
“This book takes full advantage of the extensive work that has been
undertaken over many years on the creation of a rich set of system
dependability concepts. John Knight makes excellent use of these
concepts in producing a very well-argued and comprehensive account,
aimed squarely at software engineers, of the variety of dependability
issues they are likely to find in real systems and of the strategies that
they should use to address these issues. Appropriately qualified students
who study this book thoroughly and computer professionals seeking a
greater understanding of the various dependability-related problems that
they have encountered already in their careers should gain much from this
book. I therefore take great pleasure in enthusiastically recommending it
to both classes of reader.”
—Brian Randell, Newcastle University, UK

Fundamentals of Dependable Computing for Software Engineers
presents the essential elements of computer system dependability. The
book describes a comprehensive dependability-engineering process and
explains the roles of software and software engineers in computer system
dependability.

Readers will learn:
•	 Why dependability matters
•	 What it means for a system to be dependable
•	 How to build a dependable software system
•	 How to assess whether a software system is adequately dependable

Emphasizing the software engineering elements of dependability, this
book helps software and computer engineers in fields requiring ultra-high
levels of dependability, such as avionics, medical devices, automotive
electronics, weapon systems, and advanced information systems,
construct software systems that are dependable and within budget and
time constraints.

K12901

Computer Science

Fundam
entals of Dependable Com

puting
for Softw

are Engineers
Knight

CHAPMAN & HALL/CRC INNOVATIONS IN �
SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT

John Knight
With Foreword by Brian Randell

Fundamentals of
Dependable Computing

for Software Engineers

K12901_Cover.indd 1 12/6/11 10:49 AM

Fundamentals of
Dependable Computing

for Software Engineers

K12901_FM.indd 1 12/15/11 10:24 AM

Chapman & Hall/CRC Innovations in Software Engineering
and Software Development

Series Editor
Richard LeBlanc

Chair, Department of Computer Science and Software Engineering, Seattle University

AIMS AND SCOPE

This series covers all aspects of software engineering and software development. Books
in the series will be innovative reference books, research monographs, and textbooks at
the undergraduate and graduate level. Coverage will include traditional subject matter,
cutting-edge research, and current industry practice, such as agile software development
methods and service-oriented architectures. We also welcome proposals for books that
capture the latest results on the domains and conditions in which practices are most ef-
fective.

PUBLISHED TITLES

Software Development: An Open Source Approach
Allen Tucker, Ralph Morelli, and Chamindra de Silva

Building Enterprise Systems with ODP: An Introduction to Open
Distributed Processing
Peter F. Linington, Zoran Milosevic, Akira Tanaka, and Antonio Vallecillo

Software Engineering: The Current Practice
Václav Rajlich

Fundamentals of Dependable Computing for Software Engineers
John Knight

K12901_FM.indd 2 12/15/11 10:24 AM

CHAPMAN & HALL/CRC INNOVATIONS IN
SOFTWARE ENGINEERING AND SOFTWARE DEVELOPMENT

Fundamentals of
Dependable Computing

for Software Engineers

John Knight
With Foreword by Brian Randell

K12901_FM.indd 3 12/15/11 10:24 AM

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The Math-
Works does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion
of MATLAB® and Simulink® software or related products does not constitute endorsement or sponsorship
by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® and Simulink®
software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120103

International Standard Book Number-13: 978-1-4398-6256-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Dependability.book Page v Wednesday, December 14, 2011 2:53 PM
Table of Contents

Foreword .. xiii
Preface ..xv

CHAPTER 1 Introduction ...1
1.1 The Elements of Dependability...1

1.1.1 A Cautionary Tale.. 1
1.1.2 Why Dependability? .. 4

1.2 The Role of the Software Engineer ...5
1.3 Our Dependence on Computers ..7
1.4 Some Regrettable Failures ..9

1.4.1 The Ariane V ... 9
1.4.2 Korean Air Flight 801.. 10
1.4.3 The Mars Climate Orbiter.. 11
1.4.4 The Mars Polar Lander .. 11
1.4.5 Other Important Incidents.. 12
1.4.6 How to Think about Failures ... 12

1.5 Consequences of Failure ...13
1.5.1 Non-Obvious Consequences of Failure ... 13
1.5.2 Unexpected Costs of Failure.. 14
1.5.3 Categories of Consequences .. 15
1.5.4 Determining the Consequences of Failure... 16

1.6 The Need for Dependability ..17
1.7 Systems and Their Dependability Requirements18

1.7.1 Critical Systems ... 18
1.7.2 Systems That Help Build Systems... 20
1.7.3 Systems That Interact with Other Systems.. 21

1.8 Where Do We Go from Here? ...22
1.9 Organization of This Book ..23

Exercises ...25

CHAPTER 2 Dependability Requirements ...27
2.1 Why We Need Dependability Requirements.....................................27
2.2 The Evolution of Dependability Concepts ..28
2.3 The Role of Terminology ..30
2.4 What Is a System? ...31
2.5 Requirements and Specification..34
v

vi

Dependability.book Page vi Wednesday, December 14, 2011 2:53 PM
2.6 Failure... 35
2.6.1 The Notion of Service Failure..35
2.6.2 Sources of Service Failure ...36
2.6.3 A Practical View of Requirements and Specification38
2.6.4 Viewpoints of Service Failure..39
2.6.5 Informing the User about Failure...40

2.7 Dependability and Its Attributes... 41
2.7.1 Reliability...43
2.7.2 Availability...44
2.7.3 Failure per Demand..48
2.7.4 Safety ...48
2.7.5 Confidentiality ...51
2.7.6 Integrity..52
2.7.7 Maintainability ...53
2.7.8 A Word about Security...53
2.7.9 The Notion of Trust..54

2.8 Systems, Software, and Dependability ... 55
2.8.1 Computers Are neither Unsafe nor Insecure..55
2.8.2 Why Application System Dependability?..55
2.8.3 Application System Dependability and Computers56

2.9 Defining Dependability Requirements ... 58
2.9.1 A First Example, an Automobile Cruise Control.................................60
2.9.2 A Second Example, a Pacemaker ..61

2.10 As Low As is Reasonably Practicable ALARP................................ 65
2.10.1 The Need for ALARP ..65
2.10.2 The ALARP Concept ...66
2.10.3 ALARP Carrot Diagrams...67
Exercises .. 69

CHAPTER 3 Errors, Faults, and Hazards... 73
3.1 Errors .. 73
3.2 The Complexity of Erroneous States.. 75
3.3 Faults and Dependability .. 76

3.3.1 Definition of Fault..76
3.3.2 Identifying Faults ...78
3.3.3 Types of Fault...78
3.3.4 Achieving Dependability ...78

3.4 The Manifestation of Faults ... 79
3.5 Degradation Faults ... 80

3.5.1 Degradation Fault Probabilities — The “Bathtub” Curve80
3.5.2 An Example of Degradation Faults — Hard Disks81

3.6 Design Faults .. 84
3.7 Byzantine Faults ... 85

3.7.1 The Concept ...85
3.7.2 An Example Byzantine Fault ...86

vii

Dependability.book Page vii Wednesday, December 14, 2011 2:53 PM
3.7.3 Nuances of Byzantine Faults ... 88
3.8 Component Failure Semantics ..89

3.8.1 Disk Drive Example .. 89
3.8.2 Achieving Predictable Failure Semantics.. 90
3.8.3 Software Failure Semantics ... 90

3.9 Fundamental Principle of Dependability...91
3.9.1 Fault Avoidance ... 92
3.9.2 Fault Elimination ... 92
3.9.3 Fault Tolerance .. 92
3.9.4 Fault Forecasting ... 93

3.10 Anticipated Faults ...93
3.11 Hazards..94

3.11.1 The Hazard Concept .. 94
3.11.2 Hazard Identification ... 95
3.11.3 Hazards and Faults... 96

3.12 Engineering Dependable Systems ...97
Exercises ...100

CHAPTER 4 Dependability Analysis ...103
4.1 Anticipating Faults ..103
4.2 Generalizing the Notion of Hazard ...104
4.3 Fault Tree Analysis ...105

4.3.1 Basic Concept of a Fault Tree ... 105
4.3.2 Basic and Compound Events ... 106
4.3.3 Inspection of Fault Trees ... 108
4.3.4 Probabilistic Fault Tree Analysis... 108
4.3.5 Software and Fault Trees ... 109
4.3.6 An Example Fault Tree...111
4.3.7 Defense in Depth ... 113
4.3.8 Other Applications of Fault Trees ... 116

4.4 Failure Modes, Effects, and Criticality Analysis117
4.4.1 FMECA Concept ... 117

4.5 Hazard and Operability Analysis ..119
4.5.1 The Concept of HazOp .. 119
4.5.2 The Basic HazOp Process.. 120
4.5.3 HazOp and Computer Systems.. 120
Exercises ...122

CHAPTER 5 Dealing with Faults..123
5.1 Faults and Their Treatment ...123
5.2 Fault Avoidance...124

5.2.1 Degradation Faults... 124
5.2.2 Design Faults ... 125

5.3 Fault Elimination...126
5.3.1 Degradation Faults... 126

viii

Dependability.book Page viii Wednesday, December 14, 2011 2:53 PM
5.3.2 Design Faults ...126
5.4 Fault Tolerance ... 127

5.4.1 Familiarity with Fault Tolerance..127
5.4.2 Definitions..127
5.4.3 Semantics of Fault Tolerance ...129
5.4.4 Phases of Fault Tolerance ..130
5.4.5 An Example Fault-Tolerant System ...131

5.5 Fault Forecasting .. 133
5.5.1 Fault Forecasting Process ..134
5.5.2 The Operating Environment ..134
5.5.3 Degradation Faults ...135
5.5.4 Design Faults ...135

5.6 Applying the Four Approaches to Fault Treatment........................ 137
5.7 Dealing with Byzantine Faults ... 137

5.7.1 The Byzantine Generals ...138
5.7.2 The Byzantine Generals and Computers..139
5.7.3 The Impossibility Result ..141
5.7.4 Solutions to the Byzantine Generals Problem143
Exercises .. 145

CHAPTER 6 Degradation Faults and Software.. 147
6.1 Impact on Software .. 147
6.2 Redundancy .. 148

6.2.1 Redundancy and Replication ...148
6.2.2 Large vs. Small Component Redundancy..151
6.2.3 Static vs. Dynamic Redundancy ..152

6.3 Redundant Architectures .. 153
6.3.1 Dual Redundancy...155
6.3.2 Switched Dual Redundancy ...158
6.3.3 N-Modular Redundancy...164
6.3.4 Hybrid Redundancy ...166

6.4 Quantifying the Benefits of Redundancy 168
6.4.1 Statistical Independence...168
6.4.2 Dual-Redundant Architecture ..169

6.5 Distributed Systems and Fail-Stop Computers............................... 170
6.5.1 Distributed Systems ...170
6.5.2 Failure Semantics of Computers ..171
6.5.3 Exploiting Distributed Systems ...172
6.5.4 The Fail-Stop Concept ...172
6.5.5 Implementing Fail-Stop Computers...174
6.5.6 Programming Fail-Stop Computers ...175
Exercises .. 178

CHAPTER 7 Software Dependability .. 181
7.1 Faults and the Software Lifecycle .. 181

7.1.1 Software and Its Fragility...182

ix

Dependability.book Page ix Wednesday, December 14, 2011 2:53 PM
7.1.2 Dealing with Software Faults .. 183
7.1.3 The Software Lifecycle ... 184
7.1.4 Verification and Validation .. 185

7.2 Formal Techniques ..186
7.2.1 Analysis in Software Engineering ... 186
7.2.2 Formal Specification.. 189
7.2.3 Formal Verification.. 189
7.2.4 The Terminology of Correctness ... 190

7.3 Verification by Model Checking ...190
7.3.1 The Role of Model Checking .. 190
7.3.2 Analyzing Models.. 191
7.3.3 Using a Model Checker ... 192

7.4 Correctness by Construction ...193
7.5 Approaches to Correctness by Construction194
7.6 Correctness by Construction — Synthesis197

7.6.1 Generating Code from Formal Specifications 197
7.6.2 The Advantages of Model-Based Development................................ 198
7.6.3 Examples of Model-Based Development Systems............................ 199
7.6.4 Mathworks Simulink® .. 200

7.7 Correctness by Construction — Refinement...................................201
7.8 Software Fault Avoidance ...203

7.8.1 Rigorous Development Processes ... 204
7.8.2 Appropriate Notations ... 205
7.8.3 Comprehensive Standards for All Artifacts....................................... 206
7.8.4 Support Tools... 207
7.8.5 Properly Trained Personnel ... 207
7.8.6 Formal Techniques... 207

7.9 Software Fault Elimination ...207
7.9.1 Static Analysis ... 208
7.9.2 Dynamic Analysis.. 209
7.9.3 Eliminating a Fault — Root-Cause Analysis 210

7.10 Managing Software Fault Avoidance and Elimination212
7.10.1 Fault Freedom as Properties .. 212

7.11 Misconceptions about Software Dependability...............................215
Exercises ...218

CHAPTER 8 Software Fault Avoidance in Specification221
8.1 The Role of Specification..221
8.2 Difficulties with Natural Languages ...222
8.3 Specification Difficulties...223

8.3.1 Specification Defects ... 223
8.3.2 Specification Evolution ... 224

8.4 Formal Languages ...226
8.4.1 Formal Syntax and Semantics ... 226
8.4.2 Benefits of Formal Languages... 228

x

Dependability.book Page x Wednesday, December 14, 2011 2:53 PM
8.4.3 Presentation of Formal Languages...230
8.4.4 Types of Formal Languages ...231
8.4.5 Discrete Mathematics and Formal Specification232
8.4.6 The Before and After State ..232
8.4.7 A Simple Specification Example ...233

8.5 Model-Based Specification .. 234
8.5.1 Using a Model-Based Specification...235

8.6 The Declarative Language Z .. 237
8.6.1 Sets ...237
8.6.2 Propositions and Predicates ...238
8.6.3 Quantifiers..240
8.6.4 Cross Products ...241
8.6.5 Relations, Sequences, and Functions ...241
8.6.6 Schemas ...242
8.6.7 The Schema Calculus...243

8.7 A Simple Example.. 244
8.8 A Detailed Example ... 245

8.8.1 Version 1 of the Example ...247
8.8.2 Version 2 of the Example ...248
8.8.3 Version 3 of the Example ...248
8.8.4 Version 4 of the Example ...251

8.9 Overview of Formal Specification Development........................... 252
Exercises .. 254

CHAPTER 9 Software Fault Avoidance in Implementation 257
9.1 Implementing Software .. 257

9.1.1 Tool Support for Software Implementation258
9.1.2 Developing an Implementation..258
9.1.3 What Goes Wrong with Software? ..259

9.2 Programming Languages.. 261
9.2.1 The C Programming Language ..262

9.3 An Overview of Ada .. 264
9.3.1 The Motivation for Ada ...264
9.3.2 Basic Features ..265
9.3.3 Packages...268
9.3.4 Concurrent and Real-Time Programming ..268
9.3.5 Separate Compilation...269
9.3.6 Exceptions..270

9.4 Programming Standards ... 270
9.4.1 Programming Standards and Programming Languages.....................270
9.4.2 Programming Standards and Fault Avoidance272

9.5 Correctness by Construction — SPARK .. 273
9.5.1 The SPARK Development Concept ...274
9.5.2 The SPARK Ada Subset ..276
9.5.3 The SPARK Annotations ...278
9.5.4 Core Annotations ...278

xi

Dependability.book Page xi Wednesday, December 14, 2011 2:53 PM
9.5.5 Proof Annotations.. 281
9.5.6 Loop Invariants.. 283
9.5.7 The SPARK Tools.. 287
Exercises ...289

CHAPTER 10 Software Fault Elimination..291
10.1 Why Fault Elimination? ..291
10.2 Inspection ..293

10.2.1 Artifacts and Defects ... 293
10.2.2 Fagan Inspections .. 295
10.2.3 Active Reviews.. 298
10.2.4 Phased Inspections... 299

10.3 Testing ...303
10.3.1 Exhaustive Testing... 303
10.3.2 The Role of Testing ... 304
10.3.3 The Testing Process ... 305
10.3.4 Software Form ... 307
10.3.5 Output Checking.. 308
10.3.6 Test Adequacy ... 309
10.3.7 Modified Condition Decision Coverage.. 311
10.3.8 Test Automation .. 313
10.3.9 Real-Time Systems .. 314
Exercises ...317

CHAPTER 11 Software Fault Tolerance...319
11.1 Components Subject to Design Faults ..319
11.2 Issues with Design Fault Tolerance...321

11.2.1 The Difficulty of Tolerating Design Faults 321
11.2.2 Self-Healing Systems .. 323
11.2.3 Error Detection .. 324
11.2.4 Forward and Backward Error Recovery .. 324

11.3 Software Replication ...326
11.4 Design Diversity..327

11.4.1 N-Version Systems .. 328
11.4.2 Recovery Blocks.. 331
11.4.3 Conversations and Dialogs .. 333
11.4.4 Measuring Design Diversity .. 334
11.4.5 Comparison Checking ... 335
11.4.6 The Consistent Comparison Problem .. 337

11.5 Data Diversity ...339
11.5.1 Faults and Data .. 339
11.5.2 A Special Case of Data Diversity .. 340
11.5.3 Generalized Data Diversity ... 341
11.5.4 Data Reexpression ... 342
11.5.5 N-Copy Execution and Voting... 343

11.6 Targeted Fault Tolerance ...344

xii

Dependability.book Page xii Wednesday, December 14, 2011 2:53 PM
11.6.1 Safety Kernels ..345
11.6.2 Application Isolation..347
11.6.3 Watchdog Timers ...349
11.6.4 Exceptions..349
11.6.5 Execution Time Checking..351
Exercises .. 353

CHAPTER 12 Dependability Assessment.. 355
12.1 Approaches to Assessment ... 355
12.2 Quantitative Assessment .. 357

12.2.1 The Basic Approach...357
12.2.2 Life Testing ..359
12.2.3 Compositional Modeling ...360
12.2.4 Difficulties with Quantitative Assessment...361

12.3 Prescriptive Standards .. 362
12.3.1 The Goal of Prescriptive Standards ...364
12.3.2 Example Prescriptive Standard — RTCA/DO-178B.........................364
12.3.3 The Advantages of Prescriptive Standards ..369
12.3.4 The Disadvantages of Prescriptive Standards370

12.4 Rigorous Arguments... 371
12.4.1 The Concept of Argument..372
12.4.2 Safety Cases ...373
12.4.3 Regulation Based on Safety Cases...375
12.4.4 Building a Safety Case...376
12.4.5 A Simple Example ...377
12.4.6 The Goal Structuring Notation...380
12.4.7 Software and Arguments..382
12.4.8 Types of Evidence ..385
12.4.9 Safety Case Patterns...387

12.5 Applicability of Argumentation ... 388
Exercises .. 391

Bibliography .. 393
Index .. 405

Dependability.book Page xiii Wednesday, December 14, 2011 2:53 PM
Foreword

As computer systems have permeated ever more aspects of daily and communal life,
so individuals’, organizations’ and society’s dependency on the satisfactory func-
tioning of these systems has become ever greater. This dependency can take many
forms. It can arise, for example, from (i) the cost to a manufacturer of recalling a
mass-market product of inadequate reliability, (ii) the dangers to life and limb from
unsafe actions that are caused by, or fail to be prevented by, a computer system, or
(iii) the reputational or financial consequence of failure to protect highly-confiden-
tial information.

Computer systems can be employed in many different situations and can fail in
many different ways. A system will be judged to be dependable if its failures are
neither too frequent, nor too severe. Quite what constitutes failure, and acceptable
levels of failure frequency and failure severity, will vary according to the situation
and circumstances. And different stakeholders, such as users, operators and system
owners may judge these differently.

Just as computer systems can fail in many different ways, so there are many dif-
ferent possible causes of computer system failure, i.e. faults, of various different
types. In particular there are hardware operational faults due to component ageing,
residual software (and hardware) design faults, and deliberate (or perhaps just acci-
dental) acts by users that trigger little-known vulnerabilities. Moreover, faults in one
system may well be the result of failures in some other system, i.e. (i) another sys-
tem that it is interacting with, (ii) a component sub-system, or (iii) a system that cre-
ated or modified it. Issues of system boundaries and their careful identification are
therefore crucial. Indeed, one cannot expect to achieve high system dependability in
systems where the engineers involved do not have a detailed understanding of sys-
tem boundaries and specifications.

Achieving, and — equally importantly — being able to justify claims of, ade-
quate system dependability from ever more sophisticated computer-based systems is
thus a continuing challenge. Unmastered complexity breeds confusion and confu-
sion breeds undependability. Hence as John Knight, the author of this book, rightly
emphasizes, the importance of clear concepts and carefully-defined terminology.
The concepts and terminology that he describes, and uses carefully throughout this
book, are appropriate for all types of system, e.g. (i) a “programmable” washing
machine, (ii) a mobile phone incorporating a sophisticated operating system, (iii) a
distributed database system supporting the work of a large software design team,
xiii

xiv

Dependability.book Page xiv Wednesday, December 14, 2011 2:53 PM
and (iv) a global banking system comprising large numbers of computers, networks
and banking personnel.

Conceptually, the dependability issues arising in all these different types of sys-
tem, and from the various types of fault, are in fact very similar — how and to what
extent can one: (i) avoid introducing faults into a system, (ii) find and remove faults
that nevertheless exist in the system, (iii) provide acceptable service despite any
remaining faults, and (iv) estimate the effectiveness of these various measures. This
similarity may however be masked by the use of differing terminology by the differ-
ent technical communities involved. However terminological differences matter lit-
tle if there is a common understanding of an adequate set of basic concepts, applying
to all types of system, all types of system failure, and all the different possible
causes of system failure.

One of the biggest fundamental causes of failure in computer-based systems is
their complexity, much of which will for good technical reasons reside in the soft-
ware. Thus many of the challenges facing those responsible for a computer system’s
dependability concern software, and hence software engineering. Hence a major
strength of this book is the systematic way in which it identifies and discusses the
many contributions that good software engineering can make to the task of achiev-
ing overall system dependability and the various challenges involved in ensuring
that the software itself is adequately dependable.

This book takes full advantage of the extensive work that has been undertaken
over many years on the creation of a rich set of system dependability concepts. John
Knight makes excellent use of these concepts in producing a very well-argued and
comprehensive account, aimed squarely at software engineers, of the variety of
dependability issues they are likely to find in real systems and of the strategies that
they should use to address these issues. Appropriately qualified students who study
this book thoroughly, and computer professionals seeking a greater understanding of
the various dependability-related problems that they have encountered already in
their careers, should gain much from this book. I therefore take great pleasure in
enthusiastically recommending it to both classes of reader.

Brian Randell
Newcastle University

31 July 2011

Dependability.book Page xv Wednesday, December 14, 2011 2:53 PM
Preface

We depend on computer systems for much of what we do, and our dependence is
greater than most of us realize. Without computers working correctly, our lives
would be changed dramatically and mostly for the worse. The spectrum of services
that computers help to provide is very diverse and includes banking, education,
transportation, energy production, telecommunications, health care, defense, farm-
ing, manufacturing, business operations, and entertainment. A passenger railway
system, for example, might be prevented from providing service because of a com-
puter problem just as service might be prevented by a loss of power, damage to the
track or rolling stock, seriously inclement weather, or lack of a crew.

This book is about computer system dependability, more specifically, those
aspects of the subject that are important to the software engineer. The material is
suitable for a senior undergraduate course or a first-year graduate course in com-
puter science or computer engineering. The material is also suitable for self study,
and the practicing engineer can tackle the subject matter directly.

The book has a single pedagogical goal:

To present software and computer engineers with a comprehensive depend-
ability engineering process in which the reasons for and the interrelation-
ships between the various parts are clear and justified.

Many techniques are introduced, although not in great depth. The book does not
cover any specific techniques in depth except the process. The intent is to summa-
rize the important topics in sufficient depth that the reader can understand their form
and role and have the background to pursue these topics if they wish. With the pro-
cess clear, the reader will be able to study specific topics in depth and determine the
extent to which they apply to his or her engineering activities.

To meet the book’s goal, four major items of material are covered:

• Sufficient information about the systems engineering aspects of dependability
that the software engineer can (a) understand fully why the software is being
asked to do what it is being asked to do and (b) understand why the software is
being made to operate on the particular platform specified by the system design-
ers.

• A definitional and conceptual framework within which the engineer can reason
and make decisions about software and that software’s dependability.
xv

xvi

Dependability.book Page xvi Wednesday, December 14, 2011 2:53 PM
• A comprehensive approach to achieving software dependability.

• A bibliography of the most relevant literature.

Why read this book?

Why should a student or a practicing engineer study this material? There is plenty of
technology to study, so how does this fit in? The answers to these questions can be
found in the title. The dependability of computer systems is as important as the
functionality of the systems, perhaps even more important. Less functionality than
expected or planned is often tolerable. But a system that fails at an unacceptable rate
is usually intolerable. Unless we take action to prevent them, failures will occur,
and, if they occur at a rate that is unacceptable, the associated systems might have to
be taken out of service. Practicing engineers and students of engineering (engineers
in training) need to master the essential elements of computer system dependability
so as to help them to make appropriate engineering decisions. Arguably, studying
this material is essential.

The things that you will learn from this book are concerned with the actions
needed to reduce the probability of failures to an acceptable level, if that is possible.
Specifically, you will learn:

• Why dependability matters.

• What it means for a system to be dependable.

• How to build a dependable system.

• How to assess whether a system is adequately dependable.

In order to be able to master this material, the following background is assumed:

• Experience with high-level language programming in a language like C, C++,
C#, or Java.

• A basic knowledge of computer organization including the operation of proces-
sors, memories, disk storage systems, and basic communication facilities.

• Exposure to elementary probability theory.

• A working knowledge of discrete mathematics, including propositional calculus,
predicate calculus, basic functions, and set theory.

• An understanding of the basic principles of operating systems, including proces-
sor management, memory management, peripheral management, and the opera-
tion of user interfaces.

• A good knowledge of the principles of software engineering, including require-
ments analysis, specification, design, testing, documentation and software devel-
opment processes.

The emphasis in this book is on the software engineering elements of the prob-
lem. Thus, the intent is to help software engineers meet the challenge of construct-

xvii

Dependability.book Page xvii Wednesday, December 14, 2011 2:53 PM
ing software systems that are sufficiently dependable, and within budget and time
constraints.

How to use this book

Computing system dependability should be part of any degree program in computer
science or computer engineering. A course on the fundamental elements of the topic
should be the minimum, with more elaborate optional courses in topics such as for-
mal methods, mathematical modeling, dependable computing architecture, and
advanced software engineering building on the fundamentals as determined by the
goals of the degree program.

This book can form the basis of a one-semester introductory course, and the bulk
of the material can be covered in one semester. The material should be presented in
the same order as in this book, because later material depends critically on earlier
material. The overall development that students should see and with which they
should become familiar is:

• What dependability is and why dependability is important.

• The substantial but essential conceptual and definitional structure of the subject.

• The computing platforms upon which critical applications operate and how these
platforms affect software.

• The difficulties that arise in software engineering that lead to software failures.

• The mathematically based techniques that can improve the quality of software
dramatically and that are becoming available even for large software systems.

For a practicing engineer, the book can be treated as a reference. Topics can be
studied in any order provided that for each topic of interest the reader is familiar
with the preceding material. My experience in discussing dependability with engi-
neers in industry is that they tend to lack adequate backgrounds in much of the mate-
rial covered. Starting at the beginning to make sure of things like the definitional
structure of the field is generally worthwhile.

The organization of this book

This book is organized into 12 chapters, and the reader is encouraged to work
through the chapters in order. Each chapter develops the material from the previous
chapters and relies upon their content. Chapter 1 introduces the topic and motivates
the study of dependability. The terminology of dependability is presented in Chapter
2, and Chapter 3 introduces the different fault types and the approaches to dealing
with faults.

Chapter 4 discusses how to identify the faults to which a system is subject, and
Chapter 5 examines the four basic mechanisms for dealing with faults, avoidance,
removal, tolerance, and forecasting, along with a discussion of dealing with Byzan-

xviii

Dependability.book Page xviii Wednesday, December 14, 2011 2:53 PM
tine faults. Chapter 6 summarizes the issues with degradation faults, a type of fault
that arises only in hardware, and Chapter 7 surveys the general issues surrounding
software dependability. Chapter 8 and Chapter 9 discuss important topics in soft-
ware fault avoidance.

Chapter 10 is about software fault elimination, and Chapter 11 is about software
fault tolerance. Finally, Chapter 12 examines dependability assessment.

Those to whom I am grateful

I am pleased to have this opportunity to thank many people who were influential in
the creation of this book. Brian Randell from the University of Newcastle upon
Tyne, who kindly wrote the Foreword, taught me an immense amount over many
years in many ways about many things. Premkumar Devanbu of the University of
California, Davis, started me down the path of assembling this material when he
asked me to present a summary lecture on dependability at the 2001 International
Conference on Software Engineering. And Dieter Rombach of the University of
Kaiserlauten got me started on organizing this material when he asked me to help
with a distance learning class on dependability.

The origins of the detailed material in this book are classes that I have taught at
the University of Virginia. I am deeply indebted to the dozens of students who
attended those classes, put up with my lecture style, asked me thought-provoking
questions, and taught me an immense amount. Thanks to all of you; you know who
you are.

I benefited greatly from reviews of the manuscript by M. Anthony Aiello, Tom
Anderson, Josh Dehlinger, Michael Holloway, Rich LeBlanc, and Brian Randell.
Their combined comments were truly transformative. I also benefited greatly from
numerous discussions with Patrick Graydon.

None of this would have happened without the help of many people at the pub-
lisher, Taylor & Francis. In particular, I thank Alan Apt and Randi Cohen.

Finally, I owe an immense debt of gratitude to my family — my children, Rich-
ard, Abby, and Katie, and my wife Virginia — for the lost weekends and evenings
that I have spent writing this book.

Further information

Slides based on the material in this textbook and solutions to exercises are available
to instructors at institutes of higher education. Details and further information about
this textbook are provided at the following address:

http://www.dependablecomputing.com/fundamentals.html

John Knight
Charlottesville, Virginia

xix

Dependability.book Page xix Wednesday, December 14, 2011 2:53 PM
MATLAB (r) is a registered trademark of The MathWorks, Inc.
For product information, please contact:
The MathWorks,
Inc. 3 Apple Hill Drive,
Natick, MA 01760-2098 USA.
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

This page intentionally left blankThis page intentionally left blank

Dependability.book Page 1 Wednesday, December 14, 2011 2:53 PM
CHAPTER 1 Introduction

The dependability of a system is the ability to avoid service failures
that are more frequent and more severe than is acceptable.

Algirdas Avižienis, Jean-Claude Laprie,
Brian Randell, and Carl Landwehr

1.1 The Elements of Dependability

1.1.1 A Cautionary Tale

Imagine that you are an expert in making chains, and that you are working on a proj-
ect to suspend a box containing delicate porcelain high above ground. If the chain,
the box, the hook that attaches the chain to the box, or the hook that attaches the
chain to the ceiling breaks, the box will fall and hit the ground. Clearly, serious dam-
age to the porcelain will probably result. Everybody involved with the porcelain (the
owner of the porcelain, the expert in boxes, the expert in hooks, you, etc.) would
like to prevent that.

You are a well-educated chain engineer with a degree from a prestigious aca-
demic institution. You have had classes in all sorts of chain-engineering techniques,
and so you expect to proceed using the education you have. But, before work starts
on the project, you become anxious about the following concern:

Concern 1: If chain failure could cause a lot of damage, everything possi-
ble has to be done to prevent failure. Porcelain is delicate and expensive.
You wonder whether you know all the available techniques that could pre-
vent damage.
1

2 Introduction

Dependability.book Page 2 Wednesday, December 14, 2011 2:53 PM
If the porcelain is mass produced,
the owner might not care if the
chain breaks. At least, in that
case, the owner might not want to
pay for you and other experts to
engineer the chain, the box, and
the hooks really well. If the box
contains antique Meissen porce-
lain, such as the porcelain shown
in Figure 1.1, the owner would
want very high levels of assur-
ance that the chain, the box, and
the hooks will not break except
under the most dire circum-
stances. Unfortunately, the owner
tells you that the porcelain to be
suspended is indeed a rare and
expensive piece.

As you start to work on the
project, you determine quickly
that you need to know exactly
how strong the chain has to be.
Suppose the chain you built was
not strong enough, what would
happen? These thoughts raise a
second concern:

Concern 2: Defining the necessary strength of the chain is crucial so that
you have a target for the engineering you will undertake on the chain. You
cannot make that determination yourself because the definition is really set
by the systems engineer in charge of the suspended-box project.

You ask the porcelain’s owner how strong the chain needs to be. The owner of
the porcelain just says that the chain has to be “unbreakable”. You ask the other
engineers working with you. None of them understands the question well enough to
be able to give you a complete answer. The engineers tell you:

“Use the International Standards Organization chain standard
for boxes that hold expensive porcelain high above ground.”

But that standard focuses on chain documentation, color, and the shape of the
links. Would following the standard ensure that the chain you make will be strong
enough?

FIGURE 1.1 Delicate porcelain in the museum at the
Meissen porcelain factory in Meissen, Germany.

The Elements of Dependability 3

Dependability.book Page 3 Wednesday, December 14, 2011 2:53 PM
In order to get this dilemma sorted out, you realize that you need to be able to
communicate effectively with others so as to get an engineering answer to your
questions. A third concern begins to bother you:

Concern 3: An accurate and complete set of definitions of terms is neces-
sary so that you can communicate reliably with other engineers. You do not
have such a set of definitions.

With a set of terms, you will be able to communicate with other chain engineers,
metallurgists, experts in box and hook structures, inspectors from the Federal Porce-
lain Administration (the FPA), physicists who can model potential and kinetic
energy, porcelain engineers, and the owner of the porcelain.

As an expert in chains, you know that a chain is only as strong as its weakest
link, and this obvious but important fact guides your work with the chain. To protect
the porcelain, you search for defects in the chain, focusing your attention on a search
for the weakest link. Suddenly, a fourth concern occurs to you:

Concern 4: You need a comprehensive technology that will allow you to
find all the links in the chain that are not strong enough, and you must have
a mechanism for dealing with all of the weak links, not just the weakest
link and not just the obvious weak links.

You wonder whether you could estimate how strong the chain is and find ways
to strengthen it. You suspect that there are several techniques for dealing with links
in the chain that might break, but you did not take the course “Dealing With Weak
Links in a Chain” when you were in college.

Thinking about the problem of weak links, you decide that you might ensure that
the chain is manufactured carefully, and you might examine and test the chain. If
you miss a weak link, you think that you might install a second chain in parallel with
the first just in case the first chain breaks, you might place a cushion under the box
of porcelain to protect the porcelain if the chain breaks, or you might wrap the por-
celain carefully to protect it from shock. Other experts would examine the box and
the hooks.

Somewhat in a state of shock, a fifth and final concern occurs to you:

Concern 5: You need to know just how effective all the techniques for
dealing with weak links in the chain will be. Even if you deal with a weak
link in a sensible way, you might not have eliminated the problem.

Because you are a well-educated chain engineer, you proceed using the educa-
tion you have and you mostly ignore the concerns that have occurred to you. The

4 Introduction

Dependability.book Page 4 Wednesday, December 14, 2011 2:53 PM
chain and all the other elements of the system are built, and the porcelain is sus-
pended in the box. The owner of the porcelain is delighted.

And then there is an enormous crash as the porcelain breaks into thousands of
pieces. The chain broke. One link in the chain was not strong enough.

You wake up and realize that all this was just a nightmare. You remember you
are not a chain engineer. Phew! You are a software engineer. But you remain in a
cold sweat, because you realize that the porcelain could have been the computer sys-
tem you are working on and the “crash” might have been caused by your software
— a really frightening thought.

1.1.2 Why Dependability?

From this story you should get some idea of what we can be faced with in engineer-
ing a computer system that has to be dependable. The reason we need dependability
of anything, including computer systems, is because the consequences of failure are
high. We need precise definitions of how dependable our computer systems have to
be. We cannot make these systems perfect. We need definitions of terms so that all
stakeholders can communicate properly.

In order to get dependability, we are faced with a wide range of engineering
issues that must be addressed systematically and comprehensively. If we miss some-
thing — anything (a weak link in the chain) — the system might fail, and nobody
will care how good the rest of the system was. We have to know just how good our
systems have to be so that we can adopt appropriate engineering techniques. And so
on.

This book is about dependability of computer systems, and the “cautionary tale”
of Section 1.1.1 basically lays out this entire book. The way in which we achieve
dependability is through a rigorous series of engineering steps with which many
engineers are unfamiliar. Having a strong academic background does not necessarily
qualify one for addressing the issue of dependability. This book brings together the
fundamentals of dependability for software engineers, hence the name. By studying
the fundamentals, the software engineer can make decisions about appropriate engi-
neering for any specific system. Importantly, the software engineer can also deter-
mine when the available technology or the planned technology for a given system is
not adequate to meet the dependability goals.

Examining the computer systems upon which we depend and engineering these
systems to provide an acceptable level of service are important. Most people have
experienced the frustration of their desktop or laptop computer “locking up”, their
hard drive failing with no recent backup, or their computer coming to a halt when
the power fails. These examples are of familiar systems and incidents that we would
like to prevent, because they cause us inconvenience, often considerable inconve-
nience. But there are many major systems where failures are much more than an
inconvenience, and we look at some examples in Section 1.4.

The Role of the Software Engineer 5

Dependability.book Page 5 Wednesday, December 14, 2011 2:53 PM
As in the cautionary tale where the chain engineer was “a well-educated chain
engineer with a degree from a prestigious academic institution”, most software and
computer engineers are well educated in the main issues that they face in their pro-
fessions. Typically, however, the major issues of dependability are unfamiliar to
computer and software engineers.

1.2 The Role of the Software Engineer

Why should a software engineer be concerned about dependability in the depth that
the subject is covered in this book? Surely software engineers just write software?
There are four important reasons why software is closely involved with everything
to do with system dependability:

• Software should perform the required function.
If software performs something other than the required function, then a system
failure could ensue with possibly serious consequences. No matter how well
implemented a software system is, that system has to meet the requirements.
Determining the requirements for software is difficult and usually not within the
realm of expertise of other engineering disciplines. The software engineer has to
help the entire engineering team with this task.

• Software should perform the required function correctly.
If software performs the required function incorrectly, then, again, a system fail-
ure could ensue with possibly serious consequences. The software engineer has
to choose implementation techniques that will increase the chances that the soft-
ware implementation will be correct.

• The software might have to operate on a target platform whose design was
influenced by the system’s dependability goals.
Target platforms often include elements that are not necessary for basic function-
ality in order to meet dependability goals for the platform itself. Many systems
use replicated processors, disks, communications facilities, and so on in order to
be able to avoid certain types of fault. Software engineers need to be aware of
why the target was designed the way it was. The target platform design is very
likely to affect the software design, and software is usually involved in the oper-
ation of these replicated resources.

• Software often needs to take action when a hardware component fails.
Software usually contributes significantly to the engineering that provides over-
all system dependability and to the management of the system following some
types of failure. Many things can be done to help avoid or recover from system
failures if sufficient care is taken in system design. In almost all cases, software
is at the heart of these mechanisms, and so software requirements actually derive

6 Introduction

Dependability.book Page 6 Wednesday, December 14, 2011 2:53 PM
from the need to meet certain dependability goals. A simple example is to moni-
tor the input coming from system operators and to inhibit response to inappropri-
ate or erroneous commands. This type of dependability enhancement imposes a
requirement that the software has to meet.

These four reasons are a manifestation of the interaction between systems engi-
neering and software engineering. The interaction is illustrated in Figure 1.2. Sys-
tems engineers are responsible for the system design, and they use a variety of
analyses to model the dependability of their designs. These analyses include fault
tree analysis (FTA), Failure Modes Effects and Criticality Analysis (FMECA), and
Hazard and Operability Analysis (HazOp). Eventually a system design is created,
and the software specification derives from that system design.

The interaction is not just in the direction from systems engineers to software
engineers. A software system is a complex entity that has characteristics and limita-
tions of its own. As a result, information from software engineers needs to be made
available to and discussed with systems engineers if the entire system is to perform
as desired. Changes to the design of a system might be needed to accommodate soft-
ware limitations.

Clearly, software is an important component of the systems with which we are
concerned. The software engineer has to be prepared to build software that often
goes well beyond that needed for primary functionality. The software engineer is far
more capable of creating software that meets its objectives if he or she understands
something of the systems engineering context and the systems engineer’s tools and

FIGURE 1.2 The interaction between systems and software engineering. System designers develop
and analyze their design, and from that determine what the software has to do. When analyzing the
software specification, software engineers might need to influence the system design and thereby the
software specification because of practical concerns for the software raised by the specification.

System
Design

Software
Specification

Analysis of System
Design

Analysis of Software
Specification

Systems
Engineering

Software
Engineering

Our Dependence on Computers 7

Dependability.book Page 7 Wednesday, December 14, 2011 2:53 PM
techniques. In some cases, those techniques can be adapted usefully and easily to
support software engineering.

Two important factors in understanding the role of the software engineer in
dependability are the following:

• The software in systems that need high levels of dependability has become
involved in far more of the systems’ functionality than was the case in the past.

• Software defects have become common causal factors in failures. We have to
engineer software carefully if that software is to provide the level of service that
modern systems require.

The second of these factors is related, at least in part, to the first. But the crucial
point is that the software engineer now plays a much more central role in systems
dependability than was the case in the past. As a result, the software engineer needs
to understand why the system is asking the software to undertake functionality that
is sometimes non-obvious, why the target platform is what it is, and how to achieve
the high levels of software dependability that are required.

1.3 Our Dependence on Computers

Whether we like it or not, we depend on computer systems for much of what we do.
Without them, our lives would be changed dramatically and mostly for the worse.
The spectrum of services that they help to provide is very diverse and includes:

Banking and financial services. Computers keep track of bank accounts, transmit
money between banks, even between banks in different countries, provide financial
services such as ATMs and credit cards, operate markets and exchanges, and engage
in financial transactions on behalf of their owners.

Transportation. Commercial aircraft employ extensive computer systems on-
board, and the air-traffic-control system employs computers in a variety of ways.
Cars depend on computers for engine management, anti-lock brakes, traction con-
trol, and in-car entertainment systems. Passenger rail systems rely on computers for
a variety of services, including, in the most sophisticated system, actually operating
the train.

Energy production. Computers help control energy production equipment such as
electrical generators, help control gas and oil pipelines, manage electrical transmis-
sion lines, and control energy systems when demand changes because of weather.

Telecommunications. All of the telecommunications systems that we use, from tra-
ditional wired telephone service in our homes to mobile service using smart tele-
phones and iPads, are really just elaborate distributed computing systems.

8 Introduction

Dependability.book Page 8 Wednesday, December 14, 2011 2:53 PM
Health care. Many health care services depend upon computers, including the vari-
ous forms of imagery, and devices such as drug-infusion pumps, surgical robots, and
radiation therapy machines. Information systems play a central role in health care
also in areas such as patient records, drug inventories, and facility planning.

Defense. Defense employs extensive computer systems in command and control, in
weapons management, within complex systems such as aircraft, ships, and missiles,
and in supply-chain management.

Manufacturing. Manufacturing operations rely on computers for robotic produc-
tion lines, supply-chain management, resource and personnel management, schedul-
ing, inventory management, financial and accounting activities, and parts
scheduling.

Business operations. Businesses rely on computers for inventory management,
accounting, advertising, customer services, billing, and point-of-sale services.

Entertainment. By definition, computer games use computers. But multi-player
games communicate via computer networks, and movies are beginning to be created
and presented digitally.

In some cases we receive service without realizing that computers are at the
heart of providing that service. Most people are unaware, for example, of how many
computers are embedded in appliances in their homes and in their cars. There are
computers in thermostats, kitchen appliances, televisions, and so on. These comput-
ers do not look like the ones we see on our desks at work, but they are powerful
computers nonetheless. These computers are called embedded because they are inte-
grated within other equipment. Every such computer has a processor, main memory,
and I/O devices. Some are connected to a network, and some have peripherals such
as specialized displays and keyboards that allow them to communicate with humans.

Just as with home appliances and cars, most people are unaware of how many
computers and networks are involved in authorizing a credit card purchase or pro-
cessing a check for payment. Even an action as simple as using a credit card at a ser-
vice station to purchase gasoline requires the actions of dozens of computers and
several private networks. The gasoline pump contains a computer that is connected
to a private data network which communicates with the bank that issued the credit
card. That bank’s computers then check for the possibility of fraudulent use and
check the card holder’s account. Finally, if the transaction does not appear fraudu-
lent and the card holder has the necessary credit, the transaction is authorized and a
message to that effect is sent back to the gasoline pump. And all of this is done in a
few seconds.

The credit card and check processing systems are examples of national net-
worked infrastructure systems. Another important national infrastructure in the
United States. is the freight-rail system, a technology much older than cars and
much more complex. Normally all we see are locomotives and freight cars, and we

Some Regrettable Failures 9

Dependability.book Page 9 Wednesday, December 14, 2011 2:53 PM
usually notice them only when we are stopped at a railway crossing. But the move-
ment of freight by rail with modern levels of efficiency and performance would not
be possible without a wide range of computers helping to track payloads, operate
locomotives, schedule train operation, and optimize overall system performance.
Much of this activity relies upon track-side equipment that regularly reports the
location of individual freight cars to centralized databases. Importantly, computers
help to watch over the system to ensure safe operation.

A careful examination reveals that the computer systems underlying the provi-
sion of modern services span a wide spectrum of system characteristics. Some ser-
vices depend on wide-area networks, some on local-area networks, some on
embedded computers, some on large databases, and some on complex combinations
of many characteristics.

1.4 Some Regrettable Failures

Before proceeding, it is worth looking at some examples of significant failures that
have occurred and in which a computer was one of the (usually many) factors
involved in causing the failure. In general, examining failures so as to learn from
them and to help prevent similar failures in the future is important. Investigating
accidents is a difficult challenge and the subject of study in its own right [73].

1.4.1 The Ariane V

The Ariane V is one of a range of launch vehicles developed by the European Space
Agency (ESA). The maiden flight of the Ariane V, known as flight 501, took place
on June 4, 1996 at the ESA launch site in Kourou, French Guiana. The vehicle rose
from the launch pad and, about 40 seconds later, veered off course, broke apart, and
exploded. The reason the vehicle veered off course was that the engines were gim-
bled to extreme positions, and this caused the vehicle to pitch over. This unplanned
pitch over led to excessive aerodynamic loads that caused the self-destruct mecha-
nism to operate as it was designed to do.

An investigation was started immediately by an inquiry board assembled by
ESA and composed of international experts. The report of the board was published
on July 19, 1996. The report describes many background details of the launch site
and the launch vehicle, the steps in the inquiry, and detailed conclusions [89].

Many factors were involved in the accident, but one of the most important fac-
tors involved the software in part of the vehicle’s Flight Control System called the
Inertial Reference System (IRS). The IRS supplies velocities and angles from which
calculations are undertaken that set the various control surfaces. The goal is to keep
the vehicle on the planned trajectory.

Just prior to the end of the short flight, a software component that is used for
alignment while the vehicle is on the ground prior to launch was still executing. This

10 Introduction

Dependability.book Page 10 Wednesday, December 14, 2011 2:53 PM
was not necessary but not viewed as a problem. That particular module was written
originally for the Ariane IV, and the module was used on the Ariane V because the
required functionality was similar. The module calculated a value related to the hor-
izontal velocity component, but the value to be calculated was higher than the values
that occur on the Ariane IV. Unfortunately, the higher value was not representable in
the available precision, and that resulted in an exception being raised.

The software was written in Ada, and neither an explicit guard on the value nor a
local exception handler was provided to deal with this situation. The exception was
propagated according to the Ada exception-handling semantics, and this caused exe-
cution of significant amounts of the software to be terminated. The deflection of the
engines that caused the vehicle to pitch over just prior to the abrupt end of the
maiden flight occurred because test bit patterns were sent to the engine control actu-
ators rather than correct values.

1.4.2 Korean Air Flight 801

On August 6, 1997 at about 1:42 am Guam local time, Korean Air flight 801, a Boe-
ing 747-300, crashed into Nimitz Hill, Guam while attempting a non-precision
approach to runway 6L at A.B. Won Guam International Airport. Of the 254 persons
on board, 237 of whom were passengers, only 23 passengers and 3 flight attendants
survived. The National Transportation Safety Board (NTSB) investigated the acci-
dent and classified the crash as a controlled-flight-into-terrain accident [101].

Korean Air flight 801 crashed during its final approach while operating under
instrument flight rules (IFR). At the time of the accident, the runway glideslope was
out of service, meaning that pilots were not to rely on the glideslope signal when
landing at Guam. When the glideslope is unavailable, a non-precision or localizer-
only instrument-landing-system (ILS) approach is still possible. In lieu of a glide-
slope, pilots make a series of intermediate descents using a series of step-down alti-
tude fixes.

Post-accident analysis of radar data indicated that flight 801 began a premature
descent on its non-precision approach and violated the 2,000 feet step-down clear-
ance, i.e., the clearance to descend below 2,000 feet. The aircraft proceeded on a
steady descent, violating the 1,440 feet step-down clearance before impacting ter-
rain approximately 3.3 nautical miles short of the runway threshold. The NTSB con-
cluded that “the captain lost awareness of flight 801’s position on the [ILS]
localizer-only approach to runway 6L at Guam International Airport and improperly
descended below the intermediate approach altitudes ... which was causal to the
accident.”

During its investigation, the NTSB found that the ground-based Minimum Safe
Altitude Warning System (MSAW) had been inhibited. MSAW is a software system
that monitors radar data, and, using a map of the local terrain, alerts air-traffic con-
trollers to aircraft that might be flying too low. MSAW is just one of many defenses
against CFIT accidents, but it is an important defense. In Guam at the time of this

Some Regrettable Failures 11

Dependability.book Page 11 Wednesday, December 14, 2011 2:53 PM
accident, controllers had been disturbed by false alarms from MSAW, and so
MSAW coverage had been disabled intentionally in a circle centered on the airport
and with a radius of 54 nautical miles. MSAW’s coverage was a circle of radius 55
nautical miles, and so, at the time of the Korean Air 801 crash, MSAW’s actual cov-
erage was a ring of width one nautical mile that was entirely over the Pacific ocean.

1.4.3 The Mars Climate Orbiter

The Mars Climate Orbiter (MCO) was a spacecraft designed to orbit Mars and con-
duct studies of the Martian weather. The spacecraft had a secondary role as a com-
munications relay for the Mars Polar Lander (see Section 1.4.4).

According to the report of the mishap investigation board [94], the MCO was
lost on September 23, 1999 as the spacecraft engaged in Mars Orbit Insertion. At
that time, the spacecraft was 170 kilometers lower than planned because of minor
errors that accumulated during the cruise phase. The spacecraft was lost because of
unplanned interaction with the Martian atmosphere.

The source of the minor errors was a series of trajectory corrections in which the
calculation of part of the trajectory model was not in metric units. Thus, part of the
software was written assuming that the data represented measurements in metric
units and part was written assuming that the data represented measurements in
Imperial units. Both software parts worked correctly, but the misunderstanding of
the data led to errors in calculated values. The cumulative effect led to the difference
between the actual and planned altitudes and the subsequent loss of the spacecraft.

1.4.4 The Mars Polar Lander

The Mars Polar Lander (MPL) was a spacecraft designed to land on Mars and which
was planned to arrive at Mars several months after the Mars Climate Orbiter. The
MPL mission goal was to study the geology and weather at the landing site in the
south polar region of Mars.

The spacecraft arrived at Mars on December 3, 1999. Atmospheric entry,
descent, and landing were to take place without telemetry to Earth, and so the first
communication expected from the spacecraft would occur after landing. That com-
munication never arrived, and nothing has been heard from the spacecraft subse-
quently.

According to the report of the Special Review Board [118], the exact cause of
the failure could not be determined. The most probable cause that was identified was
premature shutdown of the descent engine. Magnetic sensors on the landing legs
were designed to detect surface contact. However, these sensors also generated a
signal when the legs were deployed from their stowed position prior to the final
descent to the surface. The spacecraft’s software should have ignored this signal, but
apparently the software interpreted the signal as surface contact and shut down the
descent engine. Since leg deployment occurred at an altitude of 40 meters, the
lander would have fallen to the surface and not survived.

12 Introduction

Dependability.book Page 12 Wednesday, December 14, 2011 2:53 PM
1.4.5 Other Important Incidents

A very unfortunate example of how a seemingly benign system can be far more
dependent on its computer systems than is obvious occurred in October 1992 with
the dispatching system used by the ambulance service in London, England. A man-
ual dispatch system was replaced with a computerized system that was not able to
meet the operational needs of the dispatch staff in various ways. Delays in dispatch-
ing ambulances to emergencies might have been responsible for several deaths
before the computerized system was shut down, although this has not been
proven [47].

The Therac 25 was a medical radiation therapy machine manufactured by
Atomic Energy of Canada Limited (AECL). The device was installed in numerous
hospitals in the United States. Between June 1985 and January 1987, six patients
received massive overdoses of radiation while being treated for various medical
conditions using the Therac 25. Software requirements and implementation were
causal factors in the accidents. A comprehensive analysis of the failures of the
Therac 25 has been reported by Leveson and Turner [88].

Finally, an incident that was potentially serious but, fortunately, did not lead to
disaster was the launch failure of the Space Shuttle during the first launch attempt in
1981 [49]. The launch was due to take place on Friday, April 10. The Shuttle has
two flight-control systems, the primary system and the backup system, each with its
own software. During the countdown, these two systems are required to synchro-
nize. Synchronization includes ensuring that they agree on the total number of 40-
millisecond, real-time frames that have passed since the initialization of the primary
system at the beginning of the countdown. During the first launch attempt, they
failed to synchronize because the primary system had counted one more frame than
the backup system. At the time, the problem appeared to be in the backup system,
because the problem came to light when the backup system was initialized shortly
before launch. Efforts to correct the situation focused on the backup system, but the
fault was actually in the primary system. The Friday launch had to be canceled, and
the launch was finally completed successfully on the afternoon of Sunday, April 12.

1.4.6 How to Think about Failures

In reading about failures (these and others), do not jump to conclusions about either
the causes or the best way to prevent future recurrences. There is never a single
“cause” and there are always many lessons to be learned. Also, keep in mind that
failures occur despite careful engineering by many dedicated engineers. What fail-
ures illustrate is the extreme difficulty we face in building dependable systems and
how serious the effects can be when something goes wrong.

Finally, when our engineering techniques are insufficient, the system of interest
will experience a failure, and sometimes an accident will ensue. As part of our engi-
neering process, we need to learn from failures so that we can prevent their recur-

Consequences of Failure 13

Dependability.book Page 13 Wednesday, December 14, 2011 2:53 PM
rence to the extent possible. When we read about a system failure in which a
computer system was one of the causal factors, it is tempting to think that the lesson
to be learned is to eliminate the identified defect. This is a serious mistake, because
it misses the fundamental question of why the defect occurred in the first place.

As an example, consider the loss of the Mars Climate Orbiter spacecraft [94].
The lessons learned certainly include being careful with measurement units. This
was identified as a causal factor, and so obviously care has to be taken with units on
future missions. But the reason the units were wrong is a more fundamental process
problem. What documents were missing or prepared incorrectly? What process
steps should have been taken to check for consistency of both units and other system
parameters? And, finally, what management errors occurred that allowed this situa-
tion to arise?

1.5 Consequences of Failure

The term that is usually used to describe all of the damages that follow failure is the
consequences of failure, and that is the phrase that we will use from now on. The
consequences of failure for the systems that we build are important to us as engi-
neers, because our goal is to reduce losses as much as possible. We have to choose
the right engineering approaches to use for any given system, and the choices we
make are heavily influenced by the potential consequences of failure.

In this section, we examine the different consequences of failure that can occur.
In particular, we examine the non-obvious consequences of failure and the conse-
quences of failure for systems that seem to have essentially none. We will discuss
exactly what we mean by a “system” later. At this point, remember the intuitive
notions of a system, of a system of systems, and of a system connected to and influ-
encing other systems. Such notions are needed to ensure that we consider all the
possible consequences of failure.

1.5.1 Non-Obvious Consequences of Failure

For the examples in the previous section, the damage done was fairly clear. In each
case, the losses were significant and came from various sources. A little reflection,
however, reveals that the losses might go well beyond the obvious. In the Ariane V
case, for example, the obvious loss was sophisticated and expensive equipment: the
launch vehicle and payload. There was a subsequent loss of service from the pay-
load that was not delivered to orbit.

What is not obvious are the losses incurred from:

• The environmental damage from the explosion that had to be cleaned up.

• The cost of the investigation of the incident and the subsequent redesign of the
system to avoid the problem.

14 Introduction

Dependability.book Page 14 Wednesday, December 14, 2011 2:53 PM
• The delays in subsequent launches.

• The increased insurance rates for similar launch vehicles.

• The loss of jobs at the various companies and organizations involved in the
development of the launch vehicle.

• The damage to the careers of the scientists expecting data from the scientific
instruments within the payloads.

• The loss of reputation by the European Space Agency.

In practice, there were probably other losses, perhaps many.

1.5.2 Unexpected Costs of Failure

For some systems, the cost of failure seems insignificant. In practice, these trivial
systems can have significant consequences of failure. In other systems, the conse-
quences of failure seem limited to minor inconvenience. But for these non-critical
systems, the consequences of failure are not with the systems themselves but with
the systems to which they are related. Finally, for security applications, the conse-
quences of failure are hard to determine but are usually vastly higher than might be
expected at first glance.

We examine each of these system types in turn. As we do so, be sure to note that,
for any particular system, the consequences of failure will most likely be a combina-
tion of all of the different ideas we are discussing. For example, a text-message sys-
tem operating on a smart phone might seem trivial, but, if the system is used to alert
a population to a weather emergency, failure of the system would leave the popula-
tion unprotected. Security is also an issue because of the potential for abuse either
through malicious alerts or denial-of-service attacks.

Trivial applications. Sometimes, the consequences of failure seem to be minimal
but, in fact, they are not. Consider, for example, a computer game that proves to
be defective. Such a failure does not seem important until one considers the fact
that millions of copies might be sold. If the game is defective, and the defect
affects a large fraction of the users, the cost to patch or replace the game could be
huge. The loss of reputation for the manufacturer of the game might be important
too.
If the game is an on-line, multi-user game, then the potential cost of failure is
higher. Many such games operate world wide, and so large numbers of servers
provide the shared service to large numbers of users and an extensive communi-
cations network connects everybody together.
Access to the game requires a monthly subscription, and the revenue generated
thereby is substantial. Supporting such a community of users requires: (1) that
the client software work correctly, (2) that the server software work correctly,
and (3) that the communications mechanism work correctly. Downtime, slow

Consequences of Failure 15

Dependability.book Page 15 Wednesday, December 14, 2011 2:53 PM
response, or defective functionality could lead to a large reduction in revenue for
the owners of the game.

Non-critical applications. Some computer systems do not provide services that are
immediately critical yet their consequences of failure can be serious because of
their impact on systems that do provide critical services. This indirection is eas-
ily missed when considering the consequences of failure, yet the indirection is
usually a multiplier of the consequences of failure. This multiplier effect occurs
because one non-critical application might be used to support multiple critical
applications.
As an example, consider a compiler. Compiler writers are concerned about the
accuracy of the compiler’s translation, but their attention tends to be focused
more on the performance of the generated code. A defect in a compiler used for a
safety-critical application could lead to a failure of the safety-critical application
even though the application software at the source-code level was defect free.
And, clearly, this scenario could be repeated on an arbitrary number of different
safety-critical applications.

Security applications. In July and August of 2001, the Code Red worm spread
throughout large sections of the Internet [143]. Hundreds of thousands of hosts
were infected in just a few days. The worm did not carry a malicious payload so
infected computers were not damaged, although the worm effected a local denial
of service attack on the infected machines. The infection had to be removed, and
this worldwide cleanup activity alone is estimated to have cost at least
$2,000,000,000.
Many modern information systems process critical data, and unauthorized access
to that data can have costs that are essentially unbounded. Far worse than the
Code Red worm are attacks in which valuable private information is taken and
exploited in some way. Between July 2005 and mid-January 2007, approxi-
mately 45.6 million credit card and other personal records were stolen from the
TJX Companies [30]. The degree to which this data has been exploited is
unknown, but the potential loss is obviously large.
Both the Code Red worm and the attack on the TJX Companies were the result
of defects in the software systems operating on the computers involved. Neither
was the result of a failure of security technology per se.

1.5.3 Categories of Consequences

Although we all have a general understanding that failure of computer systems
might lead to significant losses, the damage that a failure might cause needs to be
understood in order to determine how much effort needs to be put into engineering
the system.

The various categories of the consequences of failure include:

• Human injury or loss of life.

16 Introduction

Dependability.book Page 16 Wednesday, December 14, 2011 2:53 PM
• Damage to the environment.

• Damage to or loss of equipment.

• Damage to or loss of data.

• Financial loss by theft.

• Financial loss through production of useless or defective products.

• Financial loss through reduced capacity for production or service.

• Loss of business reputation.

• Loss of customer base.

• Loss of jobs.

All of the items in this list are important, but they become less familiar and
therefore less obvious as one proceeds down the list. This change is actually an
important point. One of the activities in which we must engage is to determine as
many of the consequences of failure as possible for the systems that we build.
Things like “loss of reputation” are a serious concern yet rarely come to mind when
considering the development of a computer system.

1.5.4 Determining the Consequences of Failure

As we saw Section 1.5.2, just because a computer is providing entertainment does
not mean that dependability can be ignored. The complexity of determining the cost
of failure for any given system means that this determination must be carried out
carefully as part of a systematic dependability process. Adding up the costs of fail-
ure and seeing the high price allows us to consider expending resources during
development in order to engineer systems that have the requisite low probability of
failure.

There is no established process for determining the consequences of failure. In
general, a systematic approach begins with a listing of categories such as the one in
Section 1.5.3. Typically, one then proceeds informally but rigorously to examine the
proposed system’s effects in each category and documents these effects.

There is no need to compute a single cost figure for a system, and, in fact, assess-
ing cost in monetary terms for consequences such as human injury is problematic at
best. Thus, a complete statement about the consequences of failure for a system will
usually be broken down into a set of different and incompatible measures including
(a) the prospect of loss of life or injury, (b) the forms and extents of possible envi-
ronmental damages, (c) the prospect of loss of information that has value, (d) ser-
vices that might be lost, (e) various delays that might occur in associated activities,
and (f) financial losses. This list (or an extended or localized version) can be used as
a checklist for driving an assessment of consequences of failure.

The Need for Dependability 17

Dependability.book Page 17 Wednesday, December 14, 2011 2:53 PM
1.6 The Need for Dependability

We need computer systems to be dependable because we depend upon them! But
what do we really need? There are several different properties that might be impor-
tant in different circumstances. We introduce some of them here and discuss them in
depth in Chapter 2.

An obvious requirement for many systems is safety. In essence, we require that
the systems we build will not cause harm. We want to be sure, for example, that
medical devices upon which we depend operate safely and do not cause us injury.
Injury, however, can occur because of action or because of lack of action, and so
making such devices safe is far from simple.

Many systems cannot cause harm and so safety is not a requirement for them. A
computer game console, for example, has little need for safety except for the most
basic things such as protecting the user from high voltages, sharp edges, and toxic
materials. The computer system itself cannot do very much to cause harm, and so, as
developers of computer systems, we do not have to be concerned with safety in
game consoles.

Another obvious requirement that arises frequently is for security. Information
has value and so ensuring that information is used properly is important. The cus-
tomers of a bank, for example, expect their financial records to be treated as private
information. Trusted banking officials may view the information as can the owners
of the information. But that information is held in a database that is shared by all of
the bank’s customers, and so security involves ensuring that each customer can
access all of his or her own information and no more.

A less obvious dependability requirement is availability. Some systems provide
service that we do not use especially frequently but which we expect to be “always
there” when we want to use the service. The telephone system is an example. When
we pick up a telephone handset, we expect to hear a dial tone (switched on by a
computer). In practice, occasional brief outages would not be a serious problem,
because they are unlikely to coincide with our occasional use. So, for many systems,
continuous, uninterrupted service is not especially important as long as outages are
brief and infrequent.

In examining these requirements, what we see is a collection of very different
characteristics that we might want computer systems to have, all of which are
related in some way to our intuitive notion of dependability. Intuitively, we tend to
think of these characteristics as being very similar. As part of an informal conversa-
tion, one might state: “computer systems need to be reliable” or “computer systems
need to work properly” but such informality does not help us in engineering. For
now, our intuitive notions of these concepts will suffice, but in Chapter 2, we will
examine these various terms carefully.

18 Introduction

Dependability.book Page 18 Wednesday, December 14, 2011 2:53 PM
1.7 Systems and Their Dependability
Requirements

Many computer applications have obvious consequences of failure. However, as we
saw in Section 1.5.2, other applications do not seem to have any significant conse-
quences of failure, although it turns out that they do. In yet others, the detailed con-
sequences of failure are hard to determine, but all the consequences have to be
determined if we are to be able to engineer for their reduction.

In this section we look at several systems to see what dependability they require.
We also look at some examples of systems from the perspective of their interaction
and the consequent impact that this interaction has on the consequences of failure.
The primary illustrative example comes from commercial aircraft, and we examine
an aircraft system, the production of aircraft systems, and the management of con-
trolled airspace.

1.7.1 Critical Systems

Avionics

The avionics (aviation electronics) in commercial aircraft are complex computer
systems that provide considerable support for the crew, help to maintain safe flight,
and improve the overall comfort of passengers. This is not a small task, and several
distinct computers and a lot of software are involved. Aircraft engines have their
own computer systems that provide extensive monitoring, control, and safety ser-
vices.

In military aircraft, avionics make things happen that are otherwise impossible.
Many military aircraft literally cannot be flown without computer support, because
actions need to be taken at sub-second rates, rates that humans cannot achieve. Such
aircraft have a property known as relaxed static stability, meaning that their stability
in flight is intentionally reduced to provide other benefits. Stability is restored by
rapid manipulation of the aircraft’s control surfaces by a computer system.

Commercial and military avionics have different dependability requirements.
The overwhelming goal in passenger aircraft is safe and economical flight. Military
aircraft, on the other hand, frequently have to be designed with compromises so as
to improve their effectiveness in areas such as speed and maneuverability. The dam-
ages caused by failure are very different between commercial and military aircraft
also. If there is an accident, loss of the aircraft is highly likely in both cases, but
death and injury are much more likely in passenger aircraft. Military pilots have
ejection seats, but passengers on commercial aircraft do not.

Thus, the consequences of failure of avionics systems are considerable and rea-
sonably obvious, although they differ between aircraft types. When engineering a
computer system that is to become part of an avionics suite, we know we need to be

Systems and Their Dependability Requirements 19

Dependability.book Page 19 Wednesday, December 14, 2011 2:53 PM
careful. But the engineering approaches used in the two domains will differ consid-
erably because of the differences in the operating environments and the conse-
quences of failure.

Ships

Ships share many similarities with aircraft and employ sophisticated computer sys-
tems for many of the same reasons. On-board ships, computers are responsible for
navigation, guidance, communication, engine control, load stability analysis, and
sophisticated displays such as weather maps. In modern ships, all of these services
are tied together with one or more shipboard networks that also support various
more recognizable services such as e-mail.

An important difference between ships and aircraft is that stopping a ship is usu-
ally acceptable if something fails in the ship’s computer system. Provided a ship is
not in danger of capsizing or coming into contact with rocks, the ship can stop and
failed computer systems can be repaired. Stopping an aircraft is not even possible
unless the aircraft is actually on the ground, and engineering of computer systems
must take this into account.

An important example of the role of computers on ships and the consequences of
failure occurred on September 21, 1997 [153]. The U.S.S. Yorktown, a Navy
cruiser, was disabled for more than two hours off the coast of Virginia when a criti-
cal system failed after an operator entered a zero into a data field. This zero led to a
divide-by-zero exception that disabled a lot of the software, including critical con-
trol functions.

Spacecraft

Spacecraft are complex combinations of computers, scientific instruments, commu-
nications equipment, power generation devices and associated management, and
propulsion systems. Those that leave the vicinity of the Earth and Moon present two
intriguing dependability challenges. The first is longevity. No matter where the
spacecraft is going, getting there will take a long time, usually several years. That
means that the on-board computing systems must be able to operate unattended and
with no hardware maintenance for that period of time. The second challenge is the
communications time. Many spacecraft operate at distances from the Earth that pre-
clude interactive operation with an Earth-bound operator. Thus, in many ways,
spacecraft have to be autonomous. In particular, they must be able to protect them-
selves and make decisions while doing so with no external intervention.

Medical Devices

In the medical arena, devices such as pacemakers and defibrillators, drug infusion
pumps, radiotherapy machines, ventilators, and monitoring equipment are all built
around computer systems. Pacemakers and defibrillators (they are often combined

20 Introduction

Dependability.book Page 20 Wednesday, December 14, 2011 2:53 PM
into a single device) are best thought of as being sophisticated computers with a few
additional components. Pacemaking involves sampling patient parameters for every
heartbeat and making a decision about whether the heart needs to be stimulated.

Pacemakers are an example of the type of system where our intuition suggests,
correctly, that safety is the most important aspect of dependability with which we
need to be concerned. But safety can be affected by both action and inaction. A
pacemaker that stimulates the heart when it should not is very likely going to cause
harm. But if the device were to detect some sort of defect in its own operation,
merely stopping would not be a safe thing to do. Obviously, the patient needs the
pacemaker and so stopping might lead to patient injury or death. Engineering such
systems so that they operate safely is a significant challenge, and that engineering
has to be done so as to maximize battery life.

Critical Infrastructures

The freight-rail system mentioned earlier is one of many critical infrastructure sys-
tems upon which we all depend and which themselves depend heavily on complex
computer systems. Many other critical infrastructure systems are in the list of ser-
vices included at the beginning of this chapter. The computer systems therein do not
seem at first sight to have the same potential for serious damage as a result of failure
as do systems such as passenger aircraft, medical devices, or spacecraft.

In practice, this is quite wrong. The banking system has to protect our money
and make it available as needed. However, were the computing systems within the
banking system to fail in some general way, the result would be much more than a
minor inconvenience to citizens; an international economic crisis would result. Sim-
ilarly, failure of the computers within the energy production, transport, or telecom-
munications industries would have a major impact as service became unavailable.

1.7.2 Systems That Help Build Systems

In areas such as aviation, one tends to think only of the product in operation, an air-
craft in flight. But there are two other major and non-obvious areas of computer sys-
tem engineering for which dependability is important, product design and product
manufacturing.

Product design includes many forms of computerized analysis, and if that analy-
sis is not completed correctly, the dependability of the resulting product, safety of an
aircraft for example, might be jeopardized. Thus, the development of computer sys-
tems that will be involved in the design of other artifacts must consider the needs of
the target systems as well as the system being developed. A computer system that
performs structural analysis on the fuselage and wings of an aircraft is just as impor-
tant as the avionics system that will fly the aircraft.

During manufacturing of virtually all products, many computers are involved in
robotic assembly operations, managing inventories, routing of parts, examining

Systems and Their Dependability Requirements 21

Dependability.book Page 21 Wednesday, December 14, 2011 2:53 PM
parts for defects, and managing the myriad of data associated with production.
Again, using commercial aircraft as an example, if something such as a robotic
welder or the subsequent weld examination system were defective, the safety of the
resulting aircraft might be jeopardized.

Often neglected because software takes the spotlight, data is a critical item in
many systems. For example, in terms of managing data during manufacturing, it is
interesting to note that a modern passenger aircraft has more than 100 miles of wire
in hundreds of separate wiring harnesses, each of which has to be installed correctly.
Labeling alone is a major data management problem. Any mistakes in the data that
is used to manufacture, label, locate, or test wiring in an aircraft could obviously
lead to serious production delays or failures during operation.

Thus, again we see that computers which do not have obvious high conse-
quences of failure can often be involved with manufacturing such that their failure
can lead to defective products. This is far more common than most people realize,
and the surprising result is that the consequences of failure of many manufacturing
systems are high, although initially this observation is counterintuitive.

1.7.3 Systems That Interact with Other Systems

Air-traffic control is another area in which computer systems play an important role
in aviation. These computers are very different from avionics systems yet no less
important. Air-traffic-control systems employ radars and other sources of informa-
tion to present controllers with an accurate picture of the status of the airspace. With
this information, controllers are able to make decisions about appropriate aircraft
movements that they then communicate to the crews of the aircraft.

The dependability requirements of air-traffic control are primarily in four areas:
(1) the data provided by the system to controllers must be accurate; (2) the data must
be available essentially all the time; (3) computations that drive displays and other
information sources must be accurate; and (4) there must be comprehensive security.

Interactions between systems that are in fact critical do not have to be as com-
plex as something like the air-traffic-control system. For example, pacemakers do
not operate in isolation. They have numerous adjustable parameters that physicians
set to optimize operation for each patient. This adjustment is carried out by a device
called a “programmer” that is itself just a computer system. Pacemakers also capture
patient information during operation, and that data can be downloaded for examina-
tion by physicians. Both parameter setting and patient data analysis are critical
activities, and the associated computer system, the programmer, has to be under-
stood to have significant consequences of failure and correspondingly high depend-
ability requirements.

The important conclusions to draw from these various examples are: (1) that the
need for dependability does not lie solely in glamorous, high visibility systems, and
(2) the specific dependability requirements that systems present vary widely. The
need for adequate dependability is present in practically any system that we build.

22 Introduction

Dependability.book Page 22 Wednesday, December 14, 2011 2:53 PM
1.8 Where Do We Go from Here?

For almost all applications of interest, dependability is not something that can be
added to an existing design. Certainly the dependability of a system can probably be
improved by making suitable changes to the design, but being able to transform a
system developed with just functionality in mind into one that meets significant
dependability goals is highly unlikely. Without taking specific steps during the
entire development process, systems end up with dependability characteristics that
are ad hoc at best.

This limitation appears to present us with a significant dilemma. Does this limi-
tation apply to everything, including the components that we use to build systems?
In other words, are we at an impasse? If we can only build dependable systems from
dependable components and only build dependable components from smaller
dependable components, and so on, then we are indeed facing a serious challenge.

Fortunately, the answer to the question is “no”. Building dependable systems
relies in part upon our discovering how to meet system dependability goals using
much less dependable components [18, 19, 37]. This concept goes back to the earli-
est days of computing [6, 144]. The pioneers of computing were able to build com-
puters that could operate for useful periods of time using vacuum tubes (the Colossi,
for example [113]), components that were notoriously unreliable.

The path that we will follow is a systematic and thorough treatment of the prob-
lem of dependability. As we follow that path, keep the following in mind:

The attention paid during system development has to be
thorough and orderly. Point solutions are not sufficient.

For example, knowing that a system requires backup power because the usual
power source is “unreliable” is helpful, but far from complete. Having a backup
power source seems like a good idea. But, how reliable is the backup power source?
How quickly must the backup power source become available if the primary source
fails? For how long can the backup power source operate? Can the backup power
source supply all of the equipment? What about the myriad other issues such as the
possibility of hardware or software failure?

If attention is not paid to all of the potential sources of difficulty, the resulting
system will not have the dependability that is required. Being sure that attention has
been paid to potential sources of difficulty to the extent possible is our goal.

The subject of dependability of computer systems is complex and detailed.
Dependability has to be dealt with in a methodical and scientific way. The path we
will follow from here is a comprehensive and systematic one. The path mirrors the
technology that we need to apply to computer system development. In particular, we
will seek general approaches and learn to both recognize and avoid point solutions.

