lan Gorton

Essential
Software
Architecture

Second Edition

@ Springer

Arquitectura de Software esencial

lan Gorton

Programas
esenciales

Arquitectura

Segunda edicion

@ Springer

lan Gorton

laboratorio Fellow

Pacifico Northwest National Laboratory PO Box
999 MSIN: K7-90

Richland, WA 99352 EE.UU.

ian.gorton@pnl.gov

ACM Computing Clasi fi cacion (1998): D.2

ISBN 978-3-642-19175-6 e-ISBN 978-3-642-19176-3
DOI 10.1007 / 978-3-642-19176-3
Springer Heidelberg Dordrecht Londres Nueva York

Biblioteca del Congreso de control el nimero: 2011926871

Springer-Verlag Berlin Heidelberg 2006, 2011

Esta obra esta sujeta a derechos de autor. Todos los derechos estan reservados, si la totalidad o parte del material se refiere, especificamente los derechos de

ion, reimpresion, la reutilizacion de las il i la recitacion, la difusion, la reproduccion de micro pelicula o de cualquier otro modo, y el
almacenamiento en bancos de datos. La duplicacién de esta publicacién o partes de los mismos se permite solamente bajo las disposiciones de la Ley de
Propiedad Intelectual alemana de 9 de septiembre,
1965, en su version actual, y el permiso para su uso debe siempre ser obtenidos de Springer. Violaciénes deben ser procesados bajo
el derecho de autor aleman.
El uso de nombres generales descriptivos, nombres registrados, marcas, etc, en esta publicacion no implica, incluso en ausencia de una
declaracion especifica, que estos nombres estan exentos de las leyes y reglamentos de proteccién pertinentes y por lo tanto libre para uso
general.

Disefio de la cubierta: KuenkelLopka GmbH

Impreso en papel libre de acido

Springer es parte de Springer Science + Business Media (www.springer.com)

Prefacio

Bienvenidos a la segunda edicién de la arquitectura de software esencial. Esta a 5 afios desde la primera edicion fue
publicada, y en el mundo de la arquitectura de software, de 5 afios es mucho tiempo. Por tanto, esta version
actualizada, con capitulos actualizados para capturar los nuevos avances en métodos y tecnologias, y relacionar
experiencias relevantes de la practica. Hay nueva arquitectura material de cobertura de la empresa, el desarrollo agil,
tecnologias de bus de servicios empresariales y servicios Web RESTful. Todos los capitulos tienen una lista
actualizada y mas extensa de la bibliografia recomendada, capturando a muchos de los mejores nuevos libros,

documentos, sitios web y blogs, que yo sepa.

En particular, el completamente nuevo cap. 10 proporciona un estudio de caso sobre el disefio de la tecnologia de
Medici, que se extiende de un bus de servicios empresariales de cédigo abierto con un modelo de programacion basado
en componentes. La tecnologia Medici es de codigo abierto y libremente descargable (http://www.medici.pnl.gov), Por lo
que es una herramienta muy adecuada para la ensefianza de los conceptos avanzados de middleware y la arquitectura

que se describen en este texto.

En su corazén, sin embargo, esto sigue siendo un libro que tiene como objetivo impartir de manera sucinta un amplio alcance
de los conocimientos de arquitectura de software relativo a los sistemas construidos a partir de tecnologias middleware
convencionales. Esto incluye un espectro grande y diversa de los sistemas, que van sitios de comercio electrénico basado en

fromWeb a SCienTl sistemas de andlisis de datos financieros de alto rendimiento de gestién de datos c fiy.

Motivacion

Lo que no ha cambiado en los ultimos 5 afios es que muchos proyectos con los que trabajo u opinion carecen de una
nocion explicita de un disefio arquitectdnico. Requisitos funcionales suelen ser capturadas utilizando técnicas
tradicionales o &giles, estuvieron de acuerdo con las partes interesadas, y controlaran mediante métodos iterativos o
cascada altamente tradicionales. Pero los problemas de arquitectura, el “cémo” de la aplicacion logra su proposito, el
“qué” sucede cuando las cosas cambian y evolucionan o fallan, son con frecuencia implicita (esto significa que estan
en la cabeza de alguien, tal vez) en el mejor. En el peor, simplemente no se abordan en forma alguna que pueda ser
descrito en términos que no sean accidentales. Con frecuencia, cuando pido una visioén general de la arquitectura de la

aplicacion y la conduccion no funcional

Prefacio

requisitos en la primera reunion técnica, la gente comienza a dibujar en una pizarra. O me muestran el cédigo y
sumergirse en las iternals de la implementacién basada en torno a su tecnologia de moda preferido. Cualquiera de
ellos es rara vez es una buena sefal.

Los problemas y riesgos de las practicas arquitectdnicas pobres son bien conocidos y documentados
dentro de la profesion de la ingenieria de software. Un gran cuerpo de conocimiento excelente de arquitectura
es capturado en libros ampliamente accesibles, revistas e informes de los miembros del Instituto de Ingenieria
de Software (SEI), Siemens y otras instituciones industriales y académicos de renombre.

Aunque el foco de gran parte de esta literatura es altamente sistemas técnicos, tales como la avidnica, fl ight de
simulacion y de conmutacion de telecomunicaciones, este libro se inclina mas a la corriente principal del mundo de las
aplicaciones de software. En cierto sentido, se cierra la brecha entre las necesidades de la gran mayoria de los

profesionales de software y el cuerpo actual de los conocimientos en arquitectura de software. Especificamente:

Proporciona discusiones clara y concisa sobre los temas, técnicas y

métodos que estan en el centro de estudios de arquitectura de sonido.
1Se describe y analiza el componente de propésito general y middleware tecno-

gias que respaldan muchos de los patrones arquitecténicos fundamentales utilizados en aplicaciones.

1Se espera que los cambios en las tecnologias y practicas pueden afectar a la
préxima generacion de sistemas de informacion empresarial.
MMoﬂﬁ%@ﬁfﬁﬁai@f@ﬁ&cm geBacides samsisRlesciosRdas e gutor de

experiencias en los sistemas de informacién de banca, el comercio electrénico y gobierno.
1Proporciona muchos punteros y referencias a los trabajos existentes sobre la arquitectura de software.

Si usted trabaja como un arquitecto o disefiador mayor, o si desea 1 dia, este libro deberia ser de
valor para usted. Y si usted es un estudiante que esta estudiando ingenieria de software y necesita una
vision general del campo de la arquitectura de software, este libro deberia ser una fuente de primera
accesible y util de informacion. Ciertamente no le dira todo lo que necesita saber - que va a tomar mucho
mas que puede ser incluido en un libro de tal longitud modesta. Pero pretende transmitir la esencia del
pensamiento arquitectonico, practicas y tecnologias de apoyo, y posicionar al lector a profundizar en las
areas que son pertinentes a su vida e intereses profesionales.

contorno

El libro esta estructurado en tres secciones basicas. La primera es de caracter introductorio, y accesible por un

lector relativamente no técnico que quieran una visién general de la arquitectura de software.

La segunda seccion es la mas técnica en la naturaleza. En él se describen las habilidades esenciales y conocimientos
técnicos que necesita un arquitecto de TI.

La tercera tiene vision de futuro. Seis capitulos cada introducen un area emergente de la practica o la

Prefacio Vii

disefiadores, asi como las personas que han leido las dos primeras secciones, y que deseen adquirir conocimientos sobre el
futuro de las influencias de su profesion.

Mas especificamente:

1Los capitulos 1 - 3: Estos capitulos proporcionan el material introductorio para el resto de
el libro, y el area de la arquitectura de software en si. Capitulo 1 analiza los elementos clave de la
arquitectura de software, y describe el papel de un arquitecto de software. El capitulo 2 presenta los
requisitos para un problema de estudio de casos, un disefio para el que se presenta en el Cap. 9. Esto
demuestra el tipo de problema y la descripcion asociada que un arquitecto de software normalmente
trabaja. Capitulo 3 analiza los elementos de algunos atributos de calidad clave como la escalabilidad, el
rendimiento y la disponibilidad. Arquitectos pasan mucho tiempo frente a los requisitos de atributos de
calidad para las aplicaciones. Por lo tanto es esencial que estos atributos de calidad se conocen bien, ya

gue son elementos fundamentales de los conocimientos de un arquitecto.

\Los capitulos 4 - 10: Estos capitulos son la columna vertebral técnica del libro. Capitulo 4
introduce una gama de tecnologias middleware fundamentales que los arquitectos aprovechan cominmente en
soluciones de aplicacién. Capitulo 5 est& dedicado a describir servicios Web, incluyendo tanto SOAP y los
enfoques basados en REST. Capitulo 6 se basa en los capitulos anteriores para explicar plataformas middleware
avanzadas, como las tecnologias de bus de servicios empresariales. El capitulo 7 presenta un proceso iterativo
de arquitectura de software en tres etapas que se pueden adaptar para ser tan agil como un proyecto requiere.
En él se describen las tareas esenciales y documentos que implican un arquitecto. Capitulo 8 analiza la
documentacion de la arquitectura, y se centra en las nuevas notaciones disponibles en la versién de UML 2.0.
Capitulo 9 reune la informacién en los primeros 6 capitulos, mostrando cémo las tecnologias de middleware se
puede utilizar para hacer frente a los requisitos de atributos de calidad para el estudio de caso. También
demuestra el uso de la plantilla de la documentacién descrita en el cap. 8 para la descripcién de una arquitectura
de la aplicacion. Capitulo 10 proporciona otro caso practico que describe el disefio de la fuente abierta Medici
Integration Framework, que es un API especializado para la creacion de aplicaciones estructuradas como las

tuberias de componentes.

\Los capitulos 11 - 15: Estos capitulos se centran en cada una técnica emergente o tecno-
gia que probablemente influyen en el futuro de los arquitectos de software. Estos incluyen lineas de productos
de software, la arquitectura dirigida por modelos, la arquitectura orientada a aspectos y la Web Semantica.
Cada capitulo presenta los elementos esenciales del procedimiento o tecnologia, se describe el estado de la
técnica y especula acerca de como puede afectar a las habilidades y practicas requeridas de un arquitecto de
software creciente adopcion. Cada capitulo se refiere también su enfoque a una extension del estudio de caso

ICDE en el Cap. 9.

Richland, WA, EE.UU. lan Gorton

De diciembre de 2010

Expresiones de gratitud

En primer lugar, gracias a los contribuyentes de los capitulos que han ayudado a proporcionar el contenido de las
lineas de producto de software (Marcos grapas), la programacién orientada a aspectos (Jenny Liu), basada en
modelos de desarrollo (Liming Zhu), servicios Web (Paul Green de campo) y la Web Semantica (Judi Thomson).

Adam Wynne también coautor del capitulo sobre Medici. Sus esfuerzos colectivos y la paciencia son muy apreciadas.

datos de contacto de los autores que han contribuido son los siguientes: Dr. Mark Staples, Australia Nacional de TIC,
e-mail: mark.staples@nicta.com.au Dr. Liming Zhu, Australia Nacional de TIC, e-mail: liming.zhu@nicta.com.au Dr. Yan
Liu, Pacifico noroeste Nacional de Laboratorio, EE.UU., correo electronico: jenny.liu@nicta.com.au Adam Wynne,

Pacifico noroeste Nacional de Laboratorio, EE.UU., correo electronico: @ adam.wynne pnl.gov

Paul Green campo, Escuela de Tl, CSIRO, Australia, correo electrénico: paul.green fi eld@csiro.au Dr. Judi
McCuaig, Universidad de Guelph, Canada, e-mail: judi@cis.uguelph.ca También me gustaria agradecer a todos

en Springer quien ha ayudado a hacer realidad este libro, especialmente el editor, Ralf Gerstner.

También me gustaria agradecer a los muchos talentos de software arquitectos, ingenieros e
investigadores que he trabajado de cerca con los recientemente y / o que han ayudado a dar forma a mi
pensamiento y experiencia a través de discusiones geek largas y entretenidas. Sin ningin orden en
particular, estos son Anna Liu, Paul Green campo, de Shiping Chen, Paul Brebner, Jenny Liu, John
Colton, Karen Schchardt, Gary Negro, Dave Thurman, Jereme Haack, Sven Overhage, John Grundy,
Muhammad Ali Babar, Justin Almquist, Rik poco campo, Kevin Dorow, Steffen Becker, Ranata Johnson,
Len Bass, Lei Hu, Jim Thomas, Deb Gracié, Nihar Trivedi, Paula Cowley, JimWebber, Adrienne Andrew,
Dan Adams, Dean Kuo, John Hoskins, Shuping Ran, Doug Palmer, Nick Cramer, Liming Zhu, Ralf
Reussner, Marcos Hoza, Shijian Lu, Andrew Cowell, Tarig Al Naeem, Wendy Cowley y Alan Fekete.

Contenido

1 Arquitectura de Software entendimiento. L, 1
1.1 ;Qué es la Arquitectura de Software? 1
1.2 Definiciones de arquitecturade software. 2
1.2.1 Arquitectura De multas Estructura. 3
1.2.2 Arquitectura especi fi ca Comunicacién de componentes. 4
1.3 Arquitectura ocupa de los requisitos no funcionales. 5
1.3.1 Arquitectura es una abstraccion. i 6
1.3.2Vistasarquitectura. 7
1.4 ¢ Qué hace un arquitecto de software? 8
1,5 Arquitecturas y tecnologias. 9
1.6 Arquitecto Titulo SOpa.o 1
17 RESUMEN. . . o e 12
1.8 Lecturaadicional. 13
1.8.1 Arquitectura General. 13
1.8.2 Requisitos de laarquitectura. 13
1.8.3 Patrones de Arquitectura L
1.8.4 Las comparaciones de tecnologia. 14
1.8.5 ArquitecturadelaEmpresa. i 15
2 Alpresentarelestudiode caso.ot i i e s 17
2.0 VISION GENETAL . . o oot 17
2.2ElISistemalCDE. 17
Contexto 2.3 Proyecto L. e
2.4 objetivos de NegOCIO. 21
2.5 RestrCCIONeS. 22
26 RESUMEN. 22
Atributos 3 Calidadde Software. o ool 23
3.1 Atributos de Calidad
3.2Rendimiento. 24
3.2 1 Throughput.o 24
3.2.2 Tiempo de reSpUESta. oottt et 25

Xi

Xii Contenido

B.2.3Plazos. . . .o 25
3.2.4 Rendimiento del Sistemade ICDE. 26
3.3Escalabilidad. 27
3.3.18olicituddecarga. 27
3.3.2 Las conexiones simultdneas. 29
3383 Tamafiodedatos. 29
3.3.4 despliegue L 30
3.3.5 Reflexiones sobre la escalabilidad. 30
3.3.6 Escalabilidad para la aplicacion ICDE. 30
3.4 Modi capacidad fi. 30
3.4.1 capacidad fi caciones para la aplicacion ICDE. 33
3.5 8eguridad. 33
3.5.1 Seguridad para la aplicacion ICDE. 34
3.6 Disponibilidad. 34
3.6.1 Disponibilidad para la aplicaciéon ICDE. 35
3.71ntegracion. 35
3.7.1 Integracién para la aplicacion ICDE. 36
3.8 Otros atributos de calidad. 36
3.9 compromisos de diSefio. 37
BA0RESUMEN. 37
311 lecturaadicional. 38

4 Una introduccion a Middleware Arquitecturas

ytecnologias. 39
4.10ntroducCion. 39
4.2 Middleware Tecnologia Clasificacion. 40
4.3 Objetos Distribuidos.o 41
4.4 Mensaje-Oriented Middleware. 43
44.1Fundamentosde MOM. 44
4.4.2 Caracteristicas Explotando MOM avanzadas. 45
4.4.3 publicacion-SUSCIPCION.ttt e 50
4.5 Servidores de apliCaciones.ottt 54
451EnterpriseJavaBeans. 55
4.5.2 Modelo de componentes EJB. 56
4.5.3 Stateless bean de sesion Ejemplo de programacion. 57
4.5.4 Message-Driven Programacioén haba Ejemplo. 58
4.5.5 Responsabilidades del contenedorEJB. 59
4.5.6 Algunos pensamientos. 60
4B RESUMEN.ttt 61
4.7 Lecturaadicional. 62
471 CORBA. . . 62
4.7.2 Mensaje-Oriented Middleware. 62

4.7.3 Servidores de apliCaciones.ot 63

Contenido iii

5 arquitecturas y tecnologias orientadas a servicios. sesenta y cinco
5.1 ANtecedentes.o sesenta y cinco
5.2 Sistemas orientada aservicios. 66
5.2.1 Los limites son explicitas 68
5.2.2 Servicios son autdnomos.t 69
5.2.3 Acciones Esquemas y contratos, que no implementaciones. 69
5.2.4 Compatibilidad con servicio se basa en la politica. 70
538Servicios Web. 71
54 SOAP Yy MENSajeria.o 73
5.5 UDDI, WSDLy metadatos.t 74
5.6 Seguridad, Operaciones y fiabilidad. 77
5.7 Servicios Web REST. 78
5.8 Conclusion y lectura adicional. 79
6 Advanced Middleware Tecnologias.voueiieninennnnannnn. 81
6.1 INtrodUCCION.o 81
6.2 intermediarios de MENSaes. 81
6.3 Negocios orquestacion de ProCeSOS.o v vttt et 87
6.4 Problemas de integracion de la arquitectura. i 91
6.5 ¢ Qué es un bus de servicios empresariales. 95
6.6 Lecturaadicional. 95
7 Proceso de una arquitecturade software. oo ... 97
7.1 Esquema del proceso.ot 97
7.1.1 Determinar los requisitos arquitecténicos L 98
7.1.2 Identificacion de las necesidades arquitectura. 98
7.1.3 Requisitos Priorizacion de la arquitectura. 99
T2 Arquitectura. 101
7.2.1 Eleccion del Marco de Arquitectura. 102
7.2.2 Asignar COmpPONENtES.ttt st e et 108
7.3Validacion. 110
7.3.1Us0de esCenarios. 111
7.3.2Prototipos.o 113
7.4 Resumeny lecturaadicional. i 114
8 La documentacion de una arquitecturade software. oo e, 117
8.1 0ntroduccion. 117
8.2Quédocumento. 118
B3 UML 2.0, . . o 119
8.4 Vistas arquitectura. 120
8,5 Mas sobre Los diagramas de componentes.iiiiiiiiii 123
8.6 Plantilla de Documentacion de Arquitectura. 126

8.7 Resumen y lecturas adicionales. i 127

xiv Contenido

9Disefio Estudiode Caso.ot e 129
9.1 DesCripCiOn geNEral.ttt 129

9.2 Aspectos técnicos del ICDE

9.2.1 Datos de gran tamafio.

9.2.2 Notificacion. 131
9.2.3 Abstraccionde datos. 131
9.2.4 Plataforma de Distribucion ytemas. 131
9.25Problemasde APL. 132
9.2.6 DiSCUSION. 133
9.3 Requisitos ICDE arquitectura. 133
9.3.1 Resumen de los objetivos clave. 133
9.3.2 Arquitectura de casos de USO.ttt 134
9.3.3 Arquitectura requisitos de los interesados. 134
9.3.4 Restricciones. 136
9.3.5 Requisitos funcionales. 136
9.3.6 RIESQOS. . . . oo 137
9.4 SoluCiON ICDE. 137
9.4.1 Patrones de Arquitectura .. e 137
9.4.2 Descripcién de la arquitectura. 138
9.4.3 Vistas estructurales. 139
9.4.4 Vistas de comportamiento. 142
9.4.5temas deimplementacion. 145
9.5 Andlisis de Arquitectura. 145
9.5.1 Andlisisde escenarios. i 145
9.5, 2 RIESGOS. . . o\ ittt 146
QB RESUMEN. 146
10 Middleware Estudio de caso: Medici 147
10.1 Antecedentes Medici. L 147
10.2 MediciHelloWorld. 148
10.3 Modulos de aplicacion. 151
10.3.1 MifProcessor. 151
10.3.2 MifObjectProcessor ... 151
10.3.3 MifMessageProcessor.t 152
Propiedades del médulo 10.3.4. 152
10.4 Criterios de valoracion y Transportes.u ittt et 153
10.4.1C0NECtOreS.o\ 153
10.4.2 Transportes admitidas. 154
10,5 Ejemplo MediCi. oot 157
10.5.1 Inicializar Pipeline. 158
10.5.2 Componentede Chat.ot 159
10.5.3 codigo de implementacion. 161
10,6 generador de COmMPONENtes.ttt 161
10.7 RESUMEN. 163

10.8 lectura adicional. 163

Contenido

11 Mirandohaciaelfuturo. e 165
111 IntroducCion.o 165
11.2 Los retos de lacomplejidad. 165
11.2.1 negocios complejidad del proceso. 166
1M138delaagilidad. 167
114 costesreducidos. 168
11.5 Lo SIgUIBNtE 169
12LaWeb Semantica.cooiiii s 171
121ICDEylaWeb Semantica. 171
12,2 automatizado, distribuido integracién y la colaboracién. 172
123 LaWeb Semantica. 173
12.4 Creacién y uso de metadatos para la Web Semantica. 174
12.5 Semantica puestaenlaWeb. 176
12.6 Lasemanticapara ICDE. 178
12.7 Servicios de Web Semantica. 180
12.8 El optimismo Continuacion. i 181
129lecturaadicional. 182
13 orientada a aspectos arquitecturas. i 185
13.1 Aspectos para el Desarrollo del ICDE .. 185
13.2 Introduccién a la programacion orientada a aspectos. 186
13.2.1 Las preocupaciones transversales. i 186
13.2.2 Cémo controlar problemas con aspectos. 187
13.2.3 Sintaxis AOP y modelo de programacién. 188
13.24WeaVING. . . o .ttt 189
13.3 Ejemplode unaspectodelacaché........... 190
13.4 Arquitecturas Orientada a Aspectos. 191
13,5 aspectos arquitectonicos y Middleware. 192
13.6 Estado-of-the-art. 193
13.6.1 orientada a aspectos de modeladoen UML. 193
13.6.2 Herramientas de AOP. i 193
13.6.3 Lasanotacionesy AOP. i 194
13.7 Supervision del rendimiento del ICDE con AspectWerkz. 195
13.8 CONCIUSIONES.\ e e 197
139lecturaadicional. 198
14-Model Driven Architecture. oo 201
Desarrollo 14.1 Modelo impulsada por ICDE. 201
142 3Cudles la MDA . .. 203
14.3 GPOr qU& MDA . . o 205
14.3.1 Portabilidad. 205
14.3.2 Interoperabilidad. 206

14.3.3 Reutilizacion. 207

15 Lineas de Productos Software

14.4 Estado-de-arte practicas y herramientas. i 208
1441 AndroMDA. 208
14.4.2 ArCStyler. . ..o 209
14.4.3 Eclipse Modeling Framework. 209
14.5 MDA y Arquitecturade Software. oL 210
14.5.1 MDA y requerimientos no funcionales. 211
14.5.2 Transformacién del modelo y de arquitectura de software. 211
1453 SOAYMDA. . .. 212
14.5.4 Los modelos analiticos son modelos también. 212
14.6 MDA para la planificacién de la capacidad del ICDE. 214
14.7 Resumen y lectura adicional., 216

15.1 lineas de productos para ICDE.ttt 219

15.2 Lineas de Producto Software. 220
15.2.1 Bene fi cién de Desarrollo SPL ...
15.2.2 lineas de productos para ICDE.ottt 223

15.3 Linea de productos Arquitectura. 223
15.3.1 encontrary entender software. 224
15.3.2 Llevar software en el contexto de desarrollo ...,
15.3.3 Software de invocacion. 225
Gestion fi guracion 15.3.4 Software Con para reutilizacion. 225

15.4 Mecanismos de variacion. i 227
15.4.1 Puntos Arquitectura Nivel variacion. 227
15.4.2 disefio anivel de variacion. 227
15.4.3 Archivo-Nivel Variacion. 228
15.4.4 Modificacion mediante software de gestién de Con fi guracion. 228
15.4.5 Arquitectura del producto Lineade ICDE. 228

15.5 La adopcion de software de la linea de productos para el Desarrollo. 229
15.5.1 Linea de productos Areas de Practica adopcion. 231
Adopcion 15.5.2 Linea de Productode ICDE. 231

15.6 Software curso Desarrollo Linea de Producto
15.6.1 Control de Cambios.ttt 232
15.6.2 Evolucion de Arquitectura para el DesarrolloSPL ...
15.6.3 Linea de productos Areas de practica del desarrollo. 234
15.6.4 lineas de productos con ICDE. i, 234

15.7 CoNCIUSIONES. o 235

16.8 lecturaadicional. 236

Contenido

Capitulo 1
Entender la arquitectura del software

1.1 ¢ Qué es la Arquitectura de Software?

Los ultimos 15 afios han visto un tremendo aumento de la prominencia de una subdisciplina de ingenieria de
software conocida como arquitectura de software. Arquitecto Técnico y

Arquitecto en jefe son los titulos de trabajo que ahora abundan en la industria del software. Hay una Asociacién Internacional
de Software Architects, 1 e incluso una cierta friki mas rico conocido en la tierra solia tener “arquitecto” en su puesto de

trabajo en su mejor momento. No puede ser una mala actuacién, entonces?

Tengo la sospecha de que la “arquitectura” es uno de los mas usados en exceso y menos entendida en términos de
desarrollo de software circulos profesionales. Lo escucho mal utilizada regularmente en diversos foros tales como la
revision de proyectos y debates, presentaciones de trabajos académicos en conferencias y lanzamientos de productos.
Usted sabe que un término se esta convirtiendo poco a poco vacia cuando se convierte en parte de la lengua vernacula

de la fuerza de ventas de la industria de software.

Este libro es acerca de la arquitectura de software. En particular, se trata de los problemas de disefio y tecnologia
clave a considerar en la construccion de sistemas del lado del servidor que procesan las solicitudes multiples y
simultaneas de los usuarios y / u otros sistemas de software. Su objetivo es describir de manera concisa los elementos
esenciales del conocimiento y las habilidades clave que se requieren para ser un arquitecto de software en la industria
de software y tecnologia de la informacién (IT). La concision es un objetivo clave. Por esta razén, de ninguna manera
todo lo que un arquitecto tiene que saber seran cubiertos. Si desea o necesita saber mas, cada capitulo le apuntan a los

recursos valiosos y Utiles adicionales que pueden conducir a mucho mayor iluminacion.

Asi, sin mas predambulos, vamos a tratar de fi gura lo que, al menos en mi opinion, la arquitectura de software
que realmente es, y esto es importante, no lo es. El resto de este capitulo se abordara esta cuestién, asi como
brevemente la introduccion de las tareas principales de un arquitecto, y la relacion entre la arquitectura y la

tecnologia en aplicaciones de TI.

1 http://www.iasahome.org/web/home/home

|. Gorton, Arquitectura de Software esencial, 1
DOI 10.1007 / 978-3-642-19176-3_1, # Springer-Verlag Berlin Heidelberg 2011

2 1 entender la arquitectura del software

1.2 Definiciones de Arquitectura de Software

Tratando de definir un término como arquitectura de software es siempre una actividad potencialmente
peligrosa. Realmente no hay ampliamente aceptada definicion por la industria. Para entender la diversidad de
puntos de vista, tienen un navegar por la lista mantenida por el Instituto de Ingenieria de Software. 2 Hay mucho.
La lectura de estos me recuerda una cita anénima que escuché en un programa de radio satirica recientemente,
lo que fue mas o menos en la linea de “la razén debate académico es tan vigorosa es que hay tan poco en

juego”.

No tengo intencion de afiadir a este debate. En su lugar, vamos a examinar tres de fi niciones. Como miembro de la IEEE,

que, por supuesto, naturalmente, comienzan con el fi nicion de adoptada por mi cuerpo profesional:

La arquitectura es definida por la practica recomendada como la organizacién fundamental de un sistema,
encarnado en sus componentes, sus relaciones entre si y con el medio ambiente y los principios que gobiernan su
disefio y evolucion.

[ANSI / IEEE Std 1471-2000, Practica recomendada para la descripcién arquitectonica de los sistemas de software

intensivo]

Esto sienta las bases para una comprension de la disciplina. Arquitectura capta la estructura del sistema en
términos de componentes y como interactian. También las reglas de disefio de todo el sistema de fi nes y
considera cémo un sistema puede cambiar.

A continuacion, siempre vale la pena conseguir el Ultimo punto de vista de algunos de los principales pensadores en el campo.

La arquitectura de software de un programa o sistema de computacion es la estructura o estructuras del sistema, que
comprenden elementos de software, las propiedades externamente visibles de esos elementos, y las relaciones entre
ellos.

[L.Bass, P.Clements, R.Kazman, Arquitectura de software en la practica (22 edicion),
Addison-Wesley 2003]

Esto construye un poco en el ANSI / IEEE definicién anterior, especialmente en lo que hace el papel de
abstraccion (es decir, propiedades externamente visibles) en una arquitectura y multiples vistas arquitectura
(estructuras del sistema) explicitos. Compare esto con otro, de Garlan y Shaw de principios de trabajo

influyentes:

[Arquitectura de software va] mas alla de los algoritmos y estructuras de datos de la computacién; el disefio y la
especificacion de la estructura general del sistema surge como un nuevo tipo de problema. problemas estructurales
incluyen la organizacion bruta y la estructura global de control; protocolos de comunicacion, la sincronizacién, y de acceso
a datos; asignacion de funcionalidad a elementos de disefio; distribucion fisica; composicion de elementos de disefio; de

escala y rendimiento; y la seleccion entre alternativas de disefio.

[RE. Garlan, M. Shaw, Una introduccién a la arquitectura de software, Los avances en Ingenieria de Software e

Ingenieria del Conocimiento, Volumen |, Mundial de la Ciencia, 1993]

Es interesante fijarse en ellos, ya que hay mucho en comun. Incluyo el tercer principalmente ya que es

mas explicito acerca de ciertas cuestiones, como la escalabilidad y

2 http://www.sei.cmu.edu/architecture/de fi nitions.html

1.2 Definiciones de Arquitectura de Software 3

distribucion, que estan implicitos en las dos primeras. En cualquier caso, el andlisis de éstos un poco hace que
sea posible extraer algunas de las caracteristicas fundamentales de arquitecturas de software. Estos, junto con

algunos enfoques clave, se describen a continuacion.

1.2.1 Arquitectura De multas Estructura

Gran parte del tiempo de un arquitecto tiene que ver con cémo particionar con sensatez una aplicacién en un
conjunto de componentes interrelacionados, médulos, objetos o cualquier unidad de particion de software que
funcione para usted. 3 Diferentes requisitos de aplicacion y limitaciones seran de definir el significado exacto de
“sensatez” en la frase anterior - una arquitectura debe estar disefiado para cumplir con los requisitos especi fi cas y

las limitaciones de la aplicacion que se destina.

Por ejemplo, un requisito para un sistema de gestion de la informacién puede ser que la aplicacion se distribuye
a través de muiltiples sitios, y una restriccion es que cierta funcionalidad y los datos deben residir en cada sitio. O
bien, la funcionalidad de una aplicacién debe ser accesible desde un navegador web. Todos éstos imponen algunas
limitaciones estructurales (sitio-especifico, el servidor web alojado), y al mismo tiempo se abren vias para una
considerable creatividad en el disefio de la particién de la funcionalidad a través de una coleccién de componentes

relacionados.

En la particion de una aplicacion, el arquitecto asigna responsabilidades a cada componente constituyente.
Estas responsabilidades definen las tareas de un componente es un indicio fiable para llevar a cabo dentro de la
aplicacion. De esta manera, cada componente juega un papel fi especifica en la aplicacion, y el conjunto de

componentes en general que comprende la arquitectura colabora para proporcionar la funcionalidad requerida.

Responsabilidad impulsada por el disefio (véase Wirfs-Brock en Lectura adicional) es una técnica de la orientacién a
objetos que puede ser utilizado de manera efectiva para ayudar a de fi ne los componentes clave en una arquitectura.
Proporciona un método basado en herramientas informales y técnicas que hacen hincapié en el modelado del
comportamiento usando objetos, responsabilidades y colaboraciones. He encontrado este gran ayuda en los proyectos

anteriores para los componentes de estructuracion a nivel arquitectonico.

Una cuestion estructural clave para casi todas las aplicaciones es minimizar las dependencias entre los
componentes, la creacion de una arquitectura de acoplamiento flexible de un conjunto de componentes altamente
cohesivos. Existe una dependencia entre los componentes cuando un cambio en una potencial fuerza un cambio en los
demas. Mediante la eliminacion de dependencias innecesarias, los cambios son localizada y no se propagan a lo largo

de una arquitectura (ver Fig. 1.1).

3 Componente aqui y en el resto de este libro se utiliza de manera muy informal para significar un “trozo” reconocible de software, y
no en el sentido mas estricto de la de fi nicion de Szyperski C. (1998) Componente del programa: Mas alla de programacion

orientada a objetos, Addison-Wesley

1 entender la arquitectura del software

Cc1 Cc2 C3 C4 C1 C C3

.

tergeros, los jgadmbios se limitan al componente AL

unfca T2
A 4 A 4 Alabamaj

Componente de

Terceros
terceros. Si se sustjtlye el componente de
Componente de
Cuatro componentes dependen Tetireatemente depgndiente de la componente de

directamente de un componente de
terceros. Si el componente de terceros se diagrama clave :
. P Sdlo el componente AL (capa de abstraccion) es

sustituye por un nuevo componente con
Componente

una interfaz diferente, los cambios en cada o
[o]

componente son probables.

—» Dependencia

Fig. 1.1 Dos ejemplos de dependencias de los componentes

dependencias excesivas son simplemente una mala cosa. Ellos hacen que sea dificil de realizar cambios en los
BRIEARSIINAORARPLALBrEBIS 10 arAIZas PRIENEH $84URH HREBuhstruccion, y hacen, desarrollo simultaneo basado

en el equipo mas dificil.

Comunicacién de componentes 1.2.2 Arquitectura especi fi ca

Cuando una aplicacion se divide en un conjunto de componentes, se hace necesario pensar en cémo estos
componentes se comunican los datos e informacién de control. Los componentes de una aplicacion pueden
existir en el mismo espacio de direcciones, y comunicarse a través de llamadas a métodos sencillos. Ellos
pueden ejecutar en diferentes hilos o procesos, y comunicarse a través de mecanismos de sincronizacion. O
multiples componentes pueden necesitar ser informada simultdneamente cuando se produce un evento en el

entorno de la aplicacion. Hay muchas posibilidades.

Un cuerpo de trabajo conocido colectivamente como patrones o estilos arquitectonicos 4 ha catalogado una
serie de estructuras que faciliten utilizado con éxito ciertos tipos de comunicaciéon de componentes [ver Patrones
en Lectura adicional]. Estos patrones son esencialmente planos arquitectonicos reutilizables que describen la

estructura y la interaccion entre las colecciones de los componentes participantes.

Cada patron tiene caracteristicas que lo hacen apropiado para utilizar en tipos particulares satisfactorios de

requisitos bien conocido. Por ejemplo, el patron de cliente-servidor

4 Patrones y estilos son esencialmente la misma cosa, sino como un lider autor arquitectura de software me dijo recientemente, “la gente

1.3 Arquitectura ocupa de los requisitos no funcionales 5

tiene varias caracteristicas Utiles, tales como las comunicaciones sincronas de peticion-respuesta del cliente al servidor y
servidores que soportan uno o mas clientes a través de una interfaz publicada. De manera opcional, los clientes pueden
establecer sesiones con servidores, que pueden mantener el estado de sus clientes conectados. arquitecturas cliente-servidor
también deben proporcionar un mecanismo para que los clientes puedan ubicar los servidores, controlar los errores, y,
opcionalmente, proporcionan seguridad en el acceso al servidor. Todas estas cuestiones se abordan en el patrén de

arquitectura cliente-servidor.

El poder de los patrones de arquitectura deriva de su utilidad y capacidad de transmitir la informacion de disefio. Los patrones se
ha comprobado que funcionan. Si se usa apropiadamente en una arquitectura, a aprovechar los conocimientos de disefio existentes
mediante el uso de patrones.

Los sistemas grandes tienden a utilizar multiples patrones, combinados de manera que satisfagan los requisitos
de la arquitectura. Cuando una arquitectura se basa en patrones, también se hace facil para los miembros del
equipo para entender un disefio, como el patrdn infiere estructura de componentes, las comunicaciones y los
mecanismos abstractos que deben ser proporcionados. Cuando alguien me dice que su sistema se basa en una
arquitectura cliente-servidor de tres niveles, sé de inmediato una cantidad considerable de su disefio. Este es un

muy poderoso mecanismo de comunicacién de hecho.

1.3 Arquitectura ocupa de los requisitos no funcionales

Los requisitos no funcionales son los que no aparecen en los casos de uso. En lugar de de fi nir qué la
aplicacion no, que tienen que ver con como la aplicacion proporciona la funcionalidad requerida.

Hay tres areas distintas de requisitos no funcionales:

1Las limitaciones técnicas: Estos seran familiares para todos. Estos limitan el disefio
opciones mediante la especificacion de ciertas tecnologias que debe utilizar la aplicacion. “Sélo tenemos los
desarrolladores de Java, por lo que hay que desarrollar en Java”. “La base de datos existente se ejecuta en Windows XP”.
Estos son por lo general no negociable.

irestricciones de actividad: Estas opciones de disefio demasiado fuerza, sino para los negocios no es asi,
razones técnicas. Por ejemplo, “Con el fin de ampliar nuestra base de clientes potenciales, hay que interactuar con
herramientas XYZ”. Otro ejemplo es “El surtidor de nuestro middleware ha elevado los precios prohibitivos, por lo que

nos estamos moviendo a una versién de codigo abierto”. La mayoria de las veces, estos también son negociables.

\Atributos de calidad: Estas de fi ne los requisitos de una aplicaciéon en términos de scal-
capacidad, disponibilidad, facilidad de cambio, la portabilidad, la facilidad de uso, rendimiento y asi sucesivamente. Atributos de
calidad abordar cuestiones de interés para los usuarios de aplicaciones, asi como otras partes interesadas, como el propio

equipo de proyecto o el promotor del proyecto. Capitulo 3 se analizan los atributos de calidad con cierto detalle.

por lo tanto, una arquitectura de aplicacion debe abordar explicitamente estos aspectos del disefio.
Los arquitectos deben entender los requisitos funcionales, y crear una plataforma que apoya estas y al

mismo tiempo satisface los requisitos no funcionales.

1 entender la arquitectura del software

1.3.1 Arquitectura es una abstraccién

Una de las descripciones mas utiles, pero a menudo no existentes, desde el punto de vista arquitectdnico es algo que
se conoce coloquialmente como una Marketecture. Se trata de una pagina, por lo general la representacion informal de
la estructura y las interacciones del sistema. Se muestra los principales componentes y sus relaciones y tiene unas
cuantas etiquetas bien escogidas y cuadros de texto que retratan las filosofias de disefio incorporados en la
arquitectura. UN Marketecture es un excelente vehiculo para facilitar la discusién por las partes interesadas durante el
disefio, la construccion, la revision, y por supuesto el proceso de venta. Es facil de entender y explicar y sirve como

punto de partida para un andlisis mas profundo.

Un cuidadosamente disefiado Marketecture es particularmente util, ya que es una descripcion abstracta del sistema.
En realidad, cualquier descripcién arquitectonica debe emplear la abstraccion con el fin de ser comprensible por los
miembros del equipo y los actores del proyecto. Esto significa que los detalles innecesarios son suprimidas o ignoradas
con el fin de centrar la atencion y el analisis de las cuestiones arquitecténicas mas destacadas. Esto normalmente se
realiza mediante la descripcién de los componentes en la arquitectura como cajas negras, especificando sélo su propiedades
visibles externamente. Por supuesto, la descripcion de la estructura y el comportamiento del sistema como colecciones de
comunicacion abstracciones de caja negra es normal para los profesionales que utilizan técnicas de disefio orientado a

objetos.

Uno de los mecanismos mas poderosos para describir una arquitectura es descomposicion jerarquica. Los
componentes que aparecen en un nivel de descripcion se descomponen con mas detalle en el acompafiamiento de
la documentacion de disefio. Como ejemplo, la Fig. 1.2 representa una muy simple jerarquia de dos niveles usando

una notacién informal, con dos de los componentes en el diagrama de nivel superior descompuesto aiin mas.

Diferentes niveles de descripcion en la jerarquia tienden a ser de interés para los diferentes desarrolladores en un
proyecto. En la Fig. 1.2, Es probable que los tres componentes en la descripcion de alto nivel estaran disefiados y

construidos por diferentes equipos que trabajan en el

diagrama clave

@ Componente

Servidor —>» dependencia C

&

Arquitectura de nivel superior Descripcion

Y

Cliente » Corredor

XL

~j| Controladorde | servidor de
mensajes B— seguridad
A

Directory I
controlador de Almacén
Server q N

solicitudes de datos

Fig. 1.2 Describiendo una arquitectura jerarquica 6

1.3 Arquitectura ocupa de los requisitos no funcionales 7

solicitud. La arquitectura particiones claramente las responsabilidades de cada equipo, de fi nir las
dependencias entre ellos.

En este ejemplo hipotético, el arquitecto ha re fi ne el disefio de dos de los componentes,
presumiblemente porque algunos requisitos no funcionales dictan que una mayor definicién es necesario. Tal
vez un servicio de seguridad existente debe ser utilizado, o la
Corredor debe proporcionar una funcién de enrutamiento de mensaijes fi especifico que requiere un servicio de directorio que
tiene un nivel conocido de la solicitud de rendimiento. En cualquier caso, este refinamiento fi mas re crea una estructura que
define y limita el disefio detallado de estos componentes.

La arquitectura simple en la Fig. 1.2 no se descompone la Cliente componente. Esto es, de nuevo,
presumiblemente, debido a que la estructura interna y el comportamiento del cliente no es significativo en el logro
de los requisitos no funcionales generales de la aplicaciéon. Cémo Cliente obtiene la informacién que se envia a la Corredor
no es un tema que preocupa al arquitecto, y en consecuencia el disefio detallado se deja abierta para el equipo de
desarrollo del componente. Por supuesto, la Cliente componente podria ser el mas complejo en la aplicacion.
Podria haber una arquitectura interna definida por su equipo de disefio, que cumpla con los objetivos especi fi cos
de calidad para el Cliente componente. Estos son, sin embargo, preocupaciones localizadas. No es necesario que
el arquitecto para complicar la arquitectura de la aplicacion de estas cuestiones, ya que se pueden dejar con
seguridad a la Cliente equipo de disefio para resolver. Este es un ejemplo de supresion de detalles innecesarios en

la arquitectura.

1.3.2 Arquitectura Vistas

Una arquitectura de software representa un artefacto de disefio complejo. No es sorprendente entonces, como la
mayoria de los artefactos complejos, hay una serie de formas de ver y entender la arquitectura. El término
“arquitectura” puntos de vista se elevé a la prominencia en Philippe Krutchen de 1995 s documento sobre la 4 p 1 Ver
Modelo. Esto presenta una forma de describir y entender una arquitectura basada en los cuatro puntos de vista

siguientes:
\Vista légica: Esto describe los elementos signi fi cativos arquitectonico de la arqui-

tura y las relaciones entre ellos. La vista légica capta esencialmente la estructura de la aplicacion

utilizando diagramas de clase o equivalentes.
ista del proceso: Esta se centra en la descripcion de la concurrencia y las comunicaciones

elementos de una arquitectura. En las aplicaciones de TI, las principales preocupaciones estan describiendo

componentes multiproceso o replicados, y los mecanismos de comunicacioén sincrona o asincrona utilizan.

ista fisico: Esto representa como los principales procesos y componentes son

asignada en el hardware de las aplicaciones. Se podria mostrar, por ejemplo, como se distribuyen los servidores de

bases de datos e Internet para una aplicacion a través de una serie de maquinas de servidor.

5 P.Krutchen, Blueprints-El valor arquitectonico “4 b 1” Ver Modelo de arquitectura de software, IEEE Software, 12 (6) Nov..,

1995

8 1 entender la arquitectura del software

ista de desarrollo: Esta captura la organizacion interna del software
componentes, por lo general, ya que se llevan a cabo en un entorno de desarrollo o herramienta de gestion con fi
guracion. Por ejemplo, la representacion de una jerarquia de paquetes y la clase anidada para una aplicacion Java

representaria el punto de vista del desarrollo de una arquitectura.

Estos puntos de vista estan unidas entre si por los casos de uso fi cante arquitecténicamente significantes (a menudo
llamados escenarios). Estos basicamente capturan los requisitos para la arquitectura y por lo tanto estan relacionados con
mas de un punto de vista particular. Trabajando a través de los pasos de un caso de uso particular, la arquitectura se puede
“probar”, explicando como los elementos de disefio en la arquitectura responden al comportamiento requerido en el caso de

uso. Vamos a estudiar como hacer esto “prueba de la arquitectura” en el Cap. 5.

Ya que el papel de Krutchen, ha habido mucho pensamiento, experiencia y desarrollo en el area de puntos de vista
de la arquitectura. Sobre todo sobre todo es el trabajo de la SEI, coloquialmente conocido como los “Puntos de vista y
mas alla” enfoque (ver lecturas adicionales). Este recomienda capturar un modelo de arquitectura utilizando tres puntos

de vista diferentes:

\Mébdulo: Esta es una vista estructural de la arquitectura, que comprende el cédigo

maddulos tales como clases, paquetes y subsistemas en el disefio. También captura la descomposicién
madulo, herencia, asociaciones y agregaciones.

\Componente y el conector: Este punto de vista se describen los aspectos del comportamiento de la
arquitectura. Los componentes son tipicamente objetos, hilos, o procesos, y los conectores describen
como interactdan los componentes. conectores comunes son los zécalos, middleware como CORBA o
memoria compartida.

1Asignacion: Esta vista muestra cémo los procesos en la arquitectura se asignan a
hardware, y como se comunican usando redes y / o bases de datos. También captura una vista del
codigo fuente en los sistemas de gestion de con fi guracién, y que en el grupo de desarrollo tiene la

responsabilidad de cada uno de los médulos.

La terminologia utilizada en “Vistas y mas alla” es fuertemente influenciada por la comunidad investigadora
descripcion de la arquitectura idioma (ADL). Esta comunidad ha sido influyente en el mundo de la arquitectura de
software, pero ha tenido un impacto limitado en la tecnologia de la informacion general. Asi, mientras que este libro se
concentrara en dos de estos puntos de vista, nos referiremos a ellos como el punto de vista estructural y la vista del

comportamiento. perspicaces lectores deben ser capaces de trabajar a cabo el mapeo entre terminologias!

1.4 ¢ Qué hace un arquitecto de software?

El ambiente que un arquitecto de software funciona en tiende para definir sus funciones y responsabilidades
exactas. Una buena descripcion general del papel del arquitecto es mantenido por el SEI en su sitio web. s En lugar

de resumir esto, voy a describir brevemente, en ningin

6 http://www.sei.cmu.edu/ata/arch_duties.html

1,5 arquitecturas y tecnologias 9

en particular orden, cuatro habilidades esenciales para un arquitecto de software, independientemente de su entorno

profesional.

1Enlace: Arquitectos desempefian muchas funciones de enlace. Han estado en contacto entre los clientes
o clientes de la aplicacion y el equipo técnico, a menudo conjuntamente con los analistas de negocios y requerimientos.
Trabajan de forma articulada entre los distintos equipos de ingenieria en un proyecto, ya que la arquitectura es
fundamental para cada uno de éstos. Han estado en contacto con la gerencia, lo que justifica disefios, las decisiones y los
costes. Han estado en contacto con la fuerza de ventas, para ayudar a promover un sistema a los compradores
potenciales o inversores. Gran parte del tiempo, esta relacién toma la forma de simplemente traducir y explicar

terminologia diferente entre los diferentes grupos de interés.

\Ingenieria de software: Excelentes habilidades de disefio son las que consiguen un ingeniero de software
a la posicién de arquitecto. Ellos son un requisito previo esencial para el papel. En términos mas generales, sin
embargo, los arquitectos deben promover las buenas practicas de ingenieria de software. Sus disefios deben
estar adecuadamente documentados y comunicados y sus planes deben ser explicitos y justificado. Ellos deben
entender el impacto aguas abajo de sus decisiones, trabajando adecuadamente con los equipos de prueba de

aplicaciones, documentacion y liberacion.

\El conocimiento de tecnologia: Los arquitectos tienen un profundo conocimiento de la tecnologia
dominios que son relevantes para los tipos de aplicaciones que trabajan. Son influyentes en la evaluacion
y la eleccion de los componentes de terceros y tecnologias. Siguen los avances tecnolégicos, y
comprender como las nuevas normas, caracteristicas y productos podrian ser explotados de manera util
en sus proyectos. Igual de importante, los buenos arquitectos saben lo que no saben, y pedir a los demas

con mayor experiencia cuando necesitan informacion.

1Gestion de riesgos: Los buenos arquitectos tienden a ser cautos. Ellos estan constantemente
enumerar y evaluar los riesgos asociados con el disefio y la tecnologia de decisiones que toman.
Documentan y gestionar estos riesgos en conjunto con los patrocinadores y gestion de proyectos. Se
desarrollan y abren las estrategias de mitigacion de riesgos, que comunicaran a los equipos de ingenieria

pertinentes. Ellos tratan de asegurarse de que no se produzcan desastres inesperados.

Busque estas habilidades en los arquitectos que trabaja con o emplea. Arquitectos juegan un papel central
en el desarrollo de software, y deben ser polivalentes en software de ingenieria, la tecnologia, la gestién y las

comunicaciones.

1,5 arquitecturas y tecnologias

Los arquitectos deben tomar decisiones de disefio al principio del ciclo de vida de un proyecto. Muchos de éstos son dificiles,
si no imposible, para validar y prueba hasta que las partes del sistema son en realidad construida. prototipado juiciosa de
componentes arquitectdnicos claves puede ayudar a aumentar la confianza en un enfoque de disefio, pero a veces es todavia

dificil estar seguro del éxito de una opcién de disefio particular, en un contexto de aplicacion dada.

1 entender la arquitectura del software

Debido a la dificultad de la validacion de las decisiones de disefio inicial, arquitectos sensatez se basan en enfoques de
eficacia probada para resolver ciertas clases de problemas. Este es uno de los grandes valores de los patrones arquitecténicos.
Permiten a los arquitectos para reducir el riesgo mediante el aprovechamiento de disefios exitosos con atributos de ingenieria
conocidos.

Los patrones son una representacion abstracta de una arquitectura, en el sentido de que se pueden realizar
en multiples formas concretas. Por ejemplo, el patrén de publicacion-suscripcion arquitectura describe un
mecanismo abstracto para débilmente acoplados, manyto-muchas comunicaciones entre los editores de
mensajes y los abonados que deseen recibir mensajes. Sin embargo, no especifica como se gestionan las
publicaciones y suscripciones, lo que la comunicacion protocolos se utilizan, qué tipos de mensajes pueden ser

enviados, y asi sucesivamente. Estos son considerados todos los detalles de implementaciéon.

Por desgracia, a pesar de las opiniones equivocadas de un nimero de académicos de informatica, descripciones
abstractas de las arquitecturas sin embargo, no se ejecutan en los ordenadores, ya sea directamente o por medio de la
transformacion rigurosa. Hasta que lo hagan, arquitecturas abstractas deben ser rei fi cado por los ingenieros de software como
implementaciones de software concretos.

Afortunadamente, la industria del software ha llegado al rescate. patrones arquitecténicos utilizados ampliamente son
compatibles con una variedad de marcos pre-construidos disponibles como las tecnologias comerciales y de codigo
abierto. Por una cuestién de conveniencia, me referiré a ellos colectivamente como las tecnologias
comerciales-off-the-shelf (COTS), a pesar de que estrictamente no es apropiado ya que muchos productos de codigo
abierto de muy alta calidad se pueden utilizar libremente (a menudo con una pago por el apoyo modelo para la

implementacién de aplicaciones graves).

De todos modos, si un disefio requiere de publicacién-suscripcion de mensajeria, o un intermediario de mensajes, o una
arquitectura de tres capas, entonces las opciones de la tecnologia disponible son muchas y variadas hecho. Este es un ejemplo
de tecnologias de software que proporcionan las infraestructuras de software reutilizables, independientes de la aplicacion que

implementan demostrado enfoques arquitectonicos.

Como la fig. 1.3 representa, varias clases de tecnologias COTS se utilizan en la practica para proporcionar
implementaciones de patrones arquitectonicos envasados para su uso en sistemas de TI. Dentro de cada clase, existen
productos que compiten comerciales y de cédigo abierto. Aunque estos productos son superficialmente similares, tendran

diferentes conjuntos de caracteristicas, ser implementado de manera diferente y tienen diferentes limitaciones en su uso.

Abstracto

Los patrones arquitectdnicos / Estilos

U T A

Servidores de Mensaje de mgnsajeria Agentes de la orquestacion de

aplicaciones Brokers objetos procesos

COTS tecnologias concretas

Fig. 1.3 Correspondencia entre los patrones arquitecténicos l6gicas y tecnologias concretas 10

1.6 Arquitecto Titulo sopa 1

Los arquitectos estan un poco a la vez bendecidos y maldecidos con esta diversidad de opciones de productos. La
competencia entre los proveedores de productos impulsa la innovacion, mejores conjuntos de caracteristicas e
implementaciones, y precios mas bajos, sino que también representa una carga para el arquitecto para seleccionar un
producto que tiene los atributos de calidad que satisfagan los requisitos de la aplicacién. Todas las aplicaciones son diferentes
en algunos aspectos, y no rara vez, o nunca, una una reduccion de tamario-ts-fi todos partido del producto. Diferentes
implementaciones de tecnologia COTS tienen diferentes conjuntos de puntos fuertes y débiles y los costes, y por lo tanto

seran mas adecuados para algunos tipos de aplicaciones que otros.

El DIF fi cultad para los arquitectos es en la comprension de estos puntos fuertes y débiles al principio del
ciclo de desarrollo de un proyecto, y la eleccién de un fi cacién apropiada rei de los patrones arquitecténicos que
necesitan. Por desgracia, esto no es una tarea facil, y los riesgos y los costos asociados con la selecciéon de una
tecnologia inadecuada son altos. La historia de la industria del software esta llena de malas decisiones y
proyectos fallidos posteriores. Para citar Eoin Woods, 7y proporcionar otra extremadamente pragmatica definicion

de la arquitectura de software:

arquitectura de software es el conjunto de las decisiones de disefio que, si se hace de forma incorrecta, puede hacer que su proyecto sea

cancelado.

Capitulos 4-6 proporcionan una descripcion detallada y el analisis de estas tecnologias de infraestructura.

1.6 Arquitecto Titulo sopa

Escanear los anuncios puestos de trabajo. Veras principales arquitectos, arquitectos de productos, arquitectos
técnicos, arquitectos de soluciones (Quiero colocar un anuncio parodia para un arquitecto problema), arquitectos de

la empresa, y sin duda varios otros. He aqui un intento de dar algunas ideas generales en lo que significan:

1Arquitecto en jefe: Normalmente, un cargo superior y dirige un equipo de arquitectos
dentro de una organizacion. Opera en un nivel general, muchas veces de organizacion, y coordina los esfuerzos a
través de las lineas del sistema, aplicaciones y productos. Con mucha experiencia, con una rara combinacién de un

profundo conocimiento técnico y comercial.
\Producto / Técnico / Arquitecto de soluciones: Por lo general alguien que ha progresado

a través de las filas técnicos y supervisa el disefio de la arquitectura de un sistema especi fi co o aplicacién.

Tienen un profundo conocimiento de como alguna pieza importante de software funciona realmente.

1Arquitecto Empresarial: Normalmente, una, mas de rol de enfoque mucho menos técnica.

arquitectos de la empresa utilizan diversos métodos de negocio y herramientas para comprender, documentar y

planificar la estructura de los principales sistemas en una empresa.

El contenido de este libro es relevante para los dos primeros puntos anteriores, lo que requiere una sélida

formacion informatica. Sin embargo, los arquitectos empresariales son algo

7 http://www.eoinwoods.info/

12 1 entender la arquitectura del software

diferentes bestias. todo esto se vuelve muy confuso, especialmente cuando eres un arquitecto de software que trabaja en
sistemas de la empresa.

En esencia, los arquitectos empresariales crear documentos, hojas de ruta, y los modelos que
describen la organizacién légica de las estrategias de negocio, métricas, capacidades de negocio,
procesos de negocio, recursos de informacion, sistemas de negocio, y la infraestructura de redes dentro
de la empresa. s Utilizan marcos para organizar todos estos documentos y modelos, siendo las mas
populares TOGAF gy el Marco Zachman. 10

Ahora bien, si soy honesto, las anteriores capturas mas o menos todo lo que sé acerca de la arquitectura de la
empresa, a pesar de haber participado durante un corto tiempo en un esfuerzo arquitectura de la empresa! Soy un friki
de corazén, y nunca he visto ninguna necesidad de la informatica y el conocimiento de ingenieria de software en la
arquitectura de la empresa. La mayoria de los arquitectos de la empresa que conozco tienen grados de sistemas
comerciales o de informacion. Se refieren a la manera de “alinear la estrategia y la planificacion con objetivos

comerciales de la empresa”, “desarrollar politicas, normas y directrices para la seleccion de TI”, y “determinar la
gobernabilidad”. Todas las preocupaciones muy altas e importantes, y no me refiero a ser despectivo, pero estos no
son mis principales intereses. Las tareas de un arquitecto de la empresa, sin duda no se basan en unas pocas décadas

de la informatica acumulada y la teoria y la practica de ingenieria de software.

Si eres curioso acerca de arquitectura de la empresa, hay algunas buenas referencias al final de este

capitulo. Disfrutar.

1.7 Resumen

arquitectura de software es un bastante bien definida y comprendida disciplina de disefio. Sin embargo, sélo
porque nosotros sabemos lo que es mas o menos lo que hay que hacer, esto no quiere decir que sea mecanica o
facil. Disefio y evaluacion de una arquitectura para un sistema complejo es un ejercicio creativo, que requiere
conocimiento, la experiencia y la disciplina. Las di fi cultades se ven exacerbados por la naturaleza del ciclo de
vida temprana de gran parte del trabajo de un arquitecto. En mi opinién, la siguiente cita de Philippe Krutchen

resume el papel de un arquitecto a la perfeccion:

La vida de un arquitecto de software es un largo (y, a veces dolorosa) sucesion de decisiones subdptimas realizado en parte en

la oscuridad

El resto de este libro se describen los métodos y técnicas que pueden ayudar a arrojar al menos algo de luz
sobre las decisiones de disefio arquitecténico. Gran parte de esta luz proviene de la comprensién y el
aprovechamiento de los principios de disefio y tecnologias que han demostrado que funcionan en el pasado. Armado

con este conocimiento, usted sera capaz de

s http://en.wikipedia.org/wiki/Enterprise_Architecture
o http://www.opengroup.org/togaf/

10 http://www.zachmaninternational.com/index.php/the-zachman-framework

1.8 Lectura adicional 13

abordar los problemas complejos de arquitectura con mas confianza, y después de un tiempo, tal vez incluso un

poco garbo.

1.8 Lectura adicional

Hay un montén de buenos libros, informes y documentos disponibles en el mundo de la arquitectura de software. A
continuacién se presentan algunos que recomiendo especialmente. Estos se expanden en la informacion y los mensajes

cubierto en este capitulo.

1.8.1 Arquitectura general

En términos de de fi nir el paisaje de la arquitectura de software y describir sus experiencias de proyectos,
sobre todo con proyectos de defensa, es dificil ir mas alla de los siguientes libros de los miembros del
Instituto de Ingenieria de Software.

L. Bass, P. Clements, R Kazman. Arquitectura de software en la practica, Segundo
Edicién. Addison-Wesley, 2003.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord,
J. Stafford. Arquitecturas de software de documentacion: Vistas y mas alla.
2 Dakota del Norte Edicién, Addison-Wesley, 2010.

P. Clements, R. Kazman, M. Klein. La evaluacion de arquitecturas de software: Métodos

y casos practicos. Addison-Wesley, 2002.

Para una descripcion del “Estilo de descomposicién”, véase Documentacion de Arquitectura de Software, pagina
53. Y para una excelente discusién de la usos relacién y sus consecuencias, ver el mismo libro, pagina 68.

Los siguientes son también merece la pena leer:

Nick Rozanski, Eion Woods, Software de Sistemas de Arquitectura: Trabajar con Stake-

Uso de los titulares de puntos de vista y perspectivas, Addison-Wesley 2005 Richard N. Taylor, Nenad
Medvidovic, Eric Dashofy, Arquitectura de software:

Fundaciones, Teoria y Practica, John Wiley and Sons, 2009

El articulo de Martin Fowler en el papel de un arquitecto es una lectura interesante.

Martin Fowler, ¢ Quién necesita un arquitecto? IEEE Software, julio-agosto de 2003.

1.8.2 Requisitos de Arquitectura

El libro original que describe los casos de uso es:

I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard. Software Orientado a Objetos
Ingenieria: Un enfoque basado en casos de uso. Addison-Wesley, 1992.

14 1 entender la arquitectura del software

disefio Responsabilidad impulsada es una técnica muy Util para la asignacion de funcionalidad a
componentes y subsistemas en una arquitectura. Lo siguiente deberia ser de obligada lectura para los
arquitectos.

R. Wirfs-Brock, A. McKean. Disefio del objeto: Roles, responsabilidades y colaboraciones.
Addison-Wesley, 2002.

1.8.3 Patrones de Arquitectura

Hay una serie de libros de fi ne en los patrones de arquitectura. El trabajo de Buschmann es una excelente

introduccion.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal ,. Patrén-Oriented
Arquitectura de Software, Volumen 1: un sistema de modelos. John Wiley & Sons,
1996.
D. Schmidt, M. Stal, H. Rohnert, F. Buschmann. Patrén-Oriented Software arqui-
tecture, Volumen 2, Patrones para concurrentes en red y objetos. John Wiley & Sons, 2000.

Dos libros recientes que se centran mas en las pautas de sistemas de la empresa, especialmente integraciones de

aplicaciones empresariales, estan bien vale la pena leer.

M. Fowler. Los patrones de arquitectura de aplicacién empresarial. Addison-Wesley,
2002.

G. Hohpe, B. Woolf. Los patrones de integracién empresarial: disefar, construir y desplegar soluciones
de mensajeria. Addison-Wesley, 2003.

1.8.4 Las comparaciones Tecnologia

Una serie de documentos que surgié del proyecto de Evaluacion de Tecnologia Middleware (MTE) dan una

buena introduccioén a los problemas y complejidades de las comparaciones de tecnologia.

P. Tran, J. Gosper, |. Gorton. Evaluar el rendimiento sostenido de COTS-
Sistemas de mensajeria basados. en pruebas de software, la verificacion y fiabilidad, vol 13, pp 229-240,
Wiley and Sons, 2003.

1. Gorton, A. Liu. Evaluacion del desempefio de los componentes alternativos Arquitecturas

JavaBean de las aplicaciones empresariales, en |IEEE Internet Computing, vol.7, no. 3, paginas 18-23, 2003.

A. Liu, I. Gorton. Acelerar COTS Middleware tecnologia de adquisicion: la
Proceso i-mate. en |IEEE Software, paginas 72-79, volumen 20, nim. 2, marzo / abril
2003.

1.8 Lectura adicional 15

1.8.5 Arquitectura Empresarial

En mi humilde opinién, hay algunos libros serio poco profundas escrito sobre la arquitectura empresarial. Sobrevivi a

través de las partes principales de este libro, por lo que lo recomendaria como un punto de partida.

James McGovern, Scott Ambler, Michael Stevens, James Linn, Elias Jo y Vikas
Sharan, La Guia Practica de la arquitectura de la empresa, Addison-Wesley, 2003.

Otra buena en general, libro practico es:
Marc Lankhorst, Arquitectura Empresarial en el Trabajo, Springer-Verlag, 2009

Estoy seguro de que hay alegria que se tenia en el 700 p paginas de la ultima TOGAF versioén 9.0
libro (editorial Van Haren, ISBN: 9789087532307), pero al igual que Joyce Ulises,
Sospecho que es una alegria que nunca voy a tener la paciencia para saborear. Si el Zachman Framework es mas

su cosa, hay un par de libros electrénicos, que se parecen a simple vista informativo:

http://www.zachmaninternational.com/index.php/ea-articles/25-editions

Capitulo 2
Al presentar el Estudio de Caso

2.1 Informacién general

En este capitulo se presenta el estudio de caso que se utilizara en los capitulos siguientes para ilustrar algunos de los
principios de disefio en este libro. 1 Muy basicamente, la aplicacion es un sistema de software multiusuario con una base
de datos que se utiliza para compartir informacion entre los usuarios y herramientas inteligentes que tienen como objetivo
ayudar al usuario a completar sus tareas de trabajo con mayor eficacia. Un diagrama de contexto informal se representa

enlaFig. 2.1.

El sistema cuenta con componentes de software que se ejecutan en la estacion de trabajo de cada usuario, y un
software distribuido compartida “back-end” que hace posible que las herramientas inteligentes de terceros para
recopilar datos de, y comunicarse con, varios usuarios con el fin de ofrecer ayuda con su tarea . Es este software de
back-end distribuida compartida que este caso de estudio se concentrara en, ya que es la zona donde surge la
complejidad arquitectonica. También ilustra muchos de los problemas comunes de calidad que deben ser abordados

por multiusuario, aplicaciones distribuidas.

2.2 El Sistema ICDE

La captura de informacion y difusion para el Medio Ambiente (ICDE) es parte de un conjunto de sistemas de
software para la prestacion de asistencia inteligente para profesionales como analistas fi nancieros,
investigadores cientificos y analistas de inteligencia. Con este fin, ICDE captura y almacena automaticamente
los datos que registra una serie de acciones llevadas a cabo por un usuario al operar una estacion de trabajo.

Por ejemplo, cuando

1 El proyecto de estudio de caso se basa en un sistema real en el que trabajé. Algunos licencia creativa ha sido explotada para
simplificar los requisitos funcionales, por lo que estos no abrumar al lector con detalles innecesarios. Ademas, los eventos, detalles
técnicos y el contexto descritas no siempre se ajustan a la realidad, ya que la realidad puede ser demasiado complicado para fines de

ilustracion.

|. Gorton, Arquitectura de Software esencial, 17
DOI 10.1007 / 978-3-642-19176-3_2, # Springer-Verlag Berlin Heidelberg 2011

2 Al presentar el Estudio de Caso

1

mainframes

ICDE servidor

Estaciones de Trabajo

Servicio
Servicio
de acceso Servidores 3 ICDE rd aplicaciones
Los de captura de dat
e datos i
clientes ICDE de datos de otros fabricantes

servidgres

QO—
,

Almacén de datos

Estaciones de Trabajo

Marco principal

servidores

Fig. 2.1 diagrama de contexto ICDE 18

un usuario realiza una busqueda en Google, el sistema ICDE transparentemente almacenar en una base de datos:

iLa cadena de busqueda consulta

\Las copias de las paginas web devueltos por Google que los usuarios se muestra en su

navegador

Estos datos se pueden recuperar posteriormente de la base de datos del ICDE y usada por las herramientas de software
de terceros que tratan de ofrecer ayuda inteligente para el usuario. Estas herramientas podrian interpretar una secuencia de
entradas del usuario, y tratar de fi nd informacion adicional para ayudar al usuario con su tarea actual. Otras herramientas
pueden rastrear los enlaces en los resultados de busqueda devueltos que el usuario no hace clic en, tratando de encajar

detalles nd potencialmente Utiles que el usuario pasa por alto.

Un diagrama de casos de uso para el sistema ICDE se muestra en la Fig. 2.2 . Las tres principales
casos de uso incorporar la captura de las acciones del usuario, la consulta de datos del almacén de datos, y la interaccién de los

terceros herramientas de otros fabricantes con el usuario.

Contexto 2.3 Proyecto 19

ICDE

Captura de usuario

Comportamiento

Analista

*
gsistencia al usuario

Almacén de datos

Acciones del usuario consulta de,

3 ? Parte herramientas

Fig. 2.2 casos de uso del sistema ICDE

Contexto 2.3 Proyecto

Pocos proyectos reales son los esfuerzos de campo efecto invernadero, lo que permite al equipo de disefio comienza con una hoja

limpia y sobre todo sin restricciones de papel. El sistema ICDE ciertamente no es uno de ellos.

Una version de produccion inicial (v1.0) del ICDE se llevo a cabo por un pequefio equipo de desarrollo. Su
principal objetivo era poner en préactica la Acciones de captura de usuario
caso de uso. Esto cred el componente de cliente que se ejecuta en cada estacion de trabajo del usuario, y condujo al
disefio e implementacién del almacén de datos. Esto era importante como almacén de datos era una parte integral del
resto de la funcionalidad del sistema, y su disefio tenia que ser adecuada para soportar la alta tasa de transacciones

que un gran numero de usuarios podria llegar a generar.

v1.0 ICDE solamente se desplegd en un pequefio ensayo de usuario que involucra unos pocos usuarios. Este
despliegue probado con éxito la funcionalidad del software cliente y demostrar los conceptos de captura y almacenamiento
de datos. El disefio de v1.0 se basa en una arquitectura simple de dos niveles, con todos los componentes que se ejecutan
en la estacion de trabajo del usuario. Este disefio se muestra como un diagrama de componentes UML en la Fig. 2.3 . Los

componentes de cliente de recoleccién y andlisis fueron escritos en Java y tener acceso al almacén de datos

2 Al presentar el Estudio de Caso

Estacion de trabajo analista

Recopilacion de datos

Almacén de datos

Andlisis de los datos

Fig. 2.3 ICDE version de arquitectura 1,0 aplicacion

(Servidor) directamente utilizando el JDBC 2 API. La aplicacién ICDE completa ejecutado en Microsoft Windows
XP.

El papel de cada componente es el siguiente:

1Recopilacion de datos: El componente de recogida comprende una serie de vagamente
procesos acoplados que se ejecutan en una estacion de trabajo cliente que hacen un seguimiento de forma
transparente las actividades relevantes del usuario y almacenarlos en el Aimacén de datos. Los eventos capturados se
relacionan con accesos a Internet, los documentos que se abren y buscan, las modificaciones realizadas a los
documentos, y alguna informacién basica acerca de ventanas cuando el usuario abre y cierra las aplicaciones en el
escritorio. Cada evento tiene numerosos atributos asociados a ella, dependiendo del tipo de evento. Por ejemplo, un
doble clic del raton tiene (X, y) coordinar atributos, y un evento de activacion ventana tiene el nombre de la aplicacién

como un atributo asociado.

1Almacén de datos: Este componente comprende un comercial-off-the-shelf (COTS)
base de datos relacional. La informacién de eventos almacena bases de datos relacionales en varias tablas para capturar las
actividades de los usuarios, con marcas de tiempo afiadido para que el orden de los acontecimientos puede ser reconstruida. Los
objetos grandes, tales como imagenes de las paginas web y documentos binarios se almacenan como campos Binary Large

Object (BLOB) que utilizan las instalaciones de bases de datos nativas.

1Andlisis de los datos: Una interfaz grafica de usuario (GUI) herramienta basada admite un conjunto de
Las consultas sobre el almacén de datos. Esto era util para propésitos de prueba, y para dar la herramienta creadores
de terceros un vistazo inicial a los datos que se de ser capturado, y era por lo tanto disponible para ellos para el

analisis.

2 Java Database Connectivity. 20

2.4 Objetivos de negocio 21

2.4 Objetivos de negocio

v2.0 ICDE tenian objetivos mucho mas ambiciosos. Después de haber comprobado que el sistema funciond bien en pruebas de

implementaciones, los promotores del proyecto tenia dos objetivos de negocio importantes para la proxima version. Estas eran:

\Animar a los terceros desarrolladores de herramientas de fiesta para escribir aplicaciones para el mantenimiento del ICDE.
Por ejemplo, en finanzas, un desarrollador independiente puede construir un “asesor de la” que vigila las
acciones que un analista esta mirando en su navegador y les informa de cualquier evento en las noticias que
podrian afectar el valor de las acciones.

\Promover el concepto ICDE y herramientas a los clientes potenciales, con el fin de mejorar

su entorno de trabajo analitico.

Es evidente que estos dos objetivos se centran en el fomento de un negocio en crecimiento alrededor de la tecnologia de
la ICDE, mediante la creacion de un mercado atractivo para herramientas de terceros y un entorno de asesoramiento
avanzada para los usuarios en una variedad de dominios de aplicacion. El logro de estos objetivos exige que los planes
técnicos y comerciales detallados para ser elaborados y seguido a través. Desde un punto de vista puramente técnico,
dejando de lado las actividades tales como ventas y comercializacion, los siguientes objetivos principales Se identificaron -

véase la tabla 2.1 :

Con el fin de atraer a los desarrolladores de herramientas de terceros, es esencial que el medio ambiente tiene una interfaz de
programacion de aplicaciones potente y facil de usar (API) que se puede acceder desde cualquier plataforma de sistema operativo
que un desarrollador decide utilizar. Esto daria a los desarrolladores de herramientas fl exibilidad en la eleccion de su plataforma de
despliegue, y hacer la portabilidad herramientas existentes mas simple. Las encuestas de las herramientas existentes también
plantearon la cuestion de que las herramientas analiticas poderosas maquinas pueden requerir racimo de gama alta que se ejecuta.
De ahi que necesitarian la capacidad de comunicarse con los despliegues ICDE a través de redes de area local (y eventualmente de

ancho).

Otra encuesta de clientes ICDE probables mostr6 que las organizaciones de usuarios potenciales tenian grupos
de 10-150 analistas. En consecuencia, era importante que el software podria ampliarse facilmente para soportar
dichos numeros. También debe haber ninguna caracteristica de disefio inherentes que inhiben la tecnologia de apoyo

a los despliegues mas grandes que pueden aparecer en el futuro.

Tabla 2.1 ICDE v2.0 objetivo objetivos de negocio

Negocio Apoyando objetivo técnico
Anime herramienta de terceros el acceso mediante programacion simple y fiable para almacenar datos para terceros
desarrolladores herramientas

Heterogénea (es decir, no Windows) de soporte de plataforma para correr
herramientas de terceros
Permitir herramientas de terceros para comunicarse con los usuarios de un ICDE
maquina remota
Promover el concepto del ICDE Escalar los componentes de recogida de datos y almacenamiento de datos para soportar hasta
alos usuarios 150 usuarios en un solo sitio

implementacion de bajo costo para cada usuario de estacion de trabajo ICDE

2 Al presentar el Estudio de Caso

Igualmente importante, para mantener el costo base de un despliegue tan bajo como sea posible, tecnologias
COTS caros deben evitarse siempre que sea posible. Esto a su vez hara que el producto sea mas atractivo en

términos de precio para los clientes.

2.5 Limitaciones

Los objetivos técnicos eran ambiciosos, y requeririan una arquitectura diferente para apoyar el acceso y las
comunicaciones de datos distribuidos. Por esta razén, se decidid concentrar los esfuerzos en esta nueva
arquitectura, y dejar el cliente, incluyendo las herramientas de interfaz grafica de usuario y la captura de datos
y estable. Los cambios sélo se harian al cliente para que pueda comunicarse con la nueva arquitectura de
gestién de datos y noti fi cacion que este proyecto seria disefiar. Por esta razén, el disefio del lado del cliente
no se trata en este caso de estudio.

Un horizonte de tiempo de 12 meses se fijo para v2.0 ICDE. Una libertad provisional después de 6 meses fue
piarieattes peraaiganey lesdphataciaddectedrdiegianieatadideda dRl |3 peratiiited el txas ol 22al

mismo tiempo que estaba siendo v2.0 ICDE productizado y mejorado.

Asi como tener un horario fi jo, el presupuesto de desarrollo fue también fijo. Esto significa que los recursos
disponibles para el desarrollo limitaria las caracteristicas que podrian ser incluidos en la versién v2.0. Estas
limitaciones presupuestarias también influido las posibles opciones de implementacién, dado que el nimero de

desarrolladores, sus habilidades y tiempo disponible esencialmente se fija.

objetivo proporcionar los conocimientos basicos necesarios en el disefio de arquitecturas para cumplir con los

2.6 Resumen

La aplicacién ICDE hace un interesante caso de estudio para una arquitectura de software. Requiere la arquitectura
de una aplicacion existente para ser extendido y mejorado para crear una plataforma para nuevas funciones y

capacidades. Las limitaciones de tiempo y presupuesto restringen las posibles opciones. Sin duda, una remodelacion

de la tienda ICDE cliente v1.0 y los datos existentes es completamente fuera de la cuestion.

En el Cap. 9, el disefio para el back-end ICDE se elaborara y se explican. Los siguientes capitulos tienen como

Capitulo 3
Atributos de Calidad de Software

3.1 Atributos de Calidad

Gran parte de la vida de una arquitectura de software se dedica a disefiar sistemas de software para cumplir un conjunto de
requisitos de atributos de calidad. atributos de calidad de software en general incluyen la escalabilidad, seguridad, rendimiento y
fiabilidad. Estos a menudo se llaman informalmente “-ilities” de una aplicacién (aunque, por supuesto, algunos, como el

rendimiento, no bastante fi esta especificacion léxica de cationes).

requisitos de atributos de calidad son parte de los requisitos no funcionales de una aplicacion, que
capturan las muiltiples facetas de como se consiguen los requisitos funcionales de una aplicacion. Todo
pero la aplicacion mas trivial tendra requisitos no funcionales que se pueden expresar en términos de
requisitos de atributos de calidad.

Para que tenga sentido, requisitos de atributos de calidad debe ser especifico acerca de como una aplicacion debe
alcanzar una determinada necesidad. Un problema comun que encuentro regularmente en los documentos de arquitectura

es una declaracion general como “La aplicacion debe ser escalable”.

Esto es demasiado imprecisa y realmente no sirve de mucho a nadie. Como se discute mas adelante en este capitulo, los
requisitos de escalabilidad son muchos y variados, y cada uno se relaciona con diferentes caracteristicas de aplicacion. Por lo tanto,
debe esta escala hipotética aplicacion para manejar el aumento de conexiones de usuario simultaneas? O el aumento de los

volumenes de datos? O la implementacion de una base de usuarios mas grande? O la totalidad de estos?

De fi nir cual de estas medidas de escalabilidad debe ser soportado por el sistema es crucial desde un punto de vista
arquitectdénico, como soluciones para cada difieren. Por lo tanto es de vital importancia para de la calidad del hormigén definir

atributos de requisitos, tales como:

Debe ser posible escalar el despliegue de una cantidad inicial de 100 escritorios de los usuarios dispersos geograficamente a

10.000 sin un aumento en el esfuerzo / costo de instalacion y con fi guracion.
Este es precisa y significativa. Como arquitecto, esto me sefiala un camino a un conjunto de soluciones

y tecnologias concretas que facilitan la instalacién cero esfuerzo y despliegue.

Tenga en cuenta sin embargo, que muchos de los atributos de calidad son en realidad un poco dificil para validar y

probar. En este ejemplo, seria poco probable que en las pruebas para la primera

|. Gorton, Arquitectura de Software esencial, 23
DOI 10.1007 / 978-3-642-19176-3_3, # Springer-Verlag Berlin Heidelberg 2011

3 Atributos de Calidad de Software

liberar, un caso de prueba seria instalar y con fi gura la aplicacién en 10.000 ordenadores de sobremesa. No puedo ver a un
jefe de proyecto firmando en esa prueba alguna manera.

Aqui es donde el sentido comun y la experiencia vienen en. La solucién adoptada, obviamente, debe funcionar para
el despliegue de 100 usuarios inicial. Sobre la base de los mecanismos exactos utilizados en la solucion (tal vez de
descarga de Internet, software de gestion de escritorio corporativo, etc), podemos entonces sélo analizarlo a lo mejor de
nuestra capacidad para evaluar si el requisito de escalabilidad de concreto se pueden cumplir. Si no hay AWS fl obvias
o problemas, es probablemente seguro asumir la solucién se escala. Pero va a escalar a 10.000? Como siempre con el
software, sélo hay una manera de estar absolutamente, 100% seguro, ya que “es toda la charla hasta las pistas de

codigo”. 1

Hay muchos atributos de calidad en general, y la descripcion de todos en detalle por si sola podria llenar un libro
o dos. Lo que sigue es una descripcion de algunos de la cualidad mas relevante atributos para aplicaciones
generales de Tl, y un poco de debate sobre los mecanismos de arquitectura que son ampliamente utilizados para
proporcionar soluciones para los atributos de calidad exigidos. Estos le daran un buen lugar para empezar cuando se

piensa en las cualidades de una aplicacion que se esta trabajando debe poseer.

3.2 Rendimiento

Aunque para muchas aplicaciones, el rendimiento no es un problema muy grande, que obtiene la mayor parte de la atencién en

la comunidad atributo de calidad lleno de gente. Sospecho que esto se debe a que es una de las cualidades de una aplicacion

que a menudo pueden ser facilmente cuanti fi car y validado. Cualquiera que sea la razén, cuando las cuestiones de rendimiento, De
Verdad si importa. Las aplicaciones que funcionan mal en algun aspecto critico de su comportamiento son candidatos probables

para convertirse en animales atropellados en la carretera de ingenieria de software.

Un requisito de la calidad del desempefio de fi ne una medida que nos indica la cantidad de trabajo de una aplicacién
debe realizar en un tiempo determinado, y / o plazos que se deben cumplir para un correcto funcionamiento. Pocas
aplicaciones de TI tienen duro en tiempo real restricciones como las que se encuentran en avionica o robética sistemas, en
la que si alguna salida se produce un milisegundo o tres demasiado tarde, las cosas realmente desagradables e
indeseables puede suceder (voy a dejar que el lector utilice su imaginacion aqui). Pero las aplicaciones que necesitan para
procesar cientos, a veces miles y decenas de miles de transacciones por segundo se encuentran en muchas de las grandes

organizaciones, especialmente en el mundo de la finanzas, las telecomunicaciones y el gobierno.

El rendimiento por lo general se manifiesta en las siguientes medidas.

3.2.1 rendimiento

El rendimiento es una medida de la cantidad de trabajo que debe realizar una solicitud por unidad de tiempo. El trabajo

se mide tipicamente en transacciones por segundo (TPS), o mensajes

1 Ward Cunningham a su fi nido! 24

3.2 Rendimiento 25

procesadas por segundo (mps). Por ejemplo, una aplicacién de banca en linea podria tener para garantizar
que puede ejecutar 1.000 TPS de clientes de banca por Internet. Un sistema de gestién de inventario de un
gran almacén que tenga que procesar 50 mensajes por segundo de los socios comerciales que solicitan
ordenes.

Es importante entender precisamente lo que se quiere decir con un requisito de caudal. Es que el rendimiento
promedio durante un periodo determinado de tiempo (por ejemplo, un dia habil), o pico de rendimiento? Esta es una
distincion crucial.

Un claro ejemplo de esto es una aplicacion para hacer sus apuestas sobre acontecimientos tales como carreras de
caballos. Para la mayoria de las veces, una aplicacion de esta calafia hace muy poco trabajo (personas en su mayoria hacen
sus apuestas justo antes de una carrera), y por lo tanto tiene un requisito de caudal promedio bajo y facilmente alcanzable.
Sin embargo, cada vez que hay un evento de carreras, tal vez todas las noches, el periodo mas o menos 5 minutos antes de
cada carrera ve miles de apuestas estan colocados cada segundo. Si la aplicacion no es capaz de procesar estas apuestas,
ya que se colocan, entonces el negocio pierde dinero, y los usuarios se vuelven muy descontentos (y negando los jugadores
la oportunidad de perder dinero no es una buena cosa para cualquier persona). Por lo tanto, para este escenario, la aplicacion
debe estar disefiado para satisfacer anticipada pico rendimiento, no son promedio. De hecho, soporta solamente el

rendimiento promedio es probable que sea un “cambio en las carreras” error de disefio para un arquitecto.

3.2.2 Tiempo de respuesta

Esta es una medida de la latencia de una aplicacion exposiciones en el procesamiento de una transaccion de negocios. El
tiempo de respuesta es mas a menudo (pero no exclusivamente) asociado a la vez que una aplicacion se necesita para
responder a alguna entrada. Un tiempo de respuesta rapida permite a los usuarios trabajar con mayor eficacia, y por lo
tanto es bueno para los negocios. Un excelente ejemplo es una aplicacién de punto de venta que soporta un gran
almacén. Cuando un elemento se escanea en la caja, una forma rapida, segundo o menos la respuesta del sistema con el
precio del articulo, el cliente que puede ser servido rapidamente. Esto hace que el cliente y la tienda feliz, y eso es una

buena cosa para todos los actores involucrados.

Una vez mas, a menudo es importante distinguir entre los tiempos de respuesta garantizados y media. Algunas
aplicaciones pueden necesitar todas solicitudes de ser atendidas dentro de un limite de tiempo especifico ed. Este es un
tiempo de respuesta garantizado. Otros pueden especificar un tiempo medio de respuesta, lo que permite latencias mas
grandes cuando la aplicacion estda muy ocupado. Es también muy extendida en el Ultimo caso para un requisito de tiempo
de respuesta limite superior para ser especi fi. Por ejemplo, el 95% de todas las solicitudes debe ser procesado en menos

de 4 s, y no hay peticiones debe tener mas de 15 s.

3.2.3 Plazos

Seguramente todos hemos oido hablar del sistema de prediccion del tiempo que tomé 36 horas para producir el
prondstico para el dia siguiente! No estoy seguro si esto es apdcrifa, pero es un excelente ejemplo de la necesidad

de cumplir con un plazo de rendimiento. en los plazos

3 Atributos de Calidad de Software

el mundo de Tl se asocia comUnmente con los sistemas por lotes. Un sistema de pago de seguridad social debe
completar en el tiempo para depositar los pagos por el demandante en sus cuentas en un dia determinado. Si fi
acabados finales, los solicitantes no se les paga cuando esperan, y esto puede causar trastornos y dolor severo, y
no sélo para los reclamantes. En general, cualquier aplicacion que tiene una ventana de tiempo limitada para

completar tendra un requisito plazo el rendimiento.

Estos tres atributos de rendimiento de todo pueden ser claramente especi fi y validado. Sin embargo, hay un
error comun a evitar. Se encuentra en la definicién de una transaccion, peticion o el mensaje, todas las cuales se
utilizo deliberadamente muy imprecisa en lo anterior. En esencia se trata de la definicién de la carga de trabajo de
una aplicacion. La cantidad de procesamiento requerida para una transaccioén de negocios dada es una aplicacion
especifica
medida. Incluso dentro de una aplicacion, es probable que haya muchos tipos diferentes de solicitudes o transacciones,
variando quizas de base de datos rapida las operaciones de lectura, a las actualizaciones complejas a multiples bases de
datos distribuidas.

Simplemente, no existe una medida genérica carga de trabajo, que depende enteramente de lo que el trabajo esta
haciendo la aplicacion. Por lo tanto, al coincidir para cumplir con una medida de rendimiento dado, ser preciso sobre la carga

de trabajo exacta o mezcla transaccion, de fi nido en términos applicationspeci fi cas, que esta firmando.

v Renedinticntondeb Siste reirded BPEz grafica de usuario 26

El rendimiento en el sistema ICDE es un atributo de calidad importante. Uno de los requisitos clave de
rendimiento se refiere a la naturaleza interactiva del ICDE. Cuando los usuarios realizan sus tareas de trabajo,
la parte cliente de la aplicacion ICDE clave trampas y las acciones del ratén y los envia al servidor ICDE para su
almacenamiento. En consecuencia, es muy importante que los usuarios ICDE no experimentan ningun retraso

en el uso de sus aplicaciones mientras que el software ICDE atrapa y almacena eventos.

Atrapando usuario y la aplicacion generada eventos en la interfaz grafica de usuario se basa en el aprovechamiento de la
interfaz de programacion de aplicaciones del sistema fi co-plataforma especifica (API). Las API proporcionan ganchos en los
mecanismos de control de eventos interfaz grafica de usuario y el sistema operativo subyacente. La implementacion de esta
funcionalidad es una preocupacion aplicacion cliente ICDE, y por lo tanto es responsabilidad del equipo cliente ICDE para

asegurar que esto se lleva a cabo como fi ciente y rapido como sea posible.

Una vez que se atrapa un evento, el cliente ICDE debe llamar al servidor para almacenar el evento en el
almacén de datos. Es vital, por tanto, que esta operacion no contribuye cualquier retraso que el usuario pueda
experimentar. Por esta razén, cuando se detecta un evento, se escribe en una cola en memoria en el cliente
ICDE. Una vez que el evento se almacena en la cola, el hilo de la deteccion de eventos devuelve inmediatamente
y espera para capturar el préximo evento. Esta es una operacién muy rapida y por lo tanto presenta un retraso
significativo. Otro hilo conductor en el fondo tira constantemente eventos de la cola y llama al servidor ICDE para

almacenar los datos.

Esta solucién dentro del cliente ICDE desacopla la captura y almacenamiento de eventos. Un retraso de escritura al

3.3 Escalabilidad 27

codigo. Desde la perspectiva del servidor ICDE, esto es crucial. El servidor debe por supuesto estar disefiado para almacenar
eventos en el almacén de datos lo mas rapido posible. Sin embargo, el disefio de servidor se puede garantizar que sélo habra
alguna vez una peticion de un cliente por estacion de trabajo de usuario en vuelo FL en cualquier instante, ya que sélo hay un

hilo en cada cliente que envia el flujo de eventos de usuario en el servidor.

Asi que para el servidor ICDE, sus requisitos de rendimiento clave eran faciles de especificar. Debe proporcionar por debajo del

segundo promedio de los tiempos de respuesta a las solicitudes del cliente ICDE.

3.3 Escalabilidad

Vamos a empezar con un representante de fi nicion de escalabilidad 2:
La recuperacion de una solucion a un problema funcionara cuando el tamafo del problema aumenta.

Esto es util en un contexto arquitectonico. Nos dice que la escalabilidad es acerca de como un disefio puede hacer
frente a algunos aspectos de los requisitos de la aplicacién cada vez mayores en tamafio. Para llegar a ser un requisito
atributo de calidad del hormigdn, necesitamos entender exactamente lo que se espera conseguir mas grande. Aqui hay

unos ejemplos:

3.3.1 Solicitud de carga

Basado en cierta mezcla Ned de fi de peticiones en una plataforma de hardware dada, una arquitectura para una aplicacion de
servidor puede estar disefiado para soportar 100 tps a carga pico, con una media de 1 s tiempo de respuesta. Si esta carga de

solicitudes fueron creciendo en diez veces, puede el soporte de la arquitectura de este aumento de la carga?

En el mundo perfecto y sin capacidad de hardware adicional, como la carga aumenta, el rendimiento de
aplicacion debe permanecer constante (es decir, 100 tps), y tiempo de respuesta por la peticion debe aumentar
solamente linealmente (es decir, 10 s). Una solucién escalable luego permitir la capacidad de procesamiento
adicional para ser desplegado para aumentar el rendimiento y disminuir el tiempo de respuesta. Esta capacidad
adicional puede ser desplegado de dos maneras diferentes, uno mediante la adicién de mas CPU 3 (y la memoria
probable) a la maquina de las aplicaciones se ejecuta en (escalar), el otro de la distribucion de la aplicacion en
varios equipos (escalar). Esto se ilustra en la fig. 3.1 . Escala hasta funciona bien si es multiproceso una
aplicacion, o multiples instancias de proceso roscados individuales puede ejecutarse juntos en la misma
maquina. Este ultimo, por supuesto, consumir memoria adicional y recursos asociados, como son los procesos

de vehiculos pesados, hambrientos de recursos para lograr la concurrencia.

2 De http://www.hyperdictionary.com

3 La adicién de una CPU mas rapida nunca es una mala idea tampoco. Esto es especialmente cierto si una aplicacion tiene componentes o calculos

que son inherentemente de un solo subproceso.

3 Atributos de Calidad de Software

|:| Scale-up: instancia de

aplicacion individual se

f—
—_— ejecuta en una maquina
multiprocesador

= Escala-out: Aplicacion Solicitud
replicado en diferentes
mdquinas

—
—————
Solicitud
|:| |:| |:| uPC
Z————\ Z——\
——\ —————\ ——\
———\

iag pueden o deben extraerse. 28
Solicitud

el rendimiento de las versione$ aqtuales de estas tecnolog
Solicitud Solicitu

Fig. 3.1 Escalar frente ampliar

Escalar funciona bien si hay poco o, idealmente, ningun trabajo adicional necesario gestionar la distribucién de las
solicitudes entre las multiples maquinas. El objetivo es mantener cada maquina igualmente ocupado, ya que la inversion en
mas de hardware se desperdicia si una maquina esta totalmente cargado y otros ralenti de distancia. La distribucion de

6casatadlesoanesaltyibe sy eRtimBIEHiBlRS BReViRASIRS CIPsie FRIPSsRbSAUYRIIRE!S ABERItamente ninguna conclusion sobre

Es importante destacar que, para cualquiera de los enfoques, escalabilidad debe lograrse sin modificaciones a la
arquitectura subyacente (aparte de los cambios fi guracion inevitable Con Si se utilizan multiples servidores). En
realidad, como la carga aumenta, las aplicaciones exhibiran una disminucion en el rendimiento y un aumento
exponencial posterior en el tiempo de respuesta. Esto sucede por dos razones. En primer lugar, el aumento de las
causas de ocupacién aumenté la contencion de recursos, tales como la CPU y la memoria por los procesos y los hilos
en la arquitectura del servidor. En segundo lugar, cada solicitud consume algun recurso adicional (espacio de

amortiguacién, cerraduras, etc.) en la aplicacion, y, finalmente, este recurso se agota y los limites de escalabilidad.
arquitecturas para aplicaciones empresariales JavaBean, en IEEE Internet Computing, vol.7, no. 3, paginas 18-23, 2003. Tenga en

Como ilustracion, la fig. 3.2 muestra cdmo seis versiones diferentes de la misma aplicacién implementados
utilizando diferentes servidores de aplicaciones JEE realizan a medida que aumenta la carga de 100 a 1.000
clientes. 4

4 El contexto completo para estas cifras se describe en: |.Gorton, A Liu, Evaluacion del desempefio de los componentes alternativos

3.3 Escalabilidad 29

2500
S A ——— —+—WASSB
—=— JBoss SB
» 1500 T - - IAS SB
S R o - SSSB
——WLSSB
500 - Eg—n === —e—BESSB
0 ; .
0 500 1000 1500

Mo. of Clients

Fig. 3.2 Efectos del aumento de la carga peticion del cliente en las plataformas JEE

3.3.2 conexiones simultaneas

Una arquitectura puede estar disefiado para soportar 1.000 usuarios concurrentes. ; Cémo responde la arquitectura si
este numero crece de forma significativa? Si un usuario conectado consume algunos recursos, entonces es probable

que haya un limite en el nimero de conexiones que puede ser apoyado de manera efectiva.

Me encontré con un ejemplo clasico de este problema al realizar una revisién de la arquitectura de un
proveedor de servicios de Internet (ISP). Cada vez que un usuario conectado al servicio, la aplicacién del
ISP dio lugar a un nuevo proceso en su servidor que era responsable de distribuir publicidad dirigida al
usuario. Esto funcion6é muy bien, pero cada proceso consume considerables recursos de memoria y de
procesamiento, incluso cuando el usuario conecta de forma sencilla y no hizo nada. Las pruebas
revelaron rapidamente que las maquinas de servidor del ISP s6lo podian apoyar alrededor de 2.000
conexiones antes de su memoria virtual se agoté y las maquinas de molido de manera efectiva a un alto
en un frenesi de basura de disco. Esto hizo escalar las operaciones del ISP para apoyar a 100.000
usuarios de una proposicion prohibitivamente caro, y, finalmente, a pesar de los esfuerzos desesperados
de redisefio,

3.3.3 Tamaiio de Datos

En pocas palabras, ;cémo se comporta una aplicacion como los datos que procesa los aumentos en el tamafio? Por
ejemplo, una aplicacién de intermediario de mensajes, tal vez una sala de chat, puede estar disefiada para procesar los
mensajes de un tamafio medio esperado. s Qué tan bien reaccionara la arquitectura si el tamafio de los mensajes crece de
forma significativa? En un tono ligeramente diferente, una solucion de gestion de la informacién puede estar disefiada para
buscar y recuperar datos de un repositorio de un tamafo fi cado. ¢ Cémo se comportara la aplicacion si el tamafio del

repositorio crece, en términos de tamafio prima y / o el niumero de articulos? El Gltimo

30 3 Atributos de Calidad de Software

se esta convirtiendo en un problema tal que ha dado lugar a toda un area de investigacion y desarrollo conocido como
computacion intensiva de datos. 5

3.3.4 despliegue

¢De qué manera el esfuerzo involucrado en el despliegue o la modificacion de una aplicacién a una base creciente de
usuarios crezca? Esto incluiria esfuerzo para su distribucion, con fi guracion y puesta al dia con las nuevas versiones.
Una solucion ideal seria proporcionar mecanismos automatizados que pueden desplegarse de forma dinamica y gurar
con fi una aplicacion a un nuevo usuario, la captura de la informacion de registro en el proceso. Esta es, de hecho,

exactamente cuantas aplicaciones se distribuye hoy en Internet.

3.3.5 Algunas reflexiones sobre Escalabilidad

El disefio de arquitecturas escalables no es facil. En muchos casos, la necesidad de escalabilidad temprano en el disefio
no es aparente y no se especi fi ca como parte de los requisitos de atributos de calidad. Se necesita un arquitecto
inteligente y atento para garantizar enfoques inherentemente no escalable no se introducen como componentes
arquitectonicos basicos. Incluso si la escalabilidad es un atributo de calidad requerida, validando que es fi satisfecho por
una solucién propuesta a menudo simplemente no es practico en términos de programacion o el costo. Es por eso que

es importante para un arquitecto que se basan en disefios y tecnologias siempre que sea practico de eficacia probada.

3.3.6 Escalabilidad para la aplicacion ICDE

El principal requisito para la escalabilidad del sistema ICDE es apoyar el nimero de usuarios previstos en el
mayor despliegue ICDE anticipada. Los requisitos especifican esto como aproximadamente 150 usuarios. Por
consiguiente, la aplicaciéon de servidor ICDE debe ser capaz de manejar una carga pico de 150 solicitudes

simultaneas de los clientes ICDE.

3.4 capacidad fi Modi

Todos los arquitectos de software capaces saben que, junto con la muerte y los impuestos, modificaciones a un sistema
de software durante su vida util son simplemente un hecho de la vida. Es por eso que teniendo en cuenta posibles

cambios a la aplicacion es una buena practica durante

5 Una buena descripcion de los computacion intensiva de datos y algunos enfoques interesantes es la edicion especial de la

|EEE Computer partir de abril de 2008 - http://www2.computer.org/portal/web/csdl/ revistas / equipo # 3

3.4 capacidad fi Modi 31

formulacion arquitectura. Cuanto mas flexibilidad que puede ser integrado en un disefio inicial, a continuacion, los

cambios subsiguientes menos doloroso y costoso sera. Esa es la teoria de todos modos.

El atributo de calidad capacidad modificado es una medida de lo facil que puede ser para cambiar una aplicacion para
atender a los nuevos requerimientos funcionales y no funcionales. Observe el uso de “may” en la frase anterior. La
prediccién de la capacidad modificado requiere una estimar
de esfuerzo y / o el costo de hacer un cambio. Sélo se sabe con certeza lo que un cambio va a costar después de que se ha
hecho. A continuacion, encontramos lo bueno que era su estimacion.

Modi fi mide la capacidad sélo son relevantes en el contexto de una solucién arquitectonica dada. Esta solucion debe
expresarse al menos estructuralmente como una coleccién de componentes, las relaciones de los componentes y una
descripcién de como los componentes interactian con el medio ambiente. A continuacion, evaluar la capacidad
modificada requiere el arquitecto para hacer valer los escenarios de cambio probables que captan como pueden
evolucionar los requisitos. A veces, estos seran conocidos con un grado razonable de certeza. De hecho, los cambios
pueden incluso ser especificados en el plan de proyecto para las versiones posteriores. Gran parte del tiempo, sin
embargo, tendra que ser solicitada a las partes interesadas de aplicacion, y extraidos de la experiencia del arquitecto

posibles modificaciones. Hay infinitamente de un elemento de una bola de cristal involucrados.

escenarios de cambio ilustrativos son:

\Proporcionar acceso a la aplicacion a través rewalls fi, ademas de existente
“Detras del cortafuego” de acceso.

\Incorporar nuevas caracteristicas de auto check-in check-out.

\El proveedor de software de reconocimiento del habla COTS se retira del negocio y necesitamos

para reemplazar este componente.

iLa aplicacion tiene que ser portado a Linux para el Microsoft Windows

plataforma.

Para cada escenario de cambio, el impacto del cambio previsto en la arquitectura se puede evaluar. Este
impacto no suele ser facil de cuantificar, ya que mas a menudo que no no existe la solucién que se esta
evaluando. En muchos casos, lo mejor que se puede lograr es un andlisis de impacto convincente de los
componentes de la arquitectura que se necesita modi fi cacién, o una demostracion de como la solucion

puede adaptarse a la modi fi cacion sin cambios.

Por ultimo, sobre la base de costo, tamafio o del esfuerzo estimaciones de los componentes afectados, algunas
utiles cuanti fi cacion del coste de un cambio se puede realizar. Los cambios aislados a los componentes individuales o
subsistemas débilmente acoplados son probable que sea menos caro de fabricar que los que causan efectos de la
ondulacién a través de la arquitectura. Si un cambio probable parece dificil y complejo de hacer, esto puede destacar

una debilidad en la arquitectura que pudiera justificar un nuevo examen y redisefio.

Una palabra de precaucién debe ser emitida aqui. Si bien débilmente acoplados, facilmente modi fi arquitecturas capaces son
generalmente “una buena cosa”, el disefio para la capacidad modificada necesita ser pensada cuidadosamente. Altamente
arquitecturas modulares pueden llegar a ser excesivamente compleja, incurrird en gastos adicionales de rendimiento y requieren
significativamente mas disefio y esfuerzo de construccion. Esto puede ser justificado en algunos sistemas que deben estar

altamente con fi gurable tal vez en la implementacion o en tiempo de ejecucion, pero a menudo no lo es.

32 3 Atributos de Calidad de Software

Usted probablemente ha escuchado algunos sistemas descritos como “sobre ingenieria”, lo que significa
esencialmente invertir mas esfuerzo en un sistema que se justifica. Esto se hace a menudo porque los arquitectos
creen que saben las necesidades futuras de su sistema, y decide que lo mejor es hacer un disefio mas flexible o
sofisticados, por lo que puede adaptarse a las necesidades previstas. Eso suena razonable, pero requiere una bola

de cristal fiable. Si las predicciones son erréneas, mucho tiempo y dinero se puede desperdiciar.

Hace poco estaba en el periférico de un proyecto de este tipo. La ventaja técnica pasé 5 meses establecimiento
de una arquitectura basada en la mensajeria cuidadosamente disefiado basado en el patrén de inyeccion de
dependencia. s El objetivo era hacer que esta arquitectura extremadamente robusto y crear modelos de datos
flexibles para la mensajeria y el almacén de datos subyacente. Con estos en su lugar, la teoria era que la
arquitectura podria ser reutilizado una y otra vez con el minimo esfuerzo, y seria sencillo para inyectar nuevos

componentes de procesamiento debido a la flexibilidad que ofrece la inyeccion de dependencias.

La palabra teoria en la frase anterior fue cuidadosamente elegido sin embargo. Los actores del sistema se
impacientd, preguntandose por qué tanto esfuerzo estaba siendo gastado en una solucién tan sofisticada, y
pidieron ver alguin progreso demostrable. La ventaja técnica resistié, insistiendo en que su equipo no debe ser
desviada y continué a abrazar a largo plazo beneficios de la arquitectura. Al igual que esta solucién inicial fue a
punto de finalizar, los participantes perdieron la paciencia y reemplazaron la ventaja técnica con alguien que

estaba promoviendo una solucién mucho mas simple, servidor Web basado como su fi ciente.

Este fue un caso clasico de manipulacion excesiva. Mientras que la solucién original era elegante y
podria haber cosechado grandes beneficios en el largo plazo, tales argumentos son esencialmente
imposible ganar a menos que pueda mostrar evidencia demostrable, concreta de este a lo largo del
camino. La adopcion de enfoques agiles es la clave del éxito aqui. Hubiera sido sensata para construir
una version inicial de la arquitectura de nucleo en unas pocas semanas y demostrar esto abordar una
historia / usuario caso de uso que fue significativo para el actor. La manifestacion habria implicado
algunos elementos prototipicos de la arquitectura, no seria probado completamente, y sin duda se
requiere un cierto cédigo de usar y tirar para implementar el caso de uso - por desgracia todas las cosas
desagradables a la direccién técnica. El éxito aunque hubiera construido confianza con las partes
interesadas en la solucion técnica,

La clave entonces es no dejar que la pureza de disefio conducir un disefio. Por el contrario, concentrandose en los
requisitos conocidos y evolucionando y refactorizacion la arquitectura a través de iteraciones regulares, mientras que la
produccion de cédigo que se ejecuta, tiene mucho sentido en casi todas las circunstancias. Como parte de este proceso, se
puede analizar continuamente su disefio para ver qué mejoras futuras que pueda adaptarse (o no). Trabajando en estrecha
colaboracion con las partes interesadas puede ayudar a generar altamente probables necesidades futuras, y eliminar las que
parece muy poco probable. Deja que estas impulsan la estrategia de arquitectura por todos los medios, pero nunca pierden de

vista los requisitos conocidos y los resultados a corto plazo.

6 http://martinfowler.com/articles/injection.html

3.5 Seguridad 33

3.4.1 capacidad fi Modi para la aplicacion ICDE

Modi fi capacidad para la aplicacion ICDE es un culto di fi a uno especificar. Un requisito probable seria
que la gama de eventos atrapados y almacenados por el cliente ICDE que ser ampliado. Esto tendria
implicaciones en el disefio tanto del cliente ICDE y el almacén de servidor ICDE y datos.

Otra seria de herramientas de terceros para quieren comunicar nuevos tipos de mensajes. Esto tendria
implicaciones en los mecanismos de intercambio de mensajes que el servidor ICDE apoyo. Por lo tanto estos dos

escenarios capacidad modi fi podrian utilizarse para probar el disefio resultante para la facilidad de modi fi cacion.

3.5 Seguridad

La seguridad es un tema técnico complejo que solo puede ser entendido tanto superficialmente aqui. A nivel
arquitectdnico, la seguridad se reduce a la comprension de los requisitos de seguridad precisas para una
aplicacion, y la elaboracién de mecanismos para apoyarlos. Los requisitos mas comunes relacionados con la

seguridad son:

1Autenticacion: Las aplicaciones pueden verificar la identidad de sus usuarios y otros

aplicaciones con las que se comunican.
1Autorizacion: usuarios y aplicaciones autenticados tienen de fi nida derechos de acceso
a los recursos del sistema. Por ejemplo, algunos usuarios pueden tener acceso de sélo lectura a los datos de la

aplicacién, mientras que otros tienen de lectura-escritura.
rencriptacion: Los mensajes enviados a / de la aplicacion estan cifrados.

1Integridad: Esto asegura que el contenido de un mensaje no se alteran durante el transporte.
\El no rechazo: El remitente de un mensaje tiene prueba de la entrega y el receptor
se asegura la identidad del remitente. Esto no significa ni puede refutar posteriormente su participacion en el

intercambio de mensajes.

Hay tecnologias bien conocidas y ampliamente usados que soportan estos elementos de seguridad
de las aplicaciones. El Secure Socket Layer (SSL) y las infraestructuras de clave publica (PKI) se utilizan
comunmente en las aplicaciones de Internet para proporcionar autenticacion, cifrado y no repudio.
Autenticacion y autorizacion se apoya en tecnologias Java utilizando el JAAS (JAAS). Los sistemas
operativos y bases de datos proporcionan seguridad basada inicio de sesion para la autenticacion y
autorizacion.

Con suerte que esta obteniendo la imagen. Hay muchas maneras, de hecho, a veces demasiados, para apoyar a los
atributos de seguridad requerido para una aplicacién. Bases de datos quieren imponer su modelo de seguridad en el
mundo. disefiadores .NET felizmente aprovechar las caracteristicas de seguridad operativos Windows. Las aplicaciones
Java pueden aprovechar JAAS sin grandes problemas. Si una aplicacion solo necesita ejecutar en uno de estos dominios
de seguridad, a continuacién, las soluciones son facilmente disponibles. Si una aplicacién consta de varios componentes

que todos deseamos para administrar la seguridad, las soluciones adecuadas deben estar

3 Atributos de Calidad de Software

disefiado que normalmente se localizan gestion de la seguridad en un solo componente que aprovecha la
tecnologia mas apropiada para satisfacer los requisitos.

3.5.1 Seguridad para la aplicacién ICDE

Autentificacion de usuarios ICDE y herramientas de terceras partes es ICDE los principales requisitos de seguridad para
JUGpda FRHEURRTHSE, ALeSLa e SRERRIABIRZS R R IRSMiSe $OMRIEIR0 Ycontrasenia que esta autenticado por la base
de datos. Esto les da acceso a los datos en el almacén de datos asociado a sus actividades. v2.0 ICDE tendra que
admitir la autenticacién similar para los usuarios, y ampliar este para manejar herramientas de terceros. También, como
herramientas de terceros pueden ser ejecutar de forma remota y acceder a los datos del ICDE sobre una red insegura,

los datos en transito deben estar cifrados.
recuperables son como se detectan los fallos y recuperaciéon comienza (preferiblemente de forma automatica), y el tiempo

3.6 disponibilidad

resolver las transacciones que estaban vuelo fl in- cuando se produjo el error. temas interesantes para aplicaciones

La disponibilidad se relaciona con la fiabilidad de una aplicacién. Si una aplicacién no esta disponible para su uso cuando sea
necesario, entonces es poco probable que sea llenado cumplir sus requisitos funcionales. La disponibilidad es relativamente
facil de especificar y medir. En cuanto a las especi fi caciones, muchas aplicaciones de Tl deben estar disponibles al menos

durante las horas normales de trabajo. La magoria de los sitios de Internet desean 100;%(7:de disponibilidad, ya gue no existen
i

de base de datos falla, no esta disponible hasta que se haya recuperado. Esto significa reiniciar la aplicacion de servidor, y

las horas regulares de linea. Para un sistema vivo, la disponibilidad puede ser medido por la proporcion del tiempo que se

requiere es utilizable.

Los fallos en las aplicaciones hacen que ellos no estén disponibles. Fracasos impacto en la fiabilidad de una
Iicacion SURERINUMSRIERS Muds004e! damPasardieRnte falies d@URgiiurh dlisIRRua A EL RESIAL 8 idor
indisponibilidad tiene una duracién esta determinada por la cantidad de tiempo que se necesita para detectar el fallo y
reiniciar el sistema. En consecuencia, las aplicaciones que requieren alta disponibilidad minimizar o eliminar
preferiblemente puntos Unicos de fallo, y mecanismos de instituto que detectan automaticamente fracaso y reinicie los
componentes que han fallado.
capacidad de restablecer los niveles de rendimiento requeridos y recuperar datos afectados después de un fallo de

Replicacion de los componentes es una estrategia de probada eficacia para alta disponibilidad. Cuando un componente
replicado falla, la aplicacion puede continuar con la ejecucion usando réplicas que siguen funcionando. Esto puede conducir a una
disminucion del rendimiento, mientras que el componente que ha fallado es hacia abajo, pero la disponibilidad no se vea
comprometida.

Recuperabilidad esta estrechamente relacionado con la disponibilidad. Una aplicacion es recuperable si tiene la

3.7 Integracion 35

Durante el proceso de recuperacion, la aplicacién no esta disponible, y por lo tanto el tiempo medio para recuperar es una

medida importante a tener en cuenta.

3.6.1 Disponibilidad para la aplicacién ICDE

Mientras que la alta disponibilidad para la aplicacion ICDE es deseable, es solo es crucial que estén disponibles durante las
horas de oficina de la del medio ambiente o fi cina se despliega en. Esto deja un amplio margen de tiempo de inactividad para
las necesidades tales como actualizacién del sistema, copia de seguridad y mantenimiento. Sin embargo, la solucién debe
incluir mecanismos tales como la replicacién componente para asegurar tan cerca de 100 Disponibilidad% como sea posible

durante el horario comercial.

3.7 Integracion

La integracién se refiere a la facilidad con la que una aplicacion se puede incorporar de forma Util en un contexto de
aplicacién mas amplio. El valor de una aplicaciéon o componente de frecuencia se puede aumentar en gran medida si
su funcionalidad o datos pueden ser utilizados de manera que el disefiador no anticipé originalmente. Las estrategias

mas comunes para proporcionar la integracion son a través de la integracion de datos o la prestacion de un API.

La integracion de datos implica el almacenamiento de los datos de una aplicacién manipula de manera que otras
aplicaciones pueden tener acceso. Esto puede ser tan simple como usar una base de datos relacional estandar para el
almacenamiento de datos, o tal vez la implementaciéon de mecanismos para extraer los datos en un formato conocido como

XML o un texto separado por comas fi | que otras aplicaciones puedan ingerir.

Con la integracion de datos, las formas en que se utilizan los datos (o abusado) por otras aplicaciones es bastante
fuera del control del propietario original de datos. Esto es porque las reglas de integridad de datos y de negocios
impuestas por la légica de aplicacién son por-pasado. La alternativa es que la interoperabilidad a través de una API
(ver Fig. 3.3). En este caso, los datos en bruto de la aplicacion posee se oculta detras de un conjunto de funciones que
facilitan el acceso controlado a los datos externa. De esta manera, las reglas de negocio y de seguridad se pueden
hacer cumplir en la implementacién de la API. La unica forma de acceder a los datos y la integracion con la aplicacion

es mediante el uso de la API suministrado.

a través de una

b fachada de API
Solicitud API &

Aplicacion de
terceros

Interoperabilidad alcanzado por el acceso

Fig. 3.3 opciones de integracion directo a los datos

3 Atributos de Calidad de Software

La eleccidn de la estrategia de integracion no es simple. La integracion de datos es flexible y simple. Las
aplicaciones escritas en cualquier lenguaje pueden procesar texto, o acceder a bases de datos relacionales con SQL. La
construccion de un API requiere mas esfuerzo, pero proporciona un entorno mucho mas controlado, en cuanto a la
exactitud y la seguridad, para la integracion. También es mucho mas robusto desde una perspectiva de integracion, ya
que los clientes API estan aislados de muchos de los cambios en las estructuras de datos subyacentes. Que no se
rompen cada vez que el formato es modi fi cado, como los formatos de datos no estan directamente expuestos y

accesibles. Como siempre, la mejor eleccion de la estrategia depende de lo que quiere lograr, y qué problemas existen.

3.7.1 Integracion para la aplicacién ICDE

mas dificil”. CAR Hoare. 36

Los requisitos de integracion para ICDE giran en torno a la necesidad de apoyar las herramientas de analisis de terceros partido.
Tiene que ser un bien de fi nida y el mecanismo entiende por herramientas de terceros para acceder a los datos en el almacén de
datos ICDE. Como herramientas de terceros a menudo se ejecutara de forma remota desde un almacén de datos ICDE, la
integracion a nivel de datos, permitiendo que las herramientas de acceso directo al almacén de datos, parece poco probable que sea

viable. Por lo tanto es probable que sea facilitado a través de una API soportado por la aplicacion ICDE integracion.

3.8 otros atributos de calidad

Hay muchos otros atributos de calidad que son importantes en diversos contextos de aplicacion. Algunos de

estos son:

Portabilidad: Una aplicacion puede ejecutarse facilmente en un software diferente /

deficiencias, y la otra forma es hacerlo tan complicado que no ha’;/ deficiencias obvias. El primer método es mucho
plataforma de hardware a la que se ha desarrollado para? Portabilidad depende de las opciones de la
tecnologia de software utilizados para implementar la aplicacién y las caracteristicas de las plataformas
que necesita para ejecutar. Facilmente bases de coédigo portatiles tendran sus dependencias plataforma
aislados y encapsulados en un pequefio conjunto de componentes que se pueden sustituir sin afectar al

resto de la aplicacion.

1la capacidad de prueba: ;Qué tan fécil o di fi culto es una aplicacion para probar? Las primeras decisiones de disefio
puede afectar en gran medida la cantidad de casos de prueba que se requieren. Como regla general, cuanto un disefio mas
complejo, el culto mas fi cultades que es completamente prueba. La simplicidad tiende a promover la facilidad de las pruebas. 7 Del
mismo modo, escribiendo menos de su propio cédigo mediante la incorporacién de componentes sometidas a pruebas previas
reduce el esfuerzo de prueba.

1la capacidad de soporte: Esta es una medida de cuan facil es una aplicacién para apoyar una vez que se

se despliega. Soporte normalmente implica problemas de diagnéstico y la fi jacion que

7 “Hay dos formas de construir un disefio de software: Una forma es hacerlo tan simple que obviamente no hay

3.10 Resumen 37

ocurrir durante el uso de la aplicacion. sistemas soportables tienden a proporcionar instalaciones para el diagnéstico
explicitos, tales como registros de errores de aplicaciones que registran las causas de los fracasos. También se
construyen de forma modular para que los xes codigo fi se pueden implementar sin el uso de aplicaciones severamente

incomodar.

3.9 compromisos de disefo

Si la vida de un arquitecto eran simples, disefio seria sélo tendra por consecuencia las politicas y mecanismos de construccion
en una arquitectura para satisfacer las caracteristicas de calidad requeridas para una aplicacion determinada. Elegir un atributo

de calidad requerido, y proporcionar mecanismos para apoyarlo.

Por desgracia, este no es el caso. atributos de calidad no son ortogonales. Ellos interactian de maneras sutiles,
lo que significa un disefio que satisface el requisito atributo de una calidad puede tener un efecto perjudicial sobre la
otra. Por ejemplo, un sistema de alta seguridad puede ser dificil o imposible de integrar en un entorno abierto. Una
aplicacion de alta disponibilidad puede disyuntiva menor rendimiento para una mayor disponibilidad. Una aplicacion
que requiere un alto rendimiento puede estar vinculada a una plataforma en particular, y por lo tanto no ser

facilmente portatil.

La comprensién de las compensaciones entre requisitos de atributos de calidad, y el disefio de una solucién que
hace compromisos sensatos es una de las partes mas dificiles de la funcién de la arquitectura. Simplemente no es
posible satisfacer todos los requisitos de la competencia. Es el trabajo del arquitecto de desentraiar estas tensiones,
hacerlas explicitas a los actores del sistema, si es necesario priorizar, y explicitamente documentar las decisiones de
disefio.

¢Le suena facil? Si tan solo este fuera el caso. Es por eso que te pagan grandes cantidades de dinero.

3.10 Resumen

Los arquitectos deben gastar mucho esfuerzo atributos de calidad, precisamente, la comprensién, por lo que un disefio
puede ser concebido para hacerles frente. Parte de la fi cultad cultly es que los atributos de calidad no siempre se
expresan de manera explicita en los requisitos, o adecuadamente capturados por el equipo de ingenieria de requisitos. Es
por eso que un arquitecto debe estar asociado con los requisitos de ejercicio de recopilacion para el sistema, para que

puedan formular las preguntas correctas para exponer y concretar las caracteristicas de calidad que deben ser abordados.

Por supuesto, la comprension de los requisitos de atributos de calidad es mas que un requisito previo necesario
para el disefio de una solucion para satisfacerlas. Conflictivas atributos de calidad son una realidad en todas las
aplicaciones de la complejidad, incluso mediocre. Creacion de soluciones que elegir un punto en el espacio de disefio
que satisface adecuadamente estos requisitos es muy dificil, tanto técnica como social. Esta ultima implica

comunicaciones con las partes interesadas para discutir las tolerancias de disefio, el descubrimiento de escenarios

3 Atributos de Calidad de Software

cuando ciertos requisitos de calidad pueden ser de forma segura relajado, y la comunicacion clara de

compromisos de disefio para que las partes interesadas comprendan lo que estan firmando.

3.11 Lectura adicional

El amplio tema de los requisitos no funcionales esta cubierto muy a fondo en:

L. %%ﬁ&ﬂé%eﬁﬁ%b%ﬁ?@%”% (editores). Requisitos no funcionales en Ingenieria de

Software de la serie: La Serie Internacional Kluwer en Ingenieria de Software. Vol. 5, Editores
Académicos Kluwer. 1999.

Una excelente referencia general sobre la seguridad y las técnicas y tecnologias de un arquitecto debe tener

en cuenta es:
J. Ramachandran. Disefio de la seguridad Soluciones de arquitectura. Wiley & Sons, 2002.

Un enfoque interesante y practico para evaluar la capacidad de modi fi de una arquitectura utilizando herramientas

de la arquitectura de reconstruccion y las métricas de analisis de impacto se describe en:

I. Gorton, L. Zhu. Herramienta de soporte para la Reconstruccion Just-in-Time Arquitectura

y Evaluacién: un relato de experiencia. Conferencia Internacional sobre Ingenieria de Software (CISE)

Capitulo 4
Una introduccién a Middleware arquitecturas y tecnologias

4.1 Introduccién

No soy realmente un gran entusiasta de establecer analogias fuertes entre el papel de un arquitecto de
software y la de un arquitecto edificio tradicional. Hay similitudes, pero también muchas diferencias profundas. 1 Pero
vamos a ignorar esas diferencias para una segunda, con el fin de ilustrar el papel de middleware en la
arquitectura de software.

Cuando un arquitecto disefia un edificio, crean dibujos, esencialmente un disefio que muestra, desde
diversos angulos, la estructura y las propiedades geométricas del edificio. Este disefio se basa en los
requisitos de la construccion, tales como el espacio disponible, la funcién (o fi cina, iglesia, centro comercial,
casa), estética deseada y cualidades funcionales y presupuesto. Estos dibujos son una representacién
abstracta del artefacto concreto previsto (sic).

Obviamente hay una gran cantidad de esfuerzo de disefio sigue siendo necesaria para convertir los dibujos de
arquitectura en algo que la gente puede empezar a construir. Hay disefio detallado de las paredes, disefios de piso,
escaleras, instalaciones eléctricas, de agua y tuberias para nombrar sélo unos pocos. Y como cada uno de estos
elementos de un edificio esta disefiado en detalle, se seleccionan los materiales y componentes para la construccién de
cada uno adecuados.

Estos materiales y componentes son los bloques basicos de construccién para edificios. Han sido creadas para
que puedan cumplir llenar las mismas necesidades esenciales en muchos tipos de edificios, ya sean de torres de

oficina, estaciones de ferrocarril o casas de familias humildes.

Aunque quizas no es la analogia con mas glamour, me gusta pensar en middleware como el equivalente de la

tuberia o tuberias o cableado para las aplicaciones de software. Las razones son las siguientes:

\Middleware proporciona maneras probadas para conectar los diversos componentes de software
en una aplicacién para que puedan intercambiar informacion a través de mecanismos relativamente faciles de usar.
Middleware proporciona las tuberias para el envio de datos entre los componentes, y se puede utilizar en una amplia

gama de diferentes dominios de aplicacion.

1 El siguiente articulo trata de cuestiones: J. Baragry y K. Reed. ¢ Por qué necesitamos una visién diferente de arquitectura de

software. La Conferencia de Trabajo IEEE / IFIP en Arquitectura de Software (WICSA), Amsterdam, Paises Bajos, 2001.

|. Gorton, Arquitectura de Software esencial, 39
DOI 10.1007 / 978-3-642-19176-3_4, # Springer-Verlag Berlin Heidelberg 2011

4 Una introduccién a Middleware arquitecturas y tecnologias

\Middleware se puede utilizar para conectar juntos numerosos componentes en Util, bien

topologias entendido. Las conexiones pueden ser de uno a uno, uno-a-muchos o muchos manyto.

1Desde la perspectiva del usuario de la aplicacion, middleware es completamente oculto. usuarios
interactuar con la aplicacion, y no importa cémo la informacion se intercambia internamente.
Mientras funciona, y funciona bien, es el middleware invisible
infraestructura.

1Los usuarios de la aplicacion tnica de tiempo son siempre conscientes del papel que juega es el middleware

cuando falla. Esto es por supuesto muy parecido a la plomeria real y sistemas de cableado.

No es probable que sea prudente para empujar la analogia de plomeria mas. Pero es de esperar que haya servido a su
propdsito. Middleware proporciona la infraestructura listos para usar para la conexién de componentes de software. Puede
ser utilizado en una gran variedad de diferentes dominios de aplicacién, ya que ha sido disefiado para ser gurable general y

con fi para satisfacer las necesidades comunes de las aplicaciones de software.

4.2 Middleware Tecnologia Clasi fi cacion

Middleware consigui6 su etiqueta, ya que fue concebido como una capa de software “plumbinglike” infraestructura
que estaba sentado entre la aplicacion y el sistema operativo, es decir, la mitad de las arquitecturas de
aplicaciones. Por supuesto, en realidad, el middleware es mucho mas compleja que la plomeria o una simple capa

aislante una aplicacion de los servicios del sistema operativo subyacente.

Diferentes dominios de aplicacion tienden a considerar diferentes tecnologias como middleware. Este libro trata de
las aplicaciones informaticas de comunicacion, y en ese dominio hay una coleccién bastante bien entendido que se
conoce normalmente como middleware. Figura 4.1
proporciona una clasi fi cacion de estas tecnologias, y los nombres de algunos productos / tecnologias que
representan a cada categoria de ejemplo. Una breve explicacion de las categorias estan por debajo, y el resto de este

capitulo y los dos siguientes van a describir en detalle cada uno:

TIBCO Staffware,
ActiveBPEL

Orchestrators Business Process

WebSphere Message
Broker, SonicMQ BizTalk,

intermediarios de mensajes

Servidores de aplicaciones JEE, CCM, .NET mula,

El middleware orientado a
Transporte jes, Objetos Di
SOAP

Fig. 4.1La i ion de las ias de mi 40

4.3 Objetos Distribuidos 41

\La capa de transporte representa los tubos basicos para el envio de solicitudes y moviendo

datos entre los componentes de software. Estos tubos proporcionan instalaciones y mecanismos que hacen

que el intercambio de datos directo en arquitecturas de aplicaciones distribuidas simples.

1Los servidores de aplicaciones suelen ser construido en la parte superior de los servicios basicos de transporte.

Ellos proporcionan capacidades adicionales, tales como los servicios de transacciones, seguridad y directorio.
También apoyan un modelo de programacion para crear aplicaciones basadas en servidor multiproceso que
explotan estos servicios adicionales.

\intermediarios de mensajes explotan, ya sea un servicio basico de transporte y / o aplicacion
servidores y agregan un motor de procesamiento de mensajes especializado. Este motor proporciona funciones
para la transformacién rapida de mensajes y funciones de programacion de alto nivel para de fi nir cémo

intercambiar, manipular y enrutar los mensajes entre los diversos componentes de una aplicacion.

\orchestrators de procesos de negocio (BPO) aumentar las caracteristicas del corredor mensaje a
el trabajo de apoyo fl ujo de aplicaciones de estilo. En tales aplicaciones, los procesos de negocio pueden tomar muchas
horas o dias en completarse debido a la necesidad de las personas para realizar ciertas tareas. BPO proporcionan las
herramientas para describir este tipo de procesos de negocio, ejecutarlas y gestionar los estados intermedios, mientras

que cada paso en el proceso es ejecutado.

4.3 Objetos Distribuidos

La tecnologia de objetos distribuidos es un miembro de la familia venerable middleware. Mejor caracterizado por CORBA, 2
distribuido middleware basado en objetos ha estado en uso desde la década de 1990 anteriores. Como muchos lectores
estaran familiarizados con CORBA y similares, sélo los conceptos basicos son brevemente cubierto en esta seccién para
la integridad.

Un simple escenario de un cliente que envia una solicitud a un servidor a través de un corredor de peticion
de objeto (ORB) se muestra en la Fig. 4.2 . En CORBA, criado objetos interfaces de apoyo que estan especi fi
usando IDL de CORBA (lenguaje de descripcién de interfaz). IDL interfaz de fi ne los métodos que un objeto de

servidor soporta, junto con el parametro y tipos de retorno. Un ejemplo trivial IDL es:

ServerExample modulo {
interfaz MyObject {

isAlive cadena (); }; };

Este IDL interfaz define un objeto CORBA que soporta un solo método,
isAlive, que devuelve una cadena y no toma ningin pardmetro. Un compilador de IDL se utiliza para procesar la

interfaz de fi niciones. El compilador genera un esqueleto objeto en

2 Common Object Request Broker Architecture.

4 Una introduccién a Middleware arquitecturas y tecnologias

Cliente Servidor
Referencia a objeto Servidor
solicitud respuesta
ORB cliente ORB del servidor

Red

Fig. 4.2 objetos distribuido utilizando CORBA 42
un lenguaje de programacion de destino (por lo general, pero no necesariamente, C ++ o Java). El esqueleto objeto

proporciona los mecanismos para llamar a los métodos de implementacion del servidor. El programador debe

entonces escribir el codigo para implementar cada método criado en un lenguaje de programacién nativo:

class MyServant extends MyObjectImplBase {

public String isAlive() {
return "\nLooks like it..\n";
}

El proceso del servidor debe crear una instancia del servidor y hacer que sea exigible a través del ORB:

ORB orb = ORB.init (args, null);
MyServant objRef = new MyServant();
orb.connect (objRef) ;

Un proceso de cliente ahora puede inicializar un ORB cliente y obtener una referencia al servidor que reside
dentro del proceso del servidor. Sirvientes suelen almacenar una referencia a si mismos en un directorio. Clientes
consultar el directorio utilizando un nombre logico simple, y devuelve una referencia a un sirviente que incluye su

ubicacién en la red y la identidad proceso.

ORB orb = ORB.init (args, null);

// Lookup is a wrapper that actually access the CORBA Naming //
Service directory - details omitted for simplicity

MyServant servantRef = lookup (“Myservant”)

String reply = servantRef.isAlive();

La llamada sirviente se parece a una llamada sincrénica a un objeto local. Sin embargo, los mecanismos de
ORB transmiten, o Mariscal, la solicitud y los parametros asociados en toda la red al servidor. El cédigo del

método se ejecuta, y el resultado se calculan las referencias de vuelta al cliente espera.

4.4 middleware orientado a mensajes 43

Esta es una descripcion muy simplista de la tecnologia de objetos distribuidos. Hay mucho mas detalle que debe ser
abordado para construir sistemas reales, temas como excepciones, los funcionarios de localizacion y multihilo, por nombrar
sélo algunos. Desde la perspectiva de un arquitecto, sin embargo, las siguientes son algunas de las preocupaciones

esenciales de disefio que deben ser abordados en aplicaciones:

1Las solicitudes a los servidores son llamadas remotas, y por lo tanto relativamente caro (lento) como

que atraviesan el ORB y de la red. Esto tiene un impacto en el rendimiento. Siempre es aconsejable para disefar interfaces

de modo que las llamadas remotas pueden reducirse al minimo, y el rendimiento es mayor.

1Al igual que cualquier aplicacion distribuida, los servidores pueden ser intermitente o permanente

no disponible debido a la red o proceso, o fallo de la maquina. Las aplicaciones necesitan estrategias para hacer frente al
fracaso y mecanismos para reiniciar servidores que han fallado.

1Si un servidor tiene relacion con el estado de una interaccion con un cliente (por ejemplo, un cliente
objeto almacena el nombre / direccion), y el servidor falla, se pierde el estado. Mecanismos para la recuperacion del

estado en consecuencia deben ser disefiados.

4.4 middleware orientado a mensajes

Orientado a mensajes middleware (MOM) es una de las tecnologias clave para la construccién de sistemas
empresariales a gran escala. Es el pegamento que une a las aplicaciones de otro modo independientes y autbnomos
y los convierte en un sistema Unico e integrado. Estas aplicaciones pueden ser construidas utilizando diversas
tecnologias y ejecutarse en diferentes plataformas. Los usuarios no estan obligados a reescribir sus aplicaciones
existentes o realizar cambios sustanciales (y arriesgadas) solo para que jueguen un papel en una aplicacion en toda la
empresa. Esto se logra mediante la colocacion de una cola entre emisores y receptores, proporcionando un nivel de

indireccién durante las comunicaciones.

Cémo MOM se puede utilizar dentro de una organizacion se ilustra en la Fig. 4.3 . los

MOM crea una bus de software para la integracion de aplicaciones de cosecha propia con herencia

Aplicacione:

de legado

Marco principal

Socios comerciales

Fig. 4.3 Integracion a través de la mensajeria

4 Una introduccién a Middleware arquitecturas y tecnologias

aplicaciones y la conexion de aplicaciones locales con los sistemas de negocio proporcionada por los socios comerciales.

4.4.1 Fundamentos de MOM

MOM es una, la tecnologia asincrona inherentemente imprecisa. Esto significa que el emisor y el receptor de un
mensaje no estan estrechamente unidas, a diferencia de las tecnologias de middleware sincronos como CORBA.
tecnologias de middleware sincronos tienen muchos puntos fuertes, pero pueden dar lugar a disefios fragiles si
todos los componentes y los enlaces de red, siempre hay que estar trabajando al mismo tiempo para todo el

sistema para operar con éxito.

Una infraestructura de mensajeria desacopla emisores y receptores utilizando una cola de mensajes
intermedia. El remitente puede enviar un mensaje a un receptor y saber que va a ser entregado finalmente,
incluso si el enlace de red esté inactivo o el receptor no esta disponible. El remitente simplemente le dice a la
tecnologia MOM para entregar el mensaje y luego contintia con su trabajo. Remitentes no son conscientes de
qué aplicacion o proceso eventualmente procesa la solicitud. Figura 4.4 representa este envio-recepcion

mecanismo basico.

MOM se suele implementar como un servidor que puede manejar mensajes de multiples clientes simultaneos. 3
Con el fin de desacoplar los emisores y receptores, el MOM proporciona colas de mensajes que los mensajes de
remitentes y receptores en lugar eliminan los mensajes. Un servidor MOM puede crear y administrar los mensajes
multiples colas, y puede manejar multiples mensajes que se envian desde las colas utilizando simultdneamente
hilos organizados en una agrupacién de hebras. Uno o mas procesos pueden enviar mensajes a una cola de
mensajes, y cada cola pueden tener uno o muchos receptores. Cada cola tiene un nombre que los emisores y

receptores especifican cuando realizan enviar y recibir operaciones. Esta arquitectura se ilustra en la Fig. 4.5 .

mensajes. En este tipo de aplicacién, 'Enviar' y 'recibir' colas se mantienen en los mismos sistemas que se comunican. 44

Un servidor MOM tiene una serie de responsabilidades basicas. En primer lugar, se debe aceptar un mensaje
de la aplicacion de envio, y enviar un reconocimiento de que se ha recibido el mensaje. A continuacion, se debe
colocar el mensaje en el extremo de la cola que fue fi especificados por el remitente. Un remitente puede enviar

muchos mensajes a una cola

recibir (Queue, Msg)

—X(ee (S

enviar (cola, MSG)

Remitente Receptor

Fig. 4.4 fundamentos de MOM

3 MOM también se puede implementar simplemente de un modo punto a punto sin un servidor centralizado cola de

4.4 middleware orientado a mensajes 45

Fig. 4.5 Anatomia de un servidor MOM

{

remitentes receptores

U

Controlador de

mensajes de grupo

de subprocesos

servidor MOM

antes de que los receptores de eliminarlos. Por lo tanto el MOM debe estar preparado para mantener mensajes en una cola
durante un periodo prolongado de tiempo.

Los mensajes se entregan a los receptores de una manera First-In-First-Out (FIFO), es decir, el
orden en que llegan a la cola. Cuando un receptor solicita un mensaje, el mensaje a la cabeza de la
cola se entrega al receptor, y tras la recepcion exitosa, el mensaje se elimina de la cola.

El asincrono, caracter desconectado de la tecnologia de mensajeria hace que sea una herramienta
extremadamente Util para resolver muchos problemas de disefio de aplicaciones comunes. Estos incluyen escenarios en

los que:

\El emisor no necesita una respuesta a un mensaje. Solo quiere enviar el mensaje

a otra aplicacién y continuar con su propio trabajo. Esto se conoce como sendand-olvidar mensajeria.

\El emisor no necesita una respuesta inmediata a un mensaje de solicitud. El receptor

puede tardar varios minutos quiza para procesar una solicitud y el emisor puede estar haciendo un
trabajo util, mientras tanto, en lugar de esperar.

\El receptor, o la conexion de red entre el emisor y el receptor, puede
no funcionar de forma continua. El remitente se basa en el MOM para entregar el mensaje siguiente cuando se establece
una conexion. La capa MOM debe ser capaz de almacenar los mensajes para su posterior entrega, y, posiblemente, la

recuperacion de los mensajes no enviados después de fallos del sistema.

4.4.2 Explotacion Caracteristicas avanzadas MOM

Las caracteristicas basicas de la tecnologia MOM rara vez son su fi ciente en aplicaciones empresariales. sistemas de
mision critica necesitan garantias mucho mas fuertes de la entrega de mensajes y el rendimiento que puede ser
proporcionado por un servidor de base de MOM. Commercialoff-the-shelf (COTS) los productos de MOM por lo tanto
suministran funciones avanzadas adicionales para aumentar la fiabilidad, facilidad de uso y la escalabilidad de los servidores

de MOM. Estas caracteristicas se explican en las siguientes secciones.

4 Una introduccién a Middleware arquitecturas y tecnologias
4.4.2.1 Entrega de mensajes

tecnologias de MOM estan sobre la entrega de mensajes entre aplicaciones. En muchas aplicaciones de la empresa,
esta entrega debe hacerse de forma fiable, dando las garantias remitente que el mensaje finalmente sera procesada.
Por ejemplo, una aplicacion de procesamiento de una transaccion de tarjeta de crédito puede colocar los detalles de
la transaccion en una cola para su posterior procesamiento, para afiadir el total de la transaccion a la cuenta del
cliente. Si este mensaje se pierde debido al estrellarse servidor MOM - tales cosas ocurren - a continuacion, el cliente
puede ser feliz, pero la tienda donde se efectud la compra y la compaiiia de tarjetas de crédito van a perder dinero.
Tales escenarios, obviamente, no pueden tolerar la pérdida de mensajes, y deben asegurar la entrega fiable de

mensajes.

la entrega de mensajes fiable, pero se produce a expensas del rendimiento. servidores de MOM normalmente
ofrecen una gama de calidad de servicio (QoS) opciones que permiten un rendimiento del balance de arquitecto en
B5AERIS84%a posibilidad de perder mensajes. Tres niveles de garantia de entrega (o QoS) suelen estar disponibles, con
los niveles mas altos de fiabilidad siempre viene a costa de la reduccion del rendimiento. Estas opciones de calidad de

servicio son:

\Mejor esfuerzo: El servidor MOM hara todo lo posible para entregar el mensaje. No entregado
mensajes so6lo se mantienen en la memoria en el servidor y se pueden perder si un sistema falla antes de que se entregue
un mensaje. las interrupciones de red o aplicaciones que reciben no disponibles también pueden provocar que los
mensajes a tiempo y ser desechado.

\Persistente: Las garantias de capa MOM para entregar mensajes a pesar del sistema y
fallos en la red. Los mensajes no entregados se registran en el disco, ademas de ser mantenidos en la memoria y por lo tanto
pueden ser recuperados y posteriormente entregadas después de un fallo del sistema. Esto se representa en la Fig. 4.6 . Los

mensajes se mantienen en un registro en disco para la cola hasta que haya sido entregada a un receptor.

\transaccional: Los mensajes pueden ser agrupados en unidades de “todo o nada” para la entrega.

También, la entrega de mensajes puede ser coordinado con un ResourceManager externo tal como una base de datos.

garariésieanmeiteegeettaesaecianal se explica en las siguientes secciones.

Diversos estudios se han llevado a cabo para explorar las diferencias de rendimiento entre estos tres
niveles de calidad de servicio. Todos ellos por su propia naturaleza son especifico a una aplicacién de
referencia en particular, entorno de prueba y producto de MOM. Algunas conclusiones muy generales, se puede

esperar para ver entre el 30 y el 80%

servidor MOM

pnm(=

de para receptores
remitentes

Fig. 4.6 la entrega de mensajes OO0 m

disco de registro

4.4 middleware orientado a mensajes 47

reduccién del rendimiento cuando se pasa de mejor esfuerzo a la mensajeria persistente, dependiendo del tamario del
mensaje y la velocidad del disco. Transaccional serd mas lenta que persistente, pero a menudo no por mucho, ya que
esto depende en gran medida de cémo estan involucrados muchos participantes en las operaciones. Vea la seccion de

lectura adicional al final de este capitulo para algunos punteros a estos estudios.

4.4.2.2 Transacciones

mensajeria transaccional normalmente se basa en mensajes persistentes. Se integra perfectamente con las operaciones de
mensajeria codigo de la aplicacion, no permitiendo que los mensajes transaccionales que se enviaran hasta que la aplicacion
emisora se compromete la transaccién de cerramiento. La funcionalidad basica transaccional MOM permite que las aplicaciones

para la construccion de lotes de mensajes que se envian como una sola unidad atémica cuando la aplicacion se compromete.

Los receptores también deben crear un ambito de transaccion y pedir para recibir lotes completos de los
mensajes. Si la transaccion se confirma por los receptores, estos mensajes transaccionales seran recibidos
juntos en el orden en que fueron enviados, y luego se eliminan de la cola. Si el receptor se anula la
transaccion, anymessages ya leidos seran puestos de nuevo en la cola de espera, listo para el siguiente
intento de manejar la misma transaccion. Ademas, las transacciones consecutivas enviadas desde el mismo
sistema a la misma cola llegaran en el orden en que se cometieron, y cada mensaje sera entregado a la

aplicacion una sola vez para cada transaccion confirmada.

mensajeria transaccional también permite que envia y recibe mensajes que coordinarse con otras
operaciones transaccionales, tales como actualizaciones de la base. Por ejemplo, una aplicaciéon puede iniciar
una transaccion, enviar un mensaje, actualizar una base de datos y luego confirmar la transaccion. La capa de
MOM no hara que el mensaje disponible en la cola hasta que se confirma la transaccion, ya sea asegurando que
el mensaje se envia y la base de datos se actualiza, o que ambas operaciones se revierten y parece no haber

sucedido.

Un ejemplo de seudocédigo de integrar las actualizaciones de mensajeria y de base de datos se muestra en la Fig. 4.7 . El
caodigo de la aplicacion remitente utiliza declaraciones de demarcacion de transaccion (la forma exacta varia entre los sistemas
MOM) para especificar el &mbito de la transaccion. Todas las declaraciones entre el empezar y cometer declaraciones de
transaccion son considerados como parte de la transaccién. Tenga en cuenta que tenemos dos transacciones independientes,
que se producen en este ejemplo. Las transacciones emisor y receptor estan separados y se comprometen (o abortar)

individualmente.

4.4.2.3 La agrupacion

servidores de MOM son el mecanismo de intercambio de mensajes principal en muchas aplicaciones empresariales.
Si un servidor MOM no esta disponible debido a servidor o fallo de la maquina, a continuacién, las aplicaciones no
pueden comunicarse. No es sorprendente entonces, las tecnologias de MOM fuerza industrial hacen posible agrupar

los servidores de MOM, Ejecucion de instancias del servidor en multiples maquinas (ver Fig. 4.8).

4 Una introduccién a Middleware arquitecturas y tecnologias

iniciar la transaccion iniciar la transaccion
1 }e.gi.stro de la base de actualizacion 4 -co-nz-)cer el mensaje de registro de la base
2 mensaje puesto en cola de transaccion de 5 de actualizacién cola de transaccién de
3 confirmacion 6 confirmacion

1 5
3 6
Fig. 4.7 mensajeria transaccional
Fig. 4.8 La agrupacion de servidores | servidor MOM |
mama para la fiabilidad y escalabilidad
ApplicationQ
agrupacion. 48
remitentes receptores

| servidor MOM |

% ApplicationQ

Exactamente coémo funciona la agrupaciéon depende del producto. Sin embargo, el esquema en la Fig. 4.8 es
tipico. Multiples instancias de servidores de MOM son con fi gurada en un cluster l6gico. Cada servidor es compatible
con el mismo conjunto de colas, y la distribucion de estas colas a través de servidores es transparente para los

clientes de MOM. clientes de MOM se comportan exactamente igual que si habia un servidor fisico y cola instancia.

Cuando un cliente envia un mensaje, una de las instancias de la cola se selecciona y el mensaje almacenado en
la cola. Del mismo modo, cuando un receptor solicita un mensaje, una de las instancias de la cola se selecciona y un
mensaje eliminado. La implementacion del servidor MOM agrupacion es responsable de dirigir las peticiones de
cliente a instancias de colas individuales. Esto se puede hacer de forma estatica, cuando un cliente abre una conexion

con el servidor, o dinamicamente, para cada solicitud. 4

4 Una aplicacion que necesita para recibir los mensajes en el orden en que se envian no es adecuado para funcionar en este modo una

4.4 middleware orientado a mensajes 49

Un cluster tiene dos beneficios. En primer lugar, si falla un servidor MOM, las otras instancias de cola estan todavia
disponibles para los clientes a utilizar. Aplicaciones en consecuencia, pueden mantener la comunicacién. En segundo lugar, la
carga de solicitudes de los clientes se puede transmitir a través de los servidores individuales. Cada servidor sélo ve una
fraccién (idealmente 1 / [nimero de servidores] en el cluster) de la general tréfico c. Esto ayuda a distribuir la carga de

mensajes a través de multiples maquinas, y puede proporcionar mucho mas alto rendimiento de la aplicacion.

4.4.2.4 dos vias de mensajeria

Aunque la tecnologia MOM es inherentemente asincrona y desacopla emisores y receptores, sino que también puede ser
utilizado para las comunicaciones sincrénicas y la construccion de sistemas mas fuertemente acoplados. En este caso, el
remitente simplemente usa la capa de MOM para enviar un mensaje de solicitud a un receptor en una cola de solicitudes. El
mensaje contiene el nombre de la cola a la que un mensaje de respuesta debe ser enviada. El remitente espera entonces
hasta que el receptor envia de vuelta un mensaje de respuesta en una cola de respuestas, tal como se muestra en la Fig. 4.9 .
Este estilo sincrénica de mensajeria usingMOM se utiliza con frecuencia en sistemas de la empresa, en sustitucion de la
tecnologia sincrona convencional tal como CORBA. Hay una serie de razones por qué los arquitectos pragmaticos podrian

optar por utilizar la tecnologia de mensajeria de esta manera, incluyendo:

itecnologia de mensajeria se puede utilizar con las aplicaciones existentes a bajo costo y

con un riesgo minimo. adaptadores estan disponibles, o pueden ser facilmente escrito a la interfaz entre las
tecnologias y aplicaciones de mensajeria de uso comun. Las aplicaciones no tienen que ser reescritos o portado

antes de que puedan ser integrados en un sistema mayor.

itecnologias de mensajeria tienden a estar disponible en una gama muy amplia de plataformas,

por lo que es facil la integracion de aplicaciones heredadas o sistemas de empresas siendo dirigido por los socios
comerciales.

1Las organizaciones que ya hayan comprado y adquirido experiencia en el uso, una
tecnologia de mensajeria y pueden no necesitar las caracteristicas adicionales de una tecnologia de servidor de

aplicaciones.

| servidor MOM |
RequestQ
remitentes receptores
| servidor MOM

% ReplyQ @

Fig. 4.9 mensajes de

peticion-respuesta

4 Una introduccion a Middleware arquitecturas y tecnologias

4.4.3 Publish-Subscribe

MOM es un método probado y eficaz para la construccion de sistemas de la empresa de forma flexible. Pero,
como todo, tiene sus limitaciones. La principal es que MOM es inherentemente una tecnologia de uno-a-uno. Un
emisor envia un Unico mensaje a una sola cola, y un receptor recupera ese mensaje para la cola. No todos los
problemas se resuelven tan facilmente por un estilo de mensajeria 1-1. Aqui es donde publicacién-suscripcion

arquitecturas entran en escena.

Publicacién-suscripcion de mensajeria extiende los mecanismos basicos de MOM para apoyar
1 a muchos, muchos a muchos, y muchos a 1 comunicaciones de estilo. Editores envian una sola copia de un mensaje
dirigido a una llamada tema, o tema. Los temas son un nombre légico para el equivalente de publicacién-suscripcion de
una cola en la tecnologia basica de MOM. Los suscriptores escuchar los mensajes que se envian a los temas que les
interesan. El servidor de publicacion-suscripcion luego distribuye cada mensaje enviado en un tema para cada suscriptor
que esta escuchando en ese tema. Este esquema basico se representa en la Fig. 4.10 . En términos de la articulacion
flexible, publicacién-suscripcion tiene algunas propiedades atractivas. Emisores y receptores se desacoplan,
respectivamente, cada uno de los cuales desconocen aplicaciones recibiran un mensaje, y que en realidad enviado el
mensaje. Cada tema también puede tener mas de un editor, y los editores pueden aparecer y desaparecer de forma
dinamica. Esto da una considerable flexibilidad sobre los regimenes con fi guracién estatica. Del mismo modo, los
suscriptores pueden suscribirse y darse de baja de forma dinamica a un tema. Por lo tanto el aparato de abonado para
un tema puede cambiar en cualquier momento, y esto es transparente para el cédigo de aplicacion.

mensajeria 50

En publicacién-suscripcion de tecnologias, la capa de mensajeria tiene la responsabilidad de gestionar los temas, y los
suscriptores knowingwhich esta escuchando qué temas. También tiene la responsabilidad de entregar cada mensaje
enviado a todos los suscriptores actuales activos. Los temas pueden ser persistentes o no persistente, con los mismos
efectos sobre la entrega de mensajes fiable como en MOM basica de punto a punto (que se explica en la seccion anterior).
Los mensajes también pueden ser publicados con una configuracion opcional “time-to-live”. Esto le dice al servidor de
publicacién-suscripcion para intentar entregar un mensaje a todos los suscriptores activos para el periodo de tiempo de

vida, y después de que borrar el mensaje de la cola.

El protocolo subyacente una tecnologia MOM utiliza para la entrega de mensajes puede afectar

profundamente el rendimiento. Por defecto, la mayoria utiliza punto a punto sencillo

Abonado

Registrarse /

Subscribe

Editor Abonado

tema Crea / Publicar

) o o Suscriptor
Fig. 4.10 Publicacion-suscripcion de

4.4 middleware orientado a mensajes 51

sockets TCP / IP. Las implementaciones de publicacién-suscripcion basado en la tecnologia de mensajeria punto a
punto duplicado cada mensaje de operacién de envio del servidor para cada suscriptor. Por el contrario, algunas
tecnologias MOM son compatibles con los protocolos de difusion o multidifusién, que envian cada mensaje una sola

vez en el alambre, y la capa de red se encarga de la entrega a multiples destinos.

En la Fig. 4.11, La arquitectura de multidifusion utiliza en editoras de TIBCO Rendezvous
La tecnologia suscribirse se ilustra. Cada nodo en la red de publicacion-suscripcion ejecuta un proceso daemon

conocido como RVD. Cuando se crea un nuevo tema, se le asigna una direccion IP multicast.

Cuando un editor envia un mensaje, su local, RVD daemon intercepta el mensaje y multidifusiones
una Unica copia del mensaje en la red a la direcciéon asociada con el tema. Los demonios que escucha
en la red recibe el mensaje, y cada uno comprueba si tiene alguna abonados locales al tema del
mensaje en su nodo. Si es asi, entrega el mensaje al abonado (s), de lo contrario se ignora el mensaje.
Si un mensaje tiene abonados en una red remota, 5 un rvrd daemon intercepta el mensaje y envia una
copia a cada red remota utilizando protocolos IP estandar. cada receptora rvrd daemon multicasts el
mensaje a todos los abonados en su red local.

No es sorprendente que las soluciones basadas en multidifusién tienden a proporcionar un mejor rendimiento bruto y la

escalabilidad de la mensajeria mejor esfuerzo. No hace mucho tiempo, yo estaba

RVD
| |21

Editor

I
| RVD | | sus+n o

i 1
RVD RVD RVD
o =7 7
Abonado rvrd Abonado

Fig. 4.11 la entrega de idifusion para la icacion-suscripcion

5 Y la red de area extendida no soporta multidifusion.

4 Una introduccién a Middleware arquitecturas y tecnologias

700

600 -
500 g |\|C1

400
X el \|C2

(Qg’{)ge Py blicacién-suf 6n tecnologia 52
200

I{ g QB
100

0 -

gundos

basada en col

IS

mi

10 20 30 40 50

N° de suscriptores

Fig. 4.12 Publicacién-suscripcion mejor rendimiento de mensajeria esfuerzo: Comparacion de las tecnologias de multidifusion 2 (MC1, MC2) con una

participa en un proyecto para cuantificar la diferencia entre el rendimiento esperado de multidifusion y soluciones de
punto a punto. Hemos investigado esto escribiendo y la ejecucién de algunos puntos de referencia para comparar el
rendimiento relativo de las tres tecnologias, y la figura de publicacién-suscripcion. 4.12 muestra los resultados de
referencia.

Se muestra el tiempo medio para la entrega de un Unico editor a entre 10 y 50 suscriptores concurrentes
cuando el editor emite una rafaga de mensajes tan rapido como sea posible. Los resultados muestran claramente
que multicast publicacion-suscripcion es ideal para aplicaciones con exigencias de las latencias de mensaje de

baja y por lo tanto, muy alto rendimiento.

4.4.3.1 comprension de temas

Los temas son el equivalente de publicacion-suscripcion de colas. nombres de los temas son simplemente cadenas, y se
especi fi can administrativamente o mediante programacion cuando se crea el tema. Cada tema tiene un nombre légico,

que es fi especificados por todas las aplicaciones que deseen publicar o suscribirse usando el tema.

Algunas tecnologias de publicacion-suscripcion apoyan jerarquica tema de nombres. Los detalles exactos de cdmo los
mecanismos explican a continuacién el trabajo dependen del producto, pero los conceptos son genéricos y funcionan de manera
similar a través de implementaciones. Vamos a usar el ejemplo ligeramente facetious se muestra en la Fig. 4.13 de un arbol de
temas de nomenclatura.

Cada cuadro representa un nombre de tema que puede ser utilizado para publicar mensajes. El nombre Unico para cada
tema es una cadena totalmente cuali fi cada, con un “/” se utiliza como separador entre los niveles del arbol. Por ejemplo, los

siguientes son los nombres de los temas validos:

Sydney

Sydney/DevGroup
Sydney/DevGroup/Information
Sydney/DevGroup/Information/work
Sydney/DevGroup/Information/gossip
Sydney/SupportGroup
Sydney/SupportGroup/Information
Sydney/SupportGroup/Information/work
Sydney/SupportGroup/Information/gossip

4.4 middleware orientado a mensajes 53

Sydney

DevGroup Grupo de apoyo

Informacion Informacion

trabajo chisme trabajo chisme

Fig. 4.13 Un ejemplo de nomenclatura jerarquica tema

nombres de los temas jerarquicos se vuelven realmente util cuando se combina con comodines tema. En

ko

nuestro ejemplo, un “*” se utiliza como comodin que coincide con cero o mas caracteres en un nombre de tema. Los

suscriptores pueden utilizar comodines para recibir mensajes de mas de un tema cuando se suscriban. Por ejemplo:

Sydney/*/Information

Esto coincide con los dos Sydney / DevGroup / Informacién y
Sydney / SupportGroup / Informacién. Del mismo modo, un abonado que especi fi ca en el tema
siguiente:

Sydney/DevGroup/*/*

Esto recibir mensajes publicados en los tres temas dentro del Sydney / DevGroup rama de arbol. Como la
suscripcién de ramas enteras de un arbol de temas es muy Uutil, algunos productos son compatibles con una

forma abreviada de lo anterior, el uso de otro caracter comodin como “**”, es decir ,:

Sydney/DevGroup/**

Los comodines “**” también coincide con todos los temas que estan en Sydney / DevGroup rama. un
comodin, es de gran alcance, ya que es naturalmente extensible. Si se afiaden nuevos temas en esta
rama de la jerarquia de temas, los abonados no tienen que cambiar el nombre del tema en su solicitud de

suscripcion para recibir mensajes en los nuevos temas.

jerarquias nombre del tema cuidadosamente elaborados combinados con comodines hacen posible la
creacion de unas infraestructuras de mensajeria flexibles muy fl. Considerar como las aplicaciones que desee

suscribirse a varios temas, y organizan su disefio para apoyar estos.

4 Una introduccion a Middleware arquitecturas y tecnologias

4.5 Servidores de Aplicaciones

Hay muchos de fi niciones para servidores de aplicaciones, pero todos mas o menos de acuerdo sobre los elementos
principales. A saber, un servidor de aplicaciones es una tecnologia de servidor basado en componente que se encuentra en el
nivel medio de una arquitectura de N-capas, y proporciona distribuidos comunicaciones, seguridad, transacciones y

persistencia. En esta seccion, vamos a utilizar el Java Enterprise Edition s como nuestro ejemplo.

Los servidores de aplicaciones son ampliamente utilizados para construir aplicaciones orientados a Internet. Figura 4.14 muestra

un diagrama de bloques de la arquitectura clasica de N-capas adoptada por muchos sitios web.

Una explicacion de cada nivel es a continuacion:

iNivel de cliente: En una aplicacién web, el nivel de cliente comprende tipicamente un Internet

navegador que envia solicitudes HTTP y descargas de paginas HTML desde un servidor web. Esta es la tecnologia de
los productos basicos, no es un elemento del servidor de aplicaciones.

Capa Web: La capa web ejecuta un servidor web para manejar peticiones de clientes. Cuando un
peticion llega, el servidor web alojada invoca componentes de servidor web como los servlets, Java Server
Pages (JSP) o Active Server Pages (ASP) en funcion de la Avor fl de servidor web que se utiliza. La solicitud fi
cacion de entrada es el componente web exacta para llamar. Este componente procesa los parametros de la
peticion, y las utiliza para llamar a la capa de logica de negocio para obtener la informacién requerida para
satisfacer la solicitud. EI componente Web presenta el resultado de la devolucién al usuario como HTML a

version 5. 54
través del servidor web.

\Componentes de Negocio Nivel: Los componentes de negocio comprenden la actividad principal
légica para la aplicacion. Los componentes de negocio se realizan mediante, por ejemplo, Enterprise JavaBeans
(EJB) en JEE, componentes .NET o objetos CORBA. Los componentes de negocio reciben las peticiones de la capa
web, y satisfacer las solicitudes por lo general mediante el acceso a una o mas bases de datos, la devolucion de los

resultados a la capa web.

navegadores nivel de cliente
Servidores

capa web
web http

I . NET Remoting IIOP RMI

EJB
. componentes Nivel de Componentes de Negocio
NET

JD%CSQL

y . " Bases de datos
Fig. 4.14 arquitectura multicapa para tier sistema de informacion empresarial

P ERP
aplicaciones web

¢ La plataforma era conocido como Java 2 Platform, Enterprise Edition o J2EE hasta que el nombre fue cambiado a Java EE en la

4.5 Servidores de Aplicaciones 55

Un entorno de tiempo de ejecucion conocido como envase acomoda los componentes. El contenedor
proporciona una serie de servicios a los componentes que alberga. Estos variando en funcion del tipo de
recipiente (por ejemplo, EJB, .NET, CORBA), pero incluir transacciones y de gestion de ciclo de vida del
componente, gestion de estado; seguridad, multihilo y puesta en comun de recursos. Los componentes
especifican, en archivos externos a su codigo, el tipo de comportamiento que requieren del contenedor en
tiempo de ejecucion, y luego se basan en el recipiente para proporcionar los servicios. Esto libera al
programador de la aplicacion de estorbar la légica de negocio con cédigo para manejar el sistema y el medio

ambiente.

1Sistemas de Informacion de la empresa Nivel: Este normalmente consiste en una o mas

bases de datos y aplicaciones de back-end como mainframes y otros sistemas heredados. Los componentes de

negocio deben consultar e interactuar con estos almacenes de datos para procesar las solicitudes.

El nucleo de un servidor de aplicaciones es el contenedor de componente de negocio y el apoyo que proporciona para la
implementacion de la légica de negocio utilizando un modelo de componente de software. A medida que los detalles varian
entre las tecnologias de servidor de aplicaciones, vamos a ver en el modelo EJB utiliza ampliamente apoyada por JEE. Este es

un ejemplo representativo de la tecnologia de servidor de aplicaciones.

4.5.1 Enterprise JavaBeans

La arquitectura EJB define un modelo de programacion estandar para la construccion de aplicaciones Java del
lado del servidor. Un servidor de aplicaciones JEE compatible proporciona un contenedor EJB para gestionar la
ejecucion de los componentes de aplicacion. En términos practicos, el contenedor proporciona un proceso del
sistema operativo (de hecho una maquina virtual Java) que aloja los componentes EJB. Figura 4.15 muestra la
relacién entre un servidor de aplicaciones, un recipiente y los servicios prestados. Cuando un cliente EJB invoca

un componente de servidor, el contenedor asigna un hilo e invoca una instancia

/ \ Servidor de aplicaciones
Contenedor de EJB

EJB piscina Transaction

I:l I:’ Service
70 oo

Servicio de
de persistencia directorio
Gestion del ciclo de vida
Servicio de
Connection Pool
seguridad

Subprocesos

Fig. 4.15 servidor de aplicaciones

JEE, contenedor EJB y servicios \ /
asociados

56 4 Una introduccién a Middleware arquitecturas y tecnologias

del componente EJB. El contenedor gestiona todos los recursos en nombre del componente y todas las

interacciones entre los componentes y los sistemas externos.

4.5.2 Modelo de componentes EJB

El componente EJB modelo define la arquitectura basica de un componente EJB. Se especi fi ca la
estructura de las interfaces de los componentes y los mecanismos por los que interactda con su contenedor
y con otros componentes.

La ultima fi cacién especi EJB (parte del Java tv Platform, Enterprise Edition (Java EE) version 5) la define
dos tipos principales de componentes EJB, a saber, beans de sesion y beans controlados por mensajes. JEE
anteriores especi fi caciones también de fi ne beans de entidad, pero éstos se han eliminado y sustituido por el
mas simple y mas potente Java Persistence API 7. Esto proporciona una facilidad de mapeo objeto / relacional para
las aplicaciones Java que necesitan acceso a bases de datos relacionales desde el nivel del servidor (un requisito

muy comun, y uno mas alla del alcance de este libro).

Los beans de sesién se utilizan normalmente para la ejecucion de la légica de negocio y de prestacion de servicios para los
clientes a llamar. Los beans de sesion corresponden al controlador en un modelview-controlador s la arquitectura, ya que
encapsulan la légica de negocio de una arquitectura a tres niveles. Los beans de sesion de fi ne una interfaz c fi aplicacion
especifica que los clientes pueden utilizar para hacer peticiones. Los clientes envian una peticién a un bean de sesion y el

bloque hasta que el bean de sesion envia una respuesta.

De manera algo diferente a los beans de sesién, beans controlados por mensajes son componentes que procesan
mensajes de forma asincrona. Amessage frijol esencialmente actia como un oyente para los mensajes que se envian
desde un cliente Java Message Service (JMS). Tras la recepcién de un mensaje, el frijol ejecuta su légica de negocio y

espera a que el siguiente mensaje que llega. No hay respuesta se envia al remitente del mensaje.

Ademas, hay dos tipos de beans de sesion, conocidos como apatrida beans de sesion y stateful beans de sesion. La
diferencia entre estos se representa en la Fig. 4.16 . Un bean de sesién sin estado se define como no siendo conversacional
con respecto a su proceso de llamada. Esto significa que no mantiene ninguna informacién de estado en nombre de
cualquier cliente que llama. Un cliente obtendra una referencia a un bean de sesion sin estado en un recipiente, y se
puede utilizar esta referencia para hacer muchas llamadas en una instancia del bean. Sin embargo, entre cada
invocacion frijol sucesiva, un cliente no esta garantizado para unirse a cualquier instancia del bean de sesién sin estado
particular. El cliente delegados contenedor EJB llama a los apatridas beans de sesién en una que necesita base, por lo
que el cliente nunca puede estar seguro de qué instancia de frijol que realmente van a hablar. Esto hace que sea de
sentido para almacenar informacién relacionada con el estado del cliente en un bean de sesion sin estado. Desde la
perspectiva del contenedor, todas las instancias de un bean de sesion sin estado son vistos como iguales y se pueden

asignar a cualquier solicitud entrante.

7 http://java.sun.com/javaee/reference/fag/persistence.jsp

8 Ver http://en.wikipedia.org/wiki/Model % E2%80%93view%E2%80%93controller

4.5 Servidores de Aplicaciones 57

/@do
/5

estado

Los clientes
estado EJB
estado
beans con estado
estado

.

Fig. 4.16 Sin estado frente a los beans de sesion con estado

/ Contenedor de EJB

bean sin piscina

i, N

Re7

Por otro lado, se dice que un bean de sesién con estado para ser conversacional con respecto a su proceso de llamada; por
lo tanto puede mantener informacion de estado acerca de una conversacion con un cliente. Una vez que un cliente obtiene una
referencia a un bean de sesion con estado, todas las llamadas posteriores al frijol utilizando esta referencia estan garantizados
para ir a la misma instancia del bean. El contenedor crea una nueva, dedicada bean de sesién con estado para cada cliente que
crea una instancia del bean. Los clientes pueden almacenar cualquier informacion de estado al que desean en el grano, y

pueden estar seguros de que todavia estara alli la préxima vez que acceda al frijol.

contenedores EJB asumen la responsabilidad de la gestion del ciclo de vida de los beans de sesion con estado. El
contenedor escribira el estado de un frijol en el disco si no se ha utilizado durante un tiempo, y restaurara
automaticamente el estado cuando el cliente realiza una llamada posterior sobre el grano. Esto se conoce como pasivacion
y activacion del bean con estado. Los contenedores también pueden ser con fi gurada para destruir un bean de sesion

con estado y sus recursos asociados, si un grano no se utiliza durante un periodo especi fi cado de tiempo.

En muchos aspectos, los granos de mensajes impulsado son manejados por el contenedor EJB de una manera similar a los
granos de sesion sin estado. Ellos no retienen fi ¢ de datos de conversacion de cliente-especifico, y por lo tanto instancias pueden
ser asignados para manejar los mensajes enviados desde cualquier cliente. beans controlados por mensajes no reciben solicitudes
directamente de los clientes, sin embargo. Mas bien son con fi gurada para escuchar a una cola JMS, y cuando los clientes envian

mensajes a la cola, que se entregan a una instancia de un bean de mensaje para procesar.

4.5.3 Stateless bean de sesion Ejemplo de programacion

Para crear un componente EJB EJB en la version 3.0, el desarrollador debe proporcionar la clase bean de sesion y

una remoto interfaz de negocio. los remoto interfaz contiene el negocio

4 Una introduccion a Middleware arquitecturas y tecnologias

métodos ofrecidos por el grano. Estos son de aplicacion supuesto especifico. A continuacién se muestra un (reducir) Ejemplo
de interfaz remota para un bean de sesion sin estado. Tenga en cuenta que esto es una interfaz estandar de Java que se

adorna simplemente con @ Remoto anotacion:

import javax.ejb.Remote;
@Remote
public interface Broker {
public int newAccount (String name, String address,
int credit)
throws EJBException, SQLException;

public void buyStock(int accno, int stock id, int amount)
throws EJBException, SQLException;

public void updateAccount (int accno, int credit)

throws EJBException, SQLException;
interfaz. Ademas, utilizando el 58

La clase de fi nicion es nuevo estandar de Java, y simplemente se anota con
@Apatrida. Los @ Apatrida anotacion indica que esta clase es un bean de sesién sin estado, y la interfaz de

negocio se utiliza para invocarlo.

import javax.ejb.Stateless;

@Stateless

public class BrokerBean implements Broker {
// methods defined here ..(not shown)

Acceder a un cliente EJB en EJB 3.0 es muy simple de hecho, lo que requiere el uso de la

@EJB anotacion, a saber:

@EJB BrokerBean broker;
Broker.updateAccount (99, 10000);

un bean controlado por mensajes recibir mensajes de un servidor JMS, el bean implementa el javax.jms.MessageListener
clientes EJB pueden ser aplicaciones Java auténomas, servlets, applets, o incluso otros EJB. Los clientes interactian

con el grano del servidor completamente a través de los métodos de fi nido en el grano de remoto interfaz.
La historia de los beans de sesién con estado es bastante similar, utilizando el @ stateful
anotacion. beans de sesién con estado también deben proporcionar un método de frijol especifico de inicializaciéon

para establecer el estado del frijol, y un método anotado con @ Retirar, que es llamada por los clientes para indicar que

han fi nalizado con esta instancia de frijol, y el contenedor debe eliminarlo después de que el método se completa.

4.5.4 Message-Driven Programacién haba Ejemplo

beans controlados por mensajes son bastante simples para desarrollar también. En el caso mas comun de

4.5 Servidores de Aplicaciones 59

@MessageDriven anotacion, el desarrollador especi fi ca el nombre 9 del destino desde el que el grano
va a consumir mensajes.

import javax.jms.Messagelistener;
@MessageDriven (mappedName="jms/BrokerQ")
public class BrokerMessageBean implements MessageListener {
public void onMessage (Message msg) {
TextMessage stockMessage =
(TextMessage) msg;
// process message

4.5.5 Responsabilidades del contenedor EJB

Debe ser bastante obvio a estas alturas que el contenedor EJB es una pieza bastante compleja del software. Es,
por lo tanto vale la pena cubriendo exactamente lo que el papel del contenedor esta en ejecucién de una

aplicacion EJB. En general, un recipiente proporciona componentes EJB con una serie de servicios. Estos son:

1Se proporciona una gestion del ciclo de vida de frijol y la agrupacion de instancia del bean, incluyendo
creacion, activacion, pasivacion, y la destruccion de frijol.
1Se intercepta las llamadas del cliente en la interfaz remota de los granos para hacer cumplir la transaccion
y seguridad (véase mas adelante) limitaciones. También proporciona devoluciones de llamada fi cacion Notl en el inicio y el final de

cada transaccién que implica una instancia de bean.

1Se impone un comportamiento bean de sesidn, y actiia como un detector para beans controlados por mensajes.

Con el fin de interceptar las llamadas de los clientes, las herramientas asociadas a un contenedor deben generar clases
adicionales para un EJB durante el despliegue. Estas herramientas utilizan mecanismo de introspeccion de Java para generar
dindmicamente clases para implementar el remoto
las interfaces de cada grano. Estas clases permiten que el recipiente para interceptar todas las llamadas de los clientes en un grano, y
hacer cumplir las politicas ed especificidad del descriptor de despliegue del bean.

El contenedor también ofrece una serie de otras caracteristicas clave de tiempo de ejecucion para los EJB. Estos tipicamente

incluyen:

ithreading: EJB no deben crear explicitamente y manipular las hebras Java. Ellos

debe confiar en el recipiente para asignar hilos a los granos de activos con el fin de proporcionar un entorno de ejecucion
concurrente, de alto rendimiento. Esto hace que los EJB mas simples para escribir, como el programador de la aplicacion

no tiene que implementar un esquema de enhebrado para manejar las solicitudes de cliente simultaneas.

1Almacenamiento en caché: El recipiente puede mantener cachés de las instancias de frijol entidad a la que Hombre-

siglos. Tipicamente el tamafio de las memorias caché puede ser especificados en los descriptores de despliegue.

9 Especificamente, la anotacion contiene una mappedName elemento que especi fi ca el nombre JNDI de la cola JMS

donde se reciben los mensajes.

4 Una introduccion a Middleware arquitecturas y tecnologias

1La agrupacién de conexiones: El contenedor puede gestionar un grupo de conexiones de bases de datos

para permitir el acceso ef fi ciente para gestores de recursos externos mediante la reutilizacion de las conexiones una vez que las

transacciones se han completado.

Por ultimo, también hay algunas caracteristicas clave y muchos detalles de EJB que no han sido tratados aqui.

Probablemente el mas importante de ellos, ha aludido anteriormente, son:

1Actas: Una transaccion es un grupo de operaciones que deben realizarse como
una unidad, o nada en absoluto. Bases de datos proporciona la gestiéon de transacciones, pero cuando un nivel medio, como
un contenedor EJB hace que las actualizaciones a través de muiltiples bases de datos distribuidas, las cosas pueden
complicarse. contenedores EJB contienen un administrador de transacciones (basado en el Java Transaction API especifico
de cationes), que puede usarse para coordinar las transacciones en el nivel de EJB. Sesion vy frijoles controlados por mensajes
pueden ser anotados con los atributos de transaccion y por lo tanto controlan el commit o rollback de las transacciones de

bases de datos distribuidos. Esta es una caracteristica muy potente de EJB.

1Seguridad: Los servicios de seguridad son proporcionados por el contenedor EJB y se pueden utilizar para
autenticar usuarios y autorizar el acceso a funciones de aplicacion. En el estilo tipico de EJB, la seguridad puede
ser especi fi cado mediante anotaciones en la clase EJB definicién, o ser implementado mediante programacion.
Alternativamente, la seguridad EJB puede ser especi fi externamente a la aplicacién en un descriptor de
despliegue de XML, y esta informacion es utilizada por el contenedor para anular la seguridad fi ed anotacion

especifica.

60

4.5.6 Algunas reflexiones

En esta seccién se ha dado una breve descripcion de los JEE y la tecnologia EJB. El modelo de componentes EJB
es ampliamente utilizado y ha demostrado ser una poderosa manera de construir aplicaciones del lado del servidor.
Y a pesar de las interacciones entre las diferentes partes del cédigo son a primera un poco desalentador, con cierto

grado de exposicion y experiencia con el modelo, se hace relativamente facil de construir aplicaciones EJB.

Sin embargo, mientras que la construccion codigo no es dificil, una serie de complejidades permanecen. Estos son:

\El EJBmodel hace que sea posible combinar los componentes en una aplicacién que utiliza
muchos diferentes patrones arquitecténicos. Esto le da al arquitecto una gama de opciones de disefio para una
aplicacion. ¢ Qué opcidn es mejor es a menudo objeto de debate, junto con lo que hace mejor significar en una
aplicacion determinada? Estos no son siempre sencillas preguntas, y requiere la consideracion de los complejos
compromisos de disefio.

iLa forma granos interacttian con el contenedor es compleja, y puede tener un signi fi cativo
efecto del rendimiento de una aplicacion. En el mismo sentido, todos los contenedores de servidor EJB no son
iguales. Seleccion de productos y el producto especifico con fi guracion es un aspecto importante del ciclo de vida

de desarrollo de aplicaciones.

Para las referencias discuten ambos estos problemas, consulte la seccién de lectura ain mas al final de este capitulo.

4.6 Resumen 61

4.6 Resumen

Ha tomado la mejor parte de 20 afios para construir, pero ahora los arquitectos de Tl tienen un potente conjunto de
herramientas de las tecnologias de middleware sincrénicos y asincronicos basicos para el apalancamiento en el disefio e

implementacion de sus aplicaciones. Estas tecnologias han evolucionado por dos razones principales:

1. Ayudan a hacer complejo de edificios, distribuidos, aplicaciones concurrentes mas simple.
2. Institucionalizar probadas practicas de disefio, apoyandolos en las tecnologias de middleware
off-the-shelf.

Con toda esta tecnologia infraestructura disponible, la habilidad del arquitecto radica en cémo
seleccionan, mezclar y combinar arquitecturas y tecnologias de una manera que cumpla con los requisitos
y limitaciones de su aplicacion. Esto requiere no so6lo conocimientos avanzados de disefio, sino también un
profundo conocimiento de las tecnologias implicadas, la comprension de lo que se puede llamar de forma
fiable en hacer, e igualmente importante, lo que no pueden hacerlo con sensatez. Muchas aplicaciones
fallan o se entregan tarde porque perfectamente buena calidad y tecnologia de middleware bien construido
se utiliza de una manera en la que nunca fue pensado para ser utilizado. Esto no es culpa de la tecnologia
- es de los disefiadores. Por lo tanto el conocimiento de middleware, y lo mas importante experiencia con

las tecnologias en las aplicaciones mas exigentes,

Para hacer la vida mas compleja, es raro que una sola solucién de la arquitectura y la tecnologia tiene
sentido para cualquier aplicacion dada. Por ejemplo, la mensajeria simple o un disefio basado en
componentes EJB podria tener sentido para un problema particular. Y estas alternativas de disefio légicas
suelen tener multiples opciones de implementacion en términos de productos de middleware candidato para la

construccion de la solucion.

En tales situaciones, el arquitecto tiene que analizar las diversas ventajas y desventajas entre las diferentes
soluciones y tecnologias, y elegir una alternativa (o tal vez nombrar a un conjunto de alternativas en competencia)
que cumpla con los requisitos de la aplicacién. Para ser honesto, estoy siempre un poco sospechoso de arquitectos
que, en tales circunstancias, siempre vienen con la misma respuesta arquitectdnica y la tecnologia (a menos que

trabajen para un proveedor de tecnologia - en ese caso, es su trabajo).

La causa de esta “Tengo un martillo, todo es un clavo” comportamiento estilo es a menudo un ferviente creencia de
que un disefio particular, y mas a menudo una tecnologia favorecida, pueden solucionar cualquier problema que pueda
surgir. Ya que es el final del capitulo, no voy a entrar en mi caja de jabdn. Pero voy a decir simplemente que los
arquitectos de mente abierta, con experiencia y tecnolégicamente agndsticos son mas propensos a considerar una
gama mas amplia de alternativas de disefio. También son propensos a proponer soluciones mas adecuadas a las
peculiaridades y limitaciones del problema en cuestion, en lugar de promover con entusiasmo una solucién particular

que demuestra el eterno “bondad” de su pieza favorita de la tecnologia sobre sus competidores “mal”.

4 Una introduccion a Middleware arquitecturas y tecnologias

4.7 Lectura adicional

Hay un enorme volumen de lectura del potencial en la materia cubierta en este capitulo. Las referencias
que siguen deben darle un buen punto de partida para ahondar mas profundamente.

4.7.1 CORBA

El mejor lugar para empezar para toda la informacion relacionada con CORBA es el sitio web del Grupo de Gestién de

Objetos, a saber:
http://www.omg.org

Navegar de aqui, y te fi nd informacién sobre todo lo relacionado con CORBA, incluyendo
especificaciones, tutoriales y muchos libros. Para recomendaciones especificas, en mi experiencia,
cualquier cosa escrita por Doug Schmidt, Steve Vinosky o Michi Henning es siempre informativo y
revelador.

Hablando de Michi Henning, otra tecnologia muy interesante representada por el enfoque adoptado
en internet Comunicaciones del motor (ICE) de ZeroC (http://zeroc.com/). El hielo es de cédigo abierto, y
hayynastasiesatidsls, poesEeantes en:

http://zeroc.com/articles/index.html

Particularmente interesantes son “Un nuevo enfoque orientado a objetos Middleware” (IEEE Internet
Computing, enero de 2004) y La subida y la caida de CORBA (ACM Queue, jun 2006)

4.7.2 middleware orientado a mensajes

El mejor lugar para buscar informacion MOM es, probablemente, la documentacion y los documentos técnicos del
proveedor del producto. Utilice su motor de busqueda favorito para buscar informacion sobre IBM WebSphere
MQ, Microsoft Message Queue (MSMQ), Sonic MQ, y muchos mas. Si desea tomar conocimiento de su servicio

de mensajeria Java especi fi cacion, se puede descargar de:

http://java.sun.com/products/jms/docs.html

Si usted esta interesado en un analisis muy legible y reciente de algunas editoras suscribirse desempefio
de la tecnologia, incluyendo un JMS, la siguiente es bien vale la pena descargar:

Piyush Maheshwari y Michael Pang, La evaluacion comparativa orientado a mensajes Medio-

ceramica: TIB / RV frente SonicMQ, Concurrencia y Computacién: La practica y la experiencia, volumen

4.7 Lectura adicional 63

4.7.3 Servidores de Aplicaciones

Una vez mas, Internet es probablemente la mejor fuente de informacién general sobre los servidores de aplicaciones.
productos principales incluyen WebLogic (BEA), WebSphere (IBM), servidor de aplicaciones .NET (Microsoft), y para

una implementacion de codigo abierto de alta calidad, JBoss. Hay un buen tutorial para JEE v5.0 en:

http://java.sun.com/javaee/5/docs/tutorial/doc/index.html
También hay un montén de buenos conocimientos sobre el disefio de aplicaciones EJB:

F. Marinescu. EJB patrones de disefio: Patrones Avanzados, Procesos y modismos. Wiley, 2002

D. Alur, D. Malks, J. Crupi. Patrones nucleo JEE: las mejores practicas y estrategias de disefio. Segunda edicion,
Prentice Hall, 2003
Dos libros excelentes sobre las transacciones en Java, y en general, son los siguientes:

Mark Little, Jon Maron, Greg Pavlik, procesamiento de transacciones Java: Disefio y
Implementacion, Prentice-Hall, 2004

Philip A. Bernstein, Eric Newcomer, Principios de Procesamiento de Transacciones, Segunda
Edicién (la serie Morgan Kaufmann en Sistemas de Gestién de Datos), Morgan Kaufman, 2009

Los siguientes se analiza la forma de comparar las caracteristicas de middleware y el servidor de aplicaciones:

I. Gorton, A. Liu, P. Brebner. La evaluacion rigurosa de COTSMiddleware Tecnologia.
IEEE Computer, vol. 36, no. 3, paginas 50-55, marzo de 2003

Capitulo 5
Arquitecturas y tecnologias orientadas a
servicios

Paul Green campo

5.1 Antecedentes

arquitecturas orientadas a servicios y servicios Web son el tltimo paso en el desarrollo de middleware de integracion de
aplicaciones. Tratan de fi jar los problemas de interoperabilidad del pasado y proporcionar una base para las aplicaciones
distribuidas a escala de Internet en el futuro. También intentan, y hasta cierto punto a tener éxito, para marcar el final de
las guerras “middleware” con todos los principales proveedores de fi nalmente ponerse de acuerdo sobre un Unico rico

conjunto de estandares de tecnologia de integracién de aplicaciones y computacién distribuida.

middleware de integracién de aplicaciones se utiliza para muchos fines de vincular entre si los componentes locales para
crear aplicaciones de escritorio o servidores Web simples para la construccion de las cadenas de suministro globales que
abarcan Internet. Las tecnologias tradicionales en este espacio, como los servidores de aplicaciones JEE y mensajeria,
pueden ser excelentes soluciones para la creacion de aplicaciones a partir de componentes o la integracién de aplicaciones
que se ejecutan dentro de la misma organizacién. Sin embargo, ellos estan muy por debajo de lo que se necesita para vincular
los procesos de negocios administrados por organizaciones independientes que estan conectados a través de Internet global.

servicios web y arquitecturas orientadas a servicios estan disefiados para satisfacer esta necesidad solo.

En muchos sentidos, los servicios informaticos y de Web orientadas a servicios no son nada nuevo. Al igual que las
tecnologias y arquitecturas de computacion distribuida antes, su propésito principal es permitir que las aplicaciones invoquen
funcionalidad proporcionada por otras aplicaciones, tal como JEE middleware permite a las aplicaciones de cliente Java que

llaman métodos proporcionados por componentes JEE.

La diferencia real aqui es que el enfoque del modelo basado en servicios y sus tecnologias de soporte esta
en la interoperabilidad y la solucion de los problemas practicos que surgen debido a las diferencias en las
plataformas y lenguajes de programacion. Aunque es posible disefiar y construir “sistemas orientados a
servicios” utilizando cualquiera de computo o la integracién de middleware distribuido, sélo las tecnologias de
servicios Web se reunira hoy con el requisito fundamental para la interoperabilidad sin fisuras que es una parte

tan importante de la visién orientada a servicios.

Este énfasis en la interoperabilidad pragmatica es el resultado de la aceptacién de la naturaleza diversa de las
empresas de hoy en dia, y darse cuenta de que esta diversidad no va a disminuir en el futuro. Soporta casi todas las

organizaciones hoy en dia una mezcla de plataformas,

|. Gorton, Arquitectura de Software esencial, sesenta y cinco
DOI 10.1007 / 978-3-642-19176-3_5, # Springer-Verlag Berlin Heidelberg 2011

66 5 arquitecturas y tecnologias orientadas a servicios

lenguajes de programacion, y paquetes de software, incluyendo aplicaciones heredadas criticos para el negocio.
Cualquier propuesta de middleware de integracion que asume la reescritura mayor de aplicaciones o la migracion de
aplicaciones a nuevas plataformas que ya estan trabajando fallara en el primer obstaculo ya que los costes y los riesgos
seran demasiado altos.

La realidad es que las aplicaciones empresariales a gran escala cada vez se entrelazan desde las
aplicaciones, paquetes y componentes que nunca fueron disefiados para trabajar juntos e incluso pueden funcionar
sobre plataformas incompatibles. Esto da lugar a una necesidad critica de interoperabilidad, que se hace ain mas
importante que las organizaciones comienzan a construir una nueva generacion de aplicaciones integradas de area
amplia que incorporan directamente a las funciones organizadas por los socios comerciales y proveedores de

servicios especializados.

servicios web y arquitecturas orientadas a servicios son la respuesta de la industria de la computacion a esta

necesidad de tecnologias de integracion interoperables.

5.2 Sistemas orientadas a servicios

El cambio a sistemas orientados al servicio esta siendo impulsado por la necesidad de integrar las aplicaciones y los
sistemas de negocio que soportan. La mayoria de las tecnologias de integracién existentes estan cerrados o privada, y
s6lo admiten la integracion de aplicaciones basadas en la misma tecnologia, a menos que las organizaciones estan
dispuestas a asumir el coste de la compra o escritura compleja, cddigo de adaptador de propdsito especial. Estas
restricciones s6lo pueden ser aceptables dentro de una sola organizacién, aunque, aun asi, las posibilidades de cada

aplicacién y cada sistema informatico es compatible son bastante ligero en la realidad.

Ha habido una necesidad de integracion de sistemas de negocio desde entonces se han producido sistemas de
negocio. Esta integracion tradicionalmente se ha manejado a través del intercambio de documentos en papel, tales
como cotizaciones, facturas y érdenes. Estos documentos tradicionales todavia se utilizan hoy en dia, pero ahora estan
casi siempre producidos por los sistemas computarizados. La tarea de la integracion de estos sistemas de negocio ha
cambiado poco y aunque todavia se hace comunmente mediante el envio de estos documentos en papel por correo o

fax, y luego rekeying sus datos una vez que llegan.

El ahorro de costes y deficiencias fi ciencia que vienen de deshacerse de papel e integrar directamente los sistemas
de negocio basados en computadoras han sido obvio (y atractivo) desde hace muchos afios, pero han demostrado ser
dificiles de alcanzar para casi todo el tiempo. EDI (Intercambio Electrénico de Datos 1) era un importante primer intento de
alcanzar estos beneficios potenciales. En muchos sentidos, fue antes de tiempo y asi resulté ser demasiado costoso para
todos, pero los mas grandes organizaciones debido a la naturaleza cerrada y privada de las redes EDI y el alto costo del

software EDI propietaria.

La llegada de los servicios de Internet ha cambiado totalmente andWeb esta imagen. Internet ahora
potencialmente conecta cada sistema informatico en una red global,

1 http://en.wikipedia.org/wiki/Electronic_Data_Interchange

5.2 Sistemas orientadas a servicios 67

dejar que las empresas envian documentos electronicamente a sus socios y clientes en todo el mundo, de
forma rapida ya bajo costo. Los servicios Web se dirige a la otra parte del problema al proporcionar un conjunto
unico de normas de integracién de aplicaciones que se implementan por todos los principales proveedores y se
envian como parte integral de todas las plataformas de servidores. El resultado de esta evolucion es que la

integracion a nivel de negocio pronto puede ser relativamente facil, barato y comun.

Los servicios web son realmente solo otra tecnologia de integracion de aplicaciones, conceptualmente poco
diferente de CORBA, JEE, DCOM, o cualquiera de sus competidores. Todas estas tecnologias son muy parecidos: las
aplicaciones cliente pueden detectar servidores, encontramos a cabo los servicios que estan ofreciendo, e invocar la
funcién que brindan. Lo que es diferente acerca de los sistemas orientados al servicio y sus tecnologias de servicios
supportingWeb es que estas aplicaciones y servidores ahora se espera para ser visitada por fuera de las
organizaciones e individuos a través de Internet publica. El resultado de este cambio de enfoque es un conjunto de
normas y principios de la arquitectura que hacen hincapié en la interoperabilidad haciendo las suposiciones acerca de
coémo menor nimero posible de proveedores de servicios y consumidores trabajar internamente y qué detalles de

implementacion que tienen en comun.

Figura 5.1 muestra una aplicacion tipica de venta a través de Internet. Los clientes ven una Unica
aplicacion integrada que les permite hacer pedidos de libros y discos,

[
!

! 2

1
1 = 5

[/ 1
1 . B

1

I i Linux /
comerciante 2
EJB

L‘ ,‘ ks U Linux /
ol Revendedores (Win2K3 EsB.

.RED)

Autenticacion

'."':%
ol - de usuario .
aplicacion Inteligen{zdalicliente \ Solicitud en linea al L—1 Win2K3

por menor EJB
bat Servidor web (J2EE / IOP / JMS) T
. \

G —
\
cliente basado en navegador \
Banco 1
proveedor 3
(Win2K / procesador de la TSRS \
tarjeta de crédito
MQ) cargador 2 .
) (Win2K3 / T
(Solaris P \ Banco 2
CORBA) 1 \

= B \ Tandem

1 cargador

(VMS)

Fig. 5.1 Ejemplo-basado de servicios de aplicaciones al por menor

5 arquitecturas y tecnologias orientadas a servicios

Realizar pagos. En realidad esta aplicacion consiste en sélo un pequefio nucleo de la légica de negocio proporcionada por el
minorista aumentada por los servicios prestados por los socios de negocios, y todo se ejecuta en una mezcla diversa de
plataformas y middleware. Los clientes pueden acceder a esta aplicacion usando navegadores web o pueden ejecutar
aplicaciones de cliente mas amigables y mas inteligentes que realizan llamadas directamente en los servicios de back-end
proporcionados por la aplicacion principal del minorista. Estos mismos servicios también pueden ser utilizados para apoyar los
servicios liment ful fi orden subcontratada proporcionados a los minoristas especializados, dejando que poseen y operan sus
propios ambitos de la tienda en linea y confiar en el minorista para servicios tales como érdenes de manejo y aceptacion de

pagos.

Esta aplicacion se puede construir utilizando cualquiera de las tecnologias de middleware discutidos en los
comprendidos y utilizados con éxito por los desarrolladores remotos. 68

capitulos anteriores. El arquitecto de cualquier sistema de este tipo, sin embargo enfrentar dificiles y complejos
problemas que garantizan la interoperabilidad y robustez. Estas son precisamente las areas abordadas por

arquitecturas orientadas a servicios y tecnologias de servicios Web.

Los principios fundamentales arquitecturas orientadas a servicios subyacentes no son nuevos y en gran medida sélo
rﬁcﬂﬁ@é BEPSeoRREI8pIFRMR m@é‘éiﬁﬁs‘iﬁém igigatadoE s ML fRARaTadImRNtgdrakpiad A sl
mantener. Estos principios basicos que subyacen en arquitecturas orientadas a servicios se expresan a menudo como

cuatro principios:

1Los limites son explicitos
iLos servicios son auténomos
\esquemas y contratos de Acciones, no implementaciones

servicios y en los estandares de servicios Web de soporte. Buenos servicios tienen interfaces simples y cuota como
\compatibilidad de servicio se basa en la politica

Veamos cada uno de estos.

reduccion de robustez. La respuesta a este desafio es centrarse en la simplicidad, tanto en la especi fi cacién de

5.2.1 Los limites son explicitas

El primero de los principios reconoce que los servicios son aplicaciones independientes, no sélo el cédigo que
esta obligado en su programa que se puede llamar a casi ninguin costo. Acceder a un servicio requiere, al
RO p PR R R R R B8 S B PRR RIS TR ALY PR 8836 A8HS
autenticacion de usuarios de varios dominios. Cada uno de estos limites (proceso, maquina, fiduciarios) que
tiene que ser cruzado reduce el rendimiento, aumenta la complejidad, y aumenta las posibilidades de fracaso.

Es importante destacar, que tienen que ser consciente reconocida y tratada en el proceso de disefio.

Los desarrolladores y proveedores de servicios también pueden estar separados geograficamente, por lo que hay

5.2 Sistemas orientadas a servicios 69

5.2.2 Servicios son autbnomos

Los servicios son aplicaciones independientes, autbnomas no clases o componentes que estan estrechamente ligados a
las aplicaciones cliente. Los servicios estan destinados a ser desplegados en una red, muy posiblemente el Internet,

donde se pueden integrar facilmente en cualquier aplicacion que fi NDS sean de utilidad. Los servicios tienen que saber
nada acerca de las aplicaciones de cliente y pueden aceptar solicitudes de servicio entrantes desde cualquier lugar, con

tal de que los mensajes de solicitud tienen el formato correcto y cumplir con los requisitos de seguridad especificos ed.

Los servicios se pueden implementar y administrar en su totalidad y los propietarios de estos servicios pueden cambiar
sus de fi niciones, implementaciones, o requisitos en cualquier momento. compatibilidad de la versién es un problema de
larga data con todos los sistemas y tecnologias distribuidas y se agrava por el caracter abierto de los servicios. ; Como se

puede desarrollar un servicio cuando se tiene un gran nimero (posiblemente desconocida) de clientes que dependen de éI?

Por ejemplo, un banco ejecuta un componente de servidor que sélo es llamado por una aplicacion interna cajero puede
conocer la identidad y ubicacion de todos los sistemas cliente, por lo que la actualizacion del servicio junto con todos sus
llamadores es al menos técnicamente factible. Sin embargo, el procesador de tarjetas de crédito que puede aceptar solicitudes
de autorizacion de cualquier comerciante a través de Internet no tiene manera de cualquiera de saber como localizar sus
clientes (pasados, actuales o potenciales) o conseguir que actualicen sus aplicaciones de llamadas por variadas para que

coincida con los nuevos fi niciones servicio de.

Parte de la respuesta a este problema radica en la simplicidad deliberada y extensibilidad del modelo de
servicios. Todo lo que los clientes saben de un servicio de mensajes es lo que va a aceptar y volver, y esta es la Unica
dependencia que existe entre un cliente y un servicio. Los propietarios de servicios pueden cambiar la
implementacion de un servicio a voluntad, con tal de que actualmente los mensajes validos estan siendo aceptadas.
También pueden ampliar y evolucionar sus mensajes de solicitud de servicio y de respuesta, al igual que siempre y
cuando se mantengan compatibles con versiones anteriores. Nuestro procesador de tarjetas de crédito podria
cambiar totalmente como se implementa su servicio, tal vez pasar de CICS / COBOL a un C # /. NET, y este cambio
no sera visible para todos sus interlocutores, siempre y cuando no se realizan cambios incompatibles con el “autorizar

mensaje de pago”.

Como los servicios son autdnomos, sino que también son responsables de su propia seguridad y tienen que protegerse
contra las personas que llaman posiblemente maliciosos. Sistemas desplegadas por completo en un solo sistema o en una red
cerrada puede ser capaz de ignorar en gran medida la seguridad o simplemente confiar en rewalls fi o tuberias de red seguras,
tales como SSL. Sin embargo, los servicios accesibles a través de Internet abierta tienen que tener una seguridad mucho mas

en serio.

5.2.3 Compartir esquemas y contratos, que no Implementaciones

Afios de experiencia han demostrado que la construccion de sistemas integrados robustos y fiables a gran
escala es dificil. Tratando de construir estos sistemas de componentes creados con diferentes modelos de

programacion y se ejecuta en diferentes plataformas es

5 arquitecturas y tecnologias orientadas a servicios

mucho mas dificil todavia. tecnologias orientadas a servicios abordan este problema apuntando deliberadamente por
simplicidad tanto como sea posible. Los servicios no son objetos remotos con herencia, métodos, y el comportamiento en
tiempo de ejecucion compleja como en CORBA, ni son componentes que soportan eventos, propiedades y llamadas a
métodos con estado. Los servicios son sélo las aplicaciones que reciben y envian mensajes. Clientes y servicios
comparten nada mas que las de fi niciones de estos mensajes y ciertamente no comparten cédigo de método o entornos
de tiempo de ejecuciéon complejas.

diferente 70

Todo lo que una aplicacion necesita saber acerca de un servicio es su contrato: la estructura (esquema) de los

mensajes esta dispuesta a aceptar y vuelta, y si tienen que enviarse en un orden particular. Las aplicaciones cliente
pueden utilizar este tipo de contrato para construir los mensajes de peticion para enviar a un servicio, y los servicios

pueden utilizar sus esquemas para validar los mensajes entrantes y asegurarse de que tienen el formato correcto.

RAASMPBIRIILAGERRRAYICAREDESHRRIG RAUIGR mismos esquemas de mensajes, pero tienen

Los clientes tienen que ser completamente compatible con los servicios que deseen utilizar. Compatibilidad
significa no sélo que los clientes estan siguiendo los formatos de mensaje fi cados y los patrones de cambio, sino
también que se cumplan otros requisitos importantes, tales como si los mensajes deben ser encriptados o la
necesidad de realizar un seguimiento para asegurar que ninguno se han perdido en transito. En el modelo
orientado a servicios, estos requisitos no funcionales son de fi ne mediante politicas, y no solo por escrito como
parte de la documentacion de un servicio.

estandaricen y ofrecidos por los proveedores de la competencia. Por ejemplo, nuestro minorista en linea puede utilizar dos

Por ejemplo, nuestro procesador de tarjetas de crédito puede decidir que todos los comerciantes que envien solicitudes
de autorizacion de pago deberan acreditar su identidad mediante tokens de autenticacion basados en X.509. Esta restriccion
de seguridad se puede representar simplemente como una declaracion en la politica de seguridad publicada por el servicio de
autorizacion.

Las politicas son colecciones de declaraciones legibles por maquinas que permiten un servicio de fi ne sus requisitos para
cosas como la seguridad y la fiabilidad. Estas politicas pueden ser incluidos como parte del contrato de un servicio, lo que le
permite especificar por completo el comportamiento y las expectativas de un servicio, o pueden ser mantenidos en las tiendas
politicas separadas y fue a buscar dinamicamente en tiempo de ejecucion.

para satisfacer las necesidades de un proveedor de servicio en particular. Esto sera cada vez mas util como los servicios se
politicas basadas en contratos pueden ser considerados como sélo una parte de la documentacién de un servicio, sino
que también se pueden utilizar las herramientas de desarrollo para generar automaticamente el cédigo compatible para los
clientes y servicios. Por ejemplo, una politica de seguridad del lado del servidor se puede utilizar para generar cédigo que se
compruebe que las piezas necesarias de un mensaje entrante se cifran y luego descifrar estos datos, presentandola como

texto sin formato a la aplicacién de servicio. Todo esto se hace sin ningun esfuerzo de codificacion del desarrollador.

La separacion de las politicas de los contratos también permite a las aplicaciones cliente de forma dinamica se adaptan

5.3 Servicios Web 71

requisitos de autenticacion. El uso de politicas dinamicas permite a nuestros desarrolladores a escribir una sola
aplicacion que es compatible con los métodos de autenticacion y selecciona dinamicamente cual usar por ir a buscar

la politica del servicio de destino antes de construir y enviar cualquier solicitud de entrega.

5.3 Servicios Web

Los servicios web son un conjunto de estandares de tecnologia de integracion que se han disefiado especificamente para
satisfacer las necesidades derivadas de las arquitecturas y sistemas orientados a los servicios. En muchos sentidos, los
servicios Web no son realmente muy diferentes de las tecnologias de middleware existentes, pero si que difieren en su
enfoque en la simplicidad y la interoperabilidad. La caracteristica mas importante que ofrece servicios web es que todos
los principales proveedores de software han puesto de acuerdo para apoyarlos. Interoperabilidad todavia no es, por
supuesto, garantiza que sea indoloro, pero al menos los problemas encontrados seran los errores y malas
interpretaciones de las normas comunes, no introducen intencionadamente incompatibilidades entre tecnologias

patentadas similares pero diferentes.

Todas las tecnologias de integracion de aplicaciones, incluyendo servicios Web, en realidad sélo proporcionan cuatro

funciones basicas que permiten a los desarrolladores (y programas), haga lo siguiente:

\Encuentra los servicios adecuados (usando UDDI o otro directorio)
\Averiguar acerca de un servicio (utilizando WSDL)
\Pedir un servicio para hacer algo (utilizando SOAP)

\Hacer uso de los servicios como la seguridad (utilizando estandares WS- *)

SOAP, WSDL y UDDI fueron los estandares de servicios Web primeras para ser publicados, pero que sélo
cumplen con los requisitos mas basicos para la integracion de aplicaciones. Carecen de apoyo a la seguridad,
transacciones, fiabilidad, y muchas otras funciones importantes. Esta brecha esta siendo progresivamente llenada
por una serie de normas (cominmente llamado “WS *”) primero esboz6 por IBM y Microsoft en un taller del W3C en
2001. La tarea de crear estas normas adicionales y llegar a un acuerdo de toda la industria es un confuso, trabajo
en progreso, con especificaciones en diferentes grados de madurez y apoyado por diversos organismos de
normalizacién. Algunas especificaciones se complementan, se superponen y compiten entre si. En la actualidad
hay implementaciones sin embargo listos para la produccion disponibles para muchos de ellos. Ver http://www.w3.0org/2002/ws/

para algunas ideas sobre estas especificaciones.

Los servicios web son estandares XML. Los servicios se definen usando XML y aplicaciones solicitan servicios
mediante el envio de mensajes XML y los estandares de servicios Web hacen un amplio uso de otras normas XML
existentes siempre que sea posible. Existen varios estandares de servicios Web y estos se pueden organizar en las

categorias que se muestran en la Fig. 5.2 .

Esta serie de normas puede sugerir la complejidad en lugar de la simplicidad deseada, y en muchas aplicaciones,
sélo unas pocas normas fundamentales estan realmente en uso. También hay cada vez mas buena herramienta y una
biblioteca / soporte de marco para estas normas, por lo que los desarrolladores sdlo tienen que entender las

capacidades ofrecidas en lugar de

5 arquitecturas y tecnologias orientadas a servicios

estandares Web 72

Fig. 5.2 Resumen de los servicios

Seguridad i Actas 3
mensajeria o
I3}
Q
2
confiable de @

mensajeria

XML

la sintaxis XML detallada. Para ilustrar esto antes de mostrar las complejidades del XML asociado, a continuacién
es un simple servicio web de fi niciéon con la API de Java para servicios web XML (JAX-WS), que forma parte de la
plataforma JEE. El uso de anotaciones en la forma utilizada para EJB, la creacion de un servicio web es muy

simple.
brokerservice.endpoint paquete;
javax.jws.WebService importacion;

@Servicio web
Broker public class {

@WebMethod
Cadena viewStock publica (String nombre) {
/I cédigo omite}}

Por lo tanto, los juegos de herramientas como JAX-WS, el desarrollador de servicios no necesita crear o entender los
mensajes XML con formato SOAP. El sistema de tiempo de ejecucion JAX-WS simplemente convierte las llamadas a la APl y las
respuestas desde y hacia formatos de mensaje de SOAP subyacentes. Usted sera capaz de juzgar por si mismo en una pagina o
dos, si esto es una buena cosa!

Uno de los principios que subyacen a la simplificacion de los servicios Web es que los diversos campos de mensajes
fi y atributos utilizados para apoyar las funciones tales como la seguridad y la fiabilidad son totalmente independientes
entre si. Las solicitudes solo necesitan incluir sélo aquellos pocos campos y atributos necesarios para sus propésitos
especi fi cos y pueden ignorar todas las otras normas. Por ejemplo, una solicitud SOAP podria identificar al solicitante de
un servicio mediante la inclusién de un nombre de usuario y contrasefia en la forma especificada en el WSSecurity UsernameToken
per fi |. Este / informacion relacionada con la contrasefia de usuario es el Unico elemento de cabecera en materia de
seguridad incluido en el mensaje. WS-Security es compatible con otras formas de autenticacion de usuario, asi como de
cifrado y firmas digitales, pero como estos no son utilizados por el servicio, que no aparecen en absoluto en la solicitud

de mensaje SOAP.

Otro de los objetivos de los estandares de servicios Web es proporcionar un buen soporte para arquitecturas de
sistemas que hacen uso de “intermediarios”. En lugar de asumir que los clientes siempre envian peticiones directamente a
los proveedores de servicios, el modelo intermediario asume que pasar estos mensajes pueden (transparente) a lo largo
de una cadena de otras aplicaciones en su camino hacia su destino fi nal. Estos intermediarios pueden hacer nada con

los mensajes que reciben, incluyendo enrutamiento de ellos, el registro, el control de seguridad, o incluso

5.4 SOAP y Mensajeria 73

Tarjeta de
Registro de audi!o:?a_E—’

crédito

Cliente —| E I—b Router proveedor 1

Realizar
E’ Proveedor 2

pedido

Proveedor 3

Fig. 5.3 secuencia simple intermediario

adicién o sustraccion de bits de contenido del mensaje. Este modelo se muestra en la Fig. 5.3 , Donde los intermediarios estan
proporcionando servicios de enrutamiento y auditoria.

Los servicios Web proporcionan soporte para arquitecturas basadas en intermediarias en un nimero de maneras.
Estos incluyen el etiquetado de elementos de la cabecera con el papel de su destinatario y apoyar el principio “extremo
a extremo” para funciones tales como la seguridad, por lo que asegurar que contintian funcionando incluso si los
mensajes pasan a través de intermediarios en lugar de viajar directamente desde el cliente al servicio de . Por ejemplo,
en la aplicaciéon mostrada en la Fig. 5.3 , El cliente puede utilizar los mecanismos previstos por WS-Security para
proteger informacién confidencial destinado unicamente para la aplicacion de tarjeta de crédito, ocultandola de router

que el mensaje debe pasar a través de su viaje.

5.4 SOAP y Mensajeria

Jabon era el estandar de servicios Web original y sigue siendo el mas importante y mas ampliamente utilizado. Se
especi fi ca un simple pero extensible protocolo de comunicacion aplicacién toapplication basado en XML, mas o
menos equivalente a la RPC del DCE o RMI de Java, pero mucho menos complejo y mucho mas facil de implementar
como consecuencia de ello. Esta simplicidad proviene de permanecer deliberadamente bien lejos de problemas
complejos, tales como la recogida de basura distribuida y los objetos que pasan por referencia. Todo lo que hace el
estandar SOAP es de fi ne un protocolo simple pero extensible orientado a mensajes para invocar servicios remotos,

utilizando HTTP, SMTP, UDP, u otros protocolos como la capa de transporte y XML para los datos de formato.

mensajes SOAP tienen la estructura simple como se muestra en la Fig. 5.4 . La cabecera tiene
informacion acerca de la carga util del mensaje, posiblemente incluyendo elementos tales como sefales de seguridad
y contextos de transaccion. El cuerpo tiene el contenido real del mensaje que se pasa entre las aplicaciones. El
estandar de SOAP no obliga a lo que puede ir en un encabezado del mensaje, dando SOAP de su extensibilidad como
nuevos estandares, tales como WS-Security, puede ser especi fi cado con s6lo que define los elementos de la nueva

cabecera, y sin requerir cambios en la propia norma SOAP.

5 arquitecturas y tecnologias orientadas a servicios

74

Fig. 5.4 estructura de mensaje de SOAP Envolvente (Obligatorio) -
Marca el inicio y el final de un
mensaje

(opcional) -
Informacion general sobre el mensaje -
por ejemplo, la autenticacion y gestion de
ddeansatoignesse envian encabezado

Cuerpo (Obligatorio) -
Los datos para el mensaje real o

JABON estaba parado originalmente para Simple Object Access Protocol pero es ahora o fi cialmente ya no es un
acrénimo, solo una palabra, y ciertamente nada que ver con el acceso a objetos remotos! clientes SOAP envian mensajes de
solicitud de XML para los proveedores de servicios a través de cualquier medio de transporte y se puede obtener mensajes
de respuesta XML a cambio. Un mensaje SOAP pidiendo una cita de stock se muestra en la Fig. 5.5 . Esto corresponde a la
WSDL definicion se muestra en la Fig. 5.6 . La solicitud lleva un nombre de usuario y contrasefia con algoritmo hash en la

cabecera para permitir que el servicio sabe que esta haciendo la solicitud.

Hay una serie de otras normas incluidas en la categoria de mensajeria de servicios web, incluyendo
WS-Addressing y WS-Eventing. WS-Addressing existe porque los servicios web realmente tienen poco que ver con la
Web y no dependen exclusivamente de HTTP como una capa de transporte. Los mensajes SOAP se pueden enviar a
través de cualquier protocolo de transporte, incluyendo TCP / IP, UDP, direccion de correo (SMTP) y las colas de
mensajes, y WS-Addressing proporciona mecanismos de transporte para direccionar los servicios e identificar
mensajes. WS-Eventing proporciona soporte para un modelo de publicacién-suscripcion por de fi nir el formato de los
mensajes de solicitud de suscripcion que los clientes envian a los editores. mensajes publicados que cumplen la

expresion fi ltrado siempre se envian a las personas que llaman utilizando mensajes SOAP normales.

5.5 UDDI, WSDL y Metadatos

Hay un fuerte tema de metadatos y politica que atraviesa los estandares de servicios Web. servicios SOAP se
describen normalmente utilizando WSDL (Web Services Description Language) y pueden ser localizados mediante
la busqueda de un UDDI (Universal Description, Discovery and Integration) guia. Los servicios pueden describir sus
requisitos para cosas como la seguridad y la fiabilidad mediante declaraciones de politica, definida utilizando el
marco de WS-Policy, y las normas de politica especializados, tales como WS-SecurityPolicy. Estas politicas se
pueden unir a aWSDL servicio de definicion o se mantiene en tiendas de politica separados y recuperados utilizando

WS-MetadataExchange.

5.5 UDDI, WSDL y Metadatos 75

<? Xml version = "1.0" encoding = "UTF-8"?> <Soap: Envelopexmins: Jabén

"Http://www.w3.0rg/2003/05/soap-envelope" xmins: xsi =
"http://www.w3.0rg/2001/XMLSchema-instance" xmins: xsd = "http: // www .w3.org / 2001 /
XMLSchema"
xmins: WSA = "http://schemas.xmlsoap.org/ws/2004/03/addressing" xmins: wsse =
"http://docs.oasis-open.org/wss/2004/01/oasis-

200401-WSS-WSSecurity-secext-1.0.xsd "xmins: wsu ="
http://docs.oasis-open.org/wss/2004/01/oasis

- 200401-WSS-WSSecurity-utilidad-1.0.xsd "> <soap: Header> <wsa:

Accion>

http://myCompany.com/getLastTradePrice </ wsa: Accion>
<Wsa: MessagelD> uuid: 4ec3a973-a86d-4fc9-BBC4-ade31d0370dc </ wsa: MessagelD>

<Wsse: Jabdn de seguridad: mustUnderstand = "1"
<Wsse: UsernameToken>
<Wsse: Nombre de usuario> NNK </ wsse: Nombre de usuario> <wsse: PasswordType
= "http: //docs.oasis- open.org/wss/2004/01/oasis-200401-wss-username

- token-perfil-1.0 # PasswordDigest ">
weYI3nXd8LjMNVksCKFV8t3rgHh3Rw == </ wsse: Contrasefia>

<Wsse: Nonce> WScqanjCEAC4mQoBE07sAQ == </ wsse: Nonce> <wsu: Creado>
2003-07-16T01: 24: 32Z </ WSU: Creado> </ wsse: UsernameToken> </ wsse: Seguridad> </ jabon: header> <soap:

Body>

<M: GetlLastTradePrice
xmins: m = "http://myCompany.com/stockServices">
<Simbolo> DIS </ simbolo> </ m:
GetlLastTradePrice> </ soap: Body>

</ Soap: Envelope>

Fig. 5.5 SOAP de muestra de mensaje

UDDI ha demostrado ser el menos utilizado hasta ahora de los tres estandares originales de servicios Web. En
muchos sentidos, ya sea UDDI es el menos interesante o potencialmente mas interesante de estas normas, en funcién
de la importancia que le parece ser capaz de descubrir de forma dinamica y enlace a los servicios es a su aplicacion.
Las organizaciones estan desarrollando sistemas de grandes complejos de servicios Web hoy en dia sin el uso de
directorios UDDI globales, el uso de otros métodos de servicios hallazgo como el contacto personal o listas publicadas
de los servicios en los sitios Web. Todo esto podria cambiar en el futuro, sobre todo cuando las asociaciones del
sector comienzan a liberar de servicios de fi niciones comunes y necesitan publicar directorios de proveedores de

servicios cuali fi.

WSDL se utiliza para describir servicios Web, incluyendo sus interfaces, métodos y parametros. La
descripcion WSDL de un servicio llamado StockQuoteService que proporciona una unica operacion denominada GetLastTradePri

se representa en la Fig. 5.31.

5 arquitecturas y tecnologias orientadas a servicios

<? Xml version = "1.0"?>

<Definiciones name = "StockQuote"
targetNamespace = "http://myCompany.com/stockquote.wsdl" xmins: TNS =
"http://myCompany.com/stockquote.wsdl" xmins: Jabon ="http://schemas.xmlsoap.org/wsdl/soap /"xmins:
xsd =" http://www.w3.0rg/2001/XMLSchema”xmins = "http://schemas.xmlsoap.org/wsdl/"> <nombre de

mensaje = "GetlLastTradePrice">

<= Tipo de parte del nombre de "cuerpo" = "xsd: string" /> </ message>

<Nombre de mensaje = "LastTradePrice">
<Parte name = tipo "cuerpo" = "xsd: float" /> </ message>

<Nombre portType = "StockQuotePortType">
<Nombre de la operacion = "GetLastTradePrice">
<entrada de mensaje = "TNS: GetLastTradePrice" /> <salida de mensaje =
"TNS: LastTradePrice" /> </ operacion> </ portType>

<Binding name = "StockQuoteBinding"
type = "tns: StockQuotePortType">
<Soap: estilo de encuadernacion = "documento”

transporte = "http://schemas.xmlsoap.org/soap/http" />
<Nombre de la operacion = "GetlLastTradePrice">
<Soap: operacion soapAction =
"Http://myCompany.com/GetLastTradePrice" />
<Input>
<Soap: uso del cuerpo = "literal" /> </ input>
<salida>

<Soap: uso del cuerpo = "literal" /> </ salida> </
operacién> </ binding>

<Service name = "StockQuoteService">
<Documentation> servicio de la cita </ documentacién> <nombre del puerto = "StockQuotePort"

vinculante = "tns: StockQuoteBinding"> <soap: ubicacion de la
direccion =
"Http://myCompany.com/stockServices" />
</ Puerto> </ service>
</ definiciones>

Fig. 5.6 WSDL para el GetLastTradePrice servicio 76

Esta operacion tiene un parametro simbolo de tipo cuerda que los nombres de la poblacién de interés y devuelve una flote que
mantiene el precio mas recientemente comercializado.

WSDL esta bien apoyado por los entornos de desarrollo como Visual Studio, Eclipse, y WebSphere. Estas
herramientas pueden generar WSDL automaticamente del método del programa y la interfaz de Definiciones, y

se toman en WSDL del servicio Definiciones

5.6 Seguridad, Operaciones y Fiabilidad 77

y hacer mas féacil para los desarrolladores escribir codigo que llama a estos servicios. Uno de los efectos secundarios adversos
de esta herramienta de apoyo es que tiende a animar a los desarrolladores a pensar en los servicios como los métodos

remotos, en lugar de mover al modelo basado en mensajes preferible y mas rica proporcionada por los servicios Web.

5.6 Seguridad, Operaciones y Fiabilidad

Uno de los problemas que enfrenta la mayoria de los protocolos de middleware es que no funcionan bien en Internet
abierta debido a las barreras de conectividad impuestas por rewalls fi. La mayoria de las organizaciones no quiere
que extrafios tengan acceso a los protocolos y tecnologias que utilizan internamente para la integraciéon de

aplicaciones y asi bloquean los puertos TCP / IP necesarios en sus rewalls fi perimetrales.

La respuesta comun a este problema la tecnologia, y la adoptada por los servicios web, ha sido cooptar el
protocolo Web, HTTP, como una capa de transporte debido a su capacidad de pasar a través de la mayoria rewalls
fi. Este uso de HTTP es conveniente, sino que también crea problemas de seguridad potenciales como HTTP tra fi
co ya no es solo ir a buscar inocua paginas Web. En su lugar, puede estar haciendo llamadas directas sobre las

aplicaciones internas.

WS-Security y sus estandares asociados abordan estos problemas proporcionando fuertes mecanismos
criptograficos para identificar a los llamantes (autenticacion), proteger el contenido frente a intrusos (cifrado), y
garantizar la integridad de la informacion (firmas digitales). Estos estandares estan disefiados para ser extensible,
dejando que se pueden adaptar facilmente a las nuevas tecnologias de seguridad y algoritmos, y también la

integracion de soporte con las tecnologias de seguridad legado.

WS-Security soporta arquitecturas de aplicaciones a base de intermediario al permitir que multiples elementos de la
cabecera de seguridad, cada uno marcado con el papel de su receptor previsto a lo largo de la cadena de
procesamiento, y mediante el apoyo de cifrado parcial y firmas parciales. Como una ilustracion, en el ejemplo mostrado
en la Fig. 5.3, Los datos de su tarjeta de crédito sensibles pueden ocultarse mediante la encriptacién de ellos, dejando

el resto del mensaje sin cifrar de forma que pueda ser leido por la aplicacién de enrutamiento.

El conjunto final de estandares de servicios web de soporte de transacciones y mensajeria confiable. Hay dos
tipos de transacciones de servicios Web compatibles con las normas. WS-AtomicTransactions soporta transacciones
ACID distribuida convencionales y asume los niveles de confianza y de respuesta rapidos tiempos que hacen de este
estandar es adecuada soélo para tareas de integracién de aplicaciones internas e inutilizable para fines de integracién
de aplicaciones a escala de Internet. WS-BusinessActivity es un marco y un conjunto de elementos de protocolo de
la coordinacioén de la terminacion de aplicaciones integradas de forma flexible. Proporciona una cierta ayuda para

atomicidad invocando compensadores cuando un distribuyeron acabados aplicacién Fl en fracaso.

El soporte para mensajeria confiable en servicios web, simplemente se asegura de que todos los
mensajes enviados entre dos aplicaciones realmente lleguen a su destino en el orden en que fueron enviados.

WS-Reliable Messaging no garantiza la entrega en el

78 5 arquitecturas y tecnologias orientadas a servicios

caso de fallo, a diferencia de la cola middleware de mensajeria mediante colas persistentes. Sin embargo, todavia es un
estandar util ya que proporciona como maximo una vez, la entrega de mensajes en orden sobre cualquier capa de

transporte, incluso los no fiables tales como UDP o SMTP.

5.7 Servicios Web REST

La “web” en los “servicios Web basados en SOAP” es en realidad un nombre inapropiado como jabén tiene
nada que ver con la web, aparte de su uso (opcional) del protocolo Web, HTTP, como una capa de transporte
“cortafuegos ambiente fi”. Tal vez como reaccién a este mal uso de la palabra “Web” (y falta total de jabén de
la adhesion a las filosofias subyacentes a la “Web”), algunos adherentes a la Web-forma-de-hacer-cosas han
desarrollado y evangelizada vigorosamente una forma alternativa de hacer los servicios Web: REST

(Representational State Transfer).

Los servicios Web RESTful se basan en HTTP como su fi cientemente rica protocolo para satisfacer por completo las
necesidades de las aplicaciones de servicios Web. En el modelo de reposo, el HTTP GET, POST, PUT y DELETE verbos
se usan para transferir datos (a menudo en forma de documentos XML) entre el cliente y servicios. Estos documentos son
“representaciones” de “recursos” que son identificados por los URI (Uniform Web normales ERS recursos identi fi). Este uso
de las tecnologias web estandar HTTP vy significa que los servicios web RESTful pueden aprovechar la infraestructura Web

completo, como el almacenamiento en caché y la indexacion.

El siguiente ejemplo muestra como un simple servicio web de la base de datos del cliente se podria
implementar usando un enfoque reparador. En este ejemplo, la base de datos del cliente es un “recurso” y los
registros de clientes individuales también son “recursos” en su propio derecho. Cada uno de estos recursos tiene

un URI Unico que se puede utilizar como el sujeto de un verbo HTTP.

1el URI http://example.com/customers identi fi ca el recurso de la base de datos de clientes.

GET solicitudes enviadas a este URI devuelven el conjunto de todos los clientes como un documento XML que contiene

solo una lista de URIs que apuntan a los recursos individuales de los clientes.
\El URI para cada cliente en la base de datos se forma afiadiendo el custo-

ID unico del mer al cliente establece URI. Por ejemplo, http://example.com/ clientes / 1 identi fi ca el

recurso correspondiente al cliente con ID 1.
1Una peticion GET enviada a uno de estos URIs unicas del cliente recupera un archivo XML

documento que contiene una representacion del estado actual del cliente correspondiente.

ilos recursos de clientes existentes pueden actualizarse por poner un documento XML

que contiene una representacion del nuevo estado deseado de la cliente a la URI cliente apropiado.

1Los clientes nuevos pueden ser afiadidos a la base de datos mediante la publicacion de documentos XML

que contiene la representacion del nuevo recurso a la URI de coleccion. Los URIs para los nuevos

recursos del cliente se devuelven mediante el encabezado HTTP ubicacién en las respuestas del servidor.

\asientos de clientes se pueden eliminar mediante el envio de una peticién de borrado al cliente

URL.

5.8 Conclusion y lectura adicional 79

Algunos de los defensores mas entusiastas del enfoque REST a los servicios Web se ven como una
competencia con las tecnologias basadas en SOAP y sus proveedores. Muchos de los argumentos de los
defensores REST provienen de su creencia de que el descanso es “simple” y SOAP y WS- * son “complejas”. Por
supuesto, la “simplicidad” y “complejidad” son en relacién con los problemas arquitecténicos y técnicos que estan
tratando de resolver, y el amplio conjunto de servicios proporcionados por el WS * estandares bien puede ser justo
lo que necesita para resolver los complejos problemas que se enfrentar en sus aplicaciones empresariales
distribuidas. Por el contrario, el enfoque REST para la construccion de servicios Web sera adecuado para muchos
problemas sencillos, especialmente donde las cuestiones de seguridad robusta, la fiabilidad y la interoperabilidad
no son importantes. Si estos temas “complejos” son importantes en la arquitectura de integracion de aplicaciones, a
continuacién, SOAP y WS- * bien puede ser una respuesta mejor, ofreciendo soluciones basadas en estandares e
interoperables a estos requisitos no funcionales inherentemente complejos. La eleccién es suya como SOAP y
REST son realmente enfoques complementarios para la implementacion de servicios Web, cada uno mejor se

adapte a diferentes tipos de aplicaciones distribuidas.

5.8 Conclusion y lectura adicional

Servicios y arquitecturas orientadas a servicios son respuestas pragmaticas a los problemas de complejidad y de
interoperabilidad encontradas por los constructores de las generaciones anteriores de las aplicaciones integradas a gran
escala. Los servicios web son un conjunto de normas de tecnologia de integracion que re fl ejan esta necesidad de
simplicidad y la interoperabilidad.

Lo que “realmente” la transformacion de los servicios Web es que no es (mas o menos) solo un conjunto de
normas comunes que todo el mundo utiliza al ofrecer o acceder a los servicios. Estas normas estan siendo apoyados
por toda la industria de la computacion y estan disponibles en todas las plataformas de aplicaciones a bajo costo. El
caracter generalizado de los servicios Web hace atractivos a utilizar para la integracion de aplicaciones, sin duda para

aplicaciones a gran escala de plataforma cruzada y, en muchos casos, para las tareas de integracién local también.

arquitecturas orientadas a servicios y servicios Web son temas candentes en la industria de Tl de hoy en dia. Todos
los principales fabricantes de software estan publicando tutoriales y articulos sobre los servicios y la forma en que son
apoyados por sus productos. Hay unos cuantos buenos libros bastantes por ahi y cualquier nimero de articulos de
revistas asi. lugares de partida son buenas MSDN de Microsoft, DeveloperWorks de IBM, y los sitios Web de

desarrolladores de Sun, en los siguientes lugares:

http://www.msdn.microsoft.com
http://www.ibm.com/developerworks
http://www.developers.sun.com/

También podra hallar mas informacién sobre los servicios Web y SOA a través de Google que se preocupa de
imaginar. O simplemente ir a su propio proveedor de software y ver lo que tienen que decir acerca de la forma en que dan

soporte a servicios.

80 5 arquitecturas y tecnologias orientadas a servicios

Algunos excelentes libros de texto de servicios Web estan alrededor. Los siguientes son tres ejemplos me gustaria

recomendar:

Thomas Erl, Patrones de Disefio SOA, Prentice-Hall, 2009 Thomas Erl, los principios de SOA

de servicio de disefio, Prentice-Hall, 2007

O. Zimmermann, M. R Tomlinson, S. Peuser, Perspectivas sobre Servicios Web de aplicar el jabén,
WSDL y UDDI para Proyectos Mundo Real. Springer-Verlag 2004

G. Alonso, F. Casati, H. Kuno, V. Machiraju, Conceptos de servicios web, arquitecturas
y Aplicaciones. Springer-Verlag 2004

S. Chatterjee, J. Webber, El desarrollo de servicios Web de empresa: un arquitecto de
Guia. Prentice-Hall, 2004

También hay un montén de material de lectura para mantenerlo ocupado en los servicios web RESTful. Por

ejemplo:

Jim Webber, Savas Parastatidis, lan Robinson, REST en la practica, O'Reilly Media,
2010

http://java.sun.com/developer/technicalArticles/WebServices/restful/

Leonard Richardson, Sam Ruby, Servicios Web RESTful, O'Reilly Media, 2007

http://www.ibm.com/developerworks/webservices/library/ws-restful/

http://www.xfront.com/REST-Web-Services.html

Por ultimo, el blog de Steve Vinoski siempre es una lectura entretenida y educativa en REST - ver http://steve.vinoski.n

Capitulo 6
Tecnologias avanzadas de middleware

6.1 Introduccién

Los tres capitulos anteriores han descrito los bloques de construccion basicos de middleware que se pueden utilizar
para implementar arquitecturas de sistemas distribuidos para sistemas empresariales a gran escala. A veces, sin
embargo, estos bloques de construccion no son su fi ciente para permitir a los desarrolladores disefiar y construir
arquitecturas complejas con facilidad. En tales casos, se necesitan herramientas mas avanzadas y disefios, que
permiten hacer frente a problemas de arquitectura con tecnologias de middleware mas potentes. En este capitulo se
describen dos de estos, es decir, intermediarios de mensajes y motores de flujo de trabajo, y analiza las fortalezas y

debilidades de estos enfoques.

6.2 intermediarios de mensajes

mensajeria basica utilizando MOM y publicaciéon-suscripcion oficinas tecnologias suf para muchas
aplicaciones. Es una forma simple y efectiva y probada que puede ofrecer altos niveles de rendimiento y
fiabilidad.

despliegues de MOM empiezan a ser un poco mas complejo, aunque cuando los formatos de mensajes no estan
totalmente de acuerdo entre las distintas aplicaciones que se comunican utilizando el MOM. Este problema se produce
comunmente en el campo de la integracion de la empresa, donde el problema de fondo es la construccion de
aplicaciones de negocio de sistemas grandes y complejos comerciales legado que nunca fueron disefiados para trabajar

en conjunto y el intercambio de informacion.

integracion de la empresa es todo un campo de estudio en si mismo (ver lecturas adicionales). Desde la perspectiva de
este libro, sin embargo, la integracion empresarial ha dado lugar a una clase interesante y ampliamente utilizado de

tecnologias middleware, conocidos como intermediarios de mensajes.

Vamos a introducir intermediarios de mensajes a modo de ejemplo motivador. Suponga que una organizacion tiene

cuatro sistemas de negocios diferentes legado que cada contienen informacién

|. Gorton, Arquitectura de Software esencial, 81
DOI 10.1007 / 978-3-642-19176-3_6, # Springer-Verlag Berlin Heidelberg 2011

6 avanzadas tecnologias de middleware

acerca de los clientes. 1 Cada uno de estos cuatro tiendas algunos datos comunes acerca de los clientes, asi como algunos
campos de datos Unicos que otros no mantienen. Ademas, cada una de las aplicaciones tiene un formato diferente para un
registro de cliente, y los nombres de campo individuales son diferentes a través de cada uno (por ejemplo, uno utiliza la
direccion, otra ubicacién, como un nombre de campo de datos de direcciones de clientes). Para actualizar los datos del cliente,

un API propietario esta disponible para cada sistema heredado.

Si bien esto es conceptualmente muy simple, es un problema que muchas organizaciones tienen. Por lo tanto, vamos a
suponer mantener los datos consistentes en cada una de estas cuatro aplicaciones es un problema para nuestra organizacion
hipotética. Por lo tanto, deciden poner en practica un sitio web que permite a los clientes actualizar sus propios datos en linea.
Cuando esto ocurre, los datos introducidos en la pagina web se pasa a un componente web en el servidor web (por ejemplo,
un servlet o una pagina ASP.NET). La funcion de este componente es pasar los datos actualizados a cada una de las cuatro

aplicaciones heredadas, para que puedan actualizar sus propios datos de los clientes correctamente.

La organizacion utiliza MOM para la comunicacion entre aplicaciones. En consecuencia, el componente Web
da formato a un mensaje con los nuevos datos del cliente y utiliza el MOM para enviar el mensaje a cada sistema
heredado. 2 El formato del mensaje, con la etiqueta En formato en la Fig. 6.1, Es un formato acordado que el

componente web y todas las aplicaciones heredadas entienden.

cada mensaje. 82
Llave: Componente

mensaje = L_/l web

Sistema Sistema Sistema Sistema
legado # 1 legado # 2 legado # 3 legado # 4

Fig. 6.1 El uso de MOM para comunicar una actualizacion de los datos del cliente a cuatro sistemas heredados

1 los fondos de datos duplicados de este tipo son muy comunes en las empresas. Por ejemplo, mi banco se las arregla para enviar mi tarjeta

de crédito declaracion y de tarjetas de crédito puntos de recompensa a diferentes direcciones.

2 EIl MOMmay desplegar una cola diferente para cada uso de la herencia o de una sola cola, e incluyen un “destino” campo en

6.2 intermediarios de mensajes 83

Leer llamada

cola
o mensaje formato
n formato
Transform "| heredado

Fig. 6.2 la transformacién del mensaje comuin a un formato heredado-especifico

ala APl

Cada sistema de la herencia tiene un componente de interfaz de colas que pueden leer los mensajes de la cola, y el
uso de los datos en el mensaje, crear una llamada a la API de actualizacion de datos del cliente que es compatible con el
sistema anterior. En este ejemplo, el componente de la interfaz seria leer el mensaje de la cola, extraer los fi campos de
datos especificos del mensaje que tiene que llamar a la API de su sistema heredado, y emitir finalmente la llamada a la
API. Como se muestra en la Fig. 6.2 , El componente de interfaz esta basicamente realizar una transformacion de la En

formato a un formato adecuado para su sistema heredado asociado.

Por lo tanto, para cada aplicacion heredada, hay un componente dedicado que ejecuta la I6gica para transformar
el mensaje entrante en una llamada a la API del sistema heredado el formato correcto. La transformacion se lleva a
cabo en el cddigo de programa del componente.

Esta solucidn tiene algunas implicaciones interesantes:

1Si el comun En formato cambios de formato del mensaje, entonces el componente web y

cada componente del sistema legado que realiza la transformacién debe ser modificado ed y probado.

1Si los cambios de la API del sistema legado, a continuacion, sélo la transformacién de ese sistema
debe ser modi fi y probado.
1La modificacién de cualquiera de las transformaciones mas probable que requiere la coordinacién con el
equipo de desarrollo que son responsables del mantenimiento del sistema (s) de legado. Estos equipos de

desarrollo son los que conocen los detalles intimos de como acceder a la API del sistema legado.

Por lo tanto, hay un estrecho acoplamiento entre todos los componentes de esta arquitectura. Esto es causado
por la necesidad de que se pongan de acuerdo sobre el formato de los mensajes que se comunica. Ademas, en las
grandes organizaciones (o incluso con mas fuerza, a través de fronteras organizativas), comunicar y coordinar
cambios en el formato de mensaje comun a través de multiples equipos de desarrollo de sistema heredado puede ser

lento y doloroso. Es el tipo de cosas que le gustaria evitar si es posible.

La solucién alternativa obvia es pasar la responsabilidad de la transformacién formato de mensaje al
componente web. Esto garantizaria que los mensajes se envian a cada componente de la interfaz del sistema
heredado en el formato que necesitan para simplemente llamar a la API anterior. La complejidad de
transformacion esta ahora en un solo lugar, el componente web, y el componente de interfaz de sistema legado
se vuelve simple. Basicamente se lee un mensaje de la cola y llama a la API asociado el uso de los datos en el
mensaje. Los cambios en el En formato mensaje no causan cambios en los componentes de la interfaz de
legado, ya que soélo necesita modificar el componente Web y pruebas. Los cambios en cualquier API legado,
aunque requieren que el equipo de desarrollo de sistema heredado especifico para solicitar un nuevo formato de

mensaje del equipo de desarrollo de componentes web.

6 avanzadas tecnologias de middleware

Esta es una solucién mucho mejor, ya que reduce el nimero de cambios necesarios para los diferentes
sistemas de software involucrados (y recuerda, “cambio” significa “prueba”). El mayor inconveniente de esta solucion
es la complejidad del componente web. La transformacion para cada sistema legado esta incrustado en su codigo
de programa, por lo que es propenso a modi fi cacion ya que esta acoplado de manera efectiva a los formatos de

mensaje de cada sistema heredado se comunica con.

Aqui es donde intermediarios de mensajes ofrecen una solucion alternativa potencialmente atractiva.
Arquitecténicamente, un corredor es un patrén de arquitectura conocida s la incorporacion de un componente que desacopla
los clientes y servidores por mediacién de las comunicaciones entre ellos. Del mismo modo, el middleware intermediario de
mensajes aumenta las capacidades de una plataforma de MOM para que la légica de negocio relacionada con la
integracion puede ser ejecutado dentro del corredor. En nuestro ejemplo, el uso de un agente que podriamos integrar las
reglas de transformacién de mensaje para cada sistema heredado dentro del corredor, dando una solucién como en la
figura. 6.3 . Una solucién de intermediario de mensajes es atractiva porque permite separar por completo el componente web
y los componentes de interfaz de legado. El componente web, simplemente se ensambla y emite un mensaje, y el corredor
transforma el mensaje en el formato necesario para cada sistema heredado. A continuacién, envia un mensaje de salida a

los componentes de la interfaz del sistema heredado en el formato exacto que desean.

Otra atraccion es la simplificacion de todos los componentes en el sistema, ya que ahora no tienen que
preocuparse por la transformacién formato de mensaje. La logica de transformacién mensaje se localiza
dentro del intermediario de mensajes y se convierte en la responsabilidad del grupo de integracion de
mantener. En consecuencia, si se necesitan cambios en la red o sistema legado formatos de mensaje, el

equipo de desarrollo

Llave: Componente

mensaje = I:‘ web

Agente de

mensajes

Sistema Sistema Sistema Sistema

legado # 1 legado # 2 legado # 3 legado # 4

Fig. 6.3 Desacoplamiento de los clientes y servidores con un intermediario de mensajes

3 Véase la referencia Buschmann en Lectura adicional, Cap. 1. 84

6.2 intermediarios de mensajes 85

responsable solamente necesitan actuar de enlace con el grupo de integracion, cuyo trabajo es actualizar correctamente las
transformaciones.

No es un trabajo enorme para implementar el patrén intermediario en conjunto con una plataforma estandar de
MOM. 4 Tal solucién todavia tendria la desventaja de de fi nir la Iégica de transformacion en el cédigo del programa.
Para las transformaciones simples, esto no es un gran problema, pero muchas de estas aplicaciones implican
transformaciones complejas con fi formateo de cadenas ddly y concatenaciones, formulas para calcular valores
compuestos, y asi sucesivamente. Nada demasiado dificil de escribir, pero si habia una solucién mejor que hizo la

creacion de transformaciones complejas simple, dudo que muchas personas se quejan.

tecnologias de intermediario de mensajes comienzan a sobresalir en esta etapa, ya que proporcionan herramientas especializadas

para:

\Graficamente que describe las transformaciones de mensajes complejas entre formatos de entrada

y formatos de salida. Las transformaciones pueden ser simples en términos de movimiento de un valor de campo
de entrada fi a un campo de salida fi, o pueden definirse usando lenguajes de script (tipicamente producto

especifico ¢) que puede realizar varias formato, conversiones de datos, y transforma matematicos.

\De alto rendimiento motores de transformacion mensaje de multiproceso que puede Han-

DLE multiples peticiones de transformacion simultaneas.
1Al describir y ejecutar flujos de mensaje, en el que un mensaje entrante puede ser

encaminado a diferentes transformaciones y salidas en funcién de los valores en el mensaje entrante.

Un ejemplo de una herramienta de mapeo de mensajes se muestra en la Fig. 6.4 . Esto es de Microsoft

Asignador de BizTalk y es tipico de la clase de tecnologias de mapeo. En BizTalk,

Fle Edt Vew Project Buld Debug BgTak Toos Window Help

Development ~ i v 2
||est.xsd | RequestDenied.xsd | ERPPipeline.btp BadReqllap.btll" 1 x|@
i ¥
I?:] = [y <Schema> <Schema> @l = 8
8 = 2] Request RejectedReq [S = L4

]

g - L o&
S [Dzel—— fpze] &

4] Total

o pi\ F

Item(s) Saved

A

Fig. 6.4 Un ejemplo herramienta de mapeo de intermediario de mensajes

4 La solucion se deja como ejercicio para el lector!

6 avanzadas tecnologias de middleware

annal

nlegiatos

Flls Edl View Messag Flow Definson H
998 HY
Mossage Sets Message Flows | assignments | Topology | Topics | Subscriptions | Oparations | Log |

| ® MessageFlo.. | O | w | TUTORWAL Flow Diefinition | a
B Message Flows
% new
< o
<& MOSI_TEST
= IBMPrimitves
v Check
B Compute
1l Database
4 DataDobete
i Datalnsen
[Datalipdate
B Extract
¥ Fiter
1EF Input Terminal
3 Mainput
TR MaOutpt
T MaReply 3
M MeonFormatier
M NeonRules MQInputt Failure Handiing 1
D Output Terminal
o2 Publication
By ResetContentDescriptor
*E Theow
W Trace
TryCatch
Warehouse

Fig. 6.5 El enrutamiento de mensajes y de procesamiento 86

el asignador puede generar las transformaciones necesarias para mover datos entre dos esquemas XML, con las
lineas que representan la asignacion entre origen y destino esquemas. Secuencias de comandos (no mostrado en la

figura) se pueden asociar con cualquier mapeo para definir asignaciones mas complejas.

Un ejemplo de una herramienta de fi nicién enrutamiento de mensajes tipico se muestra en la Fig. 6.5 . Esta
es la tecnologia WebSphere de IBM MQSI. Se muestra como un mensaje entrante, entregado en una cola, puede
ser procesado de acuerdo con algun valor de los datos en el mensaje. En el ejemplo, una Filtrar componente
inspecciona los valores de campo mensaje fi entrantes, y en base a condiciones especificado fi, ejecuta uno de los
dos calculos, o envia el mensaje a una de las dos colas de salida. El mensaje de flujo también de fi nes logica de

manejo de excepciones, que se invoca cuando, por ejemplo, se reciben mensajes de formato no valido.

Por lo tanto, intermediarios de mensajes son esencialmente altamente transformacion mensaje y motores de enrutamiento
especializados. Con sus herramientas de desarrollo personalizados asociados, hacen que sea mas facil de dE transformaciones de

los mensajes finas que pueden ser:
\Facilmente entendido y modificados con el sin cambiar las aplicaciones participantes.
1Gestionado de forma centralizada, lo que permite un equipo responsable de la integracién de aplicaciones de

coordinar y cambios de prueba.
1Ejecutado por un alto rendimiento, motor de transformacién de multiproceso.

Por supuesto, como la légica de integracion se vuelve mas y mas compleja, utilizando un intermediario de mensajes para

implementar esta légica es esencialmente equivalente a mover la complejidad

6.3 Procesos de Negocio orquestacion 87

desde los puntos finales de integracion para el corredor. Es una decision de disefio arquitectonico,
basado en la especi fi cs de una empresa y su entorno técnico y social, si se trata de una buena decision
o no. No hay respuestas simples, recuerda.

Es importante destacar que, intermediarios de mensajes operan en un nivel por mensaje. Reciben un mensaje de
entrada, transformarla de acuerdo con las reglas de enrutamiento de mensajes y la légica, y la salida del mensaje o
mensajes que resulta a sus destinos. Corredores funcionan mejor cuando estas transformaciones son de corta duracién y
ejecutan rapidamente, por ejemplo, unos pocos milisegundos. Esto se debe a que por lo general son optimizados para el
rendimiento y por lo tanto tratan de evitar los gastos generales que ralentizar transformaciones. En consecuencia, si un
corredor o sus accidentes ordenador central, que se basa en el hecho de que no sélo la transformacion puede ser
ejecutado de nuevo desde el principio, es decir, no se necesita el estado caro y gestion de transacciones. Tenga en
cuenta, sin embargo, que muchos intermediarios de mensajes soportan opcionalmente mensajeria transaccional e
incluso permiten que el agente para modificar las bases de datos transaccional durante la ejecucion de la transformacion.
Estas operaciones son coordinadas por un gestor de transacciones ACID, tal como el que viene con la tecnologia

subyacente de MOM.

Para una gran clase de escenarios de integracién de aplicaciones, la transformacion de alta velocidad es todo lo que
se requiere. Sin embargo, muchos de los problemas de integracion de negocio requieren la definicion de una serie de
peticiones fl debido entre diferentes aplicaciones. Cada solicitud puede implicar varias transformaciones de los mensajes,
lee y cambios a los sistemas de bases de datos externas, y una légica compleja para controlar el flujo de mensajes entre
aplicaciones y, potencialmente, incluso los seres humanos para la toma de decisiones de fl ine. Para este tipo de
problemas, intermediarios de mensajes son insuficientes, y bien, lo has adivinado, se requiere aiin mas la tecnologia. Esto

es descrito en la siguiente seccion.

Antes de continuar, sin embargo, se debe enfatizar que los intermediarios de mensajes, como todo en la arquitectura
y las tecnologias de software, tienen sus desventajas. En primer lugar, muchos de ellos son tecnologias propietarias, y
esto conduce a la dependencia de un proveedor. Es el precio que paga por todas esas sofisticadas herramientas de
desarrollo y despliegue. En segundo lugar, en las aplicaciones de mensajeria de alto volumen, el corredor puede
convertirse en un cuello de botella. La mayoria de los productos corredor mensaje de apoyo a la agrupacién agente para
aumentar el rendimiento, la escalabilidad y fiabilidad, pero esto viene a costa de la complejidad y délares. Recientemente
han surgido corredores de cddigo abierto, con la mula s siendo un ejemplo de alta calidad. Estas tecnologias son

implementaciones de alta calidad y bien vale la pena considerar en muchos escenarios de integracion.

6.3 Procesos de Negocio orquestacion

Los procesos de negocio en las empresas modernas pueden ser complejos en términos del nimero de aplicaciones
empresariales que deben acceder y actualizar para completar el servicio de negocio. Como ejemplo, la Fig. 6.6 es una
representacion simple de un proceso de negocio de pedido de cliente, en el que se produce la siguiente secuencia de

eventos.

s http://www.mulesoft.org/display/COMMUNITY/Home

6 avanzadas tecnologias de middleware

compra de los
clientes @: /
<

recepcion de Ventas

Validacion

Cuentas por

. cobrar

esmde 1 Oréaculo

Cliente de

Fig. 6.6 Un proceso tipico de negocios 88

Un cliente realiza un pedido a través de un centro de llamadas. Los datos del cliente se almacena en un paquete de
gestion de relacion con el cliente (por ejemplo, Oracle Siebel). Una vez realizado el pedido, el crédito del cliente es
validado mediante un servicio de crédito externo, y la base de datos de las cuentas por pagar se actualiza para registrar

la orden y enviar una factura al cliente.

Realizar un pedido provoca un mensaje que se enviara a envio, que actualizar su sistema de
inventario y enviar el pedido al cliente. Cuando el cliente recibe la orden, que pagan por los bienes y el
pago se registra en el sistema de cuentas recibidas. Todos los datos financieros se extraen
peridédicamente a partir de los sistemas de contabilidad y se almacenan en un almacén de datos Oracle

para informes de gestion y archivo.

La implementacion de este tipo de procesos de negocio tiene dos retos principales. En primer lugar, desde el tiempo se hace un
pedido a cuando se recibe el pago podria tardar varios dias o semanas, o incluso mas tiempo si los articulos estan fuera de stock.
En algin lugar a continuacién, el estado actual del proceso de negocio para un fin determinado, lo que representa exactamente en
qué etapa se esta haciendo, debe ser almacenado, potencialmente durante mucho tiempo. La pérdida de este estado, y por lo tanto

el estado del pedido, no es una opcion deseable.

En segundo lugar, las excepciones en el proceso de compra puede hacer que el estado de la orden de fallar
y deshacer. Por ejemplo, una orden se da por alguna accion del articulo. Vamos a suponer que esta accién no
esta disponible en el almacén, y cuando se reordena, el proveedor le dice al almacén que la poblacién de edad
ya esta obsoleta, y que un modelo mas nuevo, mas caro sera reemplazarlo. El cliente es informado de esto, y
deciden cancelar el pedido. Cancelacion requiere los datos de la orden para ser retirados del almacén, cuentas a
pagar, y Siebel Systems. Esto es potencialmente una tarea compleja para realizar de forma fiable y

correctamente.

Este estilo de comportamiento de reversion puede ser definido por el disefiador de procesos utilizando una instalacién conocida

como una transaccion de compensacion. transacciones de compensacion permiten al

6.3 Procesos de Negocio orquestacion 89

disefiador de procesos de forma explicita definen la légica necesaria para deshacer una transaccion fallida que parcialmente
completado.

En los procesos de negocio de larga duracion, tales como procesamiento de érdenes de venta, transacciones ACID
estandar, que se bloquean todos los recursos hasta que se complete la transaccion, no son factibles. Esto se debe a que
bloquean los datos en los sistemas de negocio para potencialmente minutos, horas o incluso semanas con el fin de lograr el
aislamiento de transaccion. datos bloqueados no se puede acceder por transacciones simultaneas, y por lo tanto, la contencion
de bloqueo hara que estos a esperar (0 mas probablemente fallan a través de tiempo de espera) hasta que los bloqueos se
liberan. Tal situacion es poco probable que produzca de alto rendimiento y las implementaciones de procesos de negocio

escalables para los procesos de negocio de larga duracion.

Comportamiento transaccional para procesos de larga duracion esta, por tanto, por lo general maneja mediante la
agrupacion de una serie de actividades de proceso en un ambito de transaccion de larga duracién. transacciones largo de
funcionamiento comprenden mdltiples actividades del proceso que no colocan candados en los elementos de datos que se
modifican en los diversos sistemas de negocios. Las actualizaciones se realizan y se comprometieron localmente en cada
sistema de negocio. Sin embargo, si cualquier actividad en el ambito de transaccion falla, el disefiador debe especificar una
funcién de compensacion. El papel del compensador es deshacer los efectos de la transaccién que ya se han comprometido.
Esencialmente, esto significa deshacer todos los cambios que la transaccién habia hecho, dejando a los datos en el mismo

estado en que estaba antes de la transaccion iniciada.

transacciones largo de funcionamiento son notoriamente dificiles de poner en practica correctamente. Y a veces son
algo imposible de aplicar con sensatez - ;cémo se efectia la compensacién de un proceso de negocio que se ha enviado
un correo electrénico confirmando un pedido ha sido enviado o ha enviado una factura? Por lo tanto, las soluciones
tecnoldgicas para compensar las transacciones no erradican cualquiera de estos problemas fundamentales. Sin
embargo, si proporcionan al disefiador una herramienta para hacer la existencia de una transaccion de larga duracion
explicita, y un marco de ejecucion que llama automéaticamente el compensador cuando se producen fallos. Para muchos

problemas, este es su fi ciente para la construccién de una solucion viable.

Como la fig. 6.7 ilustra, la orquestacion de procesos de negocio (BPO) plataformas estan disefiadas para hacer
que la aplicacién de estas larga ejecucion, los procesos de negocio altamente integrados relativamente sencillo.
plataformas BPO suelen ser construido como una capa que aprovecha algun tipo de infraestructura de mensajeria

tales como SOA o un intermediario de mensajes. Aumentan la capa de mensajeria con:

\Administracion del Estado: el estado de ejecucion de un proceso de negocio se almacena persis-
tently en una base de datos. Esto hace que sea resistente a los fallos en el servidor de BPO. Ademas, una vez que el
estado del proceso se almacena en la base de datos, no consume recursos computacionales en el motor de BPO hasta
que el trabajo concreto flujo se reanuda la instancia.

\Herramientas de desarrollo: herramientas de definicion de procesos visuales se proporcionan para de fi nir
Procesos de negocios.

‘herramientas de implementacion: éstos permiten a los desarrolladores para enlazar faciimente légica de procesos de negocio
pasos para los sistemas operativos subyacentes utilizando diversos tipos de conectividad, incluyendo las colas de

mensajes, protocolos web, SOAP y fi | de los sistemas.

Un ejemplo de la tecnologia de BizTalk de Microsoft se muestra en la Fig. 6.8 . Esta

muestra el disefio de un simple proceso de negocio para el ejemplo de pedido en la Fig. 6.6 .

6 avanzadas tecnologias de middleware

Descripcion del

proceso

Acceso a los datos transformaciones

La orquestacion de procesos de negocio @

L, Estado
Mensajeria
proceso
Sistemas de
negocio
Fig. 6.7 Al ia de una de ion de p de negocio 90

#¢ EAlOrchestrations - Microsoft BizTalk Server 2004 [design] - Purchase.odx

Fle Edt Vew Project Buld Debug BgTak Toos Window Help
P-a-=cE00 B « - J0-15 , Deveopment ~ o 3R »
- - - B 7 U |A : »

oy N 3¢ || StartPage Pudlase.ml:l ibxin w|@
5‘ B... ~ | PortSurface & ® ») Port Surface | Fijtered EE’
SR P, [3
ol [c. | [OrderReceiveP.. —— (o |2
% IZ s Orderln - &= + &
|| = Request l— | Receive_Order < a®

[+ R.

(BP. } =& N

2R, = lea

¥ T. Parallelactions_1

% M.

; ;

F C.I SendToAccounts v L SendToSiebel

= | | ToAccounts " &2 &3 - CRMIn

e 5. — R st

& c Request " | sendToAccou.. SendToCRM B Raque

B

0. ¥ \ 4

O b..]

& L. | [SendToshipping —

et Pl ToShipg ¢ ——'59_]

B Request / SendToShippi... =

ol s. :

by T =

c.lw T

Gen...

_J [Orchestration

Index Results a x
Ready A

Fig. 6.8 BizTalk procesos de negocio definicion

6.4 Problemas de integracion Arquitectura 91

Los mensajes se envian y se reciben por las actividades en el proceso a través de puertos. Puertos, basicamente, se conectan a
los sistemas de negocio utilizando un mecanismo fi nida transporte port-de, por ejemplo, HTTP, una cola de mensajes o un
archivo. Todos los mensajes gestionados dentro de una orquestacion de BizTalk debe ser definido por los esquemas XML. Las

actividades pueden ser llevadas a cabo en secuencia o en paralelo como se muestra en el ejemplo.

Los motores de BPO son la adicion mas reciente a la pila de middleware de TI. La necesidad de su
funcionalidad ha sido impulsado por el deseo de automatizar cada vez mas procesos de negocio que deben
acceder a numerosas aplicaciones de negocios independientes. No cabe duda de que esta tendencia va a
continuar como empresas reducir los costes al integrar mejor y coordinar sus aplicaciones internas, y sin

problemas de conexién a socios de negocios externos.

6.4 Problemas de integracion Arquitectura

La dificultad de integrar aplicaciones heterogéneas en las grandes empresas es grave. Si bien hay
muchos temas a tratar en la integracion empresarial, en el fondo es un problema arquitecténico
respecto a la capacidad modi fi. La historia va asi.

Suponga que su empresa tiene cinco diferentes aplicaciones de negocios que necesitan para apoyar la integracion de
algunos de los nuevos procesos de negocio. Al igual que cualquier arquitecto sensible, decide implementar los procesos de

estos negocios uno a la vez (como sabe un enfoque “big bang” esta condenado al fracaso!).

El proceso requiere primero uno de los sistemas de negocios para enviar mensajes a cada uno de los otros cuatro,
mediante sus interfaces de mensajeria publicados. Para ello, el remitente debe crear una carga util del mensaje en el
formato requerido por cada aplicacion de negocio. Suponiendo mensajes unidireccionales solamente, esto significa
nuestro proceso de negocio primero debe ser capaz de transformar sus datos de origen en cuatro diferentes formatos de
mensaje. Por supuesto, si los otros sistemas de negocios deciden cambiar sus formatos, a continuacion, estas
transformaciones se deben actualizar. Lo que hemos creado con este disefio es un estrecho acoplamiento, es decir, los
formatos de mensaje, entre los sistemas de negocio de origen y destino. Este escenario se representa en el lado izquierdo

de la figura. 6.9 .

Con el primer trabajo de procesos de negocio, y con muchos usuarios de negocios feliz, usted va a construir

incrementalmente el resto. Cuando haya terminado, que encontramos

v

/T
v

O L

A
A

Fig. 6.9 la integracion de aplicaciones
en una arquitectura de punto a punto 1 de procesos de negocio = 4 5 procesos de negocio = 20

interfaces interfaces de

6 avanzadas tecnologias de middleware

que ha creado una arquitectura de esa manera en el lado derecho de la figura. 6.9 . Cada aplicacién envia mensajes a
cada uno de los otros cuatro, creacién de 20 interfaces, o dependencias, que necesitan ser mantenido. Cuando una
aplicacion de negocios es modi fi cado, es posible que cada uno de los otros tendran que actualizar sus transformaciones

de los mensajes para enviar mensajes en un formato de nueva requerido.

Esto es un ejemplo a pequefia escala de un problema que existe en miles de organizaciones. He visto arquitecturas
de software para empresas que tienen 300 interfaces de punto a punto entre 40 o mas aplicaciones de negocios
independientes. Cambio de interfaz de mensajes de una aplicacién se convierte en un ejercicio que da miedo en este
tipo de empresas, como tantos otros sistemas dependen de ella. A veces hacer cambios es tan temible, los equipos de

desarrollo simplemente no lo hara. Es simplemente demasiado arriesgado.

En el caso general, el nimero de interfaces entre norte aplicaciones es (norte 2NORTE).

Asi como norte crece, el nimero de posibles interfaces de crece exponencialmente, por lo que este tipo de arquitecturas de punto a
E‘ﬁeﬁ oeﬁgréos%%fgsfesaé%stgzrminos de capacidad modificada.

Ahora es cierto que muy pocas empresas tienen una arquitectura totalmente conectado punto a punto como el
que en el lado derecho de la figura. 6.9 . Pero también es cierto que muchas interfaces entre dos aplicaciones son
de dos vias, que requiere dos transformaciones. Y la mayoria de las aplicaciones tienen mas de una interfaz, por lo
que en la realidad el nimero de interfaces entre dos aplicaciones bien acoplados pueden ser considerablemente

mayor que uno.

Otro nombre para una arquitectura de punto a punto es una “arquitectura de espagueti”, es de esperar, por razones
obvias. Cuando se utiliza este término, muy pocas personas se refieren a los espaguetis con connotaciones positivas por
lo general asociados con la sabrosa comida italiana. De hecho, como la disciplina de la integracion de la empresa florecié
a finales de 1990, el dogma que emerge es que las arquitecturas de espagueti deben evitarse a toda costa. La solucién
promovida, por muchas y buenas razones, era utilizar un intermediario de mensajes, como se ha explicado anteriormente

en este capitulo.

Vamos a analizar exactamente lo que sucede cuando una arquitectura de espaguetis se transforma mediante un
arquitectura de punto a punto con un
intermediario de mensajes, como se ilustra en la Fig. 6.10 . La complejidad en los puntos extremos de integracion, es decir,
las aplicaciones de negocios, se reduce considerablemente, ya que sélo envian mensajes a través de sus formatos nativos
al corredor, y éstos se transforman dentro del corredor para el formato de destino deseado. Si necesita cambiar un punto
final, a continuacion, sélo tiene que modificar las transformaciones de los mensajes dentro del corredor que dependen de

ese punto final. No hay otras aplicaciones de negocios saben o cuidado.

Fig. 6.10 La eliminacién de una Agente de mensajes

6.4 Problemas de integracion Arquitectura 93

A pesar de todas estas ventajas a la introduccién de un intermediario de mensajes, la no hay almuerzo gratis &

principio, como siempre, se aplica. Las desventajas son:

1La arquitectura de espagueti realmente todavia existe. Ahora es residente dentro del mensaje

corredor, donde las dependencias complejas entre formatos de mensaje son capturados en definida
transformaciones Message Broker-de.

iLos corredores son, potencialmente, un cuello de botella, ya que todos los mensajes entre
aplicaciones deben pasar por el corredor. Los buenos corredores soportan la replicacion y despliegues agrupados a
escalar su rendimiento. Pero, por supuesto, esto aumenta el despliegue y la complejidad de la gestion, y mas que
probable que los costos de las licencias asociadas a una solucion. vendedores de intermediario de mensajes, tal vez

no es sorprendente que rara vez se ve a este Ultimo punto como una desventaja.

Asi intermediarios de mensajes son muy utiles, pero no una panacea por cualquier medio para arquitecturas de
integracién. Sin embargo, hay un enfoque de disefio que puede ser utilizado que posee la escalabilidad de una

arquitectura de punto a punto con las caracteristicas modi capacidad fi de solucion basada en corredor.

La solucion es para definir un modelo de datos de la empresa (también conocido como un modelo de datos canénica) que
se convierte en el formato de destino para todas las transformaciones de los mensajes entre aplicaciones. Por ejemplo, un
problema comun es que todos los sistemas de su empresa tienen diferentes formatos de datos a De la informacion del cliente
definir. Cuando una aplicacion se integra con otra, (o un intermediario de mensajes) debe transformar su formato de mensaje

al cliente para el formato de mensaje de destino.

Ahora vamos a suponer que definen un formato de mensaje candnica para la informacion del cliente. Esto puede ser usado
como el formato de destino para cualquier aplicaciéon de negocio que necesita para intercambiar datos relacionados con el cliente.

El uso de este formato de mensaje candnica, un intercambio de mensajes se ha reducido a los siguientes pasos:

\aplicacion de cddigo transforma los datos de los clientes locales en los clientes canénica

formato de la informacién.

[Fuente envia mensaje a apuntar con el formato de mensaje canénica como carga util.

\El objetivo recibe un mensaje y transforma el formato canénico en su propio local,

la representacion de datos de clientes.

Esto significa que cada punto final (aplicaciéon empresarial) debe saber:

1¢,Cémo transformar todos los mensajes que recibe del formato canénico a su local de

formato
1¢,Cémo transformar todos los mensajes que envia desde su formato local a la candnica

formato

Como la fig. 6.11 ilustra, mediante el modelo de datos de la empresa para el intercambio de mensajes, se obtiene
lo mejor de ambos mundos. El nimero de transformaciones se reduce a 2 * N (suponiendo una Unica interfaz entre
cada punto final). Esto nos da mucho mejores caracteristicas de capacidad fi caciones. También, ya que ahora son

considerablemente menores y

6 http://en.wikipedia.org/wiki/Tanstaa fl

6 avanzadas tecnologias de middleware

Fig. 6.11 Integracién mediante un modelo de
datos de la empresa

Modelo de

datos de la

empresa

transformaciones menos complejas para construir, las transformaciones se pueden ejecutar en el extremo apunta a si
mismos. No tenemos ninguna necesidad de una arquitectura centralizada corredor-estilo. Esta escala bien, ya que no es
inherentemente sin cuello de botella en el disefio. Y no hay necesidad de hardware adicional para el corredor, y los costes

de licencia adicionales para nuestra solucién de agente elegido.

Sospecho que algunos de ustedes podrian estar pensando que esto es demasiado bueno para ser verdad. Tal vez hay al menos una
opcion de bajo costo almuerzo aqui?

Siento decepcionarte, pero hay razones reales por esta arquitectura no es ubicuo en la integracion de la empresa.
La principal es la enorme dificultad de disefiar, y luego conseguir un acuerdo sobre un modelo de datos de la empresa
en una organizacion grande. En un sitio de campo verde, el modelo de datos de la empresa es algo que puede ser
disefiado por adelantado y todos los puntos finales tienen la obligacion de adherirse. Pero los sitios de campo verdes
son raros, y sistemas de la empresa de mayor organizacion han crecido de manera organica durante muchos afos, y
rara vez de una manera planificada y coordinada. Es por esto que las soluciones basadas en los agentes tienen éxito.
Reconocen la realidad de los sistemas de la empresa y la necesidad de la construccién de muchas transformaciones

ad hoc entre los sistemas de una manera facil de mantener.

Hay otros impedimentos para el establecimiento de formatos de datos candnicos. Si los sistemas se integran con las
aplicaciones de un socio de negocios sobre las que no tienes control, entonces lo mas probable es imposible establecer un
unico conjunto acordado de formatos de mensaje. Este problema tiene que ser abordado en una escala mucho mas amplia,
donde los grupos industriales enteras se retinen para definir formatos de mensaje comun. Un buen ejemplo es RosettaNet 7 que
tiene protocolos definida de para la automatizacion de las cadenas de suministro en la industria de semiconductores. Como

estoy seguro de que se pueda imaginar, nada de esto sucede rapidamente. s

Para muchas organizaciones, las ventajas de utilizar un modelo de datos empresariales sélo pueden ser explotados de
forma incremental. Por ejemplo, una nueva instalacién de sistemas de negocio podria presentar oportunidades para iniciar
elementos de fi nicién de un modelo de datos de la empresa y para construir arquitecturas de punto a punto que se aprovechan
de las transformaciones de punto final a formatos canénicos. O su agente podria estar a punto de ser obsoleta y que requieren

para actualizar su légica de transformacion? Me gustaria recomendar tomar cualquier oportunidad que tenga.

7 http://www.rosettanet.org

8 Ver http://www.ebxml.org/ para ejemplos de iniciativas en este ambito. 94

6.6 Lectura adicional 95

6.5 ¢ Qué es un bus de servicios empresariales

Vera el término “ESB” que se utiliza ampliamente en la literatura arquitectura orientada a servicios.
Cuando primero oi esto, se pregunté qué “Extra Bitter especial” tenia que ver con las arquitecturas de
integracion de software, y cuando descubri que representaba Enterprise Service Bus, me decepcion6
profundamente. De todos modos, aqui esta mi interpretacion es cierto tanto cinico de donde la sigla ESB
vino.

En algun lugar en medio de la dltima década (~ 2003-2005), SOA se estaba convirtiendo en la “préxima gran cosa” en
la integracion empresarial. Los proveedores de software necesitan algo nuevo para ayudar a vender su tecnologia de
integracion para soportar una SOA, por lo que uno de ellos (no estoy seguro de quién fue primero) acuié el término ESB.
De repente, todos los proveedores tenia un ESB, que era basicamente sus tecnologias de orquestacion broker de
mensajes y procesos de negocio rebautizado con, por supuesto, la capacidad de integrar los puntos finales de servicios
web. Si se mira debajo de las sabanas de un ESB, que encontramos todos los elementos técnicos y software de

integracion enfoques descritos en este y en los dos ultimos capitulos.

Hay una gran cantidad de de fi niciones que hay para los ESB. Todos mas o menos de acuerdo en que un ESB
proporciona mecanismos fundamentales para arquitecturas de integracién complejos a través de un motor de mensajeria
orientado a eventos y basada en estandares. Hay cierto debate sobre si un ESB es una tecnologia o un patrén de disefio
de integracion de software, pero algunos debates realmente no vale la pena involucrarse en. Usted puede comprar o
descargar productos llamados ESB, y estos suelen ofrecer una infraestructura de middleware basado en mensajeria que
tiene la capacidad de conectarse a los puntos finales externos del sistema a través de una variedad de protocolos - TCP /
IP, SOAP, JMS, FTP, y muchos mas. Si lo que ha leido hasta ahora en este libro se ha hundido en alguin grado, no creo

que realmente necesita saber mas.

6.6 Lectura adicional

Hay un enorme volumen de lectura del potencial en la materia cubierta en este capitulo. Las referencias
que siguen deben darle un buen punto de partida para ahondar mas profundamente.

DS Linthicum. Siguiente Generacion de Integracion de Aplicaciones: A partir de informacién simple de Servicios
Web. Addison-Wesley, 2003.
David Chappell, Enterprise Service Bus: teoria en la practica, O'Reilly Media, 2004 Gero M € Sistemas de
eventos basados en Uhl, Ludger Fiege, Peter Pietzuch, distribuido,
Springer-Verlag 2006.

Los siguientes tres libros tienen una cobertura amplia e informativa de los patrones de disefio para la

integracion de la empresa y la mensajeria.

M. Fowler. Los patrones de arquitectura de aplicacién empresarial. Addison-Wesley, 2002.

G. Hohpe, B. Woolf. Los patrones de integracién empresarial: disefiar, construir y desplegar soluciones
de mensajeria. Addison-Wesley, 2003.

C. Bussler, conceptos de integracion B2B y Arquitectura, Springer-Verlag 2003.

6 avanzadas tecnologias de middleware

En términos de tecnologias, aqui hay algunos intermediarios de mensajes de calidad y sistemas de orquestacion de

procesos de negocio para mirar:

David Dossot, John D'EMIC mula en Accién, Manning Press, 2009. Tijs Rademakers, Jos Dirksen, ESB
de cédigo abierto en Accion: Ejemplo aplica-
taciones en mula y ServiceMix, Manning Press, 2008. 96

Capitulo 7

Una Arquitectura de Procesos de Software

Esquema 7.1 Proceso

El papel de un arquitecto es mucho mas que simplemente llevar a cabo una actividad de disefio de software. El arquitecto

normalmente debe:

i Trabajar con el equipo de requisitos: El equipo de requisitos se centrara en
la obtencién de los requisitos funcionales de los grupos de interés de aplicacion. El arquitecto desempefia un papel
importante en la recopilacion de requisitos mediante la comprensién de las necesidades de los sistemas generales y

asegurar que los atributos de calidad apropiados son explicitas y entendido.

1 Trabajar con diferentes grupos de interés de aplicacion: Arquitectos juegan un enlace fundamental

papel asegurandose de que todas las necesidades de los interesados de la aplicacion se entienden y se
incorporan en el disefio. Por ejemplo, ademas de las necesidades de los usuarios de negocio para una
aplicacion, los administradores del sistema, sera necesario que la aplicacion se puede instalar facilmente,

supervisa, gestiona y actualiza.
\Dirigir el equipo de disefio técnico: De fi nicién de la arquitectura de la aplicacién es un disefio

actividad. El arquitecto lleva un equipo de disefio, que comprende los disefiadores del sistema (o en grandes

proyectos, otros arquitectos) y clientes potenciales técnicos con el fin de producir el disefio de arquitectura.

\Trabajar con la gestion de proyectos: El arquitecto trabaja en estrecha colaboracion con el proyecto

gestion, ayudando con la planificacion de proyectos, estimacion y asignacion de tareas y programacion.

Con el fin de guiar a un arquitecto a través de la definicion de la arquitectura de la aplicacion, es util seguir un
proceso de ingenieria de software definida de. Figura 7.1 muestra una de tres pasos proceso simple, la arquitectura

iterativo que se puede utilizar para dirigir las actividades durante el disefio. Brevemente, los tres pasos son:

\De requerimientos de arquitectura de definir: Esto implica la creacién de una declaracién o modelo de

los requisitos que impulsaran el disefio de la arquitectura.
\Disefio arquitectonico: Esto implica la de fi nicion de la estructura y responsabilidades de

los componentes que formaran la arquitectura.

|. Gorton, Arquitectura de Software esencial, 97
DOI 10.1007 / 978-3-642-19176-3_7, # Springer-Verlag Berlin Heidelberg 2011

Proceso 7 una arquitectura de software

arquitectura de tres pasos 98

Fig. 7.1 Un proceso de disefio de la
Determinar los
requisitos

arquitecténicos —

Arquitectura
Disefio R

[Validacion

\Validacion: Esto implica “probar” la arquitectura, por lo general caminando

a través del disefio, en contra de los requisitos actuales y futuros requisitos conocidos o posibles.

Este proceso arquitectura es inherentemente iterativo. Una vez que se propone un disefio, validacion de que
puede mostrar que el disefio necesita fi cacién modi, o que ciertos requisitos deben ser mas definido y entendido.
Tanto éstos conducen a mejoras en el disefio, validacion posterior, y asi sucesivamente, hasta que el equipo de

disefio se satisface cuando se cumplan los requisitos.

Es importante tener en cuenta la flexibilidad de este proceso. Arquitectura veces se caracteriza como Big
Disefio por adelantado por la comunidad métodos agiles, pero en realidad no tiene que ser. Si esta trabajando en
un proyecto utilizando métodos agiles, es posible que desee tener algunas primeras iteraciones (sprints, o lo que
su nomenclatura favorito es) que se centran en el establecimiento de su arquitectura general. El resultado de
estas iteraciones sera un prototipo de la arquitectura de referencia que encarna y valida las decisiones clave de
disefio del sistema. iteraciones posteriores como base y ampliar este prototipo para agregar la funcionalidad
emergente. Con la arquitectura en su lugar al principio del proyecto, la refactorizacion posterior se hace mas
simple como el nucleo del sistema permanece (la mayoria) estable, que proporciona una base sélida para la

aplicacion.

El resto de este capitulo se explica cada uno de estos pasos con mas detalle.

7.1.1 Determinar los requisitos arquitecténicos

Antes de una solucién arquitecténica puede ser disefiado, es necesario tener una idea bastante buena de los
requisitos para la arquitectura de la aplicacion. requisitos de arquitectura, a veces también llamados
arquitecténicamente signi fi cativas requisitos o casos de uso arquitectura, son esencialmente los requisitos de

calidad y no funcionales para la aplicacion.

7.1.2 Identificacion de las necesidades Arquitectura

Como la fig. 7.2 espectaculos, las principales fuentes de requisitos de arquitectura son el documento de requisitos

funcionales, y otros documentos que la captura de varios grupos de interés

Esquema 7.1 Proceso 99

Fig. 7.2 Entradas y salidas para

determinar los requerimientos de la

requisitos de los
interesados

Requerimientos
funcionales

arquitectura

Determinar los
requisitos de
Arquitectura

Requisitos

Arquitectura

necesariamente. El resultado de este paso es un documento que establece los requisitos de arquitectura de la
aplicacion. Por supuesto, en realidad, gran parte de la informacion necesita un arquitecto no estd documentada. La
Unica manera de obtener la informacion es hablar con los diferentes grupos de interés. Esto puede ser una tarea lenta y

laboriosa, especialmente si el arquitecto no es un experto en el dominio de negocio de la aplicacion.

Veamos algunos ejemplos. Una tipica arquitectura requisito relativo a la fiabilidad de las

comunicaciones es:
Las comunicaciones entre los componentes deben ser garantizados para tener éxito sin la pérdida de mensajes
Algunos requisitos de arquitectura son realmente limitaciones, por ejemplo:

El sistema debe utilizar el servidor Web basado en IIS existente y utilizar paginas Active Server para procesar peticiones web

Restricciones imponen restricciones sobre la arquitectura y son (casi siempre) no negociable. Limitan la
gama de opciones de disefio de un arquitecto puede hacer. A veces esto hace que la vida de un arquitecto mas
facil, ya veces no lo hace.

Mesa 7.1 enumera algunos requisitos ejemplo de arquitectura junto con el atributo de calidad que
tratan.

Mesa 7.2 da algunos ejemplos tipicos de limitaciones, junto con la fuente de cada restriccién.

7.1.3 Requisitos Priorizacion de Arquitectura

Es una cosa rara cuando todos los requisitos de arquitectura de una aplicacién son iguales. A menudo, la lista de
requisitos de arquitectura contiene elementos que son de baja prioridad, o “esto seria bueno tener, pero no es
necesario” caracteristicas de tipo. Es por lo tanto importante identificar explicitamente estos, y clasificar los requisitos
de arquitectura utilizando prioridades. Inicialmente, por lo general es su fi ciente para asignar a cada requerimiento

de una de las tres categorias, a saber:

100 Proceso 7 una arquitectura de software

Tabla 7.1 Algunos atribuyen ejemplo de arquitectura requisitos de

calidad requisito de la arquitectura

rendimiento de las aplicaciones de rendimiento debe proporcionar tiempos de respuesta sub-cuatro segundos para 90% de

peticiones
Seguridad Todas las comunicaciones deben ser autenticados y encriptados usando certi fi cados
Administracion de El componente de servidor deben ejecutar en un extremo inferior de fi ce-servidor basado con 2 GB
recursos memoria
usabilidad El componente de interfaz de usuario debe ejecutar en un navegador de Internet para apoyar a distancia

usuarios
Disponibilidad El sistema debe funcionar 24 7 365, con la disponibilidad general de 0.99 Confiabilidad
No se permite ninguna pérdida de mensajes, y todos los resultados de entrega de mensajes debe ser conocida
con30s
escalabilidad La aplicacion debe ser capaz de manejar una carga pico de 500 usuarios concurrentes durante
el periodo de inscripcion
Modi fi habilidad La arquitectura debe ser compatible con una migracién gradual desde el actual Forth

Idioma generacion (4GL) version a una solucion de tecnologia de sistemas de .NET

Tabla 7.2 Algunos ejemplos de restricciones restriccion

requisito de la arquitectura

Negocio La tecnologia debe funcionar como un plug-in para MS BizTalk, ya que queremos vender esto a
microsoft
Desarrollo El sistema debe estar escrito en Java, por lo que podemos utilizar la Lista personal de desarrollo existentes
La primera version de este producto debe ser entregado dentro de los 6 meses
Negocio Queremos trabajar estrechamente con y obtener mas fondos para el desarrollo de

MegaHugeTech Corp, por lo que tenemos que utilizar su tecnologia en nuestra aplicacion

1. Alto: la aplicacion debe ser compatible con este requisito. Estos requisitos coche
el disefio de la arquitectura

2. Medio: sera necesario este requisito para ser apoyado en algin momento, pero no
necesariamente en el / préxima version primera

3. Bajo: esto es parte de la lista de requisitos de deseos. Soluciones que pueden alojar
se desean estos requisitos, pero no son los impulsadores del disefio

Priorizacién vuelve méas complicado en la cara de requisitos contradictorios con fl. Los ejemplos mas comunes son:

|Reutilizacion de los componentes de la solucion en funcion del tiempo de salida al mercado rapida. Fabricacion
componentes generalizados y reutilizable siempre toma mas tiempo y esfuerzo.

1gasto minimo en comparacién con los productos COTS esfuerzo de desarrollo reducida /

costo. productos COTS significa que tenga que desarrollar menos cédigo, pero cuestan dinero.

No hay una solucién sencilla a estos conflictos. Es parte del trabajo del arquitecto para hablar sobre esto con
las partes interesadas, y llegar a posibles escenarios de solucién para permitir a los temas que se entienden
completamente. Con fl requisitos contradictorios pueden incluso terminar siendo la misma prioridad. Es entonces
la responsabilidad de la solucién a considerar las compensaciones adecuadas, y para tratar de hallar que la

“linea de fi ne” que satisface adecuadamente ambos requisitos sin molestar a nadie ni tener mayor

7.2 Arquitectura 101
consecuencias no deseadas en la aplicacion. Recuerda que los buenos arquitectos saben como decir “no”.

En un proyecto con muchas partes interesadas, por lo general es una buena idea para obtener cada conjunto de partes
interesadas a firmar en esta priorizacion. Esto es especialmente cierto en el rostro de requisitos contradictorios con fl. Una vez

que esto esta de acuerdo, el disefio de la arquitectura pueda comenzar.

7.2 Arquitectura

Si bien todas las tareas que lleva a cabo un arquitecto son importantes, es la calidad del disefio de la arquitectura
que realmente importa. documentos de requerimientos maravillosos y redes atento con las partes interesadas no
significan nada si un disefio pobre se produce.

Como era de esperar, el disefio es tipicamente el mas dif fi cil tarea de un arquitecto emprende. Los buenos arquitectos
se basan en varios afios de experiencia en ingenieria de software y disefio. No hay sustituto para esta experiencia, por lo
que todo este capitulo se puede hacer es tratar de ayudar a los lectores a ganar algunos de los conocimientos necesarios lo
mas rapido posible.

Como la fig. 7.3 muestra, las entradas a la etapa de disefio son los requisitos de la arquitectura. La etapa de
disefio en si tiene dos pasos, que son de naturaleza iterativa. El primero consiste en elegir una estrategia general para
la arquitectura, basada en los patrones de arquitectura probada. El segundo se refiere a la especificacién de los
componentes individuales que componen la aplicacién, mostrando cémo encajan en el marco general y los asignacion
de responsabilidades. La salida es un conjunto de vistas de arquitectura que capturan el disefio de la arquitectura y
disefio de un documento que explica el disefio, las principales razones de algunas de las principales decisiones de

disefio, e identi fi ca los riesgos inherentes a la recepcion del disefio hacia adelante.

Requisitos
Arquitectura

_{

Elija Marco de
Arquitectura

asignar
componentes

Arquitectura Documento de

Fig. 7.3 Las entradas y salidas de disefio Vistas Arquitectura

de la arquitectura

Proceso 7 una arquitectura de software

7.2.1 Eleccién del Marco de Arquitectura

La mayoria de las aplicaciones que he trabajado en los Ultimos 15 afios se basan en torno a un pequefio nimero de
arquitecturas probadas, bien entendidas. Hay una buena razén para esto - que trabajan. Aprovechando las soluciones

conocidas minimiza los riesgos de que una aplicacién fallara debido a una arquitectura apropiada.

Por lo que el paso inicial de disefio implica la seleccion de un marco de arquitectura que parece probable que
cumpla los requisitos clave. Para aplicaciones pequefias, un solo patrén de arquitectura como n niveles de
cliente-servidor puede bastar. Para aplicaciones mas complejas, el disefio va a incorporar uno o mas patrones

conocidos, con el arquitecto que especifica como estos patrones se integran para formar la estructura general.

No hay una férmula méagica para el disefio de la estructura de arquitectura. Un requisito previo, sin embargo, es
entender como cada uno de los principales patrones de arquitectura aborda ciertos atributos de calidad. Las siguientes
subsecciones brevemente a cubrir algunos de los principales patrones utilizados, y describir la forma en que abordan los

requisitos de calidad comunes.

7.2.1.1 N-Tier Cliente Servidor

En la Fig. 7.4 se ilustra la anatomia de este patrén para una aplicacion web. Las propiedades principales de este

102
modelo son:

1Separacion de intereses: Presentacién, negocio y la légica de manejo de datos son
claramente se repartié en diferentes niveles.

\comunicaciones sincronas: Las comunicaciones entre niveles es sincrénico
solicitud-respuesta. Las solicitudes emanan en una sola direccion desde el nivel del cliente, a través de la web y
la légica de negocio a niveles de la capa de gestion de datos. Cada nivel espera una respuesta desde el otro
nivel antes de continuar.

\Implementacion flexible: No hay restricciones sobre cémo una aplicaciéon multi-nivel es
desplegada. Todos los niveles se podrian ejecutar en la misma maquina, o en el otro extremo, cada nivel puede ser

desplegado en su propia maquina. En las aplicaciones web, el nivel de cliente es

Nivel de web web
cliente Client Client
IIServidor Web II II

Nivel de Servidor .
Web Client
Web

10

Capa de logica
servidor de aplicaciones
de negocio

10

Nivel de Gestion de

Fig. 7.4 ejemplo cliente-servidor N-tier Datos Bases de datos de

7.2 Arquitectura 103

Tabla 7.3 atributos de calidad para el atributo patrén de calidad N-Tier Cliente Servidor

Cuestiones

Disponibilidad Servidores de cada nivel se pueden replicar, de modo que si uno falla, los demas permanecen disponibles.

En general, la aplicacion proporcionara una menor calidad de servicio hasta que se restablezca el servidor que ha fallado

el control de Si un cliente se comunica con un servidor que falla, la mayoria de aplicaciones web y

fallos implementan servidores de conmutacion por error transparente. Esto significa una peticion de cliente es, sin su
conocimiento, redirigida a un servidor de réplica vivo que puede satisfacer la peticion

Modi fi capacidad de separacion de las preocupaciones mejora la capacidad modi fi, como la presentacién, negocios y
légica de gestion de datos estan claramente encapsulado. Cada uno puede tener su modi légica fi ed interna en
muchos casos sin cambios de ondulacién en otros niveles

Actuacion Esta arquitectura ha demostrado un alto rendimiento. Las cuestiones clave a considerar son
la cantidad de hilos concurrentes apoyado en cada servidor, la velocidad de las conexiones entre los niveles y la
cantidad de datos que se transfiere. Como siempre ocurre con los sistemas distribuidos, tiene sentido para reducir

al minimo las llamadas necesarias entre los niveles de fi Il ful cada solicitud

escalabilidad Como los servidores en cada nivel se pueden replicar, y varias instancias de servidor se ejecutan en el
iguales o diferentes servidores, la arquitectura escalas fuera y hacia arriba también. En la practica, el nivel de gestion de

datos menudo se convierte en un cuello de botella en la capacidad de un sistema

normalmente un navegador que se ejecuta en el escritorio del usuario, comunicar de forma remota a través de Internet con unos

componentes de nivel Web.

Mesa 7.3 muestra cdmo los atributos de calidad comunes pueden ser abordados con este patron.

Precisamente como cada atributo de calidad esta dirigida depende de la tecnologia web y servidor de aplicaciones
real que se utiliza para implementar la aplicacion. .NET, cada implementacion de JEE, y otros servidores de aplicaciones
propietaria todos tienen diferente tiempo de disefio y tiempo de ejecucién de funciones. Estos deben ser entendidos
durante el disefio de la arquitectura de modo que no haya sorpresas desagradables se encuentran mucho mas tarde en

el proyecto, cuando equis fi son mucho mas costosos de realizar.

El patrén de N-Tier cliente-servidor es comunmente utilizado y el apoyo directo de las tecnologias de servidor de
aplicaciones para este patron hace que sea relativamente facil de implementar aplicaciones usando el patrén. Es generalmente
apropiada cuando una aplicacién debe ser compatible con un nimero potencialmente grande de clientes y solicitudes
simultaneas, y cada solicitud toma un intervalo de tiempo relativamente corto (unos pocos milisegundos hasta unos pocos

segundos) al proceso.

7.2.1.2 Mensajeria

En la Fig. 7.5 se muestran los componentes basicos de la patron de mensajeria. Las propiedades principales de este
modelo son:
\comunicaciones asincronas: Los clientes envian peticiones a la cola, donde el

mensaje se almacena hasta que una aplicacién elimina. Después de que el cliente haya escrito el

mensaje a la cola, que continlia sin esperar a que el mensaje sea eliminado.

104 Proceso 7 una arquitectura de software

Fig. 7.5 Anatomia del patrén de

mensajeria)

Tabla 7.4 atributos de calidad para el atributo de calidad de patron de

mensajeria Cuestiones

Disponibilidad colas fisico con el mismo nombre ldgico se pueden replicar a través de diferentes

instancias del servidor de mensajeria. Cuando uno falla, los clientes pueden enviar mensajes a las colas de réplicas

el control de fallos Si un cliente se comunica con una cola que falla, se puede encontrar una cola de réplica
y publicar el mensaje que hay

Modi fi capacidad La mensajeria es inherentemente imprecisa, y esto promueve alta
capacidad de modi fi como clientes y servidores no estan vinculados directamente a través de una interfaz. Los
cambios en el formato de los mensajes enviados por los clientes pueden causar cambios en las implementaciones
del servidor. Auto-descripcién, formatos de mensaje detectables pueden ayudar a reducir esta dependencia de los
formatos de los mensajes

Actuacion tecnologia de cola de mensajes puede entregar miles de mensajes por segundo.
mensajes no confiable es mas rapido que fiable, con la diferencia de rendimiento depende
de la calidad de la tecnologia de mensajeria utilizado

escalabilidad Las colas se pueden alojar en los puntos finales de comunicacion, o se replicaran
a través de grupos de servidores de mensajeria alojados en una o varias maquinas de servidor. Esto hace

que la mensajeria una solucion altamente escalable

1Con fi gurable QoS: La cola puede ser con fi gurada para alta velocidad, no confiable o

mas lento, la entrega fiable. operaciones de la cola se pueden coordinar con las transacciones de bases de datos.

1Bajo acoplamiento: No hay una unién directa entre clientes y servidores. los

cliente es ajeno a qué servidor recibe el mensaje. El servidor es ajeno en cuanto a qué cliente el
mensaje vino.

Mesa 7.4 muestra como los atributos de calidad comunes son abordados por mensajeria. Una vez mas, tener en cuenta,

el apoyo exacto para estos atributos de calidad es la mensajeria depende del producto.

La mensajeria es especialmente apropiado cuando el cliente no necesita una respuesta inmediata directamente
después de enviar una solicitud. Por ejemplo, un cliente puede dar formato a un correo electrénico, y lo coloca en una cola
en un mensaje para su procesamiento. El servidor en algin momento en el futuro eliminar el mensaje y enviar el correo

electronico mediante un servidor de correo. El cliente realmente no necesita saber cuando el servidor procesa el mensaje.

Aplicaciones que pueden dividir el procesamiento de una solicitud en un nimero de pasos discretos,
conectados por colas, son una extension basica del patron de mensajeria simple. Esto es idéntico al patrén de
“Pipe y Filter” (ver Buschmann).

Mensajeria también proporciona una solucion flexible para aplicaciones en las que la conectividad a una aplicaciéon
de servidor es transitoria, ya sea debido a la red o falta de fiabilidad servidor. En tales casos, los mensajes se mantienen
en la cola hasta que el servidor se conecta y elimina mensajes. Por ultimo, como el Cap. 4 explica, mensajeria se puede

utilizar para implementar sincrono de solicitud-respuesta utilizando un par de colas de peticion-respuesta.

7.2 Arquitectura 105

7.2.1.3 publicacién-suscripcion

Los elementos esenciales del patron de publicacién-suscripcion se representan en la Fig. 7.6 . Las propiedades principales

de este modelo son:

\Muchos-a-muchos de los mensajes: Publicado mensajes se envian a todos los abonados que

estan registrados en el tema. Muchos editores pueden publicar sobre el mismo tema, y muchos suscriptores
pueden escuchar el mismo tema.

1Con fi gurable QoS: Ademas de la mensajeria no confiable y fiable, el sub
acostado mecanismo de comunicacion puede ser de punto a punto o de difusién / multidifusion. El
primero envia un mensaje distinto para cada suscriptor sobre un tema, éste envia un mensaje que
recibe cada suscriptor.

1Bajo acoplamiento: Al igual que con la mensajeria, no hay ninguna unién directa entre editoras
ERS y suscriptores. Los editores no saben quién recibe su mensaje, y los suscriptores no saben qué
editor envia el mensaje.

Mesa 7.5 explica como publicacién-suscripcion soportes atributos de calidad comunes. Arquitecturas basadas en
publicacién-suscripcion son altamente flexible y adecuado para aplicaciones que requieren asincrona de una sola
tomany, muchos-a-uno o mensajeria de muchos tomany entre los componentes. Como la mensajeria,

comunicaciones de dos vias es posible utilizando pares tema de peticion-respuesta.

Fig. 7.6 los Editor Tema AAka)%r;?i(lo
publicacion-suscripcion patrén
Tabla 7.5 atributos de calidad para el atributo de calidad de publicacién-suscripcién patrén
Cuestiones
Disponibilidad Temas con el mismo nombre l6gico se pueden replicar a través de diferentes servidor

instancias gestionan como un cluster. Cuando uno falla, los editores envian mensajes a las colas de réplicas

el control de fallos Si un editor se esta comunicando con un tema alojado en un servidor que falla,
puede encontrar un servidor de réplica en vivo y enviar el mensaje de que hay

Modi fi capacidad Publicacién-suscripcion esta inherentemente imprecisa, y esto promueve alta
capacidad de modi fi. Nuevos editores y suscriptores pueden afadirse al sistema sin cambio en la
arquitectura o con fi guracion. Los cambios en el formato de los mensajes publicados pueden

causar cambios en las implementaciones de abonado

Actuacion Publicacién-suscripcion puede ofrecer miles de mensajes por segundo, con
no confiable de mensajeria mas rapido que fiable. Si un corredor de publicacién-suscripcion soporta

multidifusion / difusién, que entregara varios mensajes en un tiempo més uniforme a cada suscriptor

escalabilidad Los temas pueden ser replicados a través de grupos de servidores alojados en una sola o
varias maquinas de servidor. Los racimos de servidor pueden escalar para proporcionar un rendimiento muy
alto volumen de mensajes. Ademas, las soluciones de multidifusion / difusion escalan mejor que sus

contrapartes de punto a punto

106 Proceso 7 una arquitectura de software

7.2.1.4 Broker

Los principales elementos del patrén Broker se muestran en la Fig. 7.7 . Las propiedades de una solucién basada en

agente son:

\arquitectura hub-and-spoke: El corredor actia como un centro de mensajeria, y los remitentes
y los receptores se conectan como radios. Las conexiones con el corredor son a través de los puertos que estan asociados con un

formato de mensaje especi fi co.

iLleva a cabo el enrutamiento de mensajes: El corredor incrusta légica de procesamiento para entregar una
mensaje recibido en un puerto de entrada a un puerto de salida. La ruta de entrega puede ser codificado duro o

dependen de valores en el mensaje de entrada.
iLleva a cabo la transformacion mensaje: La légica de intermediario transforma el MeS- fuente

Tipo de salvia recibidas en el puerto de entrada para el tipo de mensaje de destino deseado en el puerto de salida.

Mesa 7.6 muestra el apoyo del patrén de atributos de calidad comunes. Los corredores son adecuados para
aplicaciones en las que los componentes intercambian mensajes que requieren una amplia transformacion
entre formatos de origen y de destino. El corredor desacopla el emisor y el receptor, lo que les permite

producen O consumen

InPort1 OutPort1
Remitente-1 Receptor-1
_l\
Corredor
— —)
- < Remitente-2 &
Fig. 7.7 Elementos del patrén Recspion2
InPort2 OutPort2
broker
Tabla 7.6 atributos de calidad para el atributo de calidad de patron de
agente Cuestiones
Disponibilidad Para construir arquitecturas de alta disponibilidad, los corredores deben replicarse. Esto es

normalmente apoyado mediante mecanismos similares a la mensajeria y la publicacion-suscripcion
agrupacion de servidores
Como el control de fallos corredores han escrito los puertos de entrada, validan y descartar cualquier mensaje
que se envian en un formato incorrecto. Con corredores replicados, los remitentes pueden conmutar por error a un
agente activo en caso de una de las réplicas fallar.
Modi fi capacidad Brokers separan la légica de transformacion y el enrutamiento de mensajes de la
remitentes y receptores. Esto mejora la capacidad modi fi, como cambios en la transformacion y la légica de

enrutamiento se pueden hacer sin afectar a los remitentes o receptores

Actuacion Los corredores pueden potencialmente convertirse en un cuello de botella, especialmente si tienen que dar servicio
grandes volumenes de mensajes y ejecutar logica de transformacion compleja. Su rendimiento es
generalmente mas bajos que la simple mensajeria con entrega confiable

escalabilidad La agrupacion de los casos de los agentes hace que sea posible la construccion de sistemas escalan a

manejar cargas altas de solicitud

7.2 Arquitectura 107

su formato de mensaje nativo, y centraliza la definicion de la légica de transformacion en el agente para

facilitar la comprensién y la modi fi cacién.

Coordinador 7.2.1.5 Proceso

El patrén Coordinador de proceso se ilustra en la Fig. 7.8 . Los elementos esenciales de este patrén son:

Proceso de encapsulacion: El coordinador proceso encapsula la secuencia de
pasos necesarios para cumplir fi Il el proceso de negocio. La secuencia puede ser arbitrariamente compleja. El
coordinador es un Unico punto de definicion para el proceso de negocio, por lo que es facil de entender y
modificar. Se recibe una solicitud de inicio del proceso, llama a los servidores en el orden definido por el proceso,
y emite los resultados.

1Bajo acoplamiento: Los componentes de servidor no son conscientes de su papel en la general
de procesos de negocio, y del orden de los pasos en el proceso. Los servidores simplemente de definir un conjunto de
servicios que se pueden llevar a cabo, y el coordinador de llamadas si es necesario como parte del proceso de
negocio.

\Comunicaciones flexibles: Las comunicaciones entre el coordinador y los servidores
puede ser sincrono o asincrono. Para las comunicaciones sincronas, el coordinador de espera hasta que el
servidor responde. Para las comunicaciones asincronas, el coordinador ofrece una devolucién de llamada o

respuesta cola / tema y espera hasta que el servidor responde utilizando el mecanismo de fi nido.

El patron coordinador de procesos se utiliza cominmente para implementar procesos de negocio complejos que
deben emitir peticiones a varios componentes de servidor diferentes. Al encapsular la légica de proceso en un solo
lugar, es mas facil de cambiar, gestionar y supervisar el rendimiento del proceso. tecnologias de intermediario de
mensajes y Orchestrator de procesos de negocio estan disefiados especificamente para apoyar este patron, la primera
de las solicitudes de breve duracion, este Ultimo para los procesos que pueden tardar varios minutos, horas o dias en
completarse. En aplicaciones menos complejas, el patron también es relativamente facil de implementar sin el apoyo

de la tecnologia sofisticada, aunque el control de fallos es un asunto que requiere atencion cuidadosa.

Mesa 7.7 muestra cdmo este patrén se ocupa de los requisitos de calidad.

Iniciar
los

proceso de
del proceso

solicitud

Coordinador de
—_—p —

procesos
paso 1

paso 2 paso 3 etapa 4
" i Servidor 1 Servidor-2 Servidor-3 Servidor-4
Fig. 7.8 Los componentes del patrén

coordinador de procesos

108 Proceso 7 una arquitectura de software

Tabla 7.7 atributos de calidad para el atributo patrén de calidad de coordinador de procesos

Cuestiones

Disponibilidad El coordinador es un Unico punto de fallo. Por lo tanto, necesita ser replicado en
crear una solucién de alta disponibilidad

el control de fallos el control de fallos es complejo, ya que puede ocurrir en cualquier etapa en el negocio
coordinacién proceso. El fallo de un paso posterior del proceso puede requerir pasos anteriores para ser
deshecho usando transacciones de compensacion. Gestion de Fallos necesita un disefio cuidadoso para

asegurar que los datos mantenidos por los servidores se mantiene intacta

Modi fi capacidad Proceso capacidad modificado se ha mejorado debido a que el proceso de definicion de fi
encapsulado en el proceso coordinador. Los servidores pueden cambiar su aplicacién sin
afectar el coordinador u otros servidores, siempre que su servicio externo definicion no
cambia

Actuacion Para lograr un alto rendimiento, el coordinador debe ser capaz de manejar
multiples solicitudes simultaneas y gestionar el estado de cada medida que progresan a través del
proceso. Ademas, el rendimiento de cualquier proceso estara limitada por la etapa mas lenta, a saber,
el servidor mas lento en el proceso de

escalabilidad El coordinador puede ser replicado a escala de la aplicacion tanto hacia arriba y hacia fuera

7.2.2 Asignar Componentes

Una vez se ha seleccionado un marco global arquitectura, basada en uno o mas patrones de arquitectura,
la siguiente tarea es para definir los principales componentes que formaran el disefio. El marco de fi ne los
patrones generales de comunicacion para los componentes. Esto debe ser aumentada por la siguiente:

1La identificacion de los componentes principales de la aplicacion, y la forma en que se conectan a la
marco de referencia.

\La identificacion de la interfaz o servicios que soporta cada componente.

\La identificacion de las responsabilidades del componente, que indica lo que se puede confiar
sobre que hacer cuando se recibe una solicitud.

1La identificacion de las dependencias entre los componentes.

\La identificacion de las particiones en la arquitectura que son candidatos para su distribucion por

servidores en una red.

Los componentes de la arquitectura son los principales abstracciones que existiran en la aplicacién. Por lo tanto, es
probable que no es de extrafiar que el disefio de componentes tiene mucho en comun con las técnicas de disefio orientado a
objetos de uso generalizado. De hecho, los diagramas de clases y paquetes a menudo se utilizan para representar
componentes de una arquitectura.

Algunas pautas para el disefio de componentes son:

\Minimizar las dependencias entre los componentes. Luchar por una débilmente acoplado

solucién en la que cambia a un componente no ondulacién a través de la arquitectura, la propagacion a

través de muchos componentes. Recuerde, cada vez que cambie algo, tiene que volver a probar.

\componentes de disefio que encapsulan un conjunto altamente “cohesivo” de responsabilidades.

La cohesion es una medida de lo bien que las partes de un componente fi cio juntos. Componentes altamente cohesivos

tienden a tener un pequefio conjunto de responsabilidades bien de fi nidas

7.2 Arquitectura 109

que implementan una funcién légica individual. Por ejemplo, una EnrolimentReports

componente encapsula todas las funciones necesarias para producir informes sobre la matricula de un estudiante en
los cursos. Si los cambios que informe son necesarios formato o tipo, entonces es probable que los cambios seran
realizados en este componente. Por lo tanto, una fuerte cohesion limita muchos tipos de cambios a un solo

componente, lo que minimiza los esfuerzos de mantenimiento y pruebas.

\Aislar las dependencias de middleware y las tecnologias de infraestructura COTS.
El menor nimero de componentes que dependen de especi fi co y middleware COTS llamadas componentes de la
API, mas facil es cambiar o actualizar el software intermedio o de otros servicios de infraestructura. Por supuesto,

esto requiere mas esfuerzo para construir, e introduce una penalizacion en el rendimiento.

\Utilice la descomposicion de estructurar jerarquicamente componentes. El nivel mas externa
componente define el interfaz a disposicion del publico para el componente compuesto. Internamente, las llamadas
a esta interfaz se delegan en los componentes fi nidas a nivel local, de cuyas interfaces no son visibles desde el
exterior.

1Reducir al minimo las llamadas entre los componentes, ya que pueden resultar costoso si el compo-
nentes se distribuyen. Trate de secuencias de agregados de llamadas entre componentes en una sola llamada
que puede realizar el procesamiento necesario en una sola solicitud. Esto crea métodos de granos gruesos o

servicios en las interfaces que hacen mas trabajo por encargo.

Vamos a explorar un estudio de caso simple para ilustrar algunas de estas cuestiones. Figura 7.9 es un ejemplo de una vista

estructural de una aplicacion de procesamiento de pedidos, definida usando

Orden de

escribir

OrderQ

nuevos pedidos Orderlnput leer \
Obtener
Revisar Orden de
orden
orden escribir
A 4 A 4
Enviar correo electroni¢o
@_ Validar Almacenar
Registro
de errores
A 4 A 4 A
Sistema de Sistema servidor
atencién al cliente fin de correo electropico
Figura Key

Componente
Base de datos
existente
— D o @
nuevo persistente
Dependencia ——

Fig. 7.9 Orden de procesamiento de ejemplo arquitectura

Proceso 7 una arquitectura de software

un simple notacién informal. Los nuevos pedidos se reciben (de donde es irrelevante) y se cargan en una base de datos.
Cada orden debe ser validado en contra de un sistema de datos de clientes existentes para comprobar la informacion de
los clientes y de que existen opciones de pago vélidos. Una vez validados, los datos del pedido simplemente se almacena
en la base de datos de procesamiento de pedidos, y un correo electrénico se genera al cliente para informarles de que su

pedido esta siendo procesado.

El marco general de la arquitectura se basa en mensajes sencillos. Los detalles de la orden del cliente se leen
de la base de datos, validados, y si es valido, se almacenan en el mensaje de solicitud de pedido y se escriben en
una cola. La informacion sobre cada orden valida se elimina de la cola, con formato de un correo electrénico y se
envia al cliente mediante el servidor de correo. Por lo tanto, el uso de una cola de mensajes esta arquitectura

desacopla el procesamiento de pedidos del formato de correo electrénico y la entrega.

Cuatro componentes se introducen para resolver este problema. Estos se describen a continuacion, junto con

<en L%gggﬁtsrggﬁiggéjgsyn prototipo que crea un simple 110

\Orderlnput: Esta es responsable de acceder a la nueva base de datos pedidos, encapsulada

lating la l6gica de procesamiento de pedidos, y la escritura en la cola.
\Validar: Esto encapsula la responsabilidad de interactuar con el cliente

sistema para llevar a cabo la validacion, y la escritura a los registros de error si un pedido no es valido.
1\Almacenar: Esto tiene la responsabilidad de interactuar con el sistema para almacenar el

datos de los pedidos.
1Enviar correo electrénico: Esto elimina un mensaje de la cola, da formato a un mensaje de correo electrénico
y lo envia a través de un servidor de correo electrénico. Se encapsula todo el conocimiento del formato de correo electrénico y el

servidor de correo electronico de acceso.

Asi, cada componente tiene dependencias claras y un pequefio conjunto de responsabilidades, la creacién de
una arquitectura de acoplamiento flexible y cohesivo. Volveremos a este ejemplo y mas analizamos sus propiedades

en la siguiente seccidn, en la que se discute la validacion de un disefio de arquitectura.

primero implica esencialmente la prueba manual de la arquitectura usando escenarios de prueba. El segundo consiste

7.3 Validacién

Durante el proceso de la arquitectura, el objetivo de la fase de validacion es aumentar la con fi anza del equipo de
disefio que la arquitectura es fi cio para el propésito. Validar un disefio de arquitectura plantea algunos retos
dificiles. Ya se trate de la arquitectura para una nueva aplicacion, o una evolucién de un sistema existente, el
disefio propuesto es, asi, sélo que - un disefo. No se puede ejecutar o probado para ver que ful fi LLS sus
requisitos. También es probable que constara de nuevos componentes que han de ser construidas, y la caja de
negro componentes off-the-shelf tales como middleware y bibliotecas especializadas y las aplicaciones existentes.

Todas estas piezas tienen que integrarse y obligados a trabajar juntos.

Por lo tanto, lo que sensatamente se puede hacer? Hay dos técnicas principales que han resultado utiles. El

7.3 Validacion 111

arquetipo de la aplicacion deseada, de modo que su capacidad para satisfacer los requisitos se puede evaluar con mas
detalle a través de pruebas de prototipo. El objetivo de ambos es identificar potenciales AWS fl y debilidades en el disefio
de modo que puedan ser mejorados antes de que comience la ejecucion. Estos enfoques deben ser usados para
identificar explicitamente las areas de riesgo potencial para el seguimiento y la monitorizacién durante las actividades de

construccién posteriores.

7.3.1 Uso de Escenarios

Los escenarios son una técnica desarrollada en el SE| para desentraiar las cuestiones relativas a la arquitectura a través
de la evaluacion manual y pruebas. Los escenarios estan relacionados con las preocupaciones arquitecténicas como
atributos de calidad, y su objetivo es poner de relieve las consecuencias de las decisiones arquitecténicas que estan
encapsulados en el disefio.

El trabajo SEI ATAM se describen escenarios y su generacion con gran detalle. En esencia, sin embargo, los
escenarios son relativamente simples artefactos. Implican la de fi nicién algun tipo de estimulo que tendra un impacto
en la arquitectura. El escenario implica entonces la elaboracion de cémo la arquitectura responde a este estimulo. Si la
respuesta es deseable, a continuacién, un escenario se considera que es fi satisfechos por la arquitectura. Si la
respuesta no es deseable, o es dificil de cuantificar, a continuacién, un fl aw o por lo menos un area de riesgo en la

arquitectura puede haber sido descubierto.

Los escenarios pueden ser concebidas para hacer frente a cualquier requisito de calidad de interés en una
aplicacion dada. Algunos ejemplos hipotéticos generales se muestran en la Tabla 7.8 . Estos escenarios ponen de
relieve las implicaciones de las decisiones de disefio de arquitectura en el contexto del estimulo y los efectos que
provoca. Por ejemplo, el escenario de “disponibilidad” muestra que los mensajes se pueden perder si un servidor
falla antes de entrega del mensaje. La implicacion aqui es que los mensajes no se conservan en el disco, muy
probablemente por razones de rendimiento. La pérdida de mensajes en algunos contextos de aplicaciéon puede ser
aceptable. Si no es asi, esta situacion pone de relieve un problema, lo que puede forzar el disefio de adoptar la

mensajeria persistente para evitar la pérdida de mensajes.

Veamos algunos ejemplos mas concretos fi cas para el ejemplo de procesamiento de pedidos introducido en
la seccion anterior. El disefio en la fig. 7.9 necesita ser validado, y los escenarios de la tabla 7.9 sondear mas

profundamente en la arquitectura, en busca exponer AWS fl o areas de riesgo.

Los primeros dos escenarios parecen provocar respuestas positivas en el disefo. los
Validar componente limita los cambios necesarios para acomodar una nueva base de datos de clientes, y por lo tanto aisla otros
componentes del cambio. Y si el servidor de correo electronico no esté disponible, la implicacion es que los correos electronicos

no son mas que retrasarse hasta que el servidor de correo electronico devoluciones.

El fracaso de la Cliente o Orden aplicaciones es mas revelador, sin embargo. Las comunicaciones con estos
dos sistemas es sincronica, por lo que si bien no esta disponible, el procesamiento de pedidos debe detener hasta

que las aplicaciones se restauran. Esto puede ser menos que deseable.

112

Tabla 7.8 ejemplos de escenarios de atributos

Proceso 7 una arquitectura de software

de calidad de estimulo

Respuesta

Disponibilidad La conexion de red para

los consumidores de mensajes falla

Modi fi capacidad Un nuevo conjunto de andlisis de datos
componentes deben estar
disponibles en la aplicacion

Seguridad no se reciben solicitudes
en una sesion de usuario durante

10 min

Modi fi capacidad El proveedor de la
motor de transformacién

va a la quiebra

escalabilidad La peticion de usuario concurrente

la carga se duplica durante el periodo de

Los mensajes se almacenan en el servidor MOM hasta
la conexién se restablece. Mensajes sélo se
perderan si falla el servidor antes de la conexion
vuelve a subir

La aplicacion necesita ser reconstruido con el nuevo
bibliotecas, y el todo con fi guracioén fi les debe actualizarse en cada
escritorio para hacer los nuevos componentes visibles en la caja de
herramientas de interfaz grafica de usuario

El sistema trata esta sesion como potencialmente
insegura e invalida las credenciales de seguridad asociados
con la sesion. El usuario debe iniciar sesion de nuevo para

conectarse a la aplicacion

Un nuevo motor de transformacién debe estar
comprar. La capa de servicio abstracto que envuelve el
componente motor de transformacion debe ser reimplantado
para apoyar el nuevo motor. componentes de cliente no se
ven afectados, ya que sélo utilizan la capa de servicio
abstracto

El servidor de aplicaciones se escala a cabo en una de dos

cluster maquina para manejar la carga solicitud

inscripcion 3 semanas aumentado
Tabla 7.9 Los escenarios para el atributo de calidad ejemplo el procesamiento de
pedidos Estimulo Respuesta

Modi fi La capacidad Sistema de atencion al cliente envasada
aplicacion se actualiza a una base de
datos Oracle

Disponibilidad El servidor de correo electrénico falla

Confiabilidad los Cliente o Orden sistemas

no estan disponibles

los Validar componente debe ser reescrito para
interfaz con el sistema Oracle

Los mensajes se acumulan en el OrderQ hasta el
reinicia el servidor de correo electronico. Los mensajes son
enviados por el Enviar correo electrénico componente para
eliminar el retraso. El procesamiento de pedidos no se ve
afectada

Si bien falla, se detiene el procesamiento de pedidos y alertas
son enviados a los administradores del sistema para que el

problema puede ser fijo

Nota el disefio no discrimina entre las interacciones con las dos aplicaciones. Es bastante obvio sin embargo

que la interaccién con el Sistema de atencion al cliente requiere una respuesta diciendo si los datos de orden es

vélida. Si no es asi, esta escrito en un registro de error y el procesamiento de pedidos cesa para ese fin. los Sistema

fin aunque simplemente almacena los datos de la orden para el procesamiento posterior. No hay necesidad de

que el Almacenar componente que requiere una respuesta inmediata.

7.3 Validacion 113

Por lo tanto, el escenario fiabilidad ha puesto de relieve un area donde la arquitectura se podria mejorar. Un pedido no
puede ser procesada hasta que haya sido validado con éxito, por lo que una respuesta de la Sistema de atencidn al cliente es

necesario. Si no esta disponible, el proceso no puede continuar.

Pero el Sistema fin es un asunto diferente. comunicaciones asincronas es mejor en este caso. Almacenar sélo
pudiera escribir en una cola persistente, y el procesamiento de pedidos puede continuar. Otro componente
podria introducirse después de leer el orden de la cola y afiadir los datos a la Sistema orden. Esta solucién es
mas resistente a un fallo, como el Sistema fin puede no estar disponible, pero el procesamiento de pedidos

puede continuar.

7.3.2 Prototipos

Los escenarios son una técnica muy Util para validar una arquitectura propuesta. Sin embargo, algunos escenarios no son tan
faciles de responder basandose unicamente en una descripcion del disefio. Consideremos un escenario de rendimiento para el

sistema de procesamiento de pedidos:

El viernes por la tarde, los pedidos deben ser procesados antes del cierre de negocio para asegurar la entrega para el lunes.
Cinco mil pedidos llegan a través de diversos canales (Web / Call socios / centro de negocios) cinco minutos antes del cierre

de negocio.

La pregunta aqui es, entonces, simplemente, se las 5.000 érdenes seran procesadas en 5 minutos? Esta es una

pregunta dificil de responder cuando algunos de los componentes de la solucién no existan aun.

La Unica manera de abordar estas cuestiones con algun grado de confianza es construir un prototipo. Los
prototipos son minimos, restringido o versiones de la aplicacion deseada de corte hacia abajo, creado
especificamente para probar algo de riesgo alto o aspectos poco conocidos del disefio. Los prototipos se utilizan

tipicamente para dos propdsitos:

1. Prueba de concepto: ;Puede la arquitectura como disefié ser construido de una manera que puede
satisfacer los requisitos?
2. La prueba de la tecnologia: ¢ La tecnologia (middleware, aplicaciones integradas,

bibliotecas, etc.) seleccionados para implementar la aplicacion se comporta como se esperaba?

En ambos casos, los prototipos pueden proporcionar evidencia concreta acerca de las preocupaciones que de otro modo
dificil, si no imposible de validar en cualquier otra forma.

Para responder a nuestro escenario de rendimiento por encima, ¢ qué clase de prototipo podriamos
construir? La respuesta general es uno que incorpora todas las operaciones sensibles de rendimiento en el
disefio, y que se ejecuta en una plataforma lo mas similar posible (idealmente idéntica) a la de la aplicacion se
implementa en.

Por ejemplo, el arquitecto podria saber que los sistemas de colas y de correo electrénico son faciimente
capaces de soportar 5.000 mensajes en 5 min, ya que estas soluciones se utilizan en otra aplicacion similar. por
lo tanto, no habria necesidad de construir esto como parte del prototipo. Sin embargo, el rendimiento de las

interacciones entre la Cliente y

Proceso 7 una arquitectura de software

Orden aplicaciones utilizando sus APIs son un desconocido, y por lo tanto estos dos deben ser probados para ver si

pueden procesar 5.000 mensajes en 5 min. La forma mas sencilla de hacer esto es:

\Escribir un programa que llama a la prueba Sistema de atencién al cliente API de validacién 5.000 veces,
y el tiempo de duracion de esta operacion.

\Escribir un programa que llama a la prueba Sistema fin tienda de API 5000 veces, y el tiempo

duracion de esta operacion.

una pEliR o YMENREBRotdtipos han sido creado y probado, la respuesta de la arquitectura al estimulo en
el escenario se puede responder con un alto grado de confianza.

Los prototipos deben utilizarse juiciosamente para ayudar a reducir los riesgos inherentes a un disefio. Ellos son la

unica manera de que las preocupaciones relacionadas con el rendimiento, escalabilidad, facilidad de integracién y

SR RS S A0S IR IRERRVEN SRS BB 39038 Gl Pz peresadas. ¥l poducicn de

A pesar de su utilidad, una palabra de precaucion en la creacion de prototipos es necesario. los esfuerzos de creacion
de prototipos deben ser cuidadosamente scoped y gestionados. Lo ideal seria que un prototipo debe desarrollarse en uno o
dos dias, una semana o dos a lo sumo. La mayor prueba de la tecnologia y prototipos de prueba de concepto botados
documentacioén. Para grandes proyectos, el proceso puede ser seguido de manera mas formal, con la participacion de los
después de que hayan cumplido su propésito. Son un medio para un fin, asi que no deje a adquirir una vida propia y se

convierten en un fin en si mismos.

construir el proyecto. En estos proyectos, el proceso puede ser seguido de manera informal, produciendo un minimo de

7.4 Resumen y lectura adicional

El disefio de una arquitectura de aplicaciones es una actividad intrinsecamente creativo. Sin embargo, siguiendo un

RRRGFSSSHIDP B G RIS BXRURIPLISNID ot sy sl ra i arpilesttrisampenie Aot fip SRR SABRS 03 va

patrones de arquitectura y sistematicamente valida el disefio, algunos de la mistica de disefio puede estar expuesto.

El proceso de tres pasos descrito en este capitulo es inherentemente iterativo. El disefio inicial se valida
con los requisitos y escenarios, y el resultado de la validacion puede causar los requisitos o el disefio para
eEaxiratocsadieiarioncRRIBURMas tRaneHRgas disnRABRS I f5aRaslRD RRlENIEeATBNsR ¢A8ulR:tos nuevos e
arquitectura, que luego se convierte en el modelo a partir del cual comienza el disefio detallado. En
proyectos agiles, iteraciones son cortos, y las implementaciones concretas de la arquitectura resultado de

cada iteracion.

El proceso es también escalable. Para proyectos pequefios, el arquitecto puede estar trabajando en su mayoria

7.4 Resumen y lectura adicional 115
Por supuesto, existen otros procesos de arquitectura, y probablemente el mas ampliamente utilizado es el Rational Uni
Proceso fi ed (RUP). Una buena referencia para RUP es:

P. Kruchten. El Racional Unificado de proceso: Una introduccién (22 edicion). Addison-Wesley, 2000

La fuente mas completa de informacion sobre métodos y técnicas para la evaluacion de la

arquitectura es:

P. Clements, R. Kazman, M. Klein. La evaluacién de arquitecturas de software: Métodos y Estudios de Casos.

Addison-Wesley, 2002

Esto describe el proceso de ATAM, y proporciona excelentes ejemplos que ilustran el enfoque. Su enfoque
esta evaluando sistemas grandes y complejos, pero muchas de las técnicas son adecuadas para aplicaciones

de menor escala.

Capitulo 8

La documentacion de una arquitectura de software

8.1 Introduccién

documentacion de la arquitectura es a menudo un tema espinoso en los proyectos de Tl. Es comun para que haya
poca o ninguna documentacion que cubre la arquitectura en muchos proyectos. A veces, si hay alguna, es la fecha

fuera de, inapropiada y, basicamente, no es muy util.

En el otro extremo hay proyectos que tienen masas de informacién relacionada con la arquitectura
capturado en diversos documentos y herramientas de disefio. A veces esto es muy valiosa, pero a veces es
fuera de fecha, inadecuado y no es muy util!

Es evidente, entonces, la experiencia nos dice que la documentacioén de arquitecturas no es una tarea sencilla. Pero hay

muchas buenas razones por las que queremos documentar nuestras arquitecturas, por ejemplo:

1Otros pueden comprender y evaluar el disefio. Esto incluye cualquiera de la aplicabilidad

interesados cion, pero con mayor frecuencia que otros miembros del equipo de disefio y desarrollo.

\Podemos entender el disefio cuando volvamos a él después de un periodo de tiempo.

1Otros en la organizacion del equipo y desarrollo de proyectos pueden aprender de la

arquitectura digiriendo el pensamiento detras del disefio.
\Podemos hacer el andlisis en el disefio, tal vez para evaluar su rendimiento probable, o para

generar métricas estandar como acoplamiento y cohesion.

La documentacion de arquitecturas es problematico, sin embargo, debido a que:

\No hay un estandar universalmente aceptado documentacion de la arquitectura.
1\Una arquitectura puede ser complejo, y documentarla en un comprensible
manera es mucho tiempo y no trivial.
1Una arquitectura tiene muchos puntos de vista posibles. La documentacion de todos los potencialmente util
queridos es largo y costoso.
1Una arquitectura menudo evoluciona a medida que el sistema se desarrollé de forma incremental y mas
ideas sobre el dominio del problema se obtienen. Mantener los documentos arquitectura actual es a menudo

pasado por alto una actividad, especialmente con presiones de tiempo y horario en un proyecto.

|. Gorton, Arquitectura de Software esencial, 117
DOI 10.1007 / 978-3-642-19176-3_8, # Springer-Verlag Berlin Heidelberg 2011

118 8 La documentacion de una arquitectura de software

Estoy bastante seguro de las herramientas utilizadas para la documentacién predominantes son la arquitectura de
Microsoft Word, Visio y PowerPoint, junto con sus equivalentes no son de Microsoft. Y la notacién de disefio mas utilizado
es el “bloque y flecha” informal diagramas, al igual que hemos utilizado en este libro hasta ahora, de hecho. Estos dos
hechos son un poco de una acusacion sobre el estado de las practicas de documentacion de arquitectura en la actualidad.

Debemos ser capaces de hacerlo mejor.

En este capitulo se examinan algunos de los puntos de vista de arquitectura mas Utiles para documentar, y muestra
como la ultima encarnacién de la Unificado de Lenguaje de Modelado, UML v2.0, puede ayudar con la generacion de
estos puntos de vista. El uso de estas técnicas y herramientas de apoyo, no es excesivamente culto fi cultad o costoso

para generar documentacién util y valiosa.

8.2 ¢,Qué pasa al documento

Probablemente el elemento mas importante de la ecuacion “qué documento” es la complejidad de la arquitectura esta
disefiando. Una aplicacion cliente servidor de dos niveles con la légica de negocio complejas puede ser en realidad
bastante simple vista arquitectonico. Se puede requerir no mas de un diagrama general “marketeture”, que describe los
componentes principales, y tal vez un punto de vista estructural de los componentes principales (tal vez que utiliza una
arquitectura modelo-vista-controlador) y una descripcién del esquema de base de datos, genera ninguna duda
automaticamente por herramientas de bases de datos. Este nivel de documentacion es rapida para producir y la rutina

de describir.

Otro factor a considerar es la probable duracién de la aplicacion. ¢ El sistema de servir una funcion de negocio a largo
plazo, o estéa siendo construida para manejar un hecho aislado necesidad de integracion, o es solo un recurso provisional
hasta que se instale un paquete ERP completo? Los proyectos con pocas posibilidades de una vida larga, probablemente no
necesitan una gran cantidad de documentacion. Sin embargo, no deje que esto sea una excusa para cortar juntos un cierto
codigo y tirar buenas practicas de disefio al viento. A veces, estos sistemas para detener la brecha tienen la costumbre de

vivir por mucho mas tiempo de lo previsto inicialmente, y alguien (tal vez incluso usted) podria pagar por estos hacks 1 dia.

El siguiente factor a considerar es las necesidades de los diferentes actores del proyecto. La documentacion de la
arquitectura desempefa un papel importante la comunicacion entre los distintos miembros del equipo de proyecto,
incluyendo arquitectos, disefiadores, desarrolladores, probadores, gestion de proyectos, clientes, organizaciones
asociadas, y asi sucesivamente. En un pequefio equipo, la comunicacion interpersonal con frecuencia es bueno, por lo
que la documentacién puede ser minimo, y tal vez incluso mantenido en una o dos pizarra utilizando técnicas de
desarrollo agil. En equipos mas grandes, y sobre todo cuando los grupos no son de ubicacion conjunta en el mismo o fi
cinas o edificio, la documentacién de la arquitectura se vuelve de vital importancia para la descripcién de los elementos de

disefio tales como:

iinterfaces de componentes
rrestricciones subsistemas

iLos escenarios de prueba

8.3 UML 2.0 119

1las decisiones de compra de componentes de terceros
\la estructura del equipo y del horario dependencias

iservicios externos a ser ofrecidos por la aplicacion

Por lo tanto, no hay una respuesta simple aqui. Documentacién necesita tiempo para desarrollarse, y cuesta
dinero. Por lo tanto es importante pensar cuidadosamente acerca de qué documentacion va a ser mas util dentro del

contexto del proyecto, y producir y mantener estos documentos de referencia como clave para el proyecto.

8.3 UML 2.0

También esté la cuestion de como documentar una arquitectura. Hasta ahora, en este libro hemos utilizado diagramas
de cajas y flechas simples, con una clave diagrama apropiado para dar un significado claro a la notacion utilizada. Esto
se ha hecho deliberadamente, como en mi experiencia, anotaciones esquematicas informales son el vehiculo mas

comun utilizado para documentar las arquitecturas de aplicaciones de TI.

Por supuesto, hay muchas maneras de describir los diversos puntos de vista de arquitectura que pueden
ser Utiles en un proyecto. Afortunadamente para todos nosotros, hay un excelente libro que describe muchos
de estos de Paul Clements et al. (Ver lecturas adicionales), por lo que no se hara ningun intento para replicar
eso. Pero ha habido un desarrollo significativo, ya que el libro fue publicado, y eso es la aparicién de la Uni fi
ed Modeling Language (UML) 2.0.

A pesar de sus puntos fuertes y débiles en gran medida debatidos, el UML se ha convertido en el lenguaje de
descripcion de software predominante utilizado en toda la gama de dominios de desarrollo de software. Tiene amplia y
ahora soporte de herramientas de calidad y bajo costo, y por lo tanto es facilmente accesible y utilizable para arquitectos de

software, disefiadores, desarrolladores, estudiantes - todos en realidad.

UML 2.0 es una actualizacion importante del lenguaje de modelado. Se afiade varias caracteristicas nuevas y, signi fi
cativamente, se formaliza muchos aspectos de la lengua. Esta formalizacién ayuda de dos maneras. Para los
disefiadores, que elimina la ambigliedad de los modelos, lo que ayuda a aumentar la comprensibilidad. En segundo
lugar, es compatible con el objetivo del desarrollo basado en modelos, en los que se utilizan modelos UML para la
generacién de coédigo. También hay un gran debate sobre la utilidad de desarrollo dirigido por modelos, y este tema es

especi fi camente cubierto en un capitulo posterior, por lo que no vamos a ahondar en él ahora.

Los UML 2.0 notaciones de modelado cubren tanto los aspectos estructurales y de comportamiento de los sistemas de

software. La estructura Diagramas de fi ne la arquitectura estatica de un modelo, y camente especificaciones son:

iLos diagramas de clases: Mostrar las clases en el sistema y sus relaciones.
\diagramas de componentes: Describir la relacion entre los componentes con bienestar

de fi ne las interfaces. Componentes comprenden tipicamente mdltiples clases.
iLos diagramas de paquetes: Dividir el modelo en grupos de elementos y describir la

dependencias entre ellos a un alto nivel.

8 La documentacion de una arquitectura de software

\Los diagramas de despliegue: Mostrar cémo los componentes de software y otros artefactos como
procesos se distribuyen a hardware fisico.

iLos diagramas de objetos: Muestran cdmo los objetos estan relacionados y utilizados en tiempo de ejecucién. Estos son
a menudo llamados diagramas de instancia.

\diagramas de estructura de material compuesto: Mostrar la estructura interna de las clases o com-

componentes en términos de sus objetos compuestos y sus relaciones.

Por el contrario, los diagramas de comportamiento muestran las interacciones y los cambios de estado que se producen como elementos

en el modelo ejecutan:

\diagramas de actividad: Similares a los graficos de fluencia, y se utiliza para de fi nir la I6gica del programa
y los procesos de negocio.

\diagramas de comunicacion: diagramas de colaboracion denominados en UML 1.x, se

describir la secuencia de llamadas entre los objetos en tiempo de ejecucion.

iLos diagramas de secuencia: A menudo llamados diagramas de natacién carriles después de su tiempo- verticales

lineas, muestran la secuencia de mensajes intercambiados entre los objetos.

\diagramas de maquina de estados: Describir el funcionamiento interno de un objeto, mostrando sus estados

y eventos, y las condiciones que causan las transiciones de estado.
1Descripcion interaccion diagramas: Estos son similares a los diagramas de actividad, pero puede
incluir otros diagramas de interaccion UML, asi como actividades. Estan disefiados para mostrar el control de flujo a

través de una serie de escenarios mas sencillos.

Diagramas de tiempo: Estos se combinan esencialmente de secuencias y diagramas de estado a

interaccién con un sistema existente. Sin duda, otras clases seran 120
describir diversos estados de un objeto a través del tiempo y los mensajes que alteran el estado del objeto.

1Los diagramas de casos: Estas interacciones entre el sistema de captura y su

medio ambiente, incluidos los usuarios y otros sistemas.

Es evidente, entonces, UML 2.0 es una gran area técnica en si mismo, y algunos indicadores de buenas fuentes de
informacién se proporcionan al final de este capitulo. En las siguientes secciones sin embargo, vamos a describir

algunos de los modelos mas utiles UML 2.0 para la representacién de arquitecturas de software.

8.4 Arquitectura Vistas

Volvamos al ejemplo de procesamiento de pedidos introducido en el capitulo anterior. Figura 7.9 muestra una
descripcion informal de la arquitectura utilizando una caja y flecha notacién. En la Fig. 8.1 , Un diagrama de
componentes UML se utiliza para representar una vista estructural equivalente de la arquitectura del sistema de
procesamiento de pedidos. Nétese, sin embargo, sobre la base de la evaluacion en el capitulo anterior, una cola se

ha afiadido a la comunicacion entre el Procesando orden y OrderSystem componentes.

Sélo dos de los componentes de la arquitectura requieren cédigo de nuevo sustancial que se creara. La
estructura interna de las mas complejas de estos, Procesando orden,

se muestra en el diagrama de clases en la figura. 8.2 . Incluye tres clases que encapsulan cada

8.4 Arquitectura Vistas

121

g

Iden del Componente Vgf

g

leer writeQ
«Mesa» Procesando orden cola de correo
NewOrders 1 1
N
readQ
/1 \
validar writeQ a
1 1 Enviar correo elecirénido
Sistema de gl gl
atencién al cliente OrderQueue | 1
enviar
[\ |
readQ $:|
$:| Servidor de correo
OrderSystem
Fig. 8.1 Un diagrama de componentes UML para el ejemplo de procesamiento de pedidos
cd OrderProcessing /
OrderReader .
tienda
1 1
1 N y
L 1
Validar q
alida QueueWriter

Fig. 8.2 Las clases para el componente de procesamiento de pedidos

8 La documentacion de una arquitectura de software

introducidos en el disefio ya que se implementa, por ejemplo, uno para representar un nuevo orden, pero estos no
se muestran en el diagrama de clases para que no se desordenan con detalles innecesarios. Estos son los

detalles de disefio no necesarios en una descripcion de la arquitectura.

Con este nivel de descripcion, podemos ahora crear un diagrama de secuencia que muestra las
principales interacciones entre los elementos arquitectonicos. Esto se muestra en la figura. 8.3 , Que utiliza los
estereotipos UML estandar para representar Limite
(CustomerSystem, OrderQueue, cola de correo) y Entidad (NewOrder) componentes. Este diagrama de secuencia
omite el comportamiento cuando un nuevo orden no es valida, y lo que sucede una vez que los mensajes han sido
colocados en el OrderQueue y Cola de correo.

Una vez mas, esto mantiene el modelo ordenado. Descripciones de esta funcionalidad adicional o bien podrian ser
descritos en posteriores (muy simples) diagramas de secuencia, o simplemente en el texto que acompaia el diagrama de
secuencia.

Los diagramas son probablemente la técnica mas util en el UML para modelar el comportamiento de los
componentes de una arquitectura. Uno de sus puntos fuertes en realidad se encuentra, ironicamente, en su debilidad
inherente en la descripcion de un procesamiento complejo y la légica. Aunque es posible representar bucles y la
seleccion en los diagramas de secuencia, se convierten rapidamente en dificil de entender y dificil de manejar para
crear. Esto anima a los disefiadores para mantenerlos relativamente simple, y se centran en la descripcion de las

principales interacciones entre los elementos signi fi cativos arquitectonicamente en el disefio.

Muy a menudo en este tipo de proyecto de integracién de negocio, es posible crear un diagrama de

despliegue UML muestra dénde los diversos componentes se ejecutaran.

Interacciones sd /
olicitar n
Solicta Validar Almacenar cola de
Jector escritor

T
el éxito: = storeOrder

A 4

Sistema de orden de
Nuevos pedidos cola de correo
T T atencion al cliente T Ia cola
1
1 1 1
readOrder | ! ! ! !
1 1
Datos ! ! 1 ! 1
< 1 | 1 |
1 1
1 1 1 1
1 1 1 1
-) 1
el éxito: = validateOrder ! I !
1 1
ol 1 1 1
1
: ; :
!]
r | i
1 ! 1
1
1 1
! 1
! 1
1 1
1 1
1
1
1

1
1

el éxito: = acknovlvledgeOrderSuccess
T T

A 4

1
1
1
1
1
1
1
1
1
;
! el éxito: = NewOrde
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
'

Fig. 8.3 diagrama de secuencia para el sistema de procesamiento de orden 122

8,5 Mas sobre Los diagramas de componentes 123

dd Deployment View /
OrderServer J
OrdersDB @ r
MailServer d
JDBC «executable»
«tables
. = :Mail
:NewOrders orderProcessing ailServer
= —
" [} 1}
L)
o [
-~ 1' Il
o2 " :SendEmail
¥ ‘ !
-] 1
Al | \ Fa
CustomerSystem |_| ! \ "
! \
8] / | P
CRM |- «executable» I L e
: iMOMServer\ i
CustomerSystem| ! i P d
== r ¢
f
H
! MailQueue
v
OrderSystem &
2] 8] .= OrderQueue
ERP - sexgcutable-L Lp-===="""
Orders-ystem
Fig. 8.4 di UML de i itacion para el sistema de procesamiento de pedidos

Esto se debe a que muchos de los componentes en el disefio ya existen, y el arquitecto debe mostrar cémo
los nuevos componentes interactdan con éstos en el entorno de despliegue. Un ejemplo de un diagrama de
despliegue UML para este ejemplo se da en la Fig. 8.4 . Se asigna componentes a los servidores y muestra las
dependencias entre los componentes. A menudo es Util para etiquetar las dependencias con un nombre que
indica el protocolo que se utiliza para la comunicacién entre los componentes. Por ejemplo, el Procesando
orden componente ejecutable requiere JDBC 1 para acceder a la Nuevos pedidos mesa en el OrdersDB base

de datos.

8,5 Mas sobre Los diagramas de componentes

diagramas de componentes son muy Utiles para esbozar la estructura de una arquitectura de aplicaciones. En ellos
se describen claramente las principales partes del sistema, y pueden mostrar qué tecnologias off-the-shelf seran

utilizados, asi como los nuevos componentes que

1 Java Database Connectivity.

8 La documentacion de una arquitectura de software

acién del Componente Ver

gl QueueWrite {l
"mesa” _())— Procesando orden O cola de correo

Nuevos pedidos
%ueueRead

QueueWrite gl

Enviar correo electrénicol

2 i T

OrderQueue
customerservices JDBC

(@)

?SMTP
J)QueueRead

$:| I Servidor de correo

OrderSystem

CustomerSystem

Fig. 8.5 En representacion de las interfaces en el ejemplo de procesamiento de pedidos 124

deben construirse. UML 2.0 también ha introducido mejoradas notaciones para la representacion de interfaces de
componentes. Una interfaz es una coleccion de métodos que soporta un componente. Ademas de la UML 1.x
notacién “piruleta” para la representacion de una interfaz con el apoyo de un componente (un “proporcionado”
interfaz), la notacion “socket” se puede utilizar para especificar que un componente necesita una interfaz particular

a ser apoyado por su medio ambiente (un “requerida” interfaz). Estos se ilustran en la Fig. 8.5 . Interfaz de fi nicién es
particularmente importante en una arquitectura, ya que permite a los equipos independientes de los desarrolladores
para disefiar y construir sus componentes de manera aislada, asegurando que se apoyan los contratos definida por

sus interfaces.

Mediante la conexién de interfaces proporcionadas y requeridas, los componentes pueden ser “conectados” o “cableados”
juntos, como se muestra en la Fig. 8.5 . Las interfaces proporcionadas se nombran, y capturan las dependencias entre los
componentes. Los nombres de interfaces deben corresponder a los utilizados por las aplicaciones off-the-shelf en uso, o

interfaces de los componentes de la cantera existentes.

UML 2.0 permite refinar la interfaz de fi niciones aliin mas, y representan la forma en que se apoyan
en el contexto de un componente. Esto se hace mediante la asociacién de las interfaces con los
“puertos”. Puertos de fi ne un opcionalmente llamado Unico punto, la interaccién entre un componente y
su entorno exterior. Estan representados por pequefios cuadrados en el borde del componente, y tienen
uno 0 mas proporciona o requiere interfaces asociadas con ellos.

La arquitectura del sistema de procesamiento de pedidos a través de puertos para el Procesando orden

y CustomerSystem componentes se representa en la Fig. 8.6 . Todos los puertos en este disefio

8,5 Méas sobre Los diagramas de componentes

125

del Componente Vi

Procesando orden

$:| JDBC
"mesa" _()

Nuevos pedidos

validateOrder

getOrders

Servicios al cliente

validar $:|

CustomerSystem

writeOrder

&

QueueWrite

O

Y

writeConfirmation

QueueWrite

8]

OrderQueue

6QueueRead

8]

cola de correo

o

QueueRead

&

Enviar correo

SMTP

?

8]

Servidor de correo

OrderSystem
ProvidedInterface1
Fig. 8.6 Utilizacioén de los puertos en el ejemplo de procesamiento de pedidos
CD de componentes Vista /
Procesando orden
qw:

«delegad¢» o: OrderReader

QueueWriter o2

getOrders

val: Validar st: Tienda
«Delegado» "delegar"
validateOrder writeOrder
| S— | S—

writeConfirmation

Fig. 8.7 El disefio interno de la Procesando orden componente

son unidireccionales, pero no hay nada que les impida ser bidireccional en términos de apoyo a uno o mas

proporcione o requiere interfaces. UML 2.0 diagramas compuestos nos permiten mostrar la estructura interna de

un elemento de disefio tal como un componente. Como se muestra en la Fig. 8.7 , Podemos describir

explicitamente que los objetos comprenden

8 La documentacion de una arquitectura de software

la implementacion del componente, y la forma en que se relacionan entre si y con los puertos del componente
apoya. Los objetos internos estan representados por UML 2.0 “partes”. Piezas se definen en UML 2.0 como
instancias de tiempo de ejecucion de las clases que son propiedad de la clase o componente que contiene. Las
piezas son unidas por conectores y describen con fi guraciones de instancias que se crean dentro de una

instancia del componente / clase que contiene.

diagramas compuestos son Utiles para describir el disefio de componentes complejos o importantes en un
disefio. Por ejemplo, una arquitectura en capas podria describir cada capa como un componente que soporta varios
puertos / interfaces. Internamente, una descripcién de la capa puede contener otros componentes y piezas que
muestran como se apoya cada puerto. Los componentes también pueden contener otros componentes, por lo
arquitecturas jerarquicas pueden ser descrito facilmente. Veremos algunas de estas técnicas de disefio en el estudio

de caso en la siguiente seccion.

8.6 Plantilla de Documentacion de Arquitectura

Siempre es Util para una organizacién contar con una plantilla de documento disponible para la captura de la documentacion
especifica fi proyecto. Plantillas reducen el tiempo de puesta en marcha de proyectos, proporcionando estructuras de documentos
confeccionados para los miembros del proyecto para usar.

Una vez que el uso de las plantillas se institucionaliza, la familiaridad adquirida con las ayudas de estructura de

documento en la e fi ciencia de captura de los detalles del proyecto de disefio.

Arquitectura Documentacion de la plantilla Nombre del
proyecto: 1 XXX
Contexto del Proyecto 2
Requisitos Arquitectura
2.1 Resumen de los objetivos clave
2.2 Arquitectura de casos de uso
2.3 Requisitos de arquitectura de las partes interesadas
2.4 Limitaciones
2.5 Requisitos no funcionales
2.6 Riesgos
3 Solucion
3.1 Patrones arquitectonicos relevantes
3.2 Descripcién de la arquitectura
3.3 Vistas estructurales
3.4 Comportamiento Vistas
3.5 Cuestiones de Aplicacion 4
Analisis de la arquitectura

analisis 4.1 Escenario

4.2 Riesgos

Fig. 8.8 Arquitectura documentacién contorno 126

8.7 Sumario y lectura adicional 127

Las plantillas también ayudan a la formacion de nuevo personal, ya que los desarrolladores dicen lo que
emite la organizacion les obliga a considerar y pensar en la produccién de su sistema.

Figura 8.8 muestra la estructura encabezamientos para una plantilla de documentacion que puede ser utilizado
para la captura de un disefio de la arquitectura. Para implementar esta plantilla en una organizacion, que debe ir
acompaiada de un texto explicativo y ejemplos de lo que la informacion que se espera en cada seccion. Sin embargo,
en vez de hacer eso aqui, esta estructura de plantilla se utilizara para mostrar la solucion al problema de estudio de

caso ICDE en el siguiente capitulo.

8.7 Sumario y lectura adicional

La generacioén de la documentacién arquitectura es casi siempre una buena idea. El truco es pasar suficiente esfuerzo
para producir Unica documentacién que sera Util para los diferentes grupos de interés del proyecto. Esto toma un poco de
planificacién por adelantado y el pensamiento. Una vez que se establece un plan de documentacién, los miembros de

equipo deben comprometerse a mantener la documentacion razonablemente actual, precisa y accesible.

Estoy un poco de un partidario de la utilizacion de notaciones y herramientas basadas en UML para la produccion de
documentacion de arquitectura. EI UML, especialmente con la version 2.0, hace que sea bastante sencillo para documentar
diversos puntos de vista estructurales y de comportamiento de un disefio. Herramientas hacen que la creacién del disefio
rapido y facil, y también hacen posible la captura de gran parte de la légica de disefio, las restricciones de disefio, y otra
documentacion basada en texto dentro del repositorio de la herramienta. Una vez que esta en el repositorio, generacion de
documentacién de disefio se convierte en una simple tarea de seleccionar el elemento de menu correcto y la apertura de un
navegador o caminar a la impresora. Dicha produccion documentacién automatica es un truco que esta garantizado para

impresionar a las partes interesadas no técnicos, e incluso a veces el técnico extrafio!

Ademas, es posible utilizar fl exible UML 2.0 en un proyecto. Se puede utilizar para esbozar una
representacion abstracta de arquitectura, puramente para fines de comunicacién y documentacion. También se
puede utilizar para modelar estrechamente los componentes y objetos que seran realizadas en la implementacion
real. Esta “cercania” puede reducirse ain mas en el caso extremo a “exactitud”, en el que se utilizan elementos en
el modelo para generar cédigo ejecutable. Si usted esta haciendo esto, entonces usted esta haciendo el desarrollo

dirigido por modelos denominado (MDD).

Hay todo tipo de debates estragos sobre el valor y la importancia de utilizar el UML informalmente en
comparacion con el uso preciso requerido por el TDM. De vuelta en el Cap. 1, se examino el papel de una
arquitectura de software como una representacion abstracta del sistema. La abstraccién es una potente ayuda para
la comprension, y si nuestra representacion arquitectura es abstracto, entonces se argumenta a favor de un uso mas
informal del UML en nuestro disefio. Por otra parte, si nuestros modelos UML son una representacion precisa de
nuestra aplicacion, a continuacion, que apenas son gran parte de una abstraccion. Pero este tipo de modelos
detallados hacen posible la generacion de codigo, y salvar la distancia semantica entre modelos y aplicacion. Yo

personalmente creo que haya un lugar para tanto, sélo se

8 La documentacion de una arquitectura de software

depende de lo que esta la construccion y por qué. Al igual que muchas decisiones de arquitectura, no hay una respuesta
correcta o incorrecta, como soluciones deben ser evaluados en el contexto de su problema de definicion. Ahora hay
respuesta de un consultor clasico.

Para un debate en profundidad sobre la documentacién de la arquitectura enfoques, el Vistas & Beyond libro

de la SEI es la fuente actual de conocimiento:

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. lvers, R. Little, R. Nord,
J. Stafford. Arquitecturas de software de documentacion: Vistas y mas alla. Addison-Wesley, 22 edicion,
2010

Buenas UML 2.0 libros a su alrededor. El que yo encontramos Util es:

SW Ambler. El Primer Objeto 3 rd Edicion: Model Driven desarrollo agil
con UML 2. Cambridge University Press, 2004

Este libro también proporciona una excelente introduccién en los métodos agiles de desarrollo, y cémo el
UML se puede usar de manera ligeros y eficaces.

Hay un estandar IEEE, IEEE 1471-2000, para la documentacion de arquitectura que es bien vale la pena leer si
usted esta buscando en la arquitectura de los estandares de documentacion que define para su organizacion. Esto se

puede encontrar en:
http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html

Un area emergente de la investigacion es la gestion de la arquitectura del conocimiento, con el objetivo de
capturar razon de disefio y “conocimiento tribal” que esta inevitablemente asociado con cualquier sistema de
software de larga vida. He aqui un excelente libro que le dara punteros a las tecnologias y practicas emergentes

en esta area:

Ali Babar, M .; Dingseyr, T .; Lago, P .; Vliet, H. van (Eds.), Arquitectura de software
Gestién del Conocimiento: Teoria y Practica, Springer-Verlag 2008 128

Capitulo 9

Disefio Estudio de caso

9.1 Descripcién general

En este capitulo, un disefio para el estudio de caso del ICDE se describe en el Cap. 2 es dada. En primer lugar, se le
da un poco mas de conocimientos técnicos para el proyecto, por lo que los detalles de disefio son mas faciles de
digerir. A continuacion se presenta la descripcion de disefio, y se estructura mediante la plantilla de documentacién de
la arquitectura introducido en el capitulo anterior. La Unica seccion que no se incluiré en el documento es el primero, el
“Proyecto Contexto”, como esto se describe basicamente en el Cap. 2. Asi, sin mas preambulos, vamos a bucear en la

documentacion de disefio.

9.2 Problemas técnicos ICDE

El capitulo dos dio un amplio, descripcién de nivel de requisitos de la aplicacion ICDE v1.0 y los objetivos para
la construccion de la préxima version. Por supuesto, esta descripcién es necesaria para entender los requisitos
arquitectonicos, pero en realidad, es sélo el punto de partida para las discusiones técnicas que resultan en un
disefio real. Las siguientes secciones describen algunas de las cuestiones técnicas, cuyas soluciones se

reflejan en la descripcion del disefio resultante adelante en este capitulo.

9.2.1 Datos grandes

La base de datos almacena informacion sobre ICDE las acciones de cada usuario al utilizar su estacién de trabajo y aplicaciones.
Esto significa que los eventos tales como las aplicaciones de apertura y cierre, a escribir en los datos, mover el ratén, el acceso a
Internet, y asi sucesivamente todos los datos sobre las causas que se escriben en la base de datos. Aunque la base de datos se
purga periédicamente (por ejemplo, todos los dias / semana) para archivar datos antiguos y el tamafio de control, algunas tablas de

bases de datos pueden crecer rapidamente a un tamafio de varios millones de filas.

|. Gorton, Arquitectura de Software esencial, 129
DOI 10.1007 / 978-3-642-19176-3_9, # Springer-Verlag Berlin Heidelberg 2011

9 Disefios

Esto no es un problema para la base de datos a manejar, pero crea un problema de disefio interesante para el
API ICDE. Con la aplicacién v1.0 ICDE de dos niveles, la herramienta de analisis de datos puede emitir Nal
consultas de base de VE (el clasico Seleccionar de
VERYBIGTABLE caso) que se puede volver muy grandes conjuntos de datos. Estos son inevitablemente lento para ejecutar y

puede derribar la herramienta de andlisis si el conjunto de datos devuelto es muy grande.

hgientrag(i)nconveniente, de acuerdo con el “! Le pregunté por él, lo tienes” principio, esto no es un problema
servidor, y
grave para los usuarios de un sistema de usuario Unico como en v1.0 ICDE. Que soélo hacen dafio a si mismos, y,

presumiblemente, tras derribar la aplicacion varias veces, aprenderan mejor.

Sin embargo, con el fin de reducir los costes de despliegue y complejidad de la gestion, la transicion del

sistema ICDE a ser compartido entre varios usuarios es una opcién potencialmente atractiva porque:

1Reduce los costos de licencias de base de datos, ya que sélo se necesita uno por cada despliegue, no por

usu?{io . . . I . .
de resultados y la carga simultanea en el servidor ejercida por otros clientes. Una llamada a la API podria hacer caer el
\Reduce la especificacion de la PC que los usuarios necesitan para ejecutar la aplicacion ICDE,

ya que no es necesario para ejecutar la base de datos, solo el software de cliente ICDE. Simplemente, esto ahorra dinero para una
implementacién.

\Reduce los costos de soporte y gestion de bases de datos fi ca simplificada, ya que sélo hay una

compartida aplicacién de servidor ICDE para gestionar y controlar.

Si la base de datos debe ser compartido por varios usuarios, todavia seria posible utilizar una arquitectura de la aplicacion
de dos niveles o de tres niveles. La opcion de dos niveles es probable que proporcionan un mejor rendimiento para
IRISTIRAG IS RRAYGERS thRSPIBAS AR A% roRsNfIYe SRPETRSIAT S MR AOMIRENANRA s It arRG B BGlnto
medio). La opcion de tres niveles es probable que escalar mejor como implementaciones de acercarse a un 100-150 a los
usuarios, ya que las conexiones de base de datos pueden agruparse y los recursos de procesamiento adicionales desplegados

en el nivel medio.

En cualquier caso, cuando se utiliza una infraestructura compartida, el comportamiento de cada cliente afecta otros. En este

caso, las cuestiones a tener en cuenta son:

1el rendimiento de base de datos

‘Egﬁﬁjmogp&é%sc!ﬁté(ﬁi WMSJJ%?! %ﬁ&ﬁ&t&%%‘%?%@d’bﬂﬂ‘é’én%@%e API, que significa que es posible crear aplicaciones

el uso de memoria en el nivel medio es una cuestién importante a considerar, especialmente como clientes ICDE (tanto los
usuarios como herramientas de terceros) podrian solicitar conjuntos de resultados con muchos miles de filas. Mientras el
servidor de etapa intermedia podria ser con fi gurada con un gran montén de memoria, si varios clientes solicitan resultado
considerable establece al mismo tiempo, esto podria faciimente consumir todos los recursos de memoria servidores, haciendo
que el volteo y bajo rendimiento. En algunos casos, esto hara que las peticiones a fallar debido a la falta de memoria y tiempos

de espera, y es probable que hara bajar el servidor en casos extremos.

Para herramientas de terceros escritos a la API de ICDE, esto no es en absoluto deseable. Si potencialmente enormes

9.2 Problemas técnicos ICDE 131

hacer que todas las aplicaciones conectadas al servidor a fallar también. Esto no es probable que hacer feliz a los equipos

de desarrollo o de apoyo como la arquitectura no estaria proporcionando una plataforma de aplicaciones fiables.

9.2.2 Notificacion

Hay dos escenarios cuando se necesita cacion evento notificada.

1. Una herramienta de terceros puede querer ser informado cuando el usuario realiza una accién especifica, por ejemplo,
tiene acceso a un nuevo sitio en Internet.

2. Las herramientas de terceros pueden compartir los datos Utiles que almacenan en la base de datos del ICDE con
otras herramientas. Por lo tanto necesitan un mecanismo para notificar a los interesados sobre los datos que

acaba de escribir en el sistema ICDE.

Ambos de estos casos, pero sobre todo la primera, requieren la noti fi cacién del evento para ser despachado
rapidamente, basicamente, como se produce el evento. Con una arquitectura de dos niveles, instantanea noti fi cacién no es
tan natural y facil de lograr. mecanismos de bases de datos tales como desencadenantes pueden ser utilizados, pero estos
tienen desventajas potenciales en términos de escalabilidad, y también fl exibilidad. Un trigger es un bloque de instrucciones
que se ejecutan cuando se produce una alteracion (INSERT, UPDATE, DELETE) a una tabla en la base de datos.
mecanismos de activacion tienden a explotar caracteristicas fi especificas de proveedores de base de datos, que inhibirian la

portabilidad.

La flexibilidad es la cuestion clave aqui. El equipo de desarrollo del ICDE no puede saber qué eventos o datos de
las herramientas de terceros desean compartir a priori (simplemente, no existen las herramientas aun). En
consecuencia, algin mecanismo que permite que los propios desarrolladores para crear y publicitar los tipos de
eventos “a la carta” es necesaria. I[dealmente, esto debe ser apoyado por la plataforma ICDE sin requerir la

intervencién de un programador o administrador del ICDE.

9.2.3 Abstraccion de datos

La estructura de la base de ICDE ha evolucionado considerablemente desde v1.0 a v2.0. Las razones fueron la
incorporacion de nuevos elementos de datos, y para optimizar la organizacion interna por razones de rendimiento. Por lo
tanto es importante que la organizacion interna de la base de datos no esta expuesto a los desarrolladores de la API. Si lo

fuera, cada vez que cambia el esquema, su cddigo se rompa. Esta seria una situacion feliz para, precisamente, a nadie.

9.2.4 Plataforma de Distribucién y Problemas

proveedores de herramientas de terceros quieren ser capaces de escribir aplicaciones en plataformas no Windows como

Linux. Algunas herramientas que desee ejecutar algunos procesos en el mismo

9 Diserios

estacion de trabajo como el usuario (en Windows), otros querran ejecutar sus herramientas de forma remota y comunicarse
con el usuario a través de mecanismos ubicuos como el correo electrénico y la mensajeria instantanea. Una vez mas, la

clave aqui es que la solucién ICDE debe hacer ambas opciones lo menos doloroso posible.

9.2.5 Problemas de API

La API ICDE permite el acceso mediante programacion a la memoria de datos del ICDE. El almacén de datos recoge informacién

detallada, con marca de tiempo sobre las clases de eventos de las acciones del usuario, incluyendo:

iLos eventos de teclado

1los eventos de acceso del navegador de Internet

1De aplicacion (por ejemplo, procesador de textos, correo electronico, navegador) eventos abiertos y cerrados
\eventos de cortar y pegar

\Presentar eventos abiertos y cerrados

De ahi la API debe proporcionar un conjunto de interfaces para la consulta de los datos de eventos almacenados en la

base de datos. Por ejemplo, si una herramienta de terceros quiere saber las aplicaciones que un usuario ha abierto ya que el

Gitimdorotistvade wre.(ou kit \d$10 IODEIpereqh lebddigenta de ial3 llamada a la API podria ser algo como:

Sesion SID = getSessionID (ID de usuario, CURRENT_SESSION); ApplicationData []
aplicaciones = getApplicationEvent (SID,
APP_OPEN_EVENT, NULL); // = NULL todas las aplicaciones

los aplicaciones gama ahora se puede caminar a través y, por ejemplo, las paginas web abiertas por el usuario

en su navegador durante la sesion se puede acceder 1y se analizaron usando mas llamadas a la API.

La API ICDE también debe permitir que las aplicaciones almacenan datos en el almacén de datos para compartir

con otras herramientas o tal vez el usuario. Una API para este fin, en pseudocédigo, se ve asi:

ok = escritura (myData, myClassifier, publicar, MyTopic);

Esto almacena los datos en una tabla de base de datos previamente designado, junto con un ampli fi cacién que se
puede utilizar para buscar y recuperar los datos. La API también hace que la informacién sobre este evento que sera
publicado en el tema mi tema.

En general, para animar a los desarrolladores de terceras partes, la API ICDE tiene que ser Util en el sentido de poder ofrecer a

los desarrolladores con las instalaciones que se necesitan para escribir herramientas. Por lo tanto, debe:

1 El almacén de datos ICDE mantiene copias de todas las paginas web visitadas de modo que incluso cambian dinamicamente paginas web (por

9.3 Requisitos ICDE Arquitectura 133

1Ser facil de aprender y fl exible componer secuencias de consultas de la API para recuperar
datos utiles.

1Ser facil de depurar.

\ubicacion apoyo de la transparencia. herramientas de terceros no deben tener que ser escrito a
una particular, distribuido con fi guracion que se basa en ciertos componentes que son en lugares conocidos,
fijos.

1Ser resistente posible a ICDE cambios en la plataforma. Esto significa que las aplicaciones

no se rompen cuando se producen cambios en la APl ICDE o almacén de datos.

9.2.6 Discusion

Tomados en conjunto, los aspectos mencionados anteriormente tejer una red razonablemente complejo de las
necesidades y problemas. Los requisitos fi cacion caso caciones apuntan fuertemente a una flexible arquitectura editoras
suscribirse a unir herramientas de colaboracion. La necesidad de apoyar multiples plataformas y transparentes puntos
distribuidos con fi guraciones a una solucién Java con los diversos componentes comunicacion a través de protocolos
como RMI 'y JMS. Los datos de gran tamafio y los requisitos de extraccion de almacenamiento de datos sugieren que se
necesita alguna capa para traducir llamadas a la API en las solicitudes SQL necesarias, y luego gestionar el retorno seguro

y fiable de la (potencialmente grande) conjunto de resultados al cliente.

La solucion del equipo ICDE seleccionado se basa en una arquitectura de tres niveles 3, junto con una
infraestructura de publicaciéon-suscripcion para el evento de la noti fi cacion. Los detalles de esta solucién, junto con
detalladas justificaciones siguen en la siguiente seccion, que documenta la arquitectura usando la plantilla de Cap.
6.

9.3 Requisitos ICDE Arquitectura

En esta seccion se describe el conjunto de requisitos que impulsan el disefio de la arquitectura de la aplicacion

ICDE.

9.3.1 Resumen de los objetivos clave

El primer objetivo de la arquitectura ICDE v2.0 es proporcionar una infraestructura para apoyar una interfaz de programacioén

de terceras partes herramientas de cliente para acceder al almacén de datos ICDE. Esto debe ofrecer:

\La flexibilidad en términos de necesidades guracién plataforma y la aplicacién de despliegue / con fi

para herramientas de terceros.
\Un marco que permita que las herramientas de “tap6n” en el medio ambiente y obtener ICDE
informacion inmediata sobre las actividades del usuario ICDE, y proporcionar informacion a los analistas y potencialmente otras

herramientas en el medio ambiente.

1Proporcionar acceso de lectura / escritura comoda y sencilla para el almacén de datos ICDE.

9 Disefios

El segundo objetivo es evolucionar la arquitectura ICDE para que pueda escalar para soportar despliegues de

100-150 usuarios. Esto debe lograrse de una manera que ofrece un bajo coste por el despliegue estacion de trabajo.

El enfoque adoptado debe ser consistente con las necesidades de los interesados, asi como las limitaciones y

requisitos no funcionales que se detallan en las siguientes secciones.

9.3.2 Arquitectura de casos de uso

Dos casos de uso basicos en relacion con el uso de la API se han identi fi cado de las discusiones con un pequefio nimero de

potenciales proveedores de herramientas de terceros. Estos son brevemente describe a continuacion:

|ICDE acceso a datos: Consultas de las herramientas de terceros se centran en las actividades de una
usuario ICDE sola. Una secuencia de consulta comienza por obtener informacion sobre la asignacion de trabajo actual del
usuario, que es basicamente el proyecto (es decir, “analizar P fi zer Inc nancials fi”) que estan trabajando. Consulta de
navegacion a continuacion, profundiza para recuperar datos detallada sobre la actividad del usuario. Los eventos
recuperados se buscan en la secuencia de tiempo que se producen, y la légica de la aplicacién busca los elementos especi
fi cos de datos (por ejemplo, titulos de ventanas, los valores de teclado, nombres de documentos, URLSs) en los registros
recuperados. Estos valores se utilizan para inicializar la actividad, ya sea en la tercera herramienta de andlisis de las

partes, o crear una salida de informacién que aparece en la pantalla del usuario.

\Almacenamiento de datos: Herramientas de terceros tienen que ser capaces de almacenar informacién en el ICDE

almacén de datos, de modo que puedan compartir datos sobre sus actividades. Un mecanismo de noti fi cacion se necesita
para disfrutar de herramientas para comunicarse acerca de la disponibilidad de nuevos datos. Los datos de cada
herramienta es diversa en estructura y contenido. Por lo tanto, debe contener metadatos asociados detectable si ha de ser

util para otras herramientas en el medio ambiente.

9.3.3 Arquitectura requisitos de los interesados

Los requisitos de las perspectivas de los tres principales actores del proyecto se describen en las

siguientes secciones.

9.3.3.1 Los productores herramienta de terceros

1La facilidad de acceso a datos: El almacén de datos ICDE comprende un moderadamente complejo

componente de software. La base de datos relacional tiene aproximadamente 50 mesas, con 134

9.3 Requisitos ICDE Arquitectura 135

algunas interrelaciones complejas. En el entorno v1.0 ICDE, esta complejidad hace que las consultas SQL para
recuperar datos no triviales para escribir y probar. Ademas, como los requisitos funcionales evolucionan con cada
nueva version, cambios en el esquema de base de datos son inevitables, y estos podrian romper las consultas
existentes. Por estas razones, un mecanismo para hacer mas facil para herramientas de terceros para recuperar
datos utiles que se necesita, asi como un enfoque para aislar las herramientas de base de datos cambia.

herramientas de terceros no deben tener que entender el esquema de la base y escribir consultas complejas.

isoporte de plataformas heterogéneas: Varias de las herramientas de terceros estan desarrollando

tecnologias en plataformas que no sean Windows. El software v1.0 ICDE esta estrechamente unida a Windows.
Ademas, la base de datos relacional utilizado solo esta disponible en la plataforma Windows. Por lo tanto, la
version 2.0 del ICDE debe adoptar estrategias para hacer posible que el software no se ejecuta en Windows para

acceder a los datos del ICDE y enchufe en el medio ambiente ICDE.

iInstantaneo evento Noti fi cacion: Las herramientas de terceros estan desarrollando objetivo

para proporcionar informacion oportuna a los analistas (usuarios ICDE) sobre sus actividades. Una consecuencia directa
de esto es que estas herramientas necesitan acceder a los eventos registrados por el sistema ICDE a medida que
ocurren. Por lo tanto, se necesita algiin mecanismo para distribuir los eventos generados por el usuario ICDE ya que son

capturados en la Aimacén de datos.

9.3.3.2 Los programadores ICDE

Desde el punto de vista del programador API ICDE, la API debe:

1Ser facil e intuitivo de aprender.
1Ser facil de comprender y modificar el codigo que utiliza la API.

iProporcionar un modelo de programacién conveniente, concisa para la implementacién comun

casos de uso que atraviesan y acceder a los datos del ICDE.

1Proporcionar una API para escribir herramienta especi fi co de datos y metadatos para los datos del ICDE

almacenar. Esto permitird que multiples herramientas para el intercambio de informacion a través de la plataforma ICDE.

\Proporcionar la capacidad de atravesar los datos del ICDE en navega- inusual o inesperada

caminos cion. El equipo de disefio no se puede predecir con exactitud como se utilizaran los datos en el almacén de datos, por lo

que la API debe ser flexible y no inhibe “creativa” utiliza por los desarrolladores de herramientas.

\Proporcionar “bueno” el rendimiento, idealmente devuelvan conjuntos de resultados en un pequefio (1-5)

numero de segundos en un despliegue de hardware tipico. Esto permitira a los desarrolladores de herramientas para

crear productos con tiempos de respuesta predecibles.

1Ser flexible en términos de opciones de implementacién y distribucién de componentes. Esta voluntad

hacen que sea rentable para establecer instalaciones ICDE para grupos de trabajo pequefios o grandes departamentos.

1Ser accesible a través de una API de Java.

9 Disefios
9.3.3.3 Equipo de Desarrollo del ICDE

Desde la perspectiva del equipo de desarrollo de la ICDE, la arquitectura debe:

\Completamente abstracto de la estructura de base de datos y servidor de aplicaciéon meca-

nismo, aislante herramientas de terceros a partir de los datos de, y cambios en la estructura de almacenamiento de datos ICDE.

1Soporte facilidad de servidor de modi fi cacién con un impacto minimo en el ICDE existente

caédigo de cliente que utiliza la API.
\Apoyar el acceso concurrente a partir de hilos o aplicaciones en ejecucién multiple ICDE

en diferentes procesos y / o en diferentes maquinas.
1Ser facil de documentar y transmitir claramente el uso de los programadores de la API.

\Proporcionar un rendimiento escalable. Como los concurrentes aumenta solicitud de carga en una

el despliegue del ICDE, deberia ser posible escalar el sistema sin cambios en la implementacién de la API. La

escalabilidad se logra mediante la adicion de nuevos recursos de hardware, ya sea a escala vertical u

rheszastsighepspie@ishan fiabilidad se prefieren a los que proporcionan un mejor rendimiento. 136
1signi fi cativamente reducir o idealmente eliminar la capacidad de herramientas de terceros para

causar fallas en el servidor, reduciendo en consecuencia el esfuerzo de apoyo. Esto significa que la API debe asegurar que los
valores de los pardmetros en malas llamadas a la API se encuentran atrapados, y que ninguna llamada a la API puede adquirir todos

los recursos (memoria, CPU) del servidor ICDE, bloqueando de este modo a cabo otras herramientas.

No ser excesivamente caro probar. El equipo de prueba debe ser capaz de crear una

conjunto de pruebas integral que puede automatizar las pruebas de la API ICDE.

de fallas y soporte de aplicaciones mas facil y mas barato. Donde se deben hacer arquitecténicos compensaciones, los

9.3.4 Limitaciones

\El esquema de base de ICDE v1.0 debe ser utilizado.

\El entorno v2.0 ICDE debe ejecutarse en plataformas Windows.

debido a que pasa valores de entrada malas o el bloqueo de recursos o agotamiento. Esto resultard en menos reportes

9.3.5 Requisitos no funcionales

1Actuacion: El entorno ICDE v2.0 debe proporcionar sub cinco segundos
los tiempos de respuesta a consultas de la API que recuperan hasta 1000 filas de datos, medido en una plataforma de

despliegue de hardware “tipico”.
\Confiabilidad: La arquitectura ICDE v2.0 debe ser resistente a los fallos inducidos por

herramientas de terceros. Esto significa que el cliente llama a la API no puede hacer que el servidor ICDE a fallar

Solucién 9.4 ICDE 137

1Sencillez: A medida que los requisitos de API en concreto son vagos (porque pocos terceros
herramientas de existir), simplicidad en el disefio, basado en un flexible 2 arquitectura de fundacion, se ve favorecida por
la complejidad. Esto se debe a que los disefios simples son mas baratas de construir, mas fiable y mas facil de
evolucionar para satisfacer las necesidades concretas que van surgiendo. También asegura que, ya que el equipo de
desarrollo del ICDE es poco probable que posean una prevision perfecta, flexible altamente fl 3y funcionalidad compleja,
pero tal vez innecesaria no se construye hasta casos de uso concretos justifican el esfuerzo. Una amplia gama de
funciones admitidas se produce a costa de la complejidad, y la complejidad inhibe la agilidad disefio y capacidad de

evolucion.

9.3.6 Riesgos

El principal riesgo asociado con el disefio es el siguiente:

Riesgo Estrategia de mitigacion

requisitos concretos no son facilmente Mantenga el disefio inicial de la APl simple y facil
disponibles, fi ya que s6lo unos pocos proveedores de extensible. Cuando mas casos de uso de hormigon son identi fi ed,
herramientas de terceros se cientemente bien informado sobre extender la API cuando sea necesario con caracteristicas para
ICDE para proporcionar insumos utiles acomodar nuevos requisitos

Solucién 9.4 ICDE

Las siguientes secciones describen el disefio de la arquitectura del ICDE.

9.4.1 Patrones de Arquitectura

Los siguientes patrones de arquitectura se utilizan en el disefio:

\Tres niveles: herramientas de terceros son los clientes, la comunicacion con la API de aplica-

tacion en el nivel medio, que consulta el almacén de datos ICDE v2.0.
\Publicacién-suscripcion: La capa media contiene una capacidad de publicacién-suscripcion.

capas: Tanto las capas de cliente y emplear nivel medio interno para estructurar el

disefo.

2 Flexible en términos de fécil evolucionar, ampliar y mejorar, y no incluyendo mecanismos que impiden la facil adopcién de una

estrategia de arquitectura diferente.
3 Flexible en cuanto a la gama de sofisticadas caracteristicas que se ofrecen en la API para recuperar datos GB.

9 Diserios

9.4.2 Descripcion de la arquitectura

La Introduccién a la arquitectura ICDE v2.0 se representa en la Fig. 9.1 . Los clientes utilizan el ICDE

ICDE cliente de APl componente para hacer llamadas a la Servicios APl ICDE componente. Esta es recibido por un servidor de
aplicaciones JEE, y se traduce en llamadas a la APl JDBC pide al almacén de datos. La existencia Recopilacién de datos cliente en
v1.0 ICDE se refactorizado en este disefio para eliminar toda la funcionalidad con dependencias de almacenamiento de datos. Todas
las operaciones de acceso de almacenamiento de datos son reubicadas en un conjunto de componentes que ofrecen JEE de datos de

los servicios de recogida a los clientes alojados.

Evento noti fi cacion se consigue utilizando una infraestructura de publicacién-suscripcién basado en Java

Messaging Service (JMS).

Identificacion del Marketectufe

Tercera herramienta ICDE Partido ICDE usuario
1

i
4
{l Recogida de gl

ICDE cliente de API datos ICDE

\\\‘ Cliente

I notificacién de eventos
S
\ N Va

N
llamada a la API \\ evento de
A \

A] .
\ (N escritura dgl dsuario
\J N 1}

N

Servidor de aplicaciones J2EE

8] z] 8]

Servicios JMS Recopilacién de datos
API ICDE Servicios

JDBC
V

datos del ICDE

z]

Almacenar

Fig. 9.1 arquitectura API 138 ICDE

Fig. 9.2 diagrama de componentes para la arquitectura API ICDE

Solucion 9.4 ICDE

soportar:

139
El uso de JEE como una infraestructura de aplicaciones, ICDE se puede implementar de manera que un almacén de datos puede

\Mdltiples usuarios que interactuan con los componentes de recogida de datos.

1Multiples herramientas de terceros que interactiian con los componentes de la API.

9.4.3 Vistas estructurales

Un diagrama de componentes para el disefio APl se muestra en la Fig. 9.2 . Esta muestra las interfaces y las
dependencias de cada componente, a saber:
\Herramienta de terceros ICDE: Este utiliza el ICDE cliente de API interfaz de componente.

escribir nuevos datos en el almacén de datos, y para suscribirse a eventos que son

Identificacion del y’l Ver

La interfaz API es compatible con los servicios necesarios para la herramienta de terceros para consultar el almacén de datos,

3rd Party ICDE

Herramienta

Q NotificationCallback
Java
e
|
ClientAPI

Notificar a

ICDE cliente de API

Suscribir
CallAPI NotificationCallback
I
QueryAPI writeapi gl
delegar’ Servicios API ICDE delegar’ Suscribir gl
{l {l o Publicar JMS
Consulta Escribir
"delegar” "delegar"
JDBC

datos del ICDE a

Almacenar

9 Disefios

publicado por el JMS. Se debe proporcionar una interfaz de devolucion de llamada que el ICDE cliente de API usa para
entregar eventos publicados.

|ICDE API de cliente: Esto implementa la parte cliente de la API. Se necesita peticiones
de herramientas de terceros, y los traduce a EJB las llamadas a los componentes del servidor API que, o bien leer o
escribir datos desde / hasta el aimacén de datos. También empaqueta los resultados del EJB y devuelve estos a la
herramienta de terceros. Este componente encapsula todo el conocimiento del uso de JEE, el aislamiento de las
herramientas de terceros de la complejidad adicional (por ejemplo, localizar, excepciones, grandes conjuntos de datos)
de interactuar con un servidor de aplicaciones. Ademas, cuando una herramienta de terceros solicita una suscripcion
de eventos, la ICDE cliente de API emite la solicitud de suscripcién a las JMS. Por lo tanto, se convierte en el cliente
JMS que recibe eventos publicados, y que pasa a éstos en el uso de una devolucion de llamada con el apoyo de las

herramientas de terceros.

1Servicios API ICDE: El componente de servicios del APl comprende sesién sin estado

EJB para acceder a la ICDE almacén de datos usando JDBC. los Escribir componente también tiene un valor de
parametro tema de la solicitud del cliente y publica datos sobre el evento sobre el tema asignado un nombre mediante
el JMS.

|ICDE almacén de datos: Esta es la base de datos del ICDE v2.0.

JMS: Este es un servicio de mensajeria de Java estandar JEE, y es compatible con una amplia gama de

temas utilizados para el evento de la noti fi cacion utilizando las interfaces de JMS publicacién-suscripcion.

Un diagrama de componentes para la funcionalidad de recopilacién de datos se representa en la Fig. 9.3 .

Las responsabilidades de los componentes son:

/

ICDE cliente de API

CD de datos de la linterna Vista

g] g]

Recopilacion de datos

: CollectionAPI
Servicios de recopilacion de datos
«delegado»

Suscribir de cliente ICDE

NotificationCallback

PublishEvent

Suscribir
Publicar
JMS

]Ndelegar“

publicar

EventPublisher

g]

—

g]

WriteEvent

JDBC

f «Delegado»

%

8]

datos del ICDE

Almacenar

Fig. 9.3 componentes de recogida de datos 140

Solucién 9.4 ICDE 141

\Recogida de datos ICDE cliente: Esto es parte de la aplicacion cliente ICDE
ambiente. Que recibe datos de eventos de la aplicacion cliente, y llama al método necesario en el CollectionAPI
almacenar un evento. Se encapsula todo el conocimiento de la interaccién con el servidor de
aplicaciones JEE en la aplicacion cliente ICDE.

1Servicios de datos Coleccion: Esto comprende los EJB de sesién sin estado que escriben el

datos de eventos que se les pasa como parametros a la ICDE almacén de datos. Algunos tipos de eventos también
causan un evento noti fi cacién que se pasa a la EventPublisher.

\EventPublisher: Esta publica datos de sucesos en las JMS utilizando un conjunto de precon fi
gurada temas para los eventos que deben ser publicados (no se publican todos los eventos generados por el usuario,
por ejemplo, mover el ratén). Estos eventos se entregan a cualquier ICDE cliente de APl componentes que han

suscrito el tipo de evento.

Un diagrama de despliegue para la arquitectura ICDE se muestra en la Fig. 9.4 . Muestra

como los diversos componentes se asignan a los nodos. Sélo un usuario ICDE y una

dd Deployment View J

ICDE User

ICDE Tool (from Compynent Model)

J Component ICDE ‘ar PC
Component éﬂb Model::
ST:::I;::?fﬂ ICDE AR Component Model:
ACDE Data
Collection Client

7%

R
Fi Jﬂs RMI
r 4 x ¥

¢ i v

gl gJ
Comp it Comp t Component
Model:iCDE > Model=JMS Pt Model:Data
APl Services Collection
\ Services
. r

N Vi
N 7

rd

JDBC

JDBC %
\

SOL Server J

Fig. 9.4 diagrama de despliegue ICDE

9 Diserios

herramienta Unica tercero se muestran, pero el servidor JEE puede soportar multiples clientes de cualquier tipo. Problemas a

la nota son:

1\Aunque se muestran las herramientas de terceros se ejecuta en un nodo diferente a la
estacion de trabajo de usuario ICDE, esto no es necesariamente el caso. Herramientas o componentes especi fi cos de
herramientas, pueden ser desplegados en la estacién de trabajo del usuario. Esta es una decision fi guracion tooldependent
estafa.

\Hay uno ICDE cliente de APl componente para cada tercer ejemplo herramienta de fiesta.

Este componente esta construido como un JAR fi | que se incluye en la construccion de herramientas.

9.4.4 Comportamiento Vistas

Un diagrama de secuencia para una llamada de evento API de consulta se muestra en la Fig. 9.5 . La API proporciona una
llamada explicita “Inicializar” qué herramientas deben invocar. Esto hace que el ICDE cliente de API establecer referencias a

los EJB beans de sesion sin que utilizan el servicio de directorio JEE (JNDI).

Una vez que se inicializa el nivel de API, la herramienta de terceros llama a una de las API de consulta disponibles para
recuperar datos de eventos (tal vez una lista de teclas pulsadas durante el uso de la aplicacién de procesador de textos en
un determinado fi le). Esta peticion se pasa a una instancia EJB que implementa la consulta, y se emite la llamada JDBC

para obtener los eventos que satisfacen la consulta.

API sd diagrama de secuencia de llamadas /
Componente Modelo :: Componente Modelo| Componente Modelo| Componentes del
tercera ICDE :: API ICDE :: API ICDE Modelo de Datos :: ICDE
Herramienta de fiesta Cliente JNDI Servicios Almacenar
Inicializar
Buscar
llamada a la AP de consultas.

bucle Mas datos /

[Mientras] [MoreData més datos

para recuperar] conjuntoResultados: = EJB llamada a la API

JDBC de consultas

i
H
i
H
i
1
H
i
H
i
H
i
1
i
1
H
i
H
i
i
H

Fig. 9.5 Consulta de la API de llamada diagrama de secuencia 142

Solucion 9.4 ICDE 143

Todas las API ICDE que devuelven colecciones de eventos potencialmente pueden recuperar grandes conjuntos de
resultados de la base de datos. Esto crea el potencial de agotamiento de los recursos en el servidor JEE, especialmente si

multiples consultas devuelven colecciones de eventos grandes al mismo tiempo.

Para aliviar este rendimiento y la fiabilidad potencial problema, el disefio emplea:

beans de sesion sin que liberan los recursos utilizados por una consulta al final de

cada llamada

\Una variacion del iterador pagina por pagina 4 para limitar la cantidad de datos cada uno

llamar a los recupera bean de sesion

los ICDE cliente de API pasa los valores de los parametros necesarios para la construccién de la consulta JDBC, junto con
una Indice de comienzo y tamafio de pagina valor. El valor de tamafio de pagina dice el bean de sesién el niimero maximo de
objetos s para volver a partir de una unica invocacion consulta, y para la llamada consulta inicial, el indice de inicio se establece
en NULL.

La llamada JDBC emitido por el bean de sesi6n explota caracteristicas de SQL para devolver sélo los primeros tamafio de pagina filas

que satisfacen los criterios de consulta. Por ejemplo, en SQL Server, el operador TOP puede ser utilizado de la siguiente manera:

TOP SELECT (PAGESIZE) * DE DONDE KEYBOARDEVENTS (EVENTID> 0 Y EL USUARIO = “Jan” Y
APP_ID = “Firefox”)

El conjunto de resultados recuperado por la consulta se devuelve desde el bean de sesion al cliente. Si el conjunto de
resultados tiene tamafio de pagina elementos, el ICDE cliente de API llama al método de consulta EJB nuevo, usando la tecla del
ultimo elemento del conjunto de resultados devueltos como el
indice de comienzo parametro. Esto hace que el bean de sesién para volver a emitir la misma llamada JDBC, excepto con la modi fi cada indice
de comienzo valor utilizado. Esto recupera la siguiente tamafio de pagina
filas (maximo) que responden a la consulta.

los ICDE cliente de API contintia bucle hasta que todas las filas que satisfacen la solicitud se recuperan. A continuacion,
devuelve la recopilacién de eventos agregada a su llamador (la herramienta de terceros). Por lo tanto este esquema oculta la

complejidad de recuperar potencialmente grandes conjuntos de resultados desde el programador de la aplicacién ICDE.

Un diagrama de secuencia que representa el comportamiento de una escribir llamada API se muestra en la Fig. 9.6 . La
llamada a la API de escritura contiene valores de parametros que permiten la ICDE cliente de API para especificar si un evento

debe ser publicado después de una escritura con éxito, y si es asi, en qué tema del evento debe ser publicada.

Un diagrama de secuencia para almacenar un evento generado por el usuario ICDE se muestra en la Fig. 9.7 . Un tipo de
evento puede requerir multiples sentencias JDBC INSERT se ejecute para almacenar los datos del evento; por lo tanto los
servicios de transacciones de contenedores deben ser utilizados. Después de los datos del evento se almacena con éxito en la

base de datos, si es un publicable

4 http://java.sun.com/developer/technicalArticles/JEE/JEEpatterns/

s El valor de “Tamafio de pagina” puede ser ajustado para cada tipo de evento para intentar maximizar el rendimiento del servidor y la red.

Un valor tipico es de 1.000.

9 Disefios

Escribe sd llamada de APl /

Componente Modelo : Componente Modeld Componentes del

Componente Componente
tercera ICDE :: APIICDE Modelo de Datos :: ICDE

Modelo :: Escribir Modelo :: JMS

Herramienta de fiesta Cliente Almacenar
WriteData
WriteData
publishEvent JGBC
inserto

—]
———

Fé08-§ slingEama feRequenciaP ATayAAREABRSETEYB es una solucion de compromiso que es razonable para esta aplicacion. 144

sd llamada a la API Collection /

Cliente de los Componente Componentes del
Componente
componentes del Modelo :: Modelo :: Modelo de Datos :: ICDE
Modelo :: JMS
Recoleccion de Datos ICDE Recoleccion de Datos Almacenar
T
Servicios
1
storeEvent i

oo LG LA R

1
beginTransaction H

d bl , [" h)

psto no es despgble, pero no va a causar gefios problemas para lgggplicaciones cliente. Teniendo gn cuenta la probable frecuengia de tales
>

Insertar g u

1
CommitTransaction !

alt PublishEvent)

[Si se ha configurado evento quefsera publicado]

publicar (eventTopic)

>
>

[
[
-]

i [
an lugar a los datos que se insertan en el almacén de datos, pero con ningiin mensaje JMS asociado estan enviando. En el contexto del ICDE,

Fig. 9.7 Diagrama de secuencia para el almacenamiento de los eventos generados por el usuario

tipo de evento, los datos de evento se publica usando el JMS. Los JMS publican operacion esta fuera del limite de
transaccion para evitar los gastos generales de una confirmacién en dos fases. s

s Hay una compensacion actuacion aqui. Como las JMS publican operacion esta fuera del limite de transaccion, no puede haber fracasos que

9.5 Andlisis de Arquitectura 145

9.4.5 Cuestiones de implementacion

La plataforma Java 2 Enterprise Edition ha sido seleccionado para implementar el sistema ICDE v2.0. Java es una
plataforma neutral, satisfaciendo el requisito para la heterogeneidad plataforma. También hay versiones calidad de
fuente abierta disponibles para el despliegue de bajo costo, asi como las alternativas comerciales de alto rendimiento
que pueden ser preferidos por algunos clientes de los sitios mas grandes de mision critica. Ademas, JEE tiene
soporte inherente para sistemas basados en componentes distribuidos, publicacion-suscripcion caso noti fi cacion y

acceso a la base de datos.

cuestiones de implementacién adicionales a considerar son:

ithreading: los ICDE cliente de APl componente debe ser seguro para subprocesos. Esta voluntad

permitir a los desarrolladores de herramientas para desovar de forma segura multiples hebras de la aplicacion y emitir lamadas a la

API concurrentes.
1Seguridad: herramientas ICDE se autentican con un nombre de usuario y contrasefia. La APl SUP-

puertos de una iniciar sesién funcién, que valida la combinacién de usuario / contrasefia contra las credenciales en el
almacén de datos ICDE, y permite el acceso a un conjunto fi cado de datos de usuario ICDE. Este es el mismo

mecanismo utilizado en v1.0.
\EJB: los Servicios de recopilacion de datos beans de sesion directos de emisién de llamadas JDBC

acceder a la base de datos. Esto es debido a que el JDBC ya las llamadas existe en la v1.0 ICDE de dos niveles, y por lo

tanto el uso de estos directamente en el EJB hace que el ejercicio de refactorizaciéon menos costoso.

9.5 Analisis de Arquitectura

Las siguientes secciones proporcionan un analisis de la arquitectura ICDE en términos de escenarios y riesgos.

Analisis 9.5.1 Escenario

Los siguientes escenarios se consideran:

1Modificar la organizacion del ICDE de datos de la tienda: Los cambios en la organizacién de base de datos
requerird cambios de cédigo en los componentes de servidor EJB. Los cambios estructurales que no afiaden nuevos
atributos de datos se encuentran totalmente dentro de estos componentes y no se propagan a la APl ICDE. Modi fi
caciones que afiaden nuevos elementos de datos se requieren cambios en la interfaz de componentes del lado del
servidor, y esto sera reflejado en el API. versiones interfaz y desaprobacion método se puede utilizar para controlar

la forma en que estos cambios afectan a la interfaz de componentes de cliente.

\Mueva la arquitectura ICDE a otro proveedor JEE: Mientras el ICDE

aplicacion esta codificado para los estandares JEE, y no utiliza ninguna extension de vendedores

9 Diserios

clases, experiencia en la industria muestra que las aplicaciones JEE son portatiles de un servidor de aplicaciones a otro
con pequenas cantidades de esfuerzo (por ejemplo, menos de una semana). di fi cultades se encuentran por lo general
en las areas de aplicacion de servidor especi fi cos de opciones del descriptor de implementacion con fi guracion del
producto y.

1Escalar un despliegue de 150 usuarios: Esto requerira una cuidadosa planificacion de la capacidad 7
basado en la especi fi cacion de los equipos y las redes disponibles. El nivel de servidor JEE se puede replicar y
agrupado con facilidad debido a la utilizacion de beans de sesion sin estado. Es probable que se necesite una
mas potente servidor de base de datos para 150 usuarios. También debe ser posible para dividir el almacén de

datos ICDE a través de dos bases de datos fisicos.

9.5.2 Riesgos

Los siguientes riesgos deberan dirigirse medida que el proyecto avanza ICDE.

Riesgo Estrategia de mitigacion

La planificacién de capacidad para una Vamos a llevar a cabo las pruebas de rendimiento y carga una vez que el basico
sitio grande sera entorno de servidor de aplicaciones esta en su lugar. Esto proporcionara cifras concretas
complejo y costoso rendimiento fi que pueden guiar la planificaciéon de capacidad para los sitios ICDE

La API no cumplira La AP se dara a conocer tan pronto como una version inicial se haya completado para
las nuevas necesidades proveedores de herramientas para ganar experiencia. Esto nos permitira obtener retroalimentacion
proveedor herramienta de terceros temprana y adaptar / extendemos el disefio si / cuando sea necesario

9.6 Resumen

ICDE, basado en el nimero de usuarios simultaneos, las velocidades de red y hardware disponible. 146

En este capitulo se ha descrito y documentado algunas de las decisiones de disefio tomadas en la aplicacion
ICDE. El objetivo ha sido el de transmitir el pensamiento y analisis que es necesario disefiar una arquitectura

de este tipo, y demostrar el nivel de documentacién de disefio que debe bastar en muchos proyectos.

Tenga en cuenta que algunos de los detalles mas fina del disefio se pasan por alto necesariamente mas debido a las
limitaciones de espacio de este foro. Pero el ejemplo ICDE es representativo de una aplicacion de mediana complejidad,

y por lo tanto ofrece un excelente ejemplo de la obra de un arquitecto de software.

7 La planificacion de capacidad implica fi gurar cuénto hardware y el software que se necesita para apoyar una instalacién especi fi co

Capitulo 10
Middleware Estudio de caso: Medici

Adam Wynne

10.1 Antecedentes Medici

En muchos ambitos de aplicacién en la ciencia y la ingenieria, los datos producidos por los sensores, instrumentos y redes es
naturalmente procesados por aplicaciones de software estructurado como una tuberia. 1 Tuberias comprenden una secuencia de
componentes de software que procesan progresivamente unidades discretas de datos para producir un resultado deseado. Por
ejemplo, en un rastreador web que se extrae la semantica del texto en los sitios Web, la primera etapa en la tuberia podria ser
la eliminacion de todas las etiquetas HTML para dejar sélo el texto sin formato del documento. El segundo paso puede analizar
sintacticamente el texto prima para descomponerlo en sus partes constituyentes gramaticales, tales como nombres, verbos, y
asi sucesivamente. Los pasos posteriores pueden buscar nombres de personas o lugares, eventos interesantes o tiempos para

que los documentos se pueden secuenciar en una linea de tiempo. El uso de tuberias de Unix, esto podria ser algo como esto: 2

curl47 http://sites.google.com/site/iangortonhome/ | \
ToText |\ Analizar | \ Gente \\
-O lugares out.txt

Cada uno de estos pasos se puede escribir como un programa especializado que trabaja de manera aislada con
otros pasos en la tuberia.

En muchas aplicaciones, software simples tuberias lineales son su fi ciente. Sin embargo, las aplicaciones mas
complejas requieren topologias que contienen horquillas y se une a, la creacion de tuberias que comprenden ramas
donde la ejecucion en paralelo es deseable. También es cada vez mas comun para las tuberias de proceso muy
grandes flujos de datos o archivos de gran volumen que imponen limitaciones de rendimiento de extremo a extremo.
Ademas, los procesos en una tuberia pueden tener requisitos especi fi ¢ de ejecucion y por lo tanto deben ser

distribuidos de servicios a través de una infraestructura de gestion informatico heterogéneo y datos.

Desde una perspectiva de la ingenieria de software, estas tuberias mas complejos se hacen dificil de implementar.

Mientras que las tuberias lineales simples pueden ser construidos usando un minimo

1 http://en.wikipedia.org/wiki/Pipeline_%28software %29
2 http://en.wikipedia.org/wiki’/CURL

|. Gorton, Arquitectura de Software esencial, 147
DOI 10.1007 / 978-3-642-19176-3_10, # Springer-Verlag Berlin Heidelberg 2011

10 Middleware Estudio de caso: Medici

infraestructura, tales como lenguajes de script, topologias complejas y, procesamiento de datos de gran volumen grande
requiere abstracciones adecuadas, infraestructuras de gestion de tiempo y herramientas de desarrollo para la construccion

de tuberias con las cualidades deseadas de servicio y flexibilidad de evolucionar para manejar los nuevos requisitos.

Lo anterior resume las razones que hemos creado theMeDICi Integracién Marco (MIF) que esta disefiado para la
creacion de alto rendimiento, escalable y modi fi tuberias de software capaz. MIF explota una friccion baja, robusta
plataforma de middleware de codigo abierto y se extiende con interfaces de programacion de componentes y basadas en
los servicios que hacen que la implementacion de tuberias complejas sencilla. El tiempo de ejecucion MIF maneja
automaticamente colas entre elementos de conduccién con el fin de manejar la peticion rafagas y automaticamente
ejecuta varias instancias de elementos de conduccién para aumentar el rendimiento de tuberias. elementos de
conduccién distribuidos estan soportadas mediante una serie de protocolos de comunicaciones gurable con fi, y las
interfaces de MIF proporcionan mecanismos fi cientes para mover datos directamente entre dos elementos de

conduccién distribuidos.

El resto de este capitulo se describen las caracteristicas del MIF, se muestran ejemplos de las tuberias que hemos

construido, y da instrucciones sobre como descargar la tecnologia.

10.2 Medici Hello World

%ue se pasan entre cada paso. 148
omenzaremos con una descripcion del ejemplo saludos universales clasico con MIF. los Hola Mundo ejemplo

de esta seccion demuestra una sencilla tuberia de MIF en dos etapas. Para entender este ejemplo, a
continuacion, cuatro sencillos de fi niciones de los conceptos MIF que se utilizan en el cédigo.

1. Tuberia. aplicacién AMIF consiste en una serie de médulos de procesamiento contenida
en una canalizacién de procesamiento. los MifPipeline objeto se utiliza para controlar el estado de la tuberia, asi como
para agregar y registrar todos los objetos contenidos en la tuberia.

2. cédigo de implementacion. Este es el codigo (por ejemplo, una clase Java o programa C) que
realiza el procesamiento real a un paso dado en la tuberia.

3. Médulo. Amodule envuelve la funcionalidad de algun cédigo de aplicacién con una
interfaz que encapsula la aplicacién. Un médulo de instancia puede ser incluido como un paso en
una tuberia MIF.

4. Punto final. Se conecta un médulo con otros médulos en la tuberia mediante el uso de una de

varios protocolos de comunicacién estandar, tales como JMS, SOAP, y muchos otros.

En el MIF Hola Mundo ejemplo, cuando se inicia la tuberia, se pide al usuario que introduzca un
nombre. El nombre se envia a la helloNameModule que llama al
helloNameProcessor aplicacion para afadir “Hola” al frente del nombre y pasa toda la cadena a la helloHalModule.
Esto exige la helloHalProcessor afiadir “; qué estas haciendo” al final de la cadena, que se devuelve al
usuario a través de la consola.

En la Fig. 10.1, Los rectangulos azules son los médulos y los cuadrados negros son puntos finales.

El camino de datos se representa mediante lineas azules de puntos y rayas, que se anota con las cadenas de datos

10.2 Medici Hello World 149

|
|
I
|
:
| 2. "Dave’
|
I
I
|
I
I

{vm
—

(stdio/fstdin)
'___ -

S

Fig. 10.1 MIF “Hola Mundo” ejemplo

Los siguientes fragmentos de cédigo demuestran las partes pertinentes del Codigo. El cddigo se presenta de una
manera “de arriba abajo”, donde se presenta el codigo de nivel superior primero y avanzar progresivamente hacia abajo
para los detalles de implementacion.

En primer lugar, tenemos que crear un objeto MifPipeline que se necesita para iniciar y detener la canalizacion de

procesamiento. Este objeto también se utiliza para crear y registrar todos los objetos que se ejecutan dentro de la tuberia.

MifPipeline tuberia = new MifPipeline ();

A continuacion, afiadimos el HelloNameModule la cual antepone “Hola” al nombre introducido y envia la nueva
cadena a la siguiente etapa en la tuberia. El primer argumento es una cadena que representa el nombre completo
de la clase de la clase de implementacién. Los argumentos segundo y tercero son los extremos de entrada y salida
que permiten a nuestra
HelloNameModule para recibir y enviar datos.

pipeline.addMifModule (HelloNameProcessor.class.getName () "? stdio: // stdin promptMessage =

Introducir nombre:", "vm: //hal.queue");

Por ultimo, se afiade el HelloHalModule (y sus puntos finales) a la tuberia. Esto exige la HelloHalProcessor
afiadir otro fragmento de frase en el extremo de la cuerda y lo imprime a la consola del usuario.

pipeline.addMifModule (HelloHalProcessor.class.getName () "vm: //hal.queue”, "stdio: // stdout");

Los médulos en el ejemplo anterior se comunican usando criterios de valoracion, que se pasan a un
modulo como argumentos. Los puntos finales son una abstraccion que permiten los protocolos de
comunicacion entre los moédulos para ser fl ed fi exible especifico. Esto encapsula la légica de implementacion
del modulo de tener que preocuparse de los protocolos de comunicaciones utilizados para el intercambio de

mensajes con otra

150 10 Middleware Estudio de caso: Medici

maodulos. Esto significa por ejemplo que un médulo de fi con gurado con un punto final JMS se puede cambiar para

enviar datos a través de UDP sin ningin cambio en el cédigo de implementacién del médulo.

En este ejemplo, la HelloNameModule ' s punto final de entrada, stdio: // stdin, lee la entrada del usuario desde la
consola. Es decir, stdio es un protocolo especial que lee desde la consola y envia los datos de la consola al médulo.
El punto final de salida, VM: // hal. cola, es un punto final proporcionado-MIF implementada en la JVM,
proporcionando una e fi ciente, en cola mecanismo de comunicacién entre los médulos. Tenga en cuenta que los
modulos sean capaces de comunicarse, el punto final de salida del remitente debe ser el mismo que el punto final

de entrada del receptor.

Después de que los moédulos de tuberias se con fi gura en la tuberia, se comienza la aplicacién llamando
al método MifPipeline.start (). Esto inicia el MIF con el gasoducto con fi guracion e inicia los médulos para
escuchar los datos.

pipeline.start ();

caédigo de implementacién médulo es proporcionado por el disefiador de tuberias para llevar a cabo algin tipo de
procesamiento de los datos fl que fluye a través de una tuberia. Este cédigo se envuelve por un médulo para formar
la unidad de cédigo mas pequefio que puede ser colocado en una tuberia. El cédigo de aplicacion puede ser escrita
en Java o cualquier otro idioma. Al utilizar Java, el codigo se integra directamente en la tuberia (se trata como un
ejecutable externo para otros idiomas, como se explica mas adelante). Por ahora, nos concentraremos en la

creacion de clases de implementacion de Java.

clases de implementacién necesitan para implementar el MifProcessor interfaz, que proporciona una escucha

método con la siguiente firma:

Serializable Publico (entrada Serializable);

Este método se llama cuando llega un mensaje para el médulo que se envuelve la clase de
implementacion. El argumento de entrada son los datos recibidos desde el modulo anterior en la tuberia, y
el valor de retorno es el mensaje que se envia al siguiente moédulo de la tuberia.

Ahora vamos a echar un vistazo a la implementacién de uno de los médulos de este ejemplo. los HelloNameProcess
implementa la funcionalidad para la
HelloNameModule. Cuando este médulo recibe datos, su escucha() método se llama, y los datos de entrada
se pasa como argumento método. El método procesa los datos de alguna manera y devuelve el resultado
que se pasa a la siguiente mddulo en la tuberia. En este caso, el escucha método simplemente agrega la
cadena “Hola” al frente de la cadena recibida y devuelve la nueva cadena.

HelloNameProcessor clase publica implementa MifProcessor {
Serializable Publico (nombre Serializable) {
String cadena = "Hola" + nombre;
System.out.println ("HelloNameProcessor:" + str); str regresar; }}

10.3 Médulos de Aplicacion 151

10.3 Mddulos de Aplicacion

Un MIF Médulo representa la unidad basica de trabajo en una tuberia MIF. Cada médulo tiene una clase de
implementacion, conocido como un procesador de MIF. La clase de procesador esta especi fi ed como el primer

argumento de la addMifModule método de fabrica cuando se crea un médulo:

MifModule mi_médulo =
pipeline.addMifModule (MyMifProcessor.class, "vm: //in.endpoint"
,"Vm: //out.endpoint");

Cada clase debe implementar un procesador Procesador interfaz y un asociado
escucha método que acepta un objeto que representa la carga util de datos recibida en el punto final de entrada del
modulo. los escucha método también devuelve un objeto que representa la carga Util que se envia a través de punto

final de salida del médulo.

MyMifProcessor clase publica implementa MifObjectProcessor {
Objeto Publico (entrada Object) {/ realizar algun tipo de
procesamiento en la entrada

salida de retorno; }}

Hay unos pocos tipos diferentes de interfaces de procesador en funcion de si desea imponer el uso de objetos
serializados y si el procesador necesita para manejar de forma explicita propiedades de los mensajes que se envian
como un encabezado en todos los mensajes que pasan a través de una tuberia MIF. Estas interfaces se encuentran

en el gov.pnnl paquete. mif.user y se explica a continuacion:

10.3.1 MifProcessor

los MifProcessor interfaz se utiliza para implementar un médulo si desea exigir que los tipos enviados y
recibidos por el médulo son Serializable.

MifProcessor interfaz publica {
Serializable Publico (entrada Serializable); }

10.3.2 MifObjectProcessor

Este es el tipo mas general de la interfaz, lo que permite cualquier tipo de objeto a ser recibida por el método de
escuchar. A menudo es deseable para comprobar el tipo de objeto recibido (con la en vez de operador) para asegurarse

de que coincida con el tipo derivado correcta.

MifObjectProcessor interfaz publica {
Objeto Publico (entrada de objetos); }

152 10 Middleware Estudio de caso: Medici

10.3.3 MifMessageProcessor

Este tipo de procesador se utiliza cuando es necesario tener acceso a las propiedades de mensaje asociados
con un mensaje dado. Normalmente, un procesador recibe sélo la carga util del mensaje, pero esta interfaz

permite que el moédulo para recibir tanto.

MifMessageProcessor interfaz publica {
Objeto Publico (entrada de objetos,
MessageProperties messageProperties);

Propiedades del médulo 10.3.4

Puesto que la clase de procesador para un determinado MifModule se crea una instancia por el contenedor MIF
subyacente, no es posible crear de forma manual y con fi gura una clase de procesador antes de afiadir en una tuberia.
Por lo tanto, las propiedades del médulo son proporcionados por la API para que el usuario pueda pasar propiedades de
procesador a MIF. MIF entonces poblar las propiedades en el procesador cuando se crea una instancia. Las propiedades
se establecen en el procesador de manera similar a las propiedades JavaBean, lo que significa que la clase tiene un

constructor sin argumentos y métodos setter y getter estandar.

Por ejemplo, la siguiente es una MifProcessor con los emisores de estilo JavaBean:
public class de Apple implementa MifObjectProcessor {

String color privada; tipo String
privado;

Objeto Publico (entrada Object) {
/I hacer cosas salida de
retorno; }

/* La manzana de color a * / setColor publica (String
color) {
this.color = color; }

/ * El tipo / variedad de manzana * / setType publica
(tipo String) {
this.type = Tipo; }}

Las propiedades de este médulo a continuacion, se pueden ajustar con el cédigo siguiente:

MifModule appleModule = pipeline.addMifModule (Apple.class "vm: //in.endpoint", "vm: //out.endpoint");

appleModule.setProperty ("color", "rojo"); appleModule.setProperty ("tipo", "Honeycrisp");

10.4 Criterios de valoracion y Transportes 153

10.4 Criterios de valoracion y Transportes

En MIF, la comunicacién entre los médulos esté habilitado de transportes, que son responsables de la abstraccion
de la red de comunicaciones y la transmision de mensajes a través de una tuberia. Cada protocolo de
comunicacién que es soportado por MIF (por ejemplo, JMS o HTTP) se implementa mediante un transporte
separado. La mayor parte de la complejidad de un transporte esta oculto al usuario por el uso de criterios de
valoracion con fi gurable, que permiten que un médulo sea ajeno a los protocolos de comunicacion se esta
utilizando. Sin embargo, a veces es necesario o deseable para con fi gura los atributos de un transporte. En tales

circunstancias, hay APIs que permiten al programador para crear de forma explicita y con fi gura un conector.

Cada transporte tiene su propio tipo de punto final, que se utiliza para conectar los médulos entre si de manera
que puedan intercambiar mensajes. Cada mddulo tiene un conjunto de criterios de valoracion entrantes y salientes
que se pueden ajustar mediante la API de MIF. Para conectar un médulo a otro, el punto final de salida de un

madulo en la tuberia debe coincidir con el punto final de entrada de otro.

Las estaciones se con fi gura como cadenas que representan un URI. Es posible establecer las propiedades en un
punto final para con un comportamiento especial fi gura o anular las propiedades predeterminadas de un conector. Por
ejemplo, es posible con fi gurewhether un punto final es sincrona o asincrona estableciendo la propiedad “sincrénica”,
como explicaremos en breve.

Un punto final URI tiene el formato:

esquema: // host: puerto / ruta / a / servicio propiedad1 = valor1 y valor2 = propiedad2

Donde “régimen” es el tipo particular de transporte utilizado (http, JMS, vm, etc.); “Host: puerto” es un nombre de
host y el puerto (que puede o no puede estar presente debido a la naturaleza de un transporte dado), y “camino” es el
camino que distingue el punto final de los demas. Propiedades se definen después de un “?” Al final de un camino y

se delinean por pares de valores clave.

los puntos finales de cada transporte son ya sea sincrénica o asincrénica por defecto. Este defecto
puede cambiarse estableciendo la propiedad “sincrénica” en un punto final. Por ejemplo, extremos
HTTP son sincronos por defecto. El siguiente de fi ne un extremo de entrada HTTP que crea un servicio
asincrono, escuchando en la direccién localhost: 9090 / HelloService:

http: // localhost: 9090 / HelloService sincrono = false

10.4.1 Conectores

Conectores se utilizan para con fi gura los atributos de un transporte particular para la tuberia o componente
de corriente. Por ejemplo, el conector JMS permite al usuario con fi gura la ubicacién del servidor JMS. La

mayoria de las veces, el usuario no necesita

10 Middleware Estudio de caso: Medici

de forma explicita con fi gurar un transporte ya se creara automaticamente un conector predeterminado para cada

tipo de punto final que se produce en la tuberia. Sin embargo, es necesario crear y conectores con fi gurar cuando:

1. Es necesario optimizar el rendimiento de un transporte. Esto es comun, por ejemplo, al usar los
puntos finales TCP.

2. Sin conector predeterminado puede ser creado. Por ejemplo, el uso de JMS requiere un conector explicita,
ya que es necesario especificar la ubicacion del servidor JMS.

Si so6lo hay un conector para un protocolo dado en una tuberia MIF, todos los puntos finales asociados con el
transporte que se utilizan este conector. Sin embargo, pueden existir multiples conectores para el mismo
transporte en una sola tuberia. En este caso, es necesario especificar el nombre del conector como una propiedad
en el punto final de manera que MIF sabe qué conector a utilizar para ese parametro en particular.
en Slg%crr%réir%?nlgf gli %fg‘]?ﬂég?e?}ggr%%ﬁt% %%ncgt%o muestra un JMS conector definido con el nombre JMS-localhost. A
continuacion, un médulo es con fi gurado con un punto final de entrada, que especi fi ca que el conector, utilizando el
“conector” propiedad de punto final. Esto permite que los puntos finales de una tuberia MIF para conectarse a varios

servidores JMS:

MifConnector conn = pipeline.addMifJmsConnector ("tcp: // localhost: 61616",
JmsProvider. ACTIVEMQ); conn.setName ("JMS-localhost");

MifModule fullNameModule = pipeline.addMifModule (NameArrayProcessor.class,

"? JMS: // tema: NameTopic conector JMS-= localhost", "stdio: // stdout");

Las propiedades se pueden configurar en un conector llamando al setProperty método en un MifConnector,
p.ej:
MifConnector stdioConn =

queiseipede\dftablessape(EudpolV ymBTiNG) estdib€esinardhameagincrona. Si esta propiedad se establece
"messageDelayTime", 1000);

10.4.2 Transportes soportados

La APl FOMIN apoya una serie de transportes. A continuacion se muestra una descripcion de éstos, junto con
una descripcion de las propiedades Utiles que se pueden fijar en los puntos finales y / o conectores de este tipo.
Todos los puntos finales apoyan la conector 4

ConnectorName propiedad como se ha descrito anteriormente.

10.4.2.1 VM

los VM punto final se utiliza para la comunicaciéon entre componentes dentro de la JVM. La propiedad clave

10.4 Criterios de valoracion y Transportes 155

pasado de forma sincrénica de un médulo a otro de manera que un receptor lento podria ralentizar el
remitente. Por otro lado, si esta propiedad se establece en false, el emisor envia tan rapido como se pueda,
sin esperar a que el receptor para completar cada solicitud. Internamente, el contenedor MIF gestiona una

cola de mensajes asociados con el conector.

Por ejemplo, aqui es un ejemplo de una asincrona VM punto final

"Vm: // myQueue sincrono = false"

10.4.2.2 STDIO

los STDIO el transporte se utiliza para leer estandar en y escribir a la salida estandar.

Es util para probar y depurar. Un ejemplo de STDIO criterios de valoracién es la siguiente:

MifModule appleModule = pipeline.addMifModule (
TextProc.class, "vm: //in.endpoint",
"vm: //out.endpoint");

Servicio de mensajeria de Java 10.4.2.3

El transporte JMS conecta los puntos finales del FOMIN para destinos JMS (temas y colas). Es posible
utilizar cualquier proveedor de servidor JMS con MIF. Por conveniencia, la instalacion MIF incluye
ActiveMQ como el proveedor JMS preferido (y el proveedor de MIF se prueba con).

Por defecto, JMS puntos finales especificar las colas. En ActiveMQ, colas se deben crear
administrativamente. Por ejemplo, los siguientes URI especi fi ca que un extremo se conecta a la cola llamada

“aQueue”

JMS: // aQueue

Para especificar un tema, anteponer el nombre del destino con la cadena “tema:”. Por ejemplo, el
siguiente URI especi fi ca un punto final conectado al tema denominado “bTopic”

JMS: // tema: bTopic

Para crear un conector ActiveMQ JMS, es necesario especificar el URI del servidor, asi como el proveedor de
JMS. Especificacion del proveedor de esta manera permite providerspeci propiedades fi cas que se establecen

automaticamente en el conector:

pipeline.addMifJmsConnector ("tcp: //
localhost: 61616", JmsProvider. ACTIVEMQ);

156 10 Middleware Estudio de caso: Medici

10.4.2.4 HTTP

El transporte HTTP permite a los puntos finales entrantes para actuar como servidores web y los puntos

finales salientes para que actien como clientes HTTP. extremos HTTP son sincronos por defecto. El

siguiente es un punto final HTTP entrante que crea un servicio asincrono, escuchando en la direccién localhost:
9090 / HelloService.

http: // localhost: 9090 / HelloService sincrono = false

10.4.2.5 HTTPS

El transporte HTTPS permite la creacién de servicios seguros a través de HTTP. Para crear un servicio de este tipo, el
conector debe ser con fi gurada para apuntar a la almacén de claves donde se encuentra certi fi cado del servicio. Esto

requiere que se establezcan las propiedades siguientes:

propiedades del conector Descripcion

keyStore La ubicacién del almacén de claves de Java fi |
keyStorePassword La contrasefia del almacén de claves
keyPassword Contrasefia de la clave privada

A modo de ejemplo, la siguiente tuberia MIF crea un conector HTTPS, que es con fi gurado para
usar un certificado autofirmado que se pueden crear con el Java

herramienta de claves. 3

MifPipeline tuberia = new MifPipeline ();

MifConnector httpsConn = pipeline.addMifConnector (EndpointProtocol. HTTPS);
httpsConn.setProperty ("almacén de claves", "/dev/ssl/keys/pnl.jks"); httpsConn.setProperty (

"keyStorePassword", "storepass"); httpsConn.setProperty ("keyPassword", "keypass");

pipeline.addBridgeModule ("https: // hostname: 9090 / secureService", "stdio: // out"); pipeline.start ();

TCP 10.4.2.6
Este transporte permite la creacién de servidores de escucha en sockets TCP primas (para los puntos finales entrantes) y

clientes que envien a las tomas de salida (puntos finales). A modo de ejemplo, el siguiente punto final URI creara un

servidor escucha en el host y el zécalo determinado si se utiliza como criterio de valoracion de entrada.

tcp: // localhost: 7676

3 http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/keytool.html

10,5 Medici Ejemplo 157

El siguiente es un ejemplo de un conector TCP definicion. Dado que el protocolo TCP no tiene el
concepto de un mensaje, es necesario para definir un algoritmo de “protocolo” y establecer esto como una
propiedad en el conector. Por lo tanto, siempre se debe crear explicitamente un conector TCP y elegir un
protocolo TCP procesamiento apropiado.

MifConnector conn = pipeline.addMifConnector (EndpointProtocol. TCP);

conn.setProperty ("tcpProtocol", nuevo EOFProtocol ());

los EOFProtocol clase instanciado en este ejemplo es una clase proporcionado-mula que define el limite
mensaje a ser cuando se recibe EOF (final de la fi le) en el zécalo. Es decir, el mensaje termina cuando el cliente
se desconecta del servidor mediante el envio de un caracter EOF. Todos los protocolos disponibles se pueden
encontrar en la documentacion de transporte TCP de mula. 4 Por ejemplo, se proporciona un protocolo que
asume cada mensaje esta precedido por el numero de bytes que se enviard, de manera que un mensaje
completo se puede construir. También es posible especificar una costumbre, clase de protocolo fi co-aplicacion

especifica.

Otras propiedades pueden establecerse en los conectores TCP para optimizar el rendimiento. Estos incluyen el tamafio del
envio y recepcion tampones, y para los puntos finales de salida, ya sea una toma de corriente debe permanecer abierta
después de cada envio con el fin de mejorar el rendimiento.

Desde MIF es una especializacion y simplificacion de Mule, los transportes utilizados en MIF son un subconjunto de
aquellos en Mule. Por lo tanto, la documentacién aqui es una forma muy condensada de la documentacién de transporte
mula. Puede ser util hacer referencia a la documentacion completa de la mula para aprender el conjunto completo de
funciones que ofrece la mula. s

La documentacion se centra en las propiedades requeridas por las aplicaciones de MIF.

10,5 Medici Ejemplo

La aplicacion de ejemplo que describimos aqui analiza los mensajes de chat de Internet para extraer
diferentes tipos de contenido de los mensajes. La estructura global de la aplicacion se muestra en la Fig. 10.2 .

Basicamente, cuando se inicia la aplicacion, el programa principal inicializa una tuberia MIF y luego
simula un proceso externo que esta tirando mensajes de chat fuera de una red y de insertarlos en la
tuberia a través de JMS. A partir de ahi, el Ingerir
modulo toma una linea de datos de chat y lo analiza en un objeto (MapWrapper) que se utiliza en todo el
resto de la tuberia. Desde el Ingerir médulo, copias separadas de los datos (en forma de una MapWrapper)
se encaminan a tres médulos de procesamiento concurrentes (la légica real de la transformacion se

delega en el

4 http://www.mulesoft.org/documentation/display/MULE2USER/TCP+Transport
s http://www.mulesoft.org/documentation/login.action?os_destination %% 2Fdisplay% 2FMULE2USER% 2FTCP%

2BTransport

10 Middleware Estudio de caso: Medici

chatTopic

I__l HelloComponen

IngestModule

Legend

[:] Endpoint
D Module

Chat Listener
R“"sﬁ"' - D Implementation
Analyzed Chat KeywordModule E’ [l

[’ x:dahru
ram

T Avarogetcr

B <

-
chatAnalysisTopic
Fig. 10.2 MIF analisis de tuberias de chat 158
chat-especi codigo fi ¢ llamado por el médulo de MIF y esta mas alla del alcance de esta descripcién). A

continuacion, un agregador combina los tres resultantes objetos de datos en un solo mensaje que se envia

fuera de la tuberia para la exhibicién, en el caso de este ejemplo, a la consola.

Vamos a examinar esta tuberia con mas detalle.

10.5.1 Inicializar Pipeline

En primer lugar, tenemos que crear una MifPipeline objeto que se necesita para iniciar y detener la canalizacién de
procesamiento. UN MifPipeline También se utiliza para crear y registrar todos los objetos que se ejecutan dentro de la

tuberia.

MifPipeline tuberia = new MifPipeline ();

A continuacion, crear y aiadir un conector JMS, dandole la direccion del servidor y el nombre del servidor
que se va a utilizar (en este caso utilizamos una ActiveMQ proveedor JMS).

pipeline.addMifJmsConnector
("Tcp: // localhost: 61616", JmsProvider. ACTIVEMQ);

10,5 Medici Ejemplo 159

A continuacion, vamos a crear el ChatComponent oponerse, asignar los puntos finales, y afiadirlo a la tuberia.
En esta etapa, podemos empezar la tuberia de manera que esté listo para empezar a recibir mensajes. Como

veremos mas adelante, el trabajo pesado de la tuberia con fi guracion se encapsula en el ChatComponent componente.

ChatComponent chatear = new ChatComponent (); chat.setinEndpoint ("JMS: //
tema: ChatDataTopic"); chat.setOutEndpoint

("Stdio: RESULTADO // stdio outputMessage = CHAT:?");
pipeline.addMifComponent (chatear); pipeline.start ();

Por ultimo, tenemos que invocar un método de utilidad que simula una corriente de mensajes de chat fl debido a la

tuberia a través de JMS mediante la lectura de un expediente de mensajes de chat y enviarlos a la tuberia.

simulateChatStream ();

10.5.2 Componente de Chat

los ChatComponent encapsula el con fi guracion de los médulos de aplicacién en una tuberia interna. En primer lugar,

establecemos los criterios de valoracién de los componentes que se transmiten desde el cédigo de llamada (ChatComponentDriver.java
en este caso). Nétese como el componente es ajeno al transporte que se asocia con los criterios de valoracion, un tema

JMS y stdout en este caso. Estos detalles se abstraen completamente en el cédigo de componente, y por lo tanto el

componente se puede utilizar para comunicarse a través de cualquier medio de transporte que esta asociado con sus

puntos finales.

setlnEndpoint publica vacio (String inEndpoint) {this.inEndpoint = inEndpoint; }

setOutEndpoint publica vacio (String outEndpoint) {this.outEndpoint = outEndpoint;
}

ChatComponent tiene un nimero de médulos internos. Primero, Médulo ingest- se encarga de tomar un
mensaje de chat y analizarlo en una estructura de datos (MapWrapper) para ser procesado por todos los
madulos de procesamiento aguas abajo. Este médulo tiene tres puntos extremos salientes desde el mensaje

de salida se dirigira a tres moédulos de procesamiento aguas abajo (Afectar, apagén, y Palabra clave).

MifModule ingestModule = pipeline.addMifModule
(Ingest.class.getName (), inEndpoint,

"Vm: //ingest.keyword.queue"); // y afiadir puntos
finales salientes adicionales
ingestModule.addOutboundEndpoint ("vm: //ingest.affect.queue"); ingestModule.addOutboundEndpoint (
"vm: /lingest.blackout.queue");

10 Middleware Estudio de caso: Medici

A continuacién, los médulos de procesamiento de aguas abajo estan conectados mediante la creacion de puntos finales
entrantes que corresponden a la ingestModule puntos finales salientes (ingerir. keyword.queue En el ejemplo a continuacion

para la Palabra clave médulo (los otros funcionan de manera similar por lo que dejara a los de esta descripcion)).

/I Afadir PALABRA CLAVE Médulo

pipeline.addMifModule (Keyword.class.getName (),
"Vm: ingest.keyword.queue", "vm:
/lkeyword.queue");

s 160

Finalmente, el ultimo paso del componente con fi guracion es para agregar los resultados de los
médulos de procesamiento en un solo mensaje y enviar el resultado fuera del componente utilizando el
punto final de salida. Para lograr esto, se crea la
chatAggregateModule y conectarse a él los tres puntos finales salientes de los tres médulos de aguas
arriba.

MifModule chatAggregateModule = o, ' i .
ejemplo, el V%‘?ﬁeaﬁmé%‘aﬁlﬂiﬂ@%&éﬁ@ﬁéﬁi‘é@%@é?é!%lﬁ&?d%ﬂ&’aﬁg’ﬁs%ﬁ’& REQU diguELliemPo de espera de 30

outEndpoint);

chatAggregateModule.addInboundEndpoint ("vm: //affect.queue");
chatAggregateModule.addInboundEndpoing ("vm: //blackout.queue");

Los agregadores son médulos especiales MIF que combinan mensajes de multiples fuentes en un solo
mensaje. Pueden ser utilizados para cotejar los resultados de los médulos que trabajan en paralelo (como en
nuestro ejemplo de chat aqui) o para reducir un gran volumen de mensajes en un solo objeto. Para cotejar grupos
GripensRissreRIGeTRIROR IFER iR 8RR ALRIShIENSISHAR BUSTRT A B feRersAgiedpkte tienen
un valor de correlacién idénticos, lo que permite el agregador para combinarlos. Cualquier médulo de MIF se

puede asociar con un agregador que nes de fi cdmo se combinan multiples mensajes de entrada.

Para crear un agregador de MIF, necesitamos ampliar el AbstractMif- agregador clase abstracta.
Para ello es necesario implementar dos métodos,
shouldAggregateEvents y doAggregateEvents. Ambos de estos métodos de tomar una sola MifEventGroup
objeto que contiene una lista de objetos que se han recibido en los puntos finales entrantes del
ggr\gjgeévc?ow resultado verdadero para ese grupo. Devuelve un objeto que representa el valor de los objetos de ese

El primer método, shouldAggregateEvents, se llama cada vez que un nuevo mensaje es recibido por el
agregador en ningln punto final. Su valor de retorno es un valor booleano, que indica si o0 no ese grupo de
eventos contiene un conjunto completo que esta listo para ser agregado en un solo mensaje. Las acciones tipicas
realizadas por este método incluyen contando el nimero de mensajes en el grupo de eventos (para la agregacion
de los resultados de un cierto nimero de procesos paralelos) o en busca de la presencia de un mensaje en

particular (para digerir los mensajes que llegan durante un cierto periodo de tiempo).

El segundo método, doAggregateEvents, se pidié a un grupo de mensajes siempre que sea shouldAggregateEvents

10,6 generador de componentes 161

se recibe un mensaje. En nuestro ejemplo, el ChatAnalysisAggregator es responsable de la combinacién de los
mensajes de los tres médulos aguas arriba. Esto se logra mediante el uso de un valor de correlacion (es decir,
un mensaje Unico identi fi er para cada mensaje que se asigna en la etapa de la ingesta) y la combinacién de
estos cuando se han recibido los tres mensajes (una para cada médulo de aguas arriba). En la API de MIF,

simplemente creamos el agregador y adjuntarlo a themodule que debe ser associatedwith.

MifAggregator chatAnalysisAggregator =
pipeline.addMifAggregator (nuevo ChatAnalysisAggregator ());
chatAggregateModule.setAggregator (chatAnalsysiAggregator);

cadigo 10.5.3 Implementacion

Para este ejemplo, todos los mddulos de procesamiento estan escritos en Java. Se envuelven las bibliotecas de
procesamiento de texto fi cas que realizan la légica de la aplicacion real. A continuaciéon se muestra un ejemplo de uno de
los médulos de procesamiento. los BlackoutProcessor, que implementa diversos algoritmos de proteccion de identidad,
implementa la funcionalidad de la
BlackoutModule. Esto representa un ejemplo muy comun de la utilizacién de una clase contenedora para llamar a la
légica de procesamiento “real” (por lo general en una biblioteca o un tarro) sin necesidad de realizar ningin cambio en el
codigo para incorporarlo en una tuberia MIF.

En este caso, el cédigo simplemente delegados al método de aplicacién especi fi co

blackout.processContentAnalysis (mensaje).
blackout.processContentAnalysis (mensaje).

BlackoutModule clase publica implementa MiflnOutProcessor {
/I un montén de detalles omitidos
Blackoutld privada apagoén estatica = null; BlackoutModule publica () {

initBlackout (); }
Serializable Publico (entrada Serializable) {
datos MapWrapper = (MapWrapper) de entrada; HashMap

mensaje = data.getMap (); if (! apagén = null) {

/I l6gica de procesamiento de llamada de prueba
blackout.processContentAnalysis (mensaje); }

volver nueva MapWrapper (mensaje); }}

10,6 generador de componentes

El componente MIF (CB) se basa en Eclipse y puede ser utilizado por los programadores para disefiar
tuberias MIF, generar cédigo auxiliar para los objetos en la tuberia, implementar el codigo apagé, y
ejecutar la tuberia resultante. El CB es capaz

10 Middleware Estudio de caso: Medici

M S — -builder/config/hello.mifd - Eclipse Platform =
Fa
I Package Explorer I =0
o Palette [
¥ > hello-component- builder
¥ (8 config
& hello.mif = Components (and relat... «
i hellomifd MifComponent
S hefloCaComponent) MitComponen
¥ B grc-gen ‘. MifjmsConnector
¥ {8 org.example
» [3] halProcessor java [e)) MitworkflowComponent
> U] MifDriver. java L | = L | - [MifModule (and relate... ©]
* |J] NameProcessor.java T Aaiodale
@ src
* M\ JRE System Library (VM 1.6.0] w83 MifSpI
* m\ Referenced Libraries ie. MifAggregator
P MifProvenanceHandier
window = Communication Endpaints
= Specialized Modules
= Advanced Entities
—

Property Value m
Configuration File U
Rulers & Grid Driver Class 12 org.example. MifDriver
.
- -

Fig. 10.3 MIF componente constructor 162

del desarrollo de ida y vuelta, que soporta la repeticion del proceso de disefio, generar, implementar, ejecutar, hasta
que el programador esté satisfecho con la tuberia. En ese punto, los componentes en la tuberia se pueden
implementar en una instancia de MIF correr o almacenan en una biblioteca de componentes para su uso posterior.
Figura 10.3 muestra un ejemplo del uso del CB y pide a cabo las distintas ventanas que apoyan el desarrollo, a

saber:

iLona. El lienzo representa el diagrama fi | y es donde la tuberia esta

con fi gurado. Los objetos se colocan en el lienzo y se conectan para crear una tuberia. Cuando los

objetos se mueven alrededor de la tela y el diagrama se guarda, los cambios se escriben en una. mifd fi I.

\Paleta. La paleta contiene todos los objetos que componen una tuberia MIF

modelo. Los objetos se seleccionan de entre la paleta y se colocan en el lienzo. La paleta separa los
objetos en diferentes categorias para mayor comodidad. los componentes seccién contiene componentes
MIF y objetos cominmente usados que pueden aparecer dentro de un componente. los MifModule seccién
contiene la MifModule

objeto y otros objetos que se pueden colocar dentro de un médulo. los La comunicacion de punto final seccién
contiene objetos de punto final mas las EndpointLink que se muestra en el lienzo como una linea de puntos

que conecta un punto final de salida en un médulo al punto final de entrada en la siguiente.

1explorador de paquete. El explorador de paquetes se utiliza para la organizacién de los archivos fuente,
con fi guracion de archivos, y el FOMIN modelo de archivos.
1La ventana de propiedades. Propiedades de los objetos colocados en el lienzo se editan mediante el
Eclipse “Propiedades” de la ventana. Seleccion de una entidad en la tela hace que sea posible ver y editar las

propiedades necesarias en la ventana de propiedades. propiedades en

10.8 Lectura adicional 163

toda la tuberia también se puede ajustar haciendo clic en el lienzo Eclipse, y luego mediante la edicién de las
propiedades que aparecen en la ventana de propiedades. Por ejemplo, tenga en cuenta en la Fig. 10.3 que el Clase
controlador propiedad tiene el valor org.example.MifDriver.
Esta propiedad particular significa que este sera el nombre de clase de la clase del controlador generado que
corre la tuberia creada en el generador de componente.

1Consola. La consola es igual que la consola de Java en el que se muestra estandar
entrada y salida estandar dentro de la IDE. Ademas, la consola CB da salida también a estado y los resultados de

las acciones de generacion de codigo.

Cada vez que un disefio de MIF se guarda, el modelo subyacente MIF se comprueba la validez. Esto
proporciona una caracteristica de comprobacion de errores que se implementa mediante la imposicion de
restricciones en los objetos en el modelo, tales como “una MifModule no debe tener un fi nida unde implementationClass.
”Si tal restriccion no se satisface, el CB coloca un rojo‘icono X’sobre el objeto (s) que viven en el error. Cuando el

usuario mueve el ratén sobre uno de estos iconos de error, el CB ofrece una pista sobre cudl es el problema.

10.7 Resumen

Hemos utilizado MIF en varias aplicaciones en los Ultimos 3 afios, en @mbitos tan diversos como la bioinformatica, la
seguridad cibernética, la modelizacion del clima, y andlisis de red de energia eléctrica. En todos estos proyectos, el

FOMIN ha demostrado ser robusto, ligero y altamente flexible.

En la construccion de la tecnologia Medici, hemos tenido cuidado de aprovechar las tecnologias existentes
siempre que sea posible, y construir el software tan poco como sea posible para apoyar la tuberia y abstracciones
basadas en componentes que nuestras aplicaciones requieren. Parte del éxito de Medici, por lo tanto, sin duda,
radica en las fortalezas de sus fundaciones - mula, ActiveMQ - que proporcionan potencia industrial, plataformas
ampliamente desplegados. Vemos esto como un modelo razonable para otros proyectos a seguir, especialmente en
la comunidad de investigacion cienti fi ca donde los recursos para el desarrollo de tecnologias de clase middleware

S0n escasos.

10.8 Lectura adicional

El proyecto completo Medici es de codigo abierto y disponible para su descarga desde
http://medici.pnl.gov . El sitio contiene una cantidad considerable de documentacion y varios ejemplos.

También hemos escrito varios articulos que describen la estructura y las aplicaciones que hemos construido. Algunas de

ellas se enumeran a continuacion:

I. Gorton, H. Zhenyu, Y. Chen, B. Kalahar, B, S. Jin, D. Chavarria-Miranda,
D. Baxter, J. Feo, Un hibrido de alto rendimiento Informatica aproximacion al analisis de contingencia masiva en
la red de alimentacién, e-Ciencia, 2009. e-Ciencia '09. Quinta Conferencia Internacional IEEE sobre e-Ciencia,
pp. 277-283, 9-11 de diciembre de 2009.

10 Middleware Estudio de caso: Medici

I CE%HBU '?Eé/gy?&e J. Almquist, J. Chatterton, La Integracién marco Medici
trabajo: una plataforma para aplicaciones de alto rendimiento de secuencias de datos, wicsa, pp. 95-104,
Séptima Conferencia de Trabajo IEEE / IFIP en Arquitectura de Software (WICSA 2008), 2008.
Computing Tecnologia y Ciencia (CloudCom 2010) 30 de noviembre - 3 de diciembre de la Universidad de Indiana,
I. Gorton, Y. Liu, J. Yin, Explorando Opciones de arquitectura para un federados, Cloud-

basado base de conocimientos biologia de sistemas, en la segunda Conferencia Internacional IEEE sobre Cloud

Capitulo 11

Viendo hacia adelante

11.1 Introduccion

El mundo de la tecnologia de software es un movimiento rapido y el lugar en constante cambio. A medida que nuestros
conocimientos de ingenieria de software, métodos y herramientas mejoran, también lo hace nuestra capacidad para abordar
y resolver problemas cada vez mas complejos. Esto significa que creamos aplicaciones “mas grandes y mejores”, sin dejar
de subrayar los limites de nuestros conocimientos de ingenieria de software cada vez mejores. No es sorprendente que
muchos en la industria sienten que estan parados. No parecen ser bene fi cién de las ganancias de productividad y de
calidad prometidos de los enfoques de desarrollo mejoradas. Sospecho que esta destinado a ser la vida de todos nosotros en

la industria del software por lo menos durante el futuro previsible.

11.2 Los retos de la Complejidad

Es la pena detenerse por un momento para considerar lo que podria ser algunos de los principales retos para los
fabricantes de sistemas de Tl en los proximos afos. Es probablemente bastante polémica al afirmar la inevitabilidad de
que las aplicaciones de negocio continuaran siendo cada vez mas y mas compleja. La complejidad es un atributo
multidimensional sin embargo. ; Qué aspectos de la complejidad exactamente tienen mas probabilidades de influir en la

forma en que disefiamos y construimos la siguiente generacién de aplicaciones?

Desde un punto de vista comercial, parece muy probable que el siguiente sera controladores para gran parte de

lo que hace la profesion de Tl en la préxima década:

\Empresas insistiran su infraestructura de Tl apoya cada vez mas complejo

los procesos de negocio que aumentan su organizacion e fi ciencia y reducir su costo de los
negocios.

Para muchas empresas, la tasa de cambio en su entorno empresarial
exigir a sus sistemas de Tl a ser facil y rapidamente adaptable. Agilidad en la forma en que una empresa responda a
sus necesidades de negocio tendra un impacto en su linea de fondo.

\Las empresas siempre quieren una mayor beneficio de ella y para reducir de forma simultanea
sus costos de Tl. Demasiadas empresas se han visto desperdicio masivo en los sistemas de Tl sin éxito. Como

consecuencia, ahora necesitan seriamente convincente de la necesidad

|. Gorton, Arquitectura de Software esencial, 165
DOI 10.1007 / 978-3-642-19176-3_11, # Springer-Verlag Berlin Heidelberg 2011

11 Mirando hacia el futuro

invirtiendo fuertemente en ella, y va a insistir que su departamento de TI continuamente “hacer mas con menos”.

Vamos a discutir cada uno de estos y ver qué consecuencias pueden tener, sobre todo desde la perspectiva de un

arquitecto de TI.

11.2.1 Procesos de Negocio Complejidad

En las grandes empresas, los procesos de negocio de alto valor abarcan multiples, inevitablemente, aplicaciones de
negocios independientes, todos los que operan en una infraestructura de Tl altamente heterogénea. En este tipo de
servicios B stadose\F]FI esEable?imiento de la confianza de forrga indmica para gue todo esdlo funciong. 166 ..
entornos, las herramientas y tecnologias para procesos dé negocio de fi niciony la prontulgacion sido de importancia critica.
En términos practicos, esto significa que las tecnologias de orquestacién de procesos de negocio son propensos a

convertirse en productos basicos, componentes de mision critica en muchas empresas.

necasadpiee HRiBRuSaEbHidadrseayidaddgbeans asadiabetRIBnMpRISEY, RAIESSTYIRIE Inadliveiasde
cada vez mas capaces de soportar altas cargas de peticiones y a escala. Sin embargo, hay algunos problemas
fundamentales que actualmente se encuentran fuera de sus capacidades. Probablemente la necesidad clave es pasar de
“estatica” de procesos “dinamicas”. Que significa exactamente?
proceso de decidir qué? ; Como sabe qué socio potencial proporcionara el proceso con los niveles de servicio

Un objetivo muy atractivo para los procesos de negocio es la composiciéon dindmica. Por ejemplo, una
organizacién puede tener una accion de compra de procesos de negocio definida por la compra de los
proveedores. Inesperadamente, un proveedor va a la quiebra, o en otro aumenta los precios por encima del umbral
dela orr#anizacjgmégﬁ%rse&argar Con las toecnologé?s actuales et%Proba e %Je el proceso,de negocio tenc'ré que

una o nas posi el proceso de negocio para conéctarse a. Stuponiendo mas de Uno;’ ¢ como €
ser modi fi cado manualmente para comunicarse con un nuevo proveedor. Esto es costoso y lento.

Idealmente, un proceso de negocio seria capaz de “automagicamente” si figura Recon fi, siguiendo un conjunto
de reglas de negocio para conectarse a un nuevo proveedor y restablecer una relacion de compra. todo esto iba a

exible fl buscado en base a una serie de propiedades. Eso no es demasiado duro, y una busqueda podria producir
pasar en unos pocos segundos, aliviando la necesidad de participacion programador.

Este tipo de evolucion dinamica de procesos de negocio no es demasiado dificil, siempre y cuando el entorno es
muy limitada. Si hay un fi jo, conjunto conocido de socios potenciales, cada uno con conocida (idealmente las mismas)
e GHECEECRRSAR MBI S 0RdB5 AR foti TRAbSFesRIGR IR da dinaoiario-n SadisiRAR-RIRGe
cuando se producen ciertas condiciones (como una interfaz pareja desaparece). Sin embargo, una vez que estas

limitaciones se eliminan, todo el problema se vuelve exponencialmente mas dificil.

Para empezar, si los socios comerciales potenciales no son conocidos de antemano, el proceso de negocio

11.3 de la agilidad 167

Una vez que un socio de confianza ha sido seleccionado en base a los niveles de servicio que
anuncian, es casi necesario fi gura exactamente como comunicarse con el socio. No hay garantia de que
cada socio sea posible tiene la misma interfaz y acepta y entiende el mismo conjunto de mensajes. Por lo
tanto es necesario que el proceso de negocio que solicita para asegurar que envia solicitudes en el formato
correcto.

El problema asesino aqui es que aunque una interfaz serd normalmente sélo describir el formato de las
solicitudes que recibe y envia, y no la semantica de los datos en la solicitud. Esto significa que un mensaje que indica
que el precio de un itemmay o no ser en délares estadounidenses. Si es en euros, y se esta esperando dolares de

EE.UU., a continuacion, en funcion de los tipos de cambio, es posible que en un choque o una sorpresa agradable.

En sus formas generales, estos problemas de confianza descubrimiento y semantica de datos son mas o menos sin
resolver. Se estan realizando esfuerzos para abordar los problemas de descubrimiento y de confianza con las
tecnologias de servicios Web y los problemas semanticos con una coleccion de tecnologias conocidas como la Web

Semantica, que se describen en el capitulo. 12.

11.3 de la agilidad

La agilidad es una medida de la rapidez con que una empresa puede adaptar sus aplicaciones existentes para apoyar las nuevas
necesidades de negocio. Si una empresa puede obtener un nuevo servicio en linea de negocios antes que sus competidores, puede

empezar a ganar dinero mientras que la competencia se esfuerza para ponerse al dia.

Desde un punto de vista arquitectonico, la agilidad estd muy estrechamente relacionado con la capacidad modi fi. Si la
arquitectura de una empresa es imprecisa y dependencias de las aplicaciones y la tecnologia son abstraido detras de las

interfaces sensibles, la implementacion de nuevos procesos de negocio podria no ser demasiado oneroso.

Una auténtica barrera a la agilidad es la heterogeneidad. Una arquitectura podria ser muy bien disefiado, pero
si, por ejemplo, de repente se hace necesario obtener una nueva aplicacion .NET hablar con aplicaciones J2EE
usando un JMS existente, entonces la vida puede ser un poco desordenado. En realidad, el gran nimero de
combinaciones incompatibles de tecnologia en una empresa por lo general no es algo que es placentero que
pensar.

Como se describe en el Cap. 5, los servicios web SOAP y REST son basados en tecnologias Utiles que son
ampliamente utilizados para vincular entre si los sistemas heterogéneos. Ellos definen un protocolo estandar y

mecanismos para tapar juntas aplicaciones, tanto dentro como fuera de las empresas.

servicios web traiga una mayor agilidad a través de la integracion basada en estandares. Pero la integracion no es
el unico impedimento para el aumento de la capacidad de una empresa para modificar y ofrecer nuevas aplicaciones.
La mejora de las tecnologias de desarrollo que hacen que cambian menos dificil y costoso también pueden aumentar
en gran medida la agilidad de una empresa. Dos enfoques emergentes en este sentido son las tecnologias orientadas a

aspectos y Arquitecturas dirigida por modelos (MDA).

tecnologias orientadas a aspectos de la estructura de una aplicacion como un conjunto de independientes pero relacionados

“aspectos” de una solucién, y proporcionar herramientas para fusionar estos aspectos en

11 Mirando hacia el futuro

construir o en tiempo de ejecucion. Como se pueden crear aspectos, comprendido y modi fi cado de forma independiente, que
mejoran la agilidad de desarrollo.

MDA, o ningiin modelo basado en el desarrollo, ya que estd aumentando conocida, promueve el desarrollo de
aplicaciones utilizando modelos abstractos basados en UML de una solucion. codigo ejecutable se genera a partir de estos
modelos utilizando herramientas de MDA. MDA eleva el nivel de abstraccion del proceso de desarrollo, en teoria mas facil
hacer cambios a efectuar en los modelos y no en codigo detallado. MDA herramientas de generacion de codigo también
esconden el conocimiento fi co-plataforma especifica detallada de la aplicacion. Por ejemplo, si la plataforma subyacente
(por ejemplo, tecnologia MOM) cambia, un generador de codigo para la nueva plataforma se adquiere simplemente. La
aplicacion puede entonces ser regenerado de forma automatica a partir del modelo a utilizar la nueva plataforma. Ahora hay

agilidad para usted! Esa es la teoria, de todos modos.

Aspectos y MDA se describen en Chaps. 13 y 14 respectivamente.
poner a prueba todas estas caracteristicas ampliamente. 168

11.4 Reduccion de costes

Los dias embriagadores de finales de 1990 “dot.com” boom y masiva que gasta han quedado atras, y no hay
ninguna sefial de su regreso. Ahora las empresas con razén, exigen saber qué negocio beneficio de sus
inversiones en Tl traerd, y qué retorno oninvestment que pueden esperar. Como arquitecto, la escritura de
rentabilidad para las inversiones y adquisiciones es una habilidad que necesita para adquirir, si no lo ha hecho,
por supuesto.

En cuanto a la reduccion de lo que pasamos, sin dejar de lograr nuestros objetivos de negocio, el lugar para
comenzar es comenzar por trabajar mas inteligentemente. En su conjunto, la industria de Tl ha tenido dificultades para
cumplir con las promesas de una mayor e fi ciencia y menores costos de adopcién de nuevas tecnologias de
desarrollo. tecnologias de objetos y componentes estaban destinados a hacer mas facil para nosotros para disefiar y
sy SRR S Do VR R AR SR SR SRR oS e T SlORA e i,
para esencia, sin costo, muchas veces mas. Eso es un trato nadie puede negarse, y uno que es simple para la gestion

de entender.

La verdad es que la industria de Tl practicamente ha dejado de cumplir con la promesa reutilizacion.
reutilizacion exitosa tiende a tener lugar con gran escala, como los componentes de la infraestructura de middleware
y bases de datos. Del mismo modo, Enterprise Resource Planning (ERP) como SAP y sus semejantes han logrado
entregar, procesos de negocio personalizables generalizadas a un amplio espectro de organizaciones. Ninguno de
ellos ha sido sin sus di fi cultades, por supuesto. Pero pensar en la cantidad de cédigo de otra persona (es decir, la
inversion) que esta utilizando al implementar una base de datos Oracle o un servidor de aplicaciones JEE. Es

significativo hecho.

Pero en una escala mas pequefia, componentes reutilizables han tenido menos impacto. La razén de esto es
simple y bien explicado por mucha investigacion en la comunidad de ingenieria de software. El argumento dice
asi.

Esencialmente, cuesta dinero para construir componentes de software para que puedan ser utilizados en un contexto que no

11.5 Lo siguiente 169

Es necesario documentar las caracteristicas y crear ejemplos de cémo utilizar el componente. Los estudios

indican que cuesta entre tres y diez veces mas para producir componentes reutilizables de calidad.

Por supuesto, toda esta inversién puede ser Util si los componentes se utilizan una y otra vez. Pero 4y si no
lo son? Bueno, basicamente, que acaba invertido mucho tiempo y esfuerzo en la generalizacién de un
componente para ningun proposito. Eso no es inteligente.

Afortunadamente, algunos arquitectos muy inteligentes pensaban sobre este problema hace unos afios. Se dieron
cuenta de que la reutilizacion éxito no acaba de suceder “por arte de magia”, pero podria lograrse si una estrategia de
producto se entendia y planeado. Por lo tanto se acufié el término “arquitectura de linea de productos”. Estos se explican
en el capitulo. 15. Ellos representan un conjunto de practicas probadas que pueden ser adoptadas y adaptadas dentro de
una empresa para aprovechar las inversiones en arquitecturas y componentes de software. lineas de productos de

software representan el estado del arte en el trabajo inteligente en este momento.

11.5 Lo siguiente

Los siguientes cuatro capitulos de este libro cada cubren un area de practica o la tecnologia que es probable

encontrar en una vida de un arquitecto de software. Estos son:

\La Web Semantica
\Programacion Orientada a Aspectos
1Arquitecturas basada en modelos (MDA)

iLineas de Producto Software

Cada uno de los capitulos que siguen se describen los fundamentos de cada enfoque, aborda el estado
de la técnica, y especula sobre el futuro potencial y adopcion. También describen cémo las técnicas o
tecnologias se pueden aplicar al caso de estudio ICDE para proporcionar caracteristicas mejoradas y
funcionalidad.

Esperamos que estos capitulos le brazo con el conocimiento su fi ciente para al menos parecen inteligente e
informada cuando un cliente o alguien de su proyecto en el que las capturas por sorpresa y sugiere la adopcién de uno de

estos enfoques. En tales circunstancias, un poco de conocimiento puede recorrer un largo camino.

capitulo 12
La Web Semantica

Judi McCuaig

12.1 ICDE y la Web Semantica

Intercambiar y compartir datos es un reto fundamental para la integracion de aplicaciones. La plataforma ICDE ofrece una
instalacion de noti fi cacion para permitir herramientas de terceros para el intercambio de datos. Supongamos que un usuario ICDE
esta trabajando con una herramienta de terceros para analizar los registros de transacciones financieras de varias organizaciones.
La herramienta genera una lista de palabras clave relacionadas con fi nanciar-para describir el conjunto de registros de
transacciones después de un analisis complejo y almacena esta lista en el almacén de datos ICDE. Supongamos, ademas, que este
usuario ICDE ha puesto en marcha otras herramientas de terceros para utilizar sus datos ICDE como entrada a los procesos de
herramientas. Una de estas herramientas utiliza la lista de palabras clave almacenada para realizar una busqueda de informacién

nueva, nunca antes vista en relacion con el andlisis de las transacciones fi nancieras en curso.

Este escenario sélo es posible cuando las herramientas cooperantes tienen la capacidad de compartir datos. El
intercambio debe incluir una comprension de consenso de la semantica de los elementos de datos que se comparte. Muy a
menudo, este consenso se logra mediante la creacion de una estructura de datos que se acopla a cada aplicacién que utiliza
los datos compartidos. La estructura de datos define el formato (por ejemplo, lista, tabla) y la semantica (por ejemplo, nombre

del documento, titulo del documento, ubicacion del documento, tema del documento, etc.) de los datos compartidos.

En el marco del ICDE, que compartié comprension podria ser alcanzado mediante la publicacién de una estructura de tabla
y que requieren todas las aplicaciones que colaboran para utilizar esa estructura para compartir datos. Sin embargo, el equipo
de desarrollo del ICDE nunca podria anticipar las estructuras de datos adecuadas para todas las herramientas de terceros y
cada dominio de aplicacion en la que operaria ICDE. Nuevas tablas se podrian afiadir, por supuesto, pero cada herramienta
proveedor de terceros tendrian que negociar con el equipo ICDE para conseguir una adecuada estructura de datos definida, por

lo que la integracion de herramientas agiles imposible.

Un enfoque mas flexible permitiria herramientas de terceros para publicar datos a través del almacén de datos ICDE
utilizando cualquier estructura adecuada. Posteriormente, cualquier otra herramienta autorizada debe ser capaz de
descubrir de forma dinamica la estructura de los datos publicados y entender la semantica del contenido. No es necesaria

la previa del conocimiento, no modificable de estructuras de datos.

El requisito obvio para una solucién flexible tal fl es utilizar estructuras de datos auto-describen para
los datos publicados. Extensible Markup Language (XML)

|. Gorton, Arquitectura de Software esencial, 171
DOI 10.1007 / 978-3-642-19176-3_12, # Springer-Verlag Berlin Heidelberg 2011

12 La Web Semantica

que bastar, como cualquier programa puede analizar dinamicamente un documento XML y navegar por la estructura

de datos. Sin embargo, rawXML no admite semantica descubrimiento hacer comprender ad hoc de los datos
problematicos. Por ejemplo, una herramienta de terceros puede utilizar la etiqueta XML < ubicaciéon> para indicar la
ubicacién de alguna informacion, mientras que otro puede usar < URI>, y otro < nombre de ruta>. La semantica de estos
nombres de las etiquetas dicen un lector humano que cada etiqueta contiene la misma informacion, pero no hay

manera de hacer que esa conclusién mediante programacion utilizando sélo XML. Obligando a todas las herramientas

a utilizar el mismo vocabulario estricta etiqueta no es ninglin mas flexible que obligar a todos a utilizar la misma

estructura de datos.

Lo que se necesita es un mecanismo para compartir la semantica del vocabulario elegido, lo que permite el
para integrar dinamicamente las aplicaciones de software. 172

descubrimiento programatica de términos que describen conceptos similares. El uso de un mecanismo de este tipo,

una herramienta puede determinar que < URI> y < ubicacién> son en realidad el mismo concepto, aunque la relacién no

es explicitamente definida en el software o los datos publicados.

La solucién a este problema radica en el conjunto de tecnologias asociadas a la Web Semantica. La Web
Semrmica PR RS iR dasssThclas dlalepariagasisreareei SR BABIKheyRsi ganRefdANto
detectable de forma automatica en el software. Una de las innovaciones clave esta en el uso de ontologias,
que describen los conceptos relevantes en un dominio, y la recogida de las relaciones entre esos conceptos.

Este capitulo presenta las tecnologias basicas de la Web Semantica. A continuacion, muestra cémo las ontologias de

dominio podrian ser utilizados en la plataforma ICDE para apoyar la facilidad de integracion de proveedores de herramientas de
teRIEIBENentes. Son precisamente estos problemas que las tecnologias que componen frente a la Web

12,2 automatizada, Integracion distribuida y Colaboracién

metadatos acPropiados para facilitar la interaccion dinamica con las disponibles de informacion, servicios y
Las di fi cultades asociadas con la integracion de software han plagado a los ingenieros de software desde los primeros

dias de la industria de la computacioén. Los esfuerzos iniciales de integracion (ignorando los problemas de hardware y
almacenamiento de interoperabilidad) centrados en hacer accesibles los datos a multiples aplicaciones, normalmente a

través de algun tipo de sistema de gestion de base de datos.

serV34SPIETRRHURES RRAIRSHR S ST RAR I HRISS RN P RIREs Iz kiSRRG R H gABEe

tecnologias como CORBA o JEE. Como se ha explicado en los capitulos anteriores, las arquitecturas orientadas a
servicios y servicios Web son las Ultimas tecnologias para dar a los disefiadores de software la oportunidad de crear
sistemas de software pegando servicios, posiblemente de una variedad de proveedores, para crear un sistema de

software especializado disefiado para que una empresa particular, problema.

Hay di fi cultades asociadas con la localizacion, integracion y mantenimiento de un sistema compuesto de

12.3 La Web Semantica 173

12.3 La Web Semantica

El propdsito de la iniciativa de la Web Semantica es la creacion de la maquina informacion comprensible,
donde la semantica son explicitas y utilizable por los algoritmos y programas informaticos. Este objetivo
original se ha ampliado para incluir el objetivo de crear servicios o procesos, que son la maquina
comprensible y utilizable por otros procesos. Este entendimiento compartido, ya sea de datos o servicios,
es posible gracias a una amplia coleccion de lenguajes de descripcién de metadatos y protocolos. En su

mayor parte, existe la Web Semantica a causa de estos idiomas.

La interoperabilidad prometida por las tecnologias de la Web Semantica es posible gracias a:

\La formalizacion de la representacion de metadatos
\El desarrollo permanente de la representacion del conocimiento

1técnicas de légica y razonamiento que pueden aprovechar tanto los metadatos y la

conocimiento representado

Las capacidades clave que se ofrecen son la representacion flexible de metadatos y relaciones, codificado como
ontologias. Estos permiten la traduccion entre vocabularios de metadatos y el razonamiento acerca de las entidades de
metadatos representados.

Figura 12.1 ilustra las relaciones entre algunas de las tecnologias asociadas con la Web Semantica. XML,
Unicode, y Uniformes de Recursos los identificadores (URI) forman la columna vertebral y permiten el
almacenamiento y recuperacion de informacion. El Marco de Descripcion de Recursos (RDF) es la base para
describir la estructura de la informacion dentro de las aplicaciones de la Web Semantica. Ontologias,
frecuentemente codifican utilizando el Lenguaje de Ontologias Web (OWL) y taxonomias describen usando la

descripcion de recursos de estructura de esquema (RDFS), proporcionar la capa en

" Queries l N Reasoning
(SPARQL) Engines

Semantics Description

Ontologies Rules
(OWL) (RIF)

Schema/Structure Description

XML Schema .“. RDFS

Data storage and retrieval

Fig. 12.1 tecnologias de Web Semantica

12 La Web Semantica

que la semantica de la informacién pueden ser descritos y puestos a disposicion de las aplicaciones. Una capa adicional de
computacion proporciona facilidades para consultas y el razonamiento acerca de la informacién disponible. aplicaciones de

Web Semantica son tipicamente escritos en la parte superior de esta capa de consulta y el razonamiento.

12.4 Creacion y uso de metadatos para la Web Semantica

Las capacidades avanzadas asociadas a la Web Semantica provienen casi en su totalidad en la parte posterior de grandes
esfuerzos en la creacion y el mantenimiento de los metadatos. La introduccion del XML y las tecnologias relacionadas con

ella proporcionado un mecanismo estructurado, flexible para describir datos que se entiende facilmente por las maquinas (y

un subconjunto de los seres humanos que les gusta paréntesis angulares). XML proporciona los medios para entidades de
etiqueta y sus partes, sino que proporciona capacidades Unicas débiles para describir las relaciones entre las dos entidades.
Por ejemplo, considere el fragmento de XML en la Fig. 12.2 . En él se describe una Persona en términos de Nombre, Direccién

de correo electrénico, y Nimero de teléfono, y una

Transaccion en términos de Tipo, cliente, y Nimero de cuenta. El ejemplo también muestra el uso de atributos para crear res Gnicos
identificadores (carné de identidad) para cada entidad.

XML embargo, no es adecuada para una facil identi fi cacién de las relaciones entre piezas de informacion.
Por ejemplo, utilizando sélo los metadatos etiqueta XML en la figura, la identi fi cacion de la direccién de correo
electronico de la persona que lleva a cabo una transaccion especifico es algo complejo. Se basa en la
capacidad de determinar que la
Cliente ambito de la transaccién representa el nombre de una persona y que si el Cliente
los datos de campo coincide con el Nombre ambito de una persona una relacion puede ser identificados y direccidn de correo electrénico
de la persona utilizada.

Un ser humano puede hacer rapidamente esa determinacién porque un ser humano entiende que las etiquetas Cliente
y Nombre significar tanto la informacién acerca de las personas. Un proceso de software por desgracia no tiene esa

capacidad, ya que no tiene ninguna manera de representar esa semantica.

<Ejemplo>
<Personaid = "123">
<Nombre> J Doe </ nombre>
<Email_address> DOE @ myplace </ email> <phone_number> 123
456 7899 </ phone_number> </ Persona>

<Transaccion transID = "567">
<Downtick> 500 </ downtick> <Client> Josef Doe </ Client>
<ACCOUNTNUMBER> 333222111 </ ACCOUNTNUMBER> </
Transaccién> </ example>

Fig. 12.2 ejemplo XML 174

12.4 Creacidn y uso de metadatos para la Web Semantica 175

Para hacer frente a este problema, el RDF fue desarrollado como una representacién comprensible
maquina de relaciones entre las entidades. Se supone que cada entidad y la relacién se pueden identificar fi
con un URI. Estos URI se utilizan para formar una declaracién RDF de la forma {sujeto, predicado, objeto},
comunmente llamado un “triple”.

Para continuar con el ejemplo anterior discusion, la adicién de una relacion de RDF
llevada a cabo por (ver ejemplo RDF mas abajo) entre la transaccion y la persona (utilizando el carné de identidad atributos
como el unico er fi cacién) permite que una maquina para extraer la direccién de correo electrénico del propietario de la
transaccion, sin que se requiera la replicacion de la informacion. La declaracién RDF a continuacion indica que la persona

que hace referencia ID # 123 lleva a cabo la transaccién que hace referencia ID # 567.

<Http://example.net/transaction/id567> <http://example.net/conduc ted_by>
<http://different.example.net/person/id123>

La relacion es explicita y facilimente explotada usando programas de ordenador una vez por humanos identi fi
ca y los registros de la existencia de la relacion. RDF no resuelve todo el problema sin embargo, porque todavia no
existe un mecanismo para identificar automaticamente las relaciones o al detalle de cualquier restriccion de los
participantes en esas relaciones. Por ejemplo, un ser humano entiende rapidamente que una transaccién puede ser
realizada por una persona, pero que una persona no puede llevarse a cabo mediante una transaccion! EI RDF en el
ejemplo no tiene tales restricciones, por lo que los algoritmos de procesamiento de la RDF no hay manera de

verificar los tipos o atributos esperados de las entidades en las relaciones.

Una solucion parcial a la relacién de identi fi cacion problema se encuentra en los lenguajes de esquema de XML
y RDF. Los lenguajes de esquema permiten a priori definicion de entidades y relaciones que incluye dominios y
rangos para los atributos y entidades. Entidades (o relaciones) que hacen referencia al esquema para su de fi nicion
a continuacion, se puede comprobar su coherencia con el esquema. Los programas se pueden hacer cumplir las

restricciones de rango y tipo de datos durante el procesamiento de datos sin intervencion humana.

Junto RDF, XML y sus lenguajes de esquema proporcionan un método robusto, que puedan utilizarse para la
codificacion de metadatos y explotarlo para identificar automaticamente las relaciones entre las entidades. Sin embargo,
nuestra kitbag de tecnologias esenciales para la comprensién automatica de metadatos también tiene la capacidad de

hacer deducciones e inferencias sobre los metadatos.

Consideremos de nuevo el ejemplo de transaccion y el cliente. La finalizacion de una transaccién es
generalmente el resultado de la colaboracién entre varias personas, incluyendo un cliente, consultor fi nanciero, y
el secretario por ejemplo. Seria trivial para modificar el ejemplo de metadatos XML dado anteriormente para
representar tanto el consultor y empleado como parte de los metadatos de la transaccion, por tanto, que

representa explicitamente la relacion entre la transaccion y los individuos que colaboran.

Sin embargo, la colaboracion entre cualquier par particular de esas tres entidades (consultor, cliente,
ventas) no esta representado explicitamente en los metadatos. Un programa que tiene que identificar el cliente
y el consultor para una transaccién no tiene ningiin mecanismo para determinar si los clientes y consultores fi
cos se conocen entre si utilizando nuestro actual conjunto de metadatos. Una forma de solucionar este

problema es

12 La Web Semantica

sélo tiene que afiadir mas metadatos e identificar explicitamente la relacion cliente-consultor, pero incluso en
este pequefio ejemplo, es evidente que los metadatos superaria los datos rapidamente en cantidad. Una
solucion mas general es a de reglas l6gicas fi ne que delinean las posibles deducciones con los diferentes tipos
de metadatos. Esas reglas légicas de fi ne la semantica asociada con los metadatos y se describen con
frecuencia en relacion con la definicién de una ontologia formal. Las ontologias se explican en la siguiente

seccion.

Bien de fi nida y ordend a los metadatos es la columna vertebral de la Web Semantica. Los metadatos se utilizan para
ensamblar dinamicamente datos de una variedad de fuentes, para tomar decisiones informadas, y para proporcionar datos
J%qQ%EMCBﬁdJ@ﬂe%%EWQ@gQo%l\c],?&)r ejemplo, las vacaciones y el envio de mercancias. Mientras que las
tecnologias de metadatos se utilizan con mas frecuencia con la informacion basada en la Web en el momento, que se
pueden utilizar con el mismo poder para identificar las conexiones entre los servicios de software para los fines de la

creacion de cualquier sistema de software.

12.5 La semantica de poner en el Web

La unica caracteristica que distingue a la Web Semantica de la World Wide Web es la representacién y la
la relacién no se indica explicitamente en los metadatos disponibles o en el esquema. Un sistema de
utilizacién de significado o semantica. Una representaciéon comun para la semantica es una ontologia. Una
ontologia consiste en un conjunto de ideas o conceptos y la coleccién de las relaciones entre esos
conceptos.

Una ontologia se puede utilizar para identificar las ideas que estan relacionadas entre si y para proporcionar la
estructura y las reglas para un motor de razonamiento para hacer inferencias sobre esas ideas. Una ontologia modelos
tanto de abstraccion y relaciones de agregacion. ontologias modelo de dominio especi fi cas relaciones mas complejas
sobre los individuos y las clases de la ontologia también. Ontologias también pueden proporcionar informacién sobre los
conceptos que son equivalentes a otros conceptos. Cuando adecuadamente complejo, una ontologia puede proporcionar
la correspondencia entre diferentes vocabularios de metadatos, haciendo que la integracién de los procesos de software
mucho mas simple.

l6gica para identificar automaticamente una relacién entre un cliente y un asesor fi nanciero, incluso cuando

Por ejemplo, considere los fragmentos ontologia representados en la Fig. 12.3 . los
ontologia muestra que Los seres humanos y personas tener ocupaciones y que ciertos tipos de ocupaciones tener
relaciones con otros conceptos en la ontologia. Ambos
estudiantes y instructores tienen que ver con cursos y ambos autores y editores tienen que ver con Publicaciones. Esta
ontologia podria ser utilizado por un sistema automatizado para identificar entidades relacionadas o identificar el uso
de conceptos equivalentes (tales como
Humano y Persona en este ejemplo). La ontologia proporciona axiomas légicos a un sistema de razonamiento,
que luego pueden hacer inferencias sobre la informacién.

Dentro de la Web Semantica, el buho es una representacion comun de los axiomas y conceptos de
dominio.

Considere una vez mas el ejemplo de la transaccion financiera. Una ontologia podria proporcionar la

12.5 La semantica de poner en el Web 177

Fig. 12.3 ejemplo ontologia
Persona Humano

*

have_occupation have_occupation *

Ocupacion
% /& un esun es un
Editor Autor Estudiante Instructor

* * %

editores * escrige

asist ensefa
Publicacion Curso
esun libro | has_text *
y
Journal_Article isa

reglas o entrenamiento correcto, que un cliente y consultor se conocen el uno al otro si han colaborado
en un numero fi cado de las transacciones. Una norma adicional podria indicar que si han colaborado

en mas de un tipo de transaccién, que son bien conocidos entre si.

En conjunto, los datos de la transaccion financiera, los metadatos y la ontologia conforman una base de conocimientos
que no solo proporciona informacion sobre las transacciones fi nancieras y los clientes, sino que también se pueden utilizar
para identificar las relaciones entre los seres humanos especi fi cas. Informacién acerca de las relaciones cliente-consultor
podria ser util a alguien analizar las transacciones financieras con el fin de identificar los conjuntos o grupos de personas que
llevan a cabo las clases especi fi cos de las transacciones (es decir, las transacciones que ocurren en un periodo de tiempo
determinado), o tal vez para las organizaciones que necesitan para determinar el alcance de determinados consultores

financieros.

Una ontologia también puede contener reglas que limitan las relaciones. Supongamos que el ejemplo ontologia
contenia una regla que se opone a la misma persona de ser el cliente y el empleado para una transaccion. La
ontologia podria utilizarse, en conjuncién con un motor de razonamiento, para detectar errores en la informacién o
para evitar errores en la entrada de datos. Ontologias proporcionan un significado para los metadatos que forman la

columna vertebral de la Web Semantica.

XML, RDF, OWL y son las tecnologias basicas que apoyan la Web Semantica, que ahora esta empezando a

aparecer en la corriente principal de la web y en aplicaciones industriales

178 12 La Web Semantica

aplicaciones. El Hacker Semantica 1 es un ejemplo de una demostracién independiente de las posibilidades de la
Web Semantica para el descubrimiento de informacién. Ontoprise 2 utiliza tecnologias de Web Semantica para
desarrollar sistemas de solucién de problemas y la validacién de disefios que funcionan como sistemas expertos con
mas flexibilidad en la definicién y mantenimiento de datos y reglas. Sus clientes incluyen a los fabricantes de

automadviles, fabricantes de robots industriales y empresas de inversion.

Una de las di fi cultades para la rapida adopcion de las tecnologias de la Web Semantica fue la di fi cultad en
la creacion y desarrollo de materiales. El dominio de XML, RDF, OWL y requiere un alto nivel de conocimientos
técnicos y un compromiso no puede signi fi tiempo. Esta barrera para su uso se ha desacelerado la adopcién de
las tecnologias y también enmascarado gran parte del progreso en el desarrollo de sitios Web Semantica detras

de prototipos y aplicaciones de prueba de concepto. Afortunadamente, en los Ultimos afios que ha cambiado.

En el Gltimo afio o asi, la atencion se ha desplazado de las organizaciones individuales que proporcionan especificidad ¢
sitios web habilitados semanticamente a los vendedores que envuelven las tecnologias asociadas a la Web Semantica en los
sistemas llave en mano para la publicacién de determinados tipos de informacion. Por ejemplo, AllegroGraph 3 proporciona un
sistema de base de datos y lenguaje de consulta para la gestién de datos RDF, SPARQL y consultas utilizando los servicios
de razonamiento en los datos, lo que libera a los desarrolladores potenciales de la necesidad de construir una comprensién
profunda de esas tecnologias. Thetus 4 proporciona un sistema para hacer el modelado del conocimiento de toda la empresa
utilizando la tecnologia de Web Semantica. Con el aumento de los proveedores de herramientas de publicacion y la autoria,

la incidencia de las aplicaciones y los sitios web semanticas basadas en la Web seguird aumentando.

12.6 La semantica para ICDE

El sistema ICDE se beneficiaria del uso de ontologias para apoyar el intercambio de informacién y tareas de
integracién de herramientas de terceros. Como insinuado en la introduccién capitulo, una tarea dentro analisis
transaccion financiera que se beneficiaria enormemente de una descripcion de la semantica solido es la
identificacion de vocabularios consistentes. Se muestra en la Fig. 12.4 es una porcién de una ontologia financiera
fi originalmente creado por Teknowledge s como parte de la ontologia SUMO. El fragmento de la ontologia

muestra diferentes tipos de transacciones financieras fi dispuestos en una jerarquia abstracto.

Supongamos que esta ontologia esta disponible para el sistema ICDE, y un usuario ICDE estaba analizando

el ejemplo presentado en la Fig. 12.2 . En esos datos, downtick es el

1 http://www.semantichacker.com/

2 http://www.ontoprise.de/de/en/home/products/semanticguide.html
3 http://www.agraph.franz.com/allegrograph/

4 http://www.thetus.com/

s http://www.teknowledge.com/

12.6 La semantica para ICDE 179

Transaccion financiera

esun esun | esun es un esun

StockMarketTransaction SHORTSALE fuerte ClosingAnAccount

Asignacion de activos

esun esun

downtick Uptick

Fig. 12.4 Una ontologia transaccién financiera sencilla fi

cuenta mantenida*
" Contrato
Agente cognitiva
A
A
esun esun
titular de la cuenta*
Cliente Contrato financiera
. . esun
esun Cuenta financiera
. tramitado cuenta*
cuenta administrada*
ion lizad:
Corredor 4

Consultor cuenta* Transaccion financiera

Fig. 12.5 Reglas en una ontologia

etiqueta XML para el ID de transaccién, una opcion que podria evitar que otras herramientas de terceras partes del
ICDE de hacer uso de los datos debido a que la etiqueta XML no es estandar. Sin embargo, el uso de la ontologia y
un motor de razonamiento, es sencillo determinar que downtick es un tipo de Transaccién financiera y que la
informacion debe ser compartida con cualquier herramienta que estan interesados en los datos sobre las

transacciones financieras.

Ontologias podrian proporcionar mucho mas que servicios tesauro para herramientas ICDE. Una ontologia OWL
puede codificar reglas complejas sobre las relaciones entre los individuos de un tipo particular conceptual, lo que

permitiria motores de razonamiento para hacer deducciones acerca de los elementos de datos individuales.

Considere el fragmento ontologia se muestra en la Fig. 12.5 . Esto demuestra que la ontologia
contiene reglas que describen las relaciones entre cuentas, los titulares de cuentas, transacciones y corredores. Un
motor de razonamiento puede usar estas descripciones para deducir relaciones entre un cliente particular y un corredor
o para deducir que un corredor particular tenia una participacion probable con una transaccioén individual, incluso

cuando los datos que estan siendo analizados no contenia ninguna vinculacién fi especifico entre las dos entidades.

180 12 La Web Semantica

Este tipo de ontologia compartida podria permitir a colaborar herramientas de terceros ICDE partido para ayudar a la
notificacion de usuario previamente conexiones invisibles dentro de los datos. Por ejemplo, supongamos que una herramienta
ayudo a seleccionar un usuario y analizar determinados tipos de transacciones financieras. Otra herramienta asistido al usuario
a identificar las redes sociales de los individuos sobre la base de intereses comunes en las cuentas. Individualmente, ninguna
de estas dos herramientas seria descubrir relaciones entre un asesor y un tipo particular de transaccion, pero los resultados
individuales de las dos herramientas se podrian combinar (posiblemente por un tercio de la herramienta) para descubrir las

relaciones implicitas.

12.7 Servicios de Web Semantica

servicios web y arquitecturas orientadas a servicios fueron presentados en el capitulo anterior como un paso significativo
hacia una solucién sencilla para los problemas de interoperabilidad que normalmente afectan a las aplicaciones
empresariales. Los servicios Web también juegan un papel en la Web Semantica. Dado que las aplicaciones de Web
Semantica aumentan en complejidad, y como consumidores de informacion se vuelven mas exigentes, el foco esta pasando
de la informacién semanticamente direccionable a los servicios semanticamente direccionables que permiten la creacion de

sistema de software personalizado, o servicios de la Web Semantica automatizados.

Las herramientas actuales proporcionar la capacidad para describir servicios Web, pero no tienen medios
adecuados para la categorizacion y la utilizacion de esas descripciones. Las categorizaciones disponibles, tales como
WSiIndex sy Ping de la Web Semantica, 7 estan disefiados principalmente para uso humano en lugar de la maquina.
composicién del sistema automatizado es el tema de prototipos de prueba de concepto en el momento, pero pocos

sistemas operativos.

Sin embargo, los servicios web se construyen tipicamente con descripciones de metadatos generosas,
que es el componente clave de la Web Semantica. Al igual que con todos los metadatos, la di fi cultad en su
uso para la composicién dinamica radica en la comprension de la semantica. Como era de esperar, una
comunidad de investigacion importante se centra en la aplicacion de ontologias y tecnologias de Web
Semantica para definir un dominio llamado los servicios de la Web Semantica. los servicios de la Web
Semantica proporcionan un mecanismo para crear, localizar y utilizar semanticamente ricas descripciones de
los servicios. Una de las tareas mas importantes para esta comunidad es la estandarizacién de la descripcion
de la semantica asociada con descripciones de los servicios Web. Una vez que la semantica son claras,
descripciones de servicios Web se pueden utilizar para crear las especificaciones para servicios compuestos,

para representar la légica de negocio a un nivel mas abstracto,

Uno de los lenguajes subyacentes para la anotacién semantica de los servicios Web es SAWSDL
(Anotaciones semanticas para Web Services Description Language). s

s http://www.wsindex.org
7 http://www.pingthesemanticweb.com/

s http://www.w3.0rg/2002/ws/sawsdl/

12.8 El optimismo Continuacion 181

SAWSDL no especifica la ontologia sino que proporciona el lenguaje para identificar los conceptos
ontolégicos asociados a un servicio web dentro de la descripcion del servicio. SAWSDL describe la
definicién de anotaciones para un pequefio subconjunto de los posibles componentes de una descripcion
WSDL. SAWSDL es ontologia agnéstico, en que la especificacion no hace referencia a un idioma preferido

o codificacién para ontologias.

Idiomas para la descripcion de ontologias acerca de los servicios Web incluyen OWL-S, una variante fi
co-servicio especifico de buho y los Servicios Web Modelado Ontologia (WSMO). Estos lenguajes permiten la
integracion de anotaciéon semantica con la Web Services Description Language (WSDL). Integracién con WSDL
es importante ya que la mayoria de los servicios web existentes utilizan WSDL como base para la descripcion del
servicio. La creacion de servicios de Web Semantica para el publico en general, sin embargo parece bastante
lejos por el momento. Existen buenas prototipos y la comunidad de la Web Semantica esté llegando lentamente a

un acuerdo acerca de las lenguas y de fi niciones necesarias para realizar servicios de Web Semantica.

Las tecnologias de la pena observar, sin embargo, ya que los éxitos en la construccion y utilizacion de servicios Web
Semantica cambiara la forma en que se cred el software. El estado actual de los servicios de la Web Semantica se muestra
prometedor para la integracion de la empresa, pero en la actualidad carecen de la capacidad para el descubrimiento y
composicion de los servicios automatizados. No obstante, parece inevitable que los Servicios Web Semantica pronto
definen un mecanismo automatizado para el hallazgo y los servicios que componen y cambiar la forma de pensar acerca de

los sistemas de software.

12.8 El optimismo Continuacion

La Web Semantica ha gozado de inmensa publicidad en los Ultimos afios. Muchas descripciones de los proyectos de
investigacion se han ajustado rapidamente para reflejar incluso el mas pequefio de conexién a la Web Semantica en un
esfuerzo para tomar ventaja de que la popularidad. Por supuesto, esto se traduce en un aumento en el alcance de la
investigacion que dice ser la investigacion de la Web Semantica, la reduccion de la concentracién de actividad para abordar

los objetivos importantes de semanticamente ricos, los metadatos comprensible maquina para datos y procesos.

Mientras que muchos creen en las tecnologias, la cautela general parece prevalecer. En la superficie, la Web
Semantica se parece a una refactorizacion de los proyectos de inteligencia arti fi ciales que pasaron de moda hace
varios afios. Sin embargo, la necesidad de que las representaciones semanticas de software y sistemas de
informacioén estd ampliamente reconocida, y la demanda de soluciones reales esta creciendo. Esta vez, los objetivos

de investigacion estan mas alineados con las necesidades del publico, y la tecnologia podria ganar aceptacion.

La Web Semantica tiene todos los problemas de gestion de datos asociados con cualquier sistema de
informacién general. ; Quién tomara el tiempo para proporcionar todos los metadatos detallada sobre los servicios
e informacion existentes? ;Quién controla la informacién y los servicios de integridad, autenticidad y exactitud?
¢, Como estan las leyes y los problemas de privacidad abordados cuando se calcula se compone de servicios

distribuidos? proveedores de servicios Web surgirdn como una nueva categoria de negocio, pero ;cémo van a

12 La Web Semantica

vigilar y regular? A medida que los sistemas se construyen que se basan en los metadatos de calidad, su mantenimiento y
conservacion se convertiran en cuestiones operacionales vitales.

A pesar del caracter prototipico de la mayoria de los sistemas operativos hasta el momento, la Web Semantica
coloca nuevas técnicas, nuevas aplicaciones y experiencias importantes en la caja de herramientas de los arquitectos
de software. La Web Semantica es simplemente un conglomerado de herramientas y tecnologias que cooperan, pero
precisamente por la articulacion flexible entre las tecnologias de la Web Semantica ofrece una caja de arena flexible

para el desarrollo de nuevos marcos y arquitecturas.

Y, si uno mira mas alla del bombo, los objetivos de la comunidad de la Web Semantica son los mismos que los objetivos
de la arquitectura de software distribuido: crear débilmente acoplado,, e fi ciente de software fiable que responda a las
necesidades de los usuarios. A través de los mecanismos de fi nidas formal de razonamiento para con los metadatos, la
Web Semantica proporciona la base para la creacion de software que es verdaderamente sensible a las necesidades de los

usuarios, sus tareas y su contexto fisico.

Los desarrolladores de software e investigadores estan respondiendo rapidamente a las necesidades de la
computaciéon semantica. EI Semantic Web Conference 2008 organizo un itinerario de investigacion, una Web
Semantica “en uso” de la pista, y talleres y tutoriales sobre todo, desde la seguridad de los sistemas de razonamiento.
El tema es activa tanto en la industria y en el mundo académico. La arquitectura de servicios Web Semantica
identificado mensaje es la mediacion, la seguridad, la composicién de procesos, negociacion y contratacion, y la
formulacién mensaje como aspectos importantes de la Web Semantica, y cada uno de éstos se esta explorando y
prototipos. Desarrollos como SAWSDL y ontologias servicio (OWL-S y WSMO) son prometedores como descripcion
del proceso y composicion idiomas. La Web Semantica y la arquitectura de software sigan trayectorias que convergen

réapidamente en un nuevo semanticamente impulsado, modo de construccion de software,.

12.9 Lectura adicional

Tres libros generales sobre la Web Semantica son:

Liyang Yu Introduccion a la Web Semantica y la Web Semantica Servicios Chapman
& Hall / CRC. 2007.

Pascal Hitzler, Sebastian Rudolph, Markus Kroetzsch, Fundamentos de la Semantica
Tecnologias Web, Chapman & Hall / CRC. 2009.

Michael C. Daconta, Leo J. Obrst, Kevin T. Smith, La Web Semantica: Una guia para
el futuro de XML, Servicios Web, y Gestion del Conocimiento, Wiley 2010.

Nigel Shadbolt, Wendy Hall, y de Tim Berners-Lee 2006 revisitacion del la Ciencia articulo original
estadounidense La Web Semantica arroja luz sobre la vision de la gente en el frente de batalla y lo que creen

que se requiere para hacer realidad la promesa de la Web Semantica.

Shadbolt, N., Berners-Lee, T., y Hall, W. 2006. La Web Semantica Revisited.
IEEE Intelligent Systems 21, 3 (May. 2006), 96-101. 182

12.9 Lectura adicional 183

David Provost ha revisado recientemente una serie de organizaciones de la industria de la Web
Semantica y publicado su informe bajo Creative Commons License. Se titula
En la cuspide, un Examen Global de la Industria de la Web Semantica y esta disponible en:
http://www.davidprovost.com/

El sitio Web del W3C es una fuente de gran informacién sobre la Web Semantica:
http://www.w3.0rg/2001/sw/

Especi fi cas detalles sobre algunas de las tecnologias se pueden encontrar en los siguientes lugares en linea:

BUHO http://www.w3.0rg/2007/OWL/wiki/lOWL_Working_Group
SAWSDL http://www.w3.0rg/2002/ws/sawsdl/

RDF http://www.w3.org/RDF/

WSMO http://www.cms-wg.sti2.org/home/

OWL-S http://www.daml.org/services/owl-s/

Una herramienta para la construccion de ontologias se puede descargar libremente desde http: // www. protege.stanford.edu/ . Es

una buena herramienta para explorar como las ontologias pueden ser construidos y utilizados:

capitulo 13
Arquitecturas Orientada a Aspectos

Yan Liu

13.1 Aspectos para el Desarrollo del ICDE

El entorno 2.0 ICDE tiene que cumplir con ciertos requisitos de rendimiento para las recuperaciones de datos API.
Para tratar de garantizar este nivel de rendimiento, el comportamiento real de una aplicaciéon ICDE debe ser
monitoreado. La supervision del rendimiento permite que las acciones correctivas a ser tomadas por el equipo de

desarrollo si el nivel de rendimiento requerido no se cumple.

Sin embargo, v2.0 ICDE es un sistema grande, multihilo y distribuido, que comprende tanto off-the-shelf y
componentes de encargo por escrito. Tales sistemas son culto fi notoriamente dif para controlar y aislar la

causa raiz de los problemas de rendimiento, especialmente cuando se ejecuta en entornos de produccion.

La estrategia tradicional para el control de rendimiento de las aplicaciones y la localizacion de los componentes
causando cuellos de botella es para instrumentar el cédigo de la aplicacién con llamadas para registrar el tiempo y
la utilizacion de recursos. Sin embargo, este enfoque lleva a duplicar el codigo que se inserta en diversos lugares
de la fuente. Como siempre, cédigo duplicado crea cédigo de hinchazon, es propenso a errores y hace que sea

mas dificil mantener la aplicacion como la aplicacion ICDE evoluciona.

El ICDE teamwas consciente de los problemas de ingenieria de la insercién de codigo de monitorizacion del
rendimiento a lo largo de la base de codigo ICDE. Por lo tanto, que buscaban una solucién que pudiera separar el
cédigo de supervision del rendimiento de la implementacién de la aplicacién de forma modular, mas facil de
mantener. AUn mejor seria si fuera posible inyectar el codigo de supervision del rendimiento en la aplicacion sin la

necesidad de volver a compilar el cédigo fuente.

Por lo tanto, el equipo ICDE comenzé a mirar a los enfoques y tecnologias basadas en el aspecto para hacer frente a su
problema de supervision del rendimiento. programacion de cédigos de estructuras (AOP) orientada a aspectos en los médulos
conocidos como aspectos. Los aspectos se fusionaron luego al compilar o en tiempo de ejecucién para formar una solicitud
completa.

El resto de este capitulo se proporciona una vision general de AOP, sus elementos esenciales y soporte de
herramientas. También se analiza la influencia de los enfoques basados aspecto sobre arquitectura y disefio. Por dltimo,
el capitulo se describe como el sistema ICDE podria aprovechar las técnicas basadas en aspecto a supervisar el

rendimiento de aplicaciones de una manera flexible, modular y facil de mantener altamente fl.

|. Gorton, Arquitectura de Software esencial, 185
DOI 10.1007 / 978-3-642-19176-3_13, # Springer-Verlag Berlin Heidelberg 2011

13 Arquitecturas Orientada a Aspectos

13.2 Introduccién a la Programacion Orientada a Aspectos

programacion orientada a aspectos (AOP) es un enfoque de disefio de software inventado en Xerox PARC en la década de
1990. 1 El objetivo de AOP es dejar que los disefiadores y desarrolladores separar mejor las “preocupaciones transversales”
que un sistema de software debe abordar. preocupaciones transversales son elementos de comportamiento de un sistema
que no se pueden localizar faciimente a los componentes mercantiles en la arquitectura de una aplicacion. preocupaciones
transversales comunes son el manejo de errores, los controles de seguridad, registro de eventos y manejo de
transacciones. Cada componente de la solicitud debe incluir tipicamente cdédigo especi fi ca para cada preocupacion

transversal, por lo que el cédigo del componente mas complejo y mas dificil de cambiar.

Para abordar las preocupaciones transversales, AOP proporciona mecanismos para la identificacion sistematica, la

g%pm&éigpellpaée?%m@ﬁ@& YJagggnposicion. preocupaciones transversales estan encapsulados en médulos separados,

llamados “aspectos”, por lo que la localizacién se puede lograr.

AOP tiene una serie de beneficios potenciales. En primer lugar, ser capaz de identificar y representar de forma explicita las
preocupaciones transversales ayuda a los arquitectos consideran el comportamiento transversal en términos de aspectos en una
etapa temprana del ciclo de vida del proyecto. En segundo lugar permite a los desarrolladores reutilizar facilmente el cédigo de
un aspecto en muchos componentes, y por lo tanto reduce el esfuerzo de utilizar (a menudo esto significa copiar) el cédigo. En

tercer lugar, AOP promueve una mejor modularidad y encapsulacién como cédigo de componente es sucinta y despejada.

Estructuracion de las aplicaciones con los aspectos y la ejecucion directa del disefio utilizando lenguajes de
programacion orientada a aspectos, tiene el potencial para mejorar la calidad de los sistemas de software. Aspectos
pueden hacer posible que los sistemas de software grandes y complejos que se incluyen y recomponen en las

ofertas simples y de mayor calidad. Para ver como funciona esto, veamos este enfoque en mas detalles.

Orientada a Aspectos, Actas de la Conferencia Europea sobre programacion orientada a objetos, vol. 1241.

13.2.1 Las preocupaciones transversales

Separacion de intereses es un principio fundamental de la ingenieria de software. Este principio ayuda a gestionar la
complejidad del desarrollo de software mediante la identificacion, la encapsulacién y la manipulacién de aquellas
partes del software correspondiente a una preocupacion particular. Un “preocupacion” es un requisito especi fi co o

consideracion que debe ser tratado con el fin de satisfacer el objetivo general del sistema.

1 Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., tier Loing, J.-M., y Irwin, J, Programacién

13.2 Introduccion a la Programacion Orientada a Aspectos 187

Cualquier aplicacion se compone de multiples preocupaciones funcionales y no funcionales.
preocupaciones funcionales son relevantes para el uso real de la aplicacién, mientras que las preocupaciones
no funcionales se refieren a los atributos de calidad globales del sistema, tales como el rendimiento, las
transacciones y la seguridad. Incluso las aplicaciones que estan disefiadas de una manera altamente modular
sufren de enredos de los aspectos funcionales y no funcionales. Por ejemplo, la légica de caché para mejorar el
rendimiento de base de datos podria estar integrada en la légica de negocio de muchos componentes
diferentes, mezclando asi que se enreden o preocupaciones funcionales y de rendimiento. Otros ejemplos de
preocupaciones transversales incluyen la supervision del rendimiento, control de transacciones, autorizaciéon de
servicio, el control de errores, el registro y la depuracién. El manejo de estas preocupaciones se extiende a

través de multiples modulos de aplicacion,

13.2.2 Las preocupaciones con Gestion de los Aspectos

El uso de técnicas de disefio convencionales, una preocupacion transversal puede ser en médulos mediante una
interfaz para encapsular la aplicacion de la preocupacion de sus componentes de cliente que invocan. Aunque la
interfaz reduce el acoplamiento entre los clientes y la aplicacion de la preocupacion, los clientes todavia tienen
que integrar cédigo para llamar a los métodos de interfaz desde dentro de su légica de negocio. Esto contamina la

légica de negocio.

Con un disefio y programacion orientada a aspectos, cada una preocupacion transversal se lleva a cabo por
separado en un componente conocido como un aspecto. En la Fig. 13.1, La diferencia entre la aplicacion de una
preocupacioén de registro utilizando la programacion convencional y AOP se demuestra. El aspecto de fi ne puntos
de ejecucion de los componentes del cliente que requieren la aplicacién de la preocupacion transversal. Para

cada

Invocack :> '..'......>
" teje Aspecto
API IR
*
.0
Model M
Model
M Manager
anager
9 e Acceso
-
4‘ - Control de
> Modelo de
*
N Control de modelo de visitante .’.
modelo de visitante Acceso o control de
*
‘.0 Aspecto de
Empleado
Empleado
1. (a) modelo convencional 2. (b) Modelo AOP

Fig. 13.1 Implementacién de una preocupacion tala

13 Arquitecturas Orientada a Aspectos

punto de ejecucion, el aspecto y luego define el comportamiento necesarios para implementar el comportamiento aspecto,
como llamar a una API de registro.
Es importante destacar que los mddulos cliente ya no contienen ningtin cédigo para invocar la aplicacion aspecto. Esto

lleva a los componentes del cliente que no estan contaminados por las llamadas a implementar una o mas preocupaciones.

Una vez de fi nido, el uso de un aspecto es especificados en las reglas de composicion. Estas reglas de composicion
son introducidos en una utilidad de programacioén conocido como un “tejedor”. Un tejedor transforma el cédigo de la
aplicacion, componiendo el aspecto con sus clientes que invocan. lenguajes de programacion orientada a aspectos tales
como AspectJ proporcionan herramientas de tejer, y por lo tanto son necesarios para aplicar eficazmente disefios orientadas

a aspectos lenguajes y herramientas de AOP.

13.2.3 Sintaxis AOP y Programacion Modelo

“Transversal” es una técnica de AOP para permitir la identificacion fi de las preocupaciones y la estructuracion de ellos en
modulos de manera que pueden ser invocados en diferentes puntos a lo largo de una aplicacion. Existen dos variedades
de corte transversal, a saber, estaticas y dinamicas. dinamica transversal modi fi ca el comportamiento de ejecucion de un
objeto tejiendo en un nuevo comportamiento en puntos especi fi cos de interés. transversal estatico altera la estructura
estatica de un componente mediante la inyeccién de métodos adicionales y / o atributos en tiempo de compilacion. Las

construcciones basicas del lenguaje y la sintaxis utilizados para definir transversal en AOP son:

\Un “punto de unién” es una identi fi punto de ejecucion capaz en una aplicacion, tal como una

llamar a un método o una asignacion a una variable. Unirse puntos son importantes, ya que son los

comportamientos de aspecto donde se tejen en la aplicacion.
\Un “punto de corte” identifica las unirse a un punto en el programa en el que un eje transversal

preocupacion debe ser aplicada. Por ejemplo, la siguiente define un punto de corte cuando el valor ajustado método

de la Valores clase se llama:

de registro de punto de corte (String msg): args (msg)
ejecucion (void Stock.setValue (float))

\Un “consejo” es una pieza de cddigo que implementa la légica de una preocupacion transversal.

Se ejecuta cuando se alcanza un especi pointcut fi ed.
1\Una “introduccion” es una instruccién transversal que puede hacer cambios a estaticas

los componentes de aplicacién. Una introduccion puede ser, por ejemplo, afiadir un método a una clase en la

aplicacion.
\Un aspecto en el AOP es equivalente a una clase en la programacion orientada a objetos. Eso

encapsula puntos de corte y asesoramiento asociado e introducciones.

En la Fig. 13.2 se ilustra la relacion entre estos términos AOP. 188

13.2 Introduccién a la Programacion Orientada a Aspectos 189

llamadas

Callee.myMethod () de

destinatario de la llafhada
Y

Punto de Ingreso < Consejo

unirse a (expresado en pointcut)

Y

myMethod public void () {

Fig. 13.2 La anatomia de AOP

13.2.4 Weaving

Al darse cuenta de un disefio orientado a aspectos requiere apoyo lenguaje de programacioén para poner en practica
los aspectos individuales. El lenguaje también de fi ne las reglas para la aplicacion de tejer un aspecto con el resto

del codigo de la aplicacion. Tejer puede seguir una serie de estrategias, a saber:

1. Una fuente especial de cédigo de preprocesador ejecutada durante la compilacion

2. Un postprocesador que los parches de archivos binarios

compilador 3. Un AOP-consciente de que genera tejida binario fi les

4. Cargar en tiempo tejer (LTW); por ejemplo, en el caso de Java, tejiendo el asesoramiento pertinente mediante la
carga de cada clase de consejo en la JVM

5. tiempo de ejecucion de tejer (RTW); interceptando cada unién punto en el tiempo de ejecucion y la ejecucion de todos los consejos

pertinentes. Esto también se conoce como “hotswapping” después de la clase es cargada

La mayoria de los lenguajes AOP soporte en tiempo de compilacion tejer (CTW) usando uno de los primeros tres
opciones. En el caso de Java, la forma en que normalmente funciona es que el compilador de Java genera la clase
estandar binario archivos, que cualquier JVM estandar puede ejecutar. Entonces el . clase archivos son modi fi cado en
base a los aspectos que se han de fi nido. CTW no es siempre la mejor opcién, sin embargo, ya veces simplemente no es

posible (por ejemplo, con Java Server Pages).

LTW ofrece una mejor solucion con mayor flexibilidad. En el caso de Java, LTW requiere que el cargador de clases
JVM para poder transformar o clases de instrumentos en tiempo de ejecucion. el JDK2v5.0 admite esta funcion a través
de un mecanismo estandar simple. LTW debe procesar el cédigo de bytes de Java en tiempo de ejecucién y crear

estructuras de datos (esto puede

2 Kit de desarrollo de Java.

190 13 Arquitecturas Orientada a Aspectos

ser lento) que representan el cédigo de bytes de una clase particular. Una vez que todas las clases se cargan, LTW no tiene
ningun efecto sobre la velocidad de la ejecucion de la aplicacion. AspectJ, 3
JBoss AOP 4y AspectWerkz s Ahora apoyar LWT.

RTW es una buena opcién si aspectos deben estar habilitadas en tiempo de ejecucion. Sin embargo, al igual que LTW, RTW

puede tener inconvenientes en términos de rendimiento en tiempo de ejecucion, mientras que los aspectos se tejieron en.

13.3 Ejemplo de un aspecto de la caché

En esta seccion vamos a utilizar un ejemplo sencillo para ilustrar el modelo de programacién de AOP. s Esta sencilla
aplicacion calcula el cuadrado de un entero dado. Con el fin de mejorar el rendimiento, si un valor de entrada particular,
se ha encontrado antes, su valor cuadrado se recupera de una memoria caché. La memoria caché es una

preocupacion transversal, no es una parte esencial de calcular el cuadrado de un nimero entero.

El ejemplo se implementa utilizando AspectJ y se muestra en la Fig. 13.3 . El caché es
implementado como un aspecto en Cache.aj y separada de la implementacién de la aplicacion de nucleo, Application.java.
El método calculateSquare es un punto de unién y es identi fi cado por el punto de corte calcular en el Cache aspecto,

como en el siguiente:

Calcular el punto de corte (int i): args (i)
&& (ejecucion (int Application.calculateSqure (int)));

La implementacion de la funcién de caché, recuperando un valor de una java.util. Tabla de picadillo, se
proporciona dentro de la alrededor Consejo. Tenga en cuenta que este consejo se aplica sélo a la clase Solicitud. El

aspecto caché se teje en el codigo de la aplicacion en tiempo de compilacién usando un compilador AspectJ.

La siguiente salida de la ejecucién del programa demuestra el consejo se invoca en el punto de
union.

aspecto de la caché se invoca para el parametro 45 El cuadrado de
45 es 2,025
aspecto de la caché se invoca para el parametro 64 El cuadrado de
64 es 4,096
aspecto de la caché se invoca para el parametro 45 El cuadrado de
45 es 2,025
aspecto de la caché se invoca para el parametro 64 El cuadrado de
64 es 4,096

3 http://www.eclipse.org/aspectj/
4 http://www.jboss.org/products/aop
5 http://www.aspectwerkz.codehaus.org/

s Chapman, M., Hawkins, H. Las aplicaciones Java orientadas a aspectos con Eclipse y AJDT, IBM developerWorks, http://www-128.ibm.com/

13.4 Arquitecturas Orientada a Aspectos 191

/I El codigo fuente de Application.java
El almacenamiento en caché el paquete;

Aplicacion public class {
principales (args String []) {public static void
System.out.printin ("El cuadrado de 45 es" + calculateSquare (45)); System.out.println ("El cuadrado de 64
es" + calculateSquare (64)); System.out.printin ("El cuadrado de 45 es" + calculateSquare (45));
System.out.println ("El cuadrado de 64 es" + calculateSquare (64)); } Private static int calculateSquare (int
numero) {

tratar {
Thread.sleep (6000);
} Catch (es decir InterruptedException) {} nimero de

devolucién * nimero; }}

/I El cédigo fuente de Cache.aj
El almacenamiento en caché el paquete;
java.util.Hashtable importacion; Caché

aspecto publico {
valueCache Hashtable privado; Calcular el punto de corte (int
i): args (i)
&& (ejecucion (int Application.calculateSquare (int))); int alrededor (int i): el calculo de (i) {

System.out.println ("Caché aspecto se invoca para el parametro” + i); si (valueCache.containsKey (new

Integer (i))) {
retorno ((entero) valueCache.get (new Integer (i))) intValue ().; } Cuadrado int = proceder (i);

valueCache.put (new Integer (i), new Integer (cuadrado)); volver cuadrado; } Caché
publica () {

valueCache = new Hashtable (); }}

Fig. 13.3 Un aspecto caché implementada utilizando AspectJ

13.4 Arquitecturas Orientada a Aspectos

Un aspecto relacionado con la calidad de un sistema atribuye en gran medida influye en la arquitectura de la aplicacion, y
muchos de estos aspectos son basicamente imposible de localizar. Por ejemplo, para garantizar el rendimiento de una
aplicacion débilmente acoplados, la consideracion se debe pagar al comportamiento de los componentes individuales y
sus interacciones con los otros. Por lo tanto, las preocupaciones tales como el rendimiento tienden a cortar
transversalmente la arquitectura del sistema a nivel de disefio, y que no pueden ser simplemente capturados en un solo

modulo.

AOP proporciona una solucién para el desarrollo de sistemas mediante la separacion de las preocupaciones
transversales en moédulos y sin apretar el acoplamiento de estas preocupaciones a requisitos funcionales. Ademas, se
han propuesto las disciplinas de disefio como el disefio orientado a aspectos (AOD) y el desarrollo de software
orientado a aspectos (AOSD) para extender los conceptos de AOP a etapas anteriores del ciclo de vida del software.

Con AOD y AOSD, la separacion de las preocupaciones se dirige en dos niveles diferentes.

13 Arquitecturas Orientada a Aspectos

En primer lugar a nivel de disefio, tiene que haber una clara identificacion y definicion de la estructura de los
componentes, aspectos, puntos de unidn y su relacion. Aspecto de disefio y modelado son las principales actividades de

disefio en este nivel. preocupaciones individuales tienden a estar relacionada con multiples artefactos arquitectdnicos.

Por ejemplo, una preocupacién para el rendimiento puede estar asociado con un conjunto de casos de uso
en los requisitos de arquitectura, un nimero de componentes en el disefio y algunos algoritmos para ef fi
cientemente ejecucion componentes ldgicos especificos. Los requisitos para cada aspecto necesitan ser
extraido de la declaracion del problema original y la arquitectura tiene que incorporar aquellos aspectos e
identificar su relacion con otros componentes. También es importante identificar posibles con fl ictos que
surgen cuando los aspectos y componentes se combinan en este nivel. Para ser eficaz, este enfoque requiere

que ambas metodologias de disefio y soporte de herramientas para modelar aspectos.

En segundo lugar, a nivel de aplicacion, estos aspectos arquitecténicos se deben asignar a una
aplicacion de aspecto y teje en la ejecucion de otros componentes. Esto requiere no sélo la expresividad de
un lenguaje de AOP que puede proporcionar la semantica para implementar puntos de unién, sino también
una herramienta de tejido que puede interpretar las reglas de tejido y combinar las implementaciones de

aspectos.

distribuidos, IEEE Computer Society, (2003), 14 (11): 1058 - 1073. 192
13,5 aspectos arquitectonicos y Middleware

Como se explica en el capitulo. 4, las tecnologias de middleware basadas en componentes tales como JEE proporcionan
servicios que apoyan, por ejemplo, procesamiento distribuido transaccion, seguridad, servicios de directorio, servicios de
integracion, la agrupacién de conexiones de base de datos, y asi sucesivamente. Los diferentes temas tratados por estos
servicios son también las preocupaciones no funcionales primarias seleccionadas por AOSD. En este caso, tanto la tecnologia

de componentes y AOP abordan el mismo tema de la separacion de las preocupaciones.

No es sorprendente entonces, middleware es uno de los dominios mas importantes para la aplicacion de AOP.
La investigacion sobre la mineria aspecto 7 muestra que el 50% de las clases en tres implementaciones CORBA ORB
son responsables de la coordinacion con un aspecto particular. AOP se ha utilizado en tales casos refactorizar

efectivamente un ORB CORBA y modularizar su funcionalidad.

A raiz de estos esfuerzos, se han hecho intentos para introducir AOP para encapsular los servicios de
middleware para construir altamente con fi gurable arquitecturas de middleware. Distribucion, de persistencia y
de transaccion aspectos para los componentes de software que utilizan AspectJ se han implementado con
éxito, y se extiende AspectJEE AspectJ para implementar el modelo EJB y varios servicios JEE. En el mundo
de los productos de codigo abierto, JBoss AOP ofrece una amplia biblioteca de aspecto para el desarrollo de la

aplicacién basada en Java usando técnicas de AOP.

7 Zhang, C., Jacobsen, H. Refactorizacion middleware con aspectos. En IEEE Transactions on sistemas paralelos y

13.6 Estado-of-the-Art 193

El principal problema en la aplicacién de AOP para construir marcos de middleware es que los servicios de
middleware no son generalmente ortogonal. Colocacién de un servicio (de aspecto) a un componente sin entender
su interaccion con otros servicios no es sensible, como los efectos de los servicios pueden interactuar unos con
otros.

Por ejemplo, aspectos se utilizan cominmente para tejer comportamiento transaccional con cédigo de aplicacion.
transacciones de base de datos se pueden cometer utilizando ya sea una fase o de dos fases (para transacciones
distribuidas) cometer protocolos. Para cualquier transaccion individual, se ejecuta sélo un protocolo, y por lo tanto sélo un
aspecto, y de infinitamente no ambos, debe ser tejida para cualquier punto de union. En general, el manejo de los
aspectos que interactiian es un problema di fi culto. Ya sea un error en tiempo de compilaciéon o una excepcion de

ejecucion debe aumentarse si los dos aspectos que interactian comparten un punto de union.

13.6 Estado-of-the-Art

Los recientes esfuerzos de investigacion y desarrollo se han dedicado a diferentes tecnologias y practicas orientadas por
aspectos. Estos incluyen el lenguaje AOP especi fi cacion, soporte de herramientas para el modelado de aspecto y la
generacioén de codigo, y la integracion con las tecnologias emergentes, tales como la programacién basada en

metadatos. Vamos a discutir cada uno de estos.

13.6.1 orientada a aspectos de modelado en UML

Existen varios enfoques para apoyar el modelado de aspecto de AOD y AOSD. La mayoria de estos enfoques se
extienden UML por de fi nir un nuevo UML per fi | de AOSD. Esto permite que las extensiones de UML con los conceptos

de aspecto a ser integrados en las herramientas CASE existentes que apoyan la norma UML.

Una ventaja de modelado orientado aspecto es el potencial para generar cédigo para aspectos de los modelos de
disefio. En el modelado orientado aspecto y la generacion de cédigo, el codigo de aspecto y el codigo nonaspect se
genera por separado. El uso de Model Driven Architecture (MDA) se acerca, herramientas utilizan una transformacion
definicion para transformar un modelo independiente de la plataforma (PIM) en uno o mas modelos de plataforma
especi fi cos (PSM), a partir del cual puede tener lugar la generacion automatica de codigo de aspecto y el tejido.

tecnologias de MDA se explican en detalle en el siguiente capitulo.

Herramientas 13.6.2 AOP

El modelo fundamental de AOP es el modelo de punto de union. Todas las herramientas de AOP emplean este modelo para

proporcionar un medio de identificar donde se aplican las preocupaciones transversales.

194 13 Arquitecturas Orientada a Aspectos

Sin embargo, diferentes herramientas implementan la especificacion del modelo cs aspecto a su manera, e introducen
nuevos mecanismos para la semantica y los aspectos de tejido.

Por ejemplo, en JBoss AOP, consejos se implementan a través de “interceptores” utilizando Java reflexiéon y puntos
de corte se definen en un archivo XML fi | que describe el lugar para tejer en un consejo de forma dinamica en tiempo
de ejecucion. En AspectJ, ambos consejos y puntos de corte se de fi nen en una clase de aspecto y tejié
estaticamente.

Esta diversidad en las herramientas de AOP es un problema para el desarrollo de software utilizando
aspectos, debido a las diferencias semanticas de los diferentes modelos de AOP y las diferentes maneras en un
aspecto se teje con otras clases. No es posible simplemente volver a desarrollar un aspecto existente con el fin

de que sea tejida con otros aspectos desarrollados con otro modelo AOP.

Para hacer frente a este problema, AspectWerkz s utiliza el codigo de bytes modi fi cacién para tejer clases de Java en el
proyecto de acumulacién de tiempo, el tiempo de carga de clase o en tiempo de ejecucion. Se engancha en el uso de las API
de nivel JVM estandar, y tiene un poderoso modelo se unen a punto. Aspectos, consejos e introducciones estan escritos en
Javay llano clases de objetivos pueden ser POJOs regulares. Aspectos pueden definirse ya sea utilizando Java 5
anotaciones, Java 1.3 / 1.4 doclets personalizados o un sencillo XML definicion fi |. (En cierto estilo orientada a aspectos,

AspectWerkz se teje en la liberacién v5.0 AspectJ en 2006).

13.6.3 Las anotaciones y AOP

El modelo de punto de unién puede utilizar las propiedades de los elementos de programa tales como firmas de métodos para
capturar unirse puntos. Sin embargo, no puede unirse a la captura de puntos necesarios para poner en practica ciertas
preocupaciones transversales, como la transaccion y la seguridad basada en roles, ya que no hay informacién en el nombre o la
firma de un elemento que sugiera la necesidad de comportamientos transaccionales o autorizaciones relacionadas. Adicion de

metadatos a los sistemas de AOP tanto, es necesario proporcionar una solucion para estos casos.

En el contexto de lenguaje de programacion, los metadatos conoce como “anotaciones”, la captura de
informacion adicional asociado a los elementos tales como los métodos, campos, clases y paquetes de
programas. La v5.0 JSE y el C #/ VB .NET idiomas proporcionan estandares del lenguaje para adjuntar
anotaciones a los elementos del programa. Un buen ejemplo de anotaciones que aplican esta declarando
transacciones en los marcos JEE y .NET. Por ejemplo, la siguiente anotacién declara el atributo de transaccion

del método actualizar() en EJB 3.0:

@TransactionAttribute
(TransactionAttribute Type.REQUIRED) actualizacién public
void (doble nuevovalor)
throws Exception

8 http://www.aspectwerkz.codehaus.org/

13.7 Supervision del rendimiento del ICDE con AspectWerkz 195

13.7 Supervision del rendimiento del ICDE con AspectWerkz

Cuando se ejecuta en la produccion, es deseable poder inyectar cddigo de monitorizacion del rendimiento en
componentes ICDE sin recompilar la aplicacién completa. Usando aspectos, esto se puede lograr usando LTW.
Por lo tanto el equipo ICDE comienza a disefiar una arquitectura basada en aspecto usando AspectWerkz como
se muestra en la Fig. 13.4 . En esta arquitectura, la instrumentacion de rendimiento para diferentes componentes
ICDE se encapsula en un aspecto dedicado que se puede inyectar en la aplicacion ICDE. Esto es necesario
porque los indicadores que deben ser grabados son de naturaleza diferente. Por ejemplo, la supervisién del
rendimiento de un servidor JMS medidas tanto la tasa de procesamiento de mensajes y el tamafio del mensaje,

mientras que la instrumentacion de las sentencias SQL mide el tiempo de respuesta.

StartAPICall

Aspecto

— Obtener PerfStats —

ICDE cliente de Recogida de
AP | datos ICDE
1
1 Cliente
|
1
I s
1 .
1 e
1 /’
H e de servicios de usuario
1
1
1
1
1
1

servidor J2EE
. Servicios de
Servicios API
JMS recopilacion de
ICDE
datos
S~ datos P6Spy
Aspecto Servicio
instrumento Aspecto
consulta de

instrumento Mensaje

T
Vi
SetperfStats
Aspecto

) El controlador JDBC
instrumento SQL \

T Gestion

Establecer perfStats1 —— | PerfStats
1
PerfStats conjunto > Comentario de sucesos|

1
\E/ llamada JDBC

datos del ICDE

Almacenar

Fig. 13.4 arquitectura ICDE 2,0 a base de aspecto para la supervision del rendimiento ICDE

196 13 Arquitecturas Orientada a Aspectos

Con el fin de instrumentar el tiempo de respuesta de la consulta de base de datos, un componente de codigo abierto,
P6Spy, ¢ se utiliza. Esto actia como una capa entre el conjunto de conexiones JEE y los controladores JDBC, la captura de las
sentencias SQL emitidas por la aplicacién JEE. Un aspecto también se debe aplicar a este componente para recuperar la
informacion de instruccion SQL.

Una vez que se captura todos los datos de rendimiento, hay una variedad de opciones para que esté disponible para su
procesamiento posterior. Se puede simplemente escribe en un registro de fi le periédicamente o cargado en una base de
datos. Una solucién flexible fi ciente y e fl para proporcionar acceso directo a los datos de rendimiento del sistema en vivo es
utilizar un protocolo estandar como Java Gestion de extension (JMX) 10 que las herramientas de gestion existentes JEE pueden

visualizar y realizar un seguimiento.

InstrumentSQLAspect clase publica
{LogJdbcQueries objeto publico (finales puntos de interseccion de puntos de inflexién)

lanza Throwable

{// Informacién de Acceso Tipo de tiempo de ejecucion

MethodRiti rtti = (MethodRiti) joinPoint.getRitti (); Cadena de consulta = (String)
rtti.getParameterValues () [0]; Larga horalnicio = System.currentTimeMillis ();

/I ejecutar el método

resultado final Object = joinPoint.proceed (); Larga endTime =
System.currentTimeMillis ();

/I registrar la informacion de temporizacién para esta ejecucion de instrucciones SQL
perfStatsManager.log (consulta "Estado", endTime-horalnicio); return resultado; }

logValuesInPreparedStatement public Object (final de puntos de interseccion de puntos de inflexion) throws

Throwable
{MethodRitti rtti = (MethodRiti) joinPoint.getRiti ();

indice entero = (entero) rtti.getParameterValues () [0]; Valor de objeto = rtti.getParamterValues () [1];
consulta String = “index =" + index.intValue () + “value ="

+ value.toString ();
Larga horalnicio = System.currentTimeMillis ();
1/ ejecutar el método
Resultado final Object = joinPoint.proceed (); Larga endTime =
System.currentTimeMillis ();
/l registrar la informacion de temporizacién para este PreparedStatement // ejecucion

perfStatsManager.log (consulta, “PreparedStatement”, endTime- horalnicio); return resultado; }};

Fig. 13.5 sentencia SQL aplicacion aspecto de instrumentacion

9 http://www.p6spy.com/

10 http://www.java.sun.com/products/JavaManagement/

13.8 Conclusiones 197

<Aspectwerkz>
<Sistema id = "ICDE">
<Paquete name = "com.icde.perf.aop"> <clase aspecto =
"InstrumentSQLAspect"
implementacion de modelo = "perThread"> <pointcut name
= "Estado" expresion =
"Ejecucion (* java.sgl.Connection + .prepare * (..))" /> <pointcut name = expresion
"PreparedStatement" =
"Ejecucion (java.sql.PreparedStatement vacio + .set * (..))" /> <asesoramiento name =
"logJdbcQueries (final de puntos de interseccion de puntos de inflexion)"
type = "alrededor de" bind-a = "Estado" />
<Nombre de asesoramiento = "logValuesInPreparedStatement (puntos de inflexién definitivo
joinpoint)" type = "alrededor de" bind-a = "PreparedStatement"/> </ aspecto> </ package> </
sistema> </ Aspectwerkz>

Fig. 13.6 InstrumentSQLAspect XML definicion fi |

Para ilustrar el disefio, la implementacion y el despliegue de los aspectos AspectWerkz, vamos a describir
en detalle el InstrumentSQLAspect. Para medir los tiempos de respuesta instruccion SQL, tenemos que
localizar todas las llamadas a métodos donde un
java.sql.Statement se crea y se inyecta codigo de tiempo inmediatamente antes y después de ejecutar
la consulta SQL. También tenemos que rastrear todas las llamadas a métodos que un valor se
encuentra en una java.sql.PreparedStatement ejemplo. El fragmento de cddigo resultante para el InstrumentSQLAspect
se ilustra en la Fig. 13.5 .

El siguiente paso es compilar los aspectos como una clase Java normal con las bibliotecas AspectWerkz. Las
reglas de tejido para unir el asesoramiento al punto de corte se especi fi ca en el aop.xml fi le como se muestra en la
Fig. 13.6 . 11

LTW para AspectWerkz se logra mediante la carga de la biblioteca AspectWerkz para la v5 JDK. La

aplicacion ICDE entonces se puede arrancar normalmente y el cédigo de aspecto se tejio en al tiempo de carga

En resumen, el uso de técnicas de AOP, cadigo de instrumentacion puede ser separado y aislado en aspectos. La
ejecucion de los aspectos puede ser tejida en el sistema en tiempo de ejecucion y sin la necesidad de volver a

compilar todo el sistema.

13.8 Conclusiones

AOP se introdujo originalmente como un mecanismo de programacion para encapsular funcionalidad
entrecruzada. Su éxito ha visto técnicas orientadas a aspectos se acostumbran en varios dominios de

aplicacion, tales como marcos de middleware. También tiene

11 Tenga en cuenta que como contenedores JEE son multi-hilo, y las solicitudes individuales son manejados por hilos mantenidas en un grupo de

P s, el aspecto se iega en perThread modo.

13 Arquitecturas Orientada a Aspectos

dado lugar a técnicas de modelado y disefio que influyen en la arquitectura de un sistema de software construido
usando técnicas orientadas a aspectos.

AOP trae tanto oportunidades como desafios para la arquitectura de software. En los dominios limitados, AOP ha
demostrado una gran promesa en la reduccion de la complejidad del software a través de proporcionar una separacion
clara y modularizacién de preocupaciones. areas fructiferas incluyen una mayor integracion de AOP y middleware para
aumentar la flexibilidad de las plataformas de middleware con fi gurar. Incluso en este ejemplo, sin embargo, los
problemas siguen siendo dificiles, es decir, la coordinacion de multiples aspectos para hacer frente a los conflictos, como

las preocupaciones transversales no son completamente ortogonales.

orientada a aspectos de disefio e implementacién requiere el apoyo de herramientas e fi ciente de AOP. Con este
tipo de herramientas, en curso de investigacion y desarrollo sigue intentando ofrecer mejores soluciones en diversas

areas, a saber:

\Mantenimiento: El disefio de sistemas orientados a aspectos de calidad significa prestar atencion
para de fi nir pointcuts robustos y de manera prudente mediante la herencia aspecto. Pointcuts que la captura se unen a mas
puntos de los esperados o pasar por alto algunos puntos de combinacién que desee puede conducir a implementaciones fragiles
como el sistema evoluciona. En consecuencia se necesita una herramienta deficiente depuracion ef para detectar el punto

defectuoso y la implementacion punto de corte se unen.

1Actuacion: El uso de AOP introduce los gastos generales de funcionamiento adicionales en aplica-

ciones, tanto durante el proceso de tejido y, potencialmente, en tiempo de ejecucion. La sobrecarga de AOP debe minimizarse para
proporcionar una buena acumulacién y el rendimiento en tiempo de ejecucion.

\Integracion: La reutilizacion de los aspectos que no se ha explorado su fi cientemente, de manera que
Los disefiadores pueden utilizar las bibliotecas de los aspectos en lugar de desarrollar cada aspecto de cero. Como
cada herramienta AOP s6lo proporciona implementaciones de aspecto especifica para su propio modelo de AOP, un
aspecto implementado por un modelo AOP no puede ser faciimente teje en un sistema con aspectos utilizando un
modelo de AOP diferente. Esto es potencialmente un obstaculo serio para la adopcién de aspecto orientacion en una

amplia gama de aplicaciones de software. .
y la primavera, en cuanto a sus mecanismos de lenguaje y entornos de desarrollo es: 198

En resumen, las técnicas orientadas a aspectos se desarrollan y maduran, y demostrando ser utiles en varios
dominios de aplicacién y la herramienta. Estos incluyen la seguridad, la explotacién forestal, la vigilancia, las
transacciones y almacenamiento en caché. Ya sea aspecto orientacion se convertira en un importante paradigma de
disefio y desarrollo es mucho mas abierto al debate. Sin embargo, parece inevitable basado en la adopcién corriente
que seguiran siendo infundida gradualmente en la corriente principal de la ingenieria de software técnicas orientadas a

aspectos.

13.9 Lectura adicional

Una buena comparacién de cuatro herramientas de Java AOP, a saber AspectJ, AspectWerkz, JBoss AOP AOP

13.9 Lectura adicional 199
M. Kersten, AOP herramientas de comparacion. IBM developerWorks, http://www-128.ibm.
com / developerworks / library / j-aopwork1 /

Una fuente de informacién de amplio alcance sobre aspectos se mantiene en el wiki AOSD en:

http://iwww.aosd.net/wiki/index.php?title ¥4 Pagina principal

El (en desuso) pagina de inicio para Aspectwerkz es
http://www.aspectwerkz.codehaus.org/

AspectJ documentacién se puede encontrar en:
http://www.eclipse.org/aspectj/docs.php

Los buenos guias practicas a AspectJ y aspectos de las aplicaciones de base de datos son:

Ramnivas laddad, Aspectj en Accion: Empresa AOP con aplicaciones de primavera,
Manning Publications, 2009. Awais Rashid, Sistemas de base de datos orientada a aspectos, Springer-Verlag,

2009.

capitulo 14

Arquitectura basada en modelos

Zhu Liming

14.1 Desarrollo Model-Driven para ICDE

Uno de los problemas que acechan en la parte posterior de la mente del equipo de desarrollo del ICDE esta relacionado con la
planificacién de la capacidad para las nuevas instalaciones del ICDE. Cuando una instalacién ICDE soporta multiples usuarios, la
carga de solicitudes se convertira en alto, y el hardware que se ejecuta en la plataforma debe ser lo suficientemente potente
como para soportar esta carga de solicitudes. Si el hardware se satura, no sera capaz de procesar todos los eventos generados

por el usuario, y los datos importantes se pueden perder. La situacion se ve agravada por las siguientes cuestiones:

\Diferentes dominios de aplicacion y diferentes instalaciones individuales dentro de cada

dominio usara ICDE de diferentes maneras, y por lo tanto generar diferentes cargas solicitud por usuario.

\Diferentes instalaciones desplegaran ICDE en diferentes plataformas de hardware, cada
capaz de soportar un nimero diferente de usuarios.
\La plataforma ICDE sera portado a diferentes servidores de aplicaciones JEE, y cada

una de ellas tiene diferentes caracteristicas de rendimiento.

Todos estos problemas estan relacionados con la actividad de ingenieria de software de planificaciéon de capacidad.
La planificacion de capacidad se refiere a qué tan grande, en términos de recursos de hardware y software, la instalacion
debera cumplir en apoyo de su peticion de carga esperada. técnicas de modelado matematico a veces pueden ser
utilizados para predecir la capacidad de una plataforma para componentes y redes estandarizadas. 1 Sin embargo, mas
tipicamente, las pruebas de referencia se ejecutan en un prototipo o una aplicaciéon completa para probar y medir cémo

realiza el despliegue de hardware / software combinado.

La unica manera realista el equipo ICDE podria anticipar para llevar a cabo la planificacion de capacidad era para

ejecutar una carga de prueba en las plataformas de despliegue fi cas. Para cada instalacion, el equipo tendria que:

1 Por ejemplo, el Gestor de capacidad de Microsoft y su apoyo a las implementaciones de Exchange.

|. Gorton, Arquitectura de Software esencial, 201
DOI 10.1007 / 978-3-642-19176-3_14, # Springer-Verlag Berlin Heidelberg 2011

14-Model Driven Architecture

\Instalar ICDE en la plataforma de hardware de destino, o uno que sea lo mas cerca posible
en especi fi cacion a la plataforma de despliegue esperado.

\Desarrollar las solicitudes de prueba de muestra generados por el software robots para generar una carga en
la plataforma, y medir cémo responde. Las solicitudes de prueba deben reflejar el uso esperado per fi |
de los usuarios que operan en esa instalacion ICDE.

Asi, para cada instalacion, se debe desarrollar un conjunto de pruebas, cada una de las cuales se ejecutara una

serie de peticiones en la plataforma ICDE y medir el tiempo de respuesta y el rendimiento. Esto se muestra en la figura. 14.1

Como era de esperar, la ICDE teamwere muy interesado en hacer todo este ejercicio de planificacion de calidad
de e fi ciente y sin dolor como sea posible. Esto significaria reducir al minimo la cantidad de desarrollo de
sitio-especifico. Asi, por ejemplo, en lugar de escribir un robot de prueba especifico para cada instalacion, que les
gustaria para definir los datos de carga de prueba y prueba externa al cédigo, y de alguna manera esta entrada en el
robot de interpretar. Ellos también como los resultados de rendimiento de ejecuciones de prueba a ser producidos y

clasifica automéaticamente en forma de graficos para facilitar el andlisis.

Para lograr esto, el equipo decidié explotar métodos arquitectura dirigida por modelos y tecnologias de
desarrollo de apoyo. enfoques modelo impulsado animan a los componentes de un sistema de software que se
describen en los modelos UML. Estos modelos son entonces de entrada en los generadores de cédigo que
producen automaticamente codigo ejecutable que corresponde al modelo. El equipo esperaba que pudieran
desarrollar un modelo Unico de un robot de prueba ICDE. Entonces, simplemente cambiando los parametros en el

modelo, que podrian generar una prueba de carga fi c instalacion especi en la prensa de un boton.

En este capitulo se describen los elementos esenciales de los enfoques basados en modelos de arquitectura. A
continuacion, muestra cémo el equipo ICDE podria utilizar técnicas dirigidas por modelos para automatizar el desarrollo,

despliegue y resultados reunion de una instalacion ICDE para fines de planificacion de capacidad e fi cientes.

(1) definir sitio

Perfil prueba especifica

Sitio perfil

peticion

Sitio de datos de

prueba especifica

especifica

(2) ejecutar pruebas
Instalacion | Prueba de carga

ICDE robot

A

(3) recoger / analizar los resultados
Los resultados de

rentabilidad

Fig. 14.1La i ion de i parai iones ICDE 202

14.2 4 Cual es la MDA? 203

14.2 4 Cual es la MDA?

Un tema recurrente en la evolucién de la ingenieria de software es el uso en curso de mas lenguajes formales
abstractos de soluciones de modelado. En el desarrollo de software de corriente tanto, las descripciones abstractas,
por ejemplo, en Java o C #, son transformados por herramientas en formas ejecutables. El desarrollo de soluciones
en notacién abstracta aumenta la productividad y reduce los errores porque la traduccion de lo abstracto a formas

ejecutables estd automatizado mediante herramientas de traduccion como compiladores.

Por supuesto, algunas personas creen que el nirvana de los lenguajes de programacion abstractos es Java, C # o
cualquiera de sus contemporaneos modernos. De hecho, la historia de la investigacion de lenguajes de programacion
esta lleno de muchas propuestas de nuevos lenguajes de desarrollo, algunos de propésito general, algunas restringido a
los dominios de aplicacion estrechas. Una pequefia minoria nunca ver la luz del dia en “developerland”. Esto no impide

que la busqueda continte sin embargo.

arquitectura basada en modelos (MDA) es una tecnologia reciente que lleva el paquete en términos de
herramientas mas abstractos especificos fi cacion y desarrollo (y el uso de nuevas siglas) dirigidos al mercado de TI.
MDA esta definido por el OMG 2 como " una aproximacion al sistema informatico las especi fi caciones que separa la

especificacion de la funcionalidad de la especi fi cacién de la aplicacion ”.

Como su nombre indica, un “modelo de aplicacion” es la fuerza impulsora detras de la MDA. Amodel en
MDA es una especificaciéon formal de la funcién, estructura y / o el comportamiento de una aplicaciéon o
sistema. En el enfoque de MDA, un sistema de Tl es primero analizada y especifica ed como un “Independent
Modelo Computation” (CIM), también conocido como un modelo de dominio. La CIM se centra en el medio
ambiente y los requisitos del sistema. Los detalles de calculo y aplicacién del sistema estan ocultos en este

nivel de descripcion, o estan aun por determinar.

Como la fig. 14.2 espectaculos, la CIM se transforma en una “Plataforma Independiente Modelo” (PIM) que
contiene informacion computacional para la aplicacion, pero no hay informacion especifico a la tecnologia de la
plataforma subyacente que se utilizara para implementar, finalmente, el PIM. Finalmente, un PIM se transforma
en una “Plataforma Speci fi c Model” (PSM), que incluye descripciones detalladas y elementos especi fi cos a la

plataforma de implementacion especifica.

Una “plataforma” en MDA se define como cualquier conjunto de subsistemas y tecnologias que proporcionan un conjunto

coherente de funcionalidades a través de interfaces y el uso especificado fi

[1 — [1

Computation Platform Platform Specific
Independent Model | Independent Model | g Model

Fig. 14.2 la transformacién del modelo de MDA

2 Grupo de administracion de objetos: http://www.omg.org

14-Model Driven Architecture

patrones. por lo tanto, una plataforma MDA es un concepto muy amplio. Plataformas a menudo se refieren a la tecnologia de
conjuntos especificos fi de subsistemas que se definen por una norma, tal como CORBA o JEE. Plataformas también pueden
referirse a una plataforma especifica fi proveedor que es una implementacion de un estandar, al igual que la plataforma

WebLogic de BEA JEE, o una tecnologia patentada como la plataforma Microsoft .NET.

MDA es apoyado por una serie de normas OMG, incluyendo el UML, MOF (Meta-Object Facility), XMI
(XML Metadata Interchange), y CWM (Common Metamodelo de depoésito). MDA también incluye directrices
y normas cambiantes de apoyo en la transformacién de modelos y servicios generalizados. Las normas de la
MDA en conjunto definen como un sistema puede ser desarrollado siguiendo un enfoque basado en
modelos y el uso de herramientas MDA compatibles. Cada estandar MDA tiene su papel Gnico en el
panorama general de la MDA.

En MDA, los modelos deben ser indicado por un lenguaje de modelado. Esto puede ir desde lenguajes de modelado
genéricas aplicables a multiples dominios (por ejemplo, UML) a un especifico lenguaje de modelado de dominio c. EIl MOF
proporciona facilidades para especificar cualquier lenguaje de modelado utilizando las instalaciones de modelado conocido

de MOF, como se muestra en la Fig. 14.3 .

EI MOF también proporciona mecanismos para determinar como cualquier modelo definido en un lenguaje de
modelado se puede serializar en documentos XML o ser representado por interfaces programables. Cualquier
lenguaje de modelado existente puede hacerse compatible MDA mediante la creacion de una representacion MOF de

la lengua.

Metalanguage
MOF M3:model of model of a model == NOr G —-
: -name : string |
| i
| 1
| 1
| 1
| 1
UML Class UML Attribute
Language X CWM UML Language - stri T
= M2: model of amodel LT3 : SUNg -name f‘””g
- - |
[) !l
Stock |
- o, Od":logfel Lid : string— — + =/
Model C Data Model B | | UML Model A - 0ces O 8 System .name string
AT

O —]

1

1

System Stock : Stock
System M0: system id : string
name : string
Expressed in——p» — — Instance of— —)

Fig. 14.3 El papel del MOF en MDA 204

14.3 ¢ Por qué MDA? 205

EI UML y CWM son dos lenguajes de modelado fi nidas relativamente genéricos MOF-DE y se incluyen
en el paquete de normas MDA. UML se centra en el modelado de objetos y CWM se centra en el modelado
de datos.

El estandar XMl en MDA es una aplicacion que se puede utilizar para definir la forma de un esquema XML e
instalaciones de serializacion XML relacionados se pueden derivar de un lenguaje de modelado metamodelo se especi
fi ca utilizando el MOF. Por ejemplo, el OMG ha aplicado a XMI el metamodelo UML para llegar a un esquema XML
para la representacion de modelos UML. En consecuencia, el esquema XML para los modelos UML puede ser utilizado

por los proveedores de herramientas de modelado UML para intercambiar modelos UML.

Asi, a partir de modelos de dominio de negocios, a los modelos de analisis, para disefiar modelos y modelos de cédigo
finalmente, los principios de MDA cubren todas las fases de los procesos de desarrollo de software, artefactos y

herramientas. En las siguientes secciones, vamos a discutir los ts generales bene fi de MDA y dar algunos ejemplos.

14.3 ;Por qué MDA?

Modelos desempefian un papel central en MDA. Pero ¢ por qué es exactamente lo que necesitamos modelos? Aqui esta la respuesta.

Los modelos proporcionan abstracciones de un sistema que permiten a las diversas partes interesadas para razonar
sobre el sistema desde diferentes puntos de vista y niveles de abstraccién. Los modelos se pueden utilizar de muchas
maneras, por ejemplo, para predecir las cualidades (por ejemplo, rendimiento) de un sistema, validar disefios frente a los
requisitos, y para comunicar las caracteristicas del sistema a los analistas de negocios, arquitectos e ingenieros de
software. Y lo mas importante en el mundo de la MDA, que pueden ser utilizados como modelo para la implementacion del

sistema.

Los tres objetivos primarios de MDA son la portabilidad, la interoperabilidad y la reutilizacién, logrado a través
de la separacion arquitecténica de preocupaciones. problemas de disefio criticos relativos a la CIM, PIM y PSM son
de naturaleza muy diferente y pueden evolucionar de forma independiente el uno del otro. Multiples CIM, PIM y
PSM pueden existir para una aplicacion, reflectante diferentes niveles de refinamiento fi y puntos de vista. Vamos a

ver como se logran estos objetivos primarios en MDA.

14.3.1 Portabilidad

Portabilidad se consigue mediante la separacion de modelo y de transformacion. modelos de alto nivel no contienen
plataforma de bajo nivel y los detalles técnicos. Como la fig. 14.4 ilustra, cuando las plataformas subyacentes cambian o
evolucionan, los modelos de nivel superior pueden ser transformados a una nueva plataforma directamente, sin ninguna
remodelacion.

Portabilidad también se consigue haciendo que los modelos movible a través de diferentes entornos de
herramientas. Las normas de MOF y XMI permiten un modelo UML a ser serializado en documentos XML que se

pueden importar en una nueva herramienta para diversos propésitos de modelado y analisis.

14-Model Driven Architecture

Domain A/System A Domain B/System B
1 1
C tation Ind dont .. c station Inds dent
r ¥ portability ‘Business Model
|]
Platform Independent i Platform Independent
portability Mod
~a=Shared Mappinge=jm \1
| I
Platform
Platiorm Platform Specific | | Platform Specific
e Mo Model Ay for Model By for Model Bz for
o x"’“‘"‘ Platform Y Platform Y Platform Z

Mappings and transformations (including
reusable assets and packaged best practices)

=

Fig. 14.4 asignaciones de modelo MDA 206

14.3.2 interoperabilidad

Pocas veces existe una aplicacién que no se comunica con otras aplicaciones. aplicaciones de nivel
empresarial en particular necesitan comunicarse a través de fronteras organizativas internas y externas de
una manera heterogénea y distribuida. La mayor parte del tiempo, que tienen un control limitado sobre los

otros sistemas que necesita para interoperar con.

El uso de MDA, la interoperabilidad se consigue a través del mapeo modelo horizontal y la interaccion (ver Fig. 14.5).
Las primeras versiones de las directrices de MDA se refieren a la integracion como la principal meta para la MDA, cuyo

objetivo es mejorar la interoperabilidad de dos maneras:

\El problema de la interoperabilidad puede ser visto como un problema de modelo horizontal
mapeo y la interaccion. Por simplificacién, supongamos que tenemos dos conjuntos de CIM / PIM / PSM para los
dos sistemas, tal como se muestra en la Fig. 14.5 . La interaccion entre CIMs de nivel superior y PSMs puede
primera modelada y analizada. Estas asignaciones modelo transversales y las interacciones a continuacion, se
pueden asignar a los protocolos de comunicacion detallada o bases de datos compartidas soportados por los
modelos subyacentes. Desde existen transformaciones verticales explicitos entre los modelos en cada sistema, los
elementos que intervienen en la asignacion de alto nivel pueden rastrearse facilmente o incluso traduciran

automaticamente a elementos de nivel inferior.

\El mismo problema también puede ser visto como un problema de la re fi nicién de un solo nivel alto

modelo en varios modelos que opera a través de dos o mas plataformas. Diferente

14.3 ;Por qué MDA? 207

Domain A/System A Domain B/System B
Or Or
A Subsystem of System X A Subsystem of System X
business domain mappings
Computation Independent Computation Independent
Business Model j[Business Model
E platform independent ﬁ
interoperability standards
Platform Independent Platform Independent
Model Model

=1 %]

platform specific
communication channels
Platform Specific Mode Platform Specific Mode

mappings and
: tmnsl'onrutions[Tlrl&>
Fig. 14.5 mapeo modelo horizontal para la interoperabilidad

partes de los modelos de nivel superior son re definido en modelos especifica a diferentes plataformas. Asociaciones
en los modelos originales son re definido en los canales de comunicacion o de bases de datos entre modelos de

plataforma especifica ¢ compartido.

Con instalaciones metamodelado unificado y herramientas de transformacion de modelos explicitos, estos dos

enfoques se hacen factible en la practica.

14.3.3 Reutilizacion

Reutilizacion es la clave para mejorar la productividad y la calidad. MDA fomenta la reutilizacion de modelos y mejores practicas
en el disefio de aplicaciones, especialmente en la creacion de familias de aplicaciones como en las lineas de productos de
software (véase el capitulo siguiente). MDA es compatible con la linea de productos de software se acerca con el aumento de
los niveles de automatizacion. Por ejemplo, el PIM esta destinado para su reutilizacién por mapeo a diferentes PSMs que una
linea de productos apoya, y una plataforma de MDA esta disefiado para su reutilizacion como un objetivo para multiples

aplicaciones en una linea de productos.

208 14-Model Driven Architecture

14.4 Practicas y Herramientas de Estado-de-arte

Aunque es posible practicar las partes de la MDA sin el apoyo de herramientas, esto sélo se recomienda para los
valientes y dedicados. Una gran parte de las normas esta dirigido a los Utiles y la interoperacién herramienta.
Algunas normas estan destinadas a ser principalmente de lectura mecanica, y no para el consumo humano en
general.

Dado que los patrones de MDA, en especial las directrices, son intencionalmente sugerente y no prescriptiva, ha
habido una gran cantidad de herramientas para apoyar claming MDA, todos con muy diferentes caracteristicas y
capacidades. Algunas partes definido vagamente de de MDA han causado problemas en términos de interoperabilidad
y reutilizaciéon herramienta de desarrollo artefacto. Sin embargo, el equilibrio correcto entre las normas preceptivas y no

prescriptivas es dificil de determinar a priori y no requiere entradas del mundo real de usuarios de la industria.

Ahora vamos a discutir algunos ejemplos de herramientas de la comunidad de la plataforma JEE / Java debido a
su relativamente amplia adopcion de la MDA. La plataforma .NET también se esta moviendo hacia enfoques basados
en modelos estandar a través de su propio dominio especi fi co Idioma (DSL). Esto no es compatible con MDA

aunque otros proveedores han desarrollado con éxito herramientas MDA para la plataforma .NET.

Aunque las herramientas descritas en el siguiente tienen sus raices en las tecnologias JEE / Java, todos aqui tienen la
capacidad de soportar otras plataformas. Los servicios de arquitectura e infraestructura de estas herramientas permiten
que toda extensiones y “cartuchos” para ser construidos para soportar otras plataformas. Algunos de ellos simplemente

tienen fuera de la caja de soporte para las tecnologias relacionadas JEE.

14.4.1 AndroMDA

AndroMDA 3 es una fuente abierta marco MDA. Tiene una arquitectura plug-in en el que las plataformas y componentes de
apoyo se pueden intercambiar y salir en cualquier momento. Es muy explota proyectos existentes de cddigo abierto para
ambos propositos especi fi cos de plataforma (por ejemplo, XDoclet para EJB) y servicios generales de la infraestructura

(Apache Velocity para crear plantillas de transformacion).

En AndroMDA, los desarrolladores pueden extender el lenguaje de modelado existente a través de las
instalaciones conocidas como “metafacades”. La extension se refleja como un per fi | de UML en las bibliotecas
de modelado y plantillas en herramientas de transformacion. El enfoque actual de AndroMDA es generar la
mayor cantidad de codigo posible de un PIM marcada con UML valores etiquetados, sin tener un PSM explicita fi
| (s6lo existe en la memoria). Por lo tanto, no proporciona oportunidades para la inspeccién y manipulacion PSM
bidireccional entre PSM y PIM.

La razdn de esto es principalmente debido a la compensacién entre la complejidad de bidireccional PIM /

trazabilidad PSM y los beneficios de mantener las MEP explicitas

3 http://www.andromda.org/

14.4 Practicas y Herramientas de Estado-de-arte 209

para diferentes plataformas. A nivel estereotipo de UML, este enfoque por lo general funciona bien porque la plataforma
unico general semantica independientes estan involucrados, pero para la generacion de cédigo, las marcas a través de los
valores etiquetados por lo general incluye informacién dependiente de la plataforma que contamina los PIM a un cierto

grado.

14.4.2 ArcStyler

Arcstyler 4 es una de las herramientas comerciales lideres en el mercado de la MDA. Es compatible con el JEE, .NET y
plataformas fuera de la caja. En adicional a UML per fi les, ArcStyler utiliza sus propios MDA “marcas” como una
manera de introducir informacién dependiente de la plataforma en los PIM sin contaminar el modelo con datos de nivel
de plataforma. Al igual que AndroMDA, ArcStyler soporta cartuchos extensibles para la generacién de cédigo. Los
cartuchos ellos mismos también se pueden desarrollar dentro del entorno ArcStyler siguiendo los principios de MDA. La
herramienta también es compatible con el modelo de transformacién de modelos a través regla de transformacion

explicita externa archivos.

14.4.3 Eclipse Modeling Framework

El vinculo inseparable entre modelos MDA y el codigo creado a través de la generacion de cédigo requiere
una gestiéon coherente de los modelos y el cédigo en un solo IDE. Eclipse que modela el marco (EMF) es el
sofisticado marco metamodelado y modelado detras del IDE de Eclipse. Aunque EMF solamente se dio a
conocer como un subproyecto Eclipse en 2003, tiene una larga historia como un motor de gestiéon de

metadatos basado en modelos de IDE Visual Age de IBM.

EMF es en gran parte MDA compatible con soélo ligeras desviaciones respecto de algunas de las
normas. Por ejemplo, la base de la lengua metamodelado de EMF se conoce como Ecore, que esta cerca
pero no idéntica a la MOF esencial (EMOF) en MOF 2.0. EMF por lo general puede cargar un metamodelo

EMOF construido, y asignaciones y transformaciones se han desarrollado entre EMOF y Ecore.

EMF viene con mecanismos estandar para la construccion de metamodelos y persistiendo como interfaces
programables, codigo y XML (ver Fig. 14.6). También se proporcionan un marco editor de modelos y un marco de
generacion de coédigo. Sin embargo, los CEM no incluye ninguin apoyo popular plataforma fuera de la caja, y no
impresion6 a la comunidad inicialmente como una herramienta MDA MDA-lista para usar plenamente fl filo para

sistemas distribuidos basados en la plataforma.

Sin embargo, la estrecha integracién de los CEM con el IDE Eclipse y la capacidad de aprovechar la
arquitectura de Eclipse y las infraestructuras comunes apoya la integraciéon de metadatos dispares a través de

multiples herramientas que cooperan en una comun

4 http://www.interactive-objects.com/en/soa-governance.html

14-Model Driven Architecture

i W T Eclipse JDT/CDT
EMF EMF ML2 on 2

Model Editor Generators / | EMF \and other plugins
Eclipse Ecosystem
EMFoore™ 7 ywL N\ / xme O\ (vavawin) RMDB \ o
mod_el / models \ schema , \annotations, '\ schema / |\
repository

Fig. 14.6 El marco de modelado Eclipse 210

ecosistema Eclipse-basada. Esto eleva el nivel de interoperabilidad herramienta mientras esté en gran medida compatible
con las practicas de MDA.

Este es también un ejemplo que demuestra que los basados en modelos principios y normas van mas alla de la
modelizacién del sistema, e incluyen el modelado de todos los aspectos de la construccién del sistema. Con poca
fanfarria, IBM ha migrado muchas de sus herramientas de desarrollo Eclipse y gestiona sus metadatos a través de los

CEM. proveedores de terceros también estan desarrollando activamente herramientas basadas en EMF.

Debido a la normalizacién en curso de transformacién de modelos y de los significantes aumentos de la produccion de la
generacion de codigo, la mayoria de las herramientas existentes se centran en la generacion de codigo a partir de modelos. El
soporte para el modelo de transformacion de modelos por lo general se carece. Esto se traduce en apoyo primitiva para la
transformacién bidireccional CIM-PIM-PSM. En general, sin embargo, el mercado estd madurando MDA con herramientas tanto

fuerza de la industria comercial y de cédigo abierto emergente.

14.5 MDA y Arquitectura de Software

La mayoria de los modelos inMDA son esencialmente representaciones de una arquitectura de software. En un sentido amplio, los
modelos de dominio y los modelos de sistemas son abstracciones y diferentes puntos de vista de los modelos de arquitectura de
software. modelos de cédigo generadas poseen las caracteristicas de los modelos de arquitectura, junto con los detalles de
implementacion. El cédigo puede de hecho ser utilizado en herramientas de ingenieria inversa para reconstruir la arquitectura de la
aplicacion.

Una arquitectura de software puede ser descrito en un lenguaje de descripcién de la arquitectura (ADL). Ha habido
muchas actividades cotidianas desarrolladas en los ultimos afios, cada uno con su expresividad se centraron en
diferentes aspectos de los sistemas de software y dominios de aplicacion. Muchas de las funciones ADL Utiles han sido
recientemente ya sea absorbido en revisiones de la UML, o especifico ed como de peso ligero (a través de UML pro fi

les) o (MOF) extensiones UML de peso pesado. Por lo tanto, el UML se utiliza inMDA como un ADL.

14.5 MDA y Arquitectura de Software 211

Algunos formalismos exoéticas y caracteristicas dinamicas de ciertas AVD todavia no se pueden expresar
plenamente con UML. Pero la creciente MDA / UML piscina de experiencia en la industria, junto con la arquitectura de
alta calidad y herramientas de modelado UML supera la desventaja de algunas limitaciones de modelado en la

mayoria de los dominios.

14.5.1 MDA y requerimientos no funcionales

requisitos no funcionales (NFR) son una de las principales preocupaciones de la arquitectura de software. NFR
incluyen requisitos relacionados con los atributos de calidad como el rendimiento, la capacidad modi fi, reutilizacion,
interoperabilidad y seguridad. Aunque MDA no se ocupa de cada atributo de calidad individual directamente,

promueve y ayuda a lograr estos atributos de calidad porque:

1\Un cierto grado de interoperabilidad, reutilizaciéon y portabilidad esta integrado en todos

modelos a través de la separacion inherente de las preocupaciones. Hemos explicado cémo se logran estos
beneficios en las secciones anteriores.

\El Ministerio de Hacienda y UML per fi | de mecanismos permiten UML para ser extendido por modelo-
ing requisitos y elementos de disefio especi fi camente la orientacion NFR. UML per fi les de NFR existen

expresan, como del OMG per fi | para el funcionamiento, la programacién y el tiempo.

Junto con las extensiones de modelado para NFR requisitos y el disefio, explicitos

reglas de asignacion modelo animan a hacer frente a los atributos de calidad durante la transformacién del modelo.

14.5.2 Transformacion del modelo y de Arquitectura de Software

Una gran parte de la arquitectura de software de | + D se refiere a la forma de disefiar y validar las
arquitecturas de software para que fi Il cumplir sus requisitos y se aplica fielmente al disefio. Uno de los
principales obstaculos en el disefio de la arquitectura es la di fi cultad de disefiar una arquitectura que capta
claramente como los diversos aspectos del disefio satisfacen los requisitos. Por esta razon, puede ser dificil
para validar sistematicamente si los modelos de arquitectura fi Il cumplir los requisitos, como la trazabilidad
entre requisitos y elementos de disefio no se formaliza. Esto no ayuda a aumentar con fi anza que la

arquitectura es fi cio para el propésito.

En MDA, todos los lenguajes de modelado son bien definido por sintaxis y la semantica en un metamodelo. El
proceso de transformacién de un modelo (por ejemplo, requisitos) a otro modelo (por ejemplo, disefio) es un proceso
sistematico, siguiendo las reglas de transformaciéon Ned explicitamente de fi. Este caracter explicito y el potencial de

automatizacion puede mejorar en gran medida la calidad y e fi ciencia de la validacion de un modelo de arquitectura.

El estandar de transformacién de modelos que ha surgido de la OMG se conoce como “Query, Ver y
Transformacion” (QVT). En el momento de la escritura hay varios productos (comerciales y de codigo abierto)

que dicen ser compatibles con el estandar QVT.

14-Model Driven Architecture

QVT define un método estandar para transformar los modelos de origen en los modelos de destino. Estos se basan en
la idea de que el programa de transformacion es en si misma un modelo, y como consecuencia se ajusta a un

metamodelo MOF. Esto significa que la sintaxis abstracta de QVT también se ajusta a un metamodelo MOF.

Si el QVT ganancias de traccion estandar generalizado, es posible que gran parte del conocimiento tacito, las
mejores practicas y patrones de disefio utilizados en el disefio de la arquitectura y la evaluacion sera formalmente codi fi
cado como diversas formas de reglas de transformacion bidireccionales. Estos crearan formas ricas de trazabilidad en
modelos de arquitectura. De hecho, las transformaciones basadas en los patrones y las mejores practicas que ya se han
implementado en algunas herramientas, ademas de las asignaciones normales plataforma especi fi cos entre PIM y

PSM.

14.5.3 SOA y MDA

BothMDA y SOA tratan de resolver el mismo problema de la interoperabilidad pero desde un punto de vista y el nivel
de abstraccion totalmente diferente. Una de ellas es desde la perspectiva general de modelado semantico; el otro es
de los protocolos de comunicacién y la perspectiva de la arquitectura de estilo. Después de MDA, es posible mapear

consistentemente interacciones semanticas de alto nivel y las asignaciones entre los dos sistemas en los elementos

Hehefoitedald eemige hiofielos woalities des ncasiinoccompstiblisas deai@/ secestiasalmente enormes. 212

MDA también puede aumentar la productividad cuando las funciones de un sistema necesitan ser expuestos
como servicios Web, uno de los requisitos mas comunes en SOA. Si el sistema existente ya estd modelada
siguiendo las reglas de la MDA, exponiendo sus servicios es sélo una cuestion de la aplicacion de reglas de
transformacion para la plataforma de servicios web. Por ejemplo, en AndroMDA, el cartucho “webservice” ofrece
WSDL y WSDD fi le generacion usando un simple UML per fi |. Para exponer la misma légica de negocio como
servicios web, los usuarios solo tienen que cambiar el PIM de procesos de negocio (el objetivo final es tener ningun

cambio) y utilizar el cartucho de “servicio web”.

En resumen, SOA puentes sistemas heterogéneos a través de protocolos de comunicacion, servicios
Pehsaraisseriaais'ad SilGRatPoHE AR 2P5a R AL GUB IR MABRAOS S EARIDB ISR, B UL 19D erfecta
integracion semantica de alto nivel entre los sistemas y la transformacién de los modelos de sistemas basados en
instalaciones de nivel inferior SOA. Esta sinergia entre MDA y SOA podria significar que la préxima generacion de
servicios orientados mundo de la informatica con una arquitectura flexible y altamente federada fl no esta demasiado

lejos.

14.5.4 Los modelos analiticos son demasiado Modelos

La importancia del uso de modelos analiticos para examinar las caracteristicas de un sistema es a menudo ignorado,

14.5 MDA y Arquitectura de Software 213

De acuerdo con la MDA definicién, un modelo se define como una descripcion de un sistema en un fi lenguaje
bien de nido. Esta definicién se puede aplicar a una amplia gama de modelos. Por ejemplo, en ingenieria de
rendimiento, podemos elegir ver un sistema como un modelo basado en la cola que tenga servidores y colas. En el
analisis de la capacidad fi modi, podemos elegir ver un sistema como un modelo grafico de la dependencia que tiene
nodos para representar elementos conceptuales de aplicacion, y bordes para representar relaciones de dependencia

entre ellos.

Actualmente, estos modelos se expresan normalmente en sus propios lenguajes de modelado. Con el fin de
construir un modelo de analisis de un modelo UML existente, ya sea que tenemos que hacer el modelado manual o una
transformacién bajo nivel debe llevarse a cabo basandose en el modelo UML representado en XML. Esto se muestra

en lafigura. 14.7 , Y tiene varias limitaciones:

\La transformacion se basa Gnicamente en las instalaciones de transformacion XML primitiva tales

como XSLT. Depuracion y mantenimiento es dificil sin mapeo semantico claro entre los dos
modelos.

1Sin un mapeo semantico claro e instalaciones de ingenieria de ida y vuelta, es muy
dificil de colocar los resultados obtenidos del modelo analitico de nuevo en el contexto del modelo original
UML.

\El modelo de disefio original es probable que sea ain mas el fuego y, finalmente, define imple-
mentado en el codigo. El modelo analitico es esencialmente también un modelo derivado del mismo
modelo de disefio. Pero como el modelo analitico no es compatible con el estandar MDA, es ain mas
dificil de referencia cruzada el modelo analitico con todos los otros modelos derivados para la validacion,

calibracion y otros fines.

—

<<profile>> |,
Analysis ;
| Model I
|
<<uses>b
<<profile>> <<profile>> Metamodel :
Performance Performance mappings | |
|
iR ~ MOF-based - OR ;
e <<uses>> extensions | | i
I |
| proprietary analysis | _____ : é:<uses>> :
_l) modelling languages | i :
] I
l XSLT based _‘ - _‘ - :
transformation II] 5 Model " i
. 5118, ¢ _ Transformation | Analysis |-'
Design | 1 Design
. ’ Model

Fig. 14.7 transformacién de modelos MDA para el analisis de modelo

214 14-Model Driven Architecture

14.6 MDA para la planificacion de la capacidad del ICDE

Con el fin de llevar a cabo la planificacién de capacidad para las instalaciones de la ICDE, el equipo ICDE necesita un conjunto de
pruebas que podrian ser adaptado rapidamente para definir una carga de prueba fi co sitio-especifica. A continuacién, deberia ser
sencillo y rapido para ejecutar el conjunto de pruebas en el entorno de despliegue previsto, y reunir las estadisticas de rendimiento, tales

como el rendimiento y tiempo de respuesta.

Después de un vistazo de cerca a sus requisitos de las pruebas de rendimiento, el equipo encontré que ICDE sus
necesidades de desarrollo rapido a través de diferentes plataformas JEE eran susceptibles de aplicaciéon de los
principios de MDA, aprovechando su apoyo a la portabilidad, interoperabilidad y reutilizacién. Las razones son las

siguientes:

\Para los diferentes servidores de aplicaciones JEE, sélo el codigo de plomeria relacionados plataforma
y los detalles de implementacion difieren. UsingMDA, un modelo de aplicaciéon genérica podria ser utilizado, y el
caédigo c plataforma especifica y de plomeria genera a partir del modelo. Esto aprovecha la portabilidad inherente a
la MDA.

iLa generacion de codigo de plomeria repetitivo y despliegue con fi guracién es
apoyado por muchos servidores de aplicaciones JEE por una serie de proyectos de codigo abierto de MDA. Estos
cartuchos de generacion de codigo se mantienen normalmente por una gran comunidad de usuarios activa, y son de

alta calidad. Por lo tanto la capacidad de reutilizar estos cartuchos de herramientas MDA era muy atractiva.

\El equipo ICDE tiene una amplia experiencia en el rendimiento y la carga de la prueba. Por
refactorizacion sus bibliotecas existentes en un marco reutilizable, gran parte de este se puede reutilizar faciimente a través
de plataformas JEE. Sin embargo, cada prueba c fi sitio-especifico requerird un cédigo personalizado que se creara para
capturar los requisitos del cliente. El uso de MDA, estas caracteristicas del sitio-especifico ¢ pueden ser representados
usando los estereotipos UML y los valores etiquetados, como una combinacién de detalles de modelado e informacién con
fi guracién. A partir de esta descripcion del disefio, el cartucho de generacién de cédigo MDA puede producir las

caracteristicas del sitio-especifico C y enganche con estos en componentes reutilizables marco del equipo.

Por lo tanto, el equipo disefi¢ un ICDE UML per fi | y una herramienta para automatizar la generacién de conjuntos de
pruebas de rendimiento ICDE completos de una descripcién del disefio. La entrada es un conjunto basado en UML de
diagramas de disefio para la aplicacion de referencia, junto con un cliente de pruebas de carga modelada en una version
de rendimiento a medida de la UML 2.0 Testing Pro fi le. 5 La salida es un conjunto de pruebas de despliegue que incluye
el monitoreo, pro fi ling y los servicios publicos de informacion. La ejecucion de la aplicacion de referencia generada
produce datos de rendimiento en formatos de facil analisis, junto con gréaficos de rendimiento generadas
automaticamente. La herramienta esta construida encima de un marco extensible de cédigo abierto - AndroMDA. La
estructura general de la generacion de referencia y de trabajo proceso relacionado de flujo se presenta en el area de caja

en la Fig. 14.8 . Un fragmento del modelo se representa en la Fig. 14.9 . La entrada de las pruebas de carga

punto es el ICDEAPIService. Es el componente de extremo delantero del sistema bajo

s http://www.omg.org/technology/documents/formal/test_pro fi le.htm

14.6 MDA para la planificacion de la capacidad del ICDE 215

" Appiicaion | _Tool Aided
Design (UML) | Benchmark app core
. (Optional) i Design (UML)]

Manual Abstraction . i
| A [
Existing profiles A
(EJB, WS and etc) AndroMDA
Model Transformation - Framework |

Existing cartridges

f (EJB, WS and etc)
a3

Performance
Analysis Model
JMX
monitoring
9 Py,
"amey,
| Prediction)
T
Fig. 14.8 Descripcion general del de prueba de rendimiento basado en MDA del ICDE
<<>>TestContext
ICDEAPIClient
<<>> Sombradora

{@ Andromda.config.initialThreads = 25, @

andromda.clinent.serverPrincipal = weblogic, @ Sembradora

andromda.confilg.runs = 10, @ (@} Andromda.seeder.driveName = Oracle

andromda.config.threadincrement = 25}

<< >> TestCase + loadTestAll(): void

A N
e << >> TestComRef
<<>> DataRef . N
12
<<>> << SUT
TranDeck Servicio >>

<< >> DeckSize + @@ TAMARO: int = 100 {) congelada ICDEAPISerice
*+@@ TRAN_Query: int = 25 {} congelada (@) Andromda.ejb.viewType = remoto

+@@ TRAN_WRITE: int = 55 {} congelada
+@@ TRAN_UPDATE: int = 10 {} congelado
+@@ TRAN_GETAPPEVENT: int = 5 {} congelado

<< >> EJBRemoteMethod + queryData (sid, eventos, clasificador): Coleccion << >> EJBRemoteMethod + WriteData
|(datos, clasificador, notificacion, tema): void << >> EJBRemoteMethod + UpdateData (ID de datos, datos, classfier,

-@TRAN _.
temay): void << >> E +g (sid, incluso, : i Data <<
s E. 0 SeederRef
<< >> DataSelector + shuffle (): void
T
'
‘l << >> Datapool
\ <<>> DataRef
TrxnData
<< >> DataPartition F———-—+ 0
LoadTestingTrxnData - evento
- clasificador
<< >> DataSelector + getLoadTestingTrxnData (): TrxnData - notificacion
-tema
~dotos.
- 1D de datos
-apivbriode la
<>

Fig. 14.9 modelo de prueba de rendimiento ICDE

14-Model Driven Architecture

"Response Time Distribution™ "Response Time Distribution™

9.000 20000
i AT SO0
T 15,000
o000 E
] £ 12200
B o000 H
K £ om0
2000 T80
200 5000
1,000 2500
| S — — — — —
o 20 e0 7o 1w @ w0 weo w00 %c = w0 0 we wm wew wm e
Response Time (ms) Response Time (ms)
180 client 180 client |

Fig. 14.10 resultados de tiempo de respuesta Ejemplo 216

prueba, que esta marcado con el SUT << >> estereotipo. ICDEAPIClient es el
<< TestContext >> que consiste en un nimero de casos de prueba. Sélo el valor por defecto
loadTestAll () caso de prueba se incluye con su incumplimiento genera la aplicacion.

Todos los datos de prueba que se utilizaran para llamar a las API del ICDE se modela en el TrxnData
clase. los TranDeck clase contiene valores que con fi gura la mezcla de transaccion para una prueba con valores etiquetados,
que se muestra en la Fig. 14.9 . Por ejemplo, las llamadas a la APl ICDE
queryData representa el 25% de todas las transacciones y WriteData representa el 55% para la prueba se define en este
modelo. Estos datos son utilizados para generar aleatoriamente los datos de prueba que simula la carga de trabajo real de la
instalacion ICDE bajo prueba.

En la Fig. 14.10 , Salidas Ejemplo de ensayo se representan para la distribucion del tiempo de respuesta
para dos servidores de aplicaciones diferentes bajo una carga de trabajo de 150 clientes simultaneos.

La cantidad de tiempo que se ahorra el uso de MDA puede ser considerable. cartuchos de tecnologia
Communitymaintained generan automaticamente el cédigo de error repetitivo y propenso plomeria, y las mejores
practicas heredadas mediante el uso de los cartuchos de mejorar la calidad del software de pruebas de
rendimiento. Por encima de todo, los principios de MDA elevar el nivel de abstraccién del desarrollo conjunto de

pruebas, por lo que es facil y barato de modificar y ampliar.

Para mas informacion sobre este trabajo, por favor refiérase a la referencia MDABench al final del

capitulo.

14.7 Resumen y lectura adicional

MDA, como la industria amplia estandarizaciéon de modelo impulsado el desarrollo de software, esta teniendo éxito y
sigue evolucionando. MDA impactos sobre las practicas de la arquitectura del software, ya que requiere el equipo de
arquitectura para crear modelos formales de su aplicacion utilizando rigurosamente de fi nida lenguajes de modelado
y herramientas de apoyo. Esto representa esencialmente elevar el nivel de abstraccion para los modelos de
arquitectura. La industria del software ha estado elevando los niveles de abstraccién en el desarrollo de software
(por ejemplo, a partir del cédigo maquina a lenguaje ensamblador a 3GLs de idiomas orientados a objetos y ahora a
los modelos) para la mejor parte de cinco décadas. MDA es el Ultimo paso en esta direccion, y si lo logra los

objetivos de la industria podria alcanzar nuevos niveles de productividad de desarrollo Unica sofiado hoy.

14.7 Resumen y lectura adicional 217

Sin embargo, llama la MDA criticas por parte de muchas partes en cuanto a sus limitaciones, algunas de las
cuales son, posiblemente, intrinseca y duro para mejorar sin una revision a fondo. Microsoft ha optado por no
cumplir con las normas de MDA y seguir su propio camino, de fi nir y utilizar su propio DSL como el lenguaje de
modelado en su IDE de Visual Studio. Si bien esto puede astillar la comunidad de desarrollo y crear modelos y
herramientas incompatibles, es probable que tenga resultados positivos para la comunidad de software en los

proximos afios, tanto en la promocién de los principios de desarrollo modeldriven general de Microsoft de OMG y.

La mejor referencia para toda la informacién relacionada con el estdndar MDA es el sitio web de la OMG:

DIOS MIO, Guia de MDA version 1.0.1. http://www.omg.org/mda/
Algunos buenos libros sobre MDA de autores destacados son:

Thomas Stahl, Markus Voelter, Software Development Model-Driven: Tecnologia,
Ingenieria, Administracion, Wiley 2006.
David Steinberg, Frank Budinsky, Marcelo Paternostro, Ed Merks, EMF: Eclipse
Marco de modelado, Addison Wesley Professional, 22 ediciéon, 2008. Michael Guttman, Juan Parodi, La
vida real MDA: Solucién de problemas de negocios con
Driven Architecture modelo, Morgan Kaufman 2006.
SJ Mellor, S. Kendall, A. Uhl, D. Weise. MDA destilada. Addison-Wesley, 2004.

Para algunos detalles mas sobre las herramientas de planificacion de capacidad y rendimiento basadas en MDA, consulte:

L. Zhu, J. Liu, I. Gorton, NB Bui. Generacién personalizada comparativas realizadas con
MDA. en Actas de la 52 Conferencia IEEE de Trabajo / IFIP en Arquitectura de Software, Pittsburgh,
noviembre de 2005.

capitulo 15

Lineas de Producto Software

Marcar el Staples

15.1 lineas de productos para ICDE

El sistema ICDE es una plataforma para la captura y la difusion de informacion que se puede utilizar en diferentes
dominios de aplicacién. Sin embargo, como cualquier tecnologia aplicable genéricamente horizontal, su gran
atractivo es a la vez una fortaleza y debilidad. La debilidad se debe al hecho de que una organizacién usuario tendra
que adaptar la tecnologia para adaptarse a su dominio de aplicacion (por ejemplo, financiar), y hacer mas facil para

sus usuarios aprender y explotar. Esto lleva tiempo y dinero, y por lo tanto, es un desincentivo para la adopcion.

Reconociendo esto, el equipo de desarrollo decidi6 producir una versién adaptada de la plataforma ICDE por
sus tres grandes dominios de aplicacién, a saber, el andlisis fi nanciero, analisis de inteligencia e investigacion de
la politica del gobierno. Cada uno de los tres serian comercializados como productos diferentes, y contienen
componentes especi fi cos que conforman la plataforma de base ICDE mas facil de usar en el dominio de la

aplicacion especifica.

Para lograr esto, el equipo de lluvia de ideas varias estrategias que podrian emplear para minimizar el esfuerzo de
disefio y desarrollo de los tres productos diferentes. La idea basica era que se asentaron en utilizar la plataforma de
base ICDE sin cambios en cada uno de los tres productos. Ellos entonces crear componentes fi dominio especi
adicionales en la parte superior de la plataforma base, y construir los productos resultantes mediante la compilacion de

la plataforma base con los componentes de dominio-especifico. Esta arquitectura basica se representa en la Fig. 15.1 .

Lo que el equipo habia hecho era tomar los primeros pasos para la creacién de una arquitectura de linea de producto
para su tecnologia ICDE. Las lineas de productos son una forma de estructuracion y gestion del desarrollo en curso de una
coleccién de productos en una fi ciente altamente ef y de manera rentable. Las lineas de productos a lograr la reduccion de
costes y esfuerzo significativo a través de la reutilizacion de activos a gran escala de productos de software tales como

arquitecturas, componentes, casos de prueba y documentacion.

El equipo de desarrollo de productos ya ICDE bene fi cios de la reutilizacién del software en varias formas diferentes. Reutilizan
algunas bibliotecas genéricas (como controladores JDBC para manejar el acceso de base de datos), y la totalidad de las aplicaciones

de la plataforma (como la base de datos relacional en

|. Gorton, Arquitectura de Software esencial, 219
DOI 10.1007 / 978-3-642-19176-3_15, # Springer-Verlag Berlin Heidelberg 2011

15 Lineas de Productos Software
ICDE 220
dominio-especifico ¢ para la plataforma
Fig. 15.1 El desarrollo de productos de

Gov - ICDE - ICDE Intel - ICDE

Plataforma Fin
A

Llave:

componentes

ICDE

especificos de dominio

el almacén de datos ICDE). Las fuerzas del mercado estan impulsando la introduccion de las tres versiones
adaptadas del producto ICDE. Pero si el equipo desarrollé cada uno de ellos por separado, podria triplicar su
desarrollo o la carga de trabajo de mantenimiento. Por lo tanto, su plan es reutilizar los componentes basicos para la
funcionalidad fundamental ICDE y crear componentes personalizados para la funcionalidad especifico a cada uno de
los tres mercados de productos. Se trata de un tipo de desarrollo de software linea de productos, y se debe reducir

significativamente sus costes de desarrollo y mantenimiento.

El resto de este capitulo el desarrollo de lineas descripciones de productos y arquitecturas, y describe una serie

de mecanismos de reutilizacion y de variacion que se pueden adoptar para el desarrollo de la linea de productos.

15.2 Lineas de Productos Software

Generalizada reutilizacion del software es un “santo grial” de la ingenieria de software. Promete un mundo armonioso
donde los desarrolladores pueden montar rapidamente soluciones de alta calidad a partir de un conjunto de componentes
de software preexistente. La busqueda de la reutilizacion de software efectivo en el pasado ha centrado estereotipada de
“reutilizacion en el pequefio,” técnicas para reutilizar funcién propia, o bibliotecas de funciones para tipos de datos y
tecnologias independientes del dominio explotar. clase de coleccion y librerias de funciones matematicas son buenos
ejemplos. Tales enfoques han demostrado ser beneficioso, pero no se han dado cuenta de la promesa completa de la

reutilizacién del software.

La reutilizacion de software es facil si sabes que ya lo hace exactamente lo que quiere. Pero el software que hace
“casi” lo que quiere es por lo general completamente inutil. Por esta razén, para darse cuenta de los beneficios completos
de la reutilizacion de software, tenemos que practicar “la variacion de software” eficaz también. Los enfoques modernos a
la reutilizacion de software, como el software Linea de Producto (SPL) desarrollo, soporte variaciéon de software “en la
gran”, con una base arquitecténica y una fi co enfoque de dominio especi. Linea de Producto (SPL) de desarrollo de
software ha demostrado ser una forma efectiva de beneficiarse de la reutilizacion del software y la variacién. Se ha
permitido a muchas organizaciones a reducir los costes de desarrollo, reducir la duracion del desarrollo, y aumentar la

calidad del producto.

En el desarrollo de SPL, una coleccion de productos se desarrolla mediante la combinacion de activos centrales reutilizados

con activos fi co-productos personalizados especifico que varian la funcionalidad

15.2 Lineas de Productos Software 221

botones basicos

Calculadora genérica

Botones de lujo

Calculadora Deluxe

Fig. 15.2 Una vista esquematica de una linea de producto sencillo

proporcionada por los principales activos. Un ejemplo conceptual simple de una linea de productos se muestra en la Fig. 15.2
. En la imagen, dos productos de calculadoras diferentes se desarrollan, tanto con el uso de las mismas tablas internas
nucleo de activos. Las diferentes funcionalidades de los productos de calculadoras se ponen a disposicién de cada uno de
sus activos personalizados, incluyendo los dos tipos diferentes de botones que proporcionan la interfaz individualizada a la

funcionalidad genérica, reutilizados.

Desde esta perspectiva sencilla, desarrollo SPL es igual que el desarrollo de la linea de productos basada en
hardware mas tradicional, excepto que en el desarrollo de SPL, los productos son de software del curso! 1

Para cualquier producto en un SPL, casi todo es implementado por los principales activos reutilizados. Estos activos centrales
implementan la funcionalidad de base que es uniforme a través de productos en la SPL, asi como proporcionar apoyo a
caracteristicas variables que pueden ser seleccionadas por los productos individuales. puntos de variaciéon de activos basicos que
proporcionan una interfaz para seleccionar de entre esta funcionalidad variable. activos personalizados fi co-productos especi
ejemplifican puntos de variacion de los activos basicos, y también pueden poner en practica totalidad de caracteristicas

productspeci fi cos.

variacion de software tiene una serie de funciones en el desarrollo de SPL. El papel mas evidente es la de apoyar a
las diferencias funcionales en las caracteristicas de la SPL. variacion de software también se puede utilizar para apoyar

diferencias no funcionales (tales como el rendimiento, la escalabilidad, o la seguridad) en las caracteristicas de la SPL.

SPL desarrollo no es simplemente una cuestion de arquitectura, disefio y programacién. impactos en el
desarrollo de SPL procesos en todo el ciclo de vida de desarrollo de software existentes, y requiere nuevas
dimensiones de la capacidad de los procesos para la gestion de activos reutilizados, productos, y la presion
sonora global en si. El Instituto de Ingenieria de Software ha publicado directrices de practica Linea de
productos (ver lecturas adicionales al final del capitulo) para estos procesos y actividades que apoyan el

desarrollo de SPL. Nos referiremos a estas areas de practica mas adelante en este capitulo.

1 Las lineas de productos también son ampliamente utilizados en el dominio de sistemas embebidos, donde los productos son una combinacion de software

/ hardware.

15 Lineas de Productos Software

15.2.1 Bene fi cion de Desarrollo SPL

Cuando una organizacion desarrolla un conjunto de productos que comparten muchos puntos en comun, una presion sonora se
convierte en un buen enfoque. Tipicamente SPL de una organizacién aborda una amplia area de mercado, y cada producto en el
SPL se dirige a un segmento de mercado fi especifico. Algunas organizaciones también utilizan un SPL para desarrollar y

mantener las variantes de un producto estandar para cada uno de sus clientes individuales.

El alcance de una linea de productos es la gama de posibles variaciones con el apoyo de los principales activos
en un SPL. Los productos reales en un SPL estardn normalmente dentro del ambito de SPL, pero los activos
personalizados ofrecer la posibilidad de desarrollar una funcionalidad mas alla del alcance normal de la SPL. Para
maximizar el beneficio del desarrollo de SPL, el alcance SPL debe ser igual a ambos los mercados de interés para la
empresa (para permitir nuevos productos dentro de esos mercados a desarrollarse de forma rapida y cientemente fi
ciencia), y también toda la gama de funcionalidad requerida por los productos reales desarrollado por la empresa.
Estas tres categorias diferentes de productos (mercados de interés de la compaiiia, el alcance SPL, y los productos

reales desarrollados por la empresa) se representan en un diagrama de Venn en la Fig. 15.3 .

El mas obvio beneficio del desarrollo SPL se incrementa la productividad. Los costes de desarrollo y
mantenimiento de los activos basicos no son asumidos por cada producto por separado, sino que se extienden a
través de todos los productos en el SPL. Las organizaciones pueden capturar estas economias de escala para
beneficiarse del desarrollo de un gran numero de productos. El enfoque de SPL escala bien con el crecimiento, ya

que el coste marginal de agregar un nuevo producto debe ser pequefa.

Sin embargo, el desarrollo de SPL también tiene otras fi cativos beneficios significantes. Cuando los activos
principales en un SPL estan bien establecidos, el tiempo necesario para crear un nuevo producto en el SPL es mucho
menor que con el desarrollo tradicional. En lugar de tener que esperar a la remodelacion de la funcionalidad de los
principales activos, los clientes solo tienen que esperar a que el desarrollo de la funcionalidad que es Unica para sus
necesidades.

Las organizaciones también pueden experimentar la calidad del producto beneficios del desarrollo SPL. En el
desarrollo de productos tradicionales, un defecto podria repetir en muchos productos, pero en el desarrollo SPL, un

defecto en un activo nucleo soélo tiene que ser fijo

Todos los productos posibles

Ambito de SPL (Todos los posibles

productos dentro de la variacion con el apoyo de los

principales activos)

Fuera del ambito de
variacion puede ser

apoyado por los activos Todos los posibles productos en

personalizados Los productos reales mercados de interés

—_—

Fig. 15.3 El alcance de una SPL 222

15.3 Linea de productos Arquitectura 223

una vez. Por otra parte, aunque el defecto podria encontrarse inicialmente en el uso de un solo producto, cada
producto en el SPL se beneficiarse del defecto fi x. Estos factores permiten mas rapidas mejoras a la calidad del
producto en el desarrollo de SPL.

Hay de segundo orden beneficios adicionales para el desarrollo de SPL. Por ejemplo, el desarrollo SPL proporciona a
las organizaciones un camino claro lo que les permite convertir el trabajo de proyectos a medida para clientes especi fi cas
en la linea de productos cuenta reutilizado en todo el SPL. Cuando las organizaciones tienen procesos para reutilizar los
activos administrados, el desarrollo de fi co trabajo del proyecto en el cliente especifica inicialmente puede ser
administrado en un activo personalizado. Si las caracteristicas demuestran tener mayor significacion, el activo

personalizado se puede mover en la base principal activo reutilizado.

Otro beneficio relacionado es que la gestion de los activos principales y personalizados ofrece una vision
clara y sencilla de la gama de productos mantenidos por la organizacién. Este punto de vista permite a las

organizaciones a mas facilmente:

1Actualizar los productos a utilizar una nueva version de la base
\Ver qué activos son fundamentales para el negocio
1\Ver cdmo los productos se diferencian el uno del otro

\Considerar las opciones de funcionalidad futuro para el SPL

15.2.2 lineas de productos para ICDE

Los tres productos ICDE planificadas todos funcionan de una manera similar y las diferencias para cada uno de los
productos estan bastante bien comprendidos. El producto Gobierno tendra una interfaz de usuario que soporta listas de
control de politica y de gobierno, el producto Finanzas apoyara muestra continuamente actualizadas de informacion de
mercado en tiempo real, y el producto de Inteligencia integrara vistas de datos de diversas fuentes de datos Clasi fi
cado.

La variacion requerida en la linea de productos puede ser definido en gran medida en términos de los componentes de
recogida de datos. Las opciones de la GUI y el acceso a fuentes de datos especi fi cos de dominio tendran que ser apoyado
por la variacion en los puntos de recogida de los componentes. Esto significa que el Recopilacién de datos componente cliente
necesitara puntos de variacion con el fin de facilitar el acceso a fuentes de datos fi cas de dominio-especifico de aplicacion.
Esto requerira componentes personalizados para manejar los detalles especi fi cos de cada una de las nuevas gobierno / fi
nanciera fuentes de datos / de inteligencia. los AlImacén de datos componente no deberia tener que soportar cualquier variacion

para los tres productos diferentes. Debe ser apto para ser reutilizado como un simple activo basico.

15.3 Linea de productos Arquitectura

desarrollo SPL se describe generalmente como haciendo uso de una linea de Arquitectura del producto (PLA). Un PLA es una
arquitectura orientada a reutilizar-para los activos principales en el SPL. Los objetivos de reutilizacion y variacion de un PLA son los

siguientes:

15 Lineas de Productos Software

1Sistematicamente apoyar un ambito de aplicacion planificada de antemano de la funcionalidad variante

\Permitir que los productos dentro del SPL a elegir opciones de entre las que la variante

funcionalidad

Un PLA logra estos objetivos utilizando una variedad de mecanismos técnicos para la reutilizacion y la variacion

que se describen en las siguientes secciones. jan Bosch 2 ha identi fi cado tres niveles de madurez PLA:

1. Bajo especi arquitectura fi ed (variacion ad-hoc)
2. Arquitectura fi cado
3. Arquitectura forzada (todo variacién requerida apoyo de puntos de variacion arquitectonicos planificados)

El aumento de los niveles de madurez de arquitectura proporcionan mas beneficios a partir de la variacion
sisiematica al hacer el desarrollo de productos mas répido y mas barato. Sin embargo, cada vez mas maduros PLA
ofrecen menos oportunidades para la variaciéon ad-hoc, lo que puede reducir las posibilidades de reutilizacion. Sin
embargo, los crecientes niveles de reutilizacién pueden lograrse si hay una mejor variacion sistematica, es decir, una

mejor adaptacién de la PLA al dominio de alcance y la aplicacion de la SPL.

APLA no siempre es necesaria para el desarrollo exitoso de SPL. Lo menos madura de los niveles de madurez
de Bosch es “underspeci arquitectura fi cado”, y se han reportado experiencias de la adopcion de desarrollo SPL
con un extremadamente underspeci fi cada PLA. Aunque los productos en un SPL siempre tendran algun tipo de
arquitectura, que no necesariamente tiene que ser un PLA, es decir, uno disefiado para apoyar los objetivos de

reutilizacion y la variacion. En esencia, la reutilizacion de software, los desarrolladores deben:

1. Encontrar y entender el software
2. Hacer que el software disponible para su uso por incorporarlo en su contexto de desarrollo

Fe-llize 2l sofbvare medjants 12 LYOGRSIAN S A, EE.UU., Agosto 19-22, 2002). Springer LNCS vol. 2379, 2002, pp. 257-271.

Veamos cada uno de estos pasos en turno.

15.3.1 encontrar y entender software

Los ingenieros de software usan documentacion de la APl y los manuales de referencia para apoyar la sencilla reutilizacion de
bibliotecas de software. Para el desarrollo de SPL, las directrices de practica la linea de productos de la SEI (ver lecturas
adicionales) describen el Producto del patrén de piezas

que aborda el descubrimiento y la comprensién de software activo fundamental para el desarrollo de SPL. Este patrén
se basa en la documentacién de los procedimientos para utilizar y crear instancias activos principales en la

construccion de productos.

2 J. Bosch, La madurez y la Evolucién en Lineas de Producto Software. En Actas de la Segunda Conferencia Internacional

15.3 Linea de productos Arquitectura 225

15.3.2 Llevar software en el contexto de desarrollo

Después hallazgo del software, un desarrollador tiene que hacer que esté disponible para ser utilizado. Hay muchas
formas de llevar el software en un contexto de desarrollo, que pueden clasificarse en funcion de su “tiempo de unién.”
Este es el momento en el que los nombres de los activos de software reutilizados se unen a una aplicacion especifica.

Los principales veces vinculantes y algunos mecanismos de ejemplo son:

1el tiempo de programacion - por el control de versiones de cédigo fuente
1El tiempo de construccion - por el control de versiones de las bibliotecas estaticas
itiempo de enlace - por el sistema operativo o el soporte de la maquina virtual para bibliotecas dinamicas

' Tiempo de ejecucién - por mecanismos fi middleware o aplicaciones especi para con fi guracion

o plug-ins, y por la programacién mecanismos del lenguaje dinamico para la reflexion

A principios de los tiempos de enlace (tales como la programacion o el tiempo de construccion) que sea mas facil de usar
variacion ad-hoc. veces (como enlace o el tiempo de ejecucion) después ligarlos retrasar compromiso con variantes
especificas, y asi hacer mas facil para beneficiarse de las opciones proporcionadas por la variacién sistematica. PLA cada vez
mas maduro para el desarrollo SPL tienden a utilizar mas adelante mecanismos de tiempo de unién. Esto les permite maximizar

los beneficios de un ambito de SPL que se entiende bien y tiene un buen fi cio con los mercados de interés de la compaiiia.

15.3.3 Software de invocacion

Para invocar el software, lenguajes de programacion proporcionan mecanismos de procedimiento / funcién / llamada al método.
Para sistemas distribuidos, los estandares de interoperabilidad como CORBA y SOAP proporcionan mecanismos de invocacién
remotos que estan vinculados a los mecanismos del lenguaje de programacion, para permitir a los desarrolladores de software
en ejecucion invocan los sistemas en otras maquinas. Estos mecanismos de invocacion son los mismos para el desarrollo SPL

como para el desarrollo de software tradicional.

Gestidn fi guracion 15.3.4 Software Con para reutilizacion

Para las organizaciones que estan adoptando el desarrollo SPL, los tiempos de unién mas comunes para la
reutilizacion estan programando tiempo y construyen tiempo. Esto hace que el software de gestion con fi guracion
(SMC) un area critica proceso de apoyo para el desarrollo de SPL. SMC incluye control de versiones y control de
cambios de los activos de software.

SCM para el desarrollo SPL es mas complicado que en el desarrollo de producto normal en parte
porque con fi guracion identi fi cacion (Cl) es mas complicado. Cl es la actividad SCM de especificar los
nombres, atributos y relaciones entre configuraciones fi (una coleccion versionado de objetos
versionados). En producto normal

15 Lineas de Productos Software

Al A A

Copias de solo lectura de la base de activos Las lineas de base
_____ N\ AW /______\
de bas/e Uno de Producto de Desal}(ﬂlo del Nucleo de actjvos \
\ \
/ / N4 \
e A, A

>

Las lineas de base sobre la linea de la linea Custom Development Activos lineas

Fig. 15.4 Un patrén de ramificacion SMC para el desarrollo SPL 226

desarrollo, con fi guracién de un producto por lo general tiene una estructura simple (por ejemplo, un unico binario
versionado o versionado fi le sistema de jerarquia de directorios). Sin embargo, en el desarrollo de SPL, cada nucleo
activo, activo personalizado, y el producto es una configuracién con fi que deben ser identificados y las relaciones entre
estas configuraciones Fi debe estar especi fi y gestionado. Basicamente, SMC se hace mucho mas arquitecténica para el
desarrollo de SPL.

Un enfoque para SCM para el desarrollo SPL se representa en la Fig. 15.4 . En esto
enfoque, los activos y los productos de la base tienen cada uno su propia linea de desarrollo (LOD). Cada version del producto
incluye sus propios activos personalizados, asi como versiones de los principales activos. El sistema de control de versiones
asegura que los activos centrales reutilizados son de sélo lectura para un producto, y que no se modi fi cado exclusivamente en
el contexto de un LOD fi co del producto especifico. Sin embargo, LOD de un producto puede tener una versién posterior de un

activo nucleo que se ha producido en su propio limite de deteccion.

Esta visién del desarrollo SPL proporciona una base cuantitativa para ver por qué el desarrollo SPL puede resultar tan
eficaz. EI LOD para cada producto contiene el cddigo fuente para los activos fi c-cliente especifico y también (de sdlo lectura) el
caodigo fuente para los activos principales. Por lo que cada LOD contiene esencialmente el mismo cédigo fuente ya que eran la
linea de productos no enfoques utilizados. Sin embargo, el volumen total de cédigo ramificada se ha reducido, debido a que el
tamafio de los activos basicos no se multiplica a través de cada producto. activos centrales no estan ramificados para cada
producto, y el disefio tan bajo nivel, los gastos de codificacion y los examenes de unidad dentro de los principales activos

pueden ser compartidos a través de muchos productos.

En el ejemplo ICDE hay tres productos, y vamos a suponer que los componentes de la base tiene 140.000
LOC (lineas de codigo) y la parte personalizada de cada producto tiene 10.000 LOC. En el desarrollo normal del
producto, cada producto se mantendria en un nivel de detalle independiente, dando un total de:

re 140; 000 b 10; 000 Th? 3 % 450; 000 ramificados LOC:

En el desarrollo de SPL, el nicleo esta en su propio nivel de detalle, y cada producto tiene un nivel de detalle sélo para cambiar

sus activos personalizados, dando un total de:

140; 000 b & 10; 000 3 b % 170; 000 ramificados LOC:

15.4 Mecanismos de variacion 227

Eso es solo el 38% del total original. La mejora se pone mejor cuando se desarrollan mas productos, o cuando el

tamafo de los activos personalizados en comparacién con los principales activos es proporcionalmente menor.

15.4 Mecanismos de variacion

En un SPL, los activos nucleo de soporte funcionalidad variable de al proporcionar puntos de variacion. Un PLA tipicamente
usa especifico c mecanismos de variacion de arquitectura para implementar la funcionalidad variable. Sin embargo, un SPL

también puede utilizar los mecanismos de variacién nonarchitectural para variar la funcionalidad del software.

Ademas de los mecanismos de variacién de nivel de arquitectura, hay disefio de nivel y los mecanismos de
variacion de nivel de fuente. Estos diferentes tipos de variaciéon no son incompatibles. Por ejemplo, es posible utilizar
la variacion fi le-nivel, al mismo tiempo como la variacién de la arquitectura. En esta seccién se describen algunos
de los mecanismos de variacion en estos diferentes niveles de abstraccion. Esta clasificacion es similar a la
taxonomia de las técnicas de la variabilidad de realizacion en términos de entidades de software que ha sido
propuesto por Svahnberg et al. 3

15.4.1 Puntos Arquitectura-nivel de variacion

mecanismos de variacién arquitecténicos son estrategias de disefio de alto nivel destinadas a permitir que los sistemas de
apoyo a una amplia gama de funcionalidad. Estas estrategias son de sélo muy débilmente relacionados con las
instalaciones de cualquier lenguaje de programacion fi co. Ejemplos de estos incluyen los marcos y arquitecturas
enchufables. Incluso el reconocimiento formal de un espacio de opciones de con fi guracién o parametros para la seleccion

entre la funcionalidad variante puede ser considerada como un mecanismo de variacion de la arquitectura.

15.4.2 Diseno Nivel Variacion

El limite entre la arquitectura y el disefio no es siempre una clara. Aqui vamos a decir que los mecanismos a nivel de
disefio son los soportados directamente por las instalaciones de lenguaje de programacion y que los mecanismos a
nivel de la arquitectura debe ser creado por la programacién. mecanismos del lenguaje de programacién se pueden
utilizar para representar la variacion. Estos mecanismos incluyen interfaces de componentes que pueden permitir
diferentes implementaciones funcionalmente diferentes, y la herencia y de la anulacién que de igual forma permitir que

los objetos tienen funcionalidad variante que satisface las clases base fi ca.

3 M. Svahnberg, J. van Gurp, J. Bosch, Una taxonomia de las técnicas de realizacion de variabilidad,

documento técnico, Blekinge Institute of Technology, Suecia, 2002.

15 Lineas de Productos Software

15.4.3 Variacion de nivel de archivo

entornos de desarrollo y lenguajes de programacion proporcionan formas de implementar la variacién en el nivel de
caédigo fuente archivos. Algunos lenguajes de programacion proporcionan la compilacién condicional o mecanismos de
macros que pueden poner en practica la variacion funcional. En cualquier caso, construir secuencias de comandos
pueden realizar variaciones le légica o fi fisico que puede ser usado para representar la variacion funcional.

marco, serda mucho mas facil al 228

15.4.4 Modificacién mediante Gestion de configuracion del software Con fi

El papel principal de SMC para el desarrollo de la linea de productos es apoyar la reutilizacion de activos mediante la identificacion
y la gestién de las versiones de (y) los cambios en los productos y sus componentes activos constituyentes. Las nuevas versiones
eI CHIPD A iR Gy @ HEEE IANRISELITGS degionisisie BugaivR Helead SiStefIBRtSS ik RIBES NIt SWe iR iedsitly de
usar cualquier version principal activo que cumpla con las necesidades de los interesados del producto. El historial de versiones y

la versioén de ramificacion espacio dentro de una herramienta de SMC se pueden utilizar para representar la variacion.

En una herramienta de control de versiones, un LOD ramificada de un activo nlcleo puede ser creado para
contener funcionalidad variante. Ramificaciones principales activos reutilizados con el fin de introducir variaciones en
curso es una especie de decadencia técnica que reduce los beneficios del desarrollo SPL. En el caso extremo en que
cada producto tiene su propia rama de activos centrales, una organizacion va a haber anulado el desarrollo SPL por
funcionalidades. La interfaz grafica de usuario es actualmente demasiado rigida, por lo que el equipo tiene previsto ampliar el
completo y va a hacer volver el desarrollo de productos ordinarios. No obstante, en algunas circunstancias, una rama
temporal es la forma mas pragmatica para introducir una variacién en un componente en la cara de un plazo de

entrega que se avecina.

15.4.5 Arquitectura del producto Linea de ICDE

tiempo real de informacion de mercado para el producto financiero, los componentes GUI existentes necesitan nuevas

Desde el principio en el desarrollo del producto ICDE el equipo de desarrollo ha hecho un esfuerzo
considerable en la arquitectura del producto. Esto significa que estan en la posicion afortunada de tener ya
muchos mecanismos de variacion de arquitectura en lugar, por lo que la adopcién de desarrollo de la linea de
productos mas facil. Por ejemplo, el

Fuente de datos mecanismo adaptador proporciona toda la variabilidad requerida para los tres nuevos productos. Estos
mecanismos de variacion existentes forman el corazén de la arquitectura de linea de producto para la linea de productos
ICDE.

El equipo necesita para definir algunos de los nuevos mecanismos de variacién también. Para apoyar la visualizacion en

15.5 La adopcion de software de desarrollo de la linea de productos 229

implementar el panel de visualizacién en tiempo real, conectarlo a la fuente de datos de mercado, e incluirlo en la interfaz grafica de
usuario para la compilacion del producto financiero.

Sin embargo, aunque el equipo pensé que el ICDE Almacén de datos seria el mismo para los tres productos, resulta
que separa los datos de Clasi fi cado por el producto de seguridad es un problema trivial, con requisitos muy diferentes de
los otros dos productos. El equipo tiene que llegar a algun destino especial Almacén de datos cédigo sélo para ese
producto. La manera mas facil de hacer estos cambios especiales se encuentra en una copia separada del cédigo, por lo
que en su herramienta de control de versiones que crear una rama de la Aimacén de datos componente sélo por el
producto de seguridad. Tener que mantener dos implementaciones diferentes de la Almacén de datos puede doler un
poco, pero es lo mejor que el equipo puede hacer bajo un plazo muy corto. Una vez que se envia el producto que tendran
tiempo para disefiar un mecanismo de variacién arquitecténica mejor para la préxima version, y se mueven todos los

productos sobre los que el nuevo Aimacén de datos componente.

15.5 La adopcién de software de desarrollo de la linea de productos

Al igual que muchos cambios radicales de negocios, la adopcién de desarrollo SPL en una organizacién es a menudo
impulsada en respuesta a una crisis (lo Schmid y Verlage 4 diplomaticamente una situacion llamada
“reingenieria-driven”). Esto puede ser una demanda urgente de desarrollar rapidamente muchos productos nuevos, o
para reducir los costes de desarrollo, o para escalar el desarrollo de funciones nuevas en la cara de una creciente
carga de mantenimiento. Esta seccién sefiala algunos caminos y procesos pertinentes a la adopcién del desarrollo
SPL.

Hay dos puntos de partida diferentes en la adopcién de desarrollo SPL:

1. Campos verdes: donde inicialmente no existen productos
2. Los campos arados: donde una coleccion de antiguos productos relacionados ya tienen

ha desarrollado sin reutilizacion en mente

Cada situacion tiene consideraciones especiales, como se describe a continuacién. Para la adopcion campos verdes
de lineas de productos, la SEI Lo que hay que construir patrén es particularmente relevante. Este patrén se describe cémo
una serie de areas de practica en interaccion puede dar lugar a la generacion de un @mbito SPL (SPL saber lo que se
construird) y un caso de negocio (a saber por qué la construccion de la SPL es una buena inversion para la organizacion).
Esto es La determinacion del alcance y La construccion de un Business Case areas de practica que son directamente
responsables de estas salidas son compatibles con el Descripcion de dominios relevantes, Andlisis de mercado, y Prediccion

tecnologia Areas de practica.

Una organizacion tiene que decidir sobre sus mercados de interés, su alcance término medio SPL-Tolong, y
sus planes de produccion de productos de corto y medio plazo. La organizacion debe planificar y evaluar las
distintas opciones de inversién de tener el PLA de la base del nucleo activo apoyar un ambito SPL

suficientemente grande. Esto hace que sea

4 K. Schmid, M. Verlage, El impacto econdmico de la adopcién linea de productos y Evolucién. En IEEE Software, julio / agosto de

2002, pp. 50-57.

15 Lineas de Productos Software

posible que el comercio fuera de las posibilidades de regreso de los productos que se pueden generar dentro de ese
ambito de los mercados de interés para la organizacion.

Invertir en un PLA al comienzo de una SPL proporcionara un mejor rendimiento a largo plazo
suponiendo que los productos de la SPL tienen éxito en el mercado. Sin embargo, el costo y dif fi cultad
técnica de crear una PLA tales ex nihlio puede suponer un obstaculo para la adopcién de desarrollo SPL,

sobre todo si la organizacién no esta ya expertos en el dominio de aplicacion esta dirigida por el SPL.

Por el contrario, cuando existe un conjunto de productos y se realiza la migracién a un SPL, una organizacion,
como para la adopcién Green Fields, tendra que decidir sobre el alcance SPL y mercados de interés para el SPL. Sin
embargo, las organizaciones en esta posicion por lo general ya tienen un buen conocimiento acerca de estos. El
alcance de la SPL en gran medida impulsado por la funcionalidad de los productos existentes y futuros planes de
producto. Las otras consideraciones signi fi cativas para la adopcion de los campos arados son posibles barreras

relacionadas con el control de cambios y de fi nicion de los principales activos y PLA.

problemas de control de cambios pueden suponer un obstaculo para la adopcion de desarrollo SPL para los productos
heredados de una organizacion. Los grupos de interés de los productos existentes que ya se han establecido las expectativas
acerca de como cambian sus versiones de productos. Como se discutié en la seccién de SMC, cada producto de la SPL tiene
actores que influyen en los cambios realizados en los principales activos, y estos cambios en los activos principales en el SPL
afectaran en Ultima instancia, todos los productos de la SPL, incluyendo otras partes interesadas. Este cambio en la naturaleza

de las versiones de los productos debe ser entendido y aceptado por las partes interesadas de los productos.

Cuando se proceda a la de fi niciéon de un SPL para un conjunto existente de productos independientes, la
organizacion debe decidir lo que es central para cada producto, y lo que es habitual o una especi fi ca a cualquier producto
individual. En lugar de tirar los activos existentes para los productos de la organizacién y partiendo de una pizarra en
blanco, es posible utilizar un método de extraccion de los principales activos de la mina de los productos existentes. La SEI
describe una linea del area de practica producto Mineria activos existentes hacer frente a esta actividad. En muchos
sentidos, la extraccion de los principales activos es como un ejercicio de refactorizacion gigante, como se representa en la

Fig. 15.5 . A partir de una coleccio6n inicial de productos, el objetivo de

Producto A
Un encargo Custom Un
Un producto personalizada Un Ntcleo
Nucleo
B personalizada Producto B
personalizada Un
B personalizada Nucleo
producto B Nucleo
Nucleo
Nucleo
identificar extraer Productos Refactor
Core Core en SPL

Fig. 15.5 Mineria activos principales de una coleccion de productos existentes 230

15.5 La adopcion de software de desarrollo de la linea de productos 231
el ejercicio es al fi nal con productos idénticos, excepto que ahora todos construidos usando un activo basico comun.

Cuando de fi nicién de los activos principales, la organizaciéon puede también definen una PLA para atender a la variacion
que se identi fi cada uno de los productos. Svahnberg et al. han presentado una serie de pasos minimamente necesarias para

introducir variabilidad en un SPL. Estos son:

1La identificacion de la variabilidad
\La restriccion de la variabilidad
1La implementacion de la variabilidad

\La gestion de la variabilidad

Con el fin de reducir el control de cambio de conflictos, puede ser mas facil de introducir el desarrollo SPL temprano
en el ciclo que conduce a la liberacion de una nueva version de un producto. actores de productos se preparan para los
cambios importantes cuando se recibe una nueva version principal. Aunque logro de un desarrollo SPL tiene por qué no
en consecuencia principio de cualquier diferencia funcional a un producto, hay al menos sera de control de cambios modi
fi caciones de politica, que los clientes pueden hallar mas facil de aceptar en el contexto de una importante nueva versién

del producto.

Una organizacion adopcion de lineas de productos también pueden reducir los riesgos comerciales y técnicos de forma
incremental por el despliegue de la presién sonora dentro de la organizacion. La adopcién puede ser incremental ya sea
aumentando progresivamente el tamafio de los activos principales, afiadiendo progresivamente mas productos a utilizar los

principales activos, o una combinacién de ambos.

Areas de Practica Adopcion 15.5.1 Linea de productos

La adopcion de desarrollo SPL tiene un impacto fuera del contexto de desarrollo técnico. Independientemente
del punto de partida para la adopcion linea de productos (verde o los campos arados) y con independencia del
producto fi co y cambios en los procesos técnicos que se van a realizar, muchas cuestiones de gestion de la
organizacion deben ser tratados con éxito la transicion al desarrollo SPL. Las guias de practica linea de
productos describen el SEI Patrén de arranque en frio que agrupa a la practica de las areas que pueden ayudar
a una organizacién prepararse eficazmente para el lanzamiento de su primer SPL. La estructura del modelo se

muestra en la Fig. 15.6 .

Aungque los detalles de estas areas de practica estdn mas alla del alcance de este capitulo, el patrén en su
conjunto destaca el hecho de que el desarrollo SPL debe tener el apoyo de grandes sectores de dentro de la
organizacion y la adopcion de sus clientes.

Adopcién 15.5.2 Linea de Producto de ICDE

El equipo ICDE fue conducido al desarrollo de SPL por la desalentadora perspectiva de desarrollar tres nuevos
productos a la vez. Estan creando tres nuevos productos para los tres mercados fi cas, pero estan utilizando

su producto existente como punto de partida.

15 Lineas de Productos Software

Lanzamiento y Institucionalizando

:

Fondos —® La estructuracion de la Organizacion

|

operaciones
232
Gestion de .)
L L Gestion de riesgos para la
Relacion con ~ <———— Organizativo I— o
X Organizacion
el cliente Planificacién
el desarrollo de una
Adquisicién Formacion

Estrategia

Fig. 15.6 La estructura de areas de practica en linea de productos de SEI Inicio fresco patrén (después de Clements y Northrup 2002, P383)

Su adopcion del desarrollo SPL es, pues, un escenario Campo arado. Ellos tienen que extraer los componentes
reutilizables de su base de cddigo existente.

Por suerte sus clientes existentes no van a estar demasiado preocupado inicialmente sobre el paso a un PLA,
debido a que el movimiento es parte del desarrollo de una nueva versién del producto. Los clientes estaran

encantados de actualizar debido a las nuevas caracteristicas que también va a estar recibiendo.

15.6 Software curso Desarrollo Linea de Producto

SPL desarrollo debe ser eficaz no sélo para el desarrollo inicial de los nuevos productos, sino también por su
continuo mantenimiento y mejora. Aunque el desarrollo de SPL puede tener muchos beneficios, es mas
complicado que el desarrollo normal del producto. procesos mejorados son necesarios para que el desarrollo
continuo SPL eficaz. En esta seccion se ofrece un resumen de algunos de estos procesos de desarrollo de
SPL. Prestamos especial atencion a “control de cambios” y “evolucién arquitecténica” SPL para el desarrollo,
sino también un resumen de otras areas SEI Linea de productos de practica para el desarrollo de SPL en

curso.

15.6.1 Control de Cambios

control de cambios de software se relaciona con la gestion de con fi guracion de software, y se ocupa de la planificacion,
coordinacion, el seguimiento y la gestién de los efectos del cambio de artefactos de software (por ejemplo, el cédigo fuente). El

control de cambios es mas dificil cuando se hace la reutilizacion del software, y esto afecta el desarrollo del SPL.

15.6 Software curso Desarrollo Linea de Producto 233

En cualquier tipo de desarrollo de productos, cada producto tiene una coleccion de grupos de interés que se ocupa
de como sus cambios de productos para adaptarse a sus necesidades de nuevas funcionalidades. Ademas, las partes
interesadas estan preocupados por caracteristicas no funcionales (tales como calendario de lanzamiento, la fiabilidad
del producto) en relacién con la liberacién de sus productos. las partes interesadas con aversion al riesgo (como los que
utilizan el software safetycritical o aquellos en el sector bancario) estan motivados a menudo para asegurarse de que
sus productos no cambian en absoluto! Dichas partes interesadas a veces prefieren estar con fi anza en su comprension

del producto (bugs y todo) en lugar de utilizar las nuevas versiones, quizas mejor.

El control de cambios es mas dificil cuando se hace la reutilizacion de software, incluyendo la reutilizaciéon de software para el
desarrollo de SPL. Para el desarrollo de productos ordinario, cada producto es desarrollado por separado, por lo que las partes
interesadas de cada producto se mantienen separados también. Sin embargo, en el desarrollo SPL cada producto depende de los
principales activos reutilizados, y asi las partes interesadas de estos productos también dependen indirectamente de estos activos
centrales reutilizados. Si el cliente de un producto tiene una solicitud de cambio que implica un cambio a un activo nucleo, a
continuacion, la aplicacion que obligara a que el cambio en cualquier otro cliente que utiliza la nueva versién de ese activo nucleo.
Los muchos, a menudo conflictivos, necesidades de los interesados de los productos tendra que ser al mismo tiempo satisface fi

cados por los principales activos reutilizados.

15.6.2 Evolucion de Arquitectura para el Desarrollo SPL

En el desarrollo de SPL hay una evolucién constante de ambos activos personalizados de productos individuales y los
principales activos reutilizados. El PLA es la base arquitectdnica para la variacion con el apoyo de los principales activos. Un
cambio a la interfaz de un nucleo activo es un cambio en el PLA, y puede forzar cambios en todos los productos que utilizan la
nueva version de estos activos principales. ; Cémo entonces se deben agregar las nuevas o mejoradas caracteristicas basicas

de una linea de productos? Es decir, como se deben hacer cambios a la PLA?

Hay tres maneras de tiempo, la introduccion de puntos de variacion en los activos centrales:

1Proactivo: Planificar el futuro para futuras caracteristicas, y ponerlas en practica en los principales activos

antes de que cualquier producto que necesita.

\Reactivo: Espere hasta que una nueva caracteristica que realmente se requiere de un producto, y luego

implementarlo en los principales activos en ese momento.

1Retroactivo: Espere hasta que una nueva caracteristica que realmente se requiere de un producto, y luego
implementarlo en un activo personalizado en ese momento. Cuando suficientes productos implementar la funcion en sus activos
personalizados, agregarlo a los principales activos. Los nuevos productos se pueden utilizar caracteristica, y los productos mas
antiguos pueden caer su aplicacién activo personalizado a favor de los activos principales de los nuevos activos centrales

aplicacion.

Es posible utilizar una combinacién de estos enfoques, para diferentes mejoras. Por ejemplo, las mejoras en un
largo plazo Hoja de Ruta se podria afiadir de una manera proactiva, mediante la planificacion de cambios de
arquitectura para apoyar la futura ampliacion del alcance del SPL. mejoras limitadas pero generalmente Utiles a los
activos centrales podrian afiadirse de manera reactiva, mediante la modificacion del PLA como es requerido por

esas mejoras.

234 15 Lineas de Productos Software

Tabla 15.1 La comparacién de estrategias para la evolucion de la arquitectura

Proactivo Reactivo Retroactivo
Sin inversion a largo plazo No Si Si
Reduce el riesgo de cambio de nticleo activo conflicto Si No Si
Reduce el tiempo de espera para agregar funcion de primer producto fi Si No No
Reduce el riesgo no se requiere de la funcién de nucleo No (0 productos) No (1) de productos Si

en una serie de productos

Mejoras que necesita un producto que son mas especulativo o menos bien de fi nido podrian afadirse en
forma retroactiva.

Cada una de estas estrategias tiene diferentes costos, beneficios y riesgos. La eleccién de la estrategia para una
caracteristica particular sera impulsado por la consideracion de estas soluciones de compromiso en el contexto

empresarial de la organizacion. Mesa 15.1 resume algunas de las diferencias entre los tres enfoques:

Areas 15.6.3 Linea de Producto practica del desarrollo

Las guias de practica linea de productos proporcionan la SEI Fabrica patrén que conecta entre si a otros patrones
y sus areas de practica constituyentes relevantes para el desarrollo y el mantenimiento continuo de un SPL. los En
movimiento grupos de patrones participen las areas de practica de gestion de la organizacion. Otros patrones SEI

relevantes son la

Monitor, Proceso, y Plan de estudios patrones que describen aspectos del desarrollo en curso de SPL.

Por areas de practica técnicas, del SEI cada Activo patron describe areas de practica que son relevantes
para el desarrollo de los principales activos. los Piezas del producto patrén une los principales activos con el
desarrollo de productos. los Constructor producto
patrén describe areas de practica relevantes para el desarrollo de cualquier producto especifico. los Linea de ensamblaje patrén

describe cdmo los productos son emitidas desde el SPL.

15.6.4 lineas de productos con ICDE

Hacer el desarrollo SPL no era solo una cuestion de arquitectura para el equipo ICDE. Cada uno de los productos
que tenian un grupo de direccién del cliente que estuvo involucrado en los requisitos de fi nicion de los nuevos
productos y de fi nidas las solicitudes de mejora que querian realizar un seguimiento hasta la entrega de los
productos. Pero el equipo ICDE no queria que el grupo de direccion del cliente de productos financieros para ver
todos los detalles del grupo de direccion de productos de seguridad, y viceversa. Los problemwas que algunas
solicitudes de mejora eran la misma (o similar), y el equipo no quieren confundirse acerca de peticiones duplicadas

cuando empezaron codificacion.

15.7 Conclusiones 235

Por lo tanto, el equipo ICDE configurar diferentes sistemas de solicitud de cara al cliente para cada uno de los productos. Estos
vinculados a un sistema de solicitud de cambio interno que podria realizar un seguimiento de los cambios en cada uno de los principales

subsistemas reutilizados y también los componentes personalizados fi c-de productos especifico.

Eventualmente, el primer producto fue puesto en libertad. En lugar de liberar los tres productos a la vez, el equipo
envia el primer producto mas simple ficcién, es decir, el producto de Gobierno. Los clientes gobierno elevé rapidamente
unos informes de defectos posteriores a la liberacion, pero el desarrollo del ICDE teamwas capaz de responder
rapidamente. La buena noticia fue que uno de los defectos que era fijo fue en el niicleo Recopilacién de datos componente,
por lo que cuando los otros dos productos fueron puestos en libertad mas tarde, sus clientes no veria ese problema. El

equipo ICDE estaba empezando a ver algunos bene fi cios de la calidad de desarrollo SPL.

La mala noticia llegd después de los demas productos fueron puestos en libertad. Los clientes de seguridad y
financieros estaban felices de tener la nueva version, aunque los clientes financieros hicieron levantar un informe sobre el
defecto Analisis de los datos componente. Hubiera sido facil de fi x en el componente subyacente, pero en ese momento
los clientes del gobierno habian entrado en produccién. No se habian visto ese problema en el Analisis de los datos zona,
y de hecho, el error se relaciona con las extensiones marco necesario para soportar el panel de visualizacién en tiempo

real de productos financieros.

Sin embargo, si el Analisis de los datos componente cambia de ninguna manera en absoluto, los clientes
gubernamentales tendrian que seguir su politica y vuelva a ejecutar todas las pruebas de aceptacion relacionados,
que les costaria tiempo y dinero. Asi que realmente no quieren ver ninglin cambio, y ejercer presion sobre el equipo

de ventas ICDE para tratar de detener el cambio.

El equipo de desarrollo del ICDE realmente queria cambiar la version de la base, pero como no podia satisfacer
a todos ellos? Pensaron en falsificar los cambios fundamentales en activos a medida solo para el producto
financiero, pero al final decidieron mantener el producto Gobierno de la versién antigua de la Andlisis de los datos componente,
e implemento el fi x en el nucleo. El equipo de desarrollo del ICDE también creé un BCC Core participacion de
miembros representativos de cada uno de los tres grupos de direccién del cliente. Esto significaba que en el futuro
las negociaciones podrian gestionarse dentro del nicleo CCB, en lugar de a través del equipo de ventas de la
ICDE.

Un punto brillante en el horizonte era que los clientes de seguridad estaban empezando a hablar de su necesidad de
ver la visualizacién en tiempo real de las noticias. El equipo de desarrollo podria implementar ICDE que simplemente
reutilizando el panel de visualizacién en tiempo real desarrollado por el producto financiero. La compaiiia ya habia
contabilizado los costes de desarrollo de esa caracteristica, por lo que ser capaz de vender de nuevo para otros clientes

que significaria todos los nuevos ingresos irian directamente a la linea de fondo.

15.7 Conclusiones

el desarrollo de la linea de productos ya ha dado muchas organizaciones érdenes de magnitud de las mejoras a la
productividad y el tiempo de comercializacion, y signi fi cativas mejoras en la calidad del producto. Si pensamos en

el desarrollo de una SPL simplemente SMC

15 Lineas de Productos Software

perspectiva, podemos ver que (proporcionalmente grandes) activos centrales no estan ramificados para cada producto, por lo

que el numero total de lineas ramificadas de cdédigo se reduce enormemente para toda la SPL.

¢, Qué depara el futuro para el desarrollo SPL? Debido a su enorme potencial, es probable que se convierta
aun mas ampliamente conocido, mejor entendida, y se utiliza cada vez mas el desarrollo de SPL. Sin embargo,
el desarrollo de SPL también tendra un impacto en estudios de arquitectura de software, como mecanismos de

arquitectura para su reutilizacion en la gran ser mejores y mas ampliamente entendido.

préacticas arquitectdnicas mejoradas combinadas con una comprensién mas profunda de los dominios de aplicacion
especifica fi también pueden apoyar los mecanismos de variaciéon cada vez declarativas. Esto podria transformar la
reutilizacion del software a ser mas como la vision mitica de construccién de software utilizando bloques de construccion
de software. reutilizacién sencilla se basa en gran medida de la variacién de procedimiento, la escritura de cédigo ad hoc
para lograr la funcionalidad particular que se requiere. El aumento de la sofisticacion arquitectonica y el conocimiento de
dominio puede apoyar fi gurable con variacion, realizado por la variacion sistematica con el apoyo de interfaces principales

activos.

La eleccion de una variante de este sistema requiere la eleccion de valores de una lista de opciones de con fi guracion.
Cuando un dominio de aplicacién estd muy bien entendida, a continuacién, un lenguaje de dominio especifico convierte en
una forma viable de especificar declarativa variacion del producto. Frases en este idioma pueden especificar variantes del

sistema, y pueden ser interpretadas de forma dinamica por los activos principales.

Otros enfoques de disefio y arquitectura, como la programacion orientada a aspectos y desarrollo dirigido por
modelos también tienen promesa como mecanismos de variacion o masa de personalizacion que pueden ser capaces
de apoyar el desarrollo de SPL.

A medida que el tiempo de variacion del sistema se extiende fuera del contexto del desarrollo, también lo hace la
necesidad de ampliar el control y la gestion de variacion. Para los sistemas que pueden variar en el tiempo de
instalacion, el tiempo de carga, o de tiempo de ejecucion, la necesidad de controlar y gestionar variacion del sistema
no termina cuando el sistema se libera de desarrollo. con el software de gestion fi guracién compatible con el control
y la gestion de variacion durante el desarrollo. Sin embargo, para la instalacién, carga o tiempo de ejecucion, los
marcos de gestion de paquetes y gestion de aplicaciones existentes tienen instalaciones muy débiles para la version
y el control de la variaciéon. En el futuro, los limites entre la gestion de con fi guracién, la gestiéon de paquetes, y la
gestion de aplicaciones se vera borrosa. por lo tanto, se requiere un marco unificado para controlar y gestionar

variacioén a través de todo el ciclo de vida del producto.

15.8 Lectura adicional

El Instituto de Ingenieria de Software ha sido un lider en la de fi nicién y reportar el uso de las lineas de
productos de software. Una excelente fuente de informacion es el siguiente libro por dos de los pioneros del

campo:

P. Clements, L. Northrop. Las lineas de producto de software: Practicas y patrones.
Addison Wesley, 2001. 236

15.8 Lectura adicional 237
El sitio web del SEI también contiene mucha informacién valiosa y enlaces a otras fuentes relacionadas con la linea de
productos:
http://www.sei.cmu.edu/productlines/
Otras referencias son excelentes:

Klaus Pohl, G € unter B € ockle, Frank J. van der Linden, la linea de productos de software
Ingenieria: Fundamentos, Principios y Técnicas, Springer-Verlag 2010

Frank J. van der Linden, Klaus Schmid, Eelco Rommes, Lineas de Producto Software en

Accion: La Practica Mejor industrial en la linea de productos de ingenieria, Springer-2007.

con el software de gestion fi guracion es una parte clave de las lineas de productos de software. Un buen libro sobre

este tema es:

SP Berczuk, B. Appleton. Software con fi guracién de las pautas de gestion: el trabajo en equipo, la
integracion practica. Addison-Wesley, 2002.

Un estudio de casos que describen como explotar la variacion basada en le fi para crear una linea de productos de software es:

M. Staples, D. Hill. La adopcién de las experiencias de desarrollo de software Linea de Producto
sin linea de productos de Arquitectura. Actas de la 112 fi Asia y el Pacifico Conferencia de Ingenieria
de Software (APSEC 2004), Busan, Corea del Sur 30 Nov - 3 dic 2004, por IEEE, pp 176-183..

Una perspectiva ligeramente diferente en las lineas de productos son las fabricas de software trabajan por Jack verde

campo et al. Este libro es de fi nitivamente la pena leer.

J. Green campo, K. corto, S. Cook, S. Kent, J. Crupi, Software Factories: Ensamblaje de aplicaciones con los

patrones, modelos, marcos y herramientas, Wiley 2004.

indice

UN unirse a puerto, punto
Abstraccion, 2, 6, 127 transacciones de corte 188, 188
ACID, 77, 89, 155 ActiveMQ Orientado a aspectos de desarrollo de software, 191 Aspectos,
adaptadores, 49 espacio de 186, 188

direcciones, 4 agiles, 118 reglas de composicion, 188 se
unen a punto, 193, 194
AspectWerkz, 194 ATAM, 111, 115

Los métodos agiles, 98

agilidad, 167 Disponibilidad, 34, 100, 103, 104, 105, 106,
AndroMDA, 208, 214, 194 Anotaciones AOP. Ver programacion 108, 112

orientada a aspectos interfaz de programacion de aplicaciones

(API), 21 servidor de aplicaciones, 41, 54, el papel 55 Arquitecto, segundo

8,37 vista del comportamiento, 8 Big

Arquitectonicamente casos de uso significativo fi. Ver
escenarios
Los patrones arquitecténicos, 10
Arquitectura
disefio, 101
documentacioén, 117 marco, 102,
108, 110 patrones, 5, 14, 84, 101
de proceso, 97, 98, 110
requisitos, 5, 98 de validacion,
110

Descripcion Arquitectura idioma (ADL),
8,210

vistas, 2, 7, 8, 101, 118 Arquitectura
4 + 1 vista del modelo, 7

ArcStyler, 209

Arti inteligencia fi cial, 181 AspectJ,

188, 190, 192, 194 de disefio orientada

a aspectos, 191

Aspecto programacion orientada (AOP), 185, 236
consejos, 188

introduccion, 188

I. Gorton, Arquitectura de Software esencial,

Up-Frente Disefio, 98 veces
encuadernacion, 225 BizTalk, 85, 89,
90, 100

puertos, 91 de BPO. Ver proceso de negocios
Broadcast orquestacion, 51 objetivos de negocio, 21
procesos de negocio, 65, 88, 91, 107 de procesos de
negocio orquestacion (BPO), proceso 41 de negocios

Orchestrator, 89

do

El almacenamiento en caché, 59 modelo
canoénico de datos, 93 formato de mensaje
Canonical, planificaciéon 93 Capacidad, 146,
201 Jefe arquitecto, 11 cliente-servidor, 4

Clustering, 106 Cohesién, 108, 117

Commercial-off-the-shelf (COTS), 10, 14, 20,
22, 31, 45, 63, 100

Almacén comin Metamodel, 204

Complejidad, 68, 165

DOI 10.1007 / 978-3-642-19176-3, # Springer-Verlag Berlin Heidelberg 2011

239

240

Componente
recuadro negro, 6 de
comunicacion, 4 compuesto,

109 de descomposicion, 109
Célculo modelo independiente (CIM), 203 La agrupacion de

conexiones, conectores 60, 153 Limitaciones

negocio, 5 técnicos, 5
contenedores, 55, 57, 59

indice

yo
|EEE 1471-2000, 128 Analisis

de impacto, 31 Integracion, 35

lenguaje de descripcion de interfaz (IDL), 41

Asociacion Internacional de Software
Arquitectos, 1 Internet Service

Razonamiento, 181 de interoperabilidad, 65,

71

J

Java

CORBA, 8, 41, 44, 49, 54, 67, 192, 225 COTS. Ver Commercial-off-the-sh&lfl0s, 59

de acoplamiento, 83, 104, 107, 117, 187, 191 preocupaciones
transversales, 186, 187, 191, 193, 194

dinamico, 188

estatica, 188

re
La integracion de datos, 35 DCOM, 67 Plazos, 25
Dependencia, 3, 69 descriptor de despliegue, 59 de
tecnologia de objetos distribuidos, 41 de dominio Speci
fi c Language (DSL), 208 DSL. Ver Dominio especi fi

co Lenguaje Composicién dinamica, 166

mi

Eclipse, 209 EDI. Ver EJB intercambio electrénico de
datos. Ver Enterprise JavaBeans intercambio
electronico de datos (EDI), 66 de encapsulacion, 186
arquitecto de la empresa, modelo de datos 11 de la

empresa, la integracion 93 Empresa, 81

Enterprise JavaBeans (EJB), 55, 57, 59, 63, 192 Enterprise

Service Bus, 95 beans de entidad, 56, 59 Evento Noti fi cacion,

131

Extensible Markup Language (XML), 86, 91

F
Firewalls, 69
Requisitos funcionales, 5, 97

H
La heterogeneidad, 167
descomposicion jerarquica, 6 HTTP, 73, 77

de concentrador y radios, 106

Java Gestion de extension (JMX), 196 Java
Messaging Service (JMS), 138, 155 Java
Persistence API, 56 JBoss AOP, 192, 194 JDBC,
138,219

JEE, 54, 55, 60, 65, 67, 103, 138, 192, 194,

204, 208, 209
JMS. Ver Java Messaging servicio JNDI,
142
L

Latencia, 25 de balanceo de carga, 28

de acoplamiento flojo, 50, 182

METRO

Marketecture, 6

MEDICI Integration Framework, 148 agente de Message, 41, 81,
87, 92 beans controlados por mensajes, 56 middleware orientado
a mensajes (MOM), 43, 44,

45, 47, 49, 50, 81, 82
clustering, 48
Mensaje transformacion, 41, 84, 85, 106 de
mensajeria, 49, 50, 65, 87, 103, 110
mejor esfuerzo, 46
persistente, 46 transaccional,
46, 47 Metadatos, 174

Meta-Object Facility (MOF), 204, 205,

209, 211
Middleware, 8, 39, 40, 41, 43, 65, 68, 77,

192, 197
Model Driven Architecture (MDA), 193 de desarrollo
basada en modelos (MDD), 119,

127, 217, 236
Modelo-vista-controlador, 56 Modi capacidad fi, 31, 38, 91,
92, 93, 103, 104,

105, 106, 108, 112, 167, 211, 213
Modularidad, 186 MOF. Ver Meta-Object
Facility

indice

MAMA. Ver Mensaje orientada Mule middleware,
87, 163 Multicast, 51, 105 multi-hilo, 41, 86

norte
.NET, 54, 69, 103, 194, 208, 209 requisitos no
funcionales, 5, 7, 23, 31,

38,70, 98, 211

arquitectura de N-capas, 54

(¢]

Disefio orientado a objetos, 6 Ontologia, 172, 173,
176, 177 de cddigo abierto JEE, 145 lo largo de
ingenieria, 32 OWL. Ver Lenguaje de Ontologias
Web

PAG
Pagina por pagina iterador, 143
Rendimiento, 24, 26, 43, 46, 49, 50, 51, 60, 68,
81, 87, 100, 103, 108, 111, 113, 114,
117, 136, 190, 198, 205, 211, 213, 221
cuello de botella, 93 de
seguimiento, 185 de tubo y
filtro, 104 Pipeline, 147

Plataforma modelo independiente (PIM), 203 Plataforma
especifico modelo (PSM), 203 arquitectura de punto a
punto, 92 Portabilidad, 36, 205, patron de Coordinador
214 Proceso, 107 Productividad, 222, 235

arquitectura de la linea de productos, 219, 223
El campo verde, los campos
arados 229, 230
Las guias de practica linea de productos, 224 del ciclo de
vida del proyecto, 9
Prototyping, 9, 110, 113, 114
prueba de concepto, 113 de prueba
de tecnologia, 113
Publicacion-suscripcion, 10, 50, 52, 105, 133, 137

Q

Calidad, 186, 216, 222, 235 atributos de calidad
requisitos, 23, 30 atributos de calidad, 5, 11, 37,
111 objetivos de calidad, 7 Calidad de servicio, 46

R
RDF. Ver Resource Description Framework
Recuperabilidad, 34

241

Refactoring, 145, 181, 230 Fiabilidad, 14, 34, 99, 100,
112, 136 de entrega de mensajes fiable, 46
Representational State Transfer (REST), la carga 78
Request, 27

Descripcion de Recursos (RDF), 175 Tiempo de respuesta,

25, 28 Responsabilidad impulsada por disefio, 3, 14 REST. Ver
Representational State Transfer RESTful, 79 de retorno de la
inversion, 168 reutilizacion, 100, 207 Reciclar, 168, 219, 220,
224, 236 Riesgo, 9, 231 Robustez, 68 RosettaNet, 94

S
Escalabilidad, 2, 23, 24, 27, 28, 51, 93, 100,
103, 105, 106, 108, 112, 114, 221
escalar, 28, 112 escala
hacia arriba, 27 escalable,
136, 104
Escenarios, 8, 31, 37, 110, 111, 113, 145 de seguridad,
5, 33, 38, 60, 69, 100, 112, 221
autenticacion, autorizacion 33, 33 de cifrado, 33
no repudio, 33 SEI. Ver Software Engineering
Institute descubrimiento semantico, 172 Semantica,
167, 171, 176 Web Semantica, 167, 172, 173, 176
Enviar y olvidarse de mensajeria, 45 Separacion de

preocupaciones, 102, 186, 191,

192, 205, 211
Servicio de arquitecturas orientadas, 65, 66, 68,
71,180
bean de sesién, 56
con estado, 57 sin estado, 56 de
SOAP, 71, 72, 73, 74, 225 de sockets,
8, 51

Arquitectura de software de fi nicion, 2 software de
gestion con fi guracion, 225

linea de desarrollo, 226 Software Engineering
Institute, 2, 13, 221 fabricas de software, 237 Desarrollo

de software linea de productos, 220

principales activos, 220, 222 activos
personalizados, 220, 221, lineas de productos de

software 222, 207, 92 Espagueti Arquitectura

242

SQL, 133, 135

beans de sesion con estado, 58 de frijol de sesion
sin estado, 58 restricciones estructurales, 3 vista
estructural, 8 Estilos. Ver Los patrones
arquitecténicos tema. Ver Tema de

compatibilidad, 36 de sincronizacion, 4

T
Enrede, 187 TCP / IP, 51 Testabilidad, 36
hilos, 4 Hilo de seguridad, 145 de rosca con
la seguridad, 145 arquitectura de tres
niveles, 130 Throughput, 7, 24, 27, 52, 106

promedio, 25 de
pico, 25 TIBCO, 51

El tiempo de comercializacion,
235 TOGAF, 12
Tema, 50, 51, 52, 53
jerarquia, 53
comodines, operador
TOP 53, 143
Transaccion, 34, 60, 104, 193
de compensacion, el 88 de
demarcacion, de 47 afios de
aislamiento, de 89 afios de
larga ejecucion, 89

arquitectura de dos niveles, 130, 131

T
uDDl, 71, 74

Uni fi ed Modeling Language (UML), 19, 118,
119, 123, 127, 204, 205, 208, 211, 213

diagrama de clases, 120

componente diagrama, 19, 120, 140 interfaces

de componentes, 124 diagrama compuesto, 126

diagrama de despliegue, 122

indice

partes, 126 puertos, 124 per fil,
193 interfaz proporcionada, 124
interfaz requerida, 124 diagrama de
secuencia, 122 estereotipos, 122,
214 valores etiquetados, 214 tubos

de Unix, 147 Caso de uso, 18

\
mecanismos Variacion, 220 punto de
variacion, 221, 227, 233 Vistas y mas

alla enfoque, 8

w
Weaver, 188
Weaving

en tiempo de compilacion,

189 en tiempo de carga,

tiempo de ejecucion 189, 189
Web Ontology Language (OWL), 176, 179 de servicios
Web, 65, 167, 172, 212 WebSphere, 76 WS-Addressing,
74 WS-AtomicTransactions, 77 WS-BusinessActivity, 77
WSDL, 71, 74 WS-Eventing, 74 WS-
MetadataExchange, 74 de WS-Policy, 74 WS-Reliable
Messaging, 77 de WS-Security, 72, 77
WS-SecurityPolicy, 74 WS * normas, 71

X
XMI, 204, 205 XML. Ver Extensible Markup
Language XSLT, 213

4
Zachman Framework, 12

	Cover
	Essential Software Architecture, Second Edition
	ISBN 9783642191756
	Preface
	Motivation
	Outline
	Acknowledgments
	Contents
	Chapter 1: Understanding Software Architecture
	1.1 What is Software Architecture?
	1.2 Definitions of Software Architecture
	1.2.1 Architecture Defines Structure
	1.2.2 Architecture Specifies Component Communication

	1.3 Architecture Addresses Nonfunctional Requirements
	1.3.1 Architecture Is an Abstraction
	1.3.2 Architecture Views

	1.4 What Does a Software Architect Do?
	1.5 Architectures and Technologies
	1.6 Architect Title Soup
	1.7 Summary
	1.8 Further Reading
	1.8.1 General Architecture
	1.8.2 Architecture Requirements
	1.8.3 Architecture Patterns
	1.8.4 Technology Comparisons
	1.8.5 Enterprise Architecture

	Chapter 2: Introducing the Case Study
	2.1 Overview
	2.2 The ICDE System
	2.3 Project Context
	2.4 Business Goals
	2.5 Constraints
	2.6 Summary

	Chapter 3: Software Quality Attributes
	3.1 Quality Attributes
	3.2 Performance
	3.2.1 Throughput
	3.2.2 Response Time
	3.2.3 Deadlines
	3.2.4 Performance for the ICDE System

	3.3 Scalability
	3.3.1 Request Load
	3.3.2 Simultaneous Connections
	3.3.3 Data Size
	3.3.4 Deployment
	3.3.5 Some Thoughts on Scalability
	3.3.6 Scalability for the ICDE Application

	3.4 Modifiability
	3.4.1 Modifiability for the ICDE Application

	3.5 Security
	3.5.1 Security for the ICDE Application

	3.6 Availability
	3.6.1 Availability for the ICDE Application

	3.7 Integration
	3.7.1 Integration for the ICDE Application

	3.8 Other Quality Attributes
	3.9 Design Trade-Offs
	3.10 Summary
	3.11 Further Reading

	Chapter 4: An Introduction to Middleware Architectures and Technologies
	4.1 Introduction
	4.2 Middleware Technology Classification
	4.3 Distributed Objects
	4.4 Message-Oriented Middleware
	4.4.1 MOM Basics
	4.4.2 Exploiting MOM Advanced Features
	4.4.2.1 Message Delivery
	4.4.2.2 Transactions
	4.4.2.3 Clustering
	4.4.2.4 Two-Way Messaging

	4.4.3 Publish-Subscribe
	4.4.3.1 Understanding Topics

	4.5 Application Servers
	4.5.1 Enterprise JavaBeans
	4.5.2 EJB Component Model
	4.5.3 Stateless Session Bean Programming Example
	4.5.4 Message-Driven Bean Programming Example
	4.5.5 Responsibilities of the EJB Container
	4.5.6 Some Thoughts

	4.6 Summary
	4.7 Further Reading
	4.7.1 CORBA
	4.7.2 Message-Oriented Middleware
	4.7.3 Application Servers

	Chapter 5: Service-Oriented Architectures and Technologies
	5.1 Background
	5.2 Service-Oriented Systems
	5.2.1 Boundaries Are Explicit
	5.2.2 Services Are Autonomous
	5.2.3 Share Schemas and Contracts, Not Implementations
	5.2.4 Service Compatibility Is Based on Policy

	5.3 Web Services
	5.4 SOAP and Messaging
	5.5 UDDI, WSDL, and Metadata
	5.6 Security, Transactions, and Reliability
	5.7 RESTful Web Services
	5.8 Conclusion and Further Reading

	Chapter 6: Advanced Middleware Technologies
	6.1 Introduction
	6.2 Message Brokers
	6.3 Business Process Orchestration
	6.4 Integration Architecture Issues
	6.5 What Is an Enterprise Service Bus
	6.6 Further Reading

	Chapter 7: A Software Architecture Process
	7.1 Process Outline
	7.1.1 Determine Architectural Requirements
	7.1.2 Identifying Architecture Requirements
	7.1.3 Prioritizing Architecture Requirements

	7.2 Architecture Design
	7.2.1 Choosing the Architecture Framework
	7.2.1.1 N-Tier Client Server
	7.2.1.2 Messaging
	7.2.1.3 Publish-Subscribe
	7.2.1.4 Broker
	7.2.1.5 Process Coordinator

	7.2.2 Allocate Components

	7.3 Validation
	7.3.1 Using Scenarios
	7.3.2 Prototyping

	7.4 Summary and Further Reading

	Chapter 8: Documenting a Software Architecture
	8.1 Introduction
	8.2 What to Document
	8.3 UML 2.0
	8.4 Architecture Views
	8.5 More on Component Diagrams
	8.6 Architecture Documentation Template
	8.7 Summary and Further Reading

	Chapter 9: Case Study Design
	9.1 Overview
	9.2 ICDE Technical Issues
	9.2.1 Large Data
	9.2.2 Notification
	9.2.3 Data Abstraction
	9.2.4 Platform and Distribution Issues
	9.2.5 API Issues
	9.2.6 Discussion

	9.3 ICDE Architecture Requirements
	9.3.1 Overview of Key Objectives
	9.3.2 Architecture Use Cases
	9.3.3 Stakeholder Architecture Requirements
	9.3.3.1 Third Party Tool Producers
	9.3.3.2 ICDE Programmers
	9.3.3.3 ICDE Development Team

	9.3.4 Constraints
	9.3.5 Nonfunctional Requirements
	9.3.6 Risks

	9.4 ICDE Solution
	9.4.1 Architecture Patterns
	9.4.2 Architecture Overview
	9.4.3 Structural Views
	9.4.4 Behavioral Views
	9.4.5 Implementation Issues

	9.5 Architecture Analysis
	9.5.1 Scenario Analysis
	9.5.2 Risks

	9.6 Summary

	Chapter 10: Middleware Case Study: MeDICi
	10.1 MeDICi Background
	10.2 MeDICi Hello World
	10.3 Implementing Modules
	10.3.1 MifProcessor
	10.3.2 MifObjectProcessor
	10.3.3 MifMessageProcessor
	10.3.4 Module Properties

	10.4 Endpoints and Transports
	10.4.1 Connectors
	10.4.2 Supported Transports
	10.4.2.1 VM
	10.4.2.2 STDIO
	10.4.2.3 Java Messaging Service
	10.4.2.4 HTTP
	10.4.2.5 HTTPS
	10.4.2.6 TCP

	10.5 MeDICi Example
	10.5.1 Initialize Pipeline
	10.5.2 Chat Component
	10.5.3 Implementation code

	10.6 Component Builder
	10.7 Summary
	10.8 Further Reading

	Chapter 11: Looking Forward
	11.1 Introduction
	11.2 The Challenges of Complexity
	11.2.1 Business Process Complexity

	11.3 Agility
	11.4 Reduced Costs
	11.5 What Next

	Chapter 12: The Semantic Web
	12.1 ICDE and the Semantic Web
	12.2 Automated, Distributed Integration and Collaboration
	12.3 The Semantic Web
	12.4 Creating and Using Metadata for the Semantic Web
	12.5 Putting Semantics in the Web
	12.6 Semantics for ICDE
	12.7 Semantic Web Services
	12.8 Continued Optimism
	12.9 Further Reading

	Chapter 13: Aspect Oriented Architectures
	13.1 Aspects for ICDE Development
	13.2 Introduction to Aspect-Oriented Programming
	13.2.1 Crosscutting Concerns
	13.2.2 Managing Concerns with Aspects
	13.2.3 AOP Syntax and Programming Model
	13.2.4 Weaving

	13.3 Example of a Cache Aspect
	13.4 Aspect-Oriented Architectures
	13.5 Architectural Aspects and Middleware
	13.6 State-of-the-Art
	13.6.1 Aspect Oriented Modeling in UML
	13.6.2 AOP Tools
	13.6.3 Annotations and AOP

	13.7 Performance Monitoring of ICDE with AspectWerkz
	13.8 Conclusions
	13.9 Further Reading

	Chapter 14: Model-Driven Architecture
	14.1 Model-Driven Development for ICDE
	14.2 What is MDA?
	14.3 Why MDA?
	14.3.1 Portability
	14.3.2 Interoperability
	14.3.3 Reusability

	14.4 State-of-Art Practices and Tools
	14.4.1 AndroMDA
	14.4.2 ArcStyler
	14.4.3 Eclipse Modeling Framework

	14.5 MDA and Software Architecture
	14.5.1 MDA and Nonfunctional Requirements
	14.5.2 Model Transformation and Software Architecture
	14.5.3 SOA and MDA
	14.5.4 Analytical Models are Models Too

	14.6 MDA for ICDE Capacity Planning
	14.7 Summary and Further Reading

	Chapter 15: Software Product Lines
	15.1 Product Lines for ICDE
	15.2 Software Product Lines
	15.2.1 Benefiting from SPL Development
	15.2.2 Product Lines for ICDE

	15.3 Product Line Architecture
	15.3.1 Find and Understand Software
	15.3.2 Bring Software into the Development Context
	15.3.3 Invoke Software
	15.3.4 Software Configuration Management for Reuse

	15.4 Variation Mechanisms
	15.4.1 Architecture-Level Variation Points
	15.4.2 Design-Level Variation
	15.4.3 File-Level Variation
	15.4.4 Variation by Software Configuration Management
	15.4.5 Product Line Architecture for ICDE

	15.5 Adopting Software Product Line Development
	15.5.1 Product Line Adoption Practice Areas
	15.5.2 Product Line Adoption for ICDE

	15.6 Ongoing Software Product Line Development
	15.6.1 Change Control
	15.6.2 Architectural Evolution for SPL Development
	15.6.3 Product Line Development Practice Areas
	15.6.4 Product Lines with ICDE

	15.7 Conclusions
	15.8 Further Reading

	Index

