
1.8 Resumen 11
1.9 Practica 11

Contenido

Capitulo 2
21
22

23

24
25

26
27
28

Capitulo 3
3.1

3.2

33

34
35

3.0
3.7
3.8
39

Representacion de datos 14
Tipos de datos 15

Datos dentro de la computadora 15

Bit 16

Patrén de bits 16

Byte 16
Representaciéon de datos 17
Texto 17

Nimeros 19
Iméagenes 19
Audio 20

Video 21

Notacién hexadecimal 21
Conversién 22
Notacion octal 23
Conversién 23
Férminos clave 24
Resumen 24
Practica 25

Representacion de nameros 27
Decimal y binario 28

Sistema decimal = 28

Sistema binario 28

Conversion 29

Conversién de binario a decimal 29
Conversién de decimal a binario 29
Representacion de enteres 36
Formato de enteros sin signo 31
Formato de signo y magnitud 33

El formato de complemento de uno 35
Formato del complemento a dos 37
Resumen de la representacién de enteros 39
Sistema excess 40

Representacién de punto flotante 40
Conversién a binarioc 40
Normalizacién 42

Signo, exponente y mantisa 42
Esténdares [EEE 42

Notacién hexadecimal 44

Términos clave 44

Resumen 45

Practica 45

Capitulo 4
4.1

4.2

43
4.4
4.5
4.6

Operaciones con bits 50
Operaciones aritméticas 51
Operaciones aritméticas con enteros 51
Operaciones aritméticas en ntimeros de punto flotante
Operaciones légicas 55

Tablas de verdad 56

Operador unaric 56

Operadores binarios 57

Aplicaciones 60

Operaciones de desplazamiento 63
Términos clave 64

Resumen 65

Prictica 65

Contenido

54

PARTE i

Capitulo 5
5.1

5.2

53

54

55

5.6

5.7

5.8
5.9

HARDWARE DE COMPUTADORA 69

Organizacion de la computadora
Unidad central de procesamiento (CPU) 71
Unidad légica aritmética (ALU) 71

Registros 71

Unidad de control 72

Memoria principal 72

Espacio de direccionamiente 72

Tipos de memoria 74

Jerarqufa de la memoria 75

Memoria caché 75

Entrada/salida 76

Dispositivos que no son de almacenamiento 76
Dispositivos de almacenamiento 76
Interconexion de subsistemas 83

Conexién del cpu y la memoria 83

Conexién de dispositivos E/S 84
Direccionamiento de dispositivos de entrada/salida
Ejecucion de programas 87

Ciclo de miquina 87

Un ejemplo de ciclo de miquina 88

Operacidn de entrada/salida 89

Dos arquitecturas diferentes 92

CisC 92

RISC 93

Términos clave 93

Resumen 93

Prictica 94

70

86

Contenido

Capitulo 6

Redes de computadoras 99

6.1 Redes, grandes y pequeiias 100
Modelo y protocelo 100
6.2 Modelo OSI 160
Siete capas 100
Funciones de las capas 101
6.3 Categorfas de redes 163
Red de drea local (LAN)y 103
Redes de drea metropolitana (MAN) 104
Red de drea amplia (WAN) 104
6.4 Dispositivos de conexion 105
Repetidores 106
Puentes 107
Enrutadores 108
Gateways 108
6.5 Internety TCP/IP 109
Capa fisica y de enlace de datos 110
Capadered 110
Capa de transporte 111
Capa de aplicacion 111
6.6 Términos clave 116
67 Resumen 116
6.8 Practica 117
PARTE il Software de computadora 121
Capitulo 7 Sistemas operatives 122
71 Definicion 123
72 Evolucion 123
Sistemnas por lotes 123
Sisternas de tiempo compartido 123
Sistemas personales 124
Sistemas paralefos 124
Sistemas distribuidos 124
7.3 Componentes 124

Administrador de nemoria 125
Administrador de proceses 129
Administrador de dispositivos 135
Administrador de archivos 135
Interfaz de usuario 136

7.4

7.5
7.6
7.7

Capitulo 8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8
8.9
8.10

Sistemas operativos mas comunes
Windows 2000 136

UNIX 136

Linux 136

Términos clave 137

Resumen 137

Practicas 138

Algoritmos 141
Concepto 142

Definicién informal 142
Eiemplo 142

Definicién de acciones 144
Refinamiento 144
Generalizacién 144

Tres estructuras de control 145
Secuencia 146

Decision 146

Repeticion 146

Representacion de aigoritmos 146

Diagrama de fluyjo 146
Pseudocodige 146
Definicion més formal 150
Serie ordenada 150

Pasos precisos 150
Produce un resultado 150
Terminar en un tiempo finito 150
Subalgoritmos 150
Carta estructurada 152
Algoritmos basicos 152
Sumatoria 152
Multiplicatoria 152
Menor y mayor 153
Ordenacién 153
Bisqueda 158
Recursividad 160
Definicién iterativa 160
Definicidn recursiva 161
Términos clave 162
Resumen 162

Practica 163

136

Contenido

Contenido

Capitulo 9

9.1

2.2

9.3
9.4

9.5

9.6
9.7
28

Capitulo 10
101

10.2

Lenguajes de programacién 166
Evolacién 167

Lenguajes de miquina 167
Lenguajes simbdlicos 168
Lenguajes de alto nivel 168
Lenguajes naturales 169

Fscribir un programa 169
Escritura y edicién de programas 169
Compilacion de programas 170
Ligador de programas 170
Ejecucién de programas 171
Categorias de lengnajes 171
Lenguajes procedurales (Imperativos) 172
Lenguajes orientados a objetos 173
Lenguajes funcionales 175
1enguajes especiales 177

Un lenguaje procedural: C 179
Identificadores 179

Tipos de datos 179

Variables © 180

Constantes 181

Entrada y salida 182

Expresiones 132

Instrucciones 183

Funciones 184

Seleccién 186

Repeticién 187

Tipos de datos derivados 189
Recursiéon 189

Términos clave 189

Resumen 190

Practica 191

Ingenieria de software 195
Ciclo de vida del software 196

Fase de andlisis 197

Fase de disefio 197

Fase de implementacién 197

Fase de prueba 198

Modelos del proceso de desarrollo 198
Modelo de cascada 198

Modelo incremental 199

Contenido

183 Modularidad 200
Herramientas 200
Acoplamiento 200
Cohesion 201
104 Calidad 202
Definicion de calidad 202
Factores de calidad 203
El circulo de la calidad 205
105 Documentaciéon 206
Documentacién del usuario 206
Documentacién del sistema 206
Documentacién como un proceso en curso 207
14.6 Términos clave 207
10,7 Resumen 208
10.8 Practica 208
PARTE IV Organizacion de datos 213
Capitulo 11 Estructuras de datos 214
| 111 Arreglos 215
Aplicaciones de los arreglos 217
Arreglos bidimensionales 218
11.2 Registros 219
Acceso aregistros 220
11,3 Listas ligadas 220
Nodos 221
Apuntadores a listas ligadas 221
Operaciones en listas ligadas 221
114 Términos clave 223
115 Resumen 224
11.6 Practica 224

Capitulo 12
12.1

12.2

Tipos de datos abstractos 227
Antecedentes 228

Definiciéon 228

Modelo para un tipo de datos abstracto 229
Operaciones con TDA 229

Listas lineales 229

Operaciones con listas lineales 230
Implementacidn de una lista lineal general 232
Aplicaciones de lista lineal 232

Contenido

12.3

124

12.5

12.6

127

i2.3
129
12.10

Capituio 13
13.1
132
133

134

13.5

13.6
137
13.8

Pilas 232

Operaciones con pilas 233
Implementacién de una pila 234
Aplicaciones de pila 234

Colas de espera 235

Operaciones con colas de espera 235
Implementacién de una cola de espera 237
Aplicaciones de la cola de espera 237
Arboles 237

Conceptos bésicos de &rbol 237
Operaciones con drboles 239
Arboles binarios 239

Ovperaciones con drboles binarios 241
Implementacién de un drbol binario 243
Aplicaciones del arbol binario 243
Grafos 244

Terminologia 244

Operaciones con grafos 245
Implementacién de un grafo 247
Aplicaciones de grafos 248
Términos clave 249

Resumen 249

Practica 251

Estructuras de archives 256
Meétodos de acceso 257

Acceso secuencial 257

Acceso aleatorio 257

Archivos secuenciales 257
Actualizacién de archivos secuenciales 238
Archivos indexados 259

Archivos invertides 260

Archivos hashed 261

Meétodos de hashing 261

Colision 263

Texto versus binario 265

Archivos de texto 265
Archivos binarios 266
Términos clave 266
Resumen 266
Prictica 267

Capitulo 14
4.1
i4.2

143

4.4

14.5

14.6
14.7
14.8

i4.9
i4.10

Bases de datos 270

Sistema de administracion de bases de datos
Arquitectura 272

Nivel interno 272

Nivel conceptual 272

Nivel externo 272

Modelos de bases de dates 273
Modelo jerdrquico 273

Modelo dered 273

Modele relacional 274

Modelo relacional 274

Relacion 274

Operaciones con relaciones 275
Insercién 275

Eliminacién 275

Actualizacién 276

Seleccidn 276

Proyeccidn 277

Juntura 277

Unién 277

Interseccién 278

Diferencia 278

Lenguaje de consultas estructarado 279
Instrucciones 279

Otros modelos de bases de datos 282
Bases de datos distribuidas 282

Bases de datos orientadas a objetos 282
Términos clave 283

Resumen 283

Practica 284

n

Contenido

PARTE V

Capitulo 15
151

15.2

Temas avanzados 289

Compresion de datos 290
Compresion sin pérdida 291
Codificacion de longitud de ejecucion 291
Codificacién de Huffman 292
Codificacion de Lempel Ziv =~ 294

Meétodos de compresion con pérdida 298
Compresion de imdgenes: JPEG 298
Compresién de video: MPEG 301

Contenido

153
154
155

'Capitulo 16

16.1
16.2

16.3
164
16.5

Capitulo 17
17.1

17.2

17.3

17.4
17.5
17.6

17.7
17.8

Términos clave 303
Resumen 303
Practica 303

Seguridad 306
Privacidad 307

Autenticacién 307

Integridad 307

No rechazo 307

Privacidad 307
Cifrado/descifrado 307
Privacidad mediante la combinacién 311
Firma digital 311

Firma de todo el documente 312
Firma del compendio 312
Términos clave 314

Resumen 314

Practica 315

Teoria de la computacion 317
Lenguaje simple 318

Instruccitén de incremento 318

Instruccién de decremente 318
Instruccién de ciclo 318

El poder del lenguaje simple 318
Conclusién 321

M4quina de Turing 321

Componentes de la méquina de turing 321
Simulacién de lenguaje simple 323
Conclusién 325

Niimeros de Giidel 326

Representacion de un programa 326
Interpretacién de un nimero 327
Problema de paro 327

El problema de paro no tiene solucién 328
Problemas con solucién y sin solucién 329
Problemas sin solucion 329

Problemas con solucidn 330

Términos clave 331

Resumen 331

Practica 332

Apéndice A

Apéndice B

Apéndice ¢
Ci

C.2

Apéndice D

D1

Apéndice E
E.1

E.2
E3

Codigo ASCH 335

Unicode 339

Alfabetos 340

Simbolos v marcas de puntuacién 341
Auxiliares CJK 341

IdeogramaS CIK unificados 341
Sustitutos 342

Uso privado 342

Caracteres y simbolos misceldneos 342

Diagramas de flujo 343
Simbolos auxiliares 344
Inicioyfin 344

Lineas de flujo 345

Conectores 345

Simbolos principales 345
Instrucciones en secuencia 345
Instrucciones de seleccién 347
Instrucciones de ciclo 348

Pseudocodigo 350
Componentes 351

Encabezado de algoritmo 351

Propésito, condiciones y devolucién 351
Nimeros de instruceion 351
Constructores de instruccién 351
Secuencia 352

Seleccién 352

Ciclo 352

Tablas de estructura 353
Simbolos del diagrama de estructura 354
Simbolo de funcion 354

Seleccién en el diagrama de estructura 355
Ciclos en el diagrama de estructura 355
Flujo de datos 356

Lectura diagramas de estructura 356
Reglas de los diagramas de estructura 357

Contenido

Contenido

Apéndice F Transformada coseno discreta 358
F1 Transformada coseno discreta 359
F2 Transformacion inversa 359

Apéndice G Acrénimos 360
Glosario 361

indice 377

.
‘ Bienvem’dos a las ciencias de la computacién! Estdin a punto de iniciar la explora-
cién de un maravilloso y excitante mundo que ofrece muchas carreras desafiantes y
emocionantes. Las computadoras juegan un papel importante en nnestra vida diaria
y confinuaran haciéndolo en el futuro.

Las ciencias de 1a computacién son unza disciplina joven que estd evolucionande y pro-
gresando. Las redes de computadoras han conectado a personas desde lugares remotos
del mundo. La realidad virtual estd creando imdgenes tridimensionales que sorprenden
a la vista. La exploracin espacial debe parte de su éxito a las computadoras. Los efectos
especiales creados por computadora han cambiado la industria del cine. Y las computa-
doras han jugado papeles importantes en la genética.

Prefacio

ORGANIZACION DEL LIBRO

Parie I:
Computadoras
y datos

Parte ii: Hardware
de computadora

Este libro estd disefiado para un curso CSO (primer curso de ciencias de la computacidn).
Cubre todas las dreas de la computacién. Dividimos el texfo en cinco partes: Computadoras
y datos, Hardware de computadoras, Software de computadoras, Organizacién de los datos y
Temas avanzados (figura P.1).

— Capitulo 1: Tntroduccion

— Capitulo 2: Representacidn de datos
— Computadoras ¥ datos

Capitulo 3: Representacién de niimeros

L Caupitulo 4: Operaciones de bits

Capitilo 3: Organizacion de la computadora
— Hardware de computadora

Capitilo 6: Redes de computadoras

r— Capitulo 7: Sistemas operativos

Organizacicn
del libro Software de cornpatadora

Capitulo 8: Algoriimos

e Capitulo 9: Lenguajes de programacion

bemms Capitulo 10: ingenieria de software

——— Capitulo 11: Estructuras de datos

Oreanizacitn de datos —— Capitulo 12: Tipos de datos abstractos
— o ;

Capfwulo 13: Estructuras de archivos
——— (Capitulo I4: Bases de datos

— Capitulo 15: Compresidn de datos

Temas avanzados Capitulo 16: Seguridad

Capitulo 17: Teoria de la computacion

Figura P.1 Esquema del libro
En la parte [estudiamos una computadora y los datos que ésta procesa. Esta parte contiene
cuatro capitulos. '

Capitulo 1: Introduccién En este capitulo se considera a la computadora como una enti-
dad procesadora de datos. Presentamos el concepto de von Neumann y analizamos los com-
ponentes generales de una computadora. Posponemos el andlisis detallado de los
componentes de computadoras hasta el capitulo 5.

Capitulo 2: Representacién de datos En este capitulo, estudiamos 1a representacién de
texto, imigenes, audio y video como patrones de bits. La representacion de ndmeros se pos-
pone hasta el capfulo 3.

Capitulo 3: Representacion de nimeros En este capitule presentamos la representacién
de nmeros. Mostramos como los enteros y los ndmeros de punto flotante se alimacenan en
una computadora.

Capituio 4: Operaciones de bits En este capftulo, estudiamos la manipulacidén de patro-
nes de bits, tanto arifméticos como 14gicos.

En la parte T1, estudiamos el hardware de computadora. Esta parte se divide en dos capitulos.

Capitulo 5: Organizacion de la computadora En este capitule, consideramos a la compu-
tadora como una maquina independiente. Describimos las partes del hardware de computa-
dora y cémo funcionan.

Parte lil: Software
de computadora

Parte IV:
Organizacion
de datos

Parte V: Temas
avanzados

Prefacio

Capitulo 6: Redes de computadoras En este capitulo comentamos como se conectan las
computadoras para-crear redes e interredes.

En la parte 111, estudiamos varios aspectos del software de computadora.

Capitulo 7: Sistemas operativos Este capitulo estudia al sistema operativo como la par-
te mds importante del software del sistema. Presentamos las tareas de un sistema operativo y
cémo evolucionan. También analizamos las partes de un sistema operativo moderno.

Capitulo 8: Aigoritmos En este capitulo, estudiamos los algoritmos, los cuales juegan un
papel tan importanie en las ciencias de la computacidn gue algunas personas creen que cien-
cias de Ia computacién significa el estudio de los algoritmos. Definimos el concepto de algo-
ritmos y usamos algunas herramientas para representar algoritmos. Una discusién completa
de estas herramientas se presenta en los apéndices C, D y E.

Capitulo 9: Lenguajes de programacion Este capftulo presenta primero los lenguajes en
general y luego analiza los elementos de C, un lenguaje generalizado.

Capitulo 10: Ingenierfa de software En este capitulo se estudia la ingenieria de softwa-
re, una disciplina muy importante para el estudio de las computadoras.

En la parte IV, estudiamos nuevamente los datos, pero desde el punto de vista del usuario.

Capitulo 11: Estructuras de datos En este capitulo comentamos las estructuras de datos.
Los datos, en el nivel més alto, estdn organizados en estructuras. Presentamos estructuras de
datos comunes en uso en la actualidad tales como arreglos, registros y listas ligadas.

Capitulo 12: Tipos de datos abstractes En este capitulo analizamos los tipos de datos
abstractos (ADT). En el procesamienio de datos, se necesita definir a los datos como un pa-
quete incluyendo las operaciones definidas para el paguete. Se describen listas, pilas, colas,
arboles y grdficas de tal manera gue los estudiantes piensen en los datos en absiracto.

Capftulo 13: Estructuras de archivos En este capitulo analizamos las estructuras de ar-
chivos. Mostramos ¢émo los archivos se organizan légicamente y analizamos los archivos de
acceso secuencial y de acceso aleatorio. Un estudiante necesita conocer estos conceptos an-
tes de tomar un primer curso en programacion.

Capituio 14: Bases de datos Hste capitulo analiza las bases de datos. Los archivos en una
organizacién rara vez se almacenan por separado v de manera aislada. Con frecuencia, éstos
se organizan en una entidad Hamada base de datos. Presentamos 1a base de datos relacional
y mencionamos un lenguaje (SQL) que puede recuperar informacion de este tipo de base de
datos.

Ein esta parte analizamos tres temas avanzados que estan ganando importancia en las ciencias
de la computacién, compresion de datos, seguridad y la teorfa de Ia computacion. Estos te-
mas pueden omitirse si el Hempoe s un factor importante o si los estadiantes no tienen una
formacion previa.

Capitulo 15: Compresion de datos En este capftulo presentamos dos categordas de com-
presion de datos: sin pérdida y con pérdida. Analizamos la codificacion de longitud de gjecu-
¢idn, fa codificacién Huffman vy el algoritmo de Lempel Ziv como ejemplos de compresion
sin pérdida. Analizamos JPEG y MPEG como ejernplos de compresion con pérdida.

Prefacio

MIRADA A VUELO
DE PAJARO

CARACTERISTICAS
DEL LIBRO

Conceptos

Método visual

Ejemplos

Material de fin
de capitulo

Apéndices

Capitulo 16: Seguridad Este capitulo estudia cuatro aspectos de 1a seguridad: privacidad,
autenticaci6n, integridad y no rechazo. Mostramos cémo utilizar el cifrado/descifrado y la fir-
ma digital para crear un sistema seguro.

Capitulo 17: Teorfa de la computacién En este capitulo exploramos brevemente la teo-
sfa de la computacién, Mostramos como ningtin lenguaje es superior a ofro en 1a solucién de
un problema. Explicamos que hay algunos problemas gue no pueden resolverse por ningin
programa'de computadora escrito en cualquier lenguaje.

El lector debe tener en mente que este libro no estudia ningiin tema sobre las ciencias de la
computacién a profundidad; para hacerlo se requerirfan multiples voldmenes. Bl libro inten-
ta cubrir temas relacionados con las ciencias de la computacién. Nuesira experiencia mues-
tra que conocer la representacion y la manipulacion de datos, por ejemplo, ayuda a los
estudiantes 2 comprender mejor la programacion en lenguajes de bajo y alto nivel. Conocer
informacién general sobre las ciencias de Ta computacién ayudard a los estudiantes a tener
més éxito cuando tomen cursos de conectividad en red e interredes. El libro es una mirada a
vuelo de péjaro de las ciencias de la computacion.

Hay varias caracteristicas de este libro que no s6lo lo hacen tnico, sino méas comprensible pa-
ra los estudiantes primerizos.

A través del libro, hemos intentado enfatizar més en el concepto que en el modelo matemsa-
tico. Creemos que una comprensién del concepto conduce a una comprensién del modelo.

Una breve revisién del libro mostrard que nuestro método es muy visual. Hay casi 300 figu-
ras. Aun cuando esto tiende a aumentar el tamafio del libro, las figuras ayudan a la compren-
sién del texto.

Siempre que se considera apropiado, se usan ejemplos paca demostrar ¢l concepto y el mo-
delo matemdtico.

El material al final de cada capftulo contiene tres partes: términos clave, resumen y practica.

Términos clave Los términos clave proporcionan una lista de los #rminos importantes
presentados en el capitulo. Cada término clave s¢ define en el glosario.

Resumen Los resimenes contienen una descripcién general concisa de todos los puntos
clave del capitulo. Se listaron con vifietas para que sean mas féciles de leer.

Practica Cada practica se compone de tres partes: preguntas de repaso, preguntas de op-
cion mmudltipte v ejercicios.

B Las preguntas de repaso evaltian los puntos clave y conceptos generales del capftulo.

B Las preguntas de opcidn miiltiple estdn disefiadas para probar la comprensién de los
materiales.

B Los ejercicios estin disefiados para ver si los estudiantes pueden aplicar los conceptos y
las férmulas.

Se incluyen siete apéndices para una referencia rdpida a las tablas o materiales que se estu-
dian en varios capitulos. Los apéndices son:

Glosario

Soluciones
de las practicas

MATERIALES
DE INSTRUCCION

RECONOCIMIENTOS

Prefacio

Tabla ASCIIL

Unicode

Diagramas de flujo

Pseudocddigo

Diagramas de estructura
Transformacion de coseno discreto
Acrénimos

Al final de! libro se incluye un glosario con todos los términas clave.

La solucién de todas las preguntas de repaso, preguntas de opeidn multiples y gjercicios con
un ndmero non estén disponibles en linea en www.brookscole.com/compsci.

La presentacién de PowerPoint de todas las figuras y puntos resaltados, ademds de la solu-
cién a todas las preguntas de repaso, preguntas de opeitn miltiple y gjercicios estd disponi-
ble en linea en www.brookscole.com/compsci,

Ningtin libro de este campo puede desarrollarse sin el apoyo de muchas personas. Esto es es-
pecialmente cierto para este texto.

Nos gustaria agradecer el apoyo del equipo de De Anza por su continuo 4nimo ¥ sus co-
mentarios. En particular agradecemos la contribuci6n de Scout DeMouthe por leer el manus-
crito y resolver los problemas.

Para cualquiera que no ha pasado por este proceso, el valor de fas revisiones de los com-
pafieros y compafieras no puede apreciarse lo suficiente. Escribir un texfo rapidamente se
vuelve un proceso miope. La orientacidn importante de los revisores que pueden guardar dis-
tancia para revisar el texto como un todo no puede medirse. Para parafrasear un viejo cliché,
“No son valiosos, son invaluables”, Nos gustaria agradecer especialmente las contribuciones
de los siguientes revisores: Essam El-Kwae, Universidad de Carolina del Norte en Charlotte;
Norman J. Landis, Universidad Fairleigh Dickinson; John A. Rohg, Universidad de Califor-
nia en Los Angeles Robert Signorile, Boston Collage, y Robert Statica del Instituto de Tec-
nologia de New Jersey.

Damos las gracias también a nuestro editor, Hill Stenquist; a la editora de adquisiciones,
Kallie Swanson; a la asistente editorial, Carla Vera, y al editor de produccién, Kesley McGee.
También deseamos agradecer a Merrill Peterson de Matriz Productions, al corrector Frank

. Hubert v a la lectora de pruebas Amy Dorr.

Por Gltimo, y obviamente no fo menos importante, esté ¢l agradecimiento al apoyo reci-
bido por parte de nuestras familias y amigos. Hace muchos afios un autor definid el proceso
de escribir un texto como “encerrarse en un cuarto”. Mientras los autores sufren a través dei
proceso de escritura, sus familias y amigos sufren a través de su ausencia. S6lo podemos es-
perar que en cuanto vean el producto final, sientan que su sacrificio valié la pena.

i

e

panie

23

La frase ciencia de la compufacién tiene un significado muy amplio en la actualidad. Sin
embargo, en este libro la definimos como “temas relacionados con la computacién”. Hste ca-
pitulo introductorio primero trata de averiguar qué es 1a computadora y luego descubre otros
aspectos relacionados con las computadoras. Consideramos a 1a computadora como una ca-
ja negra y tratamos de adivinar su comportamiento. Luego tratamos de penetrar en esta caja
para dejar al descubierto o que es comtin a todas las computadoras. Esto nos lleva al mode-
Io de von Neumann, el cual es universalmente aceptado como la base de la computadora. En-
seguida analizamos brevemente las repercusiones y los inconvenientes de aceptar el modelo
de Von Neumann. En este punto, nos referimos al capiftulo o los capitulos del texto relaciona-
dos con estos problemas. El capitulo termina con una breve historia de este recurso cambian-
te de Ja cultura: la computadora.

1.1 La computadora como una caja negra

1.1 LA COMPUTADORA COMO UNA CAJA NEGRA

PROCESADOR
DE DATOS

- PROCESADOR
DE DATOS
PROGRAMABLE

Si usted o ests interesado en los mecanismos internos de una compusadora, simplemente
puede definirla como una caja negra. Sin embargo, aun asi necesita definir el rabajo reali-
zado por una computadora para distinguirla de otros tipos de cajas negras. Explicaremos dos
modelos comunes de computadoras.

Puede pensar en una computadora como un procesador de datos. Usando esta definicién,
una computadora actiia como una caja negra que acepta datos de entrada, procesa los datos '
y crea datos de salida (figura 1.1). Aunque este modelo puede definir la funcionalidad de una
computadora hoy dia, es demasiado general. Bajo este modelo, una calculadora de bolsillo
también es una computadora (fo cual es cierto, literalmente). '

Datos
de entrada

Datos

de salida

Figura 1.1 Modelo de procesador de datos

Otro problema con este modelo es que no especifica el tipo de procesamiento o si es po-
sible m4s de un tipo de procesamiento. En otras palabras, no queda claro cudntos tipos de
conjuntos de operaciones puede realizar una méaquina basada en este modelo. ;Se trata de
una méquina para propésito especifico o una maquina para propésito general?

Este modelo podria representar una computadora para propdsito especifico {0 procesa-
dor) que estd disefiada para realizar alguna tarea en especial como controlar la temperatura
de tn edificio ¢ controlar el uso de combustible en un automévil. Sin embargo, las compu-
tadoras, segtin se usa el término en la actualidad, son méquinas de propdsito general. Pue-
den realizar muchos tipos distintos de tareas. Esto tmplica que necesitamos cambiar nuestro
modelo para reflejar las computadoras reales de hoy.

Un mejor modelo para una computadora de propésito general se muestra en la figura 1.2. Es-
ta figura afiade un clemento extra a la computadora: el programa. Un programa es un con-
junto de instrucciones que indican a la computadora qué hacer con los datos. En los
primeros dias de fas computadoras, las instricciones se gjecutaban al cambiar el cableado o
apagar y encender una serie de interruptores. Actualmente, un programa es una serie de ins-
trucciones escritas en un lenguaje de computadora.

Programa

Datos

Datos B
i de salida

de entrada

* - Computadora

Figura 1.2 Modelo de procesador de datos programable

Introduccidn

Mismo programa,
dliferentes datos
de entrada

Mismos datos
de entrada,
diferentes
Drogramas

En el nuevo maodelo, los datos de salida dependen de 1a combinacién de dos factores: los
datos de entrada y el programa. Con los mismos datos de entrada, usted puede generar dis-
tintas salidas si cambia el programa. De manera similar, con el mismo programa, puede ge-
nerar diferentes salidas si cambia 1a entrada. Finalmente, si los datos de entrada y el programa
permanecen igual, 1a salida deberd ser la misma. Veamos tres casos.

La figira 1.3 muestra el mismo programa de ordenamiento con datos distintos. Aungue el

programa es el mismo, la salida es diferente porque se procesan distintos datos de entrada.

Mismos datos
de entrada,
mismo programa

1.2 Ei modelo de von Neumann

Desde luego, usted espera el mismo resultado cada vez que tanto los datos de entrada como
cl programa son los mismos. En otras palabras, cuando el mismo programa se sjecuta con
la misma entrada, usted espera la misma salida.

Programa

3,12,8,22 — =~ 3,8,12,22

14, 6,8, 12 - 6, 8,12, 14

Figura 1.3 Mismo programa, diferentes datos

La figura 1.4 muestra los mismos datos de entrada con diferentes programas. Cada programa
hace que la computadora realice distintas operaciones con los mismos datos de entrada. Fl
primer programa ordena los datos, el segundo suma los datos y el tercero encuentra el niime-
10 més pequetio.

3,12, 8,22 ——| Computadora — 3,8, 12,22

Programa

3,12, 8,22 ——si C

3,12, 8,22 ——&{ Computadora

Figura 1.4 Mismos datos, diferentes programas

1.2 EL MODELO DE VON NEUMARNN

CUATRO
SUBSISTEMAS

Memoria

Unidad logica
aritmeética

Unidad de control

Entrada/Salida

En la actualidad cada computadora se basa en el modelo de Von Neumann (que lleva el nom-
bre de John von Neumann). Bl modelo examina el interior de la computadora {la caja negra)
y define cOomo se realiza el procesamiento. Se basa en tres ideas.

El modelo define una computadora como cuatro subsistemas: memoria, unidad 16gica arit-
mética, unidad de control y entrada/salida (figura 1.5).

Programa [

Computadora

Datos : Unidad 16gica Datos
de ——pi. aritmética > de
entrada salida

Memoria

Figura 1.5 Modelo de von Neumann

Ea memoria es el drea de almacenamiento, donde los programas y los datos se almacenan
durante el procesamiento. Mds adelante en este capitulo se analiza Ia razén de ser del alma-
cenamiento de programas y datos.

La unidad Iégica aritmética (ALU: arithmeric logic unif) es donde el célculo aritmético y
las operaciones dgicas toman lugar. Si wma computadora es un procesador de datos, usted
deberia poder realizar operaciones aritméticas con los datos (por ejemplo, sumnar una lista de
ntimeros). También deberfa poder realizar operaciones 16gicas con eflos {por ejemplo, en-
contrar el menor de dos elementos de datos, como en e} ejemplo de clasificacién previo).

La unidad de control determina las operaciones de lz memoria, de la ALU vy del subsiste-
ma de entrada/salida.

El subsisiema de entrada acepta datos de entrada y el programa desde el exterior de la com-
putadora; ef subsistema de salida enviz el resultado del procesamiento al exterior. La defini-
cién del subsistema de entrada/salida es muy amplia; también incluye los dispositivos de
almacenamiento secundarios como un disco o cinta que almacena datos y programas para

Introduccién

CONCEPTO
DE PROGRAMA
ALMACENADO

EJECUCION
SECUENCIAL
DE INSTRUCCIONES

procesamiento. Un disco se considera un dispositivo de salida cuando almacena los datos
que se obtienen como resultado del procesamiento y se considera un dispositivo de entrada
cuando usted lee datos del disco.

El medelo de von Neumann establece que el programa debe alinacenarse en la memoria, Es-
io es totalmente diferente de la arquitectura de las primeras computadoras en las cuales sélo
se almacenaban los datos en la memoria. El programa para una tarea se implementaba me-
diante la manipulacién de una serie de interruptores o al cambiar ef sistema de cableado,

La memoria de las computadoras modernas aloja tanto un programa como sus datos co-
rrespondientes. Esto implica que ambos, tanto los datos como el programa, deben tener el
mismoe formato porque se almacenan en la memoria. De hecho, se guardan como patrones bi-
narios {una secuencia de ceros y unes) en la memotia.

Un programa en ef modelo de vor Neumann se conforma de un admero finito de instruc-
ciones. En este modelo, Ia unidad de control trae una instruccidén de la memoria, la interpre-
ta y luego la ejecuta. En otras palabras, las instrucciones se ejecutan una después de otra.
Desde luego, una instruccién puede requerir que la unidad de control salte a algunas instrue-
clones previas o posteriores, pero ésto no significa que las instrucciones 1o se ejecutan de
manera secuencial.

ORGANIZACION
DE DATOS

1.5 Software de computadora

Aun cuando los datos deben almacenarse sélo en una forma (un patrén binario) dentro de
una computadora, los datos fuera de una computadora pueden tomar muchas formas. Ade-
maés, las computadoras (y la nocidn del procesamiento de datos) han creade un nuevo cam-
po de estudio conocido como organizacién de datos. ;Puede usted organizar sus datos en
diferentes entidades y formatos antes de almacenarlos dentro de una computadora? Hoy dia,
ios datos no se fratan como una secuencia de informacién, sino que se organizan en unida-
des pequedias, las cuales a su vez estin organizadas en unidades mds grandes, v asi sucesi-
vamente. En los capitulos 2 a 4, estudiaremos los datos desde este punto de vista.

1.3 HARDWARE DE LA COMPUTADORA

Sin lugar a dudas, el modelo de von Neumann establece el estdndar de los componentes
esenciales de una computadora. Una computadora fisica debe incluir los cuatro componen-
tes, a los que se hace referencia como hardware de la computadora, definidos por von Neu-
mann. Pero usted puede tener diferentes tipos de memoria, diferentes tipos de subsistemas
de entrada/salida, y asf por el estilo. Bl hardware de la computadora se analiza con mds de-
talle en el capitulo 5.

1.4 DATOS

ALMACENAMIENTO
DE DATOS

Este modelo define claramente a una computadora como una méquina de procesamiento de
datos qgue acepta datos de entrada, los procesa y produce el resultado.

El modelo de von Neumann no define cémo deben alinacenarse los datos en una computa-
dora. Si una computadora es un dispositivo elecirénico, la mejor manera de almacenar los
datos es en forma de sefial eléctrica, especificamente su presencia o ausencia. Esto implica
que una computadora puede almacenar datos en uno de dos estados.

Evidentemente, los datos que usted usa en la vida diaria no estin sdlo en uno de dos es-
tados. Por ejemplo, nuestro sistema de numeracion emplea digitos que pueden estar en uno
de diez estados (0 a 9). Este tipo de informacién no se puede (todavia) almacenar en una
computadora. Necesita ser cambiada a otro sistema que use sdlo dos estados (O y 1).

Usted necesita ademds procesar otros tipos de datos (texto, imégenes, audio, video). Estos
tampoco pueden almacenarse en una computadora directamente, sino que deben cambiarse a
la fortna apropiada (ceros y unos).

En los capimuios 2 y 3, aprenderd cémo almacenar distintos tipos de datos como un pa-
tr6n binario, una secuencia de ceros y unos. En el capitulo 4, mostraremos la rmanera en que
se manipulan los datos como un patrén binario, dentro de una computadora.

1.5 SOFTWARE DE LA COMPUTADORA

LOS PROGRAMAS
DEBEN
ALMACENARSE

UNA SECUENCIA
DE INSTRUCCIONES

La caracteristica principal del modelo de von Neumann es el concepto del programa almace-
nado. Aunque las primeras computadoras no usaron este modelo, si usaron el concepto de pro-
gramas. La programacidn de estas primeras computadoras irplicaba cambiar los sistemas de
cableado o encender y apagar una serie de interruptores. La programacion era una tarea reali-
zada por un operador o ingeniero antes de que comenzara el procesarniento de los datos.

El modelo de von Neumann cambi§ el significado del término “programacioén”. En es-
te modelo, hay dos aspectos de la programacién que deben ser comprendidos.

En el modelo de von Neumann, los programas se almacenan en fa memoria de la computa-
dora. No sélo se necesita memoria para mantener los datos, sino que ademds se requiere me-
moria para mantener el programa (figura 1.6).

Datos

Memoria

Figura 1.6 Programa y datos en memaria

Oiro requisito del modelo es que el programa debe ser una secuencia de instrucciones. Cada
instruccidn opera en una o mas piczas de datos. De esta manera cada instruccién puede cam-
biar e} efecto de vna instruceidn previa. Por ejemplo, Ia figura 1.7 muestra un programa que
introduce dos niimeros, luego los suma e imprime el resultado. Este programa consiste de
cuatro instrucciones individuales.

Una persona podria preguntar por qué un programa debe estar hecho de instrucciones. La
respuesta es por su capacidad para usarse de nuevo. Actualmente, las computadoras realizan
millones de tareas. Si el programa para cada tarea fuera una entidad independiente sin una
seccién comiln con otros programas, la programacion serfa dificil. El modelo de von Neu-
mann facilita la programacién mediante una definicidn cuidadosa de diferentes instruccio-

Introeduccion

ALGORITRMO3

LENGUAJES

INGENIERIA
DE SOFTWARE

SISTEMAS
OPERATIVOS

. Introduzca la primera piczs
: R

i
2. Introduzca la se
4

el resultado en la memoria.

Programa

1.6 Historia

Figura 1.7 Programa hecho de instrucciones

nes que las computadoras pueden usar. Un programador combina estas instrucciones para
hacer cualquier nimere de programas. Cada programa puede ser una combinacidn diferen-
te de distintas instrucciones.

El requisite anterior hace posible la programacion, pero aporta oira dimension al uso de la
computadora. Un programador no sélo debe aprender Ia tarea que realiza cada nstruccion,
sino que ademas debe saber cémo combinar estas instrucciones para realizar una tarea en
particular. Al considerar este problema desde un punto de vista diferente, un programador
primero debe resolver el problema paso a paso y luego tratar de encontrar la instruccién (o
la serie de instrucciones) apropiada que resuelva el problema. La solucidn paso a paso se co-
noce como algeritme. Los algoritmos juegan un papel muy importante en la ciencia de la
computacidn, y se estudian en el capitulo 8.

Al principio de la era de las computadoras, no habfa un lenguaje de computadora. Los pro-
gramadores escribian instrucciones (usando patrones binarios) para resolver un problema.
Sin embargo, a medida que los programas crecieron, esctibir programas iargos usando estos
pairones se volvid tedioso. A los cientificos de la computacion se les ocurrid la idea de usar
simbolos para representar patrones binarios, justo como la gente usa simbolos (palabras) pa-
ra dar drdenes en la vida diaria. Pero desde luegoe, los simbolos usados en la vida diaria di-
fieren de aquellos usados en las computadoras. De esta manera nacié el concepto de los
lenguajes de computadora. Un idioma natural (por ejemple el inglés) es un lenguaje rico y
tiense muchas reglas para combinar las palabras de una manera correcta; por otra parte, un
lenguaje de computacidn tiene un ntmero més limitade de simbolos v también un ndmero
limitado de palabras. Los lenguajes de computadora se cubren en el capiiulo 9.

Algo que no se definié en el modelo de von Neumann es la ingenieria de software, Ia cnal
es el disefio y la escritura de programas estructurados. En la actualidad no es aceptable sélo
escribir un programa que realiza una tarea; el programa debe seguir principios v reglas es-
irictos. Estos principios, conocidos en conjunto como ingenieria de software, se estudiardn
en ¢l capitalo 10.

Durante 1a evolucién de las computadoras, los cientificos se dieron cuenta de que exist{a una
serie de instrucciones comunes a todos los programas. Por ejemplo, casi todos los progra-
mas requieren instrucciones para indicar a una computadora a dénde enviar los datos y dén-
de recibirlos. Hs mds eficiente escribir estas instrucciones sélo una vez de manera que las
usen todos los programas. Asi foe camo surgié el concepto de sistema operativo. Original-
mente un sisterna operativo trabajaba como un administrador para facilitarle a un programa
el acceso a los componentes de la computadora. Hoy dfa, los sistemnas opesativos hacen mu-
cho mds. Aprendera sobre ellos en el capitulo 7.

*N. del T. Bajo este contexto, imprimir significa enviar el resultado del procesamiento de los datos a
una impresora, un archivo, la pantafla, un modem, un dispositivo de almacenamiento o cualguier otro
dispositivo de salida.

1.6 HISTORIA

MAQUINAS
MECANICAS
(ANTES DE 1930)

NACIMIENTO
DE LAS
COMPUTADORAS
ELECTRONICAS
(1930-1950)

Primeras
computadoras
electronicas

Antes de cetrar este capitulo, daremos un breve repaso a la historia de la computacion y las
computadoras, para lo cual dividimos esta historia en tres periodos.

Durante este periodo, se inventaron varias maquinas computadoras que tienen cierto pareci-
do con el concepto mederno de computadora,

B En el siglo xvii, Blaise Pascal, un matemdtico y fildsofo francés, inventd la Pascalina,
una calculadora mecénica para operaciones de suma y resta. En el siglo XX, cuando Ni-
klaus Wirth invento un lenguaje de programacién estructurado, lo llamé Pascal en ho-
nor al inventor de la primera calculadora mecénica.

B A finales del siglo xvi, el matemdtico alemdn Gottfried Leibnitz invent$ una calcula-
dora mecdnica mds compleja que podia realizar operaciones de multiplicacidn y divi-
sidn, asf como de suma y resta. Se le llamé la Rueda de Leibnitz.

B La primera méquina que usd la idea de almacenamiento y programacion fue el telar de
Jacquard, inventado por Joseph-Marie Jacquard a principios del siglo X1x. El telar usa-
ba tarjetas perforadas (como un programa almacenado) para controlar el aumento de hi-
los en la fabricacién de textles.

@ En 1823, Charles Babbage inventd fa Médquina Diferencial, 1a cual podia hacer més que
operaciones aritméticas simples; también podia resolver ecuaciones polinomiales. Pos-
teriormente inventé una maguima lamada Médquina Analitica que, en cierta medida, es
paralela a la idea de las computadoras modernas. Tenfa cuatro componentes: un moli-
no (ALU moderno), un almacén (memoria), un operador (unidad de control} y una sa-
lida (entrada/salida).

B En 1890, Herman Hollerit, mientras trabajaba en la Oficina de Censos de Estados Uni-
dos, disefié y construy6 una méquina programadora gue podia leer, contar y ordenar an-
iomadticamente los datos almacenados en las tarjetas perforadas.

Entre 1930 v 1950, algunos cientificos, que podrian considerarse los pioneros de la indus-
tria de la computacidén electrénica, inventaron varias computadoras.

Las primeras computadoras de este periodo ne almacenaban el programa en memoria; todas
se programaban externamente. Durante estos afios destacaron cinco computadoras:

B La primera computadora para propésito especial que cedificaba informacién de mane-
ra eléctrica fue inventada por John V. Atanasoff y su asistente Clifford Berry en 1939,
Se le Hamd ABC (Atanasoff Berry Computer) v se disefié especificamente para resol-
ver un sisterna de ecuaciones lineales.

B Al mismo tiempo, €l matemdtico alemén Konrad Zuse disefié una miqguina de propési-
to general llamada Z1.

B Enladécada de 1930, el gjército estadounidense e IBM patrocinaren un proyecto en la
Universidad de Harvard bajo Ia direccion de Howard Airen para construir una compu-
tadora enorme llarmada Mark 1. Esta computadora usaba componentes eléciricos y me-
cinicos.

B En Inglaterra, Alan Turing inventd una computadora llamada Colossus disefiada para
descifrar el cddigo Enigma alemdn.

Introduccién

Computadoras
basadas

en el modelo

de von Neumann

GENERACIONES DE
COMPUTADORAS
(1950-hoy dia)

Primera
generacion

Segunda
generacion

Tercera
generacion

Cuarta
generacion

Quinta
generacion

B La primera computadora de propdsito general totalmente electrdnica fue fabricada por
John Mauchly v J. Presper Eckert y recibié el nombre de ENIAC (Electronic Numeri-
cal Integrator and Calculator: Calculadora e integrador numérico electrénico). Se ter-
mind en 1946. Utilizaba 18 000 tubos de vacio, media 100 pies de largo por 10 pies de
alto y pesaba 30 toneladas.

Las cinco computadoras precedentes utilizaron memoria sélo para almacenar datos. Se pro-
gramaron externamente usando cables o interruptores. John von Neumann propuso que el
programa y los datos deberfan aimacenarse en la memoria. De esa manera, cada vez que us-
ted utilizara una computadora para realizar una tarea nueva, sélo necesitaria cambiar el pro-
grama en lugar de volver a conectar fos cables de la mdquina o encender y apagar cientos de
interruptores.

La primera computadora basada en fa idea de von Neumann se consiruyd en 1950 en la
Universidad de Pennsylvania y se llamd EDVAC. Al mismo tiempo, Maurice Wilkes constru-
y6 una computadora similar llamada EDSAC en la Universidad de Cambridge en Inglaterra,

Las computadoras construidas después de 1950 siguieron, mas o menos, al modelo de von
Neumann. Las computadoras se han vuelto més rdpidas, mds pequefias y més baratas, pero
el principio es casi el mismo. Los historiadores dividen este periodo en generaciones, con
cada generacion presenciando un cambic importante en el hardware o el software (pero no
en el modelo).

La primera generacidn (aproximadamente de 1930 a 1959) se caracteriza por la aparicién de
computadoras comerciales. Durante este periodo, las computadoras eran utilizadas sélo por
profesionales. Estaban encerradas en habitaciones con acceso restringido Gnicamente al ope-
rador o a especialistas en computacion. Las computadoras eran volumninosas y usaban tubos
de vacic como interruptores electrénicos. En esta época las computadoras eran asequibles
sélo para las grandes organizaciones.

Las computadoras de la segunda generacién (aproximadamente de 1959 a 1963) utilizaban
fransistores en lugar de tubos de vacio. Esto redujo su tamafio asi como su costo y las puso al
alcance de las empresas medianas y pequefas. Dos lenguajes de programacion de alto nivel,
FORTRAN y COBOL (véase el Cap. 9), se inventaron y facilitaron la programacion. Estos
dos lenguajes separaron ia tarea de la programacion de la tarea de la operacidén de la compu-
tadora. Un ingeniero ¢ivil podia escribir un programa en FORTRAN para resolver un proble-
ma sin involucrarse en detalles electronicos de la arquitectura de la computadora.

La invencidn del circuito integrado (transistores, cableado y otros componentes en un solo
chip) redujeron el costo y el tamafio de las computadoras ain mas. Las minicomputadoras apa-
recieron en el mercado. Los programas empaquetados, popularmente conocidos como paque-
tes de software, se volvieron disponibles. Una pequefia empresa podfa comprar un paquete que

necesttaba (por ejemplo, para contabilidad) en lugar de escribir su propio programa. Una nae--

va industria nacid, la industria del software. La generacidn durd mds o menos de 1965 a 1975.

La cuarta generacion (aproximadamente de 1975 a 1985) vio nacer las microcomputado-
ras. Las primera calculadora de escritorio (Altair 8800) se volvié disponible en 1975. Los
avances en la industria de la electrénica permitieron que subsistemas de computadoras com-
pletos cupieran en una sola tarjeta de circuito. Esta generacidn también vio la aparicidn de
las redes de computadoras {Cap. 6).

Esta generacion de duracién indefinida comenzé en 1985. Presencid la aparicién de las com-
putadoras laptop y palmtop, mejoras en los medios de almacenamiento secundarios (CD-
ROM, DVD, ete.), el uso de 1a multimedia y el fendmeno de la realidad virtual,

1.9 Practica

1.7 TERMINOS CLAVE

algoritmo instruccion

caja negra lenguaje de computadora
ciencia de la computacidn meroria

circuito integrado microcomputadora

datos de entrada
datos de salida
ingenieria de software

modelo de von Neumann
procesador de datos
procesador de datos programabie

programa
sistema operativo

software

unidad de control

unidad légica aritmética (ALU)

1.8 RESUMEN

B Cienciade la computacidn, en este texto, se refiereate- B El modelo de von Neumann especifica un subsistema
mas relacionados con una computadora. de memoria, un subsistema de unidad légica aritmética,
un sabsistema de unidad de control y un subsisterna de
]]I);;na computad?ira es ‘;m procgsador de datos prcc)lgramg— entrada/ealida.
ue acepta datos de entrada rogramas, atos de A
°d P Y Prog Y B Los datos v los programas se almacenan en la memoria
salida ¥ 108 prog
’ de la computadora.
B Un programa es una seric de instrucciones ejecutadas @ Una solucién paso a paso para un problema se llama al-
de manera secuencial que indican a la computadora qué goritmo.
hacer con los datos. B Un programa es escrito en un lenguaje de computadora.
B Actualmente todas [as computadoras se basan enel mo- 8 La ingenierfa de software es el disefio y la escritura de
delo de von Neumann. programas de forma estructurada.
4
1.9 PRACTICA
PREGUNTAS DE REPASD 9. ;Cudl es 1a funcidn del subsistema de entrada/salida en
1. ;Cémo se define a la ciencia de la computacion en este el modelo de von Neumann?) '
libro? 10. Compare y contraste el contenido de ia memoria de las
2. ;Qué modelo ¢s la base para las computadoras de hoy? primeras computadoras con el contenido de ia memoria
3. ;Por qué no se debe llamar a una computadora un pro- de una computadora basada en el modelo de von Neu-
cesador de datos? manm. 5
11. ;De qué manera el modelo de von Neumann camhi6 el

¢ Qué requiere un procesador de datos programable pa-
ra producir datos de salida?

;Cuiles son los subsistemas del modelo de computado-
ra von Neumann?

. Cudl es la funcién del subsistema de memoria en el
modelo de von Neumann?

;Cudl es la funcién del subsistema ALU en el modelo
de von Neumann?

";Cuél es la funcion del subsistema de unidad de control

en el modelo de von Neumann?

concepto de la programacion?

PREGUNTAS DE OPCION MULTIPLE

12

Elmodelo

de hoy.

a. Ron Neumann
b. von Neumann

¢. Pascal

d. Charles Babbage

es la base para las computadoras

13.

14.

15.

ie.

17.

18.

19.

20,

Introduccion

En el modelo de von Neumann, el subsistema
almacena datos y programas.

a. ALU

b. entrada/salida

c. memoria

d. unidad de control

En el modelo de von Neumann, el subsistema
realiza céleulos y operaciones 1gicas.

a. ALU

b. entrada/salida

¢. memoria

d. unidad de control

Fn el modelo de von Neumann, el subsistema
acepta datos y programas y envia los resul-

tados del procesamiento a dispositivos de salida.

a. ALU

b. entrada/salida

¢. memoria

d. unidad de control

Fn el modelo de von Neumann, el subsistema
sirve como un administrador de los otros

subsistemas.

a. ALU

b. entrada/salida

€. memoria

d. unidad de control

Segiin el modelo de von Neuman, se alma-
cenan en la memoria.

a. sélo los datos

b. s6lo los programas

c. los datos y los programas

d. ninguno de los anteriores

Una solucién paso a paso para un problema se Hama

a. hardware

b. un sistema operativo

¢. un lenguaje de computadora
d. un algoritmo

FORTRAN y COBOL son ejemplos de
a. hardware

b. sistemas operativos

¢. lenguajes de computadora

d. algoritmos

Una miquina computadora del siglo xvir que podia rea-
lizar operaciones de suma y resta era la

a, Pascalina

b. telar de Jacquard

¢, mdquina analitica

d. méquina de Babbage

21.

22.

23.

24,

25.

26.

es Una serie de instrucciones en un iengua-
je de computacién que indica a la computadora qué ha-
cer con los datos.
a. un sistema operativo hardware
b. un algoritmo
¢. un procesador de datos
d. un programa

es el disefio y la escritura de un programa de
forma estracturada.
a. ingenieria de software
b. ingenieria de hardware
¢. desarrolle de algoritmos
d. arquitectura de instrucciones

La primera computadora electrnica para un uso espe-
cial se llamé '

a. Pascal

b. Pascalina

¢. ABC

d. EDVAC

Una de las primeras computadoras basadas en el mode-
lo de von Neumnann se llamo

a. Pascal

b, Pascalina

c. ABC

d. EDVAC

La primera maquina computadora en usar la idea de al-
macenamiento y programacion se llamé

a. la Madeline

h. EDVAC

¢. la miaquina de Babbage

d. el telar de Jacquard

Los separaron la tarea de la programacion
de las tareas de operacidn de la computadora.

a. algoritmos

b. procesadores de datos

¢. lenguajes de programacion de aito nivel

d. sistemas operativos

EJERCICIOS

27.

28,

29,

30.

Utiliza Internet o acude a la biblioteca para averiguar
cudndo se inventaron los teclados.

Utiliza Internet o acude a la biblioteca para averiguar
cudndo se inventaron las impresoras.

Utiliza Internet o acude a la biblicteca para averiguar
cufndo se inventaron los discos magnéticos.

Segiin el modelo de von Neumann, ;los discos duros
actuales pueden utilizarse como entrada o como salida?
Explica.

31.

32.

33,

34.

35,

Un lenguaje de programacion tiene diez instrucciones
diferentes. ;Cudntos programas de cinco instrucciones
pueden escribirse con este lenguaje sin repetir ninguna
instruccién? ; Codntos programas de siete instrucciones?

(Actualmente qué es més costoso, el hardware o ¢l soft-
ware?

;Qué es mds valioso para una organizacion hoy dia, el
hardware, el software o los datos?

;Cémo impone fa organizacion de jos datos un progra-
ma procesador de palabras?

Utiliza Tnternet o acude a la biblioteca para encontrar
més informacitn sobre la Pascalina.

36.

37.

38.

39,

1.9 Practica

Utiliza Internet o acude a la biblioteca para enconfrar
més informacion sobre la Rueda de Leibnitz.

Utiliza Internet o acude a la biblioteca para encontrar
mis informacién sobre el telar de Jacquard y su impac-
to social.

Utiliza Tnternet o acude a la biblioteca para encontrar
més informacidn sobre la Mdquina Analitica.

Utiliza Internet o acude a la biblioteca para encontrar
mas informacién sobre Hollerit y su tabuladora.

Como se estudid en el capitulo 1, una computadora es una méaquina que procesa datos. Pe-
ro antes de que podamos hablar sobre el procesamiento de datos, necesita comprender la na-
turaleza de los mismos. En este capitulo y en ¢l siguiente se analizan los diferentes tipos de
datos y como se representan dentro de una computadora. En el capitulo 4 se muestra cérmo
se manipulan los datos en una computadora.

2.1 Tipos de datos

TIPOS DE DATOS

En la actualidad los datos se presentan de diferentes maneras, por ejemplo nimeros, fexto,
imégenes, audio y video (figura 2.1). La gente necesita procesar todos estos tipos de datos.

Datos

— E I —

Texto Numero Imagen Audio Video -

Figura 2.1 Diferentes tipos de datos

B Unprograma de ingenieria utiliza una computadora principalmente para procesar ritime-
ros: hacer aritmética, resolver ecuaciones algebraicas o trigonométricas, encontrar las
rafces de una ectiacién diferencial, y asi por el estilo. ' '

B Un programa de procesamiento de paiabras, por otra parte, utiliza una computadora més
" que nada para procesar texto: justificarlo, moverlo, eliminarlo, etcétera.’ ‘ _
@ Un programa de procesamiento de imagenes usa una computadora para manipular imé-

_ genes: crearlas, reducirias, ampliarlas, rotarlas, etcéiera. ' '
B Unacomputadora también puede manejar datos de audio. Usted puede reproducir msi-
ca en una compuiadora e introducir st voz como datos. ' j
@ Finalmente, una computadora puede usarse no sélo para mostrar peliculas, sino también
para crear tos efectos especiales que se ven en ellas. '

La industria de la computaci6n usa el término multimedia para definir informacidn
que contiene nimeros, texto, imdgenes, audio y video.

2.2 DATOS DENTRO DE LA COMPUTADORA

La pregunta es: ;C6mo se manejan todos estos tipos de datos? ;Se necesitan otras.compu-
tadoras ‘para procesér ios distintos tipos de datos? Bs decir, gse tiene una categoria-de
computadoras que procesan solo nimeros? ;Hay una categoria de computadoras que proce-
san sélo texto? ' . -

Esta solucién de diferentes computadoras para procesar distintos tipos de datos no es eco-
némica ni-préctica porgue los datos por lo general son una mezcla de tipos. Por ggemplo, aun-
que un banco procesa principaimente nimeros, también necesita almacenar, como texto, los
nombres de sus clientes. Como otro ejemplo, una imagen con frecuencia es una mezcla de
grificos y 1exto. '

BIT

PATRON DE BITS

BYTE

Representacion de datos

La solucién mas eficaz es usar una representacién uniforme de los datos. Todo tipo de da-
tos que entran del exterior a una computadora se transforman en esta representacién uniforme
cuando se almacenan en una computadora y se vuelven a transformar en su representacion
original cuando salen de la computadora. Este formato universal se llama patrén de bits.

Antes de continuar con el andlisis de los patrones de bits, s¢ debe definir un bit. Un bit (bi-
nary digii: digito binario) es la unidad mds pequefia de datos que puede almacenarse en una
computadora; puede ser ya sea 0 o 1. Un bit representa el estado de un dispositivo que pue-
de tomar uno de dos estados. Por ejemplo, un interruptor puede estar ya sea apagado o en-
cendido. La convencién es representar el estado de encendido como 1 y el estado de apagado
como 0. Un interrupior electrénico puede representar un bit. En otras palabras, un interraptor
puede almacenar un bit de informacién. Actualmente Jas computadoras vtikizan varios dispo-
sitivos binarios de dos estados para almacenar datos.

Un solo bit no puede resolver el problema de la represeniacién de datos, si cada pieza de da-
tos pudiera representarse por un 1 o un 0, entonces sdlo se necesitaria un bit. Sin embargo,
usted necesita almacenar niimeros més grandes, necesita almacenar texto, graficos y otros ti-
pos de datos,

Para representar diferentes tipos de datos se utiliza un patrén de bits, una secuencia o, co-
mo a veces s le llama, una cadena de bits. La figura 2.2 muestra un patrdn de bits formado
por 16 bits, es una combinacién de ceros (0) y unos (1). Esto significa que si usted quiere
almacenar un patrén de bits formado por 16 bits, necesita 16 interruptores electronicos. 51
guiere almacenar 1000 patrones de bits, cada uno de 16 bits, necesita 16 000 bits y asf suce-
sivamente.

2.3 Representacion de datos

1000101010111111

Figura 2.2 Patron de bits

Ahora la pregunta es: ;C6mo sabe la memoria de la computadora qué tipo de datos repre-
senta el patrén de bits? No lo sabe. La memoria de la computadora sélo almacena los datos
como patrones de bits. Es responsabilidad de los dispositivos de entrada/salida o de tos pro-
gramas inferpretar un pairén de bits como un niimero, texto o algin otro tipo de datos. En
otras palabras, los datos se codifican cuando entran a la computadora y se decodifican cuan-
do se presentan al usuario (figura 2.3).

Texto ~—-> 1001..... 111 —H
Niimera —»1111 01—
Imagen —¥ Coditewsion | —3 1111 ... 11—

Audio —> 1000..... 000 —!

—> 111100 111 [pecoditsacion | Texto
— 1101 101 ——-¥ Niimero
—> 1011 ... 000 —>|Dssodifcacisn |—> Tmagen
5 0101..... 001 —>{pecoditicsion [—> Audio
——>1111‘....131—> Video

eSS o

Video —»1011 001 —

Figura 2.3 Ejemplos de patrones de bits

Por tradicitn, un patrén de bits con una longitud de 8 bits se llama byte. Este término tam-
bién se ha utilizado para medir el tamafio de la memoria o de otros dispositivos de almacena-
miento. Por ejemplo, se dice goe la memoria de una computadora que puede almacenar 8
millones de bits de informacién es una memoria de 1 millén de bytes.

2.3 REPRESENTACION DE DATOS

TEXTO

Ahora podemos explicar cémo pueden representarse diferentes tipos de datos usando patro-
nes de bits.

Usa picza de texto en cualquier idioma es una secuencia de sfmbolos usados para represen-
tar una idea en ese idioma. Por ejemplo, el idioma inglés wtiliza 26 simbolos (A, B, C, . . .,
Z) para representar las letras maytsculas, 26 simbolos (a, b, ¢, . . . , Z) para repiesentar las le-
fras mindsculas, 9 simabolos (0, 1,2, .. ., 9) para los caracteres numéricos (no ntimeros; la di-
ferencia se vera més adelante) y sfmbolos (., 2, :,: ..., |) para representar la puntuacién. Otros
simbolos como el espacio en blanco, la linea nueva y el tabulador se usan para alineacién de
texto y legibilidad.

Usted puede representar cada simbolo con un patrdn de bits. Dicho de otra forma, texto
como la palabra “BYTE”, formada por cuatro simbolos, puede representarse como 4 patro-
nes de bits, en los que cada patrén define un selo sfmbolo (figura 2.4).

B Y T E

(101 To1 | 111... 100 | 110... 00 1000 ... 101 |

Figura 2.4 Representacion de simbolos usando patrones de bits

La pregunta es: ;Cudntos bits se necesitan en un patrdn de bits para representar un sfmbo-
lo en un idioma? Depende de cudntos simbolos haya en la secuencia. Por ejemplo, si usted
crea un idioma imaginario que utilice s6lo las letras maytisculas del idioma inglés, sélo ne-
cesita 26 simbolos. Un patrén de bits en este idioma requiere representar al menos 26 simbo-
ios. Para otro idioma, como ¢l chino, pueden necesitarse muchos simbolos més. La longitud
del patrén de bits que representa un simboio en un idioma depende del nidmero de simbolos
usados en ese idioma, M4s simbolos significan un patrén de bits mds grande.

Aungue la Tongitud del patrén de bits depende del nimero de sfmbolos, la relacién no es li-
neal; es logaritmica. Si se requieren dos sfmbolos, la longitud es 1 bit (el log,2 es 1). Si se ne-
cesitan cuatro sfimbolos, la longitud es 2 bits (log,4 es 2). La tabla 2.1 muestra esta relacion, la
cual es facilmente perceptible. Un patrén de bits de 2 bits puede tomar cuatro formas diferen-
tes: 00, 01, 10 y 11; cada una de las cuales representa un simbolo. Del mismo modo, un pa-
trén de tres bits puede tomar ocho formas diferentes: 000, 001, 010, 011, 100, 101, 110y 111

Nimero de simbolos - Longitud del patron de bits

2 1

4 2

3 '3

16 4

128 7

256 8
05536 16

Tabia 2.1 Ndmero de simbolos y longitud de un patrén de bits

Codigos

Representacion de datos

Se han disefiado diferentes secuencias de patrones de bits para representar simbolos de texto.
A cada secuencia se le conoce como cédigo y al proceso de representar los simbolos se le lla-
ma codificacion. En esta seccién explicamos los cédigos comunes.

ASCTI El Instituto Nacional Nerteamericano de Estindares (ANSE: Americar Nacional
Standards Institute) desarrollé un ¢6digo llamado Cddige norteamerieane de estindares
para intercamhio de informacién (ASCIL: American Standard Code for Information Inter-
change). Bste codigo utiliza siete bits para cada sfmbolo. Esto significa que 128 (2") stmbo-
los distintos pueden definirse mediante este cédigo. Los patrones de bits completos para el
cédigo ASCI estédn en el apéndice A. La figura 2.5 muestra c6mo se representa la palabra
“BYTE"” en c6digo ASCITL

PYIs
|

1000010 1011061 1010100 1000101

Figura 2.5 Representacion de la palabra “BYTE” en cédigo ASCIHi

La lista siguiente destaca algunas de las caracteristicas de este codigo:

ASCII utiliza un patrén de siete bits que varfa de 0000000 a 1111111_. 7 _
El primer patrén (0000000) represenia el cardeter mulo (la ausencia de éarécter).
El tiltimo patrn (1111111) representa el cardcter de eliminacién.:

Hay 31 caracteres de control {no imprimibles}.

Los caracteres numéricos {0 a 9) se codifican antes que las letras.

Hay varios caracteres de impresidn especiales.

Las letras maytsculas (A ... Z) estdn antes que las letras mintisculas (z ... z).

Los caracteres en mayvisculas v en mintsculas se distinguen sélo por un bit. Por ejern-

plo, el patrén para A es 1000001; el partn para a es 1100001. La tinica diferencia es el

sexto bit a partir de Ia derecha.

B Hay seis caracteres especiales entre 1as letras maytisculas y mintisculas.

ASCII extendido Para hacer que el tamafio de cada patrén sea de 1 byte (8 bits), a los pa-
trones de bits ASCTI se les aumenta un 0 mds a la izquierda. Ahora cada patrén puede caber

facilmente en un byte de memoria. En otras palabras, en ASCH extendido el primer patron - ‘

es 00000000 y el dltimo es 01111111.

Algunos fabricantes han decidido usar el bit de més para crear un sisterna de 128 simbo- -
1os adicional. Sin embargo, este intento no ha tenido éxito debido a la secuencia no estindar.

creada por cada fabricanie.

EBCDIC A principios de la era de las computadoras, IBM desarrollé un codigo llamado

Cédigo extendido de intercambio decimal codificado en binario (EBCDIC: Extended Bi-
nary Coded Decimal Interchange Code). Este cédigo utiliza patrones de ocho bits, de mane-
ra que puede representar hasta 256 simbolos. Sin embargo, este c6digo no se utiliza més que
en computadoras mainframe de [BM.

NUMEROS

IMAGENES

Graficos de mapa
de bits

2.3 Representacién de datos

Unicode Ninguno de los codigos anteriores representa simbolos que pertenecen a idiomas
distintos al inglés. Por eso, se requiere un cddigo con mucha més capacidad. Una coalicidn
de fabricantes de hardware v software ha disefiado un cédigo llarado Unicode que utiliza 16
bits y puede representar hasta 65 536 (2'%) simbolos. Diferentes secciones del codigo se asig-
nan a los simbolos de distintos idiomas en el mundo. Algunas partes del codigo se usan para
sfmbolos graficos y especiales. El lenguaje Java™ utiliza este cGdigo para representar carac-
teres. Microsoft Windows usa una variacién de los primeros 256 caracteres. En el apéndice B
hay un pequefio conjunto de sfmbelos Unicode.

ISO La Organizacién Internacional para la Estandarizacién (Internacional Standard
Organization), conocida como ISO, ha disefiado un codigo que utiliza patrones de 32 bits. Es-
te codigo representa hasta 4 294 967 296 (2%} simbolos, definitivamente lo suficiente para re-
presentar cualquier simbolo en el mundo actual.

En una computadora, los nimeros se representan usando el sistema binario. En este sistema,
un pateén de bits (una secuencia de ceros y Unos) representa Un nAmero. Sin embargo, un co-
digo como el ASCII no se usa para representar datos. La razén para ello y un andlisis de la
representacién de nimeros se presentan en el capitulo 3.

Hoy dia las imdgenes se represenian en una computadora mediante uno de dos métodos: gri-
ficos de mapa de bits o graficos de vectores (figura 2.6).

Imagen

Bitmap Vector

Figura 2.6 Métodos de representaciéh de imagenes

En este método, una imagen se divide en una matriz de pixeles (picture elemenis: elementos
de imagen), donde cada pixel es un pequefio punio. El tamafio del pixel depende de lo que
se conoce como resolucion. Por ejemplo, una imagen puede dividirse en 1000 pixeles o
10 000 pixeles. En el segundo caso, aunque hay una mejor representacion de la imagen {me-
jor resolucién), se necesita mds memoria para almacenarla.

Después de dividir una imagen en pixeles, a cada pixel se asigna un patrGn de bits. El ta-
maiio y el valor del patrén dependen de la imagen. Para una imagen formada s6lo por puntos
blancos v negros (por ejemplo, un tablero de ajedrez), un patr6n de un bit es suficiente para
representar un pixel, Un patrén de O representa un pixel negro y uno de 1 representa un pixel
blanco. Luego los patrones se registran uno tras otro y se almacenan en la computadora. La
figura 2.7 muestra una imagen de este tipo y su representacion.

Si una imagen no se forma de pixeles puramente blancos y pixeles puramente negros, us-
ted puede aumentar el tamafio del patron de bits para representar escalas de grises. Por ejem-
plo, para mostrar cuatro niveles de la escala de grises, se puede usar un patrén de dos bits. Un
pixel negro puede representarse por 00, un gris oscuro por 01, un pixel gris clare por 10y
un pixel blanco por 11.

Para representar imdgenes a color, cada pixel coloreado se descompone en tres colores pri-
marios: £ojo, verde y azul (RGB). Luego se mide la intensidad de cada color y se le asigna un

Graficos
de vectores

AUDIO

Representacion de datos

000110060
001111060
00111100
00011000

Representacion
de pixeles

Imagen

00011000 00111100 00111100 00011000

Representacién lineal

Figura 2.7 Método de gréaficos de mapa de bits de una imagen blanca y negra

patrén de bits (por lo general ocho bits). En otras palabras, cada pixel tiene tres patrones de
bits: uno para representar la intensidad del color rojo, uno para la intensidad el color verde
y uno para la intensidad de? color azul. Por gjemplo, la figura 2.8 muestra cuatro patrones de
bits para algunos pixeles en una imagen a color.

R G B
!

Rojo {con intensidad de 100%) — 11111111 00000000 00000000
Verde {con intensidad de 100%) — 06000000 11711131 00600000
Azul (con intensidad de 100%) —» 00000000 GO0G0000 11111111
Blanco (con intensidad de 100%) —» 11111111 11111181 11111111

Figura 2.8 Representacién de pixeles de color

El problema con el método de los gréficos de mapa de bits es que los patrones de bits exac-
tos para representar una imagen particular deben guardarse en una computadora. Posterior-
mente, si usted desea cambiar el tamafio de la imagen debe cambiar el tamafio de los pixeles,
lo cual crea una apariencia difusa y granulada. No obstante, el método de graficos de vector
no guarda los patrones de bits. Una imagen se descompone en una combinacidn de curvas y
lineas. Cada curva o linea se representa por medio de una férmula matemética. Por ejemplo,
una linea puede describirse mediante las coordenadas de sus puntos extremos y un circulo
puede describirse mediante las coordenadas de su centro v la longited de su radio. La combi-
nacion de estas férmulas se almacena en una computadora. Cnando la imagen se va a desple-
gar o imprimir, el tamafic de la imagen se proporciona al sistema como una entrada. El
sistema redisefia la imagen con el nuevo tamafio y usa Ia misma férmula para dibujar la ima-
gen. En este caso, cada vez que una imagen se dibuja, la férmula se vuelve a evaluar,

El audio es una representacion de sonido o musica. Aunque no hay un estdndar para almace-
nar el sonido o la musica, la idea es convertir el audio a datos digitales y usar patrones de
bits. El audio por naturaleza es informacién andloga. Es continuo (andlogo), no discreto (di-
gital). La figura 2.9 muestra los pasos a seguir para cambiar los datos de audio a patrones de
bits. Estos pasos son los siguientes:

. VIDEO

2.4 Notacion hexadecimal

QA___} Muesireo 2 I!I l“l

Cuantificacion

l

00000100 .., 00001111 4—— | Codificacién | ¢——

464 25 15

Figura 2.9 Representacion de audio

1. La sefial aniloga se muestrea. El muestreo significa medir el valor de la sefial a interva-
los iguales.

2. Las muestras se cuantifican. La cuantificacién significa asignar un valor {de un conjun-
to) a una mwestra. Por ejemplo, si el valor de una muestra es 29.2 y el conjunto es el con-
junto de enteros entre Q0 y 63, se asigna un valor de 29 a la muestra.

3. Los valores cuantificados se carbian a patrones binarios. Por ejemplo, el niimero 25 se
cambia al patron binario 00011001 (consulte el capftulo 3 para la transformacién de
mimeros en patrones).

4. Los patrones binarios se almacenan.

El video es una representacidn de imdgenes (llamadas cuadros o frames) en el tiempo. Una
pelicula es una serie de cuadros desplegados uno tras otro para crear la ilusién de movimien-
to. Asi que si nsted sabe cémo almacenar una imagen dentro de una computadora, también
sabe cémo almacenar un video; cada imagen o cuadro cambia a una serie de patrones de bits
y se almacena. La combinacion de las imdgenes representa el video. Observe que el video ac-
tual se comprime normalmente. En el capitulo 15 estudiaremos MPEG, una técnica de com-
presion de video comitin.

2.4 NOTACION HEXADECIMAL

El patroén de bits se disefié para representar datos cuando éstos se almacenan dentre de una
computadora. Sin embargo, para la gente es dificil manipular los patrones de bits. Escribir
una serie de mimeros 0 y 1 es tedioso y propenso al error. La notacién hexadecimal ayuda.

La notacién hexadecimal se basa en 16 (hexadec es la palabra griega para 16), Esto sig-
nifica que hay 16 sfmbolos (digiios hexadecimales): 0, 1,2, 3,4,5,6,7,8, 9, A, B, C,D, E
v F. La importancia de la notacién hexadecimal se hace evidente cuando se convierte un pa-
trén de bits a notacién hexadecimal.

Cada digito hexadecimal puede representar cuatro bits y cuatro bits pueden representarse
medianie un digito hexadecimal. La tabla 2.2 muestra la relacién entre un patrdn de bits y un
digito hexadecimal.

Un patrén de 4 bits puede representarse mediante un digito hexadecimal, y vice-
versa.

CONVERSION

Representacion de datos

“Patrén de bits” 7| Digito hexadecimal Patrén de bits: Digite hexadecimal
0000 t 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 3 1101 D
0110 6 1110 E
0111 7 1111 F

Tabla 2.2 Digitos hexadecimales

La conversién de un patrdn de bits a notacién hexadecimal se realiza por medio de la organi-
zacién del patr6n en grupos de cuatro y luego hallar el valor hexadecimal para cada grupo de
cuatro bits. Para una conversién de hexadecimal a patrén de bits se convierte cada digito he-
xadecimal a su equivalente de cuatro bits (figura 2.10).

Hexadecimal

[1T1tr1|[t100]jt 1100100}
T F : —= 1]

2.5 Notacién octal

Figura 2.10 Transformacién de binario a hexadecimal y de hexadecimal a
binario

Observe que la notacién hexadecimal se escribe en dos formatos. En el primer formato,
usted afiade una x mintiscula {0 mayiscula) antes de los digitos para mostrar que la represen-
tacién estd en hexadecimal. Por ejemplo, xA34 representa un valor hexadecimal en esta con-
vencién. En otro formato, usted indica 1a base del niimero {16) como el subindice después de
cada notacién. Por ejemplo, A34,; muestra ¢l mismo valor en la segunda convencién. En es-
te libro se usan ambas convenciones.

EJEMPLO 1
Determine el hexadecimal equivalente del patrén de bits 110011100010.

SOLUCION
Cada grupo de cuatro bits se traduce a un digito hexadecimal. El equivalente es xCE2. B

EJEMPLO 2
Determine el hexadecimal equivalente del patrén de bits 0011100010.

SOLUCION

El patrén de bits se divide en grupos de cuatro bits (a partir de la derecha). En este caso,
se afiaden dos 0 mas a la izquierda para hacer el niimero total de bits divisible entre cua-

tro. Asf que usted tiene 000011100010, lo cual se fraduce a x0E2. E
EJEMPLO 3

;Cuél es el patrén de bits para x24C?

SOLUCION

Cada digito hexadecimal se escribe como su patrén de bits equivalente y se obtiene
0010601001100, #

CONVERSION

| 2.5 NOTACION OCTAL

Otra notacién usada para agrupar patrones de bits es la notacién octal. La notacién octal se
basa en 8 (oct es la palabra griega para ocho). Hsto significa que existen ocho simbolos (di-
gitos octales): (4, 1, 2, 3, 4, 5, 6, 7. La importancia de la notacién octal se hace evidente a me-~
dida que usted aprende a convertir un patrén de bits en notacidn octal.

Cada digito octal representa ires bils y tres bils pueden representarse mediante un digito
octal. La tabla 2.3 muestra la relacién entre un patrdn de bits y un digito octal.

Un patrén de tres bits puede representarse por medio de un digito octal y viceversa.

Patrén de bits | Digite octal Patrén de bits | Digito octal
000 0 100 4
001 1 101 5
010 2 110 6
011 3 111 7

Tabla 2.3 Digitos octales

La conversidn de un patrdn de bits a notacidn octal se realiza mediante la organizacién del
patrén en grupos de tres y la determinacidn del valor octal de cada grizpo de tres bits. Para la
conversién de octal a patrén de bits, se convierte cada digito octal a su equivalente de tres bits
(figura 2.11).

[Jiri]riofort]too]1oo0]

Figura 2.1T Transformacion de binario a octal y de octal a binario

Observe que Ia notacién octal también se escribe en dos formatos. En el primer formato,
usted afiade 0 (cero) antes de los digitos para mostrar que la representaci6n estd en notacién
octal {a veces se utiliza una o mintscula). Por ¢jemplo, 0634 representa un valor octal en esta
convencién. En el otro formato, usted indica la base del ndmero (8) como el subindice des-
pués de la notacioén. Por ejemplo, 634; muestra el mismo valor en la segunda convencién. En
este libro se usan ambas convenciones.

EJEMPLO 4
Muestre el equivalente octal del patrén de bits 101110010.

SOLUCION
Cada grupo de tres bits se traduce a un digito octal. Bl equivalente es 0362, 0562 0 562;. B

Representacién de datos

EJEMPLOS
Muestre el equivalente octal del patrdn de bits 1100010

SOLUCION

El patrdn de biis se divide en grupos de ires bits (a partir de la derecha). En este caso, se
afiaden dos 0 mds 2 la izquierda para hacer el némero totai de bits divisible entre 3. Asi
que usted tiene 001100010, to cual se traduce a 0142, 0142 o 142, B

EJEMPLO 6

(Cudl es el patrén de bits para 2447

SOLUCION

Cada digito octal se escribe como su patrén de bits equivalente para obtener 010100, B

2.6 TERMINOS CLAVE

andlogo

ASCII extendido

bit

byte

codigo

Cédigo extendido de intercambio
decimal cadificado en binario
(EBCDIC)

Codigo norteamericano de estindares
para intercambio de informacidn
{ASCI)

cuanitficacién

digital

digito binario

elemento de imagen

grifico de mapa de bits

grifico de vectores

imagen

Instituto Nacional Norteamericano de
Estandares (ANSI)

interruptor

muestreo

notacién hexadecimal

notacién octal

Organizacion Internacional para la Es-
tandarizacidn {(1S0)

patrdn de bits

pixel

sistemna binario

fexto

Unicode

video

2.8 Practica

2.8 PRACTICA

_ PREGUNTAS DE REPASO

1. Nombre cinco tipos de datos que puede procesar una
computadora.

2. ;Cémo maneja una computadora todos los tipos de da-
tos gue debe procesar?

$Qué es un patrdn de bits?
¢ Cudl es la diferencia entre ASCII y ASCIH extendido?
;Qué es EBCDIC?

LA

£ Co6mo se refaciona la longitud de un patrén de bits con
- el nimero de simbolos que puede representar?

7. (Como representa el método de graficos de mapa de bits
una imagen como un pairdn de bits?

8. ;Cudl es la ventaja del método de grificos de vector so-
bre el método de grificos de mapa de bits?

9. ;Qué pasos deben seguirse para convertir datos de audio
en patrones de bits?

16. ;Cudl es la relacién entre los datos de imagen y los da-
tos de video?

PREGUNTAS DE OPCION MULTIPLE

1i. De lo siguiente, jqué puede clasificarse como datos?
a. nimeros

2.7 RESUMEN

Los nimeros, el texto, las imagenes, el audio ¥ el video,
todos son formas de datos. Las computadoras necesitan
procesar todo tipo de datos,

Todos Jos tipos de datos se transforman en una represen-
tacién uniforme 1lamada patrén de bits para su procesa-
miento por la computadora.

Un bit es la unidad més pequefia de datos que puede al-
macenarse en una computadora.

Un interruptor, con sus dos estados de encendido y apa-
gado, puede representar un bit.

Un patrén de bifs es una secuencia de bits que pueden
representar un sfimbolo.

Un byte son ocho bits.

La codificaci6n es el proceso de transformar datos en un
patrén de bits.

ASCTE es un cédigo popular para los simbolos.

EBCDIC es un cédigo utilizado en los mainframes de
BM.

Unicode es un cédigo de 16 bits v 1a ISO ha desarroila-
do un cidigo de 32 bits. Ambos cddigos permiten un
mayor nimero de simbolos.

Las imdgenes utilizan el método de graficos de mapa de
bits o grificos de vectores para representacion de datos.
La imagen se divide en pixeles a los que luego pueden
asignarse patrones de bits.

Los datos de audio se transforman a patrones de bits a
través del muestreo, la cuantificacién y la codificacidn.

Los datos de video son una serie de imdgenes en se-
cuencia.

12.

13.

14.

b, video
c. audio
d. todos los anteriores

Para almacenar un byte, usted necesita inte-
rruptores electrénicos.
a 1

gae
[o B SN

Un byte consiste de bits.
a 2
b. 4
¢ 8
d. 16

En un conjunto de 64 simbolos, cada simbolo requiere

una longitud de patrdn de bits de hits.
a 4

ae
~J.n La

15.

16.

17.

18. En cédigo ASCII extendido, un

19.

20,

21.

22.

(Cuantos siinbolos pueden representarse mediante un
patrén de bits con 10 bits?

a, 128

b, 256

¢ 512

d. 1024

En ASCIH extendido cada simbolo es bits.
a. 7

b. 8

c. 9

d. 10

Si el codigo ASCII para E es 1000101, entonces el ¢6di-
g0 ASCl para e es

a. 1000110

b. 1000111

e. 0000110

d. 1100101

del patrdn de
bits para el cédigo ASCH regilar.

a. bit 0 se afiade a la izquierda

b. bit 0 se afade a la derecha

c. bit 1 se afiade a la izquierda

d. bit 1 se afiade a la derecha

es un cédigo usado en los mainframes de
IBM.
a. ASCH
b. ASCII extendido
e. EBCDIC
d. Unicede

es un cédigo de 16 bits que puede represen-
tar simbolos en idiomas distintos al inglés.
a. ASCH
bh. ASCII extendido
¢. EBCDIC
d. Unicode

¢s un codigo usado por el lenguaje Java pa-
ra representar caracteres.
a. ASCII
b. ASCII extendido
¢. EBCDIC
d. Unicode

Un ¢ddigo de 32 bits se desarrolld por
presentar simbolos en todos los idiomas.
a. ANSI

b. ISC

¢. EBCDIC

d. Hamming

parare-

23.

24,

25.

26.

27.

28.

Representacion de datos

Una imagen puede representarse en una computadora
usando el métado de

a. grificos de mapa de bits

b. grificos de veciores

c. graficos de matrices

d.aob

El método de graficos de mapa de bits y el método de
grificos de vectores se usan para representar

en una computadora.

a. audio

b. video

c. imigenes

d. niimeros

En el métodoe de graficos para la representa-
cidn de una imagen en una computadora, a cada pixel se
asigha uno o més patrones de bits.

a. de mapa de bits

b. de vectores

c. cuantificado

d. binario

En el método de graficos para la representa-
cién de una imagen en una computadora, la inagen se
descompone en una combinacidn de curvas y lineas.

a. de mapa de bits

b. de vectores

¢. cuantificado

d. binaric

En el método de graficos para la represen-
tacién de una imagen en una computadora, al cambiar el
tamafio de la imagen se crea una imagen difusa y granu-
lada.

a. de mapa de bits

b. de vectores

c. cuantificado

d. binario

Cuando usted quiere descargar mdsica a una computa-
dora, 1a sefial de audio debe ser

a. muesireada

b. cuantificada

¢. codificada

d. todos los anteriores

EJERCICIOS

29,

30.

DPados cinco bits, jcudntos patrones de cinco bits distin-
tos puede tener?

En cierto pais las placas de la licencia vehicular tienen
dos digitos decimales (0 a 9). ;Cuéntas placas distintas
puede tener? Si el digito (no estd permitido en las pla-
cas, jcudntas placas distintas puede tener?

31.

32,

33.

34.

35,

36.

37.

38.

39.

Vuelva a hacer el gjercicio 30 para un placa que tiene
dos digitos seguidos por tres letras maytisculas (A a Z).

Una méquina tiene ocho ciclos diferentes. (Cuantos bits
se necesitan para representar cada ciclo?

La calificacién de un estudiante en un curso puede ser A,
B, C, D, F, R (retirado) o I (incompleto). ;,Cuéntos bits
se requieren para representar la calificacion?

Una compafifa ha decidido asignar un patrén de bits tini-
co a cada empleado. Si la compafifa tiene 900 emplea-
dos, jcudl es el nimero minimo de bits necesarios para
crear este sistema de representacion? ;Cudntos patrones
no son asignados? Si la compafiia contrata otros 300 em-
pleados, jdebe aumentar ¢l nimere de bits? Explique su
respuesta.

Si utiliza un patrén de cuatro bits para representar los di-
gitos 0 a9, ;cudntos patrones de bits se usan?

Una imagen en escala de grises se digitaliza nsando cua-
tro niveles de gris distintos. Si la imagen se compone de
100 x 100 pixeles, ;cudntos bits se necesitan para repre-
sentar la imagen?

Una sefial de audio se muestrea 8000 veces por segun-
do. Cada muestra se representa mediante 256 niveles
distintos. ;Cudntos bits por segundo se necesitan para
representar esta sefial?

Cambie los siguientes patrones de bits a notacién hexa-
decimal:)

a. 100011110000

b. 1000001101

c. 10001

d. 11111111

Cambie los siguientes a patrones de bits:
a. x120

b. x2A34

¢ x00

d. xFF

40, Cambie los siguientes patrones de bits a notacidn octal:

41.

42,

43.

44.

a. 100011110000

b. 1000001101

c. 10001

d. 11111111

Cambie los siguientes a patrones de bits:
a. ol2

b. 027

c. 045

d. 020

;Cudntos digitos hexadecimales se necesitan para con-
vertir un patrén de 19 bits?

;Cudntos digitos octales se requieren para convertir un
patron de 19 bits?

;Cuéntos digitos hexadecimales se necesitan para con-
vertir un pairén de 6 bytes?

[

En el capitulo 2 mostramos coémo el texto, ¢l aundio, las imdgenes y el video pueden repre-

‘sentarse en una computadora mediante patrones de bits. Pospusimmos el andlisis de la represen-

tacién de los ndmeros porque ésta es muy diferente de la representacién de los datos no
numéricos. Algunas de las razones de esia diferencia son las siguientes:

B Un codigo de caracteres como el ASCII no es eficiente para representar nimeros. ASCII
puede representar 128 simbolos, pero el sistema decimal necesita sélo 10. (Observe que
si se consideran otros sfmbolos como +, — y el punto decimal, se necesitan atn mas
simbolos, pero todavia menos que 128.) Por ¢jemplo, si usted quiere aimacenar el nidme-
ro 65 535 usando ASCII, necesita cinco bytes (un byte para cada digito). Pero si el ni-
mere se representa como un entero sin signo (usted verd esta representacion
posteriormente en este capitulo), sélo necesita dos bytes.

B Las operaciones con los nimeros (por ejemplo, 1a suma y 1a resta) son muy complicadas
si los digitos de un nimero se representan en un codigo de caracteres.

B La representacin de la precisién de un mimero (por ejemplo, ¢l nimero de lugares
después del punto decimal) requiere muchos bytes. Por ejemplo, para almacenar
2345400001 se requieren 11 bytes, pero si el mismo nimero se representa en un pun-
to flotante (esta representacitn se verd mds adelante en este capitulo), necesita sélo
unos cuantos bytes.

Representacion de niimeros

3.2 Conversion

3.1 DECIMAL Y BINARIO

SISTEMA DECIMAL

SISTEMA BINARIO

Dos sistemas de numeracion predominan actuabmente en el mundo de la computacién: deci-
mal y binario. Analizaremos estos dos tipos distintos de sistemas antes de presentar cémo se
representan los atimeres mediante una computadora.

Hoy dfa, el mundo utiliza el sistema decimal para los niimeros desarrollado por mateméticos
drabes en el siglo viir. Los primeros en usar un sisterna numérico decimal fueron los antiguos
egipcios. Los babilonios mejoraron el sistema egipcio al dar un significado a las posiciones
del sistema aumérico. Todos comprendemos facilmente el sistema numérico decimal.

De hecho lo hemos usado tanio que es bdsicamente intuitivo, Pero, ;realmente entende-
mos por qué la segunda posicién en ¢l sistema decimal representa las decenas vy la tercera, las
centenas? La respuesta yace en las potencias de la base del sistema, que es 10 en el sistema
decimal. De esta manera la primera posicién es 10 elevado a la potencia 0, la segunda posi-
cion es 10 elevado a la potencia 1 y la tercera posicién es 10 elevado a la potencia 2. La figu-
ra 3.1 muestra la relacidn entre las potencias y el niimero 243.

10° 10° 107 10} 10°
1G 000 1600 104 16 1
Posiciones decimales
243

N

l 24100 £ 4210 + 31 |

!

Doscientos cuarenta y tres

Figura 3.1 Sistema decimal

Mientras que el sistema decimal se basa en 10, el sistema binario se basa en 2. Sélo hay dos
digitos en el sistemna binario, 0 y 1. La figura 3.2 muestra los valores posicionales para un sis-
tema binario y el digito 243 en binario. En la tabla de posiciones, cada posicidn es el doble
de la posicion anterior. De nuevo, esto se debe a que la base del sistema es 2. Las potencias
binarias deben memorizarse cuando menos hasta 2'°,

2725 25 9 o 92 gl o
128 64 32 16 & 4 2 1

111108611

NS,

| 15128 + 1464 + 1532 + 1416 + (38 + Osd + 142 + 1sl

'

Figura 3.2 Sistema binario

3.2 CONVERSION

CONVERSION
DE BINARIO
A DECIMAL

CONVERSION
DE DECIMAL
A BINARIO

Antes de estudiar cémo los nimeros en forma de patrones de bits se almacenan dentro de una
computadora, debe comprender cémo convertir manualtente un ntimero del sistema decimal
al sistema binario vy viceversa.

Comenzaremos por convertir un niimero del sisterna binario al sistema decimal. Tome el
niimero binario y multiplique cada digito binario por el valor de su posicién. Como cada
bit binario puede ser s6lo 0 o 1, el resuitado serd ya sea O o el valor posicional. Después
de multiplicar todos los digitos sume los resuitados. La conversién de binario a decimal
se muestra en la figura 3.3,

Ll 1 01 1 0 1 niimero binario

64 32 16 8 4 2 1 valores posicionales

0+32+ 0+8+4+0+1 resultado
45 mimero decimal

Figura 3.3 Conversion de binario a decimal

EJEMPLO 1

Convierta el nimero binario 10011 a decimal.

SOLUCION

Se escriben los bits v sus valores posicionales. Se multiplica el bit por su valor correspon-
diente y luego se anota el resultado. Al final, los resultados se suman para obtener ei ni-
mero decimal.

Binario 1] 0 1 1
Valores 16 2 1
posicionales

6 + 0 + 0 + 2 4+ 1
Pecimal 19]

Para convertir del sistema decimal al binario utilice ia divisién repetitiva, El nimero original,
45 en el ejemplo, se divide por 2. El residuo (1) se vuelve el primer digito binario y el segun-
do digito se obtiene dividiendo el cociente (22) por 2 para determinar la siguiente posicién.
Este proceso contimia hasta que el cocienie es 0. La conversién de decimal a binario se
muesira en la figura 3.4.

EJEMPLO 2

Convierta el niimero decimal 35 a binario.

Representacion de nimeros

Se defiene cuando
w Cl cociente €5 O g9

Residuo

Binaria

Figura 3.4 Conversién decimal a binaria

SOLUCION

Se escribe el nGmero en la esquina derecha. Se divide el ndmero repetidamente por 2 ¥
se anota el cociente y el residuo. Los cocientes se mueven a la izquierda y el residuo se
anota bajo cada operacién. Este proceso se suspende cuando el cociente es 0.

0 « 1 « 2 « 4 « 8 « 17 « 35 (Decimal}
4 | | | L +
Binario 1 0 1] 0 1 1 B

FORMATO
' DE ENTEROS
SIN SIGNO

3.3 REPRESENTACION DE ENTEROS

Ahora que sabe cémo convertir del sisterna decimal al sistermna binario, veamos cémeo alma-
cenar enferos dentro de una computadora. Los enteros son mimeros integros {es decir, ni-
meros sin una fraccidn). Por ejemplo, 134 es un entero, pero 134.23 no o es. Como otro
ejemplo, —134 es un entero, pero —134.567 no lo es.

Un entero puede ser positivo o negativo. Un entero negative varia del infinito negativo
a 0; un entero positivo varfa de 0 al infinito positivo {(figura 3.5). Sin embargo, ninguna
computadora puede almacenar todos los enteros en este intervalo. Para hacerlo, requeriria un
mimero infinito de bits, lo cunal significa una computadora con una capacidad de almacena-
miento infinita,

Figura 3.5 Intervalo de enteros

Para usar la memoria de una computadora de manera mds eficiente, se han desarrollado
dos amplias categorias de representacién de enteros: enteros sin signo y enteros con signo.
Los enteros con signo también pueden representarse de tres maneras distintas (figura 3.6).

3.3 Representacion de enteros

Representacion
de enteros
i l
Sin signo Con signo
Signo Complemento Complemento
vy magnitud a uno a dos

Figura 3.6 Taxonomia de enteros

En la actualidad la representacién de uso mds comun es el complemento a dos. Sin em-
bargo, primero estudiamos las otras representaciones debido a que son mds simples y sirven
como una buena base para el complemento a dos.

Un entero sin signo es un entero que no tiene intervalo, su rango estd entre 0 y el infinito
positivo. No obstante, como no hay manera de que una computadora represente a todos los
enteros en este intervalo, la mayorfa de las computadoras define una constante tlamada el
entero maximo sin signo. Un entero sin signo varfa entre 0 y esta constante. El entero méxi-
mo sin signo depende del mimero de bits gue la computadora asigna para almacenar un en-
tero sin signo. A continuacién se define el intervalo de los enteros sin signo en una
computadora, donde & es el nimero de bits asignado para representar un entero sin signo:

: I__ntervalé:‘ ‘O e Al)

1a tabla 3.1 muestra dos intervalos comunes para las computadoras de hoy.

Numero de bits *- Intervalo
8 0...255
i6 0...65535

Tabla 3.1 Intervalo de enteros sin signo

El almacenamiento de tos enteros sin signo es un proceso sencillo segilin se esboza en los pa-
S0s siguientes:

Representacion

1. El nimero cambia a binario.

2, Sieintmero de bits es menor que N, se afiaden 0 a la izquierda del niimero binario de
manera que haya un total de N bits.

EJEMPLO 3

Almacene 7 en una localidad de memoria de ocho bits.

Interpretacion

Desbordamiento

Aplicaciones

Representacién de nimeros

SOLUCION
Primero se cambia ¢l nfimeero a binario: 111. Se afiaden cinco O para hacer un total de N
(8) bits: 0000011 1. El nimero se almacena en la memoria. B
EJEMPLO 4
Almacene 258 en una localidad de la memoria de 16 bits. &
SOLUCION

Primero se cambia ¢l niimero a binario: 100000010. Se afiaden siete (} para hacer un totai
de N (16) bits: 0000000100000010. Bl nimero se almacena en 1a localidad de la memeoria.

La tabla 3.2 muestra cdmo se atmacenan los enteros no asignados en dos computadoras
diferentes: una usa localidades de ocho bits y la otra usa localidades de 16 bits. Observe que
los niimeros decimales 258 y 24760 no pueden almacenarse en una computadora que usa
localidades de ocho bits para un entero sin signo. El mimero decimal 1 245 678 no puede al-
macenarse en ninguna de estas dos computadoras; a esta condicidn se le lama desbordamien-
to (se estudia en el capitulo 4).

Decimal: Localidad de 8 bits Locatidad de 16 bits -
7 00000111 0000000000000111
234 11101010 0000000011101010
258 Desbordamiento 0000000100000010
24760 Desbordamiento 0110000010111000
1245678 Deshordamiento Desbordamiento

Tabla 3.2 Almacenamiento de enteros sin signo en dos computadoras
diferentes

+C0mo se interpreta una representacin binaria sin signo en decimal? El proceso es simple.
Cambie los ¥ bits del sistema binario al sistema decimal como se mostrd al principio del ca-
pftalo,

EJEMPLO S

Interprete 00101011 en decimal si el mimero se almacené como un entero sin signo.

SOLUCION

Usando ei procedimiento mostrado en la figura 3.3, ¢l nimero decimal es 43,

51 usted intenta almacenar un entero sin signe como 256 en una localidad de memoria de
ocho bits, obtiene una condicién llamada deshordamiento (overflow).

La representacion de enteros sin signo puede mejorar la eficiencia del almacenamiento debi-
do a que usted no necesita almacenar el signo de un entero. Esto significa que la localidad de
hits del entero puede wtilizarse para almacenar el nimero. La representacién de enteros sin
signo puede usarse siempre que no se necesiten 1os enteros negativos, En seguida se listan al-
ZULOS CASOS!

B Conteo. Cuando se cuenta, no se necesiian los nimeros negativos. Usted comienza con-
tando a partir de 1 (a veces de () y contima.

B Direccionamiento. Algunos lenguajes de computacidn almacenan la direccién de una lo-
calidad de memaria dentro de otra localidad de memoria. Las direcciones son nimeros

FORMATO
DE SIGNO
Y MAGNITUD

Representacién

3.3 Representacion de enteros

positivos que comienzan a partir de (el primer byte de memoria) y contintian hasta un
mimero que representa la capacidad de memoria total en bytes. Pe nuevo, usted no ne-
cesita nfimeros negativos. Los enteros sin signo pueden hacer el trabajo facilmente.

El almacenamiento de un entero en el formato de signo y magnitd requiere 1 bit para repre-
sentar el signo (0 para positivo, 1 para negativo). Esto significa que en una asignacion de ocho
bits, usted sélo puede usar siete bits para representar el valor absoluto del nimero (nimero
sin el signo). Por consiguiente, el maximo valor positivo es 1a mitad del valor sin signo. Lo
siguiente define el fntervalo de enteros de signo y magnitud en una computadora, donde & es
el niimero de bits asignados para representar a un entero de sigho y magnitud:

Intervalo: (2! =

La tabla 3.3 muestra los intervalos comunes para las computadoras actuales. Observe que
en este sistemna hay dos 0: +0y —0.

En la representacion de signo y magnifud hay dos 0: positivo y negative. En una
asignaci6n de ocho bits:

+0 — 00060000

-0 — 100600000
_ : Rango i
.8 =127 ... -0 +0 ... +127
16 -32767 ... -0 40 ... +32767
32 —2147483647 ... —0 +0 +2 147 483 647

Tabla 3.3 Intervalo de enteros de signo y magnitud

Almacenar enteros de signo y magnitud es un proceso sencillo:

1. El niimero se cambia a binario; el signo se ignora.

2. Siel nimero de bits es menor que N — 1, 1os 0 se afiaden a la izquierda del nitmero de
manera que haya un fotal de N — 1 bits.

3. Si el nimero es positivo, un 0 se afiade a la izquierda {para volverlo de N bits). Si ¢l
niimero es negativo, se afiade un 1 a la izquierda (para hacerlo de N bits).

En la representacién de signo y magnitud, el bit en el extremo izquierdo define el
signo del niimero. Si éste es 0, el nldmero es positivo. Si es 1, el niimero es negativo.

EJEMPLO 6

Almacene +7 en una localidad de memoria de ocho bits usando una representacién de sig-
no y magnitud.

interpretacion

Aplicaciones

Representacion de nlimeros

SOLUCION

Primero se cambia el nlimero a binario: 111, Se afiaden cuatro (para hacer un total de
N — 1 (7) bits: 0000111, Luego se afiade un cero més, que aqui se muestra en negritas, ya
que el mimero es positivo. El resultado es 0000111, |

EJEMPLO 7

Almacene —258 en una localidad de memoria de 16 bits usando una representacién de sig-
no y magnitud.

SOLUCION

Primero se cambia el niimero a binario: 100000010, Se afiaden seis 0 para hacer un total
de N — 1 (15) bits: 000000100000010. Se afiade un 1 més, que aqui se muestra en negri-
tas, puesio que el niimero es negativo. El resultado es 1000000100000010. B

La tabla 3.4 muestra cdmo se almacenan los nimeros de signo y magnitud en dos compu-
tadoras diferentes; una que usa localidad de ocho bits vy una que vsa localidad de 16 bits.

Decimal.. Localidad de 8 bits Localidad de 16 bits
+7 00000111 0000000000000111
—124 11111100 1000000001111100
+258 Desbordamiento 0000000100000010
—24 760 Desbordamiento 1110000610111000

Tabla 3.4 Almacenamiento de enteros de signo y magnitud en dos compu-
tadoras diferentes

1 Cémo se interpreta una representacion binaria de signo y magnitud en decimal? El proceso
s simple:

1. Ignore el primer bit (el gue estd en el extremo izquierdo).

2. Cambie los N — 1 bits de binario a decimal como se explico al principio del capitulo.

3. Agregue vn signo + o — al nfimero con base en el bit que estd en el extremo izquierdo.

EJEMPLO 8
Interprete 10111011 en decimal si el nimero se almacené como un entero de signo y'mag—
nitud.

SOLUCION

Al ignorar el bit que estd en el extremo izquierdo, los bits restantes son 0111011. Este nu-
mero en decirnal es 59. El bit en el extremo izquierdo es 1, asf que el niimero es —59. B

Actualmente, la representacién de signo y magnitud no se usa para que las computadoras
actuales almacenen ndmeros con signo. Hay cuando menos dos razones para ello. Primero, las
operaciones como la suma y la resta no son sencillas para esta representacién. Segundo, hay dos
{0 en esta representacién que vuelven las cosas dificiles para los programadores. Sin embargo,
la representacitn de signo y magnitud tiene una ventaja: la transformacién de decimal a bina-
110 v viceversa es muy facil. Bsto hace que esta representacién sea conveniente para aphcacio-
nes que no necesitan operaciones con niimeros. Un gjempio es el cambio de sefiales analogicas
a sefiales digitales. Usted muestrea la sefial analdgica, asigna un mimero positivo o negativo a
la muestra y lo cambia a binario para enviarlo por canales de comunicacion de datos.

" EL FORMATO DE

- COMPLEMENTO
DE UNO

Representacion

3.3 Representacion de enteros

Tal vez haya notado que la representacion de un mimero en el sistema binario es una cuestién
de convencidn. En la representacién de signo y magnitud adoptamos la convencién de que el
bit que estd en el extremo izquierdo representa el signo; este bit no es parte del valor.

Los disefiadores de la representacién del complemento a uno adoptaron una convencién
diferente: para representar un nimero positivo, usan la convencién adoptada para un entero
sin signo. Y para representar un ndimero negativo, complementan el nimero positivo. En otras
palabras, +7 se representa justo como un niimero sin signo, mientras que —7 se representa
como el complemento de +7. En el complemento a uno, el complemento de un nimero se
obtiene al cambiar todos los O a 1 y todoslos 1 a 0.

A continuacion se define el intervalo de los enteros complemento a uno en una computa-
dora, donde ¥ es el nimero de bits astgnados para representar un entero complemento a uno:

Tntervalo: —~@2%' —1)

Existen dos (} en la representacidn del complemento de uno: positive vy negativo. En
una asignacién de 8 bits:

00000000
11111111

La tabla 3.5 muestra los intervalos comunes actuales para las computadoras. Observe que
en esie sistema hay al menos dos 0: un +0 y un —0,

Niimero-de bits ; - h Intervalo:
8 —127 -0 S0 ... +127
16 -32767 ... -0 +0 ... +32767
32 —2147483647 ... -0 +0 +2147 483 647

Tabla 3.5 Rango de los enteros complemento de uno

Para almacenar los enteros complemento de uno se siguen estos pasos:

1. Cambie el mimero a binario; el signo es ignorado.
2. Afiada uno o varios 0 a la izquierda del nimero para hacer un total de NV bits.

3. Sielsigno es positivo, no se necesita ninguna otra accién. Si el signo es negativo, com-
plemente cada bit (cambie O por 1 y 1 por Q).

En la representacién del complemento de uno, el bit que estd en el extremo izquier-
do define el signo del niimero. Si éste es 0, ¢l nimero es positivo. Si es 1, el ndime-
ro es negativo.

EJEMPLO 9

Almacene +7 en una localidad de memoria de ocho bits usando [a representacién de com-
plemento a uno.

interpretacién

Representacion de niimeros

SOLUCION

Primero se cambia el mimero a binario: 111, Se afiaden cinco O de modo que haya un total
de N(B) bits: 00000111, El signo es positivo asi que no se requiere realizar otra accién. 8
EJEMPLC 10

Almacene —256 en una localidad de memoria de 16 bits usando la representacion del
complemento de uno.

SOLUCION

Primero se cambia el mimero a binario: 100000010. Se afiaden siete 0 con ¢l fin de que
haya un total de N(16) bits: 0000000100000010. El signo es negativo, de manera que ca-
da bit complementa. El resuitado es 1111111011111101. |

La tabla 3.6 muestra cémo se almacenan los nmimeros complemento a uno en dos conputa-
doras distintas: una que usa localidades de ocho bits y otra que usa localidades de 16 bits.

Decimal Localidades de 8 bits Localidades de 16 bits -
+7 00000111 0000000000000111
~7 11111100 111T111111111000
+124 01111100 0000000001111100
—124 10000011 1111111110000011
+24 760 Desbordamiento 0110000010111000
—24760 Desbordamiento 1001111101000111

Tabla 3.6 Almacenamiento de enteros complemento a uno en dos compu-
tadoras distintas

+Cémo se interpreta una representacidn binaria del complemento a uno en decimal? El pro-
ceso implica estos pasos:

1. Si el bit que estd en el extremo izguierdo es O (mimero positivo),
a. se cambia el nimero entero de binario a decimal.
b. se pone un signo mas (+) enfrente del mimero.

2. Si el bit que estd en el extremo izquierdo es 1 (bit negative),
a. se complementa el mimero entero {(cambiando todos los 0 a 1, y viceversa).
b. se cambia el nidmero entero de binario a decimal.
€. se pone un signo negativo (—) enfrente del ndmero.

EJEMPLO 11

Interprete 11110110 en decimal si el mimero se almacend como un entero complemento
auno.

SOLUCION
El bit en el extremo izquierdo es 1, de modo que el niimero es negativo. Primero se com-
plementa. Bl resultado es 00001001, Ei complemento en decimal es 9, de manera que el

nutero original era —9. Observe que el complemento de un complemento es el nimero
original. B

La operacién complemento a uno significa invertir todos los bits. Si se aplica la
operacion complemento a uno a un nimero positivo, se obtiene el nimero negati-
vo correspondiente. Si se aplica la operacién complemento a uno a un nimero ne-
gativo, se obtiene el nidmero positivo correspondiente. Si un ndmero se
complementa dos veces, se obtiene el niimero original.

Desbordamiento

--Apiicaciones

EORMATO DEL
COMPLEMENTO
A DOS

Representacion

3.3 Representacion de enteros

§i se intenta almacenar un entero complemento 4 uno como +256 en una localidad de memo-
ria de ocho bits, se obtiene una condicién llamada desbordamiento.

Actualmente la representacién del complemento a unc no se usa para almacenar nimeros en
computadoras. Hay al menos dos razones para ello. Primero, las operaciones como la suma y
la resta no son sencillas para esta representacion. Segundo, hay dos 0 en esta representacion,
lo cual vuelve las cosas dificiles para los programadores. Sin embrago, esta representacion
tiene cierta relevancia. Primero, es la base para la siguiente representacién (el compiemento
a dos). Segundo, tiene propiedades que la vuelven interesante para aplicaciones de comuni-
cacién de datos tales como la deteccion y correccion de exrores.

Como se menciond previamente, la representacién del complemento a uno tiene dos O (+0¥
—0). Esto puede crear un poco de confusién en los calculos. Ademis, en el signiente capitu-
lo se verd que 5 se suma un ndmero y su complemento (+4 y —4) en esta representacion, se
obtiene —0 negativo en lugar de +0 positivo. La representacion del complemento a dos re-
suelve todos estos problemas.

El complemento a dos ¢s la representacion de enteros mas comin, mas impor-
tante v de més amplio uso en la actualidad.

A continuacién se define el intervalo de los enteros complemento a dos en una computa-
dora, donde N es un nimero de bits asignados a un entero complemento a dos:

Tntervalo: —(2*7). .. #@h=D)

La tabla 3.7 muestra los intervalos comunes actuales para las computadoras. Observe que
en este sistema hay sélo un 0 y que el principio del intervalo es 1 menos que aquel para el
complemento a uno.

Numero de bits + Intervalo
8 —128 ... -0 +0 +127
16 —32768 ... -3 +0 +32 767
32 —2147483648 ... -0 +0 -+2 147 483 647

Tabla 3.7 Intervalo de nimeros complemento a dos

Para aimacenar el complemento a dos se deben seguir estos pasos:

1. Flndmero se cambia a hinario; el signo se ignora.
2. Si el ndmero de bits es menor gue N se afiaden 0 a la izquierda del niimero de manera
que haya un total de NV bits.

3. Si el signo es positivo, no se necesita una accidn posterior. Si el signo es negativo, to-
dos 1os 0 en el extremo derecho y el primer 1 permanecen sin cambios. El resto de los
bits se complementa.

En la representacién del complemento a dos, el bit en el extremo izquierdo define
el signo del nimero. Si éste es 0, el niimero es positivo. Si es 1, el miimero es ne-
gativo.

Representacion de nimeros

3.4 SISTEMA EXCESS

Representacion

Interpretacion

Otra represenfacion que permite almacenar tanto nimeros positivos como negativos en una
computadora es el sistema Excess. En este sistema, es ficil transformar un nimero de deci-
mal a binario, y viceversa. Sin embargo, las operaciones con 1os nimeros son muy complica-
das. Su dinica aplicacidn en uso actmalmente es en el almacenamiento del valor exponencial
de una fraccién. Hsto se estudia en la seccidn siguiente.

En una conversién Excess, un nimero positivo conocide como el nlimero magico se utili-
za en el proceso de conversién. El niimero mégico normalmente es (2% 1 o (2¥7! —1) don-
de NV es la asignacién de bits. Por ejemplo, st N es &, el mimero mégico es ya sea 128 o 127.
En ¢l primer caso, lamamos a la representacion Excess 128 y en el segundo, Excess_127.

Para representar un mimero en Bxcess, utilice el procedimiento sigoiente:

1. Sume el ndmero mdgico al entero.

2. Cambie el resultado a binario ¥ affada uno o vartos 0 de modo que haya un total de N

biss.
EJEMPLO 15
Represente — 125 en Excess_127 nsando localidades de ocho bits.
SOLUCION
Primero se suma 127 a —23 y se obtiene 102, Este niimero en binario es 1100110. Afiada
un bit para obtener una longitud de ocho bits. La representacién es 01100110 B

Para interpretar un namero en Excess, utilice el siguiente procedimiento:

1. Cambie el ndmero a decimal.

2. Reste el mimero magico del entero.

EJEMPLO 16

Interprete 11111110 si la representacion estd en Excess 127,

SOLUCION

Primero cainbie el nimero a decimal: 254, Luego reste 127 del namero. El resultado es
127 en decimal. L

3.5

CONVERSION
A BINARIO

REPRESENTACION DE PUNTO FLOTANTE

Para representar un nimero de punto flotante (un nimero que contiene un entero y una
fraccién), el nimero se divide en dos partes: el entero y la fraccidn. Por ejemplo, el nimero
de punto flotante 14.234 tiene un enterc de 14 y una fraccidn de 0.234.

Para convertir i niimero de punto flotante a binario, utilice el procedimiento siguiente:

1. Convierta ia parte entera a binario.
2. Convierta la fraccién a binario.

3. Ponga un punto decimal entre las dos partes.

1

Conversion de la

paite entera

Conversién de la
. parte fraccionaria

3.5 Representacion de punto flotante

Este procedimiento es el mismo que se presenté en el capitulo 2.

Para convertir una fraccién a binario, use la multiplicacién repetitiva. Por ejemplo, para con-
vertir 0.125 a binario, multiplique la fraccién por 2; el resultado es 0.250. La parte entera del
resultado (0) se extrae y se vuelve el digito binario en el extremo izquierdo. Ahora multipli-
que por 2 la parte fraccionaria (0.250) del resultado para obtener 0.30. De nuevo, se exirae la
parte entera del resultado y se vuelve el signiente digito binario. Este proceso continta hasta
que la parte fraccionaria se vuelve 0 o cuando se Hega al limite del niimero de bits que se pue-
den usar (figura 3.7).

Parar cuando
el resultado sea Qo

Binario

Figura 3.7 Cambio de fracciones a binario

EJEMPLO 17

Transforme 1a fraccidn 0.875 a binario.

SOLUCION

La fraccién se escribe en la esquina izquierda. El nimero se multiplica confinuamente por
2 y se exirae la parte entera como digito binario. E} proceso se detiene cuando el nimero
es 0.0.

Fraccion 0875 — 1750 — 150 — 1.0 —> 00

4 l l
Binario; 0 . 1 1 H B
EJEMPLO 18

Transforme la fraccidn 0.4 a un binario de 6 bits.

SOLUCION

La fraccién se escribe en la esquina izquierda. El ndmero se multiplica continnamente por
2 v se extrae 1a parte entera como digito binario. En este caso, usted no puede obtener la
representacién binaria exacta debido a que reaparece la fraccién original. Sin embargo,
puede continuar con el proceso hasta obtener seis bits.

04 - 08 — 16 = 12 —» 04 - 08 — 16
d L 4 d 1

Binario: 4. 0 1 1 G 0 1 B

Fracciin

IMPLEMENTACION
DE UNA LISTA
LINEAL GENERAL

APLICACIONES
DE LISTA LINEAL

Tipos de datos abstractos

lista

gato |---4 perIo - cebra

Flemento recuperado ;
identificado
por la blisqueda

Hsta

gato - - - - -

Hista

pez de colores - - - cebra

Figura 12.7 Recorrido de una lista lineal

Dos métodos comunes de implementacion de una lista lineal general son un arreglo y una
lista ligada.

Las listas lineales se utilizan en situaciones donde se accede a los elementus en forma ales-
toria. Por ejemplo, en una universidad una Hsta lineal puede utilizarse para almacenar infor-

macidén sobre los estudiantes que estdn inscritos en cada semestre. La informacién puede ixtraer

accederse en forma aleatoria.

12.3 PILAS

Una pila es una lista lineal restringida en la cual Tas adiciones y eliminaciones se realizan en
un extremo llamado cima. Si usted inserta una serie de datos en una pila y luego la elimina,
el orden de los datos se invertird. La entrada de datos como 5, 10, 15, 20 debe eliminarse ¢0-
mo 20, 15, 10 y 5. Este afributo de inversidn es la razén por la cual las pilas se conocen ¢0-
mo una estructura de datos 1iltimo en entrar, primero en salir (LIFO).

Una persona utiliza en su vida diaria muchos tipos de pila distintos. A menudo hablamo$
de uma pila de monedas o de una pila de platos. Cualguier situacién en la cual usted sirnple
mente pueda afiadir o eliminar un objeto en la cima es una pila. Si desea eliminar cuaiqui¢?

12.3 Pilas

Pila de monedas Pila de libios Pila de computadoras

OPERACIONES
CON PILAS

-7 T nsertar

Figura 12.8 Tres representaciones de una pila

objeto diferente del que esté en la cima, primero debe eliminar todos los objetos que estdn de-
bajo de él. En la figura 12.8 se muestran tres representaciones de una pila.

Aungue podemos definir muchas operaciones para una pila, hay ires que son bésicas: nser-
tar, extracr y vaciar.

Al insertar (push) se afiade un elemento en la parte superior de la pila (figura 12.9). Después
de insertar, el elemento se vuelve la cima. Eldnico problema posible con esta operacién sim-
ple es quedarse sin espacio para el nuevo elemento. Si no hay espacio suficiente, la pila estd
en un estado de desbordamiento y el elemento no puede afiadirse.

Operacitn

Figura 12.9 Operacion de insertar en una pila

Cuando usted extrae (pop) un elemente de una pila, elimina ¢l elemento en la parte superior
de la pila y lo devuelve al usuario (figura 12.10). Cuando el ditimo elemento en la pila se eli-
mina, la pila debe establecerse a su estado vacfo. Si se hace una llamada a la operacion de ex-
traer cuando la pila esid vacia, ésta se encuentra en un estado de sobre desbordamiento.

Cima

Operacion

Pila Pila

Figura 12.10 Operacion de extraer de una pila

Vaclar

IMPLEMENTACION
DE UNA PILA

APLICACIONES
DE PiLA

Inversicn de datos

Analisis sintactico

Postergacion

Tipos de datos abstractos

Esta operacion (empfy) hace una revisién para ver si una pila estd vacia o no. La respuesta g5
ya sea verdadera o falsa.

EJEMPLO 1

etroceso

12.4 Colas de espera

FEl retroceso, dar marcha atrés a los datos previos, es un uso de pila que se encuenira en apli-
caciones como los juegos de computadoras, ¢l anélisis de decisiones y los sisternas expertos.

Muestre el resultado de las siguientes operaciones en una pila S.

SOLUCION

La figura 12.11 muestra las operaciones y el resultado final.

10 10 10 10 10
5 S S) S S

Figura 12.1%1 Ejemplio 1

Aungue una pila puede implementarse ya sea como un arreglo o como una lista ligada, 1a for-
ma mas comun es una lista ligada debido a que las operaciones de extraccion e insercion pue-
den implementarse mucho més ficilmenie en una lista de este tipo.

Las aplicaciones de pila pueden clasificarse en cuatro amplias categorias: inversién de datos,
andlisis sintdctico de datos, postergacidn dei uso de los datos y retroceso sobre los pasos.

La inversién de datos requiere que un conjunto dado de datos se reordene de modo que el pri-
mer elemento y ef tiltimo se intercambien, con todas las posiciones entre el primero y el dlt-
mo también intercambiadas relativamente. Por ejemnplo, 1 2 3 4 se convierteen4 3 2 1.

Otra aplicacion de pilas es el andlisis sintdctico. Este tipo de andlisis es cualquier 16gica que
divide los datos en piczas independientes para su procesamiento posterior. Por ejemplo, para
traducir un programa fuente a lenguaje de méquina, un compilador debe analizar el progra-
ma en partes individuales como palabras clave, nombres y elementos sintécticos (tokens).

Un problema de programacién comin son los paréntesis sin par en una expresion algebral-
ca, Cuando los paréntesis no tienen par pueden ocurrir dos tipos de errores: pueden faltar y2
sea el paréntesis de aperiura o el paréntesis de cierre. Siempre que se encuentra un paréntesis
de apertura, éste se inserta en la pila. Cvando se encuentra un paréntesis de cierre, un parénie
sis de apertura (de la cima de 1a pila) se extrae y se descarta. Si al final la pila no esta vaci
significa que hay més paréntesis de apertura que de cierre. También ocurre ua error cuando
encuentra un paréntesis de cierre y no hay paréntesis de apertira en la cima de la fila.

Insertar

Cuando se vtiliza una pila para invertir una lista, toda la lista es leida antes de que los resul-
tados se comiencen a generar. Con frecuencia, la [6gica de una aplicacién requiere que el us?
de los datos se postergue hasta un momento posterior. Una pila puede ser titil cuando la apli
cacidn reguiere la postergacidn del uso de los datos.

2.4 COLAS DE ESPERA

Una cola de espera es una lista lineal en la cual los datos sélo pueden insertarse en un extre-
mo, llamado extremo frasero, y eliminarse en el otro extremo, lamado frente. Estas restric-
ciones aseguran que los datos se procesen a través de la cola de espera en el orden en el coal
se teciben. En otras palabras, una cola de espera es una estructura de primero en enfrar, pri-
mero en salir (FIFO).

Una cola de espera es o mismo que una fila. De hecho, si usted estuviera en Inglaterra,
no entyarfa en una fila sino en una cola de espera. Una fila de gente esperando el autobris en
una estacién es una cola de espera; una lista de llamadas que se ponen en espera para que les
responda un operador telefénico es una cola de espera, y una lista de tareas que esperan ser
procesadas por una computadora también es una cola de espera.

La figura 12.12 exhibe dos representaciones de una cola de espera: la primera, una cola de
espera de personas y 1a otra, una cola de espera de computadora. Tanto las personas como los
datos entran a la cola de espera en la parte trasera y avanzan por a misma hasta que llegan al
frente. Una vez que estdn en la parte de adelante, dejan la cola de espera y son atendidos.

_OPERACIONES CON
COLAS DE ESPERA

[Bancos |

Elirinar a. Una cola de espera (fila) de personas Insertar

(dequeue) (engqueue)

parte de enfrente parte trasera

b. Una cola de espera de computadora

Figura 12.12 Representaciones de colas de espera

Aun cuando sea posible definir muchas operaciones para una cola de espera, tres son las bé-
sicas: eliminar, insertay y vaciar.

La operacién de insertar (engueune) en una cola de espera aparece en la figura 12.13. Des-
pués de que los datos se han insertado en la cola, el nuevo elemento se vuelve la parte trasera.
Como se vio con las pilas, el Unico problema posibie con la insercidn es quedarse sin espa-
cio para los datos. Si no hay suficiente espacio para otro elemento en la cola de espera, ésta
entra en un estado de desbordamiento.

La operacién de eliminar (dequeue) un elemento de una cola de espera se muestra en la fi-
gura 12.14. Los datos en la parte de enfrente de la cola de espera se eliminan de la misma ¥
se devuelven al usuario. Si no hay datos en la cola de espera cuando se intenta una elimina-
cidn, la cola estd en un estado de sobre desbordamiento.

Vaclar

Tipos de datos abstractos

parte de enfrente

uva
datos

'pg'l['[E trasera

Cola de espera

Operacion

e

Cola de espera

Figura 12.13 Operacion de insertar

Cola de espera

parte de adelante

Operacion

parte de adelante

uva

Cola de espera

Figura 12.14 Operacién de eliminar

Esta operacién (empty) hace una revisién para ver si una cola de espera estd vacia o no. El re-

sultado es verdadero o falso.

EJEMPLO 2

SOLUCION

La figura 12.15 muestra las operaciones y el resultado final.

Muestre el resultado de las siguientes operaciones en una cola de espera Q.

parte de
enfrente

parte de
enfrente | 20

parte de | parte de |

enfrente | 23 enfrente

parte de] parte de]

enfrente | 2C 12 enfrente

12.5 Arboles

[MPLEMENTACI@N Una cola de espera puede implementarse ya sea como un arreglo 0 como una lista ligada.

Las colas de espera son una de las estricturas de procesamiento de datos més comunes. Se
encuentran en pricticamente todo sisterna operativo y red en incontables dreas distintas. Por
ejemplo, las colas de espera se utilizan en aplicaciones de negocios en linea tales como el pro-
cesamiento de solicitudes def cliente, tareas y pedidos. En un sistema de cémputo una cola de
espera es necesaria para procesar tareas y para servicios del sistema tales como los servicios
de impresidn.

Las colas de espera pueden volverse bastante complejas; damos una implementacién sim-
ple de cola de espera: una aplicacién que es 1til para clasificar datos. Una cola de espera pre-
serva el orden de los datos. Por ejemplo, usted tiene una lista de niimeros y necesita clasificarlos
en grupos (100 o menos, entre 100 y 201, etc.). Puede leer los datos y crear varias colas de es-
pera. Un niimero se inserta en la cola de espera apropiada y puede recuperarse en el orden en
que se ley pero en su propio grupo. Por ejemplo, todos los mimeros en la categoria de 100 o
menos pueden imprimirse primero en el orden en que se leyeron. Después, todos los niimeros
entre 100 y 201 pueden imprimirse ent el orden en que se leyeron y asf por el estilo.

12.5 ARBOLES

Los drholes se usan exhaustivamente en las ciencias de la computacién como una estructura
eficiente para realizar bisquedas en listas dinfimicas grandes y para aplicaciones diversas co-
mo los sistemas de inteligencia artificial y tos aigoritmos de codificacién. En esta seccidn
analizamos el concepto bésico de &rbol. En la signiente secci6n presentamos un tipo especial

de drbol, llamado 4rbol binario, el cual es una estructura comtin en las ciencias de la compu-
tacién.

CONCEPTOS Un drbol consiste de un conjunto finito de elementos, Namados nodos, y un conjunto finito
' ASICOS DE ARBOL de lineas dirigidas, llamadas ramas, que conectan los nodos. El nimero de ramas asociadas
: con un nodo es el grade del nodo. Cuando la rama se dirige hacia el nodo, es una rama de
grado de entrada, cuando la rama se aleja del nodo, es una rama de grado de salida. La su-
ma de las ramas de grado de entrada y de grado de salida es el grado del nodo. En la figura
12.16 el grado del nodo B es 3.

Si el drbol no estd vacio, el primer nodo se conoce como raiz. El grado de entrada de la rafz
es, por definicton, cero. Con excepcion de la rafz todos los nodos en un drbol deben tener un
grado de enirada de exactamente uno. Todos los nodos en el drbol pueden tener cero, una o
mdés ramas que salen de ellos, es decir, pueden tener un grado de salida de cero, uno o mds.

Figura 12.15 Ejemplo 2

Figura 12.16 Representacion de un &rbol

Termino!ogia Ademds de la raiz, muchos érminos distintos se utilizan para describir los atributos de un

Tipos de datos abstractos

bol. Una hoja es cualquier nodo con un grado de salida de cero. En la figura 12.16, el nodiy
es una hoja. Un nodo que no es una rafz o una hoja se conoce como node interno debido a u
se encuentra en la parte media de un drbol. En la figura 12.16 ¢l nodo B es un nodo inu:rm;l ;

Un nodo es un padre si tiene nodos sucesores —es decir, si tiene un grado de satida mayg
que cero. A la inversa, un nodo con un predecesor es un hijo. Un nodo hijo tene un gradoyd
elntrada de uno. Dos o mas nodos con el mismo padre son hermanos. Por fortuna, usted:ﬁ
tiene que preocuparse por Ias tias, los tios, las sobrinas, los sobrinos y los primos. Aungue ai
gunos libros utilizan ¢l término abielo, nosotros no lo hacernos; preferimos el término m
general de ancestro. Un ancestro es cualquier nodo en el camino desde la rafz hasta el nod
Un descendiente es cualquier nodo en ¢l camino debajo del nodo padre; es decir, todos los.
nodos en los caminos de un nodo dado hacia una hoja son descendientes del nodo. La ﬁgura'.
12.17 muestra el uso de estos términos. ..

0

12.6 Arboles binarios

Subérboles

Raiz del
subdrbol I

PERACIONES
CON ARBOLES

Figura 12.18 Subarboles

Las operaciones con un drbol son complejas y su explicacién estd més alid del Ambito de es-
te libro. Se analizan en un curso de estructura de datos.

Nivel 0

Nivel 1.

Nivel 2
Peft.ires: A, B, F Hojas: C.,D,E.FG.ILT 3
Hijos: B,E,F,C,D, G, H, I Nodos internos: B, F
ermanﬂs: {B.EF)}, {C.D}, {GH]I}

Figura 12.17 Terminologia de arbol

Varios términos tomados de las matemdticas o creados por cientificos de la computacién
describen los atributos de los 4rboles y sus nodos. Ur camine es una secuencia de nodos en
Ia cual c_:ada nodo es adyacente al siguiente. Se puede llegar a cada nodo en el drbol al seguir :
un camino tinico que principia en la rafz. ¥n la figura 12.17 el camino de la raiz a ia hoja I
estd designada como AF I, Incluye dos ramas distintas: AF v F1.

El nivel de un nodo es su distancia desde la raiz. Debido a que la raiz ticne una distancia
Fero desde si misma, la rafz estd en el nivel 0. Los hijos de 1a rafz estdn en el nivel 1 y los hi-
jos de éstos, en el nivel 2, y asf sucesivamente. Observe la relacién entre los niveles y los her-
manos de la figura 12.17. Los hermanos siempre estdn en el mismo nivel, pero no
necesariamente todos Jos nodos en un nivel son hermanos. Por ejemplo, en el nivel 2, Cy D
son hermanos al igual que G, H e T. Sin embargo, D y G no son hermanos porque tienen dife-
rentes padres.

La altura de un 4rbol es el nivel de la hoja en el camino més largo desde la rafz mds 1.
Por definicidn, la altura de un 4rbol vacfo es —1. La figura 12.17 contiene nodos en tres nive-
les: 0,1y 2. Su altura es 3. Debido a que el drbol se dibuja de arriba hacia abajo, algunos tex-
tos se refteren a la profundidad de un 4rbol en vez de a su altura. ’

_Un drbol puede dividirse e subdrboles. Un subdrbol es cualquier estructura conectada de-
bajo de fa raiz. El primer nodo en un subdrbol se conace como la raiz del subdrbof y se utili-
za para nombrar al sub4rbol. Ademds, cada subarbol puede dividirse a su vez en subérboles.
En la figura 12.18 BDC es un subdrbol, como E v FGAT. Observe que segiin esta definicion,
un nodo individual es un subarbol. De esta manera, el subdrbol B puede dividirse en dos sU-
bérboles, C y D, y el subdrbol F contiene los subarboles ¢, He T,

12.6 ARBOLES

Propiedades

BINARIOS

Un 4rbol binario es un 4rbol en el cual ningiin nodo puede tener mas de dos subarboles. En
otras palabras, un nodo puede tener cero, uno o dos subdrboles. Esios subdrboles estén dise-
fiados como el subdrbol izquierdo y el subérbol derecho. La figura 12.19 maestra un arbol bi-
nario con sus dos subdrboles. Observe que cada subarbol es por si mismo u édrbol binario.

]

Subdrbol izquierde Subdérbel derecho

Figura 12.19 Arbol binario

Para comprender mejor la estructura de los drboles binarios, estudie 1a figura 12.20. Fsta
contiene ocho drboles, el primero de los cuales es un drbol nulo. Un drbol nulo es un drbol
que no tiene nodos (figura 12.20[a]). A medida que estudie esta figura, notaréd que la simelrfa
no es requisito de un drbol.

Ahora definimos varias propiedades para los drboles binarios que los distinguen de los drbo-
les generales.

Altura de 4rboles binarios La altura de los drboles binarios puede predecirse matemati-
camente. Dado que usted necesita almacenar N nodos en un érbol binario, la alfura midxima,
H,s. puede definirse como sigue:

Ho =N

max

Tipos de datos abstractos

qa
&

PERACIONES CON
RBOLES BINARIOS

ecorridos
e arbol binario

Figura 12.20 Ejemplos de arboles binarios

Un drbol con una altura méxima es raro. Ocurre cuando todo el 4rbol se construye en uz
direccidn, como se muestra en las figuras 12.20(g) v 12.20(h). La altura minima del drbol
H e s€ determina mediante la f6rmula siguiente:

Hoi = [log, N] + 1

Dada la altura de un édrbol binario, H, el niimere minime y el nimero mé4ximo de nodos -

en el arbol se dan comeo:
Nmin = H

Nmaix = 2H7 1

Equilibrio La distancia de un nodo desde la raiz determina qué tan eficientemente puede .
localizarse. Por ejemplo, los hijos de cualquier nodo en un drbol pueden accederse siguiendo

s6lo uno camino de rama, aquel que conduce al nodo deseado. Por ejemplo, es posible acce-

der a los nodos en el nivel 2 de un drbol Gnicamente sigutendo dos ramas desde 1a rafz. Por

lo tanto, es I6gico que entre mds corto sea ¢l drbol, mas fAcil serd localizar cualquier nodo de-
seado en el drbol. '

Este concepio nos conduce a una caracteristica muy importante de un drbol binario: su
equilibrio. Para determinar si un 4rbol estd en equilibrio, calcule su factor de equilibrio. El
factor de equilibrio de un 4rbol binario es 1a diferencia en altura entre sus subdrboles izquier-
do y derecho. Si se define la altura del subérbol izquierdo como H; y la altura del subérbol

derecho como Hyp, entonces el factor de equilibrio del drbol, B, estd determinado por la si-
guiente férmula:

B:H}*HD

Utilizando esta férmula, los equilibrios de los ocho drboles en 1a figura 12.20 son (a) 0 por
definicion, (1) 0, () 1, () =1, &0, (H 1, (g -2y () 2.

Un drbol estd equilibrado si su factor de equilibrio es 0 y sus subirboles también estin
equilibrados. Debido a que esta definicién ocurre rara vez, una definicién alternativa se apli-
ca de una manera mds general: Un drbol binario estd equilibrade si la altura de sus subdrbo-

12.6 Arboles binarios

les difiere por no mds de 1 (su factor de equilibrio es —1, 0 o +1) y sus subdrboles también
estan equilibrados. Esta definicién fue creada por Adelson-Velskii v Landis en su definicidn
de un arbol AVL.

Las ires operaciones mds comunes definidas para un drbol binario son insertar, eliminar ¥ re-
correr. Las operaciones de insercidn y eliminacién son complejas y su explicacién estd mds
alla del 4mbito de este libro. Analizamos el recorrido de drbol binario en esta seccién.

Un recorrido de 4rbel hinarie requiere que cada nodo del drbol se procese una vez y solo
una vez en una secuencia predeterminada. Los dos métodos generales para la secuencia de re-
corrido son primero en profundidad y primero en anchura.

Recorride primero en profundidad Dado que un 4rbol binario consiste en una raiz, un
subérhel izquierdo y un subdrbol derecho, podemos definir seis secuencias diferentes de re-
corrido primere en profundidad. Los cientfficos de la computacion han asignado a tres de
estas secuencias nombres estdndar en la literatura; los otros tres no tienen nombre pero se de-
rivan facilmente. Los recorridos estdndar se muestran en la figura 12.21.

L0

Atbol Arbot Asbol Arbol Arbol Atbol

izquierdo derecho izquierdo derecho izquierdo derecho
a. Recorrido en pre order previo b. Recorrido en orden c. Recerrido en post orden

Figura 12.21 Recorrido de primero en profundidad de un arbol binario

La designacién tradicional de los recorridos utiliza una designacidn de node (N) para la
rafz, 1eft (L) para el subdrbol izquierdo y right (R) para el subdrbol derecho.

B Recorrido en pre orden (NLR). En ¢l recorride en pre erden, el nodo raiz se procesa
primero, seguido por el subérbol izquierdo y lnego por el subérbol derecho. Toma su nom-
bre del prefijo en latin pre, el cual significa “va antes de”. Asi, la rafz va antes que los su-
bérboles. La figura 12,22 muestra otra forma de visualizar el recorrido del drbol. Imagine
que estd caminando alrededor de un 4rbol, comenzando por la izquierda de la rafz y man-
teniéndose tan cerca de-los nodos como le es posible. En el recorrido de orden, usted pro-
cesa el nodo cuando estd a la izquierda del mismo. Esto aparece como una caja negra a la
izquierda del nodo. El camino se muestra como una linea que sigue una trayectoria com-
pletamente alrededor del 4rbol y de regreso a la raiz.

B Recorrido en orden (LNR). El recorride en orden primero procesa el subarbol iz-
quierdo, luego el nodo rafz y finalmente el subdrbol derecho. Bl significado de la pala-
bra en es que la raiz se procesa “dentro” de los subdrboles. La figura 12.23 muestra otra
forma de visualizar el recorrido de un drbol. Imagine que estd caminando alrededor de
un drbol, comenzando por la izquierda de Ia rafz v manteniéndose tan cerca de los nodos
como le es posible. En el recorrido en orden, usted procesa el nodo cuando estd debajo
de €l Esto aparece como una caja negra bajo el nodo. El camino se muestra como una
linea que sigue una trayecioria completamente alrededor del 4rbol y de regreso a la rafz.

Tipos de datos abstractos 12.6 Arboles binarios

hay}. Finalmente procesa el nodo rafz. La figura 12.24 muestra otra forma de visualizar
el recorrido del arbol. Imagine que usted estd caminando alrededor de un drbol, comen-
zando por la izquierda de la raiz v manteniéndose tan cerca de los nodos como le es po-
sible. En el recorrido en post orden, usted procesa el nodo cuando estd a la derecha det
mismo. Esto aparece como una caja negra a la derecha del nodo. Bl camino se muestra
como una linea que sigue una frayectoria completamente alrededor det rbol y de regre-
so a la rafz.

ecorridos primero En el recorrido primero en anchura de un drbol binario, usted procesa todos los hijos de un
n anchura nodo antes de continuar con el siguiente nivel. Dicho de otra forma, dada una rafz en el nivel
: n, se procesan todos los nodos del nivel # antes de continuar con los nodos del nivel n +
1. Para recorrer un drbol en orden de primero en profundidad, se utiliza una pila. Por otro la-
do, para recotrer un drbol primero en anchura, se utiliza una cola de espera. '

Al igual que conlos recorridos de primero en profundidad, se puede trazar el recorrido con
un camino. Esta vez, no obstante, el camino continda a modo de escalera, primero atraviesa
el nivel raiz, luego atraviesa el nivel 1, enseguida el nivel 2 y asf sucesivamente hasta que to-
do el &rbol se recorre (figura 12.25).

Figura 12.22 Recorrido en pre orden de un arbol binario

Figura 12.23 Recorrido en orden de un drbol binario Figura 12.25 Recorrido primerc an amplitud de un arbol binario

MPLEMENTACION Un drbol binario normalmente se implementa como una lista ligada.

E UN ARBOL
INARIO

PLICACIONES DEL Unainteresante aplicacidn de drbol binario es el drbol de expresiones. Una expresion es una
..RBOL RINARIO secuencia sintdctica que siguen las reglas prescritas. Un elemento sintactico (foken) puede ser
ya sea un operando o un operador. En este andlisis consideramos sélo los operadores aritmé-
ticos binarios en la forma de operando-operador-operando. Para simplificar ef andlisis, usa-
mos lnicamente cuatro operadores: suma, resta, multiplicacién y divisién,

Ur drbol de expresiones es un drhol binario con las propiedades siguientes:

1. Cada hoja es un operando.

2. Laraiz y los nodos internos son operadores.
Figura 12.24 Recorrido en post orden de un arboi binario

3. Los subdrboles son subexpresiones, con la raiz siendo un operador.
Para un 4rbol de expresiones, los tres recorridos estandar representan tres formatos de expre-
sidn diferentes: infijo, posfijo y prefijo. El recorrido en orden produce la expresién de infi-
jo, el recorrido en post orden genera la expresion de posfijo v el recorrido en pre orden
produce la expresidn de prefijo. La figura 12.26 muestra una expresion de infijo y su drbol de
expresiones.

Recorrido en post orden (LRN). El dltimo de los recorridos estindar es el recorride
en post orden, el cual procesa el nodo rafz después {post) de que los subdrboles izquier-
do y derecho se han procesado. Comienza localizando la hoja en el extremo izquierdo
y procesandola. Luego procesa el hermano derecho, incluyendo sus subdrboles (si los

Tipos de datos abstractos

ax{db+c)+d

Figura 12.26 Arbol de expresiones

12.7 GRAFOS

Un grafo también puede clasificarse como un tipo de datos abstracto. Los grafos se pueden:. CON GRAFOS
usar para resolver problemas de enrutamiento complejos, tales como el disefio y la eleccidn :
de rutas de las aerolineas entre los acropuertos en que operan. De manera similar, pueden uti-

lizarse para enrutar mensajes en una red de computadoras de un nodo a otro. :

Anadir un vértice
TERMINOLOGIA Un grafo es una coleccién de nodos, Hlamados vértices (vertex), y tna coleccién de segmen-
tos de linea, llamados lineas, que conectan pares de vértices. Es decir, un grafo se compone.

de dos conjuntos: un conjunto de vértices y un conjunto de lineas. Los grafos pueden ser ya

sea dirigidos o no dirigidos. En un grafo dirigido, o digrafe, para abreviar, cada linea tiene:

una direccién (punta de flecha) a su sucesor. Las lineas en un grafo dirigido se conocen co-

mo arcos. En este tipe de grafo el flujo a lo large de los arcos entre dos vértices puede seguir

sélo la direccidn indicada. En un grafo no dirigido ninguna de las lineas, las cuales se cono-

cen como aristas, tiene direccién (punta de flecha). En un grafo no dirigido el flujo entre dos

vértices puede tomar cualquier direccién. La figura 12.27 contiene un ejemplo de ambos ti-

pos, un grafo dirigido (a) y un grafo no dirigido (b). L

© Se dice que dos vértices en un grafo son vértices adyacentes (o vecinos) si una linea los

conecta directamente. En la figura 12.27, A y B son adyacentes mientras que Dy Fno lo son:--_

Un camino es una secuencia de vértices en la cual cada vértice es adyacente al siguiente.
En la figura 12.27, {A, B, C, E} es un camino y {A, B, E, F} es otro. Observe que tanto Ios.
grafos dirigidos como los no dirigidos tienen caminos. Bn un grafo no dirigido, usted podria
viajar en cualquier direccién, '

Un ciclo es un camino que consiste en al menos tres vértices e inicia y termina con el mis-
mo vértice. En la figura 12.27(b), B, C, D, E, B es un ciclo. Sin embargo, advierta que los
mismos vértices en la figura 12.27(a) no constituyen un ciclo porque en un digrafo un cami
1o s6lo puede seguir la direccién del arco, mientras que en un grafo no dirigido un camin®
puede moverse en cualquier direccién a lo largo de la arista. Un bucle es un caso especial de
ciclo en el cual un solo arco comienza y termina en ef mismo vértice.

Se dice que dos vértices estin conectados si hay un camino entre ellos. Se dice que un g%
fo estd conectado si, al suprimir la direccién, hay un camino desde cualquier vértice a cual-
guier otro vértice. Ademés, un grafo dirigido estd fuertemente conectado si hay un camin®
desde cada vértice a cada uno de los otros vértices en el digrafo. Un grafo dirigido estd dé-
bilmente conectado si al menos dos vértices no estdn conectados. (Un grafo no dirigido ¢
nectado siempre esta fuertemente conectado, asf que el concepto normalmente no se usa €04
los grafos no dirigides.) Un grafo inconexo no estd conectado.

Quitar un vértice

12.7 Grafos

a. Grafo dirigido b. Grafo no dirigido

Figura 12.27 Grafos dirigidos y no dirigidos

El grado de un vértice es el nimero de lineas incidentes a él. El grado de salida de un vér-
tice en un digrafo es el nimero de arcos que salen del vértice; el grado de entrada es el nl-
mero de arcos que entran al vértice.

En esta seccidn, definimos seis operaciones primitivas con grafos que proporcionan los mé-
dulos bésicos necesarios para mantener un grafo: afiadir an vértice, quitar un vértice, afiadir
una arista, quitar una arista, encontrar un vértice y recorrer un grafo, Como verd, hay dos mé-
todos para el recorrido de grafos.

La adicioén de un vértice inserta un nuevo vértice en un grafo. Cuando un vértice se aflade, es-
td inconexo; es decir, no estd conectado a ninghin otro vértice en la lista. Obviamente la adi-
cion de un vértice sélo es el primer paso en un proceso de insercidn. Después de que se afiade
un vértice, éste debe conectarse. La figura 12.28 muestra un grafo antes y después de que se
ha afiadido un nuevo vértice.

Figura 12.28 Adicion de un vértice

La eliminacidn de un vértice quita el vértice del grafo. Cuando se quita un vértice, todas las
aristas que conecta también se eliminan. La figura 12.29 contiene un ejemplo de eliminacién
de un vértice.

Figura 12.22 Eliminacion de un vértice

Anadir una arista

Quitar una arista

Encontrar
un vertice

Recorrer un grafo

Tipos de datos abstractos

Lia adicién de una arista conecta un vértice con un vértice de destino. Si un vértice requie
miiltiples aristas, entonces el médulo de afiadir una arista debe llamarse una vez para cy
vértice adyacente. Para afiadir una arista, deben especificarse dos vértices. Si el grafo es yy
digrafo, uno de los vértices debe especificarse como la fuente y ofro como el destino, La §-
gura 12.30 contiene un gjemplo de adicion de la arista {A, E} a un grafo.

Figura 12.30 Adicién de una arista

La climinacitn de una arista quita la arista del grafo. La figura 12.31 contiene un ejemplo de
la eliminacién de 1a arista {A, E} de un grafo.

{m)
©

/

Figura 12.31 Eliminacién de una arista

La operacion encontrar un vértice recorre un grafo en busca de un vértice especificado. Si és
e se encuentra, sus datos son devueltos. Si no se encuentra, se indica un error. En la figura .
12.32, encontrar un vértice recorre el grafo en busca del vértice C.

Figura 12.32 Encontrar un vértice

Siempre hay cuando menos una aplicacién que requiere que todos los vértices en un grafo
sean visitados; es decir, al menos una aplicaci6n requiere que sea recorrido el grafo. Debido
a que un vértice en un grafo puede tener nultiples padres, el recorrido de un grafo presentd
algunos problemas que no se presentan en ef recorrido de listas lineales y drboles. Especifi-
camente, usted debe asegurarse de alguna manera de que procesa los datos en cada vértice s6-
lo una vez. Sin embargo, debido a que hay varios caminos a un vértice, se puede llegar al
mismo desde més de una direccidén a medida que se recorre el grafo. La solucién tradicional
a este problema es incluir una bandera de visitado a cada vértice. Antes de hacer el recorridos
debe desactivarse la bandera de visitado en cada vértice. Luego, a medida que se recorre el
grafo, la bandera de visitado se activa para indicar que los datos se han procesado.

Los dos recorrides de grafos estdndar son primero en profundidad y primero en anchiut@
Ambos utilizan la bandera de visitado,

12.7 Grafos

Recorrido primero en profundidad En el recorrido primero en profundidad, usted
procesa los descendientes de un vértice antes de pasar a un vértice adyacente. Este concepto
se explica mas facilmente cuando el grafo es un arbol. En la figura 12.33 mostramos un re-
comrido de pre orden, uno de los recorridos primero en profundidad estandar.

Bl recorrido primero en profundidad de un grafo comienza con el procesamiento del primer
vértice del grafo. Después de procesar el primer vértice, se selecciona un vértice adyacente a
éste v se procesa. Conforme se procesa cada vértice, se selecciona un vértice adyacente hasta
que se llega a un vértice sin entradas adyacentes. Esto es similar a llegar a una hoja de un ar-
bol. Luego usted retrocede sobre sus pasos por la estructura, procesando los vértices adyacen-
tes mientras avanza. Es evidente que esta ldgica requiere tna pila (o recursién) para completar
el recorrido.

Recorrido primero en profundidad
AXHPEIMG]

IMPLEMENTACION
DE UN GRAFO

Figura 12.33 Recorrido primero en profundidad de un grafo

Recorrido primero en anchura En el recorrido primero en anchura de un grafo, usted
procesa todos los vértices adyacentes de un vértice antes de que vayz al siguiente nivel. Al
observar el drbol de la figura 12.34 usted ve que su recorrido primero en anchura comienza
en el nivel 0y luego procesa todos los vértices del nivel 1 antes de seguir adelante con ci pro-
cesamiento de los vértices del nivel 2.

Recorrido primero en anchura

AXHPEYMIG

Figura 12.34 Recorrido primero en anchura de un grafo

El recorrido primero en anchura de un grafo sigue el mismo concepto. Comience seleccio-
nando un vértice inicial; después procéselo y procese todos sus vértices adyacentes. Una vez
que haya procesado todos los vértices adyacentes del primer vértice, seleccione el primer vér-
tice adyacente y procese todos sus vértices; luego seleccione el segundo vértice adyacente y
procese todos sus vértices, y asf sucesivamente hasta que haya terminado con todos.

Para representar un grafo, se necesitan dos conjuntos de datos. El primer conjunto represen-
ta los vértices del grafo y el segundo, las aristas o arcos. Las dos estructuras més comunes uti-
lizadas para almacenar estos conjuntos son el arreglo (matriz de adyacencia) y la lista ligada
(lista de adyacencia). La figura 12.35 muestra estas dos implementaciones para un grafo
simple. Los niimeros entre los vértices son pesos (por ejemplo, la distancias entre redes en
una red interconectada).

APLICACIONES
DE GRAFOS

Redes

Arbol de expansién
minima

Tipos de datos abstractos

A B € D> E
0 | 523|345 0 | 0
523{ 0 |200f548| ©
345200 O |3k0O|YkL?
0 |548(363]| 0 |E4s| 320
C j4:7|245| D | 555
0| 0| 0 |320)555; O

e e |

Mmoo

Arreglo de vértices Matriz de adyacencia

Bjseal'g-]-—}Lc [345]d]
A lsaafw C[200] 3] TTswaly]
NEEE S S CIEE =) e S

Lista de vértices

Lista de adyacencia

Figura 12.35 Implementaciones de grafos

Los grafos tienen muchas aplicaciones en las ciencias de Ia computacion. Mencionamos dos
de ellas aqui: las redes y los drboles de expansion minima.

Una red es un grafo con lineas pesadas. También se le conoce como grafo con peso. El sig- - .

nificado de los pesos depende de ia aplicacién. Por ¢jemplo, una aerolinea podrfa utilizar un
grafo para representar las rutas entre las ciudades en las que da servicio. En este ejemplo los
vértices representan las ciudades, y la arista es un camino entre dos ciudades. El peso de las
aristas podria representar las millas de vuelo entre las dos ciudades o el precio del vuelo. Una
red para una aerolinea hipotética pequefia s exhibe en la figura 12.35. En este caso, los pe-
s0s representan el millaje entre as ciudades.

Debido a que el peso es un atributo de una arista, se almacena en la estructura que contie-
ne la arista. En una matriz de adyacencia, el peso se almacenaria como el valor de intersec-

cién. En una lista de adyacencia, éste se almacenarfa como el valor en la lista ligada de
adyacencia,

Podemos derivar uno o més 4rboles de expansion desde una red conectada, Un drbol de ex-
pansion (spanning tree) es un 4rbol que contiene todos los vértices del grafo. Un drbol de
expansién minima s un 4rbol de expansién tal que la suma de sus pesos es el minimo. Hay
muchas aplicaciones para los drboles de expansién minima, todas con los requisitos para mi-
nimizar algin aspecto del grafo, como la distancia entre todos los vértices del grafo. Por
ejemplo, dada una red de computadoras, usted podria crear un 4rbol que conecte todas las
computadoras. El drbol de expansién minima le da la menor longitud de cable que puede em-

plearse para conectar todas las computadoras en tanto que asegura que haya un camino entre
dos computadoras cualesquiera.

frado de entrada

12.9 Resumen

.8 TERMINOS CLAVE

lista aleatoria

lista general

emento sintictico lista lineal
liminar de la cola de espera lista ordenada
lista restringida

nodo
nodo intermo

lista de adyacencia

malriz de adyacencia
ctor de equilibrio nivel

grado de salida padre
grafo pila
alisis sintdetico grafo con pesografo débilmente posfijo -
conectado postergacién
grafo dirigido prefijo
hol binario grafo fuertemente conectado primero en enfrar, primero en salir
hol de expansion grafo inconexo (FIFO) '
1 de expansién minima grafo no dirigido tipo de datos profundidad
bol de expresion abstracto (TDA) raiz
ol pulo hermanos rama
hijo recorrido
hoja recorrido de drbol binario
infijo recorrido en orden (LNR)
insertar en la cola de espera recorrido en pre orden
insertar (push) recorrido en post orden
linea recorrido primero en anchura
lista recorrido primero en profundidad

recuperacion

red

retroceso .

simulacion de cola de espera

sobre desbordamiento

subésbol

dltimo en entrar, primere en salir
(LIFO)

vértice

vértices adyacentes

2.9 RESUMEN

En una lista lineal cada elemento tiene un sucesor dnico.

. Las listas lineales pueden dividirse en dos categorfas:
general y restringida.

En una lista general, los datos puede insertarse y elimi-
narse en cualquier parie, y no hay restricciones a las
: operaciones que pueden usarse para procesar la lista.

En una lista restringida, los datos pueden afiadirse o eli-
minarse en los extremos de ia estructura, y el procesa-
miento estd restringido a las operaciones aplicadas a los
. datos en los extremos de Ia lista.

Dos estructuras de lista restringidas comunes son pilas
(listas {iltimo en entrar, primero en salir {FIFO}) y las
colas de espera (listas primerc en entrar, primero en sa-
lir [FIFO3).

Cuatro operaciones comunes estdn asociadas con listas li-
neales: insercidn, eliminacién, recuperacién y recorrido.

Una pila es una lista lineal en la cual Ias adiciones y eli-
minaciones estin restringidas a un extremo Hamado c¢i-
ma. Una pila también se conoce como lista LIFO.

Definimos dos operaciones para una pila: insertar (push)
y extraer (pop).

La insercidn aflade un elemento a la parte superior de la
pila. Después de 1a insercidn, el nuevo elemento se vuel-
ve la cima.

La extraccidn elimina el elemento en la parte superior de
la pila. Después de la extraccion, el elemento gue le si-
gue, si hay alguno, se convierte en la cima.

En este capftulo se analizaron cuatro aplicaciones de pi-
las: inversion de datos, andlisis sintactico de datos, pos-
tergacidn del uso de los datos y retroceso sobre 1os pasos.

Una cola de espera es una lista Hineal en la cval los da-
tos sélo pueden insertarse en un extremo, Hamado parte

Tipos de datos abstractos

trasera, y eliminarse en el otro extremo, fa parte frontal.
Una cola de espera es una estructura primero en entrar,
primero en salir (FIFQ).

En este capitulo analizamos dos operaciones de cola de
espera: la insercion (engueuing) v la eliminacién (de-
gueuing) de un elemento.

Una cola de espera puede usarse para clasificar los datos.

Un 4rbol consiste en un conjunto finito de elementos lla-
mados nodos y un conjunto finito de lineas dirigidas Ila-
madas ramas que conectan los nodos. El mimero de
ramas asociadas con un nodo es el grado del nodo. Cuan-
do la rama se dirige hacia ¢l nodo, es una rama de grado
de entrada; cuando se dirige hacia afuera del nodo, es una
rama de grado de sakida. La suma de las ramas de grado
de entrada y de grado de salida es ¢l grado det nodo.

Si el drbol no estd vacio, el primer nodo se llama rafz, la
cual tiene un grado de entrada de cero. Todos los nodos
en el drbol, excepto la raiz, deben tener un grado de en-
trada de uno.

Una hoja es un nodo con un grado de salida de cero.
Un nodo interno no es ni rafz ni hoja.

Un nedo puede ser padre, hijo o ambos. Dos o mds no-
dos con el mismo padre se llaman hermanos.

Un camino es una secuencia de nodos en la cual cada
nedo es adyacenie al siguiente.

Un antecesor es cnalquier nodo en el camino desde 1a
raiz hasta un nodo dado. Un descendiente es cualquier
rodo en todos los caminos de un nodo dado 2 una hoja.

El nivel de un nodo es su distancia desde la raiz.

La altura de un drbol es el nivel de la hoja en el camino
mds largo desde la rafz mds 1; la altura de un 4rbol va-
cioes —1.

Un subdrbol es cualguier estructura conectada debajo de
la rafz.

Un drbol puede definirse de manera recursiva como un
conjunto de nodos que ya sea (1) estd vacio o (2) tiene
un nodo designado llamado raiz desde el cual descien-
den jerdrquicamente cero o mds subdrboles, los caales
también son drboies.

En un drbol binario, ningiin nodo puede tener mas de
dos hijos.

Un recorrido de 4rbol binario visita cada nodo del drbol
una y $6lo una vez en una secuencia predeterminada.

Los dos métodos del recorrido de drbol binario son pri-
mero en profundidad y primero en anchura.

Utilizando el método de primero en profundidad, usted
recorre un drbol binario en seis secuencias diferentes;
sin embargo, sélo ires de estas secuencias reciben nom-
bres estindar: pre orden, en orden y post orden.

&. En el recorrido en pre orden, pnmero se procesa[
rafz, seguida por el subdrbol izquierdo y luego e]
bérbol derecho.

b. En el recorrido en orden, primero se procesa e] g
barbol izquierdo, luego la rafz y por tiitime el subar
bol derecho.

¢. En el recorrido en post orden, primero se procesa e

subdrbol izquierdo, Inego el derecho y al tltime }

ratz.

12.10 Practica

En el método primero en anchura, usted procesa todg
los nodos en un nivel antes de continuar con el nivel s
guiente.

Definimos una aplicacién para un drbol binario en eét
capifulo: arbol de expresidn.

Un grafo es una coleccién de nodos llamados vértices, §
una coleccion de segmentos de linea que conectan pare
de nodos Hamados aristas o arcos.

Los grafos pueden ser dirigidos o no dirigidos. En un
grafo dirigido o digrafo cada linea tiene vna direcciéa
En un grafo no dirigido no hay direccién en las ifne
Una linea en un grafo dirigido se llama arco. Una hne
en un grafo no dirigido se llama arista.

En un grafo se dice que dos vértices son adyacentes g
una arista los conecta directamente.

Un camino es una secuencia de vértices en Ia cual cada '
vértice es adyacente al siguiente.

Un ciclo es un camino de al menos tres vértices que in-
cia y termina con el mismo vértice,

Un bucle es un caso especial de ciclo en el cual un solo
arco comienza y termina con el mismo nodo.

Se dice que un grafo estd conectado si, para dos vértices
cualesquiera, hay un camino del uno al otro, Un grafoes .
inconexo si no estd conectado.

El grado de un vértice es el mimero de vértices adyacen
tes al mismo, El grado de salida de un vértice es el ni-
mero de arcos que salen del nodo, mientras que el grado
de entrada es el nimero de arcos que entran al nodo.

Se definieron seis operaciones para un grafo: afadic un :
vértice, quitar un vértice, afiadir una arista, quitar una -
arista, encontrar un vértice y recorrer un grafo.

Hay dos recorridos de grafos estdndar: primero en pro-
fundidad y primero en amplitud.

En el recorrido primero en profundidad, todos los des:
cendientes de un nodo se procesan anies de moverse 2
un nodo adyacente.

En el recorrido primero en amplitud todos los vErtices
adyacentes se procesan antes de procesar a los descel
dientes de un vértice.

Para representar un grafo en una computadora, se nece- B En el método de matriz de adyacencia, se usa un arreglo
sita almacenar dos conjuntos de informacidn: El primer para almacenar los vértices y una matriz para almacenar
: conjunto representa los vértices y el segundo representa las aristas.
‘las aristas. B FEn el método de lista de adyacencia, se utiliza una lista
o ligada para almacenar los vértices y una matriz para al-
*Los métodos més comunes utilizados para almacenar un macenar las aristas.
:.grafo son el método de mairiz de adyacencia y el méto- B Definimos dos aplicaciones para un grafo en este capfiu-
' do de lista de adyacencia. lo: una red y un drbol de expansion minima.
] 2
2,10 PRACTICA
REGUNTAS DE REPASO 17. Un{a) _______ podria ser un TDA.
" Qué ipo de datos abstracto? 4. malriz
. ;Qué es un tipo de datos b. lista licada
. En un TDA, ;qué se conoce y qué estd oculto? c. 4rbol
;Qué es una lista lineal? d. todas las anteriores
;Cudl es la diferencia entre una lista general y una lista 18. Enun TDA,
~ restringida? a. los datos se declaran
;Cudles son dos implementaciones comunes de una lis- b. las operaciones se declaran)
" ta general? ¢ los datos y las operaciones estin encapsulados
. . N d. todas las anteriores
:Qué ventaja tiene la implementacion de una lista liga- .
“da de una lista lineal general sobre la implementacién 19- {‘Jn(a) o una lista en la cual cada elemento
" con un arreglo de una lista lineal general? tiene un SuCesor tnico.
_,Cudl es la diferencia entre 1a operacién de insertar y la z i::zmz
operacion de extraer? c. lista lineal
(Cudles son tres operaciones de pila comunes? d. lista ligada
Describa las operaciones de insercion (engueuing) y eli- 20. Una lista FIFO es una lista lineal
. minacidn (degueuing). a. general
4 Qué significa que un drbol binario esté equilibrado? b. restringida
-1 Cudl es la diferencia entre un recorrido primero en pro- ¢ sin ordenar -
fundidad y un recorrido primero en anchura de un 4rbol d. aob
binario? 21. Una lista lineal puede ser ordenada o sin or-
{Cual es la relacién entre un camino y un ciclo? denar.
a. general
J, ;Cudl es la diferencia enire un recorrido primero en b restringida
- profundidad y un recorrido primero en amplitud de un c. FIEO
grafo? d. LIFO
¢Cudl es la principal limitacion de usar un arreglo para 35 g Jigia también se conoce como cola de es-
implementar un grafo? ;Por qué esto representa un pro- pera. .
blema? a. LIFO
(Cudl es la diferencia entre un grafo y una red? b. FIFO
€. sin ordenar
PREGUNTAS DE OPCION MULTIPLE d. ordenada
6. En un tipo de datos abstracto, 23. Una lista también se conoce como pila.
a. se conoce la implementacidn de TDA a. LIFO
b, laimplementacién de TDA estd oculta b. FIFO
¢. las funciones de TDA estan ocultas ¢. sin ordenar
d. ninguna de las anteriores d. ordenada

24.

25.

26.

27.

28,

29.

30.

31.

Tipos de datos abstracios

Cuando ne hay suficiente espacio para insercidn, una
lista ordenada estd en un estado

2. de desbordamiento

b. de sobre desbordamiento

¢. lento

d. restringido

Cuando una lista ordenada estd en un estado s
la lista esta vacia.

a. de desbordamiento

b, de sobre desbordamiento

¢ lento

d. restringido

Enla de listas para una lista ordenada, los da-
tos en la lista y el mimero de elementos de la lista per-
manecen sin cambio.

a. insercién

b. eliminacién

€ recuperacién

d. todos los anteriores

En lael) de listas para una lista ordenada, ca-
da elemento de la lista se procesa en forma secuencial.
a. insercién

b. eliminacion

c. recuperacion

d. recorride '

Si A es el primer elemento de datos que se introduce en
una pila seguido por B, C y D, es el primer
elemento a ser eliminado.

a. A

b. B

e C

d D

Si A es el primer elemento de datos que se introduce en
una cola de espera seguido por B, Cy D, es el
primer elemento a ser eliminado.

a A

bh. B

c. C

d D

La operacién de extraer de Ia pila.
a, elimina un elemento de la parte superior
b. elimina un efemento de ia parte inferior
¢ afiade un elemento a la parte superior

d. afiade un elemento a Ia parte inferior

La operacidn de insertar de la pila.
a. elimina un elemento de la parte superior
b. elimina un elemento de la parte inferior
¢. aftade un elemento a la parte superior

d. afiade un elemento a la parte inferior

33.

34.

35.

36.

37.

38,

39,

. Cuando los datos se dividen en piezas independientey
para su procesamiento posterior, a esto se le Hama-

a. inversion de los datos

b. postergacién de los datos

<. andlisis sintdctico de los datos
d. retroceso de los datos

En una cola de espera, los datos se insertan s6lo en

y se eliminan sélo en .

a. la parte trasera; la parte frontal o la parte trasera

b. la parte frontal; la parte trasera

c. la parte trasera; la parte frontal

d. la parte trasera o la parte frontal; la parte frontal

El grado de entrada de de un drbol siempre es
cero. ;
a. cualquier nodo

b. uwnarama

¢. larafz

d. unahoja

Si un nodo interno tiene cuatro ramas de grado de sali-

da, su grado es
a 9
b. 1
¢ 4
d 5

Un nodo de un 4rbol tiene un grado de 3. Esto significa
que su grado de salida es

a. 0

b. 2

c 4

d. mninguno de los anteriores

Un(a) es una secuencia de nodos en la cual
cada nodo es adyacente al siguiente.

a. hoja

b. raiz

¢ descendente

d. camino

Si fa altura de un drbol es 10, el nivel més alto del arbol
es

a, 10

b. 9

e 5

d. 1

En un drbol binario, cada nodo tiene dos
subdrboles.

a. mds de

b, menos de

¢. cuando mucho

d. cuando menos

Si hay 22 nodos a aimacenar en un drbol binario, la al-

‘. tura mdxima del 4rboles |
. & mayor que 22

b. menor que 22
¢, igual que 22

d. ninguna de las anteriores

Si hay 16 nodos a almacenar en un drbol binario, 1a al-
fura minima del drbol es .

a. 16

b 5

c. 4

d. 1

" Un 4rbol binario tiene una altura de 5. ;Cuidl es el mime-
1o minimo de nodos?

a. 31

~ b 15

c 3
d 1

. Un drbol binario tiene una altura de 5. ;Cudl es el ntime-

10 maximo de nodos?

ca. 31
b 15
¢ 5

d 1

En un recorrido en pre orden,
Ero.

a. ¢l subdrbol izquierdo

b. el subdrbol derecho

S& procesa pri-

¢ laraiz

d. aob

En un recomido
cesa al final.

a. en pre orden
b. en orden

¢. en post orden
d. aob

, el subdrhol derecho se pro-

En un recomrido en post orden, la raiz se procesa

a. primero

b. en segundo lugar
c. al final

d. aob

En un recorrido en post orden, ¢l subdrbol izquierdo se
procesa .

a. primero

b. en segundo lugar

. ¢ al final

d. aob

48.

49,

50.

51,

52.

53.

54.

12.10 Practica

En un recorrido , el subdrbol izquierdo se pro-
cesa al final.

a. en pre orden

b. en orden

¢. en post orden

d. ningunc de los anteriores

En un recorrido en orden, a raiz se procesa

a, primero

b. en segundo lugar

¢. al dltimo

d aob

En un recorrido primero en anchura de un 4rbol binario
con tres niveles (0, 1 y 2), ;cudl nivel se procesa al tlti-
mo?

a. 0

b. 1

c 2

d. ninguno de los anteriores

Un(a) es una inea entre dos vértices en un di-
grafo.

a. nodo

b. arco

¢. arista

d. camino
Una arista es
dirigido.

a. unnodo
b. un arco

¢. una linea
d. un camino
SiCy D son dos vértices adyacentes en un grafo no di-
rigido, entonces

a. hay dos caminos

b. solo hay un camine {C, D}

€. sdlo hay un camino {D, C}

¢. no hay caminos

Un vértice en un digrafo tiene cuatro arcos que enéran y
tres arcos que salen. El grado de salida del vértice es

entre dos vértices en un grafo no

=
[N LTS =N

=R

EJERCICIOS

55,

Muestre el contenido de 1a pila s1 después de las opera-
ciones siguientes:

Tipos de datos abstractos

56. Utilice un ciclo whi 1e para vaciar el contenido de Ia pi-
las2.

57. Utilice un ciclo while para mover el contenido de la pi-
la st a s2. Después de la operacitn la pila s1 debe estar
vacfa.

58. Utilice un ciclo whi Le para copiar el contenido de la pi-
la s1 a s2. Después de la operacién el contenido de las
pitas s1 y 52 debe ser ¢l mismo.

59. Utilice un bucle while para concatenar ¢l contenido de
la pila s2 con el contenido de la pila s1. Después de la
concatenacion los elementos de 1a pila s2 deben estar en-
cima de los elementos de la pila si. La pila 52 debe es-

tar vacia,

60. Un palindromo es una cadena que puede leerse hacia
alrds y hacia delante con el mismeo resultado. Por gjem-
plo, la creacién siguiente es un palindromo:

Anita lava la tina

Eseriba un algeritmo utilizando una pila para probar si
una cadena s un palindromo.

61. Escriba un algoritmo para comparar el contenido de dos
pilas.

62. Muestre el contenido de la pila s1 y de 1a cola de espera

{al,

63. Utilice un ciclo while para vaciar el contenido de la co-
la de espera g3.

64. Utilice un ciclo while para mover el contenido de Ia
cola de espera 2 a Ia cola 3. Después de la operacion
la cola de espera g2 debe estar vacia.

65. Utilice un ciclo while para copiar el contenido de la co-
la de espera q2 a g3. Después de 1a operacidn el conte-
nido de las colas de espera g2 y g3 debe ser el mismo.

66. Utilice un ciclo while para concatenar el contenido de
la cola de espera q2 con el contenido de ql. Después
de la concatenacién, los elementos de la cola de espera
g2 deben estar al final de los elementos de gl. La cola
de espera q2 debe estar vacfa.

67, Escriba un algoritmo para comparar el contenido de dos
colas de espera.

68, Encuentre Ia raiz de cada uno de los drboles binarios si-
guientes:
a. Arbol con recorrido en post orden: FCBDG
b. Arbol con recorrido en pre orden: IBRCDFEN
¢. Arbol con recorrido en post orden: CBIDEGE

69. Un 4rbol binario tiene 10 nodos. El recorride en orde;;':
pre orden del drbel se muestra enseguida. Dibuje el 4
En pre orden: JCBADEFIGH

En orden: ABCEDFIGIH

70. Un érbol binario tiene ocho nodos. El recorrido en org
¥ en post orden del 4rbol se muestra enseguida. Dity
el arbol:

En post orden: FECHGDBA
En orden: FECABHDG

71. Un é4rbol binario tiene siete nodos. Bl recorrido en ord
y en post orden del 4rbol se muestra enseguida. ;Pue
dibujar ¢l drbol? Si no es asi, explique por qué.

En post orden: GFDABEC
En orden: ABDCEFG

72. Dibuje todos los 4rboles diferentes posibles con tres no-

dos (A, By C).

73. Haga el recorrido primero en profundidad del grafo de f

figura 12.36 partiendo del vértice A.

Haga una representacién de la lista de adyacencia del
grafo de la figura 12.37.

. Trace el grafo para la representacion de la matriz de ad-
vacencia de la figura 12.38.

MM o o

Figura 12.36 Ejercicios 73 y 74
74. Haga el recorrido primero en anchura del grafo de la fi-
gura 12.36 partiendo del vértice A.

75, Dé la representacion de la matriz de adyacencia del gra-
fo de la figura 12.37.

Figura 12.37 Ejercicios 75y 76

igura 12.38 Ejercicio 77

12.10 Préctica

ACTUALIZACION
DE ARCHIVOS
SECUENCIALES

Archivos
involucrados en
la actualizacion

Estructuras de archivos

El codigo siguiente muestra cémo tener acceso a todos los registros en un archive se.
cuencial. :

while Not EOF

{
Lee el_registro siguiente
Procesa el registro

}

Programa 13.7T Procesamienio de regisiros en un archivo secuencial

Para leer y procesar los registros uno a uno sc utiliza un cicto. Después de que el sisterna ope-

rativo procesa el dltimo registro se detecta el EOF vy se termina el ciclo.

El archivo secuencial se utiliza en aplicaciones que necesitan tener acceso a todos los re- -
gistros de principio a fin. Por ejemplo, si la informacién personal sohre cada empleado en ana -
compafifa se almacena en un archivo, se puede usar ¢l acceso secuencial para recuperar ca-

da registro al final del mes con el fin de imprimir los cheqgues de sueldo. En este punto, debi-
do a que uvsted debe procesar cada registro, el acceso secuencial es més eficiente y facil que
el acceso aleatorio.

Sin embargo, el archivo secuencial no es cficiente para el acceso aleatorio. Por gjemplo,
si s6lo se puede tener acceso a todos los regisiros de clientes en un banco en forma secuen-
cial, un cliente que necesita obtener dinero de un cajero autorndtico tendria que esperar mien-
tras ¢l sistema revisa cada registro desde el principio del archivo hasta que [lega al registro
del cliente. Si este banco tiene un millén de clientes, el sistema, en promedio, recuperaria me-
dio millén de registros antes de obtener el registro del cliente. Esto es muy ineficienie.

Los archivos secuenciales deben actualizarse en forma periddica para reflejar cambios en’la
informacién. El proceso de actualizacidn es muy problemdtico debido a que todos los regis-
tros necesitan revisarse y actualizarse (de ser necesario) en forma secuencial.

Hay cuatro archivos asociados con un programa de actualizacion: el archivo maestro nuevo,
¢l archivo maestro viejo, el archivo de transaccidn y el archivo de informe de errores.

B Archive maestro nuevo. Primero estd el nuevo archivo de datos permanente o, como
se le conoce comtinmente, el archivo maestro nuevo, el cual contiene los datos mis
actuales.

B Archivo maestro viejo. El archivo maestro viejo es el archivo permanente que debe ac-
tualizarse. Aun después de la actualizacién, el archivo maestro viejo debe mantenerse pa-
ra referencia.

B Archivo de transaccion. El tercer archivo es el archivo de transaccién, el cual contiene
los cambios a aplicar en el archivo maestro. Hay tres tipos basicos de cambios en todas 15
actualizaciones de archivos. La adicidn de transacciones contiene los datos de un nuevo
registro a afiadir en el archivo maestro. La eliminacicn de transacciones identifica regis-
tros a eliminar del archivo. Y el cambio de transacciones contiene revisiones a registros
especificos en el archivo, Para procesar cualquiera de estas transacciones, usted necesitd
una llave. Una lave es uno o mds campos que identifican de forma tnica los datos en ¢l
archivo. Por ejemplo, en un archivo de estudiantes, la lave podria ser ef 1D (identificador}
de estudiante. En un archivo de empleados, Ia Ilave podria ser el niimero del seguro sociak

B Archivo de informe de errores. El cuarto archivo requerido en un programa de actid”
lizacién es un archivo de informe de errores. Es muy raro que un proceso de actuabi-
zacién no produzca al menos un error. Cuando un error ocutre, se necesita informarlo al
usuario. El informe de error coniiene un listado de todos los errores descubiertos durat”
te el proceso de actualizacidn y se presenta al usuario para que lo rectifique.

Proceso

13.3 Archivos indexados

La figura 13.3 es una representacién grafica de Ia actualizacién de un archivo secuencial. En
esta figura, aparecen los cuatro archivos que se han analizado. Aunque utilizamos ¢l simbolo
de cinta para los archivos, podriamos haberfos representado con la misma facilidad median-
te el sfmbolo de disco. Observe que después de que se completa el programa de actualizacion,
el nuevo archive maestro se envia a almacenamiento fuera de linea donde se guarda hasta que
se le necesita de nuevo. Cuando el archivo va a actualizarse, el archivo maestro se recupera
del almacenamiento fuera de linea y se vuelve el archivo maestro viejo.

Archive de transaccidn Archivo maestro viejo

Actualizacién del archivo secuercial

h EE

Registro de transaccién Registro maestro viejo

Programa de
acmealizacién

& Almacenamiento
fuera de linea

Registro maestro nuevo

Archivo

de informe Archivo maestro

nuavo

Figura 13.3 Actualizacion de un archivo secuencial

Para hacer el proceso de actualizacién efictente, todos los archivos se almacenan en la mis-
ma llave. El proceso de actualizacidn requiere que usted compare las llaves de los archivos
maestro y de transaccién y, suponiendo que no hay errores, realice una de las tres acciones si-
guientes:

1. SilaHave del archive de transaccién es menor que la llave del archivo maestro, afiada
la transaccidn al archivo maestro nuevo.

2. Si la Ilave del archivo de transaccién es igual a la llave del archivo maestro, opte por
una de estas dos opciones:
a. Cambie el contenido de fos datos del archivo maesiro si la transaccién es una revi-

sién (R).

b. Borre los datos del archivo maestro si la transaccion es una eliminacion (D).

3. SilaHave del archivo de transaccién es mayor que la llave del archivo maestro, escri-
ba el registro del archivo maestro viejo en el archivo maestro nuevo. En este caso, el
cddigo de transaccidn debe ser la adicién (A) o hay un error.

Este proceso de actualizacidn se exhibe en la figura 13.4. En el archivo de transaccién los
codigos de transaccion son A para la adicion, D para la eliminacién y R para revision. El pro-
ceso comienza con fa comparacién de las Haves para el primer registro de cada archivo.

:__'E 3.3 ARCHIVOS INDEXADOS

Para tener acceso aleatorio a un archivo en un registro, se necesita conocer la direccion: del
registro. Por ejemplo, suponga que una clienta quiere revisar su cuenta bancaria. Ni la clien-
ta ni la cajera conocen la direccién del registro de la clienta. Esta sélo puede darle a la caje-
ra su mfimero de cuenta (llave). Aqui, un archivo indexado puede relacionar el miimero de
cuenta (llave) con la direccidn del registro (figura 13.5).

ARCHIVOS
INVERTIDOS

Estructuras de archivos

Archivo
de transaccién

Archivo
maestro viejo

Archivo maesiro nuevo

Figura 13.4 Proceso de actualizacion

Liave g > Direccion

Figura 13.5 Relacion de un archivo indexado

Un archivo indexado se compone de un archive de datos, el cual es un archivo secuen-
cial y un fndice. El indice en sf es un archivo muy pequefio.con sélo dos campos: 1a Have del
archivo secuencial y la direccién del registro correspondiente en el disco. La figura 13.6

muestra la vista 18gica de un archivo indexado. Para tener acceso a un registro de un archivo
de este tipo, siga estos pasos:

1. Todo el archivo indexado se carga en Ia memaoria principal (el archivo es pequefio y uti-
liza poca memoria).

2. Se buscan las entradas, utilizando un algoritmo de biisqueda eficiente tal como una biis-

queda binaria, para encontrar la lave deseada.
3. La direccidn del registro se recupera.

4. [hilizando la direccidn. El registro de datos se recupera y se pasa al usuario.

Una de las ventajas del archivo indexado es que usted puede tener més de un indice, cada uno
con una lave distinta. Por ejemplo, un archivo de empleados puede recuperarse con base y
sea en el nlimero del seguro sccial o en el apellido. Este tipo de archivo indexado por lo ge-
neral se Hama archivo invertido.

13.4 Archivos Hashed

Indice Archivo de datos
045128 § 305 000 | 379452 | Mary Dodd
070918 | 001
Toe7 T 000 001 070918 | Sarah Trapp
Llave 160252 | 305 | Direccion 002 121267 | Bryan Devaux Datos
166702) 003 | mommmemep- ()3 | 166702 | Harry Eagle D

004
005

378845 | 007 006

379452 { 000 007 | 378845 | John Carver
008

305 | 160256 | Tuang Ngo
306| 045128 | Shouli Feldman

Figura 13.6 Vista l6gica de un archivo indexado

3.4 ARCHIVOS HASHED

En un archivo indexado, el indice relaciona la llave con la direccién. Un archivo hashed uti-
liza una funcién para lograr esta relacién. El usuario da la llave, la funcién relaciona la Have
con la direccién y la pasa al sistema operativo y el registro se recupera (figura 13.7).

Llave § Direccidn

Figura 13.7 Relacién en un archivo hashed

El archivo hashed elimina la necesidad de un archivo (indice) extra. En un archivo inde-
xado usted debe mantener este indice en el disco y cnando necesita procesar el archivo de da-
tos, primero debe cargar el indice en la memoria, buscarlo para encontrar la direccidn del
registro de datos y luego acceder al archivo de datos para tener acceso al registro. En un ar-
chivo hashed la direccién se encuentra mediante el uso de una funcién. No hay necesidad de
un indice ni de toda la sobrecarga asociada con él. No obstante, verd que los archivos hashed
tienen sus propios problemas.

Para la relaci6n de liaves-direcciones, usted puede seleccionar une de varios métodos de dis-
persi6n, también llamado hashing. Analizaremos unos cuantos de ellos en esta seccidn.

Estructuras de archivos

13.4 Archivos Hased

Método directo En el hashing directo, la llave es la direccién sin ninguna manipulacién algorftrnica, El 5
chivo debf:, porl tanto, contener un registro para cada Have posible. Aunque las situacioneg pa Direccion - Registo
ra el hashing directo son limitadas, éste puede ser muy poderoso debido a que garantiza que ‘L J'

no haya sinénimes o colisiones (los sindnimos o colisiones se analizan posteriormente en eg
te capitulo) como sucede con ofros métodos.

Veamos un gjemplo trivial. Imagine que una organizacion tiene menos de 100 empleados
A cada empleado se asigna un nimero entre 1 y 100 (ID del empleado). En este caso, si us-
te%d crea un archivo de registros de 100 empleados, ¢l ndmero de empleado puede utilizarse
directamente como la direcci6n de un registro individual. Este concepto se muestra en la fi. -
gura 13.8. El registro con la llave 025 (Va Nguyen...) se relaciond a Ia direccion (sector) 025,
Observe que no todos los elementos en el archivo contienen un registre de empleado. Una; :
parte del espacio estd desperdiciada, '

001
002
003

307

Figura 13.9 Modulo de division

Direccién Registro étodo de Al utilizar el hashing de extraccidn de digitos, los digitos seleccionados se extraen de la lla-

J' ‘L xtraccién ve y se utilizan como la direccidn. Por ejemplo, al usar su nimero de empleado de seis digitos

_ e digitos para relacionar a una direccién de tres digitos (000-999), usted puede seleccionar el primero,

001 segundo, tercero y cuarto digitos (a partir de la izquierda) y utilizar el #érmino como la direc-
002 cién. Usando las llaves de la figura 13.9, se relacionan con las direcciones como sigue:

100

Figura 13.8 Hashing direct &
9 g directo tros métodos Existen otros métodos populares, tales como el método de cuadrado medio, el método de do-

blado, el método rotacional y el método pseudoaleatorio. Dejamos la exploracion de los mis-

Aun cuando éste es ¢l método ideal, su aplicacion estd muy limitada. Por ejemplo, es muy II0S COMO ejercicios.

ineficaz utilizar el ndmero del seguro social como 1a lave porque €ste tiene nueve digitos, Asi
que se necesitaria un archivo enorme con 999 999 999 registros, de los cuales se utilizarian
menos de 100, Por lo tanto, volquemos nuestra atencién en las técnicas de hashing que rela-
cionan una poblacién grande de llaves posibles con pequefios espacios de direccitn.

OLISION Generalmente, la poblacion de llaves para una lista hashed es mayor que el nimero de regis-
tros en el archivo de datos. Por ejemplo, si usted tiene un archivo de 50 estudiantes para una
clase en la cual los estudiantes se identifican mediante los Gltimos cuatro digitos de su mime-
ro de seguridad social, entonces hay 200 Naves posibles para cada elemento en el archivo
(10 000/ 5G). Debido a que hay muchas llaves para cada direccién en el archivo, existe la po-
sibilidad de que mds de una llave se relacione a la misma direccién en el archivo. Liamamos
al conjunto de llaves que se direccionan a la misma direccidn en nuestra lista sménimes. El
concepto de colision se ejemplifica en la figura 13.10.

En la figura, cuando usted calcula la direccidn para dos registros diferentes, obtiene la mis-
tma direccién (4). Evidentemente, los dos registros no pueden almacenarse en la misma direc-
ci6n. Usted necesita resolver 1a situacidn como se explica en la siguiente seccidn.

Método de modulo 'I"E@bién conocido como hashing de residuo de division, el método de médulo de division

de divisidn d1v1‘de la Have entre el tamafio de archive v utiliza el residuo mds 1 para la direccion. Esto da
el simple algoritmo de dispersi6n siguiente, donde tamafio_lista es el niimero de elemen-
tos en el archivo.

Aun cuando este algoritmo funciona con cualquier tamafio de lista, un ndmero primo ¢o-
mo tamafio de lista produce menos colisiones que otros tamafios en la lista. Por consiguien-
te, siempre que es posible, trate de hacer que el tamafio de archivo sea un nimero primo.

Conforme su pequefia compaiifa comience a crecer, se dard cuenta gue pronto tendrd mds
de 100 empleados. Al planear para el futuro usted crea un nuevo sistema de numeracién de
empleados que manejard un millén de empleados. También decide que quiere proporcionar
espacio de datos hasta para 300 empleados. Bl primer ntmero primo mayor que 300 es 307.
Por [o tanto, usted elige 307 como su tamafio de lista (archivo). Su nueva lista de empleados
v algunas de sus direcciones relacionadas se muestran en la figara 13.9. En este caso, Va Ngd-
yen, con ltave 121267, se relacion6 a la direccién 003 porque 121267 % 307 = 2, y usted st
ma 1 al resultado para obtener la direccién (003).

Registro Direcci6n

v

> 4

Colision
{misma direccitn}

| 151354 Rich White. .

Figura 13.10 Colisién

Estructuras de archivos

Si los datos reales que usted inserta en su lista contienen dos o mds sinénimos, tendr o
lisiones. Una colision es el evento que ocurre cuando un algoritmo de hashing produce upa*
direcci6n para una llave de insercién y esa direccién ya estd ocupada. La direccién produci
da por el algoritmo de hashing se conoce como direccién base. La parte del archivo que cop.
tiene todas las direcciones base se conoce como el drea principal. Cuando dos llaves -
colindan en una direccidn base, usted debe resolver la colisidn al colacar una de las [laves y:
sus datos en otra localidad. -

Resolucién Con excepcidn del método directo, ningune de los métodos que analizamos para hashing crea -

de colisiones una relacién uno a uno. Hsto significa que cuando usted relaciona una llave nueva a una di-
reccién, puede crear una colisién. Existen varios métodos para manejar colisiones, cada ung |
de ellos independiente del algoritmo de hashing. Es decir, cualquier método de hashing puede :
utilizarse con cualquier método de resolucién de colisiones. En esta seccién analizamos al- .
gunos de estos métodos.

Direccionamiento abierto El primer método de resolucién de colisiones, la resolucién de
direccionamiento abierto, resuelve colisiones en el drea principal. Cuando ocurre una coli--
8iGn, las direcciones del 4rea principal se buscan para un registro abierto o desocupado donde
pueden colocarse los nuevos datos. Una estrategia simple para los datos que no pueden alma- -
cenarse en la direccién base es almacenarlos en la siguiente direccidn (direcci6n base + 1)
La figura 13.11 muestra c6mo resolver la colisién de la figura 13.10 utilizando este método.
El primer registro se altnacena en la direccién 4 y el segundo se almacena en la direccién 5.

13.5 Texte versus binario

Direccién de contenedor Contenedor

122803

131354

Figura 13.13 Resolucién de hashing de contenedor

Hashing de contenedor Otro método para manejar el problema de la colisién es direc-
cionar a contenedoves (buckets). La figura 13.13 nyuestra como resolver la colision en 1a fi-
gura 13.10 utilizando el hashing de confenedor. Un conienedor es un node que puede
acomodar més de un registro.

Méicdos de combinacién Hay varios métodos para resolver colisiones. Como se vio con
los métodos de hashing, una implementacién compleja a menudo utiliza miltiples métodos.

Direccién Registro

Direcciona + *

a la.basc 4

122803
151354

4
Direcciona
al siguiente

Figura 13.17T Resolucién de direccionamiento abierto

Resolucién de listas ligadas Una desventaja importante del direccionamiento abierto es
que cada resolucién de colisiones aumenta la probabilidad de colisiones futuras. Esta desven-
taja se elimina en otro método para resolucidn de colisiones, la resolucién de listas ligadas.
En este método, el primer registro se almacena en la direccién base, pero contiene un apun-
tador al segundo registro. La figura 13.12 muestra c6mo resolver 1a situacién que aparece en
la figura 13.10.

Direccién Registro

Direcciona + *

a la base 4

122803
1531354

ARCHIVOS
DE TEXTO

Area de desbordamiento

Figura 13.12 Resolucion de listas ligadas

3.5 TEXTO VERSUS

A

Antes de cerrar este capitulo, analizamos dos términos utilizados para clasificar los archivos:
archivos de texto y archivos hinarics. Un archivo almacenado en un dispositive de almacena-
miento es una secuencia de bits que puede ser interpretado por un programa de aplicacion co-
mo un archivo de texto o un archivo binario segin se muestra en la figura 13.14 y se explica
a continuacion.

Interpretado como un archive Interpretado como un archivo
de texto - binario

Dos bytes representan
dos caracteres
(AyB)

Dos bytes representan
un ndmero
(16706}

Figura 12.714 Interpretaciones de texto 'y binaria de un archivo

Un archive de texto es un archivo de caracteres. No puede contener enteros, nimeros de pun-
to flotante o cuatesquier otras estructuras de datos en su formato de memoria interna. Para al-
macenar estos tipos de datos, deben convertirse a sus formatos equivalentes de caracieres.

Algunos archivos sélo pueden utilizar tipos de datos de caracteres. Los mas notables son
cadenas de caracteres para teclados, monitores e impresoras. Esta es la razén por la cual us-
ted necesita funciones especiales para dar formato a los datos que entran a o salen de estos
dispositivos.

ARCHIVOS
BINARIOS

Estructuras de archivos

Veamos un ejemplo. Cuando los datos (una cadena de caracteres) se envian a la impresqg.
ra, la impresora toma ocho bits, los interpreta come un byte y los decodifica en el sistemy de
codificacion de la impresora (ASCIl o EBCDIC). Si el caracter pertenece a [a categoria im.
primible, éste se imprimird; de lo contrario, se realiza alguna otra actividad, por ejemplo Iy
impresién. de un espacio. La impresora toma los siguientes ocho bits y repite el proceso. Es.
to se realiza hasta que una cadena de caracteres se agota.

Un archivo binario es una coleccién de datos almacenados en el formato interno de la COm-
putadora. En esta definicion, los datos pueden ser un entero, un nimero de punto flotante, yp
caracter o cualquier ofra informacién estructurada {excepto un archivo).

A diferencia de los archivos de texto, los archivos bigarios contienen datos que son signi- -
ficativos s6lo si son interpretados adecuadamente por un programa. Si los datos son textua- |
les, 1 byte se utiliza para representar un caracter. Pero si los datos son numéricos, 2 o més
bytes se consideran un elemento de datos. Por ejemplo, suponga quae estd utilizando una com-
putadora personal que usa dos bytes para almacenar an entero. En este caso, cuando nsted lee

En el hashing de extraccién de digitos, 1a direccitn se
compone de digitos seleccionados desde la llave.

Las llaves que se relacionan a la misma direccién se lla-
man sindnimos.

Una colisién es un evento que ocurre cuando un algorit-
mo de hashing produce una direccién para una insercién
y esa direccidn ya estd ocupada.

Los métodos de resolucion de colisiones mueven los da-
tos direccionados que no pueden insertarse a una direc-
cién nueva.

El método de resolucion de colisiones de direcciona-
miento abierfo busca en el drea principal para una direc-
¢i6n abierta (libre) para que se inserten los datos.

13.8 Practica

B El méodo de resolucidn de lista ligada utiliza un area
separada para almacenar las colisiones y encadena a to-
dos los sinénimos en una lista ligada.

8 Bl hashing de contenedor es un método de resolucidn de
colisiones que utiliza contenedores, nodos que acomo-
dan mdltiples ccurrencias de datos.

B Un archivo de texio es un archivo de caracteres.

Un archivo binario son datos almacenados en el forma-
to interno de 1a computadora.

o escribe un entero, dos bytes se interpretan como un entero,

13.6 TERMINOS LLAVE

acceso aleatorio
acceso secuencial

archivo maestro viejo
archivo secuencial

hashing de extraccidn de digitos
hashing de residuo (médulo)

drea principal cinta de division :
archivo colisién hashing directo

archivo binaric contenedor indice 4
archivo de datos disco llave

archivo de informe de errores dispositivo de almacenamiento lista ligada .

archivo de texto
archivo de transaccién
archivo hashed
archivo indexado
archivo invertido
archivo maestro nuevo

dispositivo de alinacenamiento auxiliar

dispositivo de almacenamiento
secundario

direccion base

divisién de modulo

hashing de contenedor

método de acceso
resolucion de colisiones
resolucidn de lista Higada
resoiucidn de direccionamiento abierio
sinénimo

13.7 RESUMEN

Un archivo es una coleccién de datos relacionados que |
se fratan como una unidad.

Para el acceso aleatorio de un registro, puede utilizarse
un archivo indexado que consiste en un archivo de datos
Un registro en un archivo puede accederse en forma se- y un fndice.
cuencial o aleatoria. B Enel acceso aleatorio a archivos, el indice relaciona und
ilave con una direccidn, 1a cual se utiliza después pard
recuperar el registro def archivo de datos. 13.
B Un archivo hashed es un archivo de acceso aleatorio e : 4.
el cual una funcién relaciona una llave con una direccidn.
En el hashing directo, 1a Have es la direccién y no se ne-
cesita ninguna manipulacién de algoritmos.

En el hashing de médulo de division, 1a llave se divide
entre el tamafio de archivo. La direccidn es el residu¢
mas 1.

En el acceso secuencial, cada registro debe accederse en
secuencia, uno después de otro, de principio a fin,

Pa actualizacién de un archivo secuencial requiere un
archivo maestro nuevo, un archivo maestro viejo, un ar- B
chivo de transaccidn y un archivo de informe de errores.

En el acceso aleatorio, un registro puede accederse sin 2]
tener que recuperar ningiin registro antes que él. La di-
reccion del registro debe conocerse.

13.8 PRACTICA

PREGUNTAS DE REPASO

¢ Qué es un archive y cudi es su funcién?

¢ Cuéles son los dos tipos generales de métodos de acce-
so a archivos?

i Por qué se necesita un marcador EOF cuando se proce-
san los archivos secuencialmente?

. Cudl es la relacidn entre el archivo maestro nuevo y el
archivo maestro viejo?

;Cudl es el propésito del archivo de transicion en la ac-
tualizacidn de un archivo secuencial?

Dé un ejemplo propio de una situacién en la cual un ar-
chivo debe accederse en forma aleatoria.

Dé un ejempio propio de una situacién en ia cual un ar-
chivo debe accederse en forma secuencial.

Describa Ja funcion de la direccién en un archivo al que
se accedi6 en forma aleatoria.

+Como se relaciona ¢l indice con el archivo de datos en
los archivos indexados?

;Cudl es la relacién entre la ilave y la direccidn en el
hashing directo de un archivo?

;Cudl es la relacidn entre la llave y la direccién en el
hashing de divisién de mddulos de un archivo?

;Cudl es la relacién entre la llave y ia direccidn en el
hashing de extraccidn de digitos de un archivo?

;Qué es una colisién?

Proporcione tres métodos de resolucién de colisiones.
(Cémo funciona el método de resolucién de colisicnes
de direccionamiento abierto?

Comente las dos 4reas de almacenamiento requeridas pa-
ra el método de resolucién de colisiones de lista ligada.

17 ;Cudl es la diferencia ante un archivo de texto y un archi-

vo binario?

PREGUNTAS DE OPCION MULTIPLE

18. Un archivo puede accederse en forma alea-
foria.
a. secuencial
b. indexado
¢. hashed
d. byc
19. Un archivo puede accederse en forma se-
cuencial.
a. secuencial
b. indexado
¢. hashed
d. byc

20. Cuando un archive secuencial se actualiza, el archivo
obtiene la actualizacién més reciente.
A, Imaestro nuevo
b. maestro viejo
¢. de transaccidn
d. de informe de errores

23, Cuando un archivo secuencial se aciualiza, el archive
contiene una lista de todos los errores que
ocurren durante el proceso de actualizacidn.
a. maestro nuevo
b. maestro vigjo
¢. de transaccidén
d. de informe de errores
22. Cuando un archivo secuencial se actualiza, el archive

contiene los cambios a apiicar.

MAesiro juevo
maesiro viejo

de transaccién

de informe de errores

Fow

ooe

Estructuras de archivos

23. Después de que se actualiza on archivo secuencial, el ar-
chivo contiene los datos mas actuales.
&. Inaesiro nuevo
b, maestro vigjo
¢. de transaccién
d. de informe de errores

24. Cuando un archivo secuencial necesita actnalizarse, el
archivo en almacenarmiento se vuelve el ar-
chivo .

a. maestro nuevo; maesiro vigjo
b. maestro viejo; maestro nuevo
¢ de transaccin; maestro nuevo
d. de transaccién; maestro viejo

25. Sila Have del archivo de transaccion es 20 y la llave del
primer archive maestro es 23, entonces usted
a. afiade el nuevo registro al archive maestro nuevo
b, revisa el contenido del archivo maestro viejo
c. elimina los datos
d. escribe el registro del archivo maestro viejo en el ar-
chivo maestro nuevo

26. Silailave del archivo de transaccidn es 20 con cddigo de
borrado y la llave del primer archivo maestro es 20, en-
tonces usted :

a. afiade la transaccidn al archivo maestro nuevo

b. revisa el contenido del archivo maestro viejo

¢. elimina los datos

d. escribe €l registro del archivo maestro vigjo en el ar-
chivo maestro nuevo

27. Siunregistro necesita accederse , un archivo
indexado es el tipo de archivo mds eficiente para usar.
a. en forma secuencial
b. en forma aleatoria
¢. en orden
d. ninguno de los anteriores

28. Un archivo indexado consiste en
a. un archivo de datos secuencial
b, un indice
¢ un archivo de datos aleatorjo
d. byc

29. Fiindice de un archivo indexado tiene
a. dos
b. tres
¢. cuatro
d. cualquier ntémero de

Camnpos.

30. Para acceder a un registro en forma aleatoria, se utiliza
un(a) en el indice para encontrar una direc-
cidn.

a. direccién

b. llave

€. sinénimo
d. aob

31.

32

33.

34.

35,

36.

37.

38,

En el método de dispersién o hashing I6s En el método de resolucién de colisiones

gitos seleccionados se extraen de la Have y se wij podo puede mantener miltiples piezas de datos.
como la direccién. a. direccionamiento abierto

a, directo : b, lista ligada

b. residuo de division ¢. hashing de contenedor

c. médulo de divisién : d. ayb

d. extraccién de digitos
En el método de dispersién o hashing RESIT
ve se divide entre ¢l tamafio de archivo y la direccigy’
el residuo mds 1,

a. directo

b. moddulo de divisidn
¢. residuo de divisidn
d. extraccion de digitos

‘En el método de resolucion de colisiones R
tanto el drea principal como ¢l drea de desbordamiento
é,lrnacenan datos.

‘a. direccionamiento abierto

b. lista figada

¢. hashing de contenedor

‘d. ayb

En el método de dispersién o hashing
sinénimos o colisiones.

a, directo

b. mddulo de division

¢. residuo de divisién

d. extraccién de digitos

Los(as) son llaves que se direccionan a la.
misma localidad en el archivo de datos.
a. colisiones

b. contenedores

¢ sinénimos

d. listas ligadas

Cuando un algoritimo de hashing produce una direccidn

Un archivo es un archivo de caracteres.
‘a. de texto

b. binario

¢. de caracter

‘d. hashed

© SITor,

Dados el archivo maestro vicjo y el archivo de transac-
cién en la figura 13.13, encuentre el archivo maestro
nuevo. Si hay algiin error, también cree un archivo de

para una llave de insercidn y esa direccién ya estd ocu-:
pada, se le llama
a. colisién

b. sonda

€. sindnimo

d. lista ligada
La direccidn producida por un algoritmo de hashing és
1a direccion

a. desonda

Archivo de transaccion

Aschivo maestro vigjo

b. de sinénimo

c. de colision Figura 13.15

Ejercicio 42

d. base

El drea es el drea de archivo que contieng t0- 43, Cree un archivo de indice para la tabia 13.1.
das las direcciones base.

a. de sonda

b. ligada Liave MNombre DM
¢. hash 123453 | John Adam I8

d. principal 114237 | Ted White MAT
En el método de resolucién de colisiones - 156734 | Jimmy Lions ING
usted intenta poner en la localidad 124 los datos que 10 093245 | Sophie Grands | NEG
pueden colocarse en la localidad 123, (77654 | Eve Primary CIs

a. direccionamiento abierto 256743 | Bwva Lindens ING
b. lista ligada 423458 | Bob Bauser ECO
¢. hashing de contenedor

d. ayb Tabla 13.T FEjercicio 43

13.8 Practica

44, Un archivo hashed utiliza un método de médulo de divi-
si6n con 41 como el divisor. ;Cudl es la diveccion para
cada una de las Haves signientes?

a, 14232
b. 12560
e 13450
d. 15341

45, En el método de dispersién o hashing de cuadrado me-
dio, la llave se eleva al cuadrado y la direccidn se selec-
ciona de la mitad del resultado. Utilice este método para
seleccionar la direccidn de cada una de las llaves siguien-
tes. Use los digitos 3, 4 y 5 (a partir de la izquierda).

a. 142
b. 123
e 134
d. 153

46. En el método de dispersién o hashing de dobiado, la Ha-
ve se divide en partes. Las partes s¢ suman para obtener
la diveccidn. Utilice este método para encontrar la direc-
cién de las Haves siguientes. Divida la llave en partes de
dos digitos y stmelas para encontrar la direccitn.

a. 1422
b, 1257
¢ 1349
d. 1532

47. En el método de dispersion o hashing de limite doblado,
1a llave se divide en partes. Las partes izquierda y dere-
cha se invierten y se suman a la parie media para obte-
ner la direccién. Utilice este método para encontrar la
direccién de las llaves siguientes. Divida la llave en tres
partes de dos digitos, invierta los digitos en la primera y
tercera partes y luego sume las partes para obtener la di-
reccidn.

a. 142234
b, 125711
c. 134919
d. 153213

48. Encuentre Ia direccién de las Haves siguientes utilizando
el método de médéulo de divisidn y un archivo de tama-
fio 411. Si hay una colisién, utilice ¢l direccionamiento
abierto para resolverlo. Dibuje una figura para mostrar la
posicion de los registros.

a, 10278
b, 08222
c. 20553
d. 17256

49, Repita el ejercicio 48 usando la resolucion de lista li-
gada.

14.1 Sistemas de administracién de bases de datos

Comenzamos por definir un sistema de administracién de bases de datos (DBSM) y anali-
zar sus componentes. Luego presentamos los tres niveles de arquitectura para un DBMS. Nos
concentrarqos en el modelo de bases de datos relacionales con ejemplos de sus operaciones.
Luego analizamos un lenguaje (el lenguaje de consultas estructurado o SQL) que opera en las

gases de datos relacionales. Finalmente, estudiamos brevemente otros modelos de bases de
atos.

software

Una base de datos es una coleccidn de datos que de una manera logica, pero no necesaria-

ment.e ﬁ’s.,ica, es coherente. Normalmente, debe haber algdn significado inherente a los datos
para justificar la creacion de la base de datos.

SISTEMA DE ADMINISTRACION DE BASES DE DATOS

{Jn sistema de administracién de bases de datos (DBMS: Database management system)
define, crea y mantiene una base de datos. Ef DBMS ademds permite a los usuarios acceso
controlado a los datos en fa base de datos. Un DBMS es una combinacién de cince compo-
nentes: hardware, software, datos, usuarios y procedimientos (figura 14.1).

DBMS
Y

I T 1
! Hardware EI Softivare EI Da’tos E(Usumioﬂl%rocedimientos!

Figura 14.1 Componentes DBMS

E! hardware es el sistema de cémputo fisico que permite acceso fisico a los datos. Por ejem-
plo, las terminales de usuario, el disco duro, la computadora principal y las estaciones de tra-
bajo se consideran paste del hardware en un DBMS.

El software es el programa gue permite a los usuarios acceder, mantener y actualizar los da-
tos fisicos. Ademds, el software controla cudl usuario puede tener acceso a qué parte de los
datos en la base de datos.

Los datos en una base de datos se almacenan fisicamente en fos dispositivos de almacena-
miento. En una base de datos los datos son una entidad separada del software que accede a
los mismos. Esta separacién permite la organizacion para cambiar el software sin tener que
cambiar los datos fisicos o 1a manera en que éstos se almacenan. Si una organizacién ha de-
cidido utilizar un DBMS, entonces toda la informacidn requerida por la organizacién debe
mantenerse bajo una entidad, para que sea accesible por el software en el DBMS.

El término usuarios en un DBMS tiene un amplic significado. Podemos dividir a los usua-
rios en dos categorfas: usuarios finales y programas de aplicacién.

Usuarios finales Los usuarios finales son aquellas personas que pueden acceder a la ba-
se de datos directamente para obtener informacién. Hay dos tipos de usuarios finales: el ad-
ministrador de bases de datos (DBA) y el usuario normal. El administrador de bases de datos
tiene el nivel méximo de privilegios. Puede controlar a los otros usuarios ¥ su acceso al
DBMS. Puede otorgar algunos de sus privilegios a alguien mds pero conserva la capacidad
para revecarlas en cualquier momento. Un usuario normal, por otro lado, sélo puede utilizar
parte de la base de datos y tiene acceso limitado.

Programas de aplicacién Los demds usuarios de los datos en una base de datos son los
programas de aplicacién. Las aplicaciones necesitan tener acceso a los datos y procesarlos.
Por ejemplo, un programa de aplicacién de némina necesita tener acceso a parte de los datos
en una base de datos para crear chegues de pago a fin de mes.

El tltimo componente de un DBMS es una serie de procedimientos o reglas que deben defi-
nirse claramente y que deben seguir los usuarios de la base de datos.

Bases de datos

14.2 ARQUITECTURA

MIVEL INTERNO

NIVEL CONCEPTUAL

MIVEL EXTERNG

. de Estdndares (ANSI/SPARC) ha establecido una arquitectura de tres niveles para un DBMS;

El Comité de planeacién y requisitos de estdndares del Instifuto Nacional Norteaméricana :

interno, conceptual y externo (figura 14.2),

Vista def useurio Vista del usuarto Vista del asugrio Vista del usuario

Hardware

Figura 14.2 Arquitectura de bases de datos

El nivel interno determina dénde se almacenan realmente los datos en el dispositivo de al-
macenamiento. Este nivel trata con métodos de acceso de bajo nivel ¥y ¢Omo se transfieren los
bytes hacia y desde el dispesitivo de almacenamiento. En otras palabras, el nivel interno in-
teractiia directamente con el hardware.

El nivel conceptual, o comunitario, define ¢l punto de vista 16gico de los datos. En este ni-
vel se define el modelo de datos y los diagramas de esquemas. Las funciones principales del
DBMS estén en este nivel. Ef DBMS cambia la vista interna de los datos a la vista externa de
los mismos que el usuario necesita ver. Bl nivel conceptual es un intermediario v libera a 108
ustarios del manejo del nivel interno.

El nivel externe interactda directamente con el usuario (usuarios finales o programas de apli-
cacién). Cambia los datos que llegan del nivel conceptual a un formato ¥ vista que son cono-
cidos por el usuario.

14.3 Meodelos de bases de datos

10DELO DE RED

ODELOS DE BASES DE DATOS

Un modelo de base de datos define el disefio 16gica de los datos. El modelo también describe
1as relaciones entre distintas partes de los datos. En 1a historia del disefio de bases de datos, tres
modelos han estado en uso: el modelo jerdrquico, el modelo de red y el modelo relacional.

En un modelo jerdrguico, los datos estdn organizados como un drbol invertido. Cada entidad
tiene sélo un padre, pero puede tener varios hijos. En {a parte superior de la jerarquia, el ar-
bol es una sola entidad, 1a cual se Hlama rafz. La figara 14.3 muestra una vista 1égica del mo-
delo jerarguico. Como el modelo jerdrguico es obsoleto, no es necesario ningtn anélisis de
este modelo.

DEPARTAMENTO

T

_ESTUDLANTES%

PROFESORES

Figura 14.3 Modelo jerarquice

En un modelo de ved, 1as eniidades se organizan en un grafo, donde se puede tener acceso a
algunas entidades a través de varios caminos {figura 14.4). No-hay una jerarquia. Este mode-
1o también es obsoleto y no necesita un andlisis posterior.

DEPARTAMENTO

CURSOS PROFESORES

Figura 14.4 Modelo de red

MODELD

RELACIONAL

Bases de datos

En vn medelo relacional, los datos se organizan en tablas bidimensionales llamadas relacio.
nes. No hay una estructura jerdrquica o de red impuesta en los datos. No obstante, las tablas’

o relaciones estdn relacionadas entre sf, como se verd en breve (figura 14.5).

DEPARTAMENTO PROFESORES

ESTUDIANTES

Figura 14.5 Modelo relacional

El modelo relacional es uno de los modelos méas comunes en uso en la actualidad y dedi-

camos la mayor parte de este capitulo al mismo. En la Gltima seccidn, estudiamos brevemen-
te los otros dos modelos comunes que se derivan del modelo relacional: el modelo distribuido
¥ €l modelo orientado a objetos.

14.5 Operaciones con relaciones

Atributos
_ T ! e
Nu'./ Nombre del curso (Unidad
CIS15 |Introducciéna C 5
CIS17 |Introduccién a Java 5
CIS19 [UNIX 4
CIS51 |Conectividad en red 5

CURSOS

Tuplas

Figura 14.6 Relacion

Cada columna en la tabla debe tener un nombre que sea tnico en el dmbito de la rela-
cién. Ei nimero total de atributos para una relacién se conoce como el grado de larelacién.
Por ejemplo, en 1a figura 14.6, 1a relacién tiene un grado de 3. Observe que los nombres
de los atributos no se almacenan en la base de datos; el nivel conceptual utiliza los atri-
butos para dar significado a cada columna.

B Tuplas. Cada fila en una relacién se conoce como tupla. Una tupla define una coleccidn
de valores de atributos. El nimero total de filas en una relacién se llama cardinalidad
de la relacién. Observe que la cardinalidad de una felacién cambia cuando se afiaden o
eliminan tuplas. Esto vuelve dindmica a la base de datos.

14.4 MODELO RELACIONAL

RELACION

Continnamos nuestro andlisis de las bases de datos con el modelo més popular, el sistema de
bases de datos relacionales (RIXBMS: relational database management system). En este
modelo, los datos (universo del discurso) se representan mediante una serie de relaciones.

Una relacidn, en apariencia, es una tabla bidimensional. El RDBMS organiza los datos de ma-
nera que la vista externa sea una serie de relaciones o tablas. Esto no significa que los datos
se almacenen como tablas; el almacenarniento fisico de los datos es independiente de la for-
ma en que ¢stos estdn logicamente organizados. La figura 14.6 muestra un gjemplo de una re-
lacién.

Una relacin en un RDBMS tiene las caracteristicas siguientes:

Nombre. Cada relacién en una base de datos relacional debe tener un nombre dnico en-
tre otras relaciones.

B Atributos. Cada columna en una relacién se llama atributo. Los atributos son fos enca-

bezados de las columnas en la tabla. Cada atributo da significado a los datos almacena-
dos bajo éL

ELIMINACION

14.5 OPERACIONES CON RELACIONES

En una base de datos relacional, podemos definir varias operaciones para crear nuevas rela-
ciones ademss de las existentes. Definimos nueve operaciones en esta seccién: insercidn, eli-
minacion, actualizacidn, seleccidn, proyeccidn, juntura, unién, interseccién y diferencia.

La operacién de insercién es una operacidén unaria; se aplica a una sola relacion. La opera-
¢i6n inserta una nueva tupla en la relacion. La figura 14.7 muestra un gjemplo de la ope-
racién de insercién. Un nuevo curso (CIS52) se ha insertado (agregado) a la relacién.

CURSOS -
No. { Nombre del curso | Unidad
No. | Nombre del curso |Unidad

— CIS15 {Inirodonccidn a C 5
CI813 | Intwoduccion a 3 Insercion CIS17 |Introduccién aJava | S
CiS17 |Tnwoduccionalava | 5 P3| Gnoer) B o0 lunx 4
CIs19 . 4 (1851 |Conectividad en red 5
CIS51 [Conectividad en red 5 1552 | Protocolos TCPIP p

rotocolos

Figura 14.7 Operacién de insercién

La operacién de eliminacion también es una operacidn unaria. La operacién elimina una -
pla definido por un criterio de la relacidn. La figura 14.8 muestra un ejemplo de la operacién
de eliminacidn. El curso CIS19 se eliming.

ACTUALIZACION

SELECCION

Bases de datos

CURSOS

No. | Nembre det curso {Unidad

No. | Nombre del curse |Unidad

CIS15 |Introduccién a C
CIS17 |Imtroduccion a Java
1519 {UNIX

1851 |Conectividad en red
CIS52 | Protocolos TCP/P

Eliminacién CI515 |Introduccion a C 5
(Deiete) @ CI817 |Introduccidn a Java

CI1851 |Conectividad en red

CI852 { Proiocolos TCP/TP

G th = Lh Lh

oo Lh

Figura 14.8 Operacion de eliminacién

La dperacién de actualizacién también es una operacién unaria; se aplica a una sola rela-
¢idn. La operacioén cambia el valor de algunos atributos de una tupla. La figura 14.9 muestra
un ejemplo de la operacion de actualizacion. El nfimero de unidades para CIS51 se ha actua-
lizado (cambiado) de 5 a 6.

CURSGS

No. | Nombre del corso { Unidad No. | Nombre def curso |Unidad

CIS15 |Introduccién a C
CIS17 |Introduccion a Java
CIS19 |UNIX

CIS51 | Conectividad en red
CIS52 |Protocolos TCP/AP

CIS15 | Introduccidn a C

Actualizacién CIS17 | Introduccidn a Java
(Update) ==l 0 q0 | unix

CIS5)] | Conectividad en red

CIS52 | Protocoles TCP/IP

[R)

[= = N SR R]

Figura 14.2 Operacion de actualizacion

I.a operacién de seleccion es una operacidn unaria que se aplica a una sola relacidn y crea
otra relacién. Las tuplas (filas) de la relacién resultante son un subconjunto de las tuplas de
Ia relacién original. Esta operacidn utiliza algunos criterios para seleccionar algunas de las tu-
plas de Ia relacién original. El ndmero de atributos (columnas) en esta operacion permanece
igual. La figura 14.10 muestra un ejemplo de la operacidn de seleccidn. En esta figura, hay
una relacién que muestra los cursos ofrecidos por un pequefio departamento. La operacidn de
seleccion permite al usuario seleccionar sélo los cursos de cinco unidades.

CURSOCS

No. | Nombre del curso |Unidad

No. |Nombre del curso {Unidad
Seleceidon CIS15 | Introduccién a C

w (Select) @ CIS17 } Introduccion a Java

(CiS51 | Conectividad en red

CIS15 {Introducciéna C
CIS17 |Introdhzceidn a Java
CIS19 |{UNIX

CI851 {Conectividad en red
CIS52 | Protocolos TCH/IP

o

[R e]

[RV, I SN

Figura 14.10 Operacion de seleccién

14.5 Operaciones con relaciones

La operacién de proyeccién también es una operacién unaria; se aplica a una sola relacién
y crea ofra relacidn. Los atributos (columnas) en la relacion resultante son ua subconjunto de
los atributos de la relacién original. La operacién de proyeccién crea una relacion en la cual
cada tupla tiene menos atributos. El nimero de tuplas (filas) en esta operacién sigue siendo
el mismo. La figura 14.11 muestra un ejemplo de la operacitn de proyeccién que crea una re-
lacién con sélo dos columnas.

CURSOS
No. | Nombre del curso |Unidad No. |Unidad
CIS15 | Introduccidén a C 5 CiIS15 S
C1817 | Iatroduccién a Java | 5§ Proyeccién CIS17}§ 5
CIS19 | UNIX s PP (i’goject} 3 cs19 | 4
CIS51 | Conectividad en red 5 CIS51 5
C1852 | Protocolos TCPAIP | 6 c1ss2 | 6

Figura 14.11 Operacion de proyeccién

La operaci6n de juntura es una operacin binaria; toma dos relaciones y las combina con
base en atributos comunes. Esta operacién es muy compleja y tiene muchas variantes. En la
figura 14.12 aparece un ejemplo muy simple en el cual la relacién de CURSOS se combina
con la relacién de IMPARTIDOS POR para crear una relacién que muestra toda fa informa-
ci6n sobre los cursos, incluyendo los nombres de los profesores que los imparten. En este ca-
50, el atribuio coman es el nfimero de curso (No.).

CURSOS

No. | Nombre def curso | Unidad

CIS15 |Introduccién a C
CI817 |Introduccién a Java
CI819 FUNIX

CIS51 {Coenectividad en red

CI552 | Protocolos TCP/IP No. Nombre del curso {Unidad | Profeser
Introducciéna C
IMPARTIDO POR Juntura # EEE Introduccion a Java g I]:ie
No. | Profesor (Join) CI519 | UNIX 4 | Walter
Ci851 | Conectividadenred | 3 Lu
CIS15 | Lee CiS52 | Protocolos TCPAP | 6 | Lee
CIS17 ¢ Lu
CIS19 § Walter
CIS51{ Le
CIS52 | Lee

Figura 14.12 Operacidn de juntura

La operacién de unién también es una operacién binaria; toma dos relaciones y crea una
nueva relacién. Sin embargo, hay una restriccidn en las dos relaciones; éstas deben tener los
mismos atributos. La operacién de unidn, segiin se define en la teorfa de conjuntos, crea una
aueva relacién en la cual cada tupla estd ya sea en la primera relacidn, en la segunda o en am-
bas. Por ejemplo, la figura 14.13 exhibe dos relaciones. En la esquina superior izquierda

INTERSECCION

DIFERENCIA

Organizacion de datos

Lista de furnos de CIS13

1D de estudiante | Nombre | Apellido

145-67-6754 } John Brown
232-56-5690 | George | Yellow |mm

345-89-6580 | Anne Green 1D de estudiante] Nombre | Apellido|
459-98-0789 | Ted Puple
T @ Unién 145-07-6754 | John Brown :
Lista de turnos de CIS52 > (Union) el 232-56-5690 1 George | Yeliow
1D de estudiante| Nombre | Apellido 345-89.6580 | Amne | Green
459-98-6789 1 Ted Purple
342-88-6999 | Rich White 342-88-9999 | Rich White
145-67-6754 | John Brown [=

232-56-5690 | George | Yellow

Figura 14.13 Operacién de unidn

14.6 Lenguaje de consultas estructurado

Lista de turnos de CIS15

ID de estudiante] Nombre { Apeliido

145-67-6754 | John Brown
232-56-5690 | George | Yellow jmem
345-89-6580 | Anne Green

459-98-6789 | Ted Purple N T ID de estudiante} Nombre | Apellido
- . = Diferencia
Lista de turnos de CIS52 > { Difference) = 345-80-658C } Anme Green
1D de estudiante} Nombre |Apeflido 459-98-6789 | Ted Purple

342-88-9999 | Rich White
145-67-6754 | John Brown ==
232-56-3650 | George] Yellow

Filgura 14.15 Operacidn de diferencia

estd 1a lista de mmos para CIS15; en la esquina inferior izquierda est4 la lista para CIS52. Bl

resultado es una relacién con informacién sobre los estudiantes que toma ya sea CIS135,
CIS52 o ambos.

La operacién de interseccion también es una operacién binaria; toma dos relaciones y crea
una nueva relacion. Al igual que la operacién de union, Ias dos relaciones deben tener los mis-
mos atributos. La operacién de interseccién, como lo define la teorfa de comjuntos, crea una
nueva relacién en la cual cada tupla es un miembre de ambas relaciones. Por efemplo, la fi-
gura 14.14 presenta dos relaciones de entrada. El resultado de la operacidn de interseccidn es
una relacién con informacién scbre los estudiantes que toman tanto CIS15 como CIS32.

Lista de turnos de CIS15

ID de estudiante{ Nombre | Apellido

145-67-6754 | John Brown
232-56-5690 | Georse | Yellow
345-89-6580 | Anne Green

459-98-6789 | Ted Purple

Interseccidn ID de estudiante] Nombre | Apellido

(Intersection) 145-67-6754 | Johm Brown
' 232-56-569%0 | George | Yellow

Lista de furnes de CISS2
ID de estudiante| Nombre { Apellido

342-88-9999 | Rich White
145-67-0754 | John Brown
232-56-5690 | George { Yellow

Figura 14.14 Operacién de interseccién

La operacion de diferencia también es una operacién binaria. Se aplica a dos relaciones con
los mismos atributos. Las tuplas en Ia refaci6n resultante son aguellas que estin en Ia prime-
ra relacién pero no en la segunda. Por ejemplo, la figura 14.15 muestra dos relaciones de en-

trada. El resnitade de 1a operacién de diferencia es una relacién con informacion sobre {08
estudiantes que toman CIS15 pero no CIS52.

INSTRUCCIONES

4.6 LENGUAJE DE CONSULTAS ESTRUCTURADO

El lenguaje de consultas estructurado (SQL: structured query language) es el lengoaje es-
tandarizado por el Institute Nacional Norteamericano de Estandares (ANSI) y la Organiza-
¢ién Internacional para la Estandarizacion (ISO) para usar en las bases de datos relacionales.
Es un lenguaje declarativo (no de procedimientos), lo cual significa que los usuarios declaran
1o que quieren sin tener que escribir un procedimiento paso a paso. El lenguaje SQL prime-
ro se implementd por Oracle Corporation en 1979; desde entonces se han liberado nuevas ver-
siones de SQL.

En esta seccién se definen algunas instrucciones comunes en el lenguaje SQL que se re-
lacionan con las operaciones definidas en la séccién anterior. De ninguna manera es un tuto-
rial para el lenguaje SQL. Para obtener més informacion, consulte libros sobre SQL.

Las instrucciones siguientes estén relacionadas con las operaciones que definimos.

La operacidn insert (insertar) utiliza el formato siguiente. La cldusula de valores define todos
los valores de atributos para la tupla correspondiente a insertar.

ingsert into NOMBRE-RELACION
values (. P e e e e)

Por ejemplo, la operacidn de insercidn en la figura 14.7 puede implementarse en SQL uti-
lizando:

Cidnsent 308
Siralues ‘GIS_;S'Z"_", “Protocolos:

Observe que los valores de cadena estin entrecomillados; los valores numéricos no lo estan.

1.a operacién delete (eliminar) utiliza el siguiente formato. Los criterios para la eliminacién
se definen en la cldusula where.

delete from NOMBRE-~RELACTON
where c¢riterios

Update

$elect

Project

Bases de datos

Por gjemplo, la operacién de eliminacién en la figura 14.8 puede implementarse en SQL
utilizando:

La operacién update (actualizar) utiliza ef formato siguiente. El atributo a cambiar se define
en la cldusula set. Los criterios para la actualizacién se definen en Ia cliusula where.

update NOMBRE-RELACICN
set atributol = wvalorl
where criterios

atributo2 = valor2,

Por ejemplo, la operacién de actualizacién en la figura 14.9 puede implementarse en SQL
usando:

: update
get.

La operacién select (seleccionar) utiliza el formato signiente. El asterisco significa que todos
los atributos se eligen.

salect *
from NOMBRE-RELACION
where criterios

Por ejemplo, la operacidn de seleccion en la figura 14.10 puede implementarse en SQL
usando:

La operacién project (proyectar) utiliza el formato siguiente. Los nombres de las colurmmas
para la nueva relacion se Histan de manera explicita.

select lista-atributos
from NOMBRE-RELACION

Por ejemplo, 1a operacién de proyeccion en la figura 14.11 puede implementarse en SQL
mediante:

selec

La operacion jein (juntar) emplea el siguiente formato. La lista de atributos es la combina-
cién de atributos de las dos relaciones de entrada; los criterios definen explicitamente los atri-
butos utilizados como atributos comunes,

select lista-atributos
from RELACION], RELACIONZ
where criterios

Union

Intersection

Difference

14,6 Lenguaje de consulias estructurado

Por ejemplo, la operacién de juntura en la figura 14.12 puede implementarse en SQL uti-
lizando:

sslect No. Nowbre
£rom CURSOS. IMPARTI -
where \CURSOS:NO = IMPARTIDOS=POR I

ée::

La operacidn vnion (unir) utiliza el formato siguiente. Otra vez, el asterisco significa que se
seleccionan todos los atributos.

select *

from RELACIONL
union

select *
from RELACIONZ2

Por ejemplo, la operacién de unidn de la figura 14.13 puede implementarse en SQL me-
diante:

select Le _ _ .
istazturnes-CI815 -7

La operacién intersection (interseccidn) usa el formato signiente. De nuevo, el asterisco sig-
nifica que se seleccionan todos los atributos.

select *

from RELACICNL
intersection
gelect *

£rom RELACIONZ

Por ejemplo, la operacidn de interseccién de Ia figura 14.14 puede implementarse en SQL
utilizando:

ol

Listas turnos_—C__I;_SSQ o

gelect
from

La operacidn difference (diferencia) utiliza el siguiente formato. Nuevamente, el asterisco
significa que se seleccionan todos los atributos.

select *

from RELACIONL
minug

select *

from RELACIONZ

Bases de datos

Combinacion
de instrucciones

Por ejemplo, 1a operacién de diferencia de la figura 14.15 puede jinplementarse en SQI,
mediante:

El lenguaje SQL le permite cormbinar las instrucciones anteriores para extraer informacién

mds compieja desde una base de datos.

14.9 Resumen

acceso a los mismos. El objeto depastamento puede definir los atributos det depariamento y
como puede accederse a ellos. Asimismeo, la base de datos puede crear una relacién entre un
objeto empleado y un objeto departamento {un empleado trabaja en un departamento).

14.7 OTROS MODELOS DE BASES DE DATOS

BASES DE DATOS
DISTRIBUIDAS

Bases de datos
distribuidas
fragmentadas

Bases de datos
distribuidas
replicadas

BASES DE DATOS
ORIENTADAS
A OBJETOS

La base de datos relacional es uno de los modelos més comunes de hoy en dfa. Los otros dos -
modelos comunes son las bases de datos distribuidas v las bases de datos orientadas a obje-:
t0s. Analizamos brevemente estos dos modelos en esta seccién y dejamos una exploracin :

mids profunda para libros sobre bases de datos.

El modelo de bases de datos distribuidas en realidad no es un modelo nuevo. Estd basadoen
el modelo relacional. Sin embargo, los datos se almacenan en varias computadoras que se ¢o-
munican a través de Internet (o alguna red privada de drea amplia). Cada computadora (o -/
tio, como se le llama) mantiene parte o toda la base de datos. En otras palabras, los datos estda,

ya sea fragmentados, con cada fragmento almacenado en un sitio, o duplicados en cada sitio.

En una base de datos distribuida fragmentada los datos se localizan. Los datos utilizados :
localmente se almacenan en el sitio correspondiente. Sin embargo, esto no significa que ufl;

sitio no puede tener acceso a los datos almacenados en otro sitio, El acceso es principalme

te local pero de vez en cuando es global. Aunque cada sitio tiene control completo sobre sus
datos locales, hay un control global a través de Internet. Por ejemplo, una compafiia farma-;
céutica puede tener miiltiples sitios en muchos pafses. Cada sitio tiene una base de datos coR:
informacién sobre sus propios empleados, pero un departamento central de personal tiene el

control de todas las bases de datos.

En una base de datos distribuida replicada, cada sitio mantiene una réplica exacta de 00,
sitio. Cualquier modificacién en los datos almacenados en un sitio se replica exactamente el

cada sitio. La razén para tener una base de datos semejante es la seguridad. Si el sistema eit
un sitio falla, los usuarios en este sitio pueden tener acceso a los datos de otro sitio.

La base de datos relacional tiene una vista especifica de datos que se basa en la naturaleza de
las bases de datos relacionales (tuplas y aiributos). La unidad de datos m4s pequefia en uBd,
base de datos relacional es la intersecci6n de una tupla y un atributo. Sin embrago, actualmen;
te algunas aplicaciones necesitan buscar datos en otra forma. A algunas aplicaciones les. U

ta ver los datos como una estructura (capftulo 11), por ejemplo un registro hecho de CaIﬂPf’S“
Una base de datos orientada a objetos trata de mantener las ventajas del modelo relecio”.

nal y al mismo tiempo permite que las aplicaciones accedan a los datos estructurados. En upd.
base de datos orientada a objetos, se definen los objetos y sus relaciones. Ademds, cada Ub_'_:

jeto puede tener atributos que pueden expresarse cOmMoO Campos.

Por gjemplo, en una organizacién, uno puede definir fipos de objetos tales como emple
dos, departamentos v clientes. La clase empleados puede definir los atributos de un obj
empleado (nombre, apellido, nimero del seguro social, salario, etc.) y como se puede teﬂer:.

ase de datos orientada a objetos

omité de planeacioén y requisitos
de estandares (SPARC)

ase de datos distribuida duplicada
ase de datos distribuida fragmentada
ase de datos distribuida (replicada)

modelo de red

modelo jerdrquico

modelo relacional

nivel concepiual

nivel externo

nivel interno

operacion difference (diferencia)
operacion intersection {(interseccién)
operacidn join (juntura)
operacidn project (proyeccién}
operacidn select (seleccionar)
operacién union {unién)

operacion update (actualizar)

procedimiento

programa de aplicacién

relacién

sisterna de administracion de bases
de operacién difference

sistema de administracién de bases
de datos relacionales (RDBMS)

software

tupla

usuario

usnario final

4.9

'etOI__.

Una base de datos es una coleccién de datos que de ma-
nera iGgica, pero no necesarzamente fisica, es coberente.

Un sisterna de administracién de bases de datos
(DBMS) define, crea y mantiene una base de datos y
permite el acceso controlado a los usuarios.

Un DBMS se compone de hardware, software, datos,
usvarios ¥ procedimientos.

Los usuarios de DBMS pueden ser personas o progra-
mas de aplicacion.

Un DBMS tiene tres niveles: interno, conceptual y exter-
no.

El nivel interno de un DBMS interactiia directamente
con el hardware y se ocupa de los métados de acceso de
bajo nivel y la transferencia de bytes hacia y desde el
dispositivo de almacenamiento.

El nivel conceptual de una DBMS define la vista logica
de los datos asi como el modelo de datos y los diagra-
mas de esquema.

El nivel externo de un DBMS interactia directamente
con el usuario.

Fl sistema de administracion de bases de datos relacio-
nales (RDBMS) es el tinico modelo de base de datos de
amplio uso hoy en diz. Los modelos jerrquico y de red
son obsoletos.

Una relacion puede pensarse como una tabla bidimen-
sional.

Cada columna en una relacidn se llama atributo. El nd-
mero de atributos en una relacién es su grado.

Cada fila en una relaci6n se llama tupla. El mdmero de
filas en una relacién es su cardinalidad.

Nueve operaciones pueden realizarse con las relaciones.

{Una operacién que actiia sobre una relacién es un ope-
rador unitario. Los operadores unitarios incluyen las
operaciones de insercién, eliminacién, actualizacién, se-
leccidn y proyeccion.

Una operacién que actfia sobre dos relaciones es un ope-
rador binario. Los operadores binarios incluyen las ope-
raciones de juntura, unién, interseccién y diferencia.

El lenguaje de consultas estructurado (SQL) es el len-
guaje estandarizado por el ANSI y ia ISO para usarse en
1as bases de datos relacionales.

Bases de datos

14.10 PRACTICA

PREGUNTAS DE REPASO

1.

10.

11.

12.
13.

14,

15.
16.
17.

(Cudles son los cinco componentes indispensables de un
DBMS?

Mencione los dos tipos de usuarios de un DBMS,

(Cémo se relacionan los tres niveles de un DBMS en-
tre si?

(Cudles son los tres modelos de bases de datos? ;Cudles
de ellos son populares en la actualidad?

;Qué es una relacion en un RDBMS?
En una relacidn, ;qué es un atributo? ;Qué es una tupla?

¢Cudl es la diferencia entre una operacién unaria y una
operacién binaria?

Mencione las operaciones unarias que se aplican a las
relaciones en un RDBMS.

Mencione las operaciones binarias que se aplican a las
relaciones en un RDBMS.

i Cudl es la diferencia entre las operaciones de insercién
y eliminacién?

;Cul es la diferencia entre las operaciones de actualiza-
¢ibn y seleccion?

(Cudl es [a funcién de la operacidn de proyeccion?

;Qué tiene en comun la relacién de salida de la opera-
¢i6n de juntura con las relaciones de entrada?

(Cudl es la diferencia entre la operacién de unidn y la
operacion de interseccién?

{Cudl es la funcién de la operacién de diferencia?
$Qué es SQL?

En SQL, ;cémo se sabe en cudles relaciones estdn ac-
tuando los operadores”?

PREGUNTAS DE OPCIGN MULTIPLE

18.

19,

Un DEMS
a. define
b. crea

c. mantiene
d. todos los anteriores

una base de datos.

El cddigo DBMS que permite al usuario tener acceso,
mantener y actualizar es

a. el hardware

b. los datos

¢ ¢l software

d. el usuario

26.

21.

22,

23,

24,

25,

26.

Los componentes del DBMS tales como la computado-

ra'y los discos duros que permiten acceso fisico a los da-

{08 Se Conocen Como
a. hardware
software
€. usuarios
d. programas de aplicacién

El de un DBMS puede ser un administrador
de bases de datos 0 una persona que necesita tener ac-
ceso a la base de datos.

a. usuario final

b. programa de aplicacién

¢. programador

d byc

Tanto las personas como
usuarios de una base de datos.

pueden considerarse

a. los datos

b. el software

¢. los programas de aplicacidn
d. el hardware

En una arquitectura DBMS de tres niveles, la capa que
interactiia directamente con el hardware es el nivel

4. externo
b. conceptual
¢. interno
d. fisico

En una arguitectura DBMS de tres niveles, el nivel

determina dénde se almacenan los datos en
realidad en el dispositive de almacenamiento.
a. externo
b. conceptual
¢. interno
d. fisico

El nivel de una arquitectura DBMS de tres -
veles define la vista 1égica de los datos.

A, exierno

b. conceptual

¢. interno
d. fisico

El modelo de datos y el esquema de un DBMS a mend:
do se definen en el nivel
a. externo

b. conceptual

¢. interno

d. fisico

| En el modelo de bases de datos

En vna arquitectiza DBMS de tres niveles, el nivel
interactia directamente con los usuarios.

a. externo

b, conceptual

¢ interno

d. fisico

De los diversos modelos de bases de datos, ¢l modelo
es el que mas prevalece hoy en dfa.

a. jerdrquico

b. dered

¢. relacional

d. de lista ligada

El modelo de bases de datos acomoda sus
datos en forma de un drbol invertido.

a. jerdrquico

b. dered

¢. relacional

d. de lista ligada

, cada entidad
puede accederse a través de multiples caminos.
a. jerdrquico

‘b. dered

¢. relacional
d. de lista ligada

. La relacion es un conjunto de datos organizado 16gica-

mente como una tabla

a. unidimensional

b. bidimensional

¢. tridimensional

d. de cualquier dimensién

. Cada columna en una relacion se Hama

a. atributo
b. tpla

Cg umidn

d. listaligada

El grado de una refacidn es el ntimero de en
Ia relacion.

a. atributos

b. tuplas

T ¢, uniones
4. posiciones

Cada fila en una relacion se llama

- a. atributo

b. tupla
€. unidén
d. posicién

3s.

36.

37.

38.

39.

40.

41,

42,

14.10 Practica

Si una relacion tiene cinco filas, entonces su
es cinco.

a. diferencia

b. cardinalidad

¢. duplicidad

d. relatividad

Un operador unario se aplica a la(s) relacidn{es)
y crea una salida de relacién(es).

a. una; una

b. una; dos

¢. dos;una

d. dos; dos

Un operador binario se aplica a la(s) relacién(es)
v crea una salida de relacién(es).

a. uha; una

b. una; dos

¢. dos;una

d. dos; dos

La operacién unaria de siempre da como re-
sultado una relacién que tiene exactamente una fila més
que la relacion original.

a. insercién

b. climinacién

c. actalizacién

d. seleccidn

Si se quiere cambiar el valor de un atribute de una tupla,
se utiliza la operacién de

a. proyeccidn

b. juntura

¢. actalizacidn

d. seleccidn

Si usted tiene tuplas en una relacidn que contiene infor-
macidn de los estudiantes y quiere s6lo las tuplas de las
estudiantes mujeres, puede utilizar la operacién de

a. proyeccién
b. juntura

¢. actwalizacidn
d. seleccién

La operacidn que foma dos relaciones y las combina con
base en atributos comunes es la operacién de

a. juntura

h. proyeccidn

¢. unidn

d. interseccion

Si se necesita eliminar un atributo en una relacién, pue-
de utilizarse la operacién de

a. juntura

b. proyeccién

¢. unién

d. interseccion

43.

44,

45,

46.

Bases de datos

Usted quiere crear una relacidn llamada Nueva que con-
tenga tuplas pertenecienies tanto a la relacién A como a
la relaciéon B. Para hacerlo, puede utilizar la operacidn
de .

a. seleccién

b. union

¢ proyeccidn

d. interseccidn

;Cudl de las siguientes opciones es un operador unario?
a. interseccidn

b, unién

€. juniura

d. proyeccién

¢Cuil de las siguientes opciones es un operador binario?
a. seleccién

b. actualizacién

c. diferencia

d. todas las anteriores

es un lenguaje declarativo utilizado en las ba-
ses de datos relacionales.
a. PDQ
b. SQL
¢ LES
d. PRI

EJERCICIOS

47.

48,

Usted tiene ias relaciones A, B y C, como se exhibe en
la figura 14.16. Muestre la relacién resultante si se apli-
can Jas siguientes instrucciones SQL.

select *
from A
where A2 = 16
Usted tiene las relaciones A, B y C, como se exhibe en

la figura 14.16. Muestre Ia relacidn resultante si se apki-
can las siguientes instrucciones SQL.

select AT A2
from A
where A2 = 16

49,

50.

51,

52.

53.

54.

58,

57.

59.

60.

Usted tiene las relaciones A, B y C, como se exhibe ey

1a figura 14.16. Muestre la refacién resultante si se apli-

can las siguientes instrucciones SQL.
select A3
from A

Usted tiene las relaciones A, B y C, segtin aparece enla -

figura 14.16. Muestre la relacién resultante si se aplican
las siguientes instrucciones SQL.

select B1
from B
where B2 =216

Usted tiene las relaciones A, B y C, como se exhibe en -

la figura 14.16. Muestre la relacidn resultante si se apli-
can las sighientes instrucciones SQL.

update C
set C1 = 37
where C1 = 31

Utilizando el disefio de 1a figara 14.5, muestre la instruc-
ci6n SQL que crea una nueva relacién gue contiene sé-
lo el niimero de curso y el niimero de unidades para cada
CUrs0.

Utilizando ¢l disefio de la figura 14.5, muestre 1a instruc-
cién SQL que crea una nueva relacién que contiene s6-
lo el ID de estudiante v el nombre de estudiante.

Utilizando el disefio de 1a figura 14.5, muestre Ia instruc-
cién SQL que crea una nueva relacion que contiene s6-
lo el nombre de profesor.

Utilizando el disefic de ia figura 14.5, muestre la instruc-
¢i6n SQL que crea tna nueva relacién que contiene s6-
fo el nombre de departamento,

. Utilizando el disefio de 1a figura 14.5, muestre la instruc-

cién SQL que crea una nueva relacién que contiene los
cursos tomados por el estudiante con el 1D 2010.

Utilizando el disefio de la figura 14.5, muestre la instruc-
cién SQL que crea una nueva relacion que contiene 10s
cursos impartidos por el profesor Blake.

Utilizando el disefio de la figura 14.5, muestre la instruc-
cién SQL qgue crea una nueva relacidn que contiene so-
lo los cursos que se componen de tres unidades.

Utilizando el disefio de la figura 14.5, muestre la instric-
cion SQL que cres una nueva relacién que contiene so-
lo el nombre de los estudiantes que toman el curso
CIS015.

Utifizando el disefio de lafigura 14.5, muestre la instruc-
cién SQL que crea una nueva relacién que contiene el
niimero de departamento del Departamento de Ciencias
de {a Computacidn.

. Las bases de datos relacionales se basan entre entidades

en una organizacién. Encuentre las entidades en el dise-
fio de 1a figura 14.5. Por gjemplo, el estudiante y el cur-
5o son dos de las entidades de este disefio.

. Se dice que las relaciones entre entidades son 1:1 (uno a

wno, 1:M (uno a muchos) y M:N (muchos a muchos).
Utilizando el disefio de 1a figura 14.5, encuentre el tipo
de relacion (1:1, 1:M o M:N) entre estudiante y curso.

. Repita el gjercicio 62 para encontrar el tipo de relacion

(1:1, 1:M o M:N) entre estudiante y profesor.

64.

65.

66.
67.

14.10 Practica

Repita el ejercicio 62 para encontrar el tipo de relacion
(1:1, 1:M o M:N) entre departamento y profesor.

Repita el ejercicio 62 para encontrar una relacion uno a
uno entre dos entidades.

Disefie una base de datos relacional para una biblioteca.

Disefie una base de datos relacional para una compafifa
de bienes raices.

]
“

-
-

o

CAPITULO 15

Segur

-
e

CAPITULO 16

de: 5}@

ia

el

Teor

-
.

ULo 17

15.1 Compresidn sin pérdida

En dfas recientes, la tecnologia ha cambiado la forma de transmitir y almacenar los datos.
Por ejemplo, el cable de fibra Gptica nos permite transmitir los datos mucho mads rdpido y el
DVD nos permite almacenar grandes cantidades de datos en un pequefio medio fisice. Sin
embargo, al igual que en otros aspectos de la vida, el fadice de demandas del pablico siem-
pre se estd incrementando. Actualmente queremos descargar mas y mas infermacién en me-
1n0s y menos tiempo. También queremos almacenar méas y mas datos en un espacio pequefio.

La compresién de datos puede reducir fa cantidad de datos enviados o almacenados al elimi-
nar parcialmente la redundancia inherente. La redundancia se crea cuando producimos datos.
A través de la compresion de datos, hacemos la transmision y el almacenaje més eficientes,
y al mismo tiempo conservamos la integridad de los datos (hasta cierto punto).

La compresion de datos significa el envio o almacenamiento de un mimero pequefio de bits.
Aungue muchos métodos se utilizan para este propGsito, en general estos métodos pueden di-
vidirse en dos categorfas generaies: métodos sin pérdida y con pérdida. La figura 15.1 mues-
tra las dos categorfas v los métodos comunes utilizados en cada categoria.

Primero analizamos os métodos de compresion sin pérdida més simples y mds ficiles de com-
prender. Después, presentamos los métodos de compresién con pérdida méds complicados.

Métodos de
compresion de datos

| I
Métodos sin pérdida Miétodos con pérdida
(texto o programas) {imigenes. video. audio}
|]
L i dd l I
ongitud de
eje:ucién [Huffman E l Lempel Ziv g

Figura 15.1 Métodos de compresion de datos

CODIFICACION
DE LONGITUD DE
EJECUCION

En la compresitn de datos sin pérdida, se conserva la integridad de los datos. Los datos
originales v los datos después de la compresién y descompresién son exactamente ignales
debido a que, en estos métodos, los algoritmos de compresién y de descompresion son exac-
tarmente inversos uno de otro. Ninguna parte de los datos se pierde en el proceso. Los datos
redundantes se eliminan en la compresion y se afiaden durante fa descompresion.

Estos métodos por lo general se utilizan caando une no puede permitirse ¢l lujo de per-
der un solo bit de dates. Por ejemplo, usted no quiere perder datos cuando comprime un ar-
chivo de texto o un programa.

En esta seccién estudiamos tres métodos de compresidn sin pérdida: la codificacién de
longitud de gjecucidn, la codificacion de Huffman y el algoritmo de Lempel Ziv.

Probablemente el método més simple de compresion es la codificacion de longitud de eje-
cucién, ia cual puede utilizarse para comprimir datos hechos de cualguier combinacidn de
simbolos. No se necesita conocimiento de la frecuencia de ocurrencia de los simbolos (co-
mo lo requiere el método siguienie) y puede ser muy eficiente si los datos se representan
COINO CEros ¥ unos. _

Lz idea general que sustenta este método es remplazar ocwrencias de un simbolo repeti-
das y consecutivas por una ocurrencia del simbolo y el ndmero de ocurrencias. Por ejemplo,
AAAAAAAA puede remplazarse por AGE. La figura 15.2 presenta un ejemplo de este mé-
todo simple de cornpresién. Observe que utilizamos un ndmero fijo de digitos (dos) para re-
presentar el conteo.

BBBBBBBBBAAAAAAAAAAAAAAAANMMMMMMMMMM

a. Datos originales

BOALENOIMOL

b. Datos comprimidos

Figura 15.2 Ejemplo de codificacién de longitud de ejecucion

El métedo puede ser atin mds eficiente si los datos utilizan sélo dos simbolos (por gjem-
plo, 0 v 1) en su patrdn de bits y un simbolo es mis frecuente que ¢l otro. Por ejemplo, di-
gamos que usted tiene una imagen representada principalmente por ceros y algunos unoes. En
este caso puede reducir el ndmero de bits al enviar (o almacenar) el ndmero de ceros que
ocurren entre dos unos (figura 15.3).

a. Datos originales

000600000000000106060110000600000600

|

b. Datos comprimidos

Figura 15.3 Codificacion de longitud de ejecucion para dos simbolos

CODIFICACION
DE HUFFMARN

Compresion de datos

Hemos representado los conteos como un ntmero binario de cuatro bits (entero sin sig-
no). En una situacién real, usted encontrarfa un nimero dptimo de bits para evitar intrody-
cir redundancia extra. En la figura 15.3 hay catorce (antes del primer 1. Estos catorce ()
estdn comprimidos en el patrdn binario 1110 (14 en binario). El siguiente conjunto de ceros
estd comprimido en 0100 debide a que hay cuatro 0. Enseguida usted tiene dos 1 en los da-
tos originales, los cuales se representan mediante 0000 en los datos comprimidos. Finalmen-
te, los dltimos doce () en los datos estdn comprimidos en 1100.

Observe que, dada una compresion binaria de cuairo bits, si hay mas de quince 0, éstos
se dividen en dos o mds grupos. Por ejemplo, una secuencia de veinticinco 0 se cifra como
1111 1010. Ahora la pregunta es como sabe el receptor que éstos son veinticinco 0 y no
quince 0, luego un 1 y después diez 0. La respuesta es que si el primer contec es 1111, el re-
ceptor sabe que el siguiente patrén de cuatro bits es una continuacién de ceros. Ahora surge
otra pregunta: ;jqué pasa st hay exactamente quince 0 entre dos 17 En este caso el patrén es
1111 seguido por 0000.

En Ia codificacién de Huffman, usted asigna codigos mds cortos a simbolos que ocurren
con mayor frecuencia y cédigos mas largos a aquellos que ocurren con menor frecuencia.
Por gjemplo, imagine que tene un archivo de texto que ufiliza solo cinco caracteres (A, B,

- C, D, E). Elegimos sélo cinco caracteres para hacer el andlisis mdas simple, pero el procedi-

miento es igualmente vilido para un ndimero de caracteres menor ¢ mayor.

Antes de que pueda asignar patrones de bits a cada cardcter, usted asigna a cada cardcter
un peso basado en su frecuencia de uso. En este ejemplo suponga que la frecuencia de los
caracteres es 1a que se presenta en la tabla 15.1. El cardcter A ocurre 17 por ciento de las ve-
ces, ¢l cardcter B ocurre 12 por ciento de las veces y asi por el estilo.

Cardcter A B C D E
Frecuencia { 17 | 12 | 12 | 27 | 32

Tabla 15.1 Frecuencia de caracteres

Una vez que se ha establecido el peso de cada cardcter, se construye un drbol con base en
aquellos valores. El proceso de construccién de este drbol se muestra en la figura 15.4. Si-
gue tres pasos bésicos:

1. Se pone todo el conjunto de caracteres en una fila. Cada cardcter es ahora un nodo en
el nivel inferior de un &rbol.

2. Se encuentran los dos nodos dentro de los pesos més pequetios v se juntan para for-
mar un tercer nodo, el cual dé comeo resultado un drbol simple de dos niveles. El pe-
so del nuevo nodoe son los pesos combinados de fos dos nodos originales. Este nodo,
un nivel arriba de 1as hojas, es idéneo para combinarse con otros nodos. Recuerde, la
suma de los pesos de los dos nodos clegidos debe ser mds pequefia gue la combina-
cién de cualesquier otras opciones posibles.

3. Repita el paso 2 hasta que todos los nodos, de cada nivel, se combinen en un solo drbol.

Una vez que el arbol esté completo, utilicelo para asignar cédigos a cada cardcter. Prime-
ro asigne un valor de 1 bit a cada rama. Comenzando desde la raiz (nodo superior), asigneé
un 0 a la rama izquierda y un 1 a la rama derecha, y repita este patrén en cada nodo.

El cédigo de un cardcter se encuentra comenzando en la raiz y siguiendo las ramas que
conducen a ese caracter. El c6digo mismo es el valor de bits en cada rama del camino toma-
do en secuencia. La figura 15.5 muestra el drbol final con bits afiadidos a cada rama. Obser-
ve que movimos los nedos de la hoja para hacer que el drbol pareciera un drbol binario.

15.1 Compresion sin pérdida

A:00 D: 10
B:010E: 11
.

Figura 15.5 Arbol final y cédigo

Observe estos puntos sobre los cédigos. Primero, los caracteres con las frecuencias més
altas reciben un cédigo més corto (A, D y E) gue los caracteres con frecuencias més bajas
{B y ©). Compare esto con un c6digo que asigna & cada cardcter longitudes de bits iguales.
Segundo, en este sistema de codificacién, ningiin ¢édigoe es un prefijo de otro cédigo. Los
codigos de dos bits, 00, 10 y 11 no son el prefijo de ninguno de los otros dos cdédigos (0109
y (011). En otras palabras, usted no tiene un cdédigo de tres bits que comience con 00, 10 u
11. Esta propiedad hace del cédigo Huffman un c6digo instantdneo. Explicaremos esta pro-
piedad cnando analicemos 1a codificacién y la decodificacion en la codificacién de Huffman.

Veamos cémeo codificar el texto utilizando el cddigo para nuestros cinco caracteres. La figu-
ra 15.6 muestra el texto original ¥ el texto codificado. Vale la pena mencionar dos puntos so-
bre esta figura. Primero, observe que hay un sentido de compresién incluso en este pequefio
codigo ficticio. Si usted quiere enviar el texto sin utilizar 1a codificacién de Huffman, nece-
sita asignar un cédige de tres bits a cada cardcter. Enviarfa 30 bits, mientras que con la co-
dificacién de Huffman usted sélo enviarfa 22 bits.

Segundo, observe que no hemos utilizado ningin delimitador entre los bits que codifican
cada cardcter. Escribimos los cddigos uno después de otro. La belleza de la codificacion
Huffman radica en que ningiin cédigo es el prefijo de otro cédigo. No hay ambigiiedad en
la codificaci6n; ademds, el receptor puede decodificar los datos recibidos sin ambigiiedad.

Decodificacion

CODIFICACION
DE LEMPEL ZIV

Compresion de datos

Codificador

A 00 D: 10 &
B: 01O E: 11
C. 011

= EAEBAECDEA

Envio

Cédigo de Huffman

Figura 15.6 Codificacion de Huffman

El receptor tiene una tarea muy facil en la decodificacidn de los datos que recibe. La figura’
15.7 muestra cémo ocurre la decodificacién. Cuando el receptor recibe los primeros dos bits
no tiene que esperar al siguiente bit para tomar la decisidn. Sabe que estos dos se decodifi-.
can como E. La razon, como mencionamos antes, es que estos dos bits no son el prefijo de
ningtin cédigo de tres bits (no hay cddige de ires bits que inicie con 11). Asimismo, cuando
el receptor recibe los siguientes dos bits (00), también sabe que el cardcter debe ser A. Los
signientes dos bits se interpretan de la misma manera (11 debe ser E). Sin embargo, cuando
recibe los bits 7 y 8, sabe que debe esperar el siguiente bit porque este codigo (01) no estd
en la lista de cédigos. Después de recibir el siguiente bit (() interpreta los siguientes tres bits
juntos (010) como B. Esta es la razén por la cual el cédigo de Huffman se llama cédigo ins-
tantdneo; el decodificador puede decodificar inequivocamente los bits al instante (con el ni-
mero minimo de bits).

Decodificador

Recibido

EAEBAECDEA

Figura 15.7 Decodificacion de Huffman

La codificacién de Lempel Ziv (LZ) es un ejemplo de una categorfa de algoritmos llam# -
da codificacién basada en diccionario. La idea es crear un diccionario (una tabla) de cade-
nas utilizado durante la sesién de comunicacién. $i tanto el emisor como el receptor tiene?
una copia del diccionario, entonces las cadenas ya encontradas pueden sustituirse por 58 in-
dice en el diccionario para reducir la cantidad de informacidn transmitida.

Aungue la idea parece simple, varias dificultades afloran en la implementacién. Primero: .
(cémo puede crearse un diccionario para cada sesidn (no puede ser universal debido 2 5?
longitud)? Segundo, jcémo puede el receptor adquirir el diccionagio hecho por el emiser (st

Compresion

15.1 Compresion sin pérdida

usted envia el diccionario est enviando informacién adicional, lo cual va en contra del pro-
posito general de la compresion)? :

Un algoritmo practico que utiliza la idea de 1a codificacion adaptativa basada en diccio-
nario es el algoritmo de Lempel Ziv {LZ). Este algoritmo ha pasado por varias versiones
(LZ77, LZ78, ctc.). Presentameos la idea bdsica del algoritmo con un ejemple pero no ahon-
damos en los detalles de diferentes versiones e implementaciones. En nuestro ejemplo, su-
ponemos que la cadena siguieate estd por enviarse. Hemos elegido esta cadena especifica
para simplificar el andlisis.

BAABABBBAABBBBAA

Uiilizando nuestra version simple del algoritmo LZ, el proceso se divide en dos fases: la
compresion de la cadena y la descompresion de la cadena.

En esta fase, hay dos eventos concurrentes: la construccién de un diccionario indexado y la
compresion de una cadena de simbolos. El algoritmo extrae la subcadena més pequefia que
no puede encontrarse en el diccionario desde la cadena sin comprimir la restante. Luego al-
macena una copia de esta subcadena en el diccionario {como una nueva entrada) y asigna un
valor de indice. La compresi6n ocurre cuando la subcadena, con excepeidn del tltimo cardc-
ter, se remplaza con el indice encontrado en el diccionario. Ef proceso luego inserta el indi-
ce y el nuevo cardcter de la subcadena en la cadena comprimida. Por ejemplo, si la
subcadena es ABBB, usted busca ABB en el diccionario y encuentra que el indice para ABB
es 4, por consiguiente la subcadena comprimida es 4B. La figura 15.8 muestra el proceso
para nuestra cadena de ejemplo.
Sigamos unos cuantos pasos en esta figura:

PASQ 1 El proceso extrae la suhcadena mds pequefia de la cadena original gue no estd en
el diccionario. Debido a gue el diccionario estd vacio, el cardcter méds pequefio es un caréc-
ter (el primer cardcter, B). Bl proceso almacena una copia de éste como la primera entrada
en el diccionario. Su indice es 1. Ninguna parte de esta subcadena puede ser remplazada con
un indice def diccionario original (es sdlo un cardcter). El proceso inserta B en la cadena
comprimida. Hasta ahora, la cadena comprimida tiene sélo un caricter: B. La cadena restan-
te sin comprimir es la cadena original sin el primer cardcter.

PASO 2 El proceso extrae de fa cadena restante la siguiente subcadena mds pequefia que
no esta en el diccionario. Esta subcadena es el carédcter A, el cual no esta en el diccionario.
El proceso almacena una copia de ésta como la segunda entrada en el diccionario. Ninguna
parte de esta subcadena puede remplazarse con un indice desde el diccionario {s6lo es un ca-
récter). Bl proceso inserta A en la cadena comprimida. Hasta ahora, la cadena comprimida
tiene dos caracteres: B v A (hemos colocado comas entre las subcadenas de la cadena com-
primida para mostrar la separacidn).

PASO 3 El proceso exirae de la cadena restante la siguiente subcadena mds pequefia que
no estd en el diccionario. Esta situacién difiere de los dos pasos previos. El siguiente cardc-
ter (A) estd en el diccionario, asi que el proceso extrae dos caracteres (AB), los cuales no es-
tin en el diccionario. El proceso almacena una copia de AB como la tercera entrada en el
diccionario. El proceso ahora encuentra e indice de una entrada en el diccionario que es la
subcadena sin el Gltimo cardcter {AB sin el dltimo cardcter es A). El fndice para A es 2, asi
que el proceso remplaza A con 2 ¢ inserta 2B en la cadena comprimida.

PASO 4 Enseguida el proceso exirae la subcadena ABB (debido a que A y AB ya estdn en
el diccionario). Una copia de ABB se almacena en el diccionario con un indice de 4. El pro-
ceso encuentra el indice de la subcadena sin el Gltimo cardcter (AB), ei cual es 3. La com-
binacién 3B se inserta en 1a cadena comprimida. Tal vez haya notado que en los tres pasos
anteriores, en realidad no logramos ninguna compresién debido a que hemos remplazado un

Descompresion

Compresion de datos

| BAABABBBAABBBBAA |

Descomprimido

Cadena analizada sinticticamente

] ¢=—= BAABABBBAABBBBAA

Cadena analizada sintdcticamente

s AABABBBAABBBBAA

L A Cadena anal

B | A fae) L‘m_

lizada sinticticamente

fee ABABBBAABBBBAA

Cadena analizada sinticticamente

¢uee ABBBAABBBBAA

Cadena analizada sintdcticamente

]BEAIAEIABBIE:\I l
_ BAABBBBAA

LiltsjalsTel, Cadena analizada sintdcticamente

| 8 | & | aB |.ap] s jaesE| [e

ABBBBAA

iz lsl+gsle] 7} Cad alizada sintdcticament

RS ETES TR 4._3 adena analizada sintdcticamente

: fmm BAA

| B,A,2B, 3B, 1A, 4B, 5A |

Comprimido

Figura 15.8 Ejemplo de decodificacion Lempel Ziv

cardcter por uno (A por A en el primer paso' v B por B en el segundo paso) y dos caracteres
por dos (AB por 2B en el tercer paso). Pero en este paso en realidad hemos reducido el nii-
mero de caracteres (ABB se convierte en 3B). Si la cadena original tiene muchas repeticic-
nes (1o cual es cierto en la mayorfa de los casos), podemos reducir en gran medida el nimero
de caracteres.

Los pasos restantes son similares a une de los cuatro pasos precedentes, asf que dejamos
al lector seguir adelante. Observe que el diccionario sélo se utilizé por el emisor para encon-
trar los indices. Este no se envia al receptor y el receptor debe crear el diccionario para si
IISMe COMO veremos en la siguiente seccidn.

La descompresién es el proceso inverso de la compresién. Este proceso extrae las subcade-
nas de la cadena comprimida y trata de remplazar los indices con la entrada correspondies
te en el diccionario, el cual estd vacio al principio y se construye gradualmente. Toda la idea
es que cuando se recibe un indice, ya hay una entrada en el diccionario que corresponde &
ese indice. La figura 15.9 muestra ¢l proceso de descompresidn,

15.1 Compresion sin pérdida

[B.A, 2B, 3B, 1A, 4B, 5A §

Comprimido
Cadena analizada sintdcticamente
KN i : A, 2B, 3B, 1A, 4B, 5A

Cadena analizada sintdcticamente

2B, 3B, 1A, 4B, 5A

Cadena analizada sintdcticamente

{ &= 3B 1A, 4B, 5A

= 4.____&(1&221 analizada sinticticamente
B | A ABB
RN ENED b e 1A, 4B, SA

4B, 5A

ticticamente

i
0

s]od |4_ICadenaanalizada sintécticamente

=

L]afspe]
| & | &] as]ass| Ba JasBH Baa|

| BAABABBBAABBBBAA |

Descomprimido

Figura 15.9 Ejemplo de decodificacion Lempel Ziv

Veamos unos cuantos pasos en la figura.

PASO 1 La primera subcadena de la cadena comprimida se examina. Es B sin un indice.
Debido a que la subcadena no estd en el diccionario, ésta se afiade al diccionario. La subca-
dena {B) sc inserta en la cadena descomprimida.

PASO 2 La segunda subcadena (A) se examina; la situacion es similar al paso 1. Ahora la
cadena descomprimida tiene dos caracteres (BA) y el diccionario tiene dos entradas.

PASO 3 La tercera subcadena (2B) se examina, El procese realiza una bisqueda en el die-
cionario y remplaza el indice 2 con la subcadena A. La nueva subcadena (AB) se afiade a la
cadena descomprimida y AB se afiade al diccionario.

PASO 4 La cuarta subcadena (3B) se examina. El proceso busca en el diccionario y rem-
plaza el indice 3 con la subcadena AB. La subcadena ABB ahora se aflade a la cadena des-
comprimida y ABB se afiade al diccionario.

5

P

Compresion de datos

Dejamos la exploracién de los dltimos tres pasos como un ejercicio. Como habra notado,
utilizamos un ntimero-como | o 2 para el indice. En realidad ¢l indice es un pairdn binarip
{posibiemente variable en longitud) para una mayor eficiencia. También advierta que la co-
dificacién L.Z deja el dltimo cardcter sin comprimir (lo cual significa menor eficiencia}. Una
versién de la codificacion L7, llamada codificacién de Lempel Ziv Welch (LZW) conprime
incluso este solo cardcter. No obstante, dejamos el andlisis de este algoritmo a libros de tex-
to mas especializados.

15.2 METODOS DE COMPRESION CON PERDIDA

COMPRESION DE
IMAGENES: JPEG

La pérdida de informaci6n no es aceptable en un archivo de texto o archivo de programa. Sin
embargo s aceptable en una imagen o video. La razén es que nuestros 0jos y 0idos no pue-
den distinguir cambios sutiles. Para estos casos, usted puede usar un método de eempresion
de datos con pérdida, Estos métodos son mis barafos y requieren menos tiempo y espacio
cuando se irata de enviar millones de bits por segundo para imdgenes y video.

Varios métodos se han desarrollado utilizando técnicas de compresién con pérdida. E
grupo unido de expertos en fotografia (JPEG: joint photographic experts group) se usa
para comprimir im#genes y graficas. El grupo de experios en imagenes en movimiento
(MPEG: motion pictiure experts group) se uiiliza para comprimir video.

Como se vio en el capitulo 2, una imagen puede representarse mediante un arreglo bidimen-
sional (tabla) de elementos de imagen (pixeles); por ejemplo, 640 X 480 = 307 200 pixe-
les. Si la imagen es de escala de grises, cada pixel puede representarse por un entero de ocho
bits (256 niveles). Si la imagen es a color, cada pixel puede representarse por 24 bits (3 X 8
bits), con cada ocho bits representando uno de los colores en el sistema de colores RBG {0
YIQ). Para simplificar el andlisis, nos concentramos en una imagen de escala de grises con
640 X 480 pixeles.

Usted puede ver por qué necesita compresién. Una imagen de escala de grises de 307 200
pixeles se representa mediante 2 457 600 bits y una imagen a color s¢ representa por medio
de 7 372 800 bits. En JPEG, una imagen de escala de grises se divide en blogues de 8 X 8
pixeles (figura 15.10).

El propésito de dividir la imagen en bloques es disminuir el nimero de calculos, debido
a que, como verd en breve, el ndmero de operaciones matemdticas para cada imagen €8 et

Figura 15.10 Ejemplo de JPEG en escala de grises, 640 x 480 pixeles

ransformacion

liscreta coseno

DCT)

15.2 Métodos de compresién con pérdida

cuadrado del nimero de unidades. Es decir, para toda la imagen, se necesitan 307 200 ope-
raciones (94 371 840 000 operaciones). Si se utiliza JPEG, se necesitan 64” operaciones pa-
ra cada bloque, lo cual da un total de 64° X 80 X 60 o 19 660 800 operaciones. Esto
disminuye 4 800 veces el niimero de operaciones.

La idea de JPEG es cambiar la imagen en una serie de mimeros lineales (vector} que re-
vela las redundancias. Las redundancias (falta de cambios) pueden entonces eliminarse uti-
lizando uno de los métodos de compresién sin pérdida que se estudiaron previamente. Una
versidn simplificada del proceso aparece en la figura 15.11.

Tres fases de JPEG

sin pérdida . i
BEE...3@ Imagen
Tmagen comprimida
dividida
en bloques

Figura 15.11 Procesc JPEG

En este paso, cada bloque de 64 pixeles atraviesa por una transformacion llamada la trans-
formacién discreta cosene (DCT: discrete cosine transform). La transformacidn cambia
los 64 valores de manera que se mantienen las relaciones relativas entre pixeles, pero las re-
dundancias se revelan. La férmula se da en el apéndice F. P(x, y) define un valor en el blo-
que; T(x, y} define el valor en el bloque transformado. Ei apéndice I’ muestra la férmula
matematica para una transformacidn.

Para comprender la naturaleza de esta transformacién, permiftanos mostrar ei resultado de
las transformaciones para tres casos.

Caso T En este caso, usted tiene un bloque de escala de grises uniforme y el valor de ca-
da pixel es 20. Cuando se hacen las transformaciones se obtiene un valor diferente de cero
para el primer elemento (esquina superior izquierda). El resto de los pixeles tiene un valor
de cero debido a que, de acuerdo con la férmula, e valor de T(0, 0) es el promedio de los
otros valores. Esto se conoce como el valor DC {tomado de las siglas en inglés de corriente
directa, de la ingenierfa eléctrica). El resto de los valores, Hlamados valores AC, en T{x, y) re-
presentan los cambios en los valores de pixel. Pero como éstos no tienen cambios, el resto
de los valores son ceros (figura 15.12).

20 20 20 20 20 20 20 20 1600 0 0 0 0 0 O
20 20 20 20 20 20 20 20 G 0ODOO0OCO O

20 20 20 20 20 20 20 20 C000O0GO0 D

2020 20 20 20 20 20 20 0009O 000 D0
202020202020202@“"’} 00009000

20 20 20 20 20 20 20 20 000000 DO

: 2020 20 20 20 20 20 20 00000000

Tmagen 20 20 20 20 20 20 20 20 0600000 O

Pix,y) T{mn)

Figura 15.12 Caso 1: escala de grises uniforme

Cuantizacién

Compresion de datos

Caso 2 En el segundo caso, usted tiene un bloque con dos secciones diferentes de escal.
de grises uniforme. Hay un cambio brusco en los valores de los pixeles (de 20 a 50). Cyag
do se hacen las transformaciones se obtiene un valor DC asi como valores AC diferentes d

cero. No obstante, s6lo hay unos cuantos valores diferentes de cero agrapados alrededor dg|

valor DC. La mayoria de los valores son cero (figura 15.13).

2020 20 20 50 50 50 50 280 — 109
20 20 20 20 50 50 50 50 0 0
20 20 20 20 50.50 50 50
20 20 20 20 50 50 50 50
20 20 2020 50 50 50 50 >
20 20 20 20 50 50 50 50

——— 20 20 20 20 50 50 50 50
Imagen 2020 20 20 50 50 50 50

(2]
=]

OO0 OO0
|
r
[

== R =ve R o I o i e Y e

S oo oo C o

[e B o B o B oo B)
oo o oo 0O

e o B e i o Y o B o B o Y]
S oo oo oo

Plx, Tim, n)

Figura 15.13 Caso 2: dos secciones

Caso 3 En el tercer caso, se tiene un bloque que cambia gradualmente. Esto significa que -

10 hay un cambio brusco enire los valores de los pixeles vecinos. Cuando se hacen las frans-

formaciones se obtiene un valor DC, también con muchos valores AC diferentes de cero (fi-

gura 15.14),
20 30 40 50 60 70 80 90 400 —146 0 =31 -1 3 —1 —8
2030 40 50 60 70 80 90 0 g 0 0 0 0 0 0
2030 40 50 60 70 80 90 0 g 0 6 00 0 0
20 3040 50 60 70 80 90 i 0 o0 6 00 0 0
2030 40 50 60 70 80 90 0 o ¢ 0 00 0 0
20 30 40 50 60 70 80 90 0 o ¢ 0 0 0 0 0
2030 40 50 60 70 80 90 H 0 ¢ 0 0 0 0 9
Imagen 20: 30 40 50 60 70 80 9C G 0 0 0 000 O
P{x, T{m, n)

Figura 15.14 Caso 3: escala de grises gradiente

A partir de las figuras 15.12, 15.13 y 15.14, podemos establecer lo signiente:

La transformacidn crea 1a tabla T a partir de la tabla P.
El valor DC da vn valor promedio de los pixeles.
Los valores AC dan los cambios.

La falta de cambios en los pixeles vecinos crea ceros.

Antes de que cerremos el andlisis de 1a DCT, observe que la transformacin DCT es rever-
sible. El apéndice F también muestra la férmula matemdtica para una transformacién inversa.

Después de que se crea la tabla T, los valores se cuantizan para reducir el niimero de bits ne-
cesarios para Ia codificacién. Anteriormente a la cuantizacion, dejabamos la fraccién de ca-
da valor y manteniamos Ia parte entera. En la actualidad dividimos el nimero entre un2
constante y luego dejamos la fraccién. Esto reduce el niimero requerido de bits todavia mas-
En la mayorfa de las implementaciones, una tabla de cuantizacién (8 por 8) define c6mo
cuantizar cada valor. El divisor depende de la posicion del valor en la tabla 70 Esto se hace
para optimizar ¢l nimero de bits y el niimero de ceros para cada aplicacién en particular.

ompresién

COMPRESION
DE VIDEO: MPEG

15.2 Métodos de compresion con pérdida

Observe que la tnica fase en ¢l proceso que no es reversible es la fase de cuantizacion.
Usted pierde un poco de informacién aquf que no es recuperable. La verdad es que la tinica
razén par la cual JPEG se llama compresién con pérdida es por la fase de cuantizacién.

Después de la cuantizacién, se leen los valores de la tabla y los ceros redundantes se elimi-
nan. Sin embargo, pata agrupar los ceros juntos, el proceso lee la tabla en forma diagonal a
manera de zigzag en vez de fila por fila o columna por columna. La razdn es que si la ima-
gen no tiene cambios finos, 12 esquina inferior derecha de la tabla 7 son todos ceros. La fi-
gura 15.15 muestra el proceso. JPEG por lo general utiliza cedificacidn de longitud de
gjecucitn en la fase de compresién para comprimir el pairén de bits que resulta de la Hnea-
lizacion de zigzag.

T(m, n)
205 D 00— 0)
15 6 & & o 0)
1 g o0 0 05 0
§ g 0 0 08 0 8

£
-
fa:
[l
S
o3

o
)

o]
-
=)
[
=
=
oo
e}

'

20151512 17 1200000...0

Resultado

Figura 15.15 Lectura de la tabia

El método del grupo de expertos de imdgenes en movimiento (MPEG) se utiliza para com-
primir video. En un principio, una imagen en movimiento es un flujo rdpido de una serie de
cuadros {frames), donde cada cuadro es una imagen. En otras palabras, un cuadro es una
combinacitn espacial de pixeles y un video es una combinacién temporal de cuadros que se
envian uno después de otro. La compresién de video, entonces, significa comprimir espa-
cialmente cada cuadro y comprimir temnporalmente una serie de cuadros.

Compresidn espacial La compresién espacial de cada cuadro se realiza con JPEG (o
una modificacion de éste). Cada cuadro es una imagen que puede comprimirse de manera
independiente.

Compresién temporal En la compresién temporal, los cuadros redundantes se elimi-
nan. Cuando vemos televisién, recibimos 30 cuadros por segundo. Sin embargo, la mayorfa
de los cuadros consecutivos son casi iguales, Por ejemplo, cuando alguien estd hablando, 1a
mayor parte del cuadro es la misma que la del cuadro anterior, con excepeién del segmento
del cuadro alrededor de los labios, el cual cambia de un cuadro a otro.

Un céleule aproximado apunia a la necesidad de compresién temporal para video. Una
compresion JPEG 20:1 de un cuadro envia 368 640 bits por cuadro; a 30 cuadros por segun-
do, esto es 11 059 200 bits por segundo. Necesitamos reducir este nimero.

Para comprimir los datos temporalmente, el método MPEG primero divide los cuadros
en tres categorias: cuadros I, cuadros P y cuadros B.

Compresion de datos

B Cuai?:ros L. Un cnadro intracodificado (cuadro) es un cuadro independiente que no se.
relaciona con ningtin otro cuadro (ni con el cuadro enviado antes ni con el cuadro envia..

do después). Este se presenta a intervalos regulares (por ejemplo, cada noveno cuadro es
un cuadro [). Un cuadro I debe aparecer periédicamente debido a algin cambio repenti:
no en ¢l cuadro que los cuadros anterior y posterior no pueden mostrar. Ademds, cuandp

se transmite un video, un espectador o espectadora puede ajustar su receptor en cualquier'

moz.nento. Si s6lo hay un cuadro I al principio de la transmisién, el espectador que hace
el ajuste mds tarde no recibird una imagen completa. Los cuadros I son independientes
de otros cuadros y no pueden construirse a partir de otros cuadros.

Cuadros P. Un cuadro predecible (cuadro P) se relaciona con el cuadro I o con el
cuadro P precedente. En otras palabras, cada cuadro P contiene sélo los cambios respec-
to del cuadro precedente. Los cambios, sin embargoe, no cubren un segmento grande
Por ejemplo para un objeto en movimientio rdpido, los tuevos cambios pueden no re:.

gistrarse en un cuadro P. Los cuadros P pueden construirse sélo a partir de los cuadros

T'o P previos. Los cuadros P transportan mucha menos informacién que otros tipos de
cuadros y transportan incluso menos bits después de fa compresion,

] andms B. Un cuadro bidireccional (cuadro B) le conciernen los cuadros 1 o P an-
terior o posterior. En otras palabras cada cuadro B se relaciona con el pasado ¥ con ¢l
futuro. Observe que un cuadro B nunca se relaciona con otro cuadro B,

La figura 15.16 muestra una secuencia de cuadros de muestra.

Figura 15,16 Cuadros MPEG

. La figura 15.17 exhibe cémo los cuadros I, P v B se construyen a partir de una serie de
siete cuadros.

_ MPEG ha pasado por muchas versiones, MPEG 1 se disefis para un CD-ROM con un in-
dice de datos de 1.5 Mbps. MPEG 2 se diseié para DVD de alta calidad con un indice de
datos de 3-6 Mbps. MPEG 3 {0 MP3) es un estandar para compresién de audio.

i

6 | 7
I

Figura 15.17 Construccién de cuadros MPEG

15.5 Practica

5.3 TERMINOS CLAVE

bol binario

odificado basado en diccionario
odificacion de Huffman

odificacién de longitud de ejecucidn

odificado Lempel Ziv (1LZ) cuantizacién
ompresion decodificado
mpresién de datos descompresién

ompresién de datos con pérdida
ompresion de datos sin pérdida
ompresion espacial

compresién temporal

cwadro bidireccional (cuadro B)
cnadro intracedificado (cuadro I)
cuadro predecible (cuadro P)

grupo de expertos de imagenes en
movimiento (MPEG)

grupo unido de expertos en fotografia
{(JPEG)

nodo

rama

subcadena

ransformacidn discreta coseno
{(DCT)

valor AC

valor DC

154 RESUMEN

Los métodos de compresidn de datos son ya sea sin pér-
dida (toda la informacion es recuperable) o con pérdida
{alguna informacidn se pierde).

La compresién de datos toma el mensaje original y re-
duce el niimero de bits que se van a transmitir,

En los métodos de compresidn sin pérdida, los datos re-
cibidos son la réplica exacta de los datos enviados.

Los tres métodos de compresién sin pérdida son la co-
dificacién de longitud de ejecucidn, la codificacién de
Huffman y la codificacion de Lempel Ziv (LZ).

En la codificacién de longitud de ejecucion, las ocu-
mrencias repetidas de un simbolo se remplazan por un
sfmbolo y el niimero de ocurrencias del simbolo.

En la codificacién de Huffman, la longitud del cédigo
es una funcién de la frecuencia de simbolos; los simbo-
los més frecuentes tienen cédigos mas cortos que sim-
bolos menos frecuentes,

En la codificacion IZ, las cadenas o palabras repetidas
se almacenan en variables. Un indice a la variable rem-
plaza la cadena o palabra.

La codificacién LZ requiere un diccionario y un algorit-
mo tanto en el emisor como en el receptor.

En los métodos de compresién con pérdida, los datos
recibidos no necesitan ser una réplica exacta de los da-
tos enviados,

El grupo unido de expertos en fotogratia (JPEG) es un
método para comprimir imdgenes y graficos.

El proceso JPEG involucra la division en blogues, la
transformacién discreta de coseno, la cuantizacién ¥
la compresion sin pérdida.

El grupo de expertos en imdgenes en movimiento
(MPEG) es un método para comprimir video.

MPEG involucra tanto la compresidn espacial como la
compresién temporal. La primera es similar a JPEG y la
tiltima elimina cuadros redundantes.

15.5 PRACTICA

PREGUNTAS DE REPASO

1. ;Cuales son las dos categorias de los métodos de com-
~ presion de datos?

2. ;Cudl es la diferencia enire la compresion sin pérdida y
la compresién con péréida?
3. ;Cudl es la codificacién de longitud de ejecucion?

4. ;Cémo reduce la codificacién de Lempel Ziv la canti-
dad de bits transmitidos?

9.

10,

¢+ Qué es la codificacidn de Huffman?
;Cuil es el rol del diccionario en la codificacion LZ?

;Cnal es la ventaja de fa codificacién L.Z sobre la codi-
ficacidén de Hoffman?

;Cuéles son dos métodos de compresidn con pérdida?

;Cudndo wilizarfa usted JPEG? ;Cuéndo utilizaria
MPEG?

(Cémo se relaciona MPEG con JPEG?

il1.

12,
13.
14.
15,

16.

Compresion de datos

En JPEG, jcudl es la funcién de dividir en bloques la
imagen?

(Por qué la DCT se necesita en JPEG?
¢C6mo contribuye la cuantizacién a la compresi6n?
{Qué es un cuadro en la compresién MPEG?

¢ Qué es la compresion espacial comparada con la com-
presion temporal?

Comente los tres tipos de cuadros uiilizados en MPEG,

PREGUNTAS DE OPCION MUOLTIPLE

17.

18.

19.

20.

21.

22,

Los datos se comprimén utilizando un diccionario con
indices a las cadenas. Este es 1a

a. codificacién diferencial

b. codificacidn de Lempel Ziv

¢. codificacién Morse

d. codificacién con pérdida

Una cadena de cien ceros se remplaza con dos marca-
dores, un 0 y el ndmero 100. Esta es la

a. codificacion de longitud de ejecucidn

b. codificacién Morse

¢. codificacitn diferencial

d. codificacién de Lempel Ziv

Un ejemplo de la compresion con pérdida es
a. la codificacién diferencial

b. la codificacion de Lempel Ziv

¢. la codificacién de longitud de ejecucién
d. JPEG

En un métode de compresién de datos , los da-
tos recibidos son una copia exacta del mensaje original.
a. sin pérdida

b. con pérdida

¢. de menor pérdida

d. brillantes

En un método de compresién de datos , los da-
tos recibidos no necesitan ser una copia exacta del men-
saje original.

a. sin pérdida

b. con pérdida

¢. de menor pérdida

d. brillantes

La codificacién de

sién de datos sin pérdida.
a. Huffman

b. longitud de ejecucidn
c. L7

d. todos los anteriores

es un método de compre-

23.

24.

25,

26.

27,

23.

29.

30,

En la codificacién de
men con mayor frecuencia tienen cédigos mds cortog
gue los caracteres que ocurren con menos frecuencia,
a. Huffman

b. longitud de ejecucion

¢. LZ

d. tedos los anteriores

En la codificacién de » PPPPPPPPPPPPPEDR
puede remplazarse por P15.)
a. Huffman '

b. longitud de ejecucion

c. LZ

d. todos los anteriores

En la codificacién de » Una cadena se remplaza
por un apuntador a la cadena almacenada.

a. Huffman

b. longitud de ejecucidn

c. LZ

d. todos los anteriores

La codificacién LZ requiere
a. un diccionario

b. un buffer

¢. un algoritmo

d. todos los anteriores

La codificacién JPEG involucra

que revela las redundancias en un blogue.
a, divisién en bloques

b. 1aDCT

¢. cuantizacién

d. vectorizacin

s Ul Procese

En la codificacién JPEG el proceso de divide
la imagen original en bloques mds pequefios y asigna
un valor a cada pixel en un bloque.

a. division en blogues

b. 1aDCT

¢. cuantizacién

d. vectorizaci6n

El ultimo paso en JPEG, 1a
dancias.

. divisién en bloques
cuantizacion
compresion
vectorizacion

, elimina las redun-

RO

es un método de compresion con pérdida para
imédgenes y gréficos; mientras que es un méto-
do de compresién con pérdida para video.
a. DCT; MPEG
b. MPEG,; JPEG
¢. JPEG; MFEG
d. JPEG; DCT

» los caracteres que ogy..

JERCICIOS

. Codifique el siguiente patrén de bits utilizando la codi-

ficacién de longitud de ejecucitn con cdigos de 3 bits:
dieciocho ceros, 11, cincuenta y seis ceros, 1, quin-
ce ceros, 11

. Codifique el siguiente patrén de bits utilizando codifi-

cacién de longitud de ejecucidn con cddigos de 5 bits:
1, ocho ceros, 1, cuarenta y cinco ceros, 11

. Codifigue los caracteres siguientes usando codificacién

de Huffman con las frecuencias dadas:
A(12), B(8), C(9), D(20), E(31), F(14), G(8)

. Codifique los caracteres siguientes utilizando codifica-

cidén de Huffman. Cada caracter tiene la misma frecuen-
cia (I):

ABCDEEGHL]J
Puede ser la siguiente, codificacién de Huffman? Ex-
plique.

A0 B 10 C11

36.

37,

38.

39.

15.5 Practica

i Puede ser el siguiente un codigo de Huffman? Explique.
A0 B:1C00D:01 E: 10 F: 11
Codifique el mensaje BAABBBBAACAA utilizando el
c6digo Huffman siguiente:
A0 B:10 C: 11
Decodifique el mensaje 0101000011110 utilizando el
codigo Huffman siguiente:
A: 0 B: 10 C:11
Utilice una transformacién para transformar una tabla
de cuatro por cuatro. Las reglas son las siguientes:
T(0,0) = (1/16) [P(0, 0) + P(0, 1) +
PO, 2)+...1
TO D =016 [095PO, 0 +09P(0, 1) + -
085P(0,2) +...1
T(0,2) = (1/16) [0.90 P(0, 0) + 0.85P(0, 1) +
080P0,2) +...]
Compare y contraste este método con la DCT, ;La DCT
en realidad es un cédlculo promedio con peso como la
transformacién precedenie? De ser asi, /cudl es el peso?

AUTENTICACION

INTEGRIDAD

' En 1a actualidad, la seguridad juega un papel muy importante en Ias ciencias de la compu-
tacién., Con el crecimiento de Internet, mas y mds datos se estdn intercambiando y esos da-
tos necesitan asegurarse. Por gjemplo, cuando usted realiza una compra en Internet, espera :
que ta informacién que envia al vendedor se mantenga en secreto y que sélo la utilice el ven-
dedor, Ademds, cuando recibe un mensaje, en ocasiones necesita autenticar al emisor. En es- =
te capitulo tratamos el terna de la seguridad. El tema es tan vasto que libros enteros se han -
dedicado a él. Los conceptos e ideas presentados aquf son motivadores para un estudio pos- '
terior. '

NO RECHAZO

Podemos decir que hay cuatro aspectos de la seguridad: privacidad (confidencialidad), au- .
tenticacién de mensajes, integridad de los mensajes y no rechazo (figura 16.1).

16.1 Privacidad

Seguridad

l

Privacidad Autenticacién No rechazo Integridad

Figura 16.1 Aspectos de la seguridad

Fn una comunicacién segura, el emisor y el receptor esperan privacidad, o confidencialidad.
En otras palabras, sélo el emisor y el receptor del mensaje son capaces de comprender ¢
contenido del mensaje.

La confidencialidad del mensaje no es suficiente en una comunicacién segura; la autentica-
cién también es necesaria. El receptor necesita estar seguro de la identidad del emisor.

La confidencialidad y la autenticacién son s6lo dos elementos de una comunicacién segura.
La integridad del mensaje también necesita conservarse. Ni el emisor ni el receptor estén fe-
lices si el contenido del mensaje se modifica durante la transmision. Por ejemplo, en una
transaccién bancaria, ni el cliente ni el banco estan satisfechos si la transferencia de $1 000
del cliente cambia a $10 000 durante Ia transmisién. El cambio podria ocurrir ya sea de ma-
nera maliciosa, podria ser provocado por un intruso que s¢ beneficia del cambio u ocurrir ac-
cidentalmente como resultade de un mal funcionamiento de hardware o software.

Aun cuando no es muy obvio, uno de ios elementos de una comunicacién segura es el no
rechazo, es decir, 1a prevencion del rechazo (negacion) del emisor. En ofras palabras, un sis-
tema seguro necesita probar que el emisor en realidad envid el mensaje. Por ejemplo, cuan-
do un cliente envia un mensaje para transferir dinero de una cuenta a otra, ¢l banco debe
haber probado que ¢l cliente en realidad solicité esta ransaccién.

de Have secreta

16.1 PRIVACIDAD

La privacidad requiere que el mensaje se cifre de alguna manera en el sitio del emisor y se
descifre en el sitio del receptor de modo que un intruso potencial (una persona que escuche
conversaciones ajenas) no pueda comprender su contenido.

En la actmatidad, la privacidad puede lograrse usando métodos de cifrado/descifrado. Los
datos se cifran en el emisor y se descifran en el receptor. Dos categorfas de métodos de ci-
frado/descifrado en uso hoy en dia son la llave secreta y la llave pablica.

La manera mds simple de cifrar los datos es utilizar una Ilave secreta. El emisor utiliza es-
ta clave y un algoritmo de cifrado para cifrar los datos; el receptor utiliza la misma llave y
el algoritmo de descifrado correspondiente para descifrar los datos (figura 16.2).

Los datos, cuando no se cifran, se llaman texto plane; una vez cifrados se llaman texto
cifrado. Observe que tanto el usuario A como el usuario B utilizan la Have secreta, la cual
es exactamente la misma. Sin embargo, los algoritmos de cifrado y descifrado son inversos

Seguridad

Llave secreta

Texto cifrado Texto plano

Figura 16.2 Cifrado de llave secreta

entre si en el sentido de que, por ejemplo, si el algoritmo de cifrado afiade algo a los datos,
el algoritmo de descifrado sustrae o mismo de los datos.

En el cifrado de llave secreta, la misma llave se utiliza en el cifrado y en el desci-
frado. Sin embargo, los algoritmos de cifrado y descifrado son inverses entre si.

Observe que frecuentemente se hace referencia a los algoritmos de cifrado de Have seere-
ta como algoritmos de cifrado simétrico debido a que la misma llave secreta puede utilizar-
se en la comunicacién bidireccional.

Estandar de cifrado de datos (DES} El cifrado de llave secreta se ha utilizado por més
de dos milenjos. Al principio, los algoritmos eran muy simples y las laves eran muy faciles de
adivinar. Hoy en dfa, usamos algoritmos muy sofisticados; el mds comuin es el llamado es-
tdndar de cifrado de datos (DES: data encryption standard).

DES cifra y descifra en el nivel de bits. Los datos primero se transforman en una cadena
de bits. Se dividen en segmentos de 64 bits (ceros adicionales se afiaden a Ia dltima seccién
si €sta no es de 64 bits). Cada seccién se cifra luego utilizando una llave de 36 bits (en rea-
lidad, Ia Have mide 64 bits, pero 8 bits son para el control de errores). La figura 16.3 mues-
tra la disposicion general de este método.

La idea es revolver los datos y 1a llave de tal manera que cada bit de texto cifrado depen-
da de cada bit de texte plano y de la llave. Esto vuelve muy dificil para un usuario adivinar
los bits de texto plano a partir de los bits de texto cifrado.

Llave de 56 bits

Texto cifrado
(segmento de 64 bits)

Texto plano
{segmento de 64 bits)

Algoritmo de cifrado

Figura 16.3 DES

16.1 Privacidad

La etapas 1, 18 v 19 del afgoritmo son sélo operaciones de permatacién (que no usan la
llave). Las eiapas 2 a 17 son etapas idénticas. Los 32 bits de la derecha de una etapa se con-
vierien en los 32 bits de la izquierda de la etapa siguiente. Los 32 bits de la izquierda de una
etapa se revuelven con la Have y se convierten en los 32 bits de Ia derecha de la etapa si-
guiente. La revoltura es compleja y estd mas alld del ambito de este libro.

Ventajas y desventajas Los algoritmos de Have secreta ticnen una gran ventaja: la efi-
ciencia. Les toma menos Hempo cifrar o descifrar en comparacion con los algoritmos de 1la-
ve pblica que estudiaremos en breve. Son muy buenos candidatos para los mensajes largos.
Sin embargo, los algoritmos de Have secreta tienen dos grandes desventajas. Cada par de
usuarios debe tener una llave secreta. Esto significa que si N personas en el mundo quieren
utilizar este método, se necesita que haya N (N — 1) / 2 llaves secretas. Por gjemplo, para
que un millén de personas se comuniquen, se requiere medio billén de llaves secretas. Asi-
mismo, la disiribucidén de las llaves entre dos partes puede ser dificil. En breve se veré c6-
mo resolver este problema.

El segundo tipo de cifrado/descifrado es el cifrado de llave pithlica. En este método, hay
dos llaves; una llave privada y una llave publica. La llave privada es mantenida por el re-
ceptor, ¥ 1a llave piiblica se anuncia al pidblico (tal vez por medio de Internet).

Cuando un vsuario A quiere enviar un mensaje a tn usuario B, A utiliza Ia Itave piblica
para cifrar el mensaje. Cuando B recibe el mensaje, utiliza su llave privada para descifrarlo
(figura 16.4).

|
: Llave privada de B
1
i v

Texto plang e Texto plano
: Descifrad

A B

Figura 16.4 Cifrado de llave piblica

La idea de este método es que los algoritmos de cifrado y descifrado no son inversos en-
tre s{. Aunque un intruso tenga la llave piblica y los algoritmos de cifrado y descifrado, no
puede descifrar el mensaje sin la llave privada.

RSA El algoritmo de llave piiblica mds comutin recibe su nombre en honor a sus inventores,
cifrado de Rivest-Shamir-Adleman (RSA). La llave privada es un par de nimeros (N, d);
la Have piiblica es también un par de nimeros (N,). Observe que N es comUn a las Haves
ptiblica y privada.

El emisor utiliza el siguiente algoritmo para cifrar el mensaje:

Seguridad

(118, 5)
(119,79
=6 6
Texte plano Texto cifrado Texto plano

Figura 16.5 RSA

En este algoritmo, P es ¢l texto plano, el cual se representa como un nimero. C es el niime-

ro que representa el texto cifrado. Los dos niimeros ¢ y N son componentes de Ia llave pi-
blica. P se eleva a 1a potencia e v se divide entre ¥. El término mod indica que el residuo se
envia como el texio cifrado.

El receptor utiliza el siguiente algoritmo para descifrar el mensaje:

En este algoritmo, P v C son los mismos que antes. Los dos ndmeros d y N son componen-
tes de la llave privada.

He aguf un ejemplo. Imagine que la liave privada es el par (119, 77) y 1a llave piiblica es
el par (119, 5). La emisora necesita enviar el caracter F. Este caracter puede representarse
como el niimero 6. (F es el sexto caracter en el alfabeto). Bl algoritmo de cifrado calcula
C = 6" mod 119 = 41, Este niimero se envia al receptor como texto cifrado. El receptor uti-
liza el algoritmo de descifrado para calcular P = 4177 mod 119 = 6 (el nimero original). El
niimero § luego se interpreta como F. La figura 16.5 rmuestra el proceso.

El lector puede pener en duda la efectividad de este algoritmo. Si un intruso conoce el al-
goritmo de cifrade y ¥ = 119, lo tnico que falta es d = 77. ;Por qué no podria vn intruso
utilizar la prueba y error para encontrar d? La respuesta es que en este ejempio trivial, un in-
truso facilmente podria adivinar et valor de . Pero un concepto importante del algoritmo
RSA es el uso de nimeros muy grandes para d 'y e. En la préctica, los nimeros son tan gran-
des (en la escala de decenas de digitos) que el método de ensayo y error para forzar el codi-
go requiere mucho tiempo (meses, si no es que afios) incluso con las computadoras mas
rdpidas disponibles hoy en dia.

Eleccion de claves publicas y privadas Una pregunta que viene a la mente es como ele-
gir los tres nimeros N, d y e para que e cifrado vy el descifrado funcionen. Los inventores
del algoritmo RSA probaron mateméticamente que utilizar el procedimiento siguiente ga-
rantiza que los algoritmos funcionardn. Aun cuando la prueba esté mds alld del dmbito de
este libro, damos una idea general del procedimiento:

B Seeligen dos ntmeros primos grandes, p y ¢.
B SccalculaN=p Xg.

B Seelige e (menor que N) tal que ¢ y (p — 13{g — 1) sean relativamente primos (tenien-
do como factor sélo el uno),

B Seeligedtal que (e X d) mod [(p — 1){g — 1)] sea igual a uno.

PRIVACIDAD
MEDIANTE LA
COMBINACION

16.2 Firma digital

Ventaja y desventaja La ventaja del algoritmo de llave priblica es el nimero de llaves.
Cada entidad puede usar el procedimiento anterior para crear un par de llaves, mantener la
llave privada (W, 4) y distribuir piblicamente Ia otra (N, e). Los individuos pueden incluso
publicar s Have piblica en su sitio web. Ademds, observe que en este sistema, para que un
miflén de wsuarios se comuniquen, se necesitan sélo dos millones de liaves, no medio billén
como en el caso del algoritmo de ilave secreta. Sin embargo, la gran desventaja del método
de llave pabiica es la complejidad del algoritmo. Si usted quiere que el método sea eficaz,
necesita mimeros grandes. Calcular el texto cifrado a partir del texto plano utilizando las ila-
ves largas toma mucho tiempo. Esta es la razén principal de que el cifrado de Ilave piblica
no sea recomendable para grandes cantidades de texto.

Usted puede combinar ia ventaja del algoritmo de llave secreta (eficiencia) y la ventaja del
algoritmo de llave priblica (distribucion facil de las llaves). La llave ptiblica se utiliza para
cifrar la llave secreta; la lave secreta se utiliza para cifrar i mensaje. El procedimiento es
el siguiente:

1. El emisor elige una Have secreta. Esta Ilave secreta se llama llave de una sesién; sélo
se utiliza una vez.

2, El emisor utiliza la llave pablica del receptor para cifrar la llave secreta (como texto)
y envia la llave secreta cifrada al receptor. Observe que dijimos que el métedo de Ha-
ve piblica es bueno para un mensaje corto. Una Ilave secreta es un mensaje corto.

3. El receptor usa la llave privada para descifrar la llave secreta.

4, El emisor utiliza 1a Have secreta para cifrar el mensaje actual.

La figura 16.6 muestra a idea de la combinacion.

Liave pahlicade B

Llave privada de B

A

——

v Llave secreta Llave secreta cifrada Llave secreta

Mensaje Mensaje cifrado - Mensaje

Figura 16.6 Combinacion

16.2 FIRMA DIGITAL

Sorprendentemente, los otros tres aspectos de ia seguridad (integridad, autenticacin y no re-
chazo) pueden lograrse utilizando un solo concepto. El concepto viene de la firma (autenti-
cacion) de un documento por su autor o creador, Cuando un autor firma un documento, éste
no puede cambiarse, Como una analogia, si usted tacha algo en un documento como un che-
que, debe poner su firma o iniciales por el cambio que hizo. De esta manera, no puede ne-
garlo postericrmente {no rechazo). Cuando usted envia un documento en forma electronica,
puede ademds firmarlo. A esto se le llama firma digital.

Seguridad

FIRMA DE TODO
EL DOCUMENTO

FIRMA DEL
COMPENDIO

Hay dos maneras de hacer una firma digital. Usted puede firmar todo el documento 0
puede firmar un compendio del documento.

El cifrado de Have piblica puede utilizarse para firmar todo el documento. Sin embargo, e]
uso de la llave piiblica aqui es diferente de aquel para la Have privada. Aqui el emisor utili-
za su llave pblica o privada (no la llave privada del receptor) para cifrar el mensaje. El re-
ceptor, por otra parte, utiliza la llave piiblica del emisor (no su Have privada) para descifrar
¢l mensaje. En otras palabras, la llave privada se utiliza para cifrado y la llave puiblica para
descifrado. Esto es posible debido a que los algoritmos de cifrado y descifrado usados ac-
tualmente, como RSA, son férmulas mateméticas y sus estructuras son las mismas. La figu-
ra 16.7 muestra cémo se hace esto.

Liave piblica de A

!

Llave privada de A

ﬁgg Texto plano
A

Texto cifrado '

Firma Revision

Texto plano @‘

B

Figura 16.7 Firma de todo el documento

Veamos cémo este tipo de cifrado puede proporcionar integridad, autenticacién y no re-
chazo. Dijimos que la integridad del mensaje se conserva debido a que, si un intruso inter-
cepta el mensaje y lo cambia total o parcialmente, el mensaje descifrado serfa (con una alta
probabilidad) ilegible e incluso no pareceria un mensaje. El mensaje también puede auten-
ticarse debido a que si un intruso envia un mensaje (fingiendo que viene del verdadero au-

tor), utiliza su propia clave privada. El mensaje entonces no se descifra correctamente

mediante Ia llave publica del verdadero autor (es ilegible). El método también proporciona
no rechazo. Aunque el emisor puede negar el envio del mensaje, debe revelar (en la corte)
su llave privada, la cual debe corresponder con la llave piiblica. Si usted cifra y descifra el
mensaje recibido, obtiene el mensaje enviado,

Observe dos puntos importantes. Primero, no puede proporcionar estos aspectos de 1a se-
guridad usando la llave secreta (dejamos el razonamiento para un ejercicio). Segundo, el mé-
todo no proporciona confidencialidad; cualquiera puede usar la lave piiblica del emisor para
leer el mensaje. Para afiadir confidencialidad a esta iécnica, se necesita otro nivel de cifrado
(ya sea con el cifrado de llave secreta o de llave piblica).

Mencionamos anteriormente que una de las desventajas del cifrado de llave piblica es que
es muy ineficiente. Esto es verdad cuando se utiliza el cifrado de Tlave piiblica para firmar
todo el documento (todo el documento debe cifrarse v descifrarse).

Para hacer el proceso mds eficiente, usted puede dejar que el emisor firme un compendio
del documento en lugar de todo el documento. En otras palabras, el emisor hace una minia-
tura del docurnento y la firma (la cifra con su llave privada); el receptor Iuego revisa la fir-
ma de Ia miniatura (la descifra con la llave piiblica de] emisor).

16.2 Firma digital

Funcidn hash

Compendic
firmado

Mensaje mas
comperdio firmado

Figura 16.2 Sitio del emisor

El métedo utiliza una técnica liamada funcién hash para crear un compendio del mensa-

Je. No importa gué longitud tenga el mensaje, el compendio es de tamafio fijo (por lo gene-

val, 128 bits) como se aprecia en la figura 16.8.

Las dos funciones hash mds comunes son Message Digest 5 (MD3) y Secure Hash Algo-
ritm 1 {(SHA-1). El primero produce un compendio de 128 bits. El segundo produce un com-
pendio de 160 bits.

Observe que la funcidn hash tiene dos propiedades para garantizar su éxito. Primero, el
hashing debe ser en un sentido; el compendio sélo puede crearse a partir del mensaje, pero
no viceversa. Segundo, el hashing debe ser unc a uno; debe ser muy dificil encontrar dos
mensajes gue crean el mismo compendio. La razén de esta condicién se verd en breve.

Después de que se ha creado el compendio, éste se cifra (firma) usando la Have privada
del emisor. Ef compendio cifrado se adjunta al mensaje original y se envia al receptor. La fi-
gura 16.9 muestra el sitio del emisor.

El receptor recibe el mensaje original y el compendio cifrado, y los separa. Aplica la mis-
ma funcién hash al mensaje para crear un segundo compendio. También descifra el compen-
dio recibido usando la llave publica del emisor. 5i los dos compendios son iguales, s obvio
que los tres aspectos de la seguridad se conserven. La figura 16.10 muestra el sitio del
receptor.

Sabemos que estas tres propiedades se conservan para la copia del compendio recibido
por el receptor. Ahora veamos por qué estas propiedades se conservan para el mensaje.

1. El compendio no ha cambiado y el mensaje crea una réplica del compendio. As{ que
el mensaje no ha cambiado (recuerde, dos mensajes no pueden crear el mismo com-
pendic).

2. El compendio viene del verdadero emisor, asi que el mensaje también viene del ver-
dadero emisor. Si un intruso hubiera iniciado el mensaje, el mensaje no habria creado
el mismo compendio,

3. Bl emisor no puede negar el mensaje debido a que no puede negar el compendio; ¢l
finico mensaje que puede crear ese compendio es el mensaje recibido.

Seguridad

Llave priblicade A

Desde A st

Compendio

Mensaje mds
compendio firmado

—» Compara <[}

Compendio

Figura 16.10 Sitic del receptor

De nuevo observe que este método de firma digital no proporciona privacidad; si la privaci- .

dad se requiere, debe afladirse usando otro nivel de cifrado ya sea con cifrado de llave se-
creta, con cifrado de llave piblica 0 con ambos.

16.3 TERMINOS CLAVE

autenticacion estandar de cifrado de datos (DES) permutacion

cifrado firma digital seguridad

cifrado de Have piblica llave privada texto cifrado

cifrado de Rivest-Shamir-Adleman llave piblica texto plano
{(RSA) llave secreta

descifrado no rechazo

16.4 RESUMEN

B La seguridad involucra los temas de privacidad, auten-
ticacién, integridad y no rechazo.

B La privacidad se logra a través del cifrado. El cifrado
traduce un mensaje (texto plano) ininteligible para el
personal no autorizado.

B Un método de cifrado/descifrado puede clasificarse ya
sea como un método de llave secreta o un método de
lave piblica.

8 Enclcifrado de ilave secreta, sélo el emisor y el recep-
tor conocen la Have.

DES es un método de cifrado de llave secreta popular.

En ¢l cifrado de llave piiblica, 1a lave pdblica es cono-

cida por todos, pero la llave privada es conocida s6i0

por ¢l receptor.

Un método de cifrado de llave piblica de uso comdin €
basa en el algoriimo RSA.

La autenticacion, la integridad y el no rechazo se lograll
a través de un método llamado firma digital.

Usted puede usar la firma digital en todo el documento
o ¢n un compendioc del documento.

16.5 Practica

16.5 PRACTICA

REGUNTAS DE REPASO

;Cudles son las cuatro condiciones necesarias para la
‘seguridad de los datos transmitidos?

. . C6émo se puede asegurar la privacidad de un mensaje?

- Cémo se puede autenticar al emisor de un mensaje?
.{,Cc’)mo puede usted conservar la integridad de un men-

“saje?

. Dé un ejemplo de no rechazo.

. ;Cudles son las dos categorias principales de métodos
de cifrado?

{Cémo se relaciona el texto plano con el texto cifrado?
. ;Qué es DES?

.. Comente la liave secreta, la llave ptiblica y la llave pri-
vada. ;Quién tiene posesion de cada llave? ;Cuil es el
tipe de cifrado que utiliza cada llave?

. ¢Por qué el algoritmo RSA es tan poderoso?
- (Cndles son las desventajas del cifrado de [lave secreta?
(Cudl es [a desventaja del cifrado de llave priblica?

- Cudl es la diferencia entre firmar todo el documento y
firmar el compendio?

.+ Como se relaciona la firma digital con los asuntos de
privacidad?

REGUNTAS DE OPCION MULTIPLE

5. En el cifrado/descirado, la llave
i por todos.

a&. secreta

-b. privada

¢. pidblica

d. reducida

La (el se logra a través del cifrado/descifrado.
a. auienticacién

b. integridad

¢. privacidad

¢. no rechazo

es conocida

En el método de cifrado v descifrado de Have secreta,
posee(n) la llave secreta.

a. solo el emisor

b. séio el receptor

¢. tanto el emisor como el receptor

d. el piiblico en general

18,

19,

20.

21.

22,

23.

24,

Una de las ventajas del cifrado de llave publica es

a. el poco tiempo requerido para el cifrado/descifrado
b. que se requiere un niimero pequefio de llaves

¢. que se conserva la integridad

d. que todos conocen todas las llaves

El algoritmo RSA es la base de un método de cifrado

a. llave piblica
b. llave secreta
c. llave privada
d. todas las anteriores

Para crear un compendio de un documento, usted pue-
de utilizar

a. una firma digital

b, un ndmero primo

¢. DES

d. una funcién hash

En el método de fivma digital, el emisor utiliza su llave
para cifrar el mensaje.

a. piiblica

b. privada

¢, secrefa

d. reducida

En el método de firma digital, el receptor utiliza la Ha-
Ve para descifrar el mensaje.

a. publica

bh. privada

€. secreta

d. reducida

£ Qué representa 10 mod 37
a 1

b. 3

e 3.33

d. 10

En una firma digital que involucra un compendio, la
funcidn hash se necesita

a. sblo en e receptor

b. sélo en el emisor

e. tanto en el emisor como en el receptor

d. por el piblico en general

25,

Seguridad

El método de firma digital no proporciona
a, privacidad

b. autenticacidn

¢. integridad

d. no rechazo

EJERCICIOS

26.

27.

28.

29,

TUno de los primeros métodos de llave secreta se llamaba
sustitucién monoalfabética (o la Cifra de César, atribuido
a Julio César). En este método, cada caracter en texto
plano se mueve hacia delante # caracteres. Los caracteres
se envuelven de ser necesario. Por ejemplo, sin es 5, el
caracter A se remplaza por F, ¢l caracter B por Gy asi su-
cesivamente. ;Cudl es la lave aqui? ;Cudl es el algorit-
mo de cifrado? ;Cudl es el algoritmo de descifrado?

Usando la Cifra de César y 6 como la Uave, cifre el
mensaje Hola.

Comente 1a efectividad de la Cifra de César. ;Puede un
intruso adivinar la Have buscando sélo en el texto cifra-
do? De ser asi, jcémo?

Una de las operaciones utilizadas en un algoritmo de
llave secrefa es la permuiacién de los bits. Un texto
plano de 8 bits se permuta (revuelve). El bit 1 se con-
vierte en el bit 3, el bit 2 se convierte en el bit 7 y as{
por el estilo. Dibuje un diagrama que muesire el cifra-
do y el descifrado. Elija su propia revoltura. ;Cuél es la
Nlave aqui? ;Cuil es el algoritmo de cifrado? ;Cudl es el
algoritmo de descifrado?

30.

31.

32.

33.

34.

35,

36.

Una operacién en un algoritmo de liave secreta es
operacién XOR (consulte el capitulo 4). A un patrén de
bits de tamafio fijo {texto plano) se le aplica XOR cop a
mismo tamafio de patrén de bits (llave) para crear
texto cifrado de tamafio fijo. ;Cudl es el algoritmo.
cifrado acqui? ;Cudl es el algoritmo de descifrado? Co
sidere el hecho de que un algoritmo XOR es un algorit
mo reversible.

Utilice 1a Have publica (15, 3) para cifrar el nimero7
Use la llave privada (13, 11) para descifrar el resultado®
del cifrado anterior. Haga un diagrama que muestre o :
flujo de informacién entre el emisor y el recepior.

Pruebe que el papel de la llave publica y el papel dela’
liave privada pueden cambiar al repetir el ejercicio pre' _
vio, pero cifre el ndmero 7 con la llave privada (15, 11)-
y descifrelo con la llave piblica (15, 3). Haga un dia-
grama para mosirar el flujo de informacién entre e emi- :
sor vy el receptor. k

Comente por qué el cifrado/descifrado de llave secreta’
no puede usarse para el no rechazo. :
arias pregunias inquietaron: a los cientificos de la computacién al principio de la era de las

Comente por qué el cifrado/descifrado de llave secreta . .
: mputadoras:

no puede usarse para la autenticacion.

. . , L ;Cudles problemas pueden resolverse mediante una computadora? ;Cuiles no?
Afiada un nivel de cifrado/descifrado de [lave secreta a

la figura 16.7 para proporcionar privacidad (Cusnto tiempo se lleva la solucién de un problema usando un lenguaje en particular?

JUn lenguaje es superior a otro? Es decir, jun programa de computadora escrilo en un

Afiada un nivel de cifrado/descifrado de llave puiblicaa - lenguaje puede resolver un problema' que otro no puede?

la figura 16.7 para proporcionar privacidad. . p
i Cuil es el miimero minimo de instrucciones necesarias para que un lenguaje resuelva un

problema?

Antes de gjecutar un programa, ;puede determinarse si el programa se parard (termina-
- r4) o se ejecutard por siempre?

ara responder estas preguntas, pasamos a una disciplina llamada teoria de la computacion.
Primero, presentamos tn lenguaje, llamado el Lenguaje simple, para mostrar que el ndmero
mimo de instrucciones requeridas para resolver cualquier problema que tiene sotucién me-
diante una computadora es tres. En otras palabras, probamos gue todos fos lenguajes que tic-
1 estas tres instrucciones basicas son iguales. Segundo, presentamos otra herramienta, vn
modelo de computadora llamado la méquina de Turing., Mostramos que un problema que
puede resolverse mediante nuestro Lenguaje simple, también puede resolverse por ia méqui-
na de Turing. Tercero, probamos que ningtn programa puede decir si otro programa se detie-
ne o no. Esta prueba es en si misma una indicacion de que hay problemas que ne pueden
esolverse mediante una computadora. Finalmente, comentamos brevemente Ja complejidad

Teoria de la computacién

17.1 LENGUAJE SIMPLE

INSTRUCCION
DE INCREMENTO

INSTRUCCION
DE DECREMENTO

INSTRUCCION
DE CICLO

EL PODER
DEL LENGUAJE
SIMPLE

Macros en el
Lenguaje simple

Podemos definir un lenguaje con sélo tres instrucciones: de incremento, de decremento y e
ciclo while (figura 17.1). En este lenguaje, usted utiliza sélo el tipo de datos de enteros, No
hay necesidad de ringtin otro tipo de datos porgue usted puede simular otros tipos de datg
con el tipo entero. El lenguaje utiliza sélo unos cuantos simbolos como { ¥ .

Instrucciones
en Ienguaje simple

|]
L Incremento Decremento i I Ciclo

Figura ¥7.1 Instrucciones en lenguaje simple

La instruccién de incremento afiade un 1 a la variable (por ejemplo, x). El formato es:

La instruccién de decremento sustrae un 1 de Ia variable (por ejemplo, x). El formato est:

La instruccion de ciclo repite una accién (o una serie de acciones) cuando el valor de lavi-
riable (por ejemplo, X) no es cero. El formato es:

De manera inductiva, podemos probar que este lenguaje de programacion simple con sél0
fres instrucciones es tan poderoso (aunque no necesariamente tan eficiente) cormo cualquicr
lenguaje sofisticado en uso hoy en dia, por ejemplo C. Para hacerlo, mostramos cémo podéf
mos simular varjas instrucciones encontradas en algunos lenguajes populares. .

Llamamos a cada simulacién una macro y la utilizamos en otras simulaciones sin la nece-
sidad de repetir el cédigo. g

Primera macro: X «— 0 El cddigo sigutente muestra cémo utilizar las instrucciones
en este lenguaje para asignar 0 a la variable X. La notacién de macros paraestoes x < 0-
A veces se Ie llama limpiar una variable,

X

17.1 Lenguaje simple

Segunda macro: X <— n El codigo siguiente muestra como utilizar las instrucciones
en este lengutaje para asignar un entero positivo a la variabie X. La notacion de macros para
esto es X <— 1. Primero limpie la variable ¥; luego incremente la X z veces.

Tercera macro: v <— X Todo lenguaje de programacion tiene una instruccién que co-
pia el valor de una variable a otra sin perder ¢l valor de la variable original. Esta macro pue-
de simularse en el Lenguaje simple utilizando la siguiente serie de instrucciones. Observe
que el segundo ciclo viiliza una variable temporal (TEMP) para restaurar el valor de X.

Cuarta macro: 7 «— ¥ + ¥ Estamacro suma los valores de X y Y y almacena ¢l re-
sultado en 7. Esto se hace en dos pasos. Primero almacena el vator de X en 7 (tercera ma-
cro) v luego incrementa la 2 Y veces.

Quinta macro: z «— X * Y Estamacro multiplica los valores de X y ¥ y almacena el
resultado en 7. La cuarta macro se utiliza perque la multiplicacién es una suma repetida.

mEMP e— Y
TEMP,

& whll_e

Teoria de ia computacién

Sextamacro: 7 «— X ** v Hstamacroelevaxala potencia ¥'y almacena el regy).
tado en z. Esto se hace utilizando la multiplicacién porque la expenenciacién es una mul-
plicacién repetida.

Séptima macro: comp (X) Hsta macro complementa el valor de x. Si el valor de ¥ es 0
{falso), lo cambia a 1 (verdadero). Si no es 0 (verdadero), lo cambia a 0 (falso). El primer
ciclo cambia el valor de x a 0 si éste no es 0 (positivo). Si usted introduce este ciclo X no
es (), entonces e valor de TEMP se establece en 0, lo cual significa que usted aunca intro-
duce el segundo ciclo. Si usted nunca introduce el primer ciclo (X es 0}, entonces definitiva-
mente introduce el segundo ciclo y cambia el valor de X a 1 (el ciclo se itera sélo una vez
porque el valor de TEMP es 1).

Octava macro: if X then Al else a2 Hsta macro simula la instruccién de toma
de decisiones (if-then-else) de los lenguajes modernos. Si el valor de X no es (0, Al (una ac-
cidn o una serie de acciones) se ejecuta en el primer ciclo. Sin embargo, el ciclo se ejecuta sd-
lo una vez porque, después de la primera itetacion, el valor de TEMP se vuelve 0 v usted sale
del ciclo. Si el valor de x es 0, el primer ciclo se omite. El valor de TEMP, el cual es lo mismo
que el valor de %, se complementa (s vuelve no 0} y el segundo ciclo se gfecuta s6lo una vez.

Otras macros Tal vez haya adivinado que necesita mds macros para hacer el Lenguajé
simple compatible con los lenguajes contemporaneos, La creacién de otras macros es posi-
ble, aunque no trivial. Hemos dejado algunas macros desafiantes como gjercicios.

nirada y salida

17.2 Maquina de Turing

Tal vez se haya planteado preguntas sobre las instrucciones de entrada/salida. Por ejemplo,
;como puede leer datos en una variable y cémo puede imprimir el resultado de un progra-
ma? Para un lenguaje como éste, no hay necestdad de entrada o salida. Usted puede simular
la entrada, como read X, mediante una instrucecidén de asignacién (X <—— n). También
puede simular la salida al suponer que la tltima variable utilizada en un programa aloja lo
que deberia imprimirse. Recuerde que éste no es un lenguaje practico, estd disefiado para
probar algunos teoremas en las ciencias de la computacién.

El Lenguaje simple es tan poderoso como cualquier otro lenguaje analizado en el capitulo
9. Bsto significa que si usted no puede resolver un problema en este lenguaje, no podré re-
solverlo en ninguin otro lenguaje. Posteriormente, mostramos que el problema de paro (hal-
ting) no tiene solucién en ninglin lenguaje porque no tiene solucién en el Lenguaje simple.

OMPONENTES DE

7.2 MAQUINA DE TURING

La mdquina de Turing se introdujo en 1936 por Alan M. Turing para resolver problemas
computables. Es la base de las computadoras modernas. En esta seccidn, presentamos una
versién muy simplificada de esta maquina para mostrar cémo funciona. Luege mostramos
como implementa las instrucciones en el Lenguaje simple.

Una méquina Turing estd formada por tres componentes: una cinta, un controlador y una ca-
beza de lectura/escritura (figura 17.2).

Aun cuando Ias computadoras modernas utilizan un dispositivo de acceso aleatorio con capa-
cidad finita, la memoria de la maguina de Turing es infinita. La cinta, en cualguier momen-
to mantiene una secuencia de caracteres del conjunto de caracteres aceptado por la méaquina.
Para nuestro propésito, suponemos que la maquina puede aceptar sdlo unos cuantos simbo-
los: el signo de nimero (#), el ampersand (&), el digito 1 y el espacio en blance. La figura
17.3 muestra un ejemple de los datos en una cinta en esta maquina. El # define el principio
del ntimero, el mimero almacenado en la cinta se representa mediante 11111 y el & define el
final del mimero. Ei resto de la cinia contiene caracteres en blanco.

|| Cabeza de lectura/escritura

Flgura 7.3 Cinta

Teoria de la computacién 17.2 Maquina de Turing

También suponemos que la cinta procesa solo los datos enteros positivos representados
en la aritmética unaria. En esta aritmética, un entero positivo se forma s6lo por unos. Por 1
ejemplo, el entero 4 se representa como 1111 y el entero 7 se representa como 1111111, 147 0 spacio
P P P & en blanco # — B
ausencia de unos representa el 0. y o & P — C
o]
. . ~ , . B 1 1 — C
Cabeza de La cabeza de lectura/escritura en cualquier morento sefiala a un sfmbolo en la cinta. Lia- B o1 1o ismo aue loe A
lectura/escritura mamos a este simbolo el simbolo actual. La cabeza de lectura/escritura lee v escribe un sim. - - 4
.) . R : C i espacio en blanco — B
bolo a 1a vez desde la cinta. Después de leer y escribir se mueve a ka izquierda, a la derecha C 1 1 —)
o permanece en su lugar. La lectura, la escritura y €l desplazamiento, todos se realizan bajo D 20 - o mi
instrucciones del controlador. e unblejﬁssm o mti,mo B
n que 1e¢ >
Controlador E1 contrelador es [a contraparte tedrica de 1a unidad central de procesarniento (CPU) en las : D espacio ¢n blanco ! D
computadoras modernas. Es un autémata de estado finito, una maquina gue tiene un nime- | Tabla 17.1 Tabla de transicién
ro finito predeterminado de estados y se mueve de un estado a otro con base en la entrada,
En cualquier momento puede gstar en uno de estos estados. . a SIMIUL ACION DE Veamos si podemos escribir programas (crear tablas de transicién) que implementen las ing-
La figura 17.A exhibe el diagrama de transicidn para un controlador que tiene un autg- . LENGUAIE SIMPLE trucciones del Lenguaje simple.
mata de estado finito. En esta figura el autémata tiene cuairo estados (A, B, C, D). El dia- = g
grama muestra €l cambio de estado como una funcién de la lectura de caracteres. Lo
siguiente describe la figura: Instruccidn Implementemos la instruccién (incr x) utilizando la méquina de Turing. La figura 17.5
B Siel controlador estd en el estado A v lee 1 0 un espacio en blanco, pasa al estado B, de incremento muestra el diagrama de transicién para esta instruccion. Interpretamos la ¥ como los datos

que ya estdn en la cinta delimitados por el signo # (al principio) y el signo & (al final). Por
razones de simplicidad, en la figura 17.5 hemos omitido algunos estados (por ejemplo, el es-
tado de error).

Si lee # 0 &, pasa al estado C.

B Siel controlador estien el estado B ylee 1, pésa al estado C. Si lee cualquier otro ca-
rdcter pasa al estado A,

B Siel controlador estd en el estado C y lee 1, pasa al estado B. Si lee cualquier otro ca-
récter pasa al estado D.

Startiner 3

B Siel controlador estd en el estado D y lee cualquier cardcter excepto un espacio en blan-
co, pasa al estado B. Pero si lee un espacio en blanco, permanece en el estado D.

i

1 o espacio en blanco

Fal

pra
AT

no i

Y

{ Stopioer P

Figura 17.5 Diagrama de transicién para iner X

Tio un espacio
en blanco espacio
' en blanco

1

no i

- La tabla 17.2 muestra la tabla de transicién para esta instruccion.
Figura 17.4 Estado de transicién

))) o “Estado act :Estado muevo
Para cada lectura de un simbolo, el controlador escribe un cardcter, define la siguiente po- P P P Forwtd
sicién de la cabeza de lecturafescritura y cambia el estado. En el diagrama de transicion, F—— ; - -
. .., oTwar — orwar
mostramos s6lo uno de estos tres; una tabla de transicidn puede mostrar los tres. La tabla de — 5 - e
. . . - OTWart — £
transici6n, como se puede ver en la tabla 17.1, tiene cinco columnas: el estado actual, et ¢a —
. . .. e . Adde cualquiera & R Backward
racter leido, el caracter escrito, la signiente posicién de la cabeza de lectura/escritura ¥ e a .
nuevo estado Backward no # Io mismo
" . . L que lee — Backward
Para cada problema, debemos definir la tabla correspondiente. Esto es similar a un pro- -
Backwar # # a ninglin lugar StoplIncr

grama escrito en un lenguaje de computadora. Un programa es una implementacion moder-

na de la tabla de transicién. Tabla 17.2 Tabla de transicién para la instruccion incr X

Instruccidon
de decremento

Teoria de la computacién

(o)

==y

EEENENENE S

(oo)
(el ifiJ1T&]

DT I E]

FI e

jw (111 T& I

EXRNERENEN

Figura 17.6 Pasos en la instruccién incr x

StopDecr §

Figura 17.7 Diagrama de transicién para decr x

La figura 17.6 muestra c6mo el estado del controlador cambia y cémo se mueve la cabe-
za de lectura/escritura.

La instruccion de decremento (decr %) es similar a la instruccién de incremento. La fi-
gura 17.7 muestra el diagrama de transicién.
La tabla 17.3 muestra Ia tabla de transicién para esta mstruccién.

— Backward

Backward no # { lo mismo
que lee — Backward
Backwar # # a ningun lugar StopDecr

Tabla 17.3 Tabla de transicién para la instruccion gecr ¥

Instruceion loop

CONCLUSION

HEN ER NN B EN N e
Data X
Forward
& |
EU—#——-[Backward E [StanProeess}
N A

Cualguiera
EndProcess

StopLoop

Figura 17.8 Diagrama de transicion para la instruccidon loop

Para simular el ciclo, suponga que X se almacena después del simbolo # La & marca et fi-
nal de X y el principio de los datos que se procesan en el cuerpo del ciclo (éste puede ser
més que un solo elemento de datos). La figura 17.8 muestra el diagrama de transicién.

La tabla 17.4 muestra la tabla de transicion.

Estadoactual | Lee .. . | Estado nuevo
StartLoop # Check
Check No 1l Lo misme que se lee — StartLoop
Check i 1 R Forward
Forward No & Lo misme que se lee — Forward
Forward & & Ninguno StartProcess
EndProcess Cualquiera Lo mismo que se lee — Backward
Backward No # Lo mismo que se lee — Backward
Backward # # Ningunc Check

Tabla 17.4 Tabla de transicién para la instruccién loop

La méquina de Turing es tan poderosa como nuestro Lenguaje simaple. Cualquier problema
que puede resolverse mediante el Lenguaje simple también puede resolverse por medio de
la méquina de Turing. Pero jqué hay del otro lado de la moneda? ;Hay un problema que
pueda resolverse mediante la maquina de Turing que no se pueda resolver mediante el Len-
guaje simple? Aunque no podemos probarlo, durante las décadas posteriores, los cieniificos
de la computacién se convencieron de que esto no puede ocurrir. A esto se le conoce como
la tesis de Church (en honor a Alonzo Church), la cual establece que los lenguajes simples
como el Lenguaje simple y la maquina de Turing son equivalenies. Todos los problemas que
pueden resoiverse medianie el Lenguaje simmple también pueden resolverse por medio de la
méquina de Turing y viceversa.

Teoria de la computacion

17.3 NUMEROS DE GODEL

En la ciencia de la computacién teérica, un mimero sin asignar se asigna a cada programa
" que puede escribirse en un lenguaje especifico. Por lo general, a esto se le Hama el nimery
de Godel (en honor a Kurt Gédel).

Esta asignacion tiene muchas ventajas. Primero, los programas pueden utilizarse como
un solo elemento de datos que sirva como entrada a otro programa. Segundo, se puede ha-
cer referencia a los programas simplemente mediante sus representaciones de enteros, Ter-
cero, la numeracién puede usarse para probar que algunos problemas ne pueden resolverse
mediante una computadora al mostrar que el niémero total de problemas en el mundo es my-
cho mds grande que el mimero total de programas que puedan escribirse.

Sc han concebido distintos métodos para numerar los programas. Utilizamos una trans-
formacién muy simple para numerar programas escritos en nuestro Lenguaje simple. Ei
Lenguaje simple usa sélo 15 sfmbolos (tabla 17.5). Observe que en este lenguaje usted uti-
liza sélo X, X1, X2, . . ., X% como variables. Para codificar estas variables, se maneja ¥n
como dos simholos X y n (X3 es X y 3). Si usted tiene una macro con otras variables, éstas
necesttan cambiarse a Xn.

Simbolo Caodigo hexadecimal Simbolo Codigo hexadecimal

1 1 9 9
2 2 incr A
3 3 decr B
4 4 while C
5 5 { D
6 6 } E
7 7 X F
g 8

Tabla 17.5 Cédigo para simbolos utilizados en el Lenguaje simple

REPRESENTAC;@N Utilizando la tabla, usted puede representar cualquier programa escrito en nuestro Lengua-
DE UN PROGRARMA Je simple mediante un entero positive tnico. Siga estos pasos:

1. Remplace cada simbolo con el c6digo hexadecimal que le corresponde en Ia tabla.

2. Interprete el niimero hexadecimal resultante como un entero sin asignar.

EJEMPLO 1

¢Cudl es el mimero de Godel para el programa incr X?

SOLUCION

Se remplaza cada simbolo mediante su cddigo hexadecimal:

De modo que este programa puede representarse mediante el nimero 175, L

17.4 Problema de paro

NTERPRETACI@N Para mostrar que el sistema de numeracion es dinico, utilice los pasos siguientes para inter-
E LN NﬂMERO pretar un atmero de Godel:
1, Convierta el ndmero a hexadecimal.
2. Interprete cada digito hexadecimal como un simbolo utilizando 1a tabla 17.5 (ignore
un 0). -

Observe que mientras cualquier programa escrito en Lenguaje simple puede representarse
mediante un nimero, no todos los nimeros pueden interpretarse como un programa valido.
Después de la conversidn, si los simbolos no siguen la sintaxis del lenguaje, el ndmero no
es un programa vilido.

EJEMPLO 2
Interprete 3058 como un programa.

SOLUCION

El niimero se cambia a hexadecimal y se remplaza cada digito con el simbolo correspon-
diente:

Observe que en nuesiro Lenguaje simple cada programa incluye entrada y salida. Esto

significa que la combinacién de un programa vy sus entradas define el nimerc de Godel.
4]

Casi todo programa escrito en un lenguaje de programacion implica la repeticion (ciclos o
funciones recursivas). Un constructor de repeticidn puede no terminar (pararse o detenerse);
¢s decir, un programa puede ejecutarse por siempre si éste tiene un cicle infinito. Por ejem-
plo, el programa siguiente en Lenguaje simple nunca termina.

Una pregunta de programacién cldsica es:

;Puede escribirse un programa que evalde si un programa, representado por su
namero de Gidel, terminara o no?

La existencia de este programa ahorrarfa 2 los programadores mucho tiempo. La ejecucién
de un programa sin saber si éste se detiene o no, es una tarea tediosa, Lanientablemente, aho-
ra se ha probado gue este programa no puede existir (ona gran decepcién para los progra-
madores).

EL PROBLEMA
DE PARO NO |
TIENE SOLUCION

Prueba

Teoria de la computacion

En vez de decir que el programa evaluador no existe y nunca poéxé'existir, el cientificg d‘é_.

ia computacién dice: “El problema de paro no tiene solucién™.

Demos una prueba informal sobre la inexistencia de este programa evaluador. Nuestro mé.
todo a menudo se utiliza en las mateméticas: Suponga que éste cxiste ¥ luego muestre que
su exisiencia crea una coniradiceidn. Por consiguiente, no puede existin. En este método usa-
mos tres pasos para mostrar la prueba.

PASO 1 En este paso, suponemos que existe un programa, lamado Evaluar. Este puede
aceptar cualquier programa como P, representado por su niimero de Godel, como entraday .

produce una safida ya sea de 1 o 0. Si P termina, la salida de Evaluar es 1; si P no termina,
la salida de Evaluar es 0 (figura 17.9).

Programa P
(ndmero de Gidel)

|

Evaluador Si P termina, X es 1.
Si P no termina, X es 0.
X

Figura 17.2 Paso 1 en prueba

PASO 2 En este paso, creamos otro programa llamado Ex(rafio que se compone de dos
partes: una copia de Bvaluar al principic y un ciclo vacio (ciclo con un cuerpo vacio) al fi-
nal. E! ciclo utiliza X como la variable de prueba, la cual en realidad es la salida del progra-
ma Evaluar. Este programa también utiliza P como la entrada. Liamamos a este programa
Extrafio por la siguienie razdn. Si P termina, la primera parte de Extrafio, la cual es una co-
pia de Bvaluar, produce una salida de 1. Este 1 es la entrada del ciclo. El ciclo no termina
{ciclo infinito) y, en consecuencia, Extrafio no termina. Si P no termina, la primera parte de
Extrafio, 1a cual es una copia de Evaluar, produce una salida de 0. Este O es la enirada def
ciclo; el ciclo termina (ciclo finito) ¥ en consecuencia Extrafio termina.
En otras palabras, tenemos dos situaciones exirafias:

Fa figura 17.11 muestra el paso dos en la prueba.
PASC 3 Ahora, al haber hecho el programa Exirafio, probarmos este programa consigo
mismo (su ndmero de Gddel) como entrada. Esto es legitimo porque no ponemos ninguna

restriccién a P. La figura 17.10 muestra la sifuacién.

Contradiccién Ve alguna contradiccién?

S1 supenemas que Evaluar ex1ste, tenemos las mgu.lentes contrachccz

Extrano ne termma si Extrano terrmna
< Extrafio termina S_l i Extrafio no termina.,

17.5 Problemas con solucién y sin solucion

Programa P
(ntimero de Godel)

Si P termina, Exirafio no termina.

Extraiio
“Eval $i P no termina, Extrafio termina.

X{1o0)
while X

{

}

Figura 17.10 Paso 2 en la prueba

Programa Extrafic
(ntimero de Godel)

Extrafio

§i Ex{rafio termina, Extrafio no
termina.

$i Extrafio no termina, Extrafio
termina.

Figura 17.11 Paso 3 en prueba

Esto prueba que el programa Evaluar no puede existir y que debemos dejar de buscarlo. El
problema de paro no tiene solucién.

PROBLEMAS
SIN SOLUCION

17.5 PROBLEMAS CON SOLUCION Y SIN SOLUCION

Ahora que hemos demostrado que al menos un problema no tiene solucién mediante una
computadora, tratemos este tema importante un poco mds. En las ciencias de la computacion
podemos decir que, en general, los problemas se dividen en dos categorias: problemas con
solucién y problemas sin solucién. Los problemas con solucion se dividen a su vez en dos
categorias: problemas polinomiales y no polinomiales (figura 17. 12}.

Existe un nimero infinito de problemas que no pueden resolverse mediante una computado-
ra, uno de eilos es el problema de paro. Un método para probar que un problema no tiene
solucién es mostrar que si ese problema tiene solucién, el problema de paro también tiene so-
lucién. En otras palabras, probar que la capacidad de solucién de un problema da como re-
sultado la capacidad de solucién del problema de paro.

Teoria de la computacidn 17.7 Resumen

Problemas polinomiales Si un programa tiene una complejidad de O (fog m), O (n), O
), 0 (1), O (") o O (#5) (siendo k una constante) se le llama polinomial, Con la veloci-
dad de las computadoras actuajes, usted puede obtener soluciones para los probiemas poli-
nomiales con un ndmero razonable de entradas (por ejerplo, de 1 000 a un milién).

Problemas

I Con solucidn ! Sin solucién
|

I |
| Polinomiales No polinomiales

Problemas no polinomiales Siun programa tiene una complejidad mayor que un polino-
mial —por ejemplo, O (107} o O (#1)— éste puede resolverse si el ndmero de entradas es muy
pequefio (menor que 100). Si el ndmero de entradas es grande, uno podria sentarse enfrente
de la computadora durants meses para ver el resultado de un problema ne polinomial. Pero
;quién sabe? Al ritmo con el que la velocidad de las computadoras estd aumentando, usted tal

PROBLEMAS
CON SOLUCION

Complejidad
de los problemas
con solucién

Figura 17.12 Taxonomia de los problemas

Existen muchos problemas que pueden resolverse mediante una computadora. Con frecuen-
cia, queremos saber cudnte tiempo Ie toma a la computadora resolver ese problema. En otras
palabras, ;qué tan complejo es el programa? :

La complejidad del programa puede medirse de varias maneras distintas, tales comg el
tempo de gjecucidn, la memoria requerida y asi por el estilo. Un método es el tiempo de eje-
cucién: jcudnto le toma al programa ejecutarse?

Una manera de medir la complejidad de un problema con solucion es encontrar el nimero
de operaciones realizadas por la computadora cuando €sta gjecuta el programa. De esta ma-
nera, la complejidad es independiente de la velocidad de la computadora que ejecuta el pro-
grama. Esta medida de 1a complejidad puede depender del nimerc de entradas. Por ejemplo,
si un programa estd procesando una lista {ordenando una lista), 1a complejidad depende del
numero de elementos en la lista.

Notacion de orden O Con la velocidad de las computadoras actuales, no estamos tan
preocupados con los ntimeros exactos como con los Ordenes de magnitud generales. Por
ejemplo, si el andlisis de dos programas muestra que uno ejecuta 15 operaciones (o una serie
de operaciones) mientras que el otro ejecuta 25, ambos son tan rdpidos que usted no puede
ver la diferencia. Por otra parte, si los nimeros son 15 contra 1 500, usted debe preocuparse.

Esta simplificacion de eficiencia se conoce como notacién de orden . Damos Ia idea de
esta notacidn sin ahondar en su definicién y cdlcule formales. En esta notacion, el nimero de
operaciones {0 una serie de operaciones relacionadas) se da como una funcién del mimero de
entradas. La notacién O (n) significa que un programa realiza n operaciones para n entradas;
la notacién O (n°) significa que un programa realiza n” operaciones para 7 entradas. '

EJEMPLO 3

Tmagine que ha escrito tres programas distintos para resolver el mismo problema. El pri-
mero fiene una complejidad de O (log,, #), el segundo O (1) y el tercero O (n%). Supo-
niendo una entrada de un millén, ;jcudnto tiempo se levarfa ejecutar cada uno de esios
programas en una computadora gue realiza una instruccién en un milisegundo (un miilon
por segundo)?

SOLUCION

A continuacién se muestra el andlisis:

Primer programa: n=1 000 000 O{log;,, n) — & Tiempo — €& us
Segundo programa: n=1 000 000 O{n) — 1 000 000 Tiempo — 1 sec

Tercer programa: n=L1 000 000 O(n®) — 10V Tiempo —» 277 hrs B

vez sea capaz de obtener un resultado para este tipo de problema en menos tiempo.

nstruccidn de decremento
~instruccidn de incremento

17.6 TERMINOS CLAVE

cinta instruccidn loop

HACTo
mdquina de Turing
nimero de Gédel

problema con solucidn

problema no polinomiai
problema polinomial
problema sin solucién

17.7 RESUMEN

La teoria de la computacion puede ayudar a los cientifi-
cos de la computacidn a responder preguntas intrinsecas.

Tres instrucciones (incremento, decremento y ciclo) son
necesarias para simular todos los otros tipos de instruc-
ciones en un lenguaje de computadora. Por ejemplo, us-
ted puede lmpiar una variable, asignar un valor a una
variable, copiar el valor de una variable a otra y sumar
fos valores de dos variables usando las tres instrucciones
bésicas.

La maquina de Turing puede implementar instrucciones
en nuestro Lenguaje simple.

{Una médquina de Turing tiene una cinta, un controlador
y una cabeza de lectura/escritura.

La cinta en una méquina de Turing mantiene una secuen-
cia de caracteres de un conjunto de caracteres aceptable.

La cabeza de lectura/escritura en una méquina de Turing
en cualquier momento sefiala a un caracter. Después de
leer y escribir, la cabeza puede moverse a la izquierda, a
la derecha o permanecer inmévil.

E! controlador en una méquina de Turing controla la ca-
beza de lectura/escritara. Es la contraparte tedrica del
(CPU en las computadoras actuales.

Un diagrama de transicién es una representacidn picté-
rica de los estados del controlador.

Una tabla de transicién es una representacién de una
matriz de informacién respecto a los estados del con-
trolador.

Usted puede asignar un ndmero de Godel a cada progra-
ma en un lenguaje de computadora especifico.

No hay un programa que pueda predecir si un programa
terminard o no.

La notacién de orden O se utiliza para denotar la eficien-
cia de un programa.

Los probiemas son ya sea con solucion o sin solucién.
Los problemas con solucidn pueden clasificarse como
polinomiales y no polinomiales.

Los problemas no pelinomiales por lo general toman
més Hempo en resolverse gue 1os problemas polinomia-
les si el niimero de entradas es muy grande.

Teoria de la computacién

17.8 PRACTICA

PREGUNTAS DE REPASO

1. ;Por qué se necesita la teorfa de la computacién?

2. Mencione y proporcione las funciones de las tres ins-
trucciones bésicas que son la base de otras instruccio-
nes en un lenguaje de computadora.

3. Muestre ¢cémo la asignacién del valor de una variable a
otra {con la variable original conservando su valor) uti-
liza las tres instrucciones bdsicas.

4, ;Cuil es la relacién entre la mdquina de Turing ¥ nues-
tro Lenguaje simple?

5. ;Cudles son los componentes de la miquina de Turing
y cudl es la funcién de cada componente?

6. ;Cuidl es una forma de delimitar los datos en una cinta
de maquina de Turing?

7. Cuando una cabeza de lectura/escritura termina la lec-
tura y escritura de un sfmbolo, gcudles son sus siguien-
tes opciones?

8. ;C6émo se relaciona un diagrama de transicién con un
controlador de méquina de Turing?

9, ;Cémo se relaciona un diagrama de transicién con una
tabla de transicion? ;Tienen la misma informacién?
;Cudl tiene més informacion?

10. ;Qué es un nimero de Godel?

11. ;Cémo utilizasia un ndmero de Gidel para probar que
el problema de paro no tiene solucién?

12. ;Cémo se puede indicar la eficiencia de un programa?

13. Compare y contraste la complejidad de un problema
polinomial con solucién y un problema no polinomial
con solucién.

PREGUNTAS DE OPCION MULTIPLE

14. Un lenguaje de computadora simple puede disefiarse
con sblo instrucciones.
a, una
b. dos
c. tres
d. cuatro

15, La instruccidn de suma un 1 a la variable.
a. incremento

b. decremento

¢. ciclo

d. complemeato

1s.

17.

18.

19.

20.

21.

22.

23.

La instruccién de
a. incremento

b. decremento

¢ ciclo

d. complemento

repite una o0 mMAs acciones.

La insiruccion de resta un ¥ de la variable.
a. incremento

b. - decremento

¢. ciclo

d. complemenio

Para limpiar una variable utilice las instrucciones de

a. incremento
b. decremento
¢. ciclo
d. byc

Para asignar un ndimero a una variable, utilice las ins-
trucciones de

a. incremento

b. decremento

c. ciclo

d. todas las anteriores

Para copiar el valor de una variable a otra variable y que
la primera variable mantenga su valor, utilice las ins-
trucciones de

a. incremento

b. decremento

¢ ciclo

d. todas las anteriores

La macro que cambia los ceros en unos y un entero po-
sitivo a 0 se llama macro

a. decr X

b, Y X

c. comp (X)

d. switch (X)

Una mdquina de Turing tiene los siguientes componen-
e .

a. cinta, memoria y cabeza de lectura/escritura

b. disco, controlador v cabeza de lectura/escritura

¢. cinta, controlador y cabeza de lectura/escritura

d. disco, memoria y conirolador

En una miquina de Turing, la (el) mantiene
nna secuencia de caracteres.

a. disco

b. cinta

¢. controlador

d. cabeza de lectura/escrifura

. Un(a)

. El nfimero de Godel es un niimero

Después de leer un simbolo, 1a cabeza de lectura/escri-
wra_ .

a. se mueve a la izquierda

b. se mueve a la derecha

C. permanece en su sitio

d. cualquiera de las opciones anteriores

El (la)

a. disco

h. cinta

¢. controlador

es la contraparte téorica del CPU.

d. cabeza de lectura/escritura

El controlador tiene estados,
a. tres

b, cuatro

¢. un nimero finito de

d. un ndmero infinito de

Un(a) es una representacicn gréfica de los es-
tados y sus relaciones entre si.

a. diagrama de transicién

b. diagrama de flujo

¢. tabla de transicién

d. mdquina de Turing

muestra, enire otras cosas, el movi-
nuienio de la cabeza de lectura/escritura, el caracter lei-
do y el caracter escrito.

a. diagrama de transicién

b. diagrama de flujo

¢. tabla de transicidén

d. miquina de Twing

asignado
a un programa en un lenguaje especifico.

a. binario

b. entero

€. comsigno

d. sin signo

El mimero de Godel para decr ¥ en decimal es
a. 367

b. 175
¢ 174
d. 191

. El ndmero de Godel para decr X en hexadecimal es

a. BC

b. CB
¢c. BF
d. AF

32.

33.

34,

35,

17.8 Practica

Usted utiliza
un programa.
a. el miimero de Turing
b. la notacién de orden O
c. factoriales

d. el Lenguaje simmple

para denotar la complejidad de

Sila complejidad de 0 (') es &, entonces el nidmero de
entradas es

a. uno

b. dos

c. ftres

d. cuatro

Si [a complejidad de ©(n') es 24, entonces el ndmero
de entradas es

a. uno

b. dos

¢ tres

d. cuatro

La complejidad de 0(log*10 n) y la computadora
gjecuta un millén de instrucciones por segundo. ;Cuén-
to tiempo se toma la ejecucién del programa si el niime-
ro de entradas es 10 00G?

a. un microsegundo

b. dos microsegundos

¢. tres microsegundos

d. cuatro microsegundos

EJERCICIOS

36.

37.

38,

39,

44.

Simule la macro siguiente utilizando las instrucciones o
macros previamente definidas en ef Lenguaje Simple:
Z & X - ¥

Simule la macro siguiente utilizando las instrucciones o
macros previamente definidas en el Lenguaje simple:
if ¥ < ¥ then Al else A2

Simule Ia macro siguiente utilizando las instrucciones o
macros previamente definidas en el Lenguaje simple:
if X » ¥ then Al else A2

Simule la macro siguiente utilizando fas instrucciones o
macros previamente definidas en el Lenguaje simple:
while X > ¥
{
acclones

)

Simule la siguiente macro usando las instrucciones o
macros previamente definidas en el Lenguaje simple:
while ¥ < ¥
{

accliones

Teoria de la computacién

41. Simule la macro signiente utilizando las instrucciones o
macros previamente definidas en el Lenguaje simple:
while X == ¥
{

acciones

42. Muestre el diagrama de transicién para la mdquina de
Turing que simulax <— 0.

43. Muestre el diagrama de transicion-para la mdquina de
Turing que simula X <— n.

44. Muestre el diagrama de transicién para la mdquina de
Turing que simula ¥ - X,

45,

46.

47.

48.

49,
50,
51.

Muestre el diagrama de transicién para la méquina de

Turing que simula la macro 7 «— x + Y.

Muesire el diagrama de transicién para la méquina de
Turing que simula la macro 7z <— X * Y.

Muestre el diagrama de transicién para la maquina de
Turing que simula la macro comp (X).

Muestre el diagrama de transicion para la maquina de
Turing que simuia fa macro if ¥ then A1 else A2,

(Cudl es el ntimero de Gédel para la macro X1 «— 09

(Cudl es el niimero de Godel para la macro X2 <— n?

¢Cudl es el ndmero de Godel para la macro

X3 ¢« X1 + x27

El codigo norteamericano de estindares para intercambio de informacién (ASCII) es un
6digo de siete bits que representa 128 caracteres como se muestra en la tabla 1.

Cédigo ASCII

Decimal | Hexadecimal | Binario Caracter Descripcién
0 00 0000000 NUL Nulo
1 01 0000001 SOH Inicio de encabezado
2 02 0000010 STX Inicio de texto
3 03 0000011 ETX Fin de texto
4 04 0000160 EQT Fin de transmisién
5 05 0060101 ENQ Indagacion
6 06 0000110 ACK. Reconocimiento
7 07 0000111 BEL Campana
8 08 0001000 BS Retroceso
9 09 0001001 HT Tabulador horizontal
10 DA 0001010 LF Avance de i{nea
11 0B 0001011 VT Tabulador vertical
12 0C 0001100 FF Saito de pagina
13 0D 0001101 CR Retorno de carro
14 0E Q001110 SO Desplazamiento hacia afuera
15 OF 0001111 St Desplazamiento hacia dentro
16 10 0010000 DLE Escape de enlace de datos
17 11 001000 DCI Control de dispositivo 1
18 12 00100160 DC2 Control de dispositivo 2
19 13 0010011 DC3 Control de dispositivo 3
20 14 0010100 DC4 Control de dispositivo 4
21 15 0010101 NAK Reconocimiento negativo
22 16 0010110 SYN Inactividad sincrona
23 17 0010111 ETB Fin del bloque de transmisién
24 18 0011000 CAN Cancelar
25 19 0011001 EM Fin del medio
26 1A 0011010 SUB Sustituto
27 1B 0011011 ESC Escape
28 1c 0011100 FS Separador de archivos
29 1D 001110 GS Separador de grupos
30 1E 0011110 RS Separador de registros
31 IF 0011111 Us Separador de unidades
32 20 0100000 Sp Espacio
33 21 0100001 ! Signo de exclamacién
34 22 0100010 ? Comillas dobles
35 23 0100011 # Signo de mimeros
36 24 0100100 b Signo moenetario
37 25 0106101 % Signo de porcentaje
38 26 0106110 & Ampersand
39 27 0100111 ’ Apéstrofe
40 28 (101000 { Paréntesis abierto
41 29 0101001) Paréntesis cerrado
42 2A 0101010 * Asterisco
43 2B 0101011 + Signo mas
44 2C 0101100 , Coma
45 2D 0101101 - Guién
46 28 0101110 . Punto
47 2F 0101111 / Diagonal
Tabla A.1T Tabla ASCl

Cadigo ASCI
Decimal | Hexadecimal Binarie Caracter Descripcién
48 30 0110000 0
49 31 0110001 1
50 32 0110010 2
51 33 0110011 3
52 34 0110100 4
53 35 0110101 5
54 36 0110110 6
55 37 0110111 7
56 38 0111000 8
57 39 0111001 9
58 3A 0111010 : Dos puntos
59 3B 0111011 ; Punto y coma
60 3C 0111100 < Signo menor que
61 3D 0111101 = Signo igual
62 3E 0111110 > Signo mayor que
63 3F 011111t ? Signo de interrogacién
64 40 1000000 @ Arroba
63 41 1000001 A
66 42 1000010 B
o7 43 1000011 C
68 44 1000100 D
&9 45 1000101 E
70 46 1000110 F
71 47 1000111 G
72 48 1001000 H
73 49 1001001 i
74 4A 1001010 I
75 4B 1001011 K
76 4C 1001100 L
77 4D 1001101 M
78 4B 1001110 N
79 4F 1001111 0O
80 50 1016000 P
81 51 1010001 Q
32 52 1010010 R
83 53 1010011 S
84 54 1010100 T
85 55 1610101 U
36 56 1010110 \4
87 57 1010111 W
88 58 1011000 X
89 59 1011001 Y
20 S5A 1011010 Z
91 5B 1011011 [Corchete de apertura
92 5C 1011100 \ Diagonal invertida
93 5D 1011101] Corchete de cierre
94 5E 1011110 " Circunflejo
95 5F 1011111 _ Guién bajo
Tabla A.1 Tabla ASCH (continuacion)

Codigo ASCII

nicode es un codigo de 16 bits que puede representar hasta 65 536 sfmbolos. Utilizando
1a notacién hexadecimal, el cédigo puede variar de 0000 a FFFE. Gbserve que se requieren
‘decenas, si no es que cientos, de paginas para mostrar todos los simbolos individuales (ca-
facteres). Aqui mostramos sélo algunos intervalos.

Decimal | Hexadecimal | Binario Caracter Descripeitn
96 60 0110000) Acento grave
97 61 0110001 a
98 62 0110010 b
99 63 0110011 c

100 64 0110100 d

101 65 0110101 e

102 66 0110110 f

103 67 0110111 g

104 68 0111000 h

105 69 0111001 i

106 OA 0111010]

107 6B 0111011 k

108 6C 0111100 1

109 6D 0111101 m

110 6E 0111110 n

111 6F 0111111 0

112 70 1000000 P

113 71 1000001 q

114 72 1000010 T

115 73 1000011]

116 74 1000100 t

117 75 1000101 u

118 76 1000110 v

119 77 1000111 W

120 78 1001000 X

121 79 1001001 y

122 TA 1001010 z

123 7B 1001011 { Llave de apertura

124 7C 1001100 [Barra

125 D 1001101 } Liave de cierre

126 7B 1001110 ~ Tilde

127 7F 1001111 DEL Eliminar
Tabla A.1 Tabla ASCIi {continuacion)

Unicode Unicade
ALFABETOS Los cdigos de 0000 a 1FFF definen diferentes alfabetos. Algunos de ellos se muestran eq SIMBOLOS Los c6digos 2000 a 2FFF definen los simbolos y las marcas de puntuacion. Algunos de ellos
1a tabla B.1. Observe lo siguiente respecto a esta tabla: Y MARCAS se muestran en la tabla B.2.
1. Los cédigos 0000 a O0TF (Latin basico) son exactamente los mismos que se definie- DE PHNTUACEON
ron para el cédigo ASCIL —
2. Los c6digos 0080 a OOFF (complemento de Latin 1) son tos mismos que los caracteres intervalo Descripcion
Latin 1 definidos por 1a ISO. El sistema operativo Windows utiliza la variacién de estog 20002067 Puntuacion general
simbolos. Los caracteres de Latin basico se complementan con caracteres de acento, 2070-200F Subindices y superindices :
diéresis, el signo de interrogacién de cierre y asi por el estilo. 20A0-20CF Simbolos de moneda 5
20D0-20FF Combinacion de marcas para simbolos
2100-214F Simbolos tipo carta
Intervalo Descripeién 2150-218F Formatos de niimeros
0000-007F Latin bisico 2190-21FF Flechas
0080-00FF Complemento de Latin 1 2200-22FF Operadores matemdticos
0100-017F Latin extendido A 2300-23FF Miscelanea técnica
0180-024F Latin extendido B 2400-243F Imégenes de control
0250-02AF Extension del alfabeto fonético internacional (TPA) 244(3-245F Reconocimiento dptico de caracteres
02BO-02FF Espaciado de letras modificadoras 2460-24FF Alfanumérico cerrado
0300-036F Combinacién de marcas diacriticas 2500—-257F Bordes de cuadros
0370-03FF Griego 2580-259F Elementos de bloque
0400-04FF Cirilico 25A0-25FF Formas geométricas
0530-058F Armenio 2600-26FF Simboios misceldneos
0590-05FF Hebreo 2700-27BEF Simbolos decorativos
0600-06FF Arabe 2800—28FF Patrones Braile
0700-074F Sirio 2E80-2FFF Complemento radical CJK
(0780-07BF Thaana 2F00-2FDF Kanji radical
0900-097F Deviagari 2FF0-2FFF Caracteres de descripcidn ideogréfica
0980-09FF Bengalt Tabla B.2 Simbolos y puntuacién (2000 a 2FFF)
0A00-0ATF Gumurkhi '
0A80-0AFF Gujarati
0BOO-0B7F Oriya
OB80-OBIT: Tamul Los cédigos 3000 a 33FF definen los auxiliares chinos, japoneses y coreanos (CJK: Chine-
0COG-0CTF Teluga -AUX!LIARES ch se, Japangese and Korean), algunos de los cuales se muestran en 1a {abla B.3.
0C80-0CFF Kannada
ODOO-0DTF Malayalam
0D80-0DFF Cingalés
0E00 OE7F Tailandés Intervalo - Descripeién
O0E80-0OBEFF Lao 3000-303F Simbolos y puntuacidn de CJK
OF00-OFFF Tibetano 3040--309F Hiragana
1000--109F Myanmar 30A0-30FF Katakana
10A0-10FF Georgiano 3100-312F Bopomeofo
1100-11FF Hangut Jamo 3130-318F Jamo con compatibilidad Hangul
1200-137F Etfope 3190-319F Kanbun
13A0-13FF Cherogu{ 31A0-31BF Bopomefo exiendido
1400-167F Sildbico unificado de los aborigenes canadienses 3200-32FF Letras y meses en CJX cerrados
1680-169F Ogham 3300-33FF .| Compatibilidad con CIK
1040 16FF Rinico Tabla B.3 Auxiliares CJK (3000 a 33FF)
1780-17FF Jemer
1800-18AF Mongol
1E00-1EFF Latin extendido adicionai
LFOO-1FFF Griego extendido IDECGRAMAS c"(Los codigos 4000 a 9FFF definen los ideogramas CIK unificados.
Tabla B.1 Alfabetos (0000-1FFF) UNIFICADOS

Unicode

SUSTITUTOS
Us0 PRIVADO
CARACTERES

Y SiMBOLOS
MISCELANEOS

Los cédigos D800 a DFFF definen los sustitutos.
Los codigos EOOO a F8FF son para uso privado.

Los cédigos FO00 a FFFF definen caracteres y simbolos misceldneos.

' Una herramienta muy efectiva para mosirar el flujo 1dgico de un programa es el diagrama
."de flujo. En un entorno de programacidn, puede utilizarse para disefiar un programa com-
“pleto o sdlo parte de un programa.

© Bl propésito principal de un diagrama de flujo es mostrar el disefio de un algoritmo. Al mis-

mo tiempo, libera a los programadores de la sintaxis y los detalles de un lenguaje de progra-
macién mientras que les permite concentrarse en los detalles del problema a resolver.

. Un diagrama de flujo proporciona una representacidn pictérica de un algoritmo. Esto es en
-contraposicidn a otra herramienta de disefio de programacion, el pseudocddigo (ver apéndice

D), que proporciona una solucidn de disefio textual. Ambas herramientas tienen sus ventajas,

pero un diagrama de flujo tiene la capacidad pictérica que a otras herramientas les falta.

Diagramas de flujo

C.1 SIMBOLOS AUXILIARES

INICIO Y FIN

Un diagrama de flujo es una combinacidn de simbolos. Algunos simbolos se usan para me-
jorar la legibilidad o funcicnalidad del diagrama de flujo. No se utilizan directamente para
mostrar instrucciones o comandos. Muestran los puntos de inicio y fin, el orden y la secuen-
cia de acciones y cOmo una parte de un diagrama de flujo se conecta con otra. Estos simbo-
los auxiliares se muestran en la figura C.1.

APLICACION

Muestra el principio o
fin de un algoritmo

SIMBOLO NOMBRE

) o

Lineas de flujo

Muestra el orden
de las acciones en un

algoritno
—_—T
e
Muesira la continuidad
del algoritmo en
@ Conector la pégina siguiente

Figura €.1 Simbolos auxiliares en el diagrama de flujo

Un ovalo se utiliza para mostrar el inicio y fin de un algoritmo. Cuando lo atilice para mos-
trar el principio de un algoritmo, escriba la palabra START (iniciar) en el Gvalo; cuando lo
utilice para indicar el fin de un algoritmo, escriba la palabra STOP (detener) en el Gvalo.

Una de las primeras reglas de la programacion estructurada es que cada algoritmo debe te-
net s6io un punko de entrada y uno de salida. Esto significa que un diagrama de flujo bien es-
tructurado debe tener uno y sélo un inicio START, y uno y sélo un fin STOP. Los §valos
deben estar alineados para mostrar claramente el fiujo de la accidn en un algoritmo. Por gjem-
plo, en la figura C.2 se muestra un diagrama de flujo para un programa que no hace nada. Es-
te programa inicia y termina sin hacer nada.

Un évalo también puede usarse para indicar el inicio y ¢l fin de un médulo. Cuando Io uti-
lice al principio escriba dentro de él el nombre del mdédulo (en lugar de la palabra START),
cuando al final escriba la palabra RETURN (regreso), en vez de STOP.

(stop)

LINEAS DE FLUJO

CONECTORES

C.2 Simbolos principales

Las lineas de flujo se utilizan para mosirar e orden o la secuencia de las acciones en un pro-
grama. Hstas lineas conectan los simbolos. Por lo general, un simbolo tiene algunas lfneas de
entrada v algunas lineas de salida. Fl Gvalo START tiene séio nna linea de salida. El évalo de
STGP tiene sélo una linea de entrada. Acabamos de mostrar el uso de las lineas de flujo en
la figura C.2. Mostraremos otros flujos en los ejemplos que siguen.

Usted utiliza sélo un sfmbolo, un circulo con un mimere dentro de €l, para mostrar la conec-
tividad. Se utiliza cuando se llega al final de la pagina y el diagrama de flujo atin no termina.
En ia parte inferior de la pagina ntilice un conector para mosirar que el fiujo I6gico continda
en la parte superior de la pdgina siguiente. El mimero en el conector puede ser un nimerc se-
rial simple o puede ser una combinacién de una pagina y un simbole en Ia forma pdgina.nii-
mero. La fignra C.3 muestra un conector fuera de pégina.

Figura €.3 Conectores

Figura C.2 Simbolos de inicio y fin

- INSTRUCCEONES

EN SECUENCIA

Instruccion nula

‘€.2 SiMBOLOS PRINCIPALES

Los sfmbolos principales se utilizan para mostrar las instrucciones o acciones necesarias pa-
ra resolver el problema presentado en el algoritmo. Con estos sfmbolos, es posible represen-
tar los cinco constructores de programacion estructurada: secuencia, decisidn, ciclo while,
ciclo for y ciclo do-while.

Las instrucciones en secuencia simplemente representan una serie de acciones que deben con-
tinuar en un orden lineal. Aun cuando las acciones representadas en el simbolo de secuencia
pueden ser muy complejas, por ejemplo una operacién de entrada o una operacion de salida,
el flujo 16gico debe introducir el simbolo en la parte superior y fluir hacia fuera en la parte
inferior. Los flujos de secuencia no permiten que se torme ninguna decisidn o haya cambios
de flujo dentro del simbolo.

Existen cinco simbolos de secuencia: instruccién nula, de asignacion, de entrada/salida,
lamada de médulo e instruccién compuesta. Los dltimos cuatro se muestran en la figora C 4.

Vale 1a pena resaltar que do rothing (hacer nada} es una instruccién valida. Comtamente se
le conoce como instruccidn nula. La instruccion nula se considera una instruccidn de secuen-
cia debido a que no puede cambiar la direccién del flujo de un programa. No hay un simbo-
1o para una instruccién nula. Bs simplemente una linea de flujo. La figura C.2 es un ejemplo
de una instruceidn nula,

instruccion
de asignacion

Instruccion de
entrada/salida

Instruccion de
llamada de médulo

Diagramas de flujo

Instruccion de asignacidn

Instruccién de entradafsalida

Liamada de modulo

Instruccion compuesta

Figura €.4 Simbolos de secuencia

variable <— expresién 1

Figura €.5 Instruccién de asignacion

Figura €.6 Instruccion de llamada de modulo

La instruccién de asignacion se muestra utilizando un rectdngulo. Dentro del rectangulo, €l
operador de asignacién se muestra como una flecha que apunta a la izquierda. Al lado dere-
cho de la flecha hay una expresién cuyo valor debe almacenarse en la variable del lado iz-
quierdo. La figura C.5 muestra una instruccion de asignacion.

Un paralelograme se utiliza para mostrar cualquier entrada o safida, por ejemplo, leer de un
teclado o escribir en la consola del sistema,

El simbolo para Hamar a in médulo es un rectdngulo con dos barras verticales dentro. El dia-
grama de flujo para el médulo [lamado debe estar en alguna otra parte. En otras palabras,
cada vez que usted vea una instruccién de amada de médulo, busque otro diagrama de flu-
Jjo con el nombre del médulo (figura C.6).

Instruccién
compuesta

INSTRUCCIONES
DE SELECCION

Seleccidén
bidireccionat

Seleccion
multidireccional

C.2 Simbolos principales

Aun cuando no hay un simbolo real que muestre una insiruccién compuesta, encapsulamos
todas las instrucciones gue hacen una instruccidn compuesta en on rectingulo de linea dis-
continua.

A diferencia de la instruccidn de secuencia, las instrucciones de seleccidn pueden provocar
que el flujo del programa cambie. Permiten 1a ejecucidn de instrucciones seleccionadas y €l
salto de otras instrucciones. En la programacidn estructurada hay dos instrucciones de selec-
cién: bidireccional v multidireccional.

El simbolo bidireccional es el diamante. Cuande se utiliza para representar una instruccion
if-else, laldgica verdadera se muestra en la parte derecha del flujo ldgico, y la condicién
falsa, si la hay, se coloca en la parte izquierda del mismo. Con if-else, siempre debe ha-
ber dos flujos ¥6gicos, aunque a menudo uno de ellos es nulo. (Recuerde que la instruccion
mila se representa mediante una linea de flujo; no hay un simbolo para nulo.) Finalmente, la
instruccién termina con un conector donde los fiujos verdadero y falso se unen. En este caso,
el conector no tiene nada dentro de €L

Aungue con frecuencia verd decisiones esbozadas con el inicio del flujo en la parte infe-
rior del diamante, este estilo no es buenc. Aungue uno de los flujos sea nulo, éste debe fluir
de la izquierda o de la derecha dei diamante de fodos modos.

La figura C.7 muestra el uso del simbolo de decisién en la instruccién if-else. Como
seflalamos, siermpre hay dos ramas. En una de elias se permite tener una y sélo una instruc-
cién. Desde fuego, la instruccidn en cada rama puede ser una instruccidn nula o compuesta.
Pero s6lo se permite una instruccién en cada rama; ni mas, ni menos. También recuerde que
toda la figura es una sola instruccidn, no dos o tres; es una sola instruccién if-elise.

ki b

Instruccidn Instruccién
falsa verdadera

(O
#

Figura €.7 Seleccién bidireccional

La segunda aplicacién del simbolo de seleccion utilizado en la programacién estructurada es
la seleccién multibidireccional (fignra C.8). Como puede ver, se pueden tener tantas ramas
como sea necesario. Bn cada rama, se permite tener una y sélo una instruccién. Desde Iuego,
ia instruccién en cada rama puede ser una instruccién nula o compuesia. Pero recuerde que
s6lo se permiie una instruccion en cada rama; ni mds ni menos. También recuerde que toda
la figura es una sola instruccidn, no dos o fres.

INSTRUCCIONES
DE CICLO

Instruccion for

Instruccion while

Diagramas de flujo

M g
Instruccion 3

Instruccién
P

Figura C.8 Seleccidn naultidireccional
Hay tres instrucciones de ciclo: for, while y do-while.

La instruccién for es un ciclo controlado por contador. En realidad es una instruccién com-
pleia que tiene tres partes, caalquiera de las cuales puede ser nula: (1) la inicializacidn del ci-
clo, la cual normalmente establece el contador del ciclo; (2) la prueba de limite v (3) las
instrucciones de accién de fin del ciclo, ias cuales por lo general incrementan un contador.
Dado que la instruccién for es un ciclo de preprueba, es posible que el ciclo no se ejecute.
Si la condicidn que termina es verdadera al inicio, el cuerpo de la instruccidn for se salta.

Como sucede en todos los constructores de programacion estructurada, el cuerpo del ciclo
puede contener una y s6lo una instruccidn. Como sucede con los otros constructores, esta ins-
truccién puede ser nula o compuesta. La figura C.9 muestra el ciclo for.

0 Micializacion \ F
Prueba de
limite

yT

Figura €.2 Ciclo for

El segundo constructor de ciclo es la instruccién whi le. La principal diferencia entre los ci-
clos for y while es que el ciclo while no es un ciclo de conteo. Ambos son ciclos de pré-
prueba; esto significa que. como sucede con for, el cuerpo del ciclo while puede no
gjecutarse nunca.

Instruccion
do-while

C.2 Simbolos principales

Condicidn

Figura C.10 Cicdo while

Usted utiliza el mismo simbolo bésico para el ciclo while, pero debido a que sélo hay
una prueba de Hmite, las divisiones internas no son necesarias. La figura C.10 muestra el for-
mato bésico de Ia instruccién while,

La tercera aplicacién del simbolo de ciclo es la instruccion do-while (figura C.11). Debido
a las diferencias inherentes entre los ciclos for y while y el ciclo do-while, éste se pre-
senta de manera diferente en un diagrama de flujo. Hay dos diferencias importantes entre
while ¥ do-while:

1. Un ciclo while es un ciclo de preprueba. El ciclo do-while es un ciclo de pos-
prueba.

2. Bl cuerpo de un ciclo while puede no ejecutarse nunca. El cuerpo de un ciclo do-
while se gjecuta al menos una vez.

Flgura €.11 Ciclo do-while

Ena de las herramientas m4s conmmes para definir algoritmos es el pseadocédigo. El pseu-
docédigo es una representacion tipo idioma inglés del cédigo requerido para un algoritmo. Es
parte inglés y parte codigo estructurado. La parte de inglés proporciona una sintaxis relajada
facil de leer. La parte del codigo consiste de una version amplada de los constructores de al-

goritmos basicos: secuencia, seleccién e iteracién. El algoritmo D.1 muestra un ejemplo de
pseudecodigo.

D.1 Componentes

Algoritmo D.1

Algoritmo: Encontrar Menor

Proposito: Este algoritmo encuentra el nlimero mas pequefio entre una
lista de nimeros.

Pre: Lista de ndmeros

Post: Ninguno

Devuelve: El menor

1. Establece el menor como ei primer nlimero
2. leop (no al final de la lista)
2.1 if (siguiente nGmero < menor)
2.1.1 establece el menor como el nimero siguiente
2.2 end if
3. end loop
4, return menor
End Encontrar Menor

ENCABEZADO
DE ALGORITMO

PROPOSITO,
CONDICIONES
Y DEVOLUCION

Proposito

Precondicidon
Postcondicion

Devolucion

NUMEROS DE
INSTRUCCION

CONSTRUCTORES
DE INSTRUCCION

D.T COMPONENTES

Un algoritmo escrito en pseudocddigo puede decomponerse en varios elementos y cons-
tructores.

Cada algoritroo comienza con un encabezado que lo nombra. Por ejemplo, en el aigoritmo
D.1, el encabezade comienza con la palabra Algorifino, la cual nombra al algoritmo como
“Encontrar Menor™.

Después del encabezado, usted por 1o general menciona el propdsito y las pre y postcondicio-
nes, y devueltos por el algoritmo.

El propésito es una breve frase sobre lo que hace el algoritmo. Necesita describir s6lo el pro-
cesamiento del algoritmo general. No debe intentar describir todo el procesamiento. En ¢l al-
goritmo D.1, el propésito comienza con la palabra Propdsite y continia con el objetivo del
algoritmo.

La precondicién lista cualquier requisito precursor. Por ejemplo, en el algoritmo D.1, se te-
quiere que la lista esté disponible para el algoritmo.

La postcondicién identifica cualquier efecto creado por el algoritmo. Por ejemnplo, tal vez el
algoritmo especifica la impresién de los datos.

Creemos que todo algoritmo debe mostrar lo que devuelve el mismo. Si no hay nada que de-
volver, aconsejamos que se especifique una devolucién nula. En el algoritmo D.1, se devuel-
ve el valor mis pequefio encontrado.

Las instrucciones se numeran como se muestra en el algoritmo D.1 (1, 2,3 . .). Las instruc-
ciones dependientes se numeran de manera que muestren sus dependencias (1.1, 2.4 ..).

Cuando Niklaus Wirth propuso por primera vez ¢l modelo de programacion estructurada, de-
claré que cualquier algoritmo puede escribirse con sélo tres constructores de programacion:
secuencia, seleccion v ciclo. Nuestro pseudocddigo contiene s6io estos tres constructores bé-

Pseudocddigo

SECUENCIA

SELECCION

CiCLO

sicos. La implementacidn de estos tres constructores se basa en la riqueza del lenguaje de im-
plementacién. Por ejemplo, el ciclo puede implementarse como una instruccién while, do-
while o for en el lenguaje C.

Una secuencia es una serie de instrucciones que no alteran la ruta de ejecucitn dentro de un
algoritmo. Aunque es obvio que instrucciones como assign (asignar) y add (sumar) son ins-
trucciones de secuencia, no es tan obvio que una llamada a otros algoritmos también se con-
sidera una instruccién de secuencia. La razén radica en el concepto de programacién
estructurada de que cada algoritmo tiene sélo una entrada v una salida. Ademds, cuando un
algoritmo se completa, regresa a la instruccién inmediatamente después de 1a llamada que lo
invoed. Por consiguiente, usted puede considerar de manera apropiada la llamada del algorit-
mo como una instruccion de secuencia. El algoritmo D.2 muestra una secuencia.

Algoritme B.2

7. establece x como el primer niimero
8. establece y como el segundo nimero
9. muitiplica x por y y almacena el resultado en z

Las instrucciones de seleccién evalian una o mds alternativas. Si son verdaderas, se toma una
ruta. Si son falsas se toma una ruta distinta. La instrucci6n de seleccion tipica es la seleccion
bidireccional (1 f-else). Aun cuando la mayor parte de los lenguajes proporciona seleccio-
nes multidireccionales, no proporcicnamoes ninguna en el pseudocédigo. Las alternativas de la
seleccidn se identifican mediante sangrias (sangrando), como se muestra en el algoritmo D.3.

Algoritmo D.3

5. i (x<y)
5.1 incrementa x
5.2 imprime x

6. else
6.1 disminuye y
6.2 imprime y

7. end if

Un ciclo itera un bloque de cdédige. El ciclo en nuestro pseudocédigo se parece mas at ciclo
while. Hs un ciclo de preprueba; es decir, la condicidn se evahia antes de ejecutar el cuerpo
del ciclo. 8i la condicién es verdadera, el cuerpo se ejecuta. Si la condicién es falsa, ef ciclo
termina. Ei algoritmo D.4 muestra un ejemplo de un ciclo.

Algoritmo D.4

3. loop {no al final del Archivo 1)

3.1 lee la linea siguiente
3.2 elimina los espacios principales
3.3 copia la linea al Archivo 2

4. end loop

El diagrama de estructura es la principal herramienta de disefio para un programa. Como

. herramienta de disefio, ésta se crea antes de comenzar a escribir un programa.

|

Diagramas de estructura

E.1 SIMBOLOS DEL DIAGRAMA DE ESTRUCTURA

SiMBOLO _
DE FUNCION

La figura E.1 muestra los diversos simbolos utilizados en un diagrama de estructura.

. a Fun‘ctién‘ Q CFD 5
A1 J__1

b. Funcién c¢. Condicidn d. Ciclo e. Ciclo
comun condicional

-

o1l

g. Flujo de datos h. Bandera

f. OR exclusivo

Flgura E.1 Simbolos del diagrama de estructura

Cada rectingulo en un diagrama de estructura representa una funcién que usted escribe. El
nombre en el rectdngulo es el nombre que usted da a la funcidn (figura E.2).

Figura E.2 Ejemplo de un diagrama de estructura

SELECCION
EN EL DIAGRAMA
DE ESTRUCTURA

CICLOS EN
EL DIAGRAMA
DE ESTRUCTURA

E.3 Simbolos del diagrama de estructura

La figura E.3 muestra dos simbolos para una funcién que es llamada por una instruccidn de
seleccidn: la condicidn y el OR exclusivo.

b. OR exclusivo

a. Condicién

Figura E.3 Seleccidn en una tabla de estructura

En la figura E.3a, la funcidn doTt contiene una llamada condicional a una subfuncidn,
fun. Si la condicion es verdadera, se 1lama a fun. Sino es verdadera, se omite fun. Hsta si-
tuacion se represenia en un diagrama de estructura como un diamante en la linea vertical en-
tre los dos blogues de funcién. ‘

La figura E.3b representa la seleccién entre dos funciones diferentes. En este ejemplo, la
funcidn select elige entre doa y doB. Una y sélo una de ellas se llamard cada vez que se
ejecute la instruccion de seleccidn. Esto se conoce como OR exclusivo; una de las dos alter-
nativas se ejecuta excluyendo la otra. El OR exclusivo se representa mediante un signo més
entre los procesos,

_Ahora considere el disefio encontrado para una serie de funciones que puede llamarse ex-
clusivamente. Esto ocwrre cuando una seleccidn multidireccional contiene 1lamadas a varias
funciones diferentes. La figura E.4 contiene un gjemplo de una instruccién de seleccidn que
llama a diferentes funciones con base en el color.

colorR e‘d‘E

‘atherCols

Figura E.4 Ejemplo de una seleccion

Veamos como se representan los ciclos en un diagrama de estructura. Los simbolos son muy
simples. Los cicios pueden ir en circulos, asf que el simbolo usado es un circulo. Los progra-
madores usan dos simbolos de ciclo basicos. El primero es un ciclo simple, como se muestra
en la figura E.5a. El oiro es el ciclo condicional, exhibido en la figura E.5b.

Cuando la funcién se llama de manera incondicional, como en un ciclo while, ¢l circulo
fluye alrededor de la linea que est4 sobre la funcién llamada. Por otra parte, si la llamada es
condicional, como en una funcién llamada en una instrucceién 1.f-elge dentro de un ciclo,
entonces ¢l circulo incluye un diamante de decision en la linea.

Diagramas de estructura

E.3 Reglas de los diagramas de estructura

A menudo, un programa contendré varias llamadas a una funcién comin. Estas Hamadas
por lo general se esparcen en todo el programa. El diagrama de estructura mostrard la Hama-
da siempre que ésta ocurra I6gicamente en el programa. Para identificar estructuras comunes,
la esquina inferior derecha del rectdngulo estard sombreada. Si la funcién comiin es comple-
ja y contiene subfunciones, estas subfimciones necesitan mostrarse s6lo una vez. Debe mos-
trarse una indicacidn de que las referencias incompletas contienen estructura adicional. Por
lo general esto se hace con una linea debajo de la funcidn rectdngulo y un simbolo de corte
{(~). Este concepto se muestra en la figura E.7, 1a cual utiliza una funcién comiin, average,
en dos lugares diferentes del programa. No obstante, observe que nunca muestra graficamen-
te una funcién conectada a dos funciones que hacen una llarnada.

select

a. Ciclo b. Ciclo condicional

Figura E.5 Ciclos en un diagrama de estructura

La figura E.6 muestra la estructura bdsica para una funcién llamada process. Fl circulo
estd debajo de la funcién que controla el ciclo. En este ejemplo 1a instruccién de ciclo estd
contenida en process y llama a tres fonciones: A, B y C. La naturaleza exacta del ciclo no
puede determinarse a partir del diagrama de estructura. Puede ser cualquiera de los tres cons-
tructores de ciclo bésicos.

main

Catcul ate!

Figura E.7 Varias llamadas a la misma funcién

Figura 6 Ejemplo de un ciclo E.3 REGLAS DE LOS DIAGRAMAS DE ESTRUCTURA

FLUJO DE DATOS No es necesario mostrar los flujos de datos y las banderas, aunque puede ser titil en ciertas
circunstancias. Si éstos se muestran, las entradas se colocan a ta izquierda de la linea vertical
v las salidas, a la derecha. Cuando se incluyen, €] nombre de los datos o la bandera tammbién
deben indicarse.

A coniinuacién resumimos las reglas analizadas en esta seccidn:

B Cada rectdngulo en un diagrama de estructura representa una funcién escrita por el pro-
gramador. ‘

B FElnombre en el rectdngulo es el nombre que se usard en la codificacién de la funcién,

El diagrama de estructura contiene sélo un flujo de funcién. No se indica ningtin cddigo.

E.2 LECTURA DE DIAGRAMAS DE ESTRUCTURA

Los diagramas de estructura se leen de arriba hacia abajo y de izquierda a derecha. Respec-
to a la figura E.2, esta regla dice que ef Nombre de programa (main) consiste de tres subfun-
ciones: initialize, process ¥ endOfJob. De acuerdo con la regla de izquierda a
derecha, la primera Hlamada en el programa es initialize. Después de que se completa
initialize, el programa llama a process. Cuando process estd completo, el progra-
ma llama a end0fJob. En otras palabras, las funciones en el mismo nivel de un diagrama de
estructura se llaman en orden de izquierda a derecha.

El concepto de arriba hacia abajo se demmestra mediante process. Cuando se llama a
process, ésta llama a su vez a &, B y C. Sin embargo, la funcién B no comienza su ejecu-
cién hasta que A haya terminado. Mientras 2 estd en ejecucién, ésta llama a su vez a A1 y A2.
En otras palabras, todas las funcicones en una linea de process a &2 deben llamarse antes de
que la funcién B pueda comenzar.

B Las funciones comunes se indican mediante sombreado en la esquina inferior derecha
del rectangulo de la funcién.

B Los flujos de daios y las banderas son opcionales. Cuando se utilizan, debe asignérseles
un nombre.

B Los flujos de entrada v las banderas se muestran a la izquierda de la linea vertical; los
flujos de salida y las banderas se muestran a la derecha.

F1 Transformada coseno discreta

F.1 TRANSFORMADA COSENO DISCRETA

En esta transformacién, cada blogue de 64 pixeles pasa por una transformacién llamada trans-
formada coseno discreta (DCT: discrete cosine transform). La transformacién cambia los 64
valores de medo que ia relacidn relativa entre Jos pixeles se mantiene pero las redundancias
se revelan. La férmula es la siguiente: P (x,y) define un valor particular en el blogue de ima-
gen; T(m,n) define un valor en el bloque transformado.

En este apéndice, damos las bases matemadticas para las (ransformaciones de coseno discre-
ta y de coseno discreta inversa.

F.2 TRANSFORMACION INVERSA

La transformacion inversa se utiliza para crear la tabla P {x,y) a partir de la tabla T (m,.n).

m:_(}nﬁof: -

|
|
|

ALU: (arithimetic logic unif) unidad légica aritmética.

ANSI: (American National Standards Instituie) Instituto Nacional
Norteamericano de Estindares.

ASCIL: (American Standard Code for Information Interchange) Cédigo
norteamericano de estdndares para intercambio de informacidn.

bit: (binary digify digito binario.

CD-R: (compact disc recordable) disco compacto grabable.

CD-ROM: (compact disc read-only memory) disco compacto de
memoria de sdlo lectura.

CISC: (complex instriction set computer) computadora de serie de
instrucciones complejas.

COBOL: (COmmon Business-Oriented Language} lenguaje comin
orientado a negocios.

CPU: (central process unif) unidad central de procesamiento .

DBMS: (database management system) sistema de administracién de
bases de datos.

DES: {data encryption standard) estindar de cifrado de datos.

DMA: (direct memory access) acceso direcio a memoria.

DRAM: (dynamic RAM) RAM dindmica.

DVD: (digital versatile disc) disco versatil digital.

EBDIC: (Extended Binary Coded Decimal Interchange Code) Cédigo
extendide de intercambio decimal codificado en binario.

EEPROM: (electronically erasable programmable read-only memory)
memoria de s6lo lectura programable y borrable electrénicamente.

EPROM: (erasable programmable read-only memory) memoria de
s6le lectura programable y borrable.

FIFQ: (first en, first out) primero en llegar, primero en salir.

FORTRAN: (FORmula TRANsIation: traduccién de férmulas.

FTP: (file transfer pratocol) protocolo de transferencia de archivos.

HTML: (hypertext markup language) lengnaje para marcado de hiper-
texto.

HTTTP: (hypertext rransfer protocol) protocolo de transferencia de
hipertexto.

IP: (Internet protocol) protocolo lnternet.

ISO: (International Standard Organizarion) Organizacidn para la
Estandarizacién Internacional.

JPEG: (joint photographic experts group) grupo unide de expertos en
fotografia.

EAN: (local area network) red de drea local.

360

LIFQ: (last in, first out) Gltimo en entrar, primerc en salir.

LISP: (LISt programming) procesamiento de lista.

LZ: codificacidn de Lempel Ziv.

LZW: codificacion de Lempe! Ziv Welch.

MAN: {metropolitan area nenwork) ted de drea metropolitana.

MPEG: {motion piciure experts group) grupo de expertos en imagenes
€N fOVITHERo,

QSI: (Open Systems Interconnection) Interconexion de sistemas abier-
tos.

PERL: (Practical Extraction and Repori Language) lenguaje prictico
de extraccion e informes.

PC: (personal computer) computadoera personal.

pixel: {picture elements) elementos de imagen.

PROM: (programmable read-only memory) memoria de sdlo lectura
programable.

RAM: (randem access memory) memoria de acceso aleatorio.

RDBMS: (relational database management system) sistema de bases de
datos relacionales.

RISC: {reduced instruction set computer) computadora de serie de
insirucciones reducidas.

ROM: (reud-only memory) memoria de sélo lectura.

RSA: cifrado de Rivest-Shamir-Adleman.

SCSI: (small computer system interface) interfaz pequeita de sistemas
de computadoras.

SMTP: (simple mail iransfer protocol) protocolo simple de transferen-
cia de correo.

SQL: (Structured Query Language) lenguaje de consultas estructurade.

SRAM: (staric RAM) RAM estdrica.

TDA: tipo de datos abstracto.

TCP: protocole de conirol de transmisicn.

TCP/P: protocolo de control de transmisidn/protocolo Internet.

TELNET: (TErminal NETwork) red terminal.

UDP: (user datagram protocol} protocolo de datagrama de vsuaric.

URL: (uniform resource locator) localizador uriforme de recursos.

USB: (universal serigl bus) bus serial universal.

WAN: (wide area network) red de drea amplia.

WORM: (write ance, read many) escribir una vez, leer muchas.

WWW: World Wide Web.

A

abstraccidn: la generalizacién de las operaciones de un algorit-
mo sin una implementacion especificada.

acceso directo a memeria (DMA): una forma de E/S en 1z
cual un dispositivo especial confrola el intercambic de da-
tos entre la memoria y los dispositivos de E/S.

acceso secuencial: un método de acceso en el cual se tiene ac-
ceso a los registros ed un archivo en forma serial comenzan-
do por ¢l primer elemento.

acoplamiento: una medida de la interdependencia entre dos
funciones separadas. Véase también acoplamiento de conte-
nido, acoplamiento de control, acoplamiento global y aco-
plamiento de sello.

acoplamiento de contenido: la referencia directa a los datos en
un moédulo mediante instrucciones en otro moddule; la forma
inferior de acoplamiento misma que debe evitarse.

acoplamiento de control: comunicacidn entre funciones en las
cuales un modulo establece las banderas para controlar las
acciones de otro.

acoplamiento de dates: comunicacién entre mddulos en la
cual sélo se pasan los datos regueridos; considerada la me-
jor forma de acoplamiento.

acoplamiento de selfe: la técnica de comunicacidn entre mo-
dulos en la cual Ios datos se pasan como una estructura; con
frecuencia resulia en que se pasan datos no requeridos.

acoplamiento global: una técnica de comunicacién en la cual
los datos estdn accesibles para todos los médulos de un pro-
grama; se le considera un método muy pobre para la comu-
nicacién entre programas.

acoplamiento helgado: un tipo de acoplamiento entre mddu-
los que los vuelve mas independientes.

actualizacion en linea: un proceso de actualizacidn en el cual
un usuario gue tiene acceso directo al sistema introduce y
procesa las transacciones.

‘Ada: wvn lenguaje de programacion de alto nivel concurrente desa-

rrollado por el Departamento de Defensa de Estados Unidos.
administrador de archives: el componente del sistema opera-
tivo que controla el acceso a los archivos,

administrador de dispositivos: un componente de un sistema
operativo que controla el acceso a los dispositivos de entra-
da/salida.

agujero: en un disco dptico, una drea que hace el 1dser en la tra-
duccién de un patrdn de bits; por lo general representa un bit 0.

algoritmo: los pasos l6gicos necesarios para resolver un pro-
blema con una computadora; una funcién o parte de una
funcién.

almacenamiento de filas mayores: un método de ordenacidn
de elementos de un arreglo en la memoria en el cual los ele-
mentos se almacenan fila a fila.

altura: un atributo de 4rbol que indica la longitad de la ruta
desde Ia rafz al tiltimo nivel; el nivel de 1a hoja en la ruta
mds larga desde 1a rafz mis 1.

andloga: una entidad que varfa continuamente,

andlisis sintdctico: un proceso que divide datos en piezas o
sefiales.

apuntador: una constante o variable que contiene una direc-
cidn que puede utilizarse para tener acceso a los datos alma-
cenados en alguna otra parte.

arbeol: un conjunto de nodos conectados estructurado de tal
manera que cada nodo s6lo tiene un predecesor.

arbol cast completo: un irbol con grado de salida limitado que
tiene la altura mfnima para sus nodos y en la cual el nivel
de hoja se llena desde la izquierda.

arbol de expansion: un drbol extrafdo de un grafo conectado
que contiene todos los vértices en el grafo.

arbol de expansion minima: un 4rbol extraido de una red co-
nectada tal que la suma de los pesos es el minimo de todos
los drboles posibles contenidos en el grafo.

drbol de expresion: un drbol en el cual las hojas son elemen-
tos de datos y el nodo interno y la raiz son operadores.

drbol mulo: un drbol sin nodos,

arco: una linea dirigida a un grado. Contraste con arista.

archive binarie: una coleccion de datos almacenados en el
formato interno de la computadora. Contraste con archive
de fexto.

361

Glosario

archive de reporte de errores: en un proceso de acmalizacién
de archivos, un informe de errores detectado durante Ia ac-
tualizacion.

archivo de texto: un archivo en el cual todos los datos se al-
macenan como caracteres. Contrasta con archivo binario.

archive de transaccién: un archivo que contiene datos relati-
vamente transitorios que se atilizan para cambiar el conte-
nido de un archivo maestro,

archivo gjecutable: un archivo que puede ejecutarse (correr):
[N programa.

archive {uente: el archivo que contiene instrucciones de pro-
grama escritas por un programador antes de que se convier-
tan en lenguaje de mdqguina; el archivo de entrada a un
ensamblador o compilador.

archivo hashed: ua archivo en el cual se busca utilizando uno
de los métodos de hashing.

archivo maestro: un archivo permanente que contiene los da-

tos mas actuales referentes a una aplicacion.

archivo maestro nuevo: el archivo maestro que se crea desde
un archivoe maestro viejo cuando se actualiza el archivo.

archivo maestro viejo: el archivo maestro que se procesa jun-
to con el archivo de transaccin para crear el nuevo archivo
maesiro.

archive secuencial: una estructura de archivos en la cual los
datos deben procesarse en forma serial desde el primer ele-
mento en el archivo,

érea principal: en una lista hashed, la memoria que contiene
la direccién base.

arista: una linea de grafo gue no tiene direccion.

arreglo bidimensional: un arreglo con elementos que tiene
dos niveles de indexacidn. Véase también arreglo multidi-
mensional.

arreglo multidimensienal: un arreglo con elementos que tie-
nen méas de un nivel de indexacién.

ASCIL: Véase Cédigo norteamericano de estindares para in-
tercambio de informacidn.

ASCII extendido: un conjunto de caracteres que amplia el
ASCII basico. Los caracteres extras representan caracteres
para lenguajes extranjeros asi como para otros simbolos.

B

bandera: un indicador utilizado en un programa para designar
Ia presencia o ausencia de una condicidn; switch.

base de dates: una celeccién de informacion organizada.

base de datos distribuida: una base de datos en la cual los da-
tos se almacenan en varias computadoras.

base de datos distribuida fragmentada: unabase de datos dis-
iribuida en la cual se localizan los datos.

base de datos distribuida replicada: una base de datos en l2
cual cada sitio aloja una réplica de otro sitio.

base de datos orientada a objetos: una base de datos en la cual
tos datos se tratan como estructuras (objetos).

base de dates relacional: un modelo de base de datos en el cual
los datos se organizan en tablas refacionadas llamadas rela-
ciones,

bit: acrénimo de binary digit (digite birario). En una compu-
tadora, la unidad de almacenamiento basico con un valor ya
seade0o L.

bloque: un grupe de instrucciones tratadas como un todo.

bus: ef canal fisico que enlaza los componentes de hardware en
una computadora; el medio fisico compartido utilizado en
una red de topologia de bus.

bus de control: ¢l bus que transposta informacién entre compo-
nentes de computadoras.

bus de datos: el bus dentro de una computadora utilizado para
transportar datos entre componentes,

bus de direccion: Ia parte del bus del sistema utilizada para
transferir direcciones.

bus serial universal (USB: universal serial bus): un controfa-
dor de dispositivos de E/S que conecta dispositivos més len-
tos, tales como el teclado y el ratén, a una computadora.

busqueda: el proceso que examina una lista para localizar uno
0 mds elementos que contienen un valor designadeo conocido
como el argumento de bisqueda.

bisqueda binaria: un algoritmo de bisgueda en el cual ef va-
lor de biisqueda se localiza al dividir repetidamente 1a lista a
la mitad.

busqueda en una lista: Véase bisqueda.

biisqueda secuencial: una técnica de bisqueda utilizada con
una lista lineal en la cual la busqueda comienza con el primer
elemento y contintia hasta que ¢l valor de un elemento igual
al valor que se busca se localiza o hasta que el final de la lista
se alcanza.

byte: una unidad de almacenamiento, por Io general 8 bits.

caja negra: un dispositivo con mecanismos internos desconoci-
dos para el operador.

<

calidad del software: software que satisface los requisitos ex-
plcitos e implicitos del usuario, estd bien documentado,
cuample con fos estindares operativos de la organizacién y se
ejecuta de manera eficiente en el

camine: una secuencia de nodos en los cuales cada vértice es
adyacente al siguiente.

campe: lz unidad nombrada de datos méds pequefia que tiene
significado en la descripcion de informacidn, Un campo
puede ser una variable o una constante.

capa fisica: la primera capa en el modelo OSI; responsable por
formar vy fransmitir bits a lo largo de Ia red.

capa de presentacién: la sexta capa en el modelo OSI; respon-
sable de dar formato a los datos, el cifrado/descifrado vy la
compresion.

capa de sesién: el quinto nivel en el modelo OSI; respensable
de establecer y terminar sesiones y controlar didlogos.

capa de transporte: la cuarta capa en el modelo OSL; respon-
sable por la entrega extremo a extremo de todo el mensaje.

capacidad de correccion: el factor de calidad que aborda la
facilidad con la cual pueden corregirse los efrores en un mé-
dulo.

capacidad de pruebas: un atribute del software que mide la fa-
cilidad con la cual el software puede probarse como un siste-
ma operacional.

cargador: la funcidn del sistema operativo que busca v trae un
programa ejecutable 2 la memeoria para su ejecucidn.

char: el tipo de dato en lenguaje C para caracter.

cicle controlado por contador: una técnica de cicle en la cual
el mimero de iteraciones es conirolado por un contador.

ciclo controlado por eventos: un ciclo cuya terminacion se ba-
sa en la ocurrencia de un evento especificado. Contraste con
ciclo contrelado por contador.

cicle de méquina: la secuencia repetitiva de eventos en la
ejecucion de instrucciones de programa (fetch, decode y
execute).

- ciclo de postprueba: un ciclo en ef cual la condicién de firali-

zacidén se prueba sélo después de la ejecucién de las instrue-
ciones de ciclo, Coniraste con ciclo de preprueba.

ciclo de preprueba: un ciclo en el cual la condicién de finali-
zacifn se prueba antes de la ejecucién de las instrucciones de
ciclo. Contraste con ciclo de postprueba.

ciclo de vida del desarrollo del sistema: una secuencia de pa-
sos requeridos para desarroilar sofiware; comienza con la ne-
cesidad de software y concluye con su implementacion.

ciclo de vida del software: la vida de un paquete de software.

ciclo do-while: en los lenguajes C y C++, un ciclo postprueba
controfado por eventos.

ciclo for: un ciclo controlado por contador en Cy C++.

ciclo while: un ciclo controlado por eventos en C y C++.

¢iclo: en un programa, un constructor de la programacidn estruc-
turado que provoca que Una o més instrircciones se repitan; en
un grafo es una linea que comienza v finaliza con el mismo
vértice.

ciencias de Ia cemputacion: estudio de los temas relacionados
con una computadora.

cifrado: conversion de un mensaje a una forma ininteligible que
es ilegible a menos que se descifre.

cifrado a nivel de biis: un método de cifrado en el cual los da-
tos primero se dividen en bloques de bits antes de cifrarse.

cifrado a nivel de eardcter: un método de cifrade en el cual €l
cardcter es la unidad de cifrado.

cifrado de Have pithlica: 1un método de cifrado que utiliza dos
llaves: privada y piiblica. La llave privada se mantiene en se-
creto; la Have piblica se revela al piiblico.

cifrado de Rivest-Shamir-Adieman (RSA): un método de ci-
frado de lave piblica popular.

cinta magnética: un medio de almacenamiento con capacidad
secuencial.

circuito integrado: transistores, cableado y otros componentes

Glosario

en un solo chip.

circulo de ealidad: un diagrama en forma circular de los pasos
para la calidad del software.

clase: la combinacion de datos y funciones unidos para formar
un tipo.

ciear: en las mdscaras, una técnica para hacer un bit 0; también
conocida como forzar a (.

cliente: en un programa cliente-servidor, la aplicacidn que soli-
cita servicies de un servidor.

COBOL: un leaguaje de programacién de negocios (COmmon
Business-Oriented Languaje) desarrotlado por Grace Hopper.

codificacion basada en diccionario: un método de compresion
en €l cual un diccionario se crea durante la sesidn.

codificacion de Huffman: un método de compresitn estadisti-
co gue utiliza c6digo de longitud variable,

codifieacion de Lempel Ziv (LZ): un algoritmo de compresion
que utiliza ua diccionario.

codificacion de Lempel Ziv Welch (LZW): una versién mejo-
rada de la codificacién LZ.

codificacion de longitud de ejecucion: un método de compre-
sion sin pérdida en el cual una serie de simbolos se reempla- -
za mediante e sfmbolo.y el nimero de simbolos repetidos.

c6digo: una serie de patrones de hits disefiados para representar
simbolos de texto. i

codigo de intercambio decimal codificado en binario extendi-
do (EBCDIC: Extended Binary Coded Decimal Interchan-
ge Code}: el conjunto de caracteres disefiado por IBM para
sus sistemas de computo mis grandes.

Cédigo norteamericano de estdndares para intercambio de
informacion {(ASCII: American Standard Code for Infor-
mation Interchange): un esquema de codificacién que define
los caracteres de control e imprimibles para 128 valores.

cohesidn: el atribuio de un médulo que describe gué tan estre-
chamente se relacionan los procesos escritos en un moédulo
entre si.

cohesitn casual: la combinacién de procedimientos que no es-
tan relacionados.

eohesion de comunicacién: un atributo de disefio en el cual los
procesos de mddule se relacionan debido a que comparten
los mismos datos.

cohesion de procedimiento: un atributo de disefio en el cual el
procesamiento dentro del médulo se relaciona con los flujos
de control. Se considera un modelo aceptable s6lo en los ni-
veles mds altos de un programa.

cohesién funcional: un atributo de disefio en el cual todo el
procesamiento se relaciona con una sola tarea. El nivel mdis
alto de cohesidn.

cohesion légica: un atributo de disefio que describe un mddalo
en el cual el procesamiento dentro del médulo se relaciona
solo con el tipo general de procesamiento gue se estd reali-
zando. Se considera inaceptable en la programacidn estruc-
turada,

cohesion secuencial: un atributo de disefio en el cual el proce-

Giosario

samiento dentro del madulo es tal que los datos de un proce-
so se utilizan en el siguiente proceso.

cohesién temporal: on disefio de médulo en et cual los proce-
305 se combinan debido a que todos necesitan procesarse en
ia misma secnencia de tiempo.

cola de espera: una lista lineal en la cual los datos sélo pueden
insertarse en un exiremo, llamado la parte de atrds, y elimi-
narse desde el otro extremo Hamado Ta parte de adelante.

colisién: en hashing, un evento que ocurre cuando un algoritmo
de hashing produce una direccién para una insercién y esa di-
receidn va estd ocupada.

cofumna vertebral backbene: los medios y dispositivos que
crean conectividad para redes pequefias.

comentarie: en un programa C, una nota para ¢l lector del pro-
grama que es ignotada por €1 compilador.

compilador: software del sistema que convierte un programa
fuente en cédigo objeto gjecutable; tradicionalmente asociado
con lenguajes de aito nivel. Véase también ensamblador.

complemento a ano: la operacion relacionada con bits que in-
vierie el valor de los bits en una variable.

complemento a des: una representacién de nimeros binarios
en la cual ¢l complemento de un niimero se encuentra al com-
plementar todos los bits y sumar un I después de eso.

compresién: la reduccién de tn mensaje sin pérdida significa-
tiva de informacidn.

compresion de datos con pérdida: compresion de datos en la
cual se permite que algunos datos se pierdan; utiizada para
compresion de imagen, andio o video.

compresion de dates sin pérdida: compresitn de datos en la
cual no se pierde ningiin dato; utilizada para cormprimir tex-
0 O programas.

compresion de dates: la reduccidn de fa cantidad de datos sin
una pérdida significativa.

compresion espacial: compresién realizada por JPEG en un
cuadro.

compresion estadistica: un método de compresitn en el cual la
codificacién se basa en la frecuencia de los simbolos.

compresion temporal: compresién realizada por MPEG en fos
cuadros.

computadora de conjunto de instrucciones complejas (CISC:
complex instruction set computer): una computadora que
define un amplio conjunto de instruccicnes, incluso aquellas
que se utilizan con menor frecuencia.

computadora de conjunto de instrucciones reduacidas (RISC:
reduced instruction set computer): una computadora que uti-
liza sélo las instrucciones wiilizadas con frecuencia.

computadora personal (PC): una computadora disefiada para
use individual.)

concentrador active: un concentrador (hub) que regencra las
sefiales recibidas (un repetidor).

concentrader pasive: un tipo de dispositivo de conexién que
no regenera los datos.

conmutador: Véase bandera.

constante: un valor de datos que no puede cambiar durante la
ejecucidn del programa. Contraste con variable.

constante literal: una constante sin nombrar codificada en una
expresion.

constante nombrada: una constante a la que el programador da
un nombre.

constante simbélica: una constante que estd representada por
un indentificador.

contader de programa: un regisiro en el CPU que mantiene
la direccion de la siguiente instruccidén a ejecutarse en fa
memoria.

contenedor: un algoritmo de hashing, una localidad que puede
acomodar varias unidades de datos.

controlador de entrada/salida (E/S): un dispositivo que con-
trola el acceso a los dispositivos de entrada/salida.

controlador: un componente de una maquina Turing que es
equivalente al CPU de una compuatadora.

conversién binaria a decimal: el cambio de un nidmero binario
a nimero decimal.

conversién decimal a binaria: el cambio de un mimero deci-
mal a niimero binario.

correo electronico (e-mail): un método para enviar mensajes
electrénicamente basados en la direccién del buzdén de correo
electrdnico en vez del intercambio de anfitridn a anfitrién.

CPU: VEase unidad central de procesamiento.

cuadro bidireccional (cuadro B): en MPEG un cuadro que se
relaciona tanto con los cuadros precedentes como con 10s
posteriores.

cuadroe infracodificado (cuadrs I): en MPEG, un cuadro inde-
pendiente.

cnadro pronosticadoe (cuadre P): en MPEG, un cuadro que se
relaciona con el cuadro I o ef cuadro B precedentes.

cuantizacién: asignar un valor de una serie finita de valores.

cuerpo: laparte de una funcién que contiene las definiciones e ins-
trucciones; el fodo de vna funcién con excepcidn de la declara-
cién del encabezade. Contraste con encabezado de funcién.

cuerpo de la funcién: el cédigo dentro de una funcién conteni-
do dentro de la definicién de Ia funcién y las secciones de
instrucciones.

D

datagrama: el paquete enviado mediante el protocolo IP.

datagrama de wsuario: el nombre de 1a unidad de datos utili-
zados por el protocolo VDP,

datagrama IP: la unidad de datos en el nivel de red.

datos de entrada: informacién del usuario que se presenta 2
una computadora para ejecutar un programa.

datos de salida: los resultados de ejecutar un programa de
computadora.

datos logicos: datos con un valor ya sea de verdadero o fafso.

declaracion: en C, la asociacién de un nombre con un objeto,
tal como un tipo, una variable, una estructura o una funcion.
Véase también definicion.

declaracion de funcién: en C, una instruccidn de prototipo que
describe el tipo de regreso de 1a funcidn, el nombre y los pa-
rametros formales.

decodificacién: proceso de restaurar un mensaje codificado a
su forma anterior a la codificacion.

definicion de funcién: en C, la implementacion de una decla-
racién de funcidn.

definicion: en C, el proceso que reserva memoria para un obje-
to nombrado, tal como una variable o constante,

desbordamiento: la condicién que resuita cuando no hay sufi-
cientes bits para representar un nimero en binario. Véase
también declaracidn.

descendienie: cualquier nodo en el camino desde el nodo actal
a una hoja.

descifrado: la recuperacion del mensaje original desde los da-
tos cifrados. Véase cifrado. '

descompresion: la accién realizada en los datos comprimidos
para obtener los datos originales.

diagrama de clase: un diagrama en la programacidn orientada
a objetos que muesira la relacidn enire objetos,

diagrama de estado: un diagrama que muestra los diferentes
estados de un proceso.

diagrama de flujo: una herramienta de disefio de programa en
la cual los simbolos grificos estindar se utilizan para repre-
sentar el flujo Idgico de datos a través de una funcidn.

diagrama estructurade: una herramienta de disefio y docu-
mentacién que representa un programa como un fhyjo jerdr-
quico de funciones.

digital: una entidad discreta (no continua).

digito binario (bit): la unidad m&s pequefia de informacién
Do)

digito hexadecimal: un simbolo en el sistema hegadecimal.

digrafe: un grado dirigido.

direccién base: en una lista hashed, la primera direccién produ-
cida por el algoritmo de hashing.

direccion de prerto: la direccion utilizada en TCP y UDP para
distinguir un proceso de otro.

direccion fisica: la direccion de un dispositivo en el nivel de en-
lace de datos.

direccién Internet: wna direccion de 32 bits utilizada para defi-
nir trcamente una computadora en Internet.

direccitn IP: Véase direccidn Internet.

direccion logica: una direccidn definida en el nivel de red.

directivas de preprocesador: comandos para el precompitador C.

disco: un medio de almacenamiento directo auxiliar para datos
de computadora y programas.

disco compacto: un medio de almacenamiento Optico de acee-
so directo con una capacidad de 650 megabytes.

disco compacto de memoria de sélo lectura (CD-ROM): un
disco compacto en el cual el fabricante escribe 1os datos en
el disco y sélo pueden ser leidos por &l usuario.

disco compacto escribible (CD-RW): un disco compacto en el
que puede escribirse muchas veces vy leerse muchas veces.

Glosario

disco compacto grabable (CD-R): un disco compacto en el cual
el usuario séto puede escribir una vez y leerlo muchas veces.

disco maestro: el disco gue aloja et archivo maestro en la actua-
lizacién de archivos.

disco magnético: un medio de almacenamiento con capacidad
de acceso aleatorio.

disce versatil digital (DVD): un medic de almacenamiento 6p-
fico de acceso directo que puede almacenar hasta 17 gigaby-
tes (una pelicula de 2 horas)

diseiio de arriba hacia abajo: un concepto de disefio de pro-
grama en el cual un disefio progresa a través de una descom-
posicién de las funciones, comenzando por la parte superior
del diagrama estructurado y frabajando hacia los médulos
interiores.

dispositivo de almacenamiento auxiliar o secundario: cual-
quier dispositivo de almacenamiento fuera de la memoria
principal; almacenamiento de datos permanente; almacena-
miento externo; almacenamiento secundario.

dispositive de almacenamiento dptico: un dispositive de E/S
que utiliza luz (l4ser) para almacenar y recuperar datos.

dispositive de almacenarniento secundario: Veuse dispositivo
de almacenamiento auxiliar.

dispositivo de almacenamiento: un dispositivo E/S que puede
ahmacenar grandes cantidades de informacidn para recuperar
en 0n momento posterior,

dispositivo de interconexion de redes: dispostiivos como enruta-
dores o gateways que conectan redes para formar una interred.

dispositive de no aimacenamiento: un dispositivo B/S que
puede comunicarse con la memoria del CPU, pero no puede
almacenar informacidn.

dispositive de safida: un dispositivo en el que puede escribirse
pero no leerse.

dispositives de conexidn: dispositivos como enrutadores, puen-
tes y repetidores que conectan LAN o WAN.

documentacién del sistema: un regisiro estracturado formal
de un paquete de software.

documento activo: en el World Wide Web, un documento eje-
cutado en el sitio Iocal utilizando Fava.

documento dindmico: un documento web ¢reado mediante la
ejecucidn de un programa en el sitio del servidor.

documento estitico: una pagina web que se crea en el sitio re-
moto y es recuperada por el sitio local. Contraste con docu-
mento dindmico.

E

E/S aislada: un métode de direccionamiento de un médufo E/S
en el cual las instrucciones utilizadas para leer/escribir me-
moria, difieren fotalmente de las instrucciones utilizadas pa-
ra leer/escribir en dispositivos de entrada/satida.

E/S mapeada a memoria: un método de direccionamiento de
un méduioe E/S en un solo espacio de direccidn; utitizada tan-
{0 para la memoria como para los dispositivos.

Glosario

E/S manejada por interrupciones: una forma de E/S en la cual
el CPU, después de emitir un comando de B/S, continda sir-
viendo otros procesos hasta que recibe una sefial de interrup-
cidn de que Ia operacién de E/S se ha completado.

E/S programada: una forma de E/S programada en la cual el
CPU debe esperar a que la operacidn de E/S se complete.

EBCDIC: Véase Codigo extendido de intercambio decimal co-
dificado en binario.

editor de texto: software que crea y mantiene archivos de texto
tales como un procesador de palabras o un editor de progra-
ma fuente.

efecto secundario: un cambio en una variable gue resulta de Ia
evaluacién de una expresién; cualguier entrada/salida reali-
zada por una foncién llamada.

eficiencia: el factor de calidad que trata el uso Sptimo del hardwa-
re de computadora o la velocidad de respuesta para un usuario.

gjecutar: poner en funcionamiento un programa.

elemento de imagen (pixel): la unidad més pequefia de una
imagen.

eliminacion (deguzene); eliminacién de un elemento de una cola.

encabezado: la informacién afiadida al principio de un paguete
para enrutamiento y ofros propésitos,

encahezado de fancidn: en una definicidn de funcion, la parte
de Ta funcién que proporciona el tipo de regreso, el identifi-
cador de funcién y los pardmetros formales. Contraste con
Cuerpo,

encapsulamien{o: el concepto de disefio de ingenieria de soft-
ware en ¢l cual los datos y sus operaciones se incluyen jun-
tos y se mantienen en forma separada de la aplicacién que los
utiliza,

enrutador: un disposilivo que opera en tres primeras capas del
modelo O8I que conecta redes independientes. Un enrutador
dirige un paquete con base en su direccidn de destino.

enrutamienio: el proceso realizado por un enrutador,

ensamblador: software del sistema que convierte un programa
fuente en cédigo objeto ejecutable; asociado tradicionalmen-
te con un programa de lenguaje ensamblador, Véase también
compilador.

enfero: un nimero entero, un nidmero sin una parte fraccionaria.

entero negative: un entero que varia de infinito negativo a 0.

entero positive: un entero que varfa de 0 a infinito positivo.

entero sin signo: un entero sin un signo; su valor varfa entre
y el infinito positivo.

enirega de nodo a nodo: la enirega de datos desde an nodo at
siguiente.

entrega de erigen a destino: la entrega de un paquete de datos
de la fuente al destino.

equilibrie: un atributo de nodo de drbol que representa la dife-
rencia en altura entre los subdrboles del nodo.

escribir una vez, leer muchas (WORM): otro nombre para un
CD-R.

espacio de direcciones: un intervalo de direcciones.

espacio entre pistas: el vacio entre las pistas de un disco.

espacio entre sectores: el vacio entre los sectores de un disco.

espacios en blanco: en C, el espacio, los tabuladores horizonta-
les y verticales, la linea nueva y los caracteres de cambio de
pagina.

esquema: el estdndar de facto del lenguaje LISP.

estado de ejecncién: en la administracién de procesos, nn esta-
do en el cual un proceso estéd utilizando el CPU.

estado de espera: el estado de una tarea que espera a ser carga-
da en la memoria.

estado de espera: un estado en el cual un proceso esperz a re-
cibir la atencidn del CPU.

estado de listo: en la administracidn de procesos, el estado de
procesamiento en el cual el proceso estd esperando obtener
atencién del CPU.

¢stado de terminacion: en la administracion de procesos, un
estado en el cual un proceso ha terminado de gjecutarse.

estdndar de cifrado de datos (DES): el método de cifrado del
gobiemo estadounidense para use no militarizado y no ciasi-
ficado,

estructura autorreferencial: vna estructura que contiene un
apuntador hacia s{ misma.

estructura de datos: la representacidn sintdctica de los datos
organizados para mostrar la relacidn entre los elementos in-
dividuales,

explorador: un programa de aplicacién que despliega un docu-
mento del WWW.

expresion: una secuencia de operadores y operandos gue se re-
duce a un solo valor.

expresién primaria: una expresién que consiste de un solo
operador; la expresién de prioridad més alta.

extraceién de digitos: seleccién de digitos de una llave para
usar como una diteccién.

extraer (pop): la operacidn de efiminacién en una pila,

F

facilidad de cambio: el factor de calidad que aborda la facili-
dad con la cual los cambios pueden hacerse con precisién pa-
ra un programa.

factor de equilibrio: en un drbol, 1a diferencia entre la altura
del subdrbol derecho y el subdrbol izquierdo.

fase de andlisis: una fase en el ciclo de vida del sistema de soft-
ware que define los requisitos que especifican lo que el siste-
ma propuesto va a lograr.

fase de disefio: una fase en ¢l ¢iclo de vida del sistema de soft-
ware que define cémo Jogrard el sistema lo que se definié en
la fase de andlisis.

fase de implementacién: una fase en et ciclo de vida del soft-
ware del sistema en la cual se crean los programas reales.

fase de pruebas: un fase en el ciclo de vida del software en la
cual se realizan experimentos para probar que un paquete de
software funciona.

fetch: laparte del ciclo de instrucciones en el cual la instruccion
a ser gjecutada se trae desde la memoria,

fiabilidad: el factor de calidad que trata la confianza en Ia ope-
racidn fotal de un sistema.

FIFO: Véuse primero en entrar, primero en salir.

FireWire: un controlador de dispositivo de entrada/salida con
una interfaz serial de alta velocidad que transfiere los datos
en paquetes,

firma digital: un método utilizado para autenticar el emisor del
mensaje y preservar la integridad de los datos.

flexibilidad: el factor de calidad gue trata fa facilidad con la
cual un programa puede cambiarse para cemplir con los re-
quisitos de Ios usvarios.

flip: cambiarunbitde 0alodelad.

float: un tipo de punto flotanie.

formato de deble precisidn: un estdndar para almacenar nitme-
ros de punto flotante en la memoria con mayor precisién que
el formato de precisién simple.

FORTRAN: un lenguaje de procedimiento de alto nivel uiiliza-
do para aplicaciones cientificas y de ingenieria.

forzar a 0: el concepto de manipulacién de bits utilizado para
cambiar los bits seleccionados a 0.

forzar a 1: el concepto de manipulacién de bits utilizado para
cambiar los bits seleccionados de a 1.

forzar al cambio: el concepto de manipulacidn de bits ntiliza-
do para cambiar los bits seleccionados de 0alyde1aq.

fraceién: una parte de un nimero entero.

funcidn: un bloque nombrado de c6digo que realiza un proceso
dentro de un programa; una unidad ejecutable de cédigo con-
sistente en un encabezado, ¢l nombre de Ia funcién y un cuer-
po, disefiada para realizar una tarea dentro del programa.

G

gafeway: un dispositivo que conecta dos redes separadas que
utilizan diferentes protocolos de comunicacion.

grade: el niimero de lfneas incidentes a un nodo en un grafo.

grado de entrada: el niimero de lineas que entran a un nodo en
un drbol o grafo.

grade de salida: el nimero de lineas que dejan un nodo en un
drbol o grafo.

grifica de barras: una grifica con valores representados me-
diante barras.

grifico de mapa de bits: una representacidén grifica en Ia cual
una combinacitn de pixeles define la imagen.

grifico de vectores: el tipo de gréficos en el cuai las lineas y las
curvas se definen utilizando férmulas mateméticas.

grafo: una coleccion de nodos, llamados vértices, y segmentos de
linea, llamados aristas o arcos, gue conectan pares de nodos.

grafo con peso: un grafo con lineas con peso. Cada linea tienc
un entero que define el peso.

grafo débilmente conectado: un grafo en el cual hay al menos
un nodo sin un camino para al menos uno de los otros nodos.
Contraste con grafo fuertemente conectado.

Glosario

grafo dirigido: un grafo en el cual la direccidn se indica en las
Hneas {arcos).

grafo fuertemente conectado: un grafo en el cual hay un cami-
no desde cada nodo a cada otro node. Contrasie con grafo ¢é-
bilmente conectado.

grafo inconexo: un grafo que no estd conectado.

grafe no dirigido: un grafo que consiste sélo de dos aristas; es
decir, un grafo en el cual no hay indicacion de la direccion de
ias lineas.

grupo de expertos en imAgenes en movimiento (MPEG: mo-
tion picture experts group): un método de compresién con
pérdida para comprimir video (y audio).

grupo unido de expertos en fotografia (JPEG: joint photograp-
hic experts group): un estdndar para comprimir imdgenes.

]

hardware: cualguiera de los componentes ffsicos de un sistema
de cOmputo, tales come un teclado o una impresora.

hashing de contendor: un méiodo de hashing que utiliza con-
tenedores para reducir 1a colisién.

hashing de extraccién de digitos: un meétodo de hashing que
utiliza la extraccién de digifos.

hashing de residuo de divisién: un tipo de hashing en ef cual fa
[ave se divide por un namero y el residuo se utiliza como
la direccidn. -

hashing directo: un método de hashing en el cual la llave se ob-
tiene sin modificaciéa algoritmica.

hashing doble: un método de resolucidn de colisiones de has-
hing en el cual la direccidn de la colisidn se produce para de-
terminar la siguiente direccidn.

herencia: capacidad para ampliar una clase para crear una cla-
se nueva mientras se mantienen los objetos de datos y los mé-
todos de 1a clase base y se afiaden nuevos objetos de datos ¥
métodos.

hermanos: nodos en un irbel con el mismo padre.

hipertexte: un documento con referencias a otros documentos.

histograma: una representacion grafica de una distribucidn de
frecuencia. Véase también arreglo de frecuencia.

heja: un grafo o nodo de Arbol con una grado de salida de 0.

HTML: Véase lenguaje de marcacidn de hipertexto.

Hub: Un dispositivo que interconecta otros dispositivos en una
red.

i

identificader: el nombre dado a un objeto en un lenguaje de
programacion.

imagen: datos en la forma de grificos o imdgenes.

inanicidn: un problema en la operacidn de un sistema operati-
vo en el cual los procesos no pueden tener acceso a los recur-
508 que necesitan,

incremento de prefijo: en C, el operador (por ejemplo, ++a}
que suma | a una variable antes de que su valor se utilice en
una expresién. También conocide como incremento unario.

Glosario

indice: la direccién de un elemento en un arreglo.

infijo: una notacién aritméiica en la cual el operador se coloca
entre dos operandos.

ingenieria de software: el disefio y la escritura de programas
estructurados.

inicializador: una instruccién que inicializa el valor de una va-
riable.

inicio de sesién local: un inicio de sesi6n en una computadora
conectada directamente a la terminal.

inicio de sesion remoto: inicio de sesitn en una computadora
conectada a la computadora local.

insertar (enquene): insertar un elemento en una cola de espera.

insertar (push): la operacién de insercién de pila.

Instituto Nacional Norteamericano de Estindares (ANSI:
American National Standards Institate): una organizacién
que crea estdndares en los lenguajes de programacidn, espe-
cificaciones eléctricas, protocolos de comunicacién y asf por
el estilo.

instruecién compuesta: en algunos lenguajes de programa-
cién, una coleccidn de instrucciones tratadas como una sola
por el lenguaje.

instraccién de ciclo: una instruccidn que provoca que el pro-
grama itere una serie de distintas instrucciones.

instruccién de decremento: la instruccitn que resta 1 del valor
de una variable.

instruccidn de expresion: en C, una expresién terminada con
un signo de punto y coma.

instruccién de incremento: en C o C+4, 1z instruceidn que su-
ma un 1 a un valor enero.

instruccidn de seleccién: una instruccion que elige entre dos o
mis alternativas. En C, las instrucciones if-else y switch.

instruccitn if-else: un constructor que implementa una selec-
cidn de dos sentidos.

instruccidn switch: la implementacidn C de la seleccién de
midltiples rutas.

instruccién: un comando que indica qué hacer a una compu-
tadora. Un constructor sintdctico en C que representa una
operacidn en una funcion.

Interconexién de sistemas abiertos (OSI: Open Systems Inter-
connection): un modelo de sicte capas diseftado por 1a ISO
como una guia para comunicacién de datos.

interfaz de usuario: un programa que acepta solicitudes de los
usuarios (procesos) y las interpreta para el resto del sistema
operative

interfaz pequeiia de sistemas de cormputadoras (SCSI: small
computer system interface): un controlador de dispositivo de
E/S con una interfaz paralela.

Internet: la interred global que utiliza el conjunto de protoco-
los TCP/IP.

interoperabilidad: ¢l factor de calidad que frata la capacidad
de un sistema para intercambiar datos con otro sistema.

interred: abreviatura de interconexién de redes.

iteracién: vna sola ejecucion de instrucciones en un ciclo.

§

Java: un lenguaje de programacién orientada a objetos para
crear programas independientes o documentos dindmicos en
Internet.

L

Ienguaje C++: un lenguaje orientado a objetos desarrollado por
Bjame Stroustrup.

lenguaje C: un lenguaje de procedimiento desarrollado por
Dennis Ritchie,

lenguaje de alto nivel: un lenguaje de programacién (portatil)
disefiado para permitir al programador concentrarse en la
aplicacién y no en la estructara de una computadora o siste-
ma operativo en particular,

lenguaje de computadera: cualquiera de los lenguajes sintéc-
ficos utilizados para escribir programas para computadoras,
tales como el lengnaje de maquina, el lenguaje ensamblador,
C, COBOL y FORTRAN.

lenguaje de comsultas estructurado (SQL: Structured Query
Language). un lenguaje de base de datos que incluye instrue-
ciones para definicién, manipalacién y control de la base de
datos.

lengunaje de maquina: las instrucciones nativas para el procesa-
dor central de una computadora que son ejecutables sin en-
samblaje o compilacidn.

lenguaje de marcacién de hipertexto (HTML: hypertext mar-
kup language): el lenguaje de computadora para especificar
¢l contenido y formato de un documento web; permite que el
texto incluya fuentes, pantallas, graficos incrastados y vincu-
fos a otros documentos.

lenguaje de procedimiento (procedual): un lenguaje de com-
putadora en el cual una serie de instrucciones por lo general
se ejecuta una a una de principio a fin.

lenguaje de programacién: un lenguaje con palabras limitadas
y reglas limitadas disefiadas para resolver problemas en una
computadora.

lenguaje declarativo: un lenguaje de computadora que utiliza
el principio del razonamiento 16gico para contestar consultas.

lenguaje ensamblador: un lenguaje de programacién en el cual
hay una correspondencia uno a uno enfre el lenguaje de mé-
guina de la computadora y ¢l conjunto de instrucciones sim-
bélicas del lenguaje.

lenguaje funcional: un lenguaje de programacién en el cual un
programa se considera una funcién matemadtica.

lenguaje imperativo: oiro nombre para un lenguaje de procedi-
miento.

lenguaje natural: cualquier lenguaje hablado,

lengnaje orfentado a objetos: un lenguaje de programacion en
el cual los objetos y las operaciones a aplicar en ellos se in-
cluyen juntas.

lenguaje simbélico: un lenguaje de computadora, un nivel eli-
minado del lenguaje de maquina, que tiene un identificador
nemdnico para cada instruccién de mdquina y iiene la capa-
cidad de nombres de datos simbélicos.

LiFQO: Véase Gltimo en entrar, primero en salir.

liga: en una estructura de lista, el campo que identifica el si-
guiente elemento en 1a lista.

ligador: la funcidn en el proceso de creacién del programa en

" la cual un médulo de obieto se une a funciones precompila-
das para formar un programa ejecutable.

linea de tlempo: un atribato de softwarte que mide la rapidez de
un sistera para los requisitos de tiempo de un usunario.

linea: un elemento de grafo que conecta dos vértices en el gra-
fo. Véase también arco y arista.

Linux: un sistema operativo desarrollado por Linux Torvalds
para volver a UNIX mads eficiente cuando se gjecuta en un
microprocesador Intel.

LISP: un lenguaje de programacicn de procesamiento de Hstas
en ¢l cual todo se considera una lista.

lista: un conjunto ordenado de datos contenidos en la memoria
principal. Contraste con archivo.

lista aleatoria: una lista sin orden de los datos.

lista de adyacencia: un método de representacion de un grafo
que utiliza vna lista ligada para almacenar los vértices y un
arreglo de lista ligada bidimensional para almacenar las aristas.

- lista de pardmetros: una lista de valores pasados a una funcién.

lista doblemente ligada: una coleccidn ordenada de datos enla
cual cada elemento contiene dos apuntadores, uno que apun-
ta hacia el elemento previo y unoc que apunta hacia el elemen-
to siguiente.

lista general: una lista en la cual los datos pueden insertarse o
eliminarse en cualquier parte de Ia lista.

lista ligada: una estructura de lista lineal en la cual el orden de
los elementos se determina mediante campos de figa.

lista Hgada individualmente: una coleccidn ordenada de datos
en la cual cada elemento contiene sdlo la focalizacidn del si-
guiente elemento. Contraste con lista doblemente ligada.

lista lineal: una estructura de lista en la cual cada elemento, ex-
cepto el (ditimo, tiene un sucesor Unico.

lista erdenada: una lista en la cual los elementos se acomodan
de manera que los valores clave se coloquen en secuencia as-
cendente o descendente.

lista restringida: una lista en la cual los datos sélo pueden afia-
dirse o eliminarse en los extremos de la lista y el procesa-
miento estd restringide a operaciones en los datos de los
extremos.

Hamada de fancién: una instruccitn que invoca a otra iuncidn.

Have: uno o mds campos utilizado para identificar un regisiro
(estructura).

llave privada: una de las dos llaves utilizadas en el cifrado de
llave priblica.

llave piiblica: und de tas llaves en un cifrado de llave pdblica;
se revela al publico.

Glosario

Hlave secreta: una llave que se comparte por dos participantes
en el cifrado de llave secieta.

M

macro: un procedimiento disefiado personalmente que puede
utilizarse una y oira vez.

mantisa: la parte de un nimero de punto flotante gue muestra
1a precision. ‘

méaquing analitica: 1a computadora inventada por Charles Bab-
bage.

méquina de Taring: un modelo de computadora con tres com-
ponentes {cinia, controlador y cabeza de lectura/escritura)
que puede implementar instrucciones en un lenguaje de
computadora.

mdscara: una variable o constante que contiene una configura-
cién de bits utilizada para controlar el amreglo de bits en una
operacién relativa a los bits.

matriz de adyacencia: un método de representacién de un gra-
fo que utiliza un arreglo para los vértices y una matriz (arre-
glo bidimensional cnadrado) para almacenar las aristas.

memoria: 1a memoria principal de una computadora consistente
en memoria de acceso aleatorio (RAM) v memoria de s6lo lec-
fura (ROMD); utilizada para almacenar datos e instrucciones de
programa.

memoria caché: una memoria pequefia y rdpida utilizada para
almacenar elementos de datos que se estin procesando.

memoria de acceso aleatorio (RAM: random access memory):
Ia memoria principal de la computadora que almacena datos
¥ programas.

memoria de sélo lectura (ROM: read-only memory): memo-
ria permanente con contenido que no puede cambiarse.

memoria de sélo lectura programable (PROM): memoria con
contenidos eléctricamente establecidos por el fabricante; el
usuario puede restablecerla.

memoria de solo lectura programable borrable electrénica-
menfe (EPROM): memoria de sélo lectura programable
gue puede programarse y borrarse usando impulsos electré-
nicos sin ser eliminados de la computadora.

memeria de sélo lectura programable y borrable electrénica-
mente (EEPROM: electronically erasable programmuable
read-only memory): memoria de sélo lectura programable
que puede programarse; el borrado de la EPROM requiere
que ésta sea removida de la computadora.

memoria primaria: la memoria de alta velocidad de una
computadora, donde los programas y los datos se almacenan
cuando el programa se estd ejecutando. La memoria primaria
es volatil, lo cual significa que el contenido se borra cuando
Ia computadora se apaga; memoria principal.

memoria principal: Véase memoria primaria.

memeoria virtval: la memoria que resulta de intercambiar pro-
gramas hacia el interior y el exterior de la memoria durante
la ejecucién para dar la impresién de un memoria principal
mds grande de 1a que realmente existe.

Glosario

métedo de acceso: una técnica para leer datos desde un dispo-
sitivo de almacenamiento secandario (auxiliar).

microcomputadora: una computadora lo suficientemente pe-
quefia para que quepa en un escritorio.

mwodelo: la especificacion establecida por una organizacién de
estindares como un lineamiento para disefiar redes.

modelo cliente-servidor: ¢l modelo de interaccién entre dos
programas de aplicacién en los cuales un programa en un ex-
tremo {cliente) solicita un servicio de un programa en el otro
extremo (servidor).

modelo de cascada: un modelo de desarrollo de software en el
cuat cada médulo se termina completamente antes de que co-
mience el siguiente médulo.

medelo de red: un modelo de base de datos en ¢l cual un regis-
tro puede tener mas de un registro padre.

modelo de von Nenmann: un modelo de computadora {consis-
tenfe en memoria, la unidad 16gica aritmética, la unidad de
control y los subsistemas de entrada/salida), sobre el cual ta
computadora moderna se fundamenta.

modelo jerdrquico: un snodelo de base de datos que organiza
datos en una estructura tipo &rbol en el que se pueden reali-
zar bisquedas desde la parte superior a la parte inferior.

modelo incremental: un modelo en ingenieria de software en el
cual todo el paquete se construye con cada médulo confor-
mado por sélo una consola de comandos; los médulos ganan
complejidad con cada interacién del paquete.

modelo relacional: Véase base de datos relacional.

modulo: Vease subalgoritmo.

médulo objeto: la salida de una compilacién que consiste de
instrucciones en lenguaje de maquina.

médule de la divisién: dividir dos niimeros y mantener ¢ residuo.

menitoer: la unidad de despliegue visual de un sisterna de compu-
to; por lo general un dispositive de despliegue de video.

monoprogramacion: la técnica que permite que s6lo un pro-
grama esté en la memoria a la vez,

muestreo: tomar medidas a intervalos iguales,

multiprogramacién: una técnica que permite a més de un pro-
grama residir en la memoria mientras se estd procesando.

N

nivel: un atributo de un nodo que indica su distancia desde 1a raiz.

nivel conceptual: relativo a la estructura l6gica de la base de
datos. Trata con el significado de la base de datos, no con su
implementacidn fisica.

nivel de aplicacién: el séptimo nivel en el modele OST; propor-
ciona acceso a los servicios de red.

nive] de enlace de dates: el segundo nivel en el modelo OSI,
responsable de la entrega de datos nodo a nodo.

nivel de red: el tercer nivel del modelo OS], responsable de 1a
enirega de paquetes desde el anfitrién original hasta el desti-
no final.

nivel externo: la parte de la base de datos que interacttia con el
ldser.

nivel interno: la parte de 1a base de datos que define dénde se
almacenan en reatidad los datos.

nodo: en una estructura de datos, un elemento que contiene tan-
to datos como elementos estructurales utilizados para proce-
sar la estructura de datos.

nodo interne: cualquier nodo de drbol excepto la raiz y ias ho-
jas: un nodo en medio de un drbol.

normalizacién: en una base de datos relacional, el proceso de
eliminar redundancias.

notacién O: una medida de Ia eficiencia de un algoritmo con
s6lo el factor dominante considerado.

notacién hexadecimal: un sistema de numeracién con base 16.
Sus digitos son 0,1, 2,3,4,5,6,7,8,9,A,B,C,D,EvyE

notacién octal: un sistema de numeracién con una base de 8:
los digitos octales sonde 0 a 7.

nimero de Godel: un ndmero asignado a cada programa que
puede escribirse en un lenguaje especifico.

nitmero de punte flotante: un mimero que contiene tanto un
entero come una fraccion.

ndmero entero: Véase enfero.

C

operabilidad: el factor de calidad que trata la facilidad con la
cual puede utilizarse un sistema.

operacién AND: una de las operaciones a nivel de bits; el resul-
tado de la operacida es 1 s6lo si ambos bits son 1; de 1o con-
trario es (.

operacion aritmética: una operacién que toma dos nimeros ¥
crea otro ndmero.

operacion binaria: una operacién que necesita dos operandos
de entrada.

operacion de actualizacion: una operacién en una base de datos
relacional en Ia cual se cambia la informacién sobre una tupla.

operacion de diferencia: una operacién en dos conjuntos. El
resultado es el primer conjunto menos los elementos comu-
nes en las dos conjuntos.

operacién de interseccién: una operacién en dos conjuntos en
la cual el resultado es un conjunto con los elementos comu-
1es & los dos conjuntos.

operacion de proyeccién: una operacidn en una base de datos
refacional en la cual se selecciona una serie de columnas con
base en un criterio.

operacién de seleecién: una operacién en una base de datos re-
lacional que selecciona una serie de tuplas.

operacioén de unién: una operacién en dos conjuntos en la cual
el resuttado contiene todes los elementos de ambos conjun-
tos sin daplicados.

operacién de XOR: una operacién relacionada con bits cuyo
resultado es 1 sélo si uno de los operandos es 1.

eperacion légica: una operacién en la cual el resultado es un
valor 16gico (verdadero o falso).

operacién NOT: la operacién que cambia un bit 0 a 1 o un bit
1ad,

eperaciéon OR: una operacién binaria que da como resultado
una salida de 0 sdlo si 1as dos entradas son §; de lo contrario
es 1.

operacién unaria: una operacion que necesita s6io un operan-
do de entrada.

operador: la sefial sintdctica que representa una accidn sobre
los datos (el operando). Contraste con operando.

operador AND: el operador utilizado en 1a operacién AND.

operador aritmético: el operador utilizado en mna operacion
aritmética.

operador binario: un operador gue se uiiliza en una operacién
binaria.

operador de actualizacién: en una base de datos relacional, un

~ operador que cambia algunos valores en una tupla.

operador de asignacién: en C y C++, el operador que asigna
un valor a una variable.

operador de diferencia: un operador en una base de datos rela-
cional que se aplica a dos relaciones con los mismos atribu-
tos. La tuplas en la relacién resultante son aquellas que estdn
en la primera relacién pero no en la segunda.

operador de climinacién (delete): cn una base de datos rela-
cional, el operador que elimina una tupla de la relacion.

operador de insercién: un operador en una base de datos rela-
cional que inserta una tapla en una relacién.

cperador de interseceién: un operador en el dlgebra relacional
que encuentra tuplas comunes entre dos relaciones.

operador de juniura: un operador en una base de datos rela-
cional que toma dos relaciones y las combina con base en sus
atributos comumnes.

eperador de proyeccién: un operador de dlgebra relacional (uti-
lizado en bases de datos relacionales) en el cual una columna
o columnas de datos se exiraen con base en un criterio dade.

operador de seleecién: un operador de dlgebra relacional que
extrae tuplas con base en el criterio seleccionado.

operador de unién: en el dlgebra relacional, un operador que
combina filas de dos relaciones.

operador Iégico: wn operador que realiza una operacion l6gica.

operador NOT: el operador utilizado en una operacion NOT.

eperador OR: el operador usado en una operacion OR.

eperador relacional: un operador que compara dos valores.

operador unario: un operador que realiza una operacion unaria.

operador XOR: el operador utilizado ext una operacién XOR.

operando: un objeto en una instruccitn en la cual se realiza ima
operacién. Contraste con operacion.

OR exclusive (XOR): una operacidn l6gica binaria en 1a cual el
resultado es verdadero séto si uno de los operandos es verda-
dero y el otro falso.

erden por burbuja: un algoritmo de ordenacién en el cual ca-
da paso a través de los datos mueve (burbujea) €l elemento
inferior al principio de la porcion sin ordenar de la lista.

ordenamiento por insercién: un algoritmo de ordenacién en el
cual el primer elemento de la porcién de la lista sin ordenar
se inserta en s posicién adecuada en la lista ordenada.

Glosario

orden interno: un orden en el cual todos los datos se alojan en el
almacenamiento principal durante el proceso de ordenacidn.

ordenacién: el proceso que ordena una lista o un archivo.

Organizacion para la Estandarizacién Internacional (ISO:
International Standard Organization): una organizacién
mundiai que define y desarrolla estindares para wa vasiedad
de tdpicos.

P
padre: un drbol o node de grafo con un gradoe de salida mayor
que 0; es decir, con sucesores.
pdgina: una de una serie de secciones de igual tamafic de un
programsa.
pagina web: una unidad de hipertexto o hipermedia disponible
en el Web.
pagina principal: la pagina principal de un documento de hi-
pertexto disponible en el Web.
paginacién: una técnica de multiprogramacion en la cual la me-
moria se divide en secciones de igual tamafio llamadas bloques.
paginacién bajo demanda y segmentacién: un método de asig-
nacién de memoria en ¢l cusal una pagina o un segmento de un
programa se carga en la memoria sélo cuando se requiere.
paginacién bajo demanda: un método de asignacion de me-
moria en el cual una pdgina de un programa se carga en la
memoria sélo cuando ésta se Tequiere.

palabras clave: Véase palabras reservadas.

palabras reservadas: la seric de palabras en un lenguaje gue
tiene una interpretacion predeterminada y no puede estar de-
finida por el usuario.

pardmetro: un valor pasado a una funcién.

pardmetros formales: la declaracién de pardmetros en una fan-
ci6n para describir los tipos de datos que se pasardn a la funcién.

pardmetros reales: los pardmefros en la instruccion de llamada
de funcién que contienen los valores que se van a pasar a la
funcidn. Contraste con pardmetros formales. :

particionamiento: una técnica utilizada en la multiprograma-
cién que divide la memoria en secciones de longitud variable.

Pascal: un lenguaje de programacién disefiado con un ohjetivo
especifico en mente: ensefiar programacién a los novaios al
enfatizar el método de programacion esiructurada.

paso de ordenacién: un ciclo durante el cual todos los elemen-
tos se prueban mediante un programa de ordenacién.

paso por referencia; una técnica de paso de pardmetros en la
cual Ia funcién llamada se refiere a un pardmetro pasado uti-
lizando un alias.

paso por valor: una $écnica de pase de pardmeiros en fa cual el
valor de una variable se pasa a una funcién.

patron de bits: una secuencia de bits (0 y 1).

PERL: un lenguaje de alto nivel (con una sintaxis similar a C)
que utiliza expresiones regulares que permiten €l andlisis sin-
tactico de una cadena de caracteres en componenges.

permutacién: revoltura.

Glosario

pila: una estructura de datos restringida en ia cual los datos pue-
den insertarse y eliminarse sélo en un extremo, lamado cima.

pista: parte de un disco.

pixel: Véase elemento de imagen.

planificacién: asignar los recursos de un sistemna operativo a di-
ferentes programas, y decidir cudles programas deben utili-
zar cudles recursos y cudndo.

planificador de procesos: un mecanismo del sistema operativo
que despacha los procesos que esperan obtener acceso al CPU.

plagificader de tareas: un planificador que selecciona una ta-
rea para su procesamiento de una cola de espera de tareas que
aguardan a ser movidas a la memeoria.

polimorfismo: en C++, definir varias operaciones con el mismo
nombre que pueden hacer diferentes cosas en las clases rela-
cionadas.

portabilidad: el factor de calidad relacionado con la facilidad con
Ia cual un sistemna puede moverse a otros entornos de hardware.

postergacién: cambiar el order de acceso de los datos.

postfijo: una notacidén aritmética en la coal el operador se colo-
ca después de sus operandos.

precision: ¢l factor de calidad que trata la repetibilidad de un
sistema.

prefijo: una notacién aritmética en la cual el operador se colo-
ca antes de los operandos.

preprocesador: la primera fase de una compilacion C en la cual
las instrucciones fuente se preparan para la compilacién y se
cargan cualesquier bibliotecas necesarias,

primero en entrar, primero en saliv (FIFO: first en, first out):
un algoritmo en el cual el primer elemento de datos gue se
afiade a una lista es el primero que se elimina de la lista,

problema sin solucién: un problema que no puede resoiverse
mediante una computadora.

preblema no polinomial: un problema que no puede resolver-
se con complejidad polinomial.

problema pelinomial: un problema que puede resolverse con
la complejidad pelinomial.

problema con solucién: un problema que puede resolverse me-
diante una computadora.

procedimiento: otro término para un subalgoritmo.

procesador de dates programable: una mdquina que toma da-
tos de enfrada y un programa para producir datos de salida.

procesador de datos: una entidad que introduce datos, los pro-
cesa y genera el resultado.

Procese: un programa en ejecucion.

programa: una serie de instrucciones.

Prolog: un fenguaje de programacién de alto nivel basado en la
16gica formal.

protocolo: una serie de reglas para intercambio de datos entre
computadoras.

protocolo de control de transmision (TCP): uno de los proto-
colos del nivel de transporte en el conjunto de protocolos
TCP/IE

protocolo de control de transmisién/protocolo Internet {TC-
P/P): el protocolo oficial de Internet, formado por cinco ni-
veles.

protocolo de datagrama de usuario (UDP): uno de los proto-
colos de capa de transporte en el conjunto de protocolos
TCP/IP.

protecolo de transferencia de archives (FTP: file transfer pro-
tocol): un servicio del nivel de aplicacion en TCP/IP para
transferir archivos desde y hacia un sitio remoto.

protocolo de transferencia de hipertexto (HTTP: hypertext
transfer protocel): el protocolo que se utiliza para recuperar
pédginas web en Internet.

protocole Internet (IP): el protocolo de nivel de red en el pro-
tocolo TCP/IP responsable de la transmisin de paguetes de
una computadora a otra a fravés de Internet.

" protocolo simple de transferencia de correo (SMTP): el pro-

tocolo TCP/IP para servicio de correo electronico.

pruebas de caja blanca: pruebas de programa en las cuales se
considera el disefio interno del programa; también se le co-
noce como pruebas de caja clara.

pruebas de caja negra: pruebas basadas en los requisitos del
sistema en lugar de un conocimiento del programa.

pseudocddigo: instrucciones del tipo del idioma inglés que si-
guen una sintaxis definida libremente y se utilizan para ex-
presar el disefio de un algoritmo o funciéa.

puente: un dispositivo de conexidn que opera en los primeros dos
niveles del modelo OSI con capacidades de filtrado v envio.

punto de sincronizaeién: un punto introducido en los datos
por el nivel de sesidn para propésito de control de flujo y de
errores.

punto muerie: una sitnacién en la cual los recursos requeridos
por una tarea para terminar su trabajo estdn alojados en otros
programas.

M
notacién de punto decimal: Ia notacién ideada para facilitar la
lectura de las direcciones IP; cada byte se convierte a nime-
ro decimal; los ndmeros estdn separados mediante un punto.

R

raiz: el primer nodo de un 4rbol.

RAM dinamica (DRAM): RAM en la cual las celdas usan ca-
pacitores. La DRAM debe refrescarse periddicamente para
retener sus datos,

RAM estatica (SRAM): una tecnologfa que utiliza las com-
puestas flip-flop tradicionales (una compuerta con dos esta-
dos: 0 y 1) para almacenar datos.

rama: un lnea en un drbol gue conecta dos nodos adyacentes.

recorride de érbol binario: el proceso de visitar cada nodo en
un 4rbol binario.

recorrido de lista ligada: un método de recorrido en el cual ca-
da elemento de una lista ligada se procesa en orden.

recorrido en past orden: un método de recorrido de drbol bi-
nario en el cual el subdrbol izquierdo se procesa primero, lue-
go el subérbol derecho y después la rafz.

recorrido en pre orden: unrecorrido de 4rbol binario en el cual
¢l subérbol izquierdo se recorre primero, la rafz se recorre en-
seguida y el subdrbol derecho se recorre al dltimo.

recorride en orden: un método de recorrido de arbol binario en
el cual la rafz se recorre después del subdrbol izguierdo y an-
tes del subdrbol derecho.

recorride primero en amplitud: wn método de recorrido grafi-
co en ¢l cual los nodos adyacentes al nodo actual, se proce-
san antes que sus descendienies.

recorrido primero en profundidad: un método de recormide en
el cual todos los descendientes de fos nodos se procesan an-
tes de cualesquier nodos adyacentes (hermanos).

recorrido: un proceso algoritmico en €l cual cada elemento en
una esfructura se procesa una vez y $6lo una vez.

recuperacién: la localizacién y devolucion de un elemento en
una lista.

recursividad: un disefio de funcidn en el cual la funcién se lla-
ma a si misma,

red: un sistema de nodos conectados que pueden compartir re-
CUrsos.

red de drea amplia (WAN): una red que abarca una distancia
geogrifica grande. .

red de drea Iocal {LAN: local area network): una red que co-
necta dispositivos dentro de un drea Hmitada.

red de drea metropolitana (WAN): una red que puede abarcar
una ciudad o un pueblo.

red de computadoras: Véuse red.

redes interconectadas: una red de redes.

registro autorreferencial: un regisiro en el cual parie del regis-
tro se utiliza para apuntar a otro registro del mismo tipo.

registro de datos: un drea que aloja los datos a ser procesados
dentro del CPL.

registro de instruccidn: un registro en el CPU que aloja la ins-
truccidn antes de que sea interpretada por la unidad de control.

registro: la informaci6n relacionada con una entidad. Una lo-
calidad de almacenamiento rdpido independiente que aloja
los datos en forma temporal.

refacién: una tabla en una bhase de datos relacional.

representacién de signe y magnitud: un método de represen-
tacién de enteros en el cual 1 bit representa el signo del nd-
mero ¥ los bits restantes representan Ia magnitud.

representacién del complemento a dos: un método de repre-
sentacidn de enteros en el cual un mimero negativo se repre-
senta al dejar todos los § en el extremo derecho v el primer 1
sin cambios y complementar los bits resta

representacion en complemento a une: un método de repre-
sentacién de enteros en el cual un ndmero negativo se repre-
senta al complementar el nimero positivo.

resina de policarbonato: en la produccién de CD-ROM, un
material inyectado en un molde.

Glosaric

resolucién de colisienes: un proceso algoritmico que determina
una direccién opcional después de una colisién.

resolucién de direccionamiento abierto: un método de resolu-
citn de colisiones en el cual 1a nueva direccion estd en el drea
base.

resofucidn de lista ligada: un método de resolucién de colisio-
nes en hashing gue utiliza un drea separada para los sinéni-
mos, los cuales se mantienen en una lista ligada.

refreceso: un proceso algorftmico, por lo general implementa-
do con una pila o a través de la recursion, que recuerda la ru-
ta a través de una estructura de datos y puede regresar por la
ruta en orden inverso.

reutilizacién: el factor de calidad que trata Ia facilidad con la
cual el software puede utilizarse en ofros programas.

$

sector: una parte de una pista en un disco.
segmentacién bajo demanda: un método de asignacién de me-
moria en el cual un segmento de un programa se carga en la
memoria sélo cuando éste se necesita.
seguridad: el factor de calidad que trata la facilidad o dificultad
con la coal un usuario no autorizado puede acceder a los datos.
seleccion bidireccional: una insiruccién de seleccidn que es
capaz de evaluar solo dos alternativas. En C, 1a instruceidn
if-else. Contraste con la seleccion de mufltiples caminos.
seleccion multidireecional: una instuccidn de seleccion que es
capaz de evaluar més de dos alternativas. En C, 1a instruccitn
switch. Contraste con seleccién de dos caminos.
sefial {elemento sintdctico): un constructo sintdctico que repre-
senta una operacioén, una bandera o una pieza de datos.
servidor: cn un sistema cliente-servidor, ia computadora centrali-
zada que proporciona servicios auxiliares (programas servidor).
set: en mdscaras, una técnica para hacer un bit 1.
simulacién de cola de espera: una actividad de modelado utiti-
zada para generar estadisticas sobre ¢l rendimiento de una
cola de espera.
sin rechazo: una calidad de un mensaje recibido que no permi-
te al emisor negar lo enviado.
sincronizacion de proceses: un mecanismo del sistema operati-
vo que conirola €] acceso a un recurso por més de un proceso.
sinénimo: una lista hashed, dos o mds llaves que se dirigen ala
misma direccién base.
sintaxis: las reglas “gramaticales” para un lenguaje. En C, el
conjunto de palabras clave y reglas de formato que deben se-
guirse cuando se escribe un programa.
sistema binario: un sistema de numeracitn que utiliza dos sim-
bolos (0 y 1).
sisteria de adminisiracion de base de dates (DBMS: databa-
se management sysient): um programa o una serie de progra-
mas que manipula una base de datos.
sistema de bases de datos relacionales (RDBMS: relational da-
tabase management system): una serie de programas que ma-
neja las relaciones en un modelo de bases de datos relacional.

Glosarioc

sisterna decimal: un método de representacién numérica que
utiliza 10 simbolos (de 0 a 9).

sistema distribaido: un sistema operativo que controla los re-
cursos localizados en las computadoras en sitios diferentes.

sistema Execess: un método de representacidn numérica utiliza-
do para almacenar el valor exponencizal de una fraccién.

sistema operativo monousuarie: un sistema operativo en el
cual sélo un programa puede estar en la memoria a la vez.

sistema operafive por Iotes: el sistema operativo utilizado en
las primeras computadoras, en el cual las tareas se agrupaban
antes de atenderlas.

sistema operativo: el software gue controla el entorno de com-
putacidn y proporciona una interfaz para el usuario.

sistema parafelo: un sistema operativo con varios CPU en la
misma maquina.

sobredeshordamiento: un evento que ocurre cuando se hace un
intento para eliminar datos de una estructira de datos vacia.

software: los programas de aplicacidn y del sistema necesarios
para que el hardware de computadora logre realizar una tarea.

sonda: en ua algoritmo de hashing, ¢l cdleulo de una direccién
¥ su prueba satisfactoria; en an atgoritmo de bisqueda, una
iteracion del ciclo que incluye la prueba para el argumento de
biisqueda.

SQL: Véase lenguaje de consultas estructurado.

subalgoritmo: wna parte de un algortimo que estd escrita indepen-
dientemente. Se ejecuta cuando se llama dentro del algortimo.

subdrbel: cualquier estructura conectada debajo de la rafz de
un arbol

subcadena: una parte de una cadena.

subprograma: Véase subalgoritmo.

subrutina: Véase subalgoritmo.

subscript: un nimero ordinal que indica la posicién de un ele-
mento dentro de un arreglo. Véase también indice.

subsistemna de entrada/salida: la parte de la organizacién de fa
computadora gue recibe datos desde el exterior y los envia al
exierior.

suma: suma de una serie de ndmeros.

¥

tabla de enrutamiento: [a tabla utilizada por un enrutador para
enrar un paqueie.,

tabla de verdad: unatabla que lista todas las combinaciones 16-
gicas posibles con la salida 16gica correspondiente.

TDA: VEase tipo de datos abstracro.

teclado: un dispositivo de entrada que consiste de teclas alfanu-
méricas y teclas de funcidn utilizado para texto o datos de
control,

TELNET (Terminal Network): un programa cliente-servidor
de propésito general gue permite inicio de sesién remota.

texto: dafos almacenados como caracteres.

texto cifrado: Ios datos cifrados.

texto simple (plano): el texto antes de ser cifrado.

tiempo compartide: un concepio del sistema operativo en el
cual mas de un vswario tiene acceso a una compuiadora al
MHsmo tiempo.

tiempo de blsqueda: en el acceso a disco, el tiempo reguerido
para mover la cabeza de lectura/escritura sobre la pista don-
de estdn los datos.

tiempo de transferencia: el tiempo para mover datos desde el
disco al CPU/memoria,

tipo: un conjunto de valores y una serie de operaciones que
pueden aplicarse a esos valores.

tipe de datos abstracio (TDA): una declaracién de datos empa-
cada junto con operaciones que se aplican a los tipos de datos.

tipo de datos: un conjunto nombrado de valores y operaciones
definidas para manipularlos, tales como cardcter y entero.

tipo derivado: un tipo de datos compuesto construido a partir de
otros tipos (arreglo, estructura, unién, apuntador v fipo enume-
rado).

topologia: 1a estructura de una red, incluyendo el arreglo fisico
de dispositivos.

topolegia de anilfe: una topologfa en la cual los dispositivos se
conectan en un anillo; cada dispositivo recibe una unidad de
datos de un vecino y la envia al otro vecino.

topologia de bus: unatopologfa de red en 1a ¢ual todas las com-
putadoras se conectan a un medio compartido.

topelogia de estrella: una topologfa en la cual todas las compu-
tadoras se conectan a un concentrador comiin.

topologia de malla: una topologia en Ia cual cada dispositivo se
conecta a todos los otros dispositivos.

topologia hibrida: una topologfa formada por més de una topo-
logia basica. .

traductor: un términe genérico para cualguiera de los progra-
mas de conversidn de lenguajes. Vea también ensamblador y
compilador.

trailer: informacién de control agregada a una unidad de datos.

frama: una unidad de datos en el nivel de enlace de datos.

transferencia de dates: mover datos de una computadora a otra.

transformacién discreta de cosens (DCT): vna transforma-
cién matemdtica utitizada en JPEG.

tupla: en una base de datos relacional, un registro (linea) en wna
relacion.

U

ultimo en entrar, primero en safir (LIFQ: last in, first out):
un algoritmo en el cual el dltimo elemento de dato que se
afiadio a una lista se elimina de la lista en primer lagar.

UML (Jenguaje de modelado unificado): una herramienta utili-
zada para disefiar en las ciencias de la computadién v Ios ne-
£ocios.

Unicode: un cddigo de 65 536 caracteres que incluye los sim-
botes de la mayorfa de fos idiomas del mundo.

unidad ceniral de procesamiento (CPU): 1a parte de una
computadora que contiene los componentes de control para in-

terpretar instrucciones. En una computadora personal, un mi-
crochip que contiene una unidad de control y unidad l6gica
aritméiica.

unidad de control: el componenie de un CPU que interpreta las
instrucciones y controla el flujo de datos.

unidad de traslacién: en C, un archivo de compilacién tempo-
ral utilizado para almacenar el cddigo fuente modificado.

unidad i6gica aritmética (ALU: arithmetic logic unit): la par-
te de un sistema de computadora que realiza las operaciones
aritméticas y l6gicas con los datos.

UNIX: un popular sistema operativo entre los programaderes
de computadoras y los cientificos de la computacion.

unsei: Vease forzar a 0.

URL (localizador vniforme de recurses): una cadena de ca-
racteres gue define una pagina en Internet.

usuario final: la entidad gue utiliza el producto final.

v

valor AC: el valor que cambia con el tiempo.

valor DC: el valor que no cambia con el tiempo.

variable: un objeto de almacenamiento de memoria cuyo valor
puede cambiarse durante la ejecucién de un programa, Con-
fraste con constante,

Giosario

velocidad de transmisidn: un ndmero de bits enviado por se-
gundo.

velocidad retacional: la velocidad de giro de un disco magné-
tico,

vértice: un nodo en un gréfico,

vértices adyacentes: dos vértices en un grafo que estdn conec-
tados por una lfnea.

video: una representacidén de imdgenes (Hlamadas cuadro) en el
tiempo.

W
WAN: Véase red de drea amplia.
Web: Véase World Wode Web.
World Wide Web (WWW): un servicio Internet multimedia
que permiie a los nsuarios recorrer Internet al moverse de un
documento a otro por medio de vinculos.

Z

zona: en un disco dptico, un drea no tocado por el ser en la tra-
duccion de un patron de bits; por lo general representa un bit.

A
abstraccion, 228
AC, vator, 299
acceso, 257
aleatorio, 257
secuencial, 257
ACK, 336
acoplamiento, 200
bandera, 200
contenido, 201
control, 200
datos, 200
global, 201
sello, 200
activo, documento, 115
activo, objeto, 173

actualizacion, operador, 276

Ada, 173

Adelson-Veskii y Landis. Véase AVL
administrador de base de datos. Véase

DBA
aguardo, estado de, 130
aleatoria, lista, 230
alfabeto, 179
algoritmo, 141, 142
definicién, 150
ejemplo, 142

almacenamiento auxiliar, 256
enteros sin signo, 31, 33, 33, 37

secundario, 256
alto nivel, lenguaje de, 168
altura, 238

altura de un arbol binario, 239

ambulante, apuntador, 223
afiadir arista, 246
afiadir vértice, 245
andlisis, fase, 197
define la necesidad, 197
define el método, 197
define ef requisito, 197
define el usuario, 197

376

andalisis sintactico, 234
ancestro, 238
ANSI/SPARC, 272
aplicacidn, 174
aplicacion, nivel de, 103
respensabilidades, 103
TCP/IP, 111
aplicacidn, programa, 122, 271
servidor, 111
applet, 175
apuntador lista ligada, 221
arbol, 292
altura, 238
ancestro, 238
balanceado, 240
binario, 239
definicidn, 237
descendiente, 238
grado, 237
grado de entrada, 237
grado de salida, 237
hijo, 238
hoja, 238
profundidad, 238
nivel, 238
nedo, 237
nodo interne, 238
rama, 237
drbol binario, recorrido en orden, 241
arbol de expansién, 249
drbol de expresidn
drbol binario, 243
recorridos, 243
archivo, 256, 265
aleatorio, 257, 259
binario, 265, 266
indexdado, 260
de texto, 2635
secuencial, 257
archivo fuente, 170
archivo hashed, 261

archivo maestro nuevo, 258
archivo maestro vigjo, 258
archivos, administrador de, 125, 135
funciones, 135
archivos. Véase FTP
arco, 244
area principal, 264
atista, 244
con peso, 249
aritmético, operador, 182
arreglo, 216
bidimensional, 218
biisqueda, 158
columna, 218
despliegue de memoria, 218
fila, 218
frecuencia, 217
histograma, 218
implementacion de grafos, 247
ordenacidn, 153
unidimensional, 218
ASCH, 179, 266, 335
asignacion, instruccion de, 346
atémicos, datos, 179
aiributo, 274
automata de estado, 322
autenticacion, 306, 307
autorreferencial, estructura, 221
AVL, 241

B
B, cuadro, 302
bandera
en acoplamiento, 200
base de datos, 270
modelo de red, 273
modelo jerdrquico, 273
modelo relacional, 274
base de datos, modelo, 273
binaria, bisqueda, 159
binario a decimal, conversién de, 29

binario a hexadecimal, conversién de,

22,23
binario a octal, conversion, 22, 23
binario, drbol, 239
altura, 239
aplicacion, 243
derecho, 239
equilibrio, 240
expresion, 243
factor de equilibrio, 240
implementacién de lista ligada,
243
izquierdo, 239
nulo, 239
operaciones, 241
recorrido, 241
recorrido de orden posterior, 242
recorrido de orden previo, 241
recorrido primero en amplitud,
243
recorrido primero en profundidad,
241
recorrido en orden, 241
sefial, 243
binario, archivo, 265. 266
binario, digito, 28
binario, operador, 277
bit, 16, 28
interruptor, 16
bloque, 184
Véase también instruccién
compuesta
bloque de control de procesos, 132

‘burbuja, orden de, 155

algoritmo, 156
biisqueda, 158

binaria, 159

lista ligada, 222

objetivo, 158
buzén de correo, 112
byte, 16

<

C++,174

C, lenguaje, 173

caja blanca, prueba de, 198

caja negra, prueba, 198

calidad del software, 202, 203
capacidad de correccidn, 204
capacidad de mantenimiento, 204
eficiencia, 204
flexibilidad, 205
fiabilidad, 204
interoperabilidad, 205
operabilidad, 203

portabilidad, 205
precision, 203
reutilizac
variabilidad, 204
calidad, 202
camino, 238, 244
campo, 219
campo de Have, 222
capa de sesion, 102
capa de transporte, 102
caricter
ASCIL, 179
cargador, 171
cascada, modelo, 198
CASE, 205
char, 179
Church, tesis de, 325
ciclo, 152, 217, 244, 352, 355
condicional, 355
simple, 355
y arreglos, 217
while, 355
ciclo de vida del software
fase de andlisis, 197
fase de implementacion, 197
fases, 196
fase de prueba, 198
ciclo de vida del software, 196
cifrado, 307
cinta, 256, 321
circulo de calidad, 205
circulo, 355
cliente, 112
cliente/servidor
inicio de sesién remoto, 113
COBOL, 172
codigo instantaneo, 293
Cédigo norteamericano de estdndares

para intercambio de informacidn.

Véase ASCII
cohesion, 201
casual, 202
de comunicacidon, 202
de procedimiento, 202
funcional, 201 i
légica, 202
secuencial, 201
temporal, 202
cohesion funcional, 201
cohesion logica, 202
cola de espera, 230
aplicaciones, 237
definicion, 235
eliminacion (dequeue), 235
FIFO, 235

indice

implementacidn, 237
insercién (enqueue), 235
operaciones, 235
parte de adelante, 235
parte de atrds, 235
representaciones, 235
simulacién, 228
colas de espera, 132
colisidn, 263, 264
contenedor, 265
direccionamiento abierto, 264
lista ligada, 264
resolucion, 264
colisidm, resolucion de drea de
desbordamiento, 264
compendio, 312, 313
sitio emisor, 313
sitio receptor, 313
compresion MPEG, 301
espacial, 301
computadora, lenguaje de, 167
comunicacion, cohesitn de, 202
con peso, 248
conectado, 244
conector, 345
consola de comandos, 125
interfaz de usuario, 125
consola de comandos, 125, 136
constante, 181
literal, 181
nombrada, 181
simbdlica, 181
constructo, 147
constructo de instruccién ciclo, 352
instruccidn de secuencia, 352
instruccién de seleccion, 352
contenido, acoplamiento de, 201
control, acoplamiento de, 200
conirolador, 114, 322
conversion de binario a decimal, 29
de binario a hexadecimal, 22, 23
de binario a octal, 22, 23
corte, simbolo de, 357
CP, 322
controlador, 322
estados del, 322
CR, 336
cuadro, 128
MPEG, 301
cuetpo, 177

D

datagrama, 110

datos, 271
representacién, 16

indice

tipos, 15
datos, acoplamiento de, 200
datos, compresion de, 290
codificacién de Huffman, 292
codificacién de longitud de
gjecucidn, 291
con pérdida, 298
sin pérdida, 291
datos, representacion de
iexto, 17
DBA, 271
débilmente conectado, 244
DBMS, 271
DBMS, 271
componentes, 271
nivel conceptual, 272
nivel externo, 272
nivel interno, 272
DC, valor, 299
DCT, 299
caso de cambio brusco, 300
caso de escala de grises uniforme,
299
caso de gradiente, 300
inverso, 300
formuia, 299
valor AC, 299
valor DC, 299
decimal, 28
hexadecimal, 23
decisidn, constructo, 146
declaracién, 180
funcién, 185
declarativo, lenguaje, 171, 176
decremento, instruccién, 318, 324
definici6n, 180, 244
DEL, 338
DES, 308
desbordamiento, 230, 231, 233
pila, 230, 231, 233
desbordamiento, 233
desbordamiento, drea, 264
descendiente, 238
diagrama de estado, 130
estado de aguardo, 130
estado de ejecucidn, 130
estado de preparacién, 130
planificador de procesos, 131
planificador de tareas, 131
diagrama de {lujo, 146, 197, 343
ciclo, 348
ciclo do...while, 347
conector, 343
decision, 347

imstruccidn compuesta, 347
mstruccidn de asignacion, 346
nstruccidn de entrada-salida, 346
instruccién if. . .else, 347
linea de flujo, 345
para ciclo, 348
diamante, 347, 355
diferencia, operador, 278
digrafo, 244
dindmico, documento, 115
direccion base, 264
direccionamiento abierto, 264
disco, 256
disefio, 353
disetio, fase de
desarrollo, proceso, 198
fase de disefio de cicle de vida del
software, 197
herramientas, 197
modelo por incrementos, 199
modelo de cascada, 198
modularidad, 197
dispositivos, administrador de, 125,
135
division de mddulos, hashing de, 262
DLE, 336
do-while, ciclo, 189, 339
documentacién (continuacién)
marual del usuario, 206
documentacién, 206
acoplamiento global, 201
acoplamiento de sello, 200
calidad del software, 203
circulo de calidad, 205
fase de andlisis, 207
fase de diseflo, 207
fase de implementacién, 207
fase de prueba, 207
funcion, 207
general, 207
medicién, 206
programa, 207
prueba formal, 205
sistema, 206
dos sentidos, seleccidn, 347
DOS, 124
double, 180

E

EBCDIC, 266

editor de texto, 169
ejecucion, estado de, 130
ejecutable, archivo, 169
eliminacion, 231

eliminacién, operador, 273
eliminar cola de espera, 235
eliminar (dequeue), 235
eliminar arista, 246
eliminar vértice, 245
en orden, recorrido, 241
encabezado de algoritmo, 351
ciclo, 352
instruccidn de secuencia, 352
instruccién de seleccion, 352
ntimero de instruccidn, 351
postcondicion, 351
precondicién, 351
encabezado, 100, 351, 177
encapsulamiento, 174
encontrar vértice, 246
enlace de datos, nivel de, 102
funcidén, 102
enrutador, 108
enrutador, jerarquias de, 108
enrutamiento
conceptos, 108
ensamblador, 168
ensamblador, lenguaje, 168
entrada, 182, 356
entrada, flujo de, 357
entrada-salida, instruccion, 346
entrega
origen a destino, 102
punto a punto, 162
EOF, 257
EOT, 336
equilibrio, factor de, 240
errores, archive de reporte de, 258
ESC, 336
escala de grises, 298
espacial, compresién, 301
especial, lenguaje, 171, 177
gspera, estado de, 130
estandar de cifrado de datos. Véase
DES
estandar, tipo, 179
estdtico, documento, 115
estructura tabla de, 353
autorreferencial, 221
estructura de datos, 214
modelo de red, 273
modelo jerdrquico, 273
modelo relacional, 274
ETB, 336
etiqueta, 177
atributos, 177
comun, 177
ETX, 336

exclusivo, or, 355
expansién, arbol de, 249
explorador, 175, 177
arquitectura, 114
componentes, 114
controlador, 114
intérprete, 114
lenguaje de marcacidn, 177
programa cliente, 114
expresidn, 182
instruccion, 183
exiraer (pop), 233
extrerno a extremo, entrega, 102

F
factorial, 160
FF, 336
FIFOQ, 132, 230, 235

cola de espera, 230
filas mayores, almacenamiento, 218
fin de archivo. Véase EOF
fin, sfmbolo, 344
fisica, direccidn, 110
fisico, nivel, 101
flotacién, 179, 180
flujo de datos, 356
tlujo, Hnea de, 345

FORTRAN, 172
frecuencia, arreglo, 217
FTP, 112

conexién de control, 112

conexién de datos, 112

conexiones, 112
fuertemente conectado, 244
funcion, 184

cuerpo, 183

declaracidn, 185

definicidn, 185

efecto secundario, 184

encabezado, 185

llamada, 185

pardmeiro real, 185

paso por referencia, 186

paso por valor, 186
funcion, bloque, 355
funcidn comun, 357
funcién, cuerpo, 185
funcidn, encabezado, 185
funcidn principal, 184

G
gateway, 108

convertidor de protocolo, 108
global, acoplamiento, 201

GOdel, ndmero de, 326
interpretar, 327

grado de entrada, 237, 245

grado de salida, 237, 245

grado, 237, 245

grafo

grafo dirigido. Véase digrafo

gran O, notacion, 330

grupo de expertos en fotografia
unidos. Véase JPEG

Grupo de expertos en imégenes en
movimiento. Véase MPEG

GUI, 136

H

hardware, 271

hash, bisqueda, 269

hash, funcién, 313

hashed, archivo, 261

hashing, 261
area principal, 264
colisién, 264
contenedor, 263
direccién bhase, 264
direccionamiento abierto, 264
directo, 262
divisién de mddulo, 262
extraccidn de digitos, 263
métodos, 261
residuo de division, 262
resolucion de colisidn, 264

head, funcidn, 185

herencia, 174

hermanos, 238

hexadecimal, 23

hijo, 238

hipertexto, 114

histograma, 218

hoja, 238

Hopper, Grace, 168

HTMI., 177
documentos ASCII, 177
etiqueta, 177
explorador, 177
lenguaje de marcacion, 177

HTTP, 114
comandos incrustados, 114
tipos de mensajes, 114
URL, 114

Huffman, codificacién de, 292
arbol, 292
asignacion de cddigo, 293
asignacidn de peso, 292
codificacién, 294

indice

decodificacion, 294

nodo, 292

pasos de codificacion, 292
prefijo, 294

|
1, cuadro, 302
identificador de campo, 220
identificador, 179
if-else, instruccion, 186, 347,355
imperativo, lenguaje, 171
implementacidn, 247
implementacidn, fase, 197
codificacién, 197
herramientas, 197
inanicién, 134
problema de Dijkstza, 135
inconexo, 244
incremento, instruccion, 318, 323
incrementos, modelo por, 199
indexado, archivo, 260
acceso a registro, 260
archivo invertido, 260
componentes, 260
indice, 260
individualmente, lista ligada, 220
inequivocos, pasos, 150
ingenieria de software asistida por
computadora. VWase CASE
ingenierfa de software, 195
acoplamiento, 200
acoplamiento de contenido, 201
acoplamiento de control, 200
acoplamiento de datos, 200
disefio, 353
inicializador, 181
inicio, simbolo, 344
insercidn, 230
nsercion, operador, 275
msertar lista ligada, 221
insertar (enqueue), 235
insertar (push), 233
instruccién, 146, 183
expresidn, 183
seleccidn, 355
instruccién compuesta, 184, 347
mstruccidn, nimero de, 351
int, 179
integridad, 306, 307
Tnterconexidn de sistemas abiertos,
modelo, 100
interno, nodo, 238
Interred, protocolo. Véase IP
Interseccién, operador, 278

indice

interruptor, 16
bit, 16
estado de apagado, 16
estado de encendido, 16
mversién de datos, 234
invertido, archivo, 260
IP, 110
caracteristicas, 110
datagrama, 110
direccionamiento, 110
entrega del mejor esfuerzo, 110
protocolo sin conexidn, 110
1P, direccitn
formato, 110
notacién de punto decimal, 110
irresoluble, problema, 329
iterativa, definicidn, 160
iterativo, 141

]
Java, 174

JPEG, 298, 303
compresion, 301
compresién espacial, 301
cuantizacion, 300
DCT, 29,359
escala de grises, 298
redundancia, 299

juntura, operador, 277

K
Knuth, Donald E, 195

L
LAN, 103
lecturafescritura, cabeza de, 322
Lempel Ziv, codificacién. Véase LZ,
codificacion
Lempel-Ziv-Welch, codificacién.
Véase LZW, codificacion
lenguaje
de alto nivel, 168
de méquina, 167
ensamblador, 168
natural, 169
simbédlico, 168
lenguaje de consulta estructurado.
Véase SQL
lenguaje para marcacién de
hipertexto. Véase HTML
LF, 336
LIFQ, 230, 232
estructura de datos, 232
liga, 220
linea, 244

LISP, 176
lista general, 230
lista ligada, 220
apuntador, 221
autorreferenciales, 221
biisqueda, 222
datos, 220
implementacién de grafo, 247
‘individualmente, 220
insertar nodo, 221
liga, 220
nodo, 221
pila, 234
recorrido, 223
vacia, 221
lista lineal, 229
cola de espera, 230
desbordamiento, 230
eliminacién, 231
FIFO, 230
implementacidn, 232
insercién, 230
LIFO, 230
Lista general, 230
operaciones, 230
ordenada, 230
pila, 230
recuperacién, 231
restringida, 230
sucesor, 229
lista lineal, 230
lista vinculada, algoritmos
insertar nodo, 221 '
recorrer lista, 223
vinculador, 170
lista, recorrido, 231
lista, recuperacidn, 231
literal, constante, 181
llamada de modulo, instruccién, 346
{lave publica, cifrado de, 307
Have secreta, cifrado, 307
Have, 238
Ilaves, 309
algoritmo RSA, 309
usada con llave secreta, 311
localizador uniforme de recursos,
Véase URL
légico, operador, 183
long double, 180
long int, 179
longitud de ejecucidn, codificacion
de, 291
longitud de ejecucion, compresidn de,
291
loop, instruccién, 325

lotes, sistema operativo por, 124

LZ, codificacidn, 295
compresitn, 295
descompresidn, 297
diccionario, 295

LZW, codificacion, 298

M
macro, 318
asignar, 318
asignar enteros positivos, 319
complemento, 320
copiar una variable, 319
exponenciacién, 320
if-then-else, ciclo, 320
multiplicacién, 319
simulacién, 318
suma, 319
MAN, 104
mantenimiento, capacidad de, 204
méquina, lenguaje de, 167
marcacién, lenguaje de, 177
més, signo, 355
MDS35, 313
mejor esfuerzo, entrega, 110
memoria virtual, 129
Memoria, administrador de, 125
modularidad, 200
acoplamiento, 200
herramientas, 200
monoprogramacion, 125
MPEG, 298, 301,303
compresion temporal, 301
cuadro B, 302
cuadro I, 302
cuadro P, 302
tipos de cuadros, 301
multidireccional, seleccidn, 347, 355
multiprogramacion, 124, 126
particionamiento, 126

N

NAK, 336

natural, lenguaje, 167, 169

nivel de red TCP/IP, 110

nivel de red, 102 TCP/IP, 110

nivel, 238

no dirigido, 244

no dirigido, grafo, 244

no polinomial, problema, 329, 331

no rechazo, 306, 307, 311

nodo, 221, 237, 292
recuperacion, 223

nombrada, constante, 181

nombre, 274

NUL, 336

nula, instruccidn, 345

nulo, arbol, 239

numeracién, sistemas de
binario, 28

o
objetivo, 158
objeto, 173
objetos, médulo de, 170
operabilidad, 203
operacién, 179
unitaria, 275
operaciones, 245
operador, 182
binario, 277
multiplicacidn, 152
suma, 152
operando, 183
operativo, sistema, 122
administrador de archivos, 125,
135
administrador de dispositivos, 125
administrador de memoria, 125
como gerente general, 123
componentes, 124
distribuido, 124
DOS, 124
evolucion, 124
por lotes, 124
sisiema paralelo, 124
orden de insercién, 156
orden posterior, recorrido, 242
orden previo, recorrido, 241
ordenacién, 153
burbuja, 155
msercién, 156
paso, 153
seleccion, 153
ordenada, lista, 230
ordenado, conjunto, 150
orientado a objetos, lenguaje, 171, 173
origen a destino, entrega, 102
O8I, modelo, 110
funciones de niveles, 101
nivel de enlace de datos, 102
nivel de presentacién, 102
nivel fisico, 101
TCPIP, 110
ovaio, 344

P

P, cuadro, 302

padre, 238

pagina principal, 114

pégina web
con peso arista, 249
cuerpo, 177
encabezado, 177
estructura, 177
etiqueta, 177
texto, 177
péagina, 114
paginacion
bajo demanda, 128
cuadro, 128
multiprogramacion, 128
particionamiento, 128
segmentacion, 128
paginacién bajo demanda, 128
palabra clave, 179. Wase también
reservadas, palabras
paralelo, sistema, 124
parametro real, 185
pardmetros, paso de, 185
paro, problema de, 321, 328
prueba, 328
particionarsiento, 126
paginacién, 128
problemas, 127
Pascal, 173
pasivo, objeto, 173
paso
por referencia, 186
por valor, 186
patrén de bits, 16 simbolo, 17
pérdida, compresién con, 298
pérdida, compresidn sin, 291
pérdida, método con, 299
pérdida, método sin, 290
PERL, 178
personal, computadora, 124
pita, 230, 232
andlisis sintdctico, 234
aplicaciones, 234
desbordamiento, 233
extraer (pop), 233
insertar (push), operacién, 233
LIFO, 232
lista ligada, 234
operaciones, 233
postergacion, 234
recorrido primero en profundidad,
247
retroceso, 235
pila, 233
contencion, 233
pixel, 298, 301
planificacién, 124
polimorfismo, 174

Indice

polinomial, problema, 329, 331
postcondicién, 351
postergacién, 234
precondicién, 351
prefijo, 294
preparacién, estado de, 130
prepocesador, directiva, 170
preprocesador, 170
preprueba, ciclo de, 348
presentacidn, nivel de, 102
primero en amplitud, recorrido, 243
privacidad, 306, 307
privada, llave, 309
problema soluble, 329
complejidad, 330
procedimiento, cohesién de, 202
procedimiento, lenguaje de, 171, 172,
76
procedimientos, 271
proceso, 124, 129
punto muerto, 132
sincronizacion, 132
tarea, 129
procesos, administrador de, 125
procesos, plantficador de, 131
producto, 152
profundidad, 238
programa, 129, 322
documentacién, 207
programacion, constructo, 345, 351
Prolog, 177
protocolo de transferencia de
hipertexto. Véase HTTP
protocolo de transferencia de finito,
primero en entrar, primero en
salir. Véase FIFQ
protocolo simple de transferencia de
correo. Véase SMTP
proyeccidn, operador, 277
proyecto, 280
pruebas caja negra, 198
caja blanca, 158
formal, 2035
pruebas, fase de, 198
psendocodigo, 146, 197
ptblica, llave, 309
puente, 107
punto flotante, 180
punto muerto, 132

R

raiz, 237

rama, 237
seleccidn de dos caminos, 347
seleccion de mwiltiples caminos, 347

Indice

RDBMS, 274
relacidn, 274
real, pardmetro, 185
recorrido primero en amplitud, 247
recorrido primere en profundidad,
247
recorrido, 231, 241
primero en amplitud, 247
primero en profundidad, 247
recorrido, 246
rectdngulo, 354, 357
recuperacién de un nodo, 223
recuperacion, 231
recursion, 160, 189
factorial, 160
recursiva, definicién, 161
recursivo, 141
red
arbol de expansidn, 249
definicién, 248
grafo con peso, 248
red, 248
redundancia, 290, 299
registro, 219
acceso, 220
accessing individual fields, 220
aplicacion, 220
telacidon, 274
actualizacion, 276
atributo 274
cardinalidad, 275
diferencia, 278
eliminacién, 275
insercidn, 275
interseccién, 278
Juntura, 277
nombre, 274
operacidn, 275
proyeccion, 277
seleccitn, 276
tupla, 275
unién, 277
relacional, operador, 182
repeticion, 145
repeticidn, constructo, 146, 187, 327
repetidor, 106
representar un programa, 326
instrucciones, 317
mdquina de Turing, 317, 325
simulacién, 323
reservadas, palabras, 179
Véase también palabras clave
residuo de division, hashing de, 262
restringida, 230
Tetroceso, 235

revision técnica, 205
revisién técnica, 205
herramientas, 205
RSA
desventaja, 311
ejemplo, 310
elegir las claves, 310
ventaja, 311
RSA, cifrado, 309

$
salida, 182
salida, flujo de, 357
Scheme, lenguaje, 176
secreta, llave, 307
secuencia, 145
secuencia, constructo de, 146
secuencia, instruccion, 345, 352
secuencial, archivo, 257, 260, 258

actualizar, 258, 259

llave, 258

usar, 258
secuencial, cohesion, 201
segmentacion, 128

demanda, 128

paginacién, 128
seguridad, 306
seleccidn, 145

en la tabla de estructura, 355
seleccidn, constructo de, 186
seleccion, instruccidn, 347, 352, 355
seleccién, operador, 276
seleccidén, orden de, 153
sello, acoplamiento de, 200
servicios de datos conmutados

muthimegabit (SMDS), 104

SHA-1, 313
short int, 179
signo y magnitud, 33
simbélica, constante, 181
simbdlico, lenguaje, 168
simbolo, 17

circulo, 355

corte, 357

diagrama de flujo, 344, 345

diamante, 347, 355

fin, 344

inicio, 344

Gvalo, 344

patrén de bits, 17

principal, 345

rectdngulo, 354

signo mds, 355

sombreado, 357
simbolo principal, 343

simple, lenguaje, 317
entradassalida, 321
numerar programas, 326
problema de paro, 321
simulacién, 318
sin signo
almacenamiento, 31, 33, 35, 37
sinénimo, 263
sistermna de administracion de bases de
datos relacionales. Yease
RDBMS
sistema de administracion de datos.
Véase DBMS
sistema operativo distribuido, 124
sistema operativo, 124
SMTP, 112
buzoén de correo del usuario, 112
direccionamiento, 112
nombre de dominio, 112
Sisterna de direcciones, 112
sobredesbordamiento, 231
cola, 235
pila, 233
software, 122, 271
ciclo de vida, 196
obsoleto, 196
SOH, 336
sombreado, 357
SP, 336
SQL., operaciones, 178, 279
actualizacién, 280
combinadas, 282
diferencia, 281
eliminacién, 279
insexrcion, 279
interseccion, 281
juntura, 280
proyecto, 280
seleccion, 280
5TX, 336
subalgoritmo, 150
subdrbol, 238
subdrbol derecho, 239
subérbot izquierdo, 239
subcadena, 295
subscript, 216, 217
suma, 152
suma, operador, 152
switch, mstruccion, 187
SYN, 336

T

tabla de estructura, 152, 354
ciclo, 355
funcién comiin, 357

lectura, 356
reglas, 354
simbolo, 354
tabla de estructura, 353
tarea, 129
tareas, bloque de control de, 132
tareas, planificador, 131
TCp 111
protocolo de nivel de transporte,
111
protocolo puerio a puesto, 111
TCP/AF, 110
concepto de interred, 100
Internet, 110
modele OSI, 110
nivel de aplicacion y modelo OSI,
111
nivel de red, 110
nivel fisico, 110
nivel de enlace de datos, 110
nivel de transporte, 111
TDA
definicidn, 228
encapsulamiento, 228
modelo, 229
operacidn, 229
TELNET, 112, 113
temnporal, coliesion, 202
temporal, compresidn, 301
teorfa de la computacidn, 317
terminal, red. Véase TELNET
texto cifrado, 307
texto, 17
texto, archivo, 265
time-sharing system, 124
tipo derivado, 179
tipo, 179
char, 179
datos atémicos, 179
derivado, 179
double, 180
estandar, 179
float, 179, 180
int, 179
long double, 180
long int, 179

short, 179
void, 179
top-down concept, 356
topologia, 99
traduccidn de protocolo, 108
enrutador, 108
traductor, 170
trailer, 100
transaction file, 258
transferencia, capacidad de, 205
transformacion discreta de coseno.
Véase DCT
transicién, diagrama, 322
transicidn, tabla, 322
programa, 322
translacion, unidad, 170
transporte, 102
transporte, nivel de
conirol de errores, 162
responsibilidades, 102
TCP, 111 TCPAP, 111
tupla, 275
Turing, mdquina, 317
componentes, 321
instruccién de decremento, 324
instruccién de incremento, 323
instruccién loop, 325
cabeza de lectura/escritura, 322
lectura, 322
Lenguaje simple, 325
cinta, 321
escritura, 322

)
UbP
protocolo de extremo a extremo,
111
protocolo de nivel de transporte,
111
liltimo en entrar, primero en salir.
Véase LIFO
un fugar, 201
una cosa, 201
unidad central de procesamiento.
Véase CPU
unidn, operador, 277

Indice

umitaria, operacién, 275
URL, 114
alias, 114
anfitrién, 114
componentes, 114
método, 114
ndmero de puerto, 114
recuperacién de documentos, 114
ruta, 114
usuario final, 271
usuario, 271
interfaz de uswvario, 125, 136
final, 271
normal, 271
programa de aplicacidn, 271

\Y

valor, 179

variable, 180

ventajas, 309
DES, 308
desventajas, 309
utilizado con llave péblica, 311

vértice, 244

vértice, 244
adyacente, 244
grado, 245
grado de entrada, 245
grado de salida, 245

vértices adyacentes, 244
aplicaciones, 248

vinculadosz, 170

void, 179

VT, 336

W
WAN, 104
tamafio, 104
while, ciclo, 187, 318, 348, 352, 355
Wirth, Niklaus, 351
World Wide Web, Véase WWW
WWW
documento estético, 115
hipertexto e hipermedia, 114
péAgina principal, 114

