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Preface

The study of data structures, a fundamental component of a computer science educa-
tion, serves as the foundation upon which many other computer science fields are
built. Some knowledge of data structures is a must for students who wish to do work
in design, implementation, testing, or maintenance of virtually any software system.
The scope and presentation of material in Data Structures and Algorithms in Java pro-
vide students with the knowledge necessary to perform such work.

This book highlights three important aspects of data structures. First, a very
strong emphasis is placed on the connection between data structures and their algo-
rithms, including analyzing algorithms” complexity. Second, data structures are pre-
sented in an object-oriented setting in accordance with the current design and
implementation paradigm. In particular, the information-hiding principle to advance
encapsulation and decomposition is stressed. Finally, an important component of the
book is data structure implementation, which leads to the choice of Java as the pro-
gramming language.

The Java language, an object-oriented descendant of C and C++, has gained pop-
ularity in industry and academia as an excellent programming language due to wide-
spread use of the Internet. Because of its consistent use of object-oriented features
and the security of the language, Java is also useful and natural for introducing data
structures. Currently, C++ is the primary language of choice for teaching data struc-
tures; however, because of the wide use of Java in application programming and the
object-oriented characteristics of the language, using Java to teach a data structures
and algorithms course, even on the introductory level, is well justified.

This book provides the material for a course that includes the topics listed under
CS2 and CS7 of the old ACM curriculum. It also meets the requirements for most of
the courses C, 202, C}, 202, and Cj, 204 of the new ACM curriculum.

Most chapters include a case study that illustrates a complete context in which
certain algorithms and data structures can be used. These case studies were chosen
from different areas of computer science such as interpreters, symbolic computation,
and file processing, to indicate the wide range of applications to which topics under
discussion may apply.

Xiii
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xiv E Preface

Brief examples of Java code are included throughout the book to illustrate the
practical importance of data structures. However, theoretical analysis is equally im-
portant. Thus, presentations of algorithms are integrated with analyses of efficiency.

Great care is taken in the presentation of recursion because even advanced students
have problems with it. Experience has shown that recursion can be explained best if the
run-time stack is taken into consideration. Changes to the stack are shown when tracing
a recursive function not only in the chapter on recursion, but also in other chapters. For
example, a surprisingly short method for tree traversal may remain a mystery if work
done by the system on the run-time stack is not included in the explanation. Standing
aloof from the system and retaining only a purely theoretical perspective when dis-
cussing data structures and algorithms are not necessarily helpful. This book also in-
cludes comprehensive chapters on data compression and memory management.

The thrust of this book is data structures, and other topics are treated here only as
much as necessary to ensure a proper understanding of this subject. Algorithms are
discussed from the perspective of data structures, so the reader will not find a com-
prehensive discussion of different kinds of algorithms and all the facets that a full
presentation of algorithms requires. However, as mentioned, recursion is covered in
depth. In addition, complexity analysis of algorithms is presented in some detail.

Chapters 1 and 3-8 present a number of different data structures and the algo-
rithms that operate on them. The efficiency of each algorithm is analyzed, and improve-
ments to the algorithm are suggested.

B Chapter 1 presents the basic principles of object-oriented programming, an intro-
duction to dynamic memory allocation and the use of pointers, and a rudimentary
introduction to Java.

Chapter 2 describes some methods used to assess the efficiency of algorithms.
Chapter 3 contains an introduction to linked lists.

Chapter 4 presents stacks and queues and their applications.

Chapter 5 contains a detailed discussion of recursion. Different types of recursion are
discussed, and a recursive call is dissected.

Chapter 6 discusses binary trees, including implementation, traversal, and search.
This chapter also includes balanced trees.

B Chapter 7 details more generalized trees such as tries, 2— 4 trees, and B-trees.
B Chapter 8 presents graphs.
Chapters 9-12 show different applications of data structures introduced in the

previous chapters. They emphasize the data structure aspects of each topic under
consideration.

B Chapter 9 analyzes sorting in detail, and several elementary and nonelementary
methods are presented.
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Preface W Xxv

B Chapter 10 discusses hashing, one of the most important areas in searching. Various
techniques are presented with an emphasis on the utilization of data structures.

B Chapter 11 discusses data compression algorithms and data structures.

B Chapter 12 presents various techniques and data structures for memory
management.

B Chapter 13 discusses many algorithms for exact and approximate string matching.
B Appendix A discusses in greater detail big-O notation, introduced in Chapter 2.

B Appendix B gives a proof of Cook’s theorem and illustrates it with an extended
example.

Each chapter contains a discussion of the material illustrated with appropriate
diagrams and tables. Except for Chapter 2, all chapters include a case study, which is
an extended example using the features discussed in that chapter. All case studies have
been tested using the Visual C++ compiler on a PC and the g++ compiler under
UNIX except the von Koch snowflake, which runs on a PC under Visual C++. At the
end of each chapter is a set of exercises of varying degrees of difficulty. Except for
Chapter 2, all chapters also include programming assignments and an up-to-date bib-
liography of relevant literature.

Chapters 1-6 (excluding Sections 2.9, 3.4, 6.4.3, 6.7, and 6.8) contain the core
material that forms the basis of any data structures course. These chapters should be
studied in sequence. The remaining six chapters can be read in any order. A one-
semester course could include Chapters 1-6, 9, and Sections 10.1 and 10.2. The entire
book could also be part of a two-semester sequence.

TEACHING TooLSs
Electronic Instructor’s Manual. The Instructor’s Manual that accompanies this text-
book includes complete solutions to all text exercises.

Electronic Figure Files. All images from the text are available in bitmap format for use
in classroom presentations.

Source Code. The source code for the text example programs is available via the au-
thor’s Web site at http://www.mathes.dug.edu/drozdek/DSinJava.

It is also available for student download at course.com. All teaching tools, outlined
above, are available in the Instructor’s Resources section of course.com.
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CHANGES IN THE SECOND EDITION
The new edition primarily extends the old edition by including material on new topics
that are currently not covered. The additions include

B Pattern matching algorithms in the new Chapter 13

B A discussion of NP-completeness in the form of a general introduction (Section 2.10),
examples of NP-complete problems (Section 8.12), and an outline of Cook’s theorem
(Appendix B)

B New material on graphs (Sections 8.9.1, 8.10.1.1, 8.10.2.1, and 8.11)
B A discussion of a deletion algorithm for vh-trees (Section 7.1.7)
B Anintroduction to Java files (Sections 1.3.1-1.3.6)

Moreover, the tables that list methods from java.util packages have been updated.
There are also many small modifications and additions throughout the book.

ACKNOWLEDGMENTS
I would like to thank the following reviewers, whose comments and advice helped me
to improve this book:
James Ball, Indiana State University
Robin Dawes, Queen’s University
Julius Dichter, University of Bridgeport

However, the ultimate content is my responsibility, and I would appreciate
hearing from readers about any shortcomings or strengths. My email address is
drozdek@duq.edu.

Adam Drozdek
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Object-Oriented
Programming
Using Java

guage and programming environment, and it is impossible to touch upon all

Java-related issues within the confines of one chapter. This chapter introduces
only those aspects of Java that are necessary for understanding the Java code offered in
this book. The reader familiar with Java can skip this chapter.

I ‘ 1 his chapter introduces the reader to elementary Java. Java is an immense lan-

m RUDIMENTARY JAVA

A Java program is a sequence of statements that have to be formed in accordance with
the predefined syntax. A statement is the smallest executable unit in Java. Each state-
ment ends with a semicolon. Compound statements, or blocks, are marked by delim-
iting them with braces, { and }.

1.1.1 Variable Declarations

Each variable must be declared before it can be used in a program. It is declared by
specifying its type and its name. Variable names are strings of any length of letters,
digits, underscores, and dollar signs that begin with a letter, underscore, or dollar sign.
However, a letter is any Unicode letter (a character above 192), not just 1 of the 26 let-
ters in the English alphabet. Local variables must be initialized. Java is case sensitive,
so variable n is different from variable N.

A type of variable is either one of the eight built-in basic types, a built-in or user-
defined class type, or an array. Here are built-in types and their sizes:
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2 M Chapter 1 Object-Oriented Programming Using Java

Type Size Range

boolean 1 bit true, false

char 16 bits Unicode characters

byte 8 bits [-128,127]

short 16 bits [-32768,32767]

int 32 bits [-2147483648,2147483647]

long 64 bits [-9223372036854775808, 9223372036854775807]
float 32 bits [-3.4E38, 3.4E38]

double 64 bits [-1.7E308, 1.7E308]

Note that the sizes of the types are fixed, which is extremely important for portabil-
ity of programs. In C/C++, the size of integers and long integers is system depen-
dent. Unlike C/C++, boolean is not a numeric type, and no arithmetic operations
can be performed on boolean variables. But as in C/C++, characters are consid-
ered integers (in Java, they are unsigned integers) so that they can be operands of
arithmetic operations.

Integer operations are performed with 32-bit precision (for long integers, it is 64-
bit precision); therefore, operations on byte and short variables require a cast. For
example, the statements

byte a, b =1, ¢ = 2;
a=>b+ c;

give a compilation error, “incompatible type for =. Explicit cast is needed to convert
int to byte.” The additionb + c gives an integer value that must be cast to execute
the assignment to the byte variable a. To avoid the problem, the assignment should
be changed to

a = (byte) (b + c);

An overflow resulting from an arithmetic operation (unless it is division by zero)
is not indicated, so the programmer must be aware that, for two integers,

int i = 2147483647, j = i + 1;

the value of § is —2147483648.

Java does not provide modifiers signed and unsigned, but it has other modifiers.

An important difference between C/C++ and Java is characters that are 8 bits
long in C/C++ and 16 bits long in Java. With the usual 8-bit characters, only 256 dif-
ferent characters can be represented. To address the problem of representing charac-
ters of languages other than English, the set of available codes must be significantly
extended. The problem is not only with representing letters with diacritical marks
(e.g., Polish letter h, Romanian letter t, or Danish letter @), but also with non-Latin
characters such as Cyrillic, Greek, Japanese, Chinese, and so on. By allowing a charac-
ter variable to be of 2 bytes, the number of different characters represented now
equals 65,536.
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Section 1.1 Rudimentary Java W 3

« »

To assign a specific Unicode character to a character variable, “u” followed by four
hexadecimal digits can be used; for example,

char ch = '\ul2ab’';

However, high Unicode codes should be avoided, because as of now, few systems dis-
play them. Therefore, although the assignment to ch just given is legal, printing the
value of ch results in displaying a question mark.

Other ways of assigning literal characters to character variables is by using a char-
acter surrounded with single quotes,

ch = 'q';
and using a character escape sequence, such as

ch = '"\n';

to assign an end-of-line character; other possibilities are: '\t (tab), '\b' (back-
space), ' \r' (carriage return), ' \f' (formfeed), ' \' ' (single quote), '\ "' (double
quote), and '\\ (backslash). Unlike C/C++, '\b" (bell) and '\v"' (vertical tab) are
not included. Moreover, an octal escape sequence ‘\ddd’ can be used, as in

ch = '\123'; // decimal 83, ASCII of 'S';

where ddd represents an octal number [0, 377].
Integer literals can be expressed as decimal numbers by any sequence of digits 0
through 9,

int i = 123;
as octal numbers by 0 followed by any sequence of digits 0 through 7,
int j = 0123; // decimal 83;

or as hexadecimal numbers by “0x” followed by any sequence of hexadecimal num-
bers 0 through 9 and A through F (lower- or uppercase),

int k = 0x123a; // decimal 4666;

Literal integers are considered 32 bits long; therefore, to convert them to 64-bit num-
bers, they should be followed by an “L”:

long p = 0x123aL;

Note that uppercase L should be used rather than lowercase / because the latter can be
easily confused with the number 1.

Floating-point numbers are any sequences of digits 0 through 9 before and
after a period; the sequences can be empty: 2., .2, 1.2. In addition, the number can
be followed by a letter e and a sequence of digits possibly preceded by a sign: 4.5e+6
(= 4.5 - 10° = 4500000.0), 102.055e-3 = 102.055 - 10~ = .102055). Floating-point
literals are 64-bit numbers by default; therefore, the declaration and assignment

float x = 123.45;
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4 M Chapter 1 Object-Oriented Programming Using Java

result in a compilation error, “incompatible type for declaration. Explicit cast needed
to convert double to float,” which can be eliminated by appending the modifier f (or
F) at the end of the number,

float x = 123.45f;

A modifier d or D can be appended to double numbers, but this is not necessary.

1.1.2 Operators

Value assignments are executed with the assignment operator =, which can be used
one at a time or can be strung together with other assignment operators, as in

X=Y=Z=1;

which means that all three variables are assigned the same value, number 1. Java uses
shorthand for cases when the same value is updated; for example,

X =x+ 1;
can be shortened to
x += 1;

Java also uses autoincrement and autodecrement prefix and postfix operators, as in
++n, n++, --n,and n--, which are shorthands of assignmentsn = n + landn =
n - 1, where n can be any number, including a floating-point number. The difference
between prefix and postfix operators is that, for the prefix operator, a variable is incre-
mented (or decremented) first and then an operation is performed in which the in-
crement takes place. For a postfix operator, autoincrement (or autodecrement) is the
last operation performed; for example, after executing assignments

x = 5;
y = 6 + ++x;

y equals 12, whereas after executing

x = 5;
y = 6 + x++;

y equals 11. In both cases, x equals 6 after the second statement is completely
executed.

Java allows performing operations on individual bits with bitwise operators: &
(bitwise and), | (bitwise or), A (bitwise xor), << (left shift), >> (right shift), >>> (zero
filled shift right), and ~ (bitwise complement). Shorthands &=, |=, A=, <<=, >>=,
and >>>= are also possible. Except for the operator >>>, the other operators are also
in C/C++. The operator >> shifts out a specified number of rightmost (least signifi-
cant) bits and shifts in the same number of Os for positive numbers and 1s for negative
numbers. For example, the value of m after the assignments

int n = -4;
int m = n > 1;
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is —1 because —4 in n is a two-complement representation as the sequence of 32 bits 11
... 1100, which after shifting to the right by one bit gives in m the pattern 11 ... 1110,
which is a two-complement representation of —2. To have 0s shifted in also for nega-
tive numbers, the operator >>> should be used,

int n = —4;

int m = n >>> 1;
in which case, the pattern 11 ... 1100 in n is transformed into the pattern 01 . ..
1110 in m, which is the number 2147483646 (one less than the maximum value for an
integer).

1.1.3 Decision Statements
One decision statement is an if statement

if (condition)
do something;
[else do something else; ]

in which the word if is followed by a condition surrounded by parentheses, by the
body of the if clause, which is a block of statements, and by an optional else clause,
which is the word else followed by a block of statements. A condition must return a
Boolean value (in C/C++, it can return any value). A condition is formed with rela-
tional operators <, <=, ==, |=, >=, > that take two arguments and return a Boolean
value, and with logical operators that take one (!) or two (&&, ||) Boolean arguments
and return a Boolean value.
An alternative to an i f-else statement is the conditional operator of the form

condition ? do-if-true : do-if-false;
The conditional operator returns a value, whereas an if statement does not, so the
former can be used, for example, in assignments, as in
n=1i<=07210 : 20;
Another decision statement is a switch statement, which is a shorthand for

nested if statements. Its form is as follows:

switch (integer expression) {
case valuel: blockl; break;

case valueN: blockN; break;
default: default block;
}

The test expression following switch must be an integer expression so that any
expression of type byte, char, short, and int can be used. The value of the ex-
pression is compared to the values that follow the word case. If a match is found,
the block of statements following this value is executed, and upon encountering
break, the switch statement is exited. Note that if the word break is missing, then
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execution is continued for the block of the next case clause. After executing the
statement

switch (i) {
case 5 : x + 10; break;
case 6 : x = 20;
case 7 : x *= 2; break;
default : x = 30;

}

the value of x is 10 if i equals 5, 40 if i equals 6, it is doubled if i equals 7, and is 30
for any other value of i.

1.1.4 Loops
The first loop available in Java is the while loop:

while (condition)
do something;

The condition must be a Boolean expression.
The second loop is a do-while loop:

do
do something;
while (condition);

The loop continues until the Boolean condition is false.
The third loop is the for loop:

for (initialization; condition; increment)
do something;

The initialization part may also declare variables, and these variables exist only during
execution of the loop.

Aloop can be exited before all the statements in its body are executed with an un-
labeled break statement. We have already seen a break statement used in the
switch statement. In the case of nested loops, when a break statement is encoun-
tered, the current loop is exited so that the outer loop can be continued. An unlabeled
continue statement causes the loop to skip the remainder of its body and begin the
next iteration.

1.1.5 Exception Handling

If an error is detected during execution of a Java program, Java throws an exception,
after which the program is terminated and an error message is displayed informing
the user which exception was raised (that is, what type of error occurred and where in
the program it happened). However, the user may handle the error in the program
should one occur, at least by making the program ignore it so that execution of the
program can continue. But if an exception is raised, a special course of action can be
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undertaken and then the program can continue. Catching an error is possible by

using a try-catch mechanism.
A general format of the try-catch statement is

try {
do something;
} catch (exception-type exception-name) {
do something;
}
The number of catch clauses is not limited to one. There can be as many as needed,

each one for a particular exception.
In this statement, execution of the body of the try clause is tried, and if an excep-

tion occurs, control is transferred to the catch clause to execute its body. Then execu-
tion of the program continues with a statement following the try-catch statement,
unless it contains the throw clause, which causes an exit from the method.

Consider the following method:
public int fl(int[] a, int n) throws ArrayIndexOutOfBoundsException {

return n * a[n+2];

The throws clause in the heading of the method is a warning to the user of the
method that a particular exception can occur, and if not handled properly, the pro-
gram crashes. To prevent that from happening, the user may include the try-catch
statement in the caller of £1():

public void £2() {
int[] a = {1,2,3,4,5};

try {

for (int i = 0; i < a.length; i++)
System.out.print(fl(a,i) + " ");

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("Exception caught in £2()");
throw e;

}

}
The catch clause prints a message, but it does not perform any fixing operation on
the array a, although it could. In this example, the catch clause also includes the
throw statement, although this is not very common. In this way, not only is the ex-
ception caught and handled in £2 (), but also a caller of £2 () is forced to handle it, as

in the method £3():
public void £3() {

try {
£2();
} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("Exception caught in £3()");
}
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If the caller of £2 () does not handle the exception, the program crashes, although the
exception was caught in £2 (). The same fate meets a program if a caller of £1 () does
not catch the exception:

public void f£4() {
int[] a = {1,2,3,4,5};
for (int i = 0; i < a.length; i++)
System.out.print(fl(a,i) + " ");
}

Note that the behavior of the program in all these cases is the same (that is, han-
dling an exception, passing it to another method, or crashing the program) if the
throws clause is not included in the heading of £1 () so that £1 () could simply be:

public int fl(int[] a, int n) {
return n * a[n+2];

i

The throws clause is thus a very important signal for the user to a possible problem
that may occur when calling a particular method.

Not all types of exceptions can be ignored as the exception raised by £1() is
ignored by £4 (). Most of the time, exceptions have to be handled in the program;
otherwise, the program does not compile. This, for instance, is the case with
IOException thrown by I/O methods; therefore, these methods are usually called
inside try-catch clauses.

m OBJECT-ORIENTED PROGRAMMING IN JAVA

1.2.1 Encapsulation

Object-oriented programming (OOP) revolves around the concept of an object.
Objects, however, are created using a class definition. A class is a template in accor-
dance to which objects are created. A class is a piece of software that includes a
data specification and functions operating on these data and possibly on the data
belonging to other class instances. Functions defined in a class are called methods,
and variables used in a class are called class scope variables (to distinguish them
from variables local to method or blocks), data fields, or simply fields. This com-
bining of the data and related operations is called data encapsulation. An object is
an instance of a class, an entity created using a class definition.

In contradistinction to functions in languages that are non—object-oriented lan-
guages (OOL), objects make the connection between data and methods much tighter
and more meaningful. In non-OOLs, declarations of data and definitions of functions
could be interspersed throughout the entire program, and only the program documen-
tation indicates that there is a connection between them. In OOLs, a connection is es-
tablished right at the outset; in fact, the program is based on this connection. An object
encompasses related data and operations, and because there may be many objects used
in the same program, the objects communicate by exchanging messages, thereby re-
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vealing to each other only as much, or rather as little, detail about their internal struc-
ture as necessary for adequate communication. Structuring programs in terms of ob-
jects allows us to accomplish several goals.

First, this strong coupling of data and operations can be used much better in
modeling a fragment of the world, which is emphasized especially by software engi-
neering. Not surprisingly, OOP has its roots in simulation; that is, in modeling real-
world events. The first OOL was Simula; it was developed in the 1960s in Norway.

Second, objects allow for easier error finding because operations are localized to
the confines of their objects. Even if side effects can occur, they are easier to trace.

Third, objects allow us to conceal certain details of their operations from other
objects so that these operations may not be adversely affected by other objects. This is
known as the information-hiding principle. In languages that are not object-oriented,
this principle can be found to some extent in the case of local variables, or as in Pascal,
in local functions and procedures, which can be used and accessed only by the func-
tion defining them. This is, however, a very tight hiding or no hiding at all. Sometimes
we may need to use (again, as in Pascal) a function f2 defined in fI outside of f1, but
we cannot. Sometimes we may need to access some data local to fI without exactly
knowing the structure of these data, but in non-OOLs, we cannot. Hence, some mod-
ification is needed, and it is accomplished in OOLs.

An object in OOL is like a watch. As users, we are interested in what the hands
show, but not in the inner workings of the watch. We are aware that there are gears and
springs inside the watch, but we usually know very little about why all these parts are in
a particular configuration. Because of that, we should not have access to this mechanism
so that we do not damage it, inadvertently or on purpose. Therefore, this mechanism is
hidden from us, we have no immediate access to it, and thereby the watch is protected
and works better than when its mechanism is open for everyone to see.

Hence, an object is like a black box whose behavior is very well defined, and we
use the object because we know what it does, not because we have an insight into how
it does it. This opacity of objects is extremely useful for maintaining them indepen-
dently of each other. If communication channels between the objects are well defined,
then changes made inside an object can affect other objects only as much as these
changes affect the communication channels. Knowing the kind of information sent
out and received by an object, the object can be replaced more easily by another object
more suitable in a particular situation: A new object can perform the same task differ-
ently but more quickly in a certain hardware environment. Hence, an object discloses
only as much as is needed for the user to utilize it. It has a public part that can be ac-
cessed by any user when the user sends a message matching any of the method names
revealed by the object. In this public part, the object displays to the user buttons that
can be pushed to invoke the object’s operations. The user knows only the names of
these operations and the expected behavior.

Information hiding tends to blur the dividing line between data and operations.
In Pascal-like languages, the distinction between data and functions/procedures is
clear and rigid. They are defined differently and their roles are very distinct. OOLs put
data and methods together, and to the user of the object, this distinction is much less
noticeable. To some extent, this is an incorporation of features of functional lan-
guages. LISP, one of the earliest programming languages, allows the user to treat data
and functions on a par, because the structure of both is the same.
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We have already made a distinction between particular objects and object types
or classes. We write methods to be used with different variables, and by analogy, we do
not want to be forced to write as many object declarations as the number of objects
required by the program. Certain objects are of the same type and we would like only
to use a reference to a general object specification. For single variables, we make a dis-
tinction between type declaration and variable declaration. In the case of objects, a
distinction is made between a class declaration and its instantiation, which is an ob-
ject. Consider the following program:

class C {

public C() {
this("",1,0);

}

public C(String s) {
this(s,1,0);

}

public C(String s, int i) {
this(s,1i,0);

}

public C(String s, int i, double d) {
dataFieldl = new String(s);
dataField2 = i;

dataField3 = d;
}
public void methodl () {

System.out.println(dataFieldl + " " + dataField2 + " " + dataField3);
}

public void method2(int i) {
method2 (i, "unknown");
}
public void method2(int i, String s) {
dataField2 = i;
System.out.println(i + " received from " + s);
}
private String dataFieldl;
private int dataField2;
private double dataField3;
public static void main (String args[]) {
C objectl = new C("objectl",100,2000),
object2 = new C("object2"), object3 = new C();
objectl.method2(123);
objectl.methodl();
object2.method2(123,"object2");
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The program contains a declaration of class €. Inside method main (), objects of class
type C are generated by declaring and instantiating them:

C objectl = new C("objectl",100,2000),
object2 = new C("object2"), object3 = new C();

It is very important to see that object declarations do not create objects, so that
the two lines

C objectl;
objectl.methodl();

result in a compilation error. The object variable object1 has to be assigned an ob-
ject, which can be done directly in declaration by initializing the variable with the op-
erator new,

C objectl = new C(. . .);

Message passing is equivalent to a function call in traditional languages. However,
to stress the fact that in OOLs the methods are relative to objects, this new term is
used. For example, the call to method1 () with respect to objectl,

objectl.methodl();

is to be seen as the message method1 () sent to objectl. Upon receiving the mes-
sage, the object invokes its method. Messages can acquire parameters so that

objectl.method2(123);

is the message method2 () with parameter 123 received by object1l.

The lines containing these messages are in a method of the current object or an-
other object. Therefore, the receiver of the message is identifiable, but not necessarily
the sender. If object1 receives the message methodl (), it does not know where the
message originated. It only responds to it by displaying the information method1 ()
encompasses. The same goes for method2 (). Therefore, the sender may prefer send-
ing a message that also includes its identification, as in

objectl.method2(123,"objectl");

The declaration of class C contains the method main (), which, as in C/C++,
is the starting point for execution of programs. Unlike in C/C++, main () must be
included inside a class; it cannot be a stand-alone method. In this way, after class C is
stored in a file C. java, the file can be compiled with the instruction

javac C.java
and then the program can be run with

java C
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The javac instruction can be applied to any file containing Java code, but the java
instruction requires that the class with which it is invoked includes method main ().
The example of class ¢ shows only one class, but as we shall see throughout the book,
the number of classes is usually not limited to one; however, one of the classes must
include the method main () to make the program executable.

The signature of the method main () is always the same:

public static void main(String[] args)

It returns no value (void) and allows for taking command line arguments from
the interpreter by storing them in an array of strings. The public modifier belongs
to the category of access modifiers. Java uses four access modifiers (three plus one
unnamed), which are related to the concept of a package. A package is a collection of
classes that are located in one subdirectory. It is a counterpart of a C/C++ library.

Methods and fields declared public can be used by any other object.

The protected modifier means that a method or a field is accessible to derived
classes and in the package that includes the class that declares the method or the data
field.

The private modifier indicates methods and fields that can be used only by this
class.

A default modifier is no modifier at all, which indicates access to methods and
fields in the package that includes the class that declares the method or the data field.

Two more modifiers need to be listed. A final method of field cannot be
changed by derived classes (see Section 1.2.3, Inheritance). A method and field de-
clared static are the same for all instances (objects) of the class.

1.2.1.1 Class Methods and Class Variables

Static methods and variables are associated with the class itself; there is exactly one in-
stance of a static element even if there is no object of the particular class type. They
are called class methods and class variables (nonstatic variables and methods are called
instance variables and instance methods). The method main () must be declared as
static. Then, all methods and variables it uses directly must also be static (method
£() called by main () must be static, but not when it is called as obj. £ () ). Consider
this class:

class C2 {
public void f1() {
System.out.println("£f1()");

}
static public void f2() {

System.out.println("£f2()");

}

Because £1 () is not a class method, the command

c2.f1(); // error;
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causes a compilation error; thus, to execute the method, an object of class type 2 has
to be created, and then the method invoked, as in

C2 ¢ = new C2();
c.f1();

or simply
(new C2()).£f1();

On the other hand, because £2 () is a class method, the command
C2.£2();

is sufficient because the method £2 () does exist in class 2, even without creating an
object of class type €2; that is, a static method can be accessed through a class name,
although it can also be accessed through an object name. This is how methods in class
Math can be accessed, for example, Math.sqrt (123).

To see how class variables work, consider this class,

class C3 {
public static int n = 0;
public int m = 0;
public C3() {
n++; m++;

h

public void display() {
System.out.println(n + " " + m);

h

}

Execution of

C3 ¢l = new C3();
cl.display();
C3 ¢c2 = new C3();
cl.display();
c2.display();

prints numbers

1
2
2

e

Also, n and m can be accessed and modified from the outside, as in

C3.n = 10;
cl.m = 11;
c2.m = 12;

Note that the class name is used to access n and the object name to access m.
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1.2.1.2 Generic Classes

A very important aspect of OOP in Java is the possibility of declaring generic classes.
For example, if we need to declare a class that uses an array for storing some items,
then we may declare this class as

class IntClass {
int[] storage = new int[50];

However, in this way, we limit the usability of this class to integers only; hence, if
a class is needed that performs the same operations as IntClass, but it operates on
double numbers, then a new declaration is needed, such as

class DoubleClass {
double[] storage = new double[50];

..................

If storage is to hold objects of a particular class, then another class must be de-
clared. It is much better to declare a generic class and decide during the run of the
program to which type of items it is referring. Java allows us to declare a class in this
way, and the declaration for the example is

class GenClass {
Object[] storage = new Object[50];
Object find(int n) {
return storage[n];

Then the decision is made as to how to create two specific objects:

GenClass intObject = new GenClass();
GenClass doubleObject = new GenClass();

This generic class manifests itself in different forms depending on the way infor-
mation is stored in it or retrieved from it. To treat it as an object holding an array of
integers, the following way of accessing data can be used:

int k = ((Integer) intObject.find(n)).intValue();

To retrieve data from doubleObject, the return value has to be cast as Double. The
same cast can also be used for intObject so that objects respond differently in dif-
ferent situations. One generic declaration suffices for enabling such different forms.
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1.2.1.3 Arrays

Arrays are Java objects, but to the user, they are objects to a very limited extent. There
is no keyword with which all arrays are declared. They may be considered instances of
an understood array class. The lack of a keyword for all arrays also means that no sub-
classes can be created (see Section 1.2.3).

Arrays are declared with empty brackets after the name of the type or the name of
the array itself. These two declarations are equivalent:

int[] a;
and
int a[];

A declaration of a basic data type also creates an item of the specified type. As for
all objects, an array declaration does not create an array. An array can be created
with the operator new, and very often declaration and initialization are combined, as in

int[] a = new int[10];

This creates an array of 10 cells that are indexed with numbers 0 through 9; that is, the
first cell is a[ 0] and the last cell a[ 9 ]. An array can also be created by specifying the
value of its cells,

int[] b = {5, 4, 2, 1};

which creates a four-cell array of integers.
Unlike C/C++, it is impossible to access a cell that is out of bounds. An attempt to
do so, as with the assignment

a[lo] = 5;

results in a run-time error ArrayIndexOutOfBoundsException. To avoid this, the
length of the array can be checked before performing an assignment with the variable
length associated with each array, a. length.

Note that for arrays, Length is a variable, not a method, as is the case for strings;
therefore, a.length () would be an error.

Because arrays are objects, two array variables can refer to the same array:

int[] al = new int[3], a2 = al;
al[0] = 12;
System.out.println(a2[0]); // print 12

Arrays are passed to methods by reference; that is, changes performed in a method
that takes an array parameter affects the array permanently. For example, if a method
for doubling values in integer arrays is defined:

public void doubleArray(int[] a) {
for (int i = 0; i < a.length; i++)
a[i] += a[il];
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then the following code

al[l] = al[2] = 13;

doubleArray(al);

for (int i = 0; i < al.length; i++)
System.out.print(al[i] + " ");

results in printing numbers 24, 26, and 26.

In Java 1.2, the class Arrays is added with several useful methods to be applied
to arrays, in particular binarySearch(), equals(), £i11(), and sort (). For ex-
ample, to sort an array, it is enough to import class java.util.Arrays and execute
one of the versions of the method sort, for example,

Arrays.sort(a);

1.2.1.4 Wrapper Classes

Except for basic data types, everything in Java is an object. For this reason, many classes
in the java.util package operate on items of type Object. To include basic data
types in this category so that the utility classes can also operate on them, the so-called
wrapper classes are introduced to provide object versions of basic data types. For ex-
ample, the Integer class is an object wrapper for the type int. The class provides sev-
eral methods. The Integer class includes the following methods: getInteger() to
convert a string into an Integer, parseInt() to convert a string into an int,
convert() to convert a string into a number when the radix is not known,
toString() to convert an integer into a string, and a sequence of methods to convert
an integer into other basic types: intvalue( ), longValue (), and so on.

1.2.2 Abstract Data Types

Before a program is written, the programmer should have a fairly good idea of how to
accomplish the task being implemented by the program. Hence, an outline of the pro-
gram containing its requirements should precede the coding process. The larger and
more complex the project, the more detailed the outline phase should be. The imple-
mentation details should be delayed to the later stages of the project. In particular, the
details of the particular data structures to be used in the implementation should not
be specified at the beginning.

From the start, it is important to specify each task in terms of input and output. At
the beginning stages, we should be more concerned with what the program should do,
not how it should or could be done. Behavior of the program is more important than the
gears of the mechanism accomplishing it. For example, if an item is needed to accomplish
some tasks, the item is specified in terms of operations performed on it rather than in
terms of its inner structure. These operations may act upon this item by modifying it,
searching for some details in it, or storing something in it. After these operations are
precisely specified, the implementation of the program may start. The implementation
decides which data structure should be used to make execution most efficient in terms of
time and space. An item specified in terms of operations is called an abstract data type. In
Java, an abstract data type can be part of a program in the form of an interface.
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Interfaces, successors of protocols in Objective-C, are similar to classes, but they
can contain only constants (final variables) and method prototypes or signatures; that
is, specifications of method names, types of parameters, and types of return values.
Declarations in an interface are public, and data are final even if they are not labeled.
Methods are thus not defined, and the task of defining methods is passed to a class
that implements an interface (that is, implements as public all the methods listed in the
interface). One class can implement more than one interface, the same interface can
be implemented by more than one class, and the classes implementing one interface
do not have to be related in any way to each other. Therefore, at the first stage of pro-
gram design, interfaces can be specified, and the specifics of implementation of their
methods are left until later for the implementation classes. And because an interface
can extend another interface, a top-down design can become part of the program in a
very natural way. This allows the program developer to concentrate first on big issues
when designing a program, but also allows a user of a particular implementation of
an interface to be certain that all the methods listed in the interface are implemented.
In this way, the user is assured that no method listed in the interface is left out in any
of the implementation classes, and all instances of implementation classes respond to
the same method calls.

The rigidity of interfaces is somewhat relaxed in abstract classes. A class declared
abstract can include defined methods; that is, not only method signatures, but also
method bodies. A method that is specified only by its signature must also be declared
as abstract. A class can make an abstract class specific by extending it. Here is an
example:

interface I {
void Ifl(int n);
final int m = 10;
}
class A implements I {
public void Ifl(int n) {
System.out.println("AIfl " + n*m);

}
abstract class AC {

abstract void ACfl(int n);
void ACf2(int n) {
System.out.println("ACf2 " + n);

}
class B extends AC {

public void ACfl(int n) {
System.out.println("BACfl " + n);
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1.2.3 Inheritance

OOLs allow for creating a hierarchy of classes so that objects do not have to be instan-
tiations of a single class. Before discussing the problem of inheritance, consider the
following class definitions:

package basePackage;

class BaseClass {
public BaseClass() {

}
public void f(String s) {

System.out.println("Method f() in BaseClass called from " + s);
h("BaseClass");
}
protected void g(String s) {
System.out.println("Method g() in BaseClass called from " + s);
}
private void h(String s) {
System.out.println("Method h() in BaseClass called from " + s);
}
void k(String s) {
System.out.println("Method k() in BaseClass called from " + s);

A file BaseClass. java is in a subdirectory basePackage. The directory in
which this subdirectory is located contains the file testInheritance.java,
which contains the following classes:

class DerivedlLevell extends BaseClass {
public void f(String s) {
System.out.println("Method f() in DerivedlLevell called from " + s);
g("DerivedlLevell");
}
public void h(String s) {
System.out.println("Method h() in DerivedlLevell called from " + s);
}
void k(String s) {
System.out.println("Method k() in DerivedlLevell called from " + s);

}
class Derived2Levell extends BaseClass {
public void f(String s) {
System.out.println("Method f() in Derived2Levell called from " + s);
// h("Derived2Levell"); // h() has private access in basePackage.BaseClass.
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// k("Derived2Levell"); // k() is not public in basePackage.BaseClass;
// cannot be accessed from outside package.
}
protected void g(String s) {
System.out.println("Method g() in Derived2Levell called from " + s);

}
class DerivedLevel2 extends DerivedlLevell {
public void f(String s) {

System.out.println("Method f() in DerivedLevel2 called from " + s);
g("DerivedLevel2");
h("DerivedLevel2");
k("DerivedLevel2");
super. f ("DerivedLevel2");

}
class TestInheritance {
void run() {
BaseClass bc = new BaseClass();
DerivedlLevell d111 = new DerivedlLevell();
Derived2Levell d211 = new Derived2Levell();
DerivedLevel2 dl2 = new DerivedLevel2();

bc.f("main(1l)");
// bc.g("main(2)"); // g() has protected access in basePackage.BaseClass.
// bc.h("main(3)"); // h() has private access in basePackage.BaseClass.
// bc.k("main(4)"); // k() is not public in basePackage.BaseClass;

// cannot be accessed from outside package.
d1ll.f("main(5)");
// dlll.g("main(6)"); // g() has protected access in basePackage.BaseClass.
d1ll.h("main(7)");
d1ll.k("main(8)");
d211.f("main(9)");
d21l.g("main(10)");

// d211l.h("main(11)"); // h() has private access in basePackage.BaseClass.
dl2.f("main(12)");
// dl2.g("main(13)"); // g() has protected access in basePackage.BaseClass.

dl2.h("main(14)");

}

public static void main(String args[]) {
(new TestInheritance()).run();

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



20 M Chapter 1 Object-Oriented Programming Using Java

The execution of this code generates the following output:

Method f() in BaseClass called from main(1l)

Method h() in BaseClass called from BaseClass

Method f() in DerivedlLevell called from main(5)
Method g() in BaseClass called from DerivedlLevell
Method h() in DerivedlLevell called from main(7)
Method k() in DerivedlLevell called from main(8)
Method f() in Derived2Levell called from main(9)
Method g() in Derived2Levell called from main(10)
Method f() in DerivedLevel2 called from main(12)
Method g() in BaseClass called from DerivedLevel2
Method h() in DerivedlLevell called from DerivedLevel2
Method k() in DerivedlLevell called from DerivedLevel2
Method f() in DerivedlLevell called from DerivedLevel2
Method g() in BaseClass called from DerivedlLevell
Method h() in DerivedlLevell called from main(14)

The class BaseClass is called a base class or a superclass, and other classes
are called subclasses or derived classes because they are derived from the superclass in
that they can use the data fields and methods specified in BaseClass as protected,
public, or—when subclasses are in the same package as the base class—have no access
modifier. They inherit all these fields and methods from their base class so that they
do not have to repeat the same definitions. However, a derived class can override the de-
finition of a non-final method by introducing its own definition. In this way, both
the base class and the derived class have some measure of control over their methods.

The base class can decide which methods and data fields can be revealed to de-
rived classes so that the principle of information hiding holds not only with respect to
the user of the base class, but also to the derived classes. Moreover, the derived class
can decide which public and protected methods and data fields to retain and use and
which to modify. For example, both DerivedlLevell and Derived2Levell rede-
fine method £ () by giving their own versions of £ (). However, the access to the
method with the same name in the parent class is still possible by preceding the
method name with the keyword super, as shown in the call of super. £ () from £()
in DerivedLevel2.

A derived class can add new methods and fields of its own. Such a class can
become a base class for other classes that can be derived from it so that the inheritance
hierarchy can be deliberately extended. For example, the class DerivedlLevell is de-
rived from BaseClass, but at the same time, it is the base class for DerivedLevel?2.

Protected methods or fields of the base class are accessible to derived classes.
They are also accessible to nonderived classes if these classes are in the same pack-
age as the class that defines the protected methods and fields. For this reason,
DerivedlLevell can call BaseClass’s protected method g(), but a call to this
method from run () in TestInheritance is rendered illegal.

However, run () can call method g (), declared protected in Derived2Levell,
because both Derived2Levell and TestInheritance in which run() is defined
are in the same package.
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Methods and data fields with no access modifier can be accessed by any class in
the same package. For example, the method k() in BaseClass cannot be accessed
even in a derived class, Derived2Levell, because the derived class is in a different
package. But the method k() in DerivedlLevell can be accessed even in a non-
derived class, such as TestInheritance in run(), because both DerivedlLevell
and TestInheritance are in the same package.

Unlike C++, which supports multiple inheritance, inheritance in Java has to be lim-
ited to one class only so that it is not possible to declare a new class with the declaration

class Derived2Level2 extends DerivedlLevell, Derived2Levell { ... }

In addition, a class declared £inal cannot be extended (the wrapper classes are
examples of £inal classes).

1.2.4 Polymorphism

Polymorphism refers to the ability of acquiring many forms. In the context of OOP,
this means that the same method name denotes many methods that are members of
different objects. This is accomplished by so-called dynamic binding, when the type of
a method to be executed can be delayed until run time. This is distinguished from
static binding, when the type of response is determined at compilation time, as in the
case of the IntObject and DoubleObject presented in Section 1.2.1. Both of these
objects are declared as objects whose storage fields hold data of type Object and not
integer or double. The conversion is performed dynamically, but outside the object it-
self. For dynamic binding, consider the following declarations:

class A {
public void process() {
System.out.println("Inside A");

}
class ExtA extends A {

public void process() {
System.out.println("Inside ExtA");

}
then the code

A object = new A();
object.process();
object = new ExtA();
object.process|();

results in the output

Inside A
Inside ExtA

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



22 M Chapter 1 Object-Oriented Programming Using Java

This is due to dynamic binding: The system checks dynamically the type of object to
which a variable is currently referring and chooses the method appropriate for this
type. Thus, although the variable object is declared to be of type A, it is assigned in
the second assignment an object of type ExtA and executes the method process (),
which is defined in class ExtA, rather than the method by the same name defined in
class A.

This is also true for interfaces. For example, if the declarations

interface B {
void process();
}
class ImplBl implements B {
public void process() {
System.out.println("Inside ImplB1l");

}
class ImplB2 implements B {

public void process() {
System.out.println("Inside ImplB2");

}

are followed by the statements

B object = new ImplBl();
object.process();

object = new ImplB2();
object.process();

then the output is

Inside ImplB1l
Inside ImplB2

notwithstanding the fact that object is of type B. The system recognizes that, for the
first call of process (), object refers to an object of type ImplB1, and in the second
call, it refers to an object of type Imp1B2.

Polymorphism is thus a powerful tool in OOP. It is enough to send a standard
message to many different objects without specifying how the message will be fol-
lowed. There is no need to know of what type the objects are. The receiver is respon-
sible for interpreting the message and following it. The sender does not have to
modify the message depending on the type of receiver. There is no need for switch
or if-else statements. Also, new units can be added to a complex program without
the need of recompiling the entire program.

Dynamic binding allows for empowering the definition of GenClass. Assume
that the definition of this class also includes a method for finding a position of a par-
ticular piece of information. If the information is not found, —1 is returned. The defi-
nition is now
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class GenClass {
Object[] storage = new Object[50];
int find(Object el) {
for (int i = 0; i < 50; i++)
if (storage[i] != null && storage[i].equals(el))
return i;
return -1;
}
void store(Object el) {

}

The method £ind () returns the correct result if wrappers of basic types are used—
Character(), Integer(), and so on—but what happens if we want to store non-
standard objects in an instance of GenClass? Consider the following declaration

class SomeInfo {
SomeInfo (int n) {
this.n = n;
}
private int n;

}

Now the problem is, what happens if for a declaration

GenClass object = new GenClass();

we execute:

object.store(new SomeInfo(l7));
System.out.println(object.find(new SomeInfo(17)));

As it turns out, —1 is printed to indicate an unsuccessful search. The result is caused by
the method equals (). The system is using a built-in method for type Object that
returns true if references of the compared variables are the same, not the contents of
objects to which they refer. To overcome this limitation, the method equals () must
be redefined by overriding the standard definition by a new definition. Therefore, the
definition of SomeInfo is incomplete, and should be extended to

class SomeInfo {
SomeInfo (int n) {
this.n = n;
}
public boolean equals(Object si) {
return n == ((SomeInfo) si).n;

}

private int n;
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With this new definition, £ind() returns the position of the object holding
number 17. The reason this works properly is that all classes are extensions of the class
Object. This extension is done implicitly by the system so that the declaration of
SomeInfo is really

class SomeInfo extends Object {

}

The qualifier extends Object is understood in the original definition and does
not have to be made explicit. In this way, the standard method equals () is overridden
by redefinition of this method in the class SomeInfo and by the power of dynamic
binding. When executing the call object.find(new SomeInfo(17)), the system
uses the method equals () defined in the class SomeInfo because an instance of this
class is an argument in the method call. Thus, inside £ind ( ), the local variable becomes
a reference to an object of type SomeInfo, although it is defined as a parameter of type
Object. The problem is, however, that such a quick adjustment can be done only for the
built-in methods for Object, in particular, equals () and toString(). Only slightly
more complicated is the case when we want to define a generic class that makes compar-
isons possible. A more realistic example of polymorphism is given in the case study.

m INPUT AND OUTPUT

The java. io package provides several classes for reading and writing data. To use the
classes, the package has to be explicitly included with the statement

import java.io.*;

In this section, we briefly introduce classes for reading from a standard device
(keyboard), writing to a standard device (monitor), and processing I/O on files. There
are also a number of other classes that are particularly important for interacting with
the network, such as buffered, filtered, and piped streams.

To print anything on the screen, two statements are sufficient:

System.out.print (message) ;
System.out.println(message) ;

The two statements differ in that the second version outputs the end-of-line character
after printing a message. The message printed by the statement is a string. The string
can be composed of literal strings, string variables, and strings generated by the
method tostring() for a particular object; all components of the print statement
are concatenated with the operator +. For example, having declared the class C:

class C {
int i = 10;
char a = 'A';
public String toString() {
return "(" + i+ " " +a+ ")";
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and an object
C obj = new C();
a printing statement
System.out.println("The object: " + obj);
outputs
The object: (10 A)
Note that if toString () were not defined in C, the output would be
The object: C@lcc789

because class C is by default an extension of the class Object whose method
toString() prints the address of a particular object. Therefore, it is almost always
critical that toString() is redefined in a user class to have a more meaningful output
than an address.

Reading input is markedly more cumbersome. Data are read from standard input
with the input stream System. in. To that end, the method read () can be used, which
returns an integer. To read a line, the user must define a new method, for example,

public String readLine() {

int ch;

String s = "";

while (true) {

try {
ch = System.in.read();
if (ch == -1 || (char)ch == '\n') //end of file or end of line;
break;

else if ((char)ch != '\r'") // ignore carriage return;

s = s + (char)ch;
} catch(IOException e) {
}
}

return s;

Because read () is defined as a method that throws an T0OException, the excep-
tion has to be handled with the try-catch clause.

Note that ch must be an integer to detect the end of file (which is Ctrl-z entered
from the PC keyboard). The end-of-field marker is the number —1, and characters are
really unsigned integers. If ch were declared as a character, then the assignment state-
ment would have to be

ch = (char) System.in.read();

with which the end-of-line marker —1 would be stored as number 65535 in ch,
whereby the subcondition ch == —1 would be evaluated to false and the system
would wait for further input.
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Fortunately, the task can be accomplished differently by first declaring an input
stream with the declarations:

InputStreamReader cin = new InputStreamReader (System.in);
BufferedReader br = new BufferedReader(cin);

or with one declaration:
BufferedReader br = new BufferedReader (new InputStreamReader(System.in));
and then a built-in method readLine () can be called to assign a value to a string s:

try {
s = br.readLine();

} catch(IOException e) {
¥

To read a number, an input must be read as a string and then converted into a
number. For example, if input is in string s, then the conversion can be performed with

try {
i = Integer.parselInt(s.trim());

} catch (NumberFormatException e) {
System.out.println("Not a number");

}
Input can be simplified after javax.swing.JOptionPane is imported:

String s = JOptionPane.showInputDialog("Enter a number");
i = Integer.parselInt(s.trim());

To perform input and output on a file, a decision has to be made as to what type
of data are to be processed so that the proper type of file can be elected.

A binary file is processed as a sequence of bytes, a text file as a sequence of charac-
ters. Generally, text files are portable; binary files are not because the data in the file have
the same representation as data stored in main memory, and this representation varies
from one system to another. However, Java binary files are platform independent.

The java.io package includes many streams for performing I/O that are or-
ganized in a hierarchy. The InputStream and OutputStream classes are used for
processing binary files, and the Reader and Writer classes are for text files.

1.3.1 Reading and Writing Bytes

Consider a method that reads one byte at a time from an input file and writes it into
an output file and to the screen:

void readBytesl(String fInName, String fOutName) throws IOException {
FileInputStream fIn = new FileInputStream(fInName);
FileOutputStream fOut = new FileOutputStream(fOutName);
int i;
while ((i = fIn.read()) != -1) {
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System.out.print((char)i + " "); // display characters;
// System.out.print(i + " "); // display ASCII values;
fout.write(i);
}
fIn.close();
fOut.close();

An integer variable is used to read the input, and the end of file is indicated by —1.
To make reading and writing more efficient, input and output are buffered:

void readBytes2(String fInName, String fOutName) throws IOException {
BufferedInputStream fIn = new BufferedInputStream(
new FileInputStream(fInName));
BufferedOutputStream fOut = new BufferedOutputStream(
new FileOutputStream(fOutName));

int 1i;
while ((i = fIn.read()) != -1) {
System.out.print(i + " ");

fout.write(i);
}
fIn.close();
fOut.close();

1.3.2 Reading Lines

To read one line at a time, the method readLine () from BufferedReader is used,
as in this example:

void readLines(String fInName, String fOutName) throws IOException {
BufferedReader fIn = new BufferedReader (
new FileReader (fInName));

PrintWriter fOut = new PrintWriter(new FileWriter (fOutName));
String s;
while ((s = fIn.readLine()) != null) {

System.out.println(s);

fOut.println(s);
¥
fIn.close();
fOut.close();

The end of file is detected upon reading a null string (after reading an empty line,
the string s is not null, but is of length 0).
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1.3.3 Reading Tokens: Words and Numbers

A streamTokenizer extracts from a text file various types of tokens including iden-
tifiers (sequences of letters and digits that begin with a letter or a byte from the range
"\u00AOQ' through "\uOOFF') and numbers. It can also extract quoted strings and vari-
ous comment styles when the tokenizer is properly set up. The nextToken()
method skips space characters separating tokens and updates the tokenizer’s instance
variables: sval of type String, which contains the current token when it is a word;
nval of type double, which contains the current token when it is a number; and
ttype of type int, which contains the type of the current token. There are four types
of tokens: TT EOF (end of file), TT EOL (end of line), TT WORD, and TT NUMBER.
Here is an example:

void readTokens(String fInName) throws IOException {
StreamTokenizer fIn = new StreamTokenizer(
new BufferedReader (
new FileReader (fInName)));
fIn.nextToken();

String s;
while (fIn.ttype != StreamTokenizer.TT EOF) {
if (fIn.ttype == StreamTokenizer.TT_WORD)
s = "word";
else if (fIn.ttype == StreamTokenizer.TT_ NUMBER)
s = "number";
else s = "other";

System.out.println(s + ":\t" + fIn);
fIn.nextToken();

When a text file consists of words or numbers separated by blanks, then it may be
easier to extract each word or number by reading one line at a time and then applying
a string tokenizer, as in

void readTokens2(String fInName) throws IOException {
BufferedReader fIn = new BufferedReader(
new FileReader (fInName));
String s;
while ((s = fIn.readLine()) != null) {

java.util.StringTokenizer line = new java.util.StringTokenizer(s);
while (line.hasMoreTokens())

System.out.println(line.nextToken());

}

fIn.close();

Another example of applying a stream tokenizer can be found in Section 5.11.
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Writing Primitive Data Types

The DataInputStream class provides methods for reading primitive data
types in binary format. The methods include readBoolean(), readByte(),
readShort (), readChar (), readInt (), readLong(), and readUTF () (to read
strings in Unicode Text Format).

void writePrimitives(String fOutName) throws IOException {

DataOutputStream fOut

fout.
fout.
fout.
fout.
fout.
fout.
fout.
fout.
fout.
fout.

writeBoolean(5<6)
writeChar('A');
writeDouble(1.2);
writeFloat(3.4f);
writeShort(56);
writeInt(78);
writeLong(90);
writeByte('*"');
writeUTF ("abc");
close();

}

= new DataOutputStream(
new FileOutputStream(fOutName));

.
’

void readPrimitives(String fInName) throws IOException {

DataInputStream fIn

new DataInputStream(
new FileInputStream(fInName));

System.out.println(fIn.readBoolean() + " " +

fIn.
fIn
fIn.
fIn.
fIn

fIn
fIn.close();

.readDouble() + "

.readInt() + "
fIn.
fIn.

w4

readChar() + "
+
readFloat() + " " +
readShort() + " " +
"+
"+
"+

readLong() + "
readByte() + "

.readUTF());

The case study at the end of the chapter relies on the I/O for primitive data types.

1.3.5 Reading and

Writing Objects

Objects can also be saved in a file if they are made persistent. An object becomes per-
sistent if its class type is stated to implement the Serializable interface, as in

class C implements Serializable {

int i;
char ch;
C(int j,

char c) {
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}
public String toString() {

return "("+ i + " " + ch +")";
}

b

Such a declaration is possible if all instance variables are also Serializable, which
is the case for class C, because in Java all basic data types, arrays, and many classes are
Serializable. Here is an example of writing and reading an object of class type C:

void writeObjects(String fOutName) throws IOException {
Ccl = new C(10,'A'), c2 = new C(20,'B');
ObjectOutputStream fOut = new ObjectOutputStream(
new FileOutputStream(fOutName));
fOout.writeObject(cl);
fOout.writeObject(c2);
fOut.close();
}
void readObjects(String fInName) throws IOException {
C cl = new C(30,'C'), c2 = cl;
ObjectInputStream fIn = new ObjectInputStream(
new FileInputStream(fInName));
try {
cl (C)fIn.readObject();
c2 = (C)fIn.readObject();
} catch(ClassNotFoundException e) {

}
System.out.println(cl + " " + c2);

1.3.6 Random Access Files

The files discussed thus far are processed sequentially: We read (write) one item at a
time and proceed toward the end of the file. To be able to both read and write in the
same file at any position in the file, a random access file should be used. A file is cre-
ated with the constructor

RandomAccessFile (name, mode) ;

The constructor opens a file with the specified name either for reading only or
for reading and writing. The mode is specified by either the letter w or the letters rw;
for instance,

RandomAccessFile = raf new RandomAccessFile("myFile", "rw");

We can move anywhere in the file, but to know that we are within the file, we can
use the method length() that returns the size of the file measured in bytes. The
method getFilePointer () returns the current position in the file. The method
seek (pos) moves the file pointer to the position specified by an integer pos.
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Reading is done by the method read(), which returns a byte as an integer;
by read(b), which fills entirely a byte array b; by read (b,0ff,1len), which fills
len cells of the byte array b starting from cell off; and by readLine (), which
reads one line of input. Other reading methods return a value specified by their
names: readBoolean( ), readByte( ), readShort (), readChar(), readInt(),
readLong( ), and readUTF (). All of these reading methods have corresponding
writing methods, for example, write(c), where c is an int, write(b), and
write(b,o0ff,len), plus the method writeBytes(s) to write a string s as a se-
quence of bytes.

After file processing is finished, the file should be closed with the close () method:

raf.close();

Examples of the application of random access files can be found in the Case Study in
Section 1.7.

m JAVA AND POINTERS

In this section, a problem of implementing Java objects is analyzed.

Although Java does not use explicit pointers and does not allow the programmer
to use them, object access is implemented in terms of pointers. An object occupies
some memory space starting from a certain memory location. A pointer to this object
is a variable that holds the address of the object, and this address is the starting posi-
tion of the object in memory. In many languages, pointer is a technical term for a type
of variable; therefore, the term is avoided in discussing Java programs and usually the
term reference is used instead.

Consider the following declarations:

class Node {
String name;
int age;

}
With declarations

Node p = null, g = new Node("Bill",20);

two reference variables are created, p and q. The variable p is initialized to null. The
pointer null does not point anywhere. It is not able to point to any object of any
type; therefore, null is compatible with and can be assigned to a reference variable of
any type. After execution of the assignment

p = null;

we may not say that p refers to null or points to null, but that p becomes null or p
isnull. The variable p is created to be used in the future as a reference to an object, but
currently, it does not refer to any. The variable q is a reference to an object that is an in-
stance of class Node. Forced by the built-in method new, the operating system through
its memory manager allocates enough space for one unnamed object that can be
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accessed, for now, only through the reference variable g. This reference is a pointer to
the address of the memory chunk allocated for the object just created, as shown in Fig-
ure 1.la. Figure 1.1a represents the logic of object reference, whose implementation
can vary from one system to another and is usually much more intricate than the sim-
ple logic presented in this figure. For example, in Sun’s implementation of Java, g refers
to a handle that is a pair of pointers: one to the method table of the object and its type
(which is a pointer to the class whose instance the object is) and the other to the
object’s data (Figure 1.1b). In Microsoft’s implementation, g refers to the object’s data,
and the type and method table are pointed to by a hidden field of the object g. For sim-
plicity, the subsequent illustrations use the form reflecting the logic of object reference,
as in Figure 1.1a.

FIGURE 1.1 Object reference variables p and g: (a) logic of reference of g to an object;
(b) implementation of this reference.

:l :l methods
q q handle / type
| — | —

™

data

(a) (b)

Keeping in mind how object access is implemented in Java helps explain the re-
sults of reference comparisons in Java. Consider the following code:

p = new Node("Bill",20);
System.out.print(p == q);

The printing statement outputs false because we compare references to two differ-
ent objects; that is, we compare two different references (addresses), not the objects.
To compare the objects’ contents, their data fields have to be compared one by one
using a method defined just for this reason. If Node includes the method

public boolean equals(Node n) {
return name.equals(n.name) && age == n.age;

}

then the printing statement

System.out.print(p.equals(q));
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outputs true. (This can be accomplished much more elegantly in C++ by overload-
ing the equality operator ==; that is, by defining a method that allows for application
of this operator to instances of class Node.)

The realization that object variables are really references to objects helps explain
the need for caution with the use of the assignment operator. The intention of the
declarations

Node nodel = new Node("Roger",20), node2 = nodel;

is to create object node1, assign values to the two fields in node1, and then create ob-
ject node2 and initialize its fields to the same values as in node 1. These objects are to
be independent entities so that assigning values to one of them should not affect val-
ues in the other. However, after the assignments

node2.name "Wendy";

30;

node2.age
the printing statement
System.out.println(nodel.name+" "+nodel.age+" "+node2.name+" "+ node2.age);
generates the output
Wendy 30 Wendy 30

Both the ages and names in the two objects are the same. What happened? Be-
cause nodel and node2 are pointers, the declarations of nodel and node2 result in
the situation illustrated in Figure 1.2a. After the assignments to the two fields of
nodel, the situation is as in Figure 1.2b. To prevent this from happening, we have to
create a new copy of the object referenced by nodel and then make node2 become a

FIGURE 1.2 Illustrating the necessity of using the method clone().
nodel nodel
~ = N —
node2—" > —R[o] gfe]r] node2— = —{W|e|n|d|y
(@) (b)
nodel ekl
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reference to this copy. This can be done by defining the method clone () marked in
the interface Cloneable. A new definition of Node is now:

class Node implements Cloneable {
String name;
int age;
Node(String n, int a) {
name = n; age = a;

}

Node() {
this("",0);

}

public Object clone() {
return new Node(name,age);

¥
public boolean equals(Node n) {

return name.equals(n.name) && age == n.age;

}
With this definition, the declarations should be
Node nodel = new Node("Roger",20), node2 = (Node) nodel.clone();
which results in the situation shown in Figure 1.2¢, so that the two assignments

node2.name = "Wendy";
node2.age = 30;

affect only the second object (Figure 1.2d).

The Java pointers are screened from the programmer. There is no pointer type in
Java. The lack of an explicit pointer type is motivated by the desire to eliminate harm-
ful behavior of programs. First, it is not possible in Java to have a nonnull reference to a
nonexisting object. If a reference variable is not null, it always points to an object be-
cause the programmer cannot destroy an object referenced by a variable. An object can
be destroyed in Pascal through the use of the function dispose() and in C++
through delete. The reason for using dispose () or delete is the need to return to
the memory manager memory space occupied by an unneeded object. Directly after
execution of dispose() or delete, pointer variables hold addresses of objects al-
ready returned to the memory manager. If these variables are not set to null or to the
address of an object accessible from the program, the so-called dangling reference prob-
lem arises, which can lead to a program crash. In Java, the dangling reference problem
does not arise. If a reference variable p changes its reference from one object to another,
and the old object is not referenced by any other variable g, then the space occupied by
the object is reclaimed automatically by the operating system through garbage collec-
tion (see Chapter 12). There is no equivalent in Java of dispose() or delete. Un-
needed objects are simply abandoned and included in the pool of free memory cells
automatically by the garbage collector during execution of the user program.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Section 1.5 Vectors in java.util W 35

Another reason for not having explicit pointers in Java is a constant danger of
having a reference to a memory location that has nothing to do with the logic of the
program. This would be possible through the pointer arithmetic that is not allowed in
Java, where such assignments as

(p + 9).ch = 'b';
(++p).n = 6;

are illegal.

Interestingly, although explicit pointers are absent in Java, Java relies on pointers
more heavily than C/C++. An object declaration is always a declaration of reference to
an object; therefore, an object declaration

Node p;

should be followed by initializing the variable p either by explicitly using a construc-
tor, as in

p = new Node();

or by assigning a value from an already initialized variable, as in
p = 4q;

Because an array is also an object, the declaration
int a[10];

is illegal; this declaration is considered an attempt to define a variable whose name is
a[10]. A declaration has to be followed with initialization, which is often combined
with the declaration, as in

int[] a = new int[10];

In this way, Java does not allow for variables that name objects directly. Thus, the
dot notation used to access fields of the object, as in p.name, is really an indirect ref-
erence to the field name because p is not the name of the object with field name, but a
reference to (address of) this object. Fortunately, the programmer does not have to be
very concerned about this distinction because it is all a matter of language implemen-
tation. But as mentioned, an understanding of these implementation details helps
explain the results of some operations, as illustrated earlier by the operator ==.

m VECTORS IN java.util

A useful class in the java.util package is the class Vector although it is considered
today to be a legacy class. A vector is a data structure with a contiguous block of mem-
ory, just like an array. Because memory locations are contiguous, they can be ran-
domly accessed so that the access time of any element of the vector is constant.
Storage is managed automatically so that on an attempt to insert an element into a full
vector, a larger memory block is allocated for the vector, the vector elements are
copied to the new block, and the old block is released. Vector is thus a flexible array;
that is, an array whose size can be dynamically changed.
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The class hierarchy in the package java.util is as follows:

Object = AbstractCollection = AbstractList = Vector

Figure 1.3 lists alphabetically the methods of class Vector. Some of these methods
are inherited from AbstractList; others are from AbstractCollection.
Figure 1.3 lists most of the methods of the class. Only methods iterator()
and listIterator(), inherited from class AbstractList, and methods
finalize(), getClass(), notify(), notifyAll(), and wait(), inherited
from class Object, are not included.

FIGURE 1.3

Method
void add(Object ob)

void add(int pos, Object ob)

boolean addAll(Collection c)

boolean addAll(int pos,
Collection c)

void addElement (Object ob)
int capacity()

void clear()

Object clone()

boolean contains(Object ob)

boolean containsAll
(Collection c)

void copyInto(Object a[])

An alphabetical list of member functions in the class java.util.Vector.

Operation
insert object ob at the end of the vector

insert object ob at position pos after shifting elements at
positions following pos by one position; throw
ArrayIndexOutOfBoundsException if pos is out
of range

add all the elements from the collection ¢ to the end of the vector;
return true if ¢ is not empty; throw
ArrayIndexOutOfBoundsException if pos is out of range and
NullPointerException if ¢ is null

add all the elements from the collection ¢ at the position pos of

the vector after shifting the objects following position pos; throw
ArrayIndexOutOfBoundsException if pos is out of range and
NullPointerExceptionif ¢ isnull

insert object ob at the end of the vector; same as add (ob)
return the number of objects that can be stored in the vector
remove all the objects from the vector

return a clone of the vector

return true if the vector contains the object ob

return true if the vector contains all of the objects in the
collection c; throw NullPointerException if ¢ is null

copy objects from the vector to the object array a; throw
IndexOutOfBoundsException if the array is not large enough to
accommodate all objects from the vector and
NullPointerExceptionif aisnull
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FIGURE 1.3 (continued)

Object elementAt(int pos) return the object at position pos; throw
ArrayIndexOutOfBoundsException if pos is out of range; same
asget (pos)

Enumeration elements() return an Enumeration object that enumerates all the objects in the
vector

void ensureCapacity(int minCap) extend the size of the vector to accommodate at least minCap
objects; do nothing if the size of the vector exceeds the minimum capacity

minCap

boolean equals(Object v) return true if the current vector and object v contain equal objects in the
same order

Object firstElement() return the first element in the vector; throw

NoSuchElementException if the vector is empty

Object get(int pos) return the object at position pos; throw
ArrayIndexOutOfBoundsException if pos is out
of range

int hashCode() return the hash code for the vector

int indexOf (Object ob) return the position of the first occurrence of object ob in the vector;

return —1 if ob is not found

int indexOf (Object ob, return the position of the first occurrence of object ob in the
int pos) vector beginning the search at position pos; return —1 if ob is not found;
throw IndexOutOfRangeException if pos <0

void insertElementAt(Object insert object ob at position pos after shifting elements at

ob, int pos) positions following pos by one position; throw
ArrayIndexOutOfBoundsException if pos is out of range; same
as add (ob, pos)

boolean isEmpty() return true if the vector contains no elements, false otherwise

Object lastElement() return the last element in the vector; throw

NoSuchElementException if the vector is empty

int lastIndexOf (Object ob) return the position of the last occurrence of object ob in the vector; return
-1 if ob is not found

int lastIndexOf (Object ob, return the position of the last occurrence of object ob in the

int pos) vector beginning the backward search at position pos; return -1 if ob is
not found; throw IndexOutOfRangeException if pos is greater
than or equal to the size of the vector

boolean remove(Object ob) remove the first occurrence of ob in the vector and return true if ob was

in the vector

Continues
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FIGURE 1.3 (continued)

Object remove(int pos)

boolean
removeAll (Collection c¢)

boolean removeElement (Object ob)

void removeElementAt (int
pos)

void removeAllElements ()
void removeRange(int first,

int last)

boolean retainAll(Collection c)

Object set(int pos,
Object ob)

void setElementAt (Object ob,
int pos)

void setSize(int sz)

int size()

List subList(int first,
int last)

Object[] toArray()

remove the object at position pos; throw
ArrayIndexOutOfBoundsException if pos is out
of range

remove from the vector all the objects contained in collection c;
return true if any element was removed; throw
NullPointerExceptionif ¢ isnull

remove from the vector the first occurrence of ob; return true
if an occurrence of ob was found; same as remove (ob)

remove the object at position pos; throw
ArrayIndexOutOfBoundsException if pos is out
of range

remove all the objects from the vector; same as clear ()

remove objects starting at position £irst and ending at
last-1 and then shift all the succeeding objects to fill the hole (protected
method)

remove from the vector all objects that are not in the collection c;
return true if any object was removed; throw
ArrayIndexOutOfBoundsException if pos is out

of range

assign object ob to position pos and return the object that
occupied this position before the assignment; throw
ArrayIndexOutOfBoundsException if pos is out
of range

assign object ob to position pos; throw
ArrayIndexOutOfBoundsException if pos is out
of range

set size of the vector to sz; if current size is greater than sz,
add new cells with null objects; if the current size is smaller
than sz, discard the overflowing objects; throw
ArrayIndexOutOfBoundsExceptionifsz <0

return the number of object in the vector

return the sublist of the list (not its copy) containing elements

from first to last-1; throw
ArrayIndexOutOfBoundsException if either first or last is out
of range and I1legalArgumentException

iflast < first

copy all objects from the vector to a newly created array and return the
array
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FIGURE 1.3 (continued)

Object[] toArray(Object a[]) copy all objects from the vector to the array a if a is large
enough or to a newly created array and return the array;
throw ArrayStoreException if type of a is not a
supertype of the type of every element in the vector and
NullPointerExceptionif aisnull

String toString() return a string representation of the vector that contains
the string representation of all the objects

void trimToSize() change the capacity of the vector to the number of objects currently stored
in it

Vector() construct an empty vector

Vector (Collection c) construct a vector with objects copied from collection c;

throw NullPointerException if ¢ is null

Vector (int initCap) construct a vector with the specified initial capacity; throw
IllegalArgumentExceptionifinitCap <0

Vector (int initCap, construct a vector with the specified initial capacity and capacity
int capIncr) increment

An application of these methods is illustrated in Figure 1.4. The contents of
affected vectors are shown as comments on the line in which the methods are called.
The contents of vectors are output with an implicit call to the method toString() in

System.out.println("vl = " + vl);

but in the program in Figure 1.4, only one such line is shown.
To use the class Vector, the program has to include the import instruction

import java.util.Vector;

Vector v1 is declared empty, and then new elements are inserted with the method
addElement (). Adding a new element to a vector is usually fast unless the vector is
full and has to be copied to a new block. But if the vector has some unused cells, it can
accommodate a new element immediately in constant time.

The status of the vector can be tested with two methods: size (), which returns
the number of elements currently in the vector, and capacity (), which returns the
number of cells in the vector. If the vector’s capacity is greater than its size, then a new
element can be inserted at the end of the vector immediately. How frequently a vector
is filled and has to be copied depends on the interplay between these two parameters,
size and capacity, and the third parameter, capacity increment. By default, a new
empty vector has capacity 10, and its capacity is doubled every time its size reaches the
current capacity. For a large vector, this may lead to wasted space. For example, a full
vector containing 50,000 elements has 100,000 cells after a new element arrives, but
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FIGURE 1.4 A program demonstrating the operation of vector member functions.

import java.io.*;
import java.util.Vector;

class testVectors {
public static void main(String a[]) {
Vector vl = new Vector(); // vl =[], size = 0, capacity = 10
for (int j = 1; j <= 5; j++)
vl.addElement (new Integer(j)); // vl =11, 2, 3, 4, 5], size = 5,
// capacity = 10

System.out.println("vl = " + vl);

Integer i = new Integer(3);

System.out.println(vl.indexOf(i) + " " + vl.indexOf(i,4)); // 2 -1
System.out.println(vl.contains(i) + " " + vl.lastIndexOf(i)); // true 2
Vector v2 = new Vector(3,4); // v2 = [], size = 0, capacity = 3

for (int j = 4; j <= 8; j++)
v2.addElement (new Integer(j)); // v2 = [4, 5, 6, 7, 8], size = 5,
// capacity = 7

v2.ensureCapacity(9); // v2 = [4, 5, 6, 7, 8], size = 5,
// capacity = 11

Vector v3 = new Vector(2); // v3 =[], size = 0, capacity = 2

v3.setSize(4); // v3 = [null, null, null, null],

// size = cap = 4
v3.setElementAt (new Integer(9),1); // v3 = [null, null, null, 9]
v3.setElementAt (new Integer(5),3); // v3 = [null, 9, null, 5]

v3.insertElementAt(v3.elementAt(3),1); // v3 = [null, 5, 9, null, 5],
// size = 5, cap = 8
v3.ensureCapacity(9); // v3 = [null, 5, 9, null, 5],
// size = 5, cap = 16
v3.removeElement (new Integer(9)); // v3 = [null, 5, null, 5]
v3.removeElementAt (v3.size()-2); // v3 = [null, 5, 5]

java.util.Enumeration ev = v3.elements();
while (ev.hasMoreElements())

System.out.print(ev.nextElement() + " ");
System.out.println();
v3.removeElementAt (0); // v3 = [5, 5]
v3.addAll(vl); // v3 =[5, 5, 1, 2, 3, 4, 5]
v3.removeAll (v2); // v3 = [1, 2, 3] = vVv3 - v2
v3.addall(2,vl); // v3 =1[1, 2, 1, 2, 3, 4, 5, 3]
v3.retainAll(v2); // v3 = [4, 5] = intersection(v3,v2)
vl.subList(1,3).clear(); // vl = [1, 4, 5]

Vector v4 = new Vector(), v5;

v4.addElement (new Node("Jill",23));

v5 = (Vector) vé4.clone(); // v4 = [(Jill, 23)]
((Node)v5.firstElement()).age = 34; // v4 = v5 = [(Jill, 34)]
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the user may never include more elements than 50,001. In such a situation, the
method trimToSize () should be used to reduce the waste.

When the user is reasonably sure of the maximum number of elements inserted
in a vector, the method ensureCapacity () should be used to set capacity to the de-
sired number so that all insertions are immediate. Otherwise, the user may set the ca-
pacity increment to a certain value so that when the vector is full, it is not doubled but
increased by the capacity increment. Consider the declaration of vector v2:

Vector v2 = new Vector (3,4);

Initially, capacity is set to 3, and because the capacity increment equals 4, the capacity of
the vector after inserting the fourth element equals 7. With this capacity, the statement

v2.ensureCapacity(9);

raises the capacity to 11 because it uses the capacity increment. Because the capacity
increment for vector v3 is not specified in its declaration, then when its capacity
equals 8, the statement

v3.ensureCapacity(9);

causes the capacity to be doubled to 16.

The method ensurecCapacity() affects only the capacity of the vector, not
its content. The method setSize () affects its content and possibly the capacity. For
example, the empty vector v2 of capacity 2 changes to v2 = [null, null, null,
null] after execution of

v2.setSize(4);

and its capacity equals 4.

The contents of v2 are potentially dangerous if a method is executed that expects
nonnull objects. For example, v2.toString() used in a printing statement raises
NullPointerException. (To print a vector safely, a loop should be used in which
v.elementAt (i) is printed.)

The method addElement () adds an element at the end of the vector. The inser-
tion of an element in any other position can be performed with insertElementAt ().
This reflects the fact that adding a new element inside the vector is a complex opera-
tion because it requires that all the elements are moved by one position to make room
for the new element.

The method elements () puts vector elements in an object of Enumeration
type. The loop shown in the program works the same for any data structure that re-
turns an Enumeration object. In this way, data contained in different data structures
become comparable by, as it were, equalizing the data structures themselves by using
the common ground, the type Enumeration.

The method clone () should be used carefully. This method clones the array im-
plementing the vector, but not the objects in the array. After the method is finished,
the cloned vector includes references to the same objects as the vector from which it
was cloned. In Figure 1.4, vector v4 contains one object of type Node (as defined in
Section 1.4), and then vector v5, a clone of v4, references the very same object from
position 0. This is evident after the object is updated through reference v5; both v4
and v5 now reference the same updated object.
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m DATA STRUCTURES AND OBJECT-ORIENTED PROGRAMMING

Although the computer operates on bits, we do not usually think in these terms; in
fact, we would not like to. Although an integer is a sequence of 32 bits, we prefer see-
ing an integer as an entity with its own individuality, which is reflected in operations
that can be performed on integers but not on variables of other types. As an integer
uses bits as its building blocks, so other objects can use integers as their atomic ele-
ments. Some data types are already built into a particular language, but some data
types can be, and need to be, defined by the user. New data types have a distinctive
structure, a new configuration of their elements, and this structure determines the be-
havior of objects of these new types. The task given to the data structures domain is to
explore such new structures and investigate their behavior in terms of time and space
requirements. Unlike the object-oriented approach, where we start with behavior and
then try to find the most suitable data type that allows for an efficient performance of
desirable operations, we now start with a data type specification with some data
structure and then look at what it can do, how it does it, and how efficiently. The data
structures field is designed for building tools to be incorporated in and used by pro-
grams and for finding data structures that can perform certain operations speedily
and without imposing too much burden on computer memory. This field is interested
in building classes by concentrating on the mechanics of these classes, on their gears
and cogs, which in most cases are not visible to the user of the classes. The data struc-
tures field investigates the operability of these classes and its improvement by modify-
ing the data structures to be found inside the classes, because it has direct access to
them. It sharpens tools and advises the user to what purposes they can be applied. Be-
cause of inheritance, the user can add some more operations to these classes and try
to squeeze from them more than the class designer did.

The data structures field performs best if done in the object-oriented fashion. In
this way, it can build the tools it intends without the danger that these tools will be in-
advertently misused in the application. By encapsulating the data structures into a
class and making public only what is necessary for proper usage of the class, the data
structures field can develop tools whose functioning is not compromised by unneces-
sary tampering.

Il CAase Stupy: RANDOM Access FILE

From the perspective of the operating systems, files are collections of bytes, regardless
of their contents. From the user’s perspective, files are collections of words, numbers,
data sequences, records, and so on. If the user wants to access the fifth word in a text
file, a searching procedure goes sequentially through the file starting at position 0, and
checks all of the bytes along the way. It counts the number of sequences of blank char-
acters, and after it skips four such sequences (or five if a sequence of blanks begins the
file), it stops because it encounters the beginning of the fifth nonblank sequence or
the fifth word. This word can begin at any position of the file. It is impossible to go to
a particular position of any text file and be certain that this is a starting position of the
fifth word of the file. Ideally, we want to go directly to a certain position of the file and
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be sure that the fifth word begins in it. The problem is caused by the lengths of the
preceding words and sequences of blanks. If we know that each word occupies the
same amount of space, then it is possible to go directly to the fifth word by going to
the position 4-length(word). But because words are of various lengths, this can be ac-
complished by assigning the same number of bytes to each word; if a word is shorter,
some padding characters are added to fill up the remaining space; if it is longer, then
the word is trimmed. In this way, a new organization is imposed on the file. The file is
now treated not merely as a collection of bytes, but as a collection of records; in our
example, each record consists of one word. If a request comes to access the fifth word,
the word can be directly accessed without looking at the preceding words. With the
new organization, we created a random access file.

A random access file allows for direct access of each record. The records usually
include more items than one word. The preceding example suggests one way of creat-
ing a random access file, namely, by using fixed-length records. Our task in this case
study is to write a generic program that generates a random access file for any type of
record. The workings of the program are illustrated for a file containing personal
records, each record consisting of five fields (social security number, name, city, year
of birth, and salary), and for a student file that stores student records. The latter
records have the same fields as personal records, plus information about academic
major. This allows us to illustrate inheritance.

In this case study, a generic random access file program inserts a new record into
a file, finds a record in the file, and modifies a record. The name of the file has to be
supplied by the user, and if the file is not found, it is created; otherwise, it is open for
reading and writing. The program is shown in Figure 1.5.

The program uses a class IOomethods and the interface DbObject. A user-
defined class that specifies one record in the database is the extension IOmethods of
an implementation of DbObject.

The class Database is generic so that it can operate on any random access file. Its
generic character relies on polymorphism. Consider the method £ind (), which de-
termines whether a record is in the file. It performs the search sequentially, comparing
each retrieved record tmp to the sought record d using the method equals() de-
fined for the particular class (or rather, redefined because the method is inherited
from the class Object from which any other class is derived). The object d is passed
in as a parameter to £ind (). But d must not be changed because its value is needed
for comparison. Therefore, another object is needed to read data from the file. This
object is created with the method copy (), which takes a one-cell array as a parameter
and assigns the reference to a copy of d created by new in copy () to the only cell of
the array. If parameter copy () were of type DbObject, not DbObject][ ], the refer-
ence would be discarded because the parameter would be passed by value. Now,
the array is also passed by value, but its cell is changed permanently. The cell tmp[0]
now contains a copy of d—in particular, its type—so that the system uses methods
of the particular class; for example, tmp[0].readFromFile () is taken from class
Personal if d is an object of this type, and from Student if d is a Student object.

The method £ind () uses to some extent the fact that the file is random by scru-
tinizing it record by record, not byte by byte. To be sure, the records are built out of
bytes and all the bytes belonging to a particular record have to be read, but only the
bytes required by the equality operator are participating in the comparison.
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FIGURE 1.5 Listing of a program to manage random access files.

[[FxxEE KKK KK Rk Kk kK xkkkkkkxx%  DbObject.java rxFkxEkkkkkkkkkkkkk Ak kkk kK
import java.io.*;

public interface DbObject {
public void writeToFile(RandomAccessFile out) throws IOException;
public void readFromFile(RandomAccessFile in) throws IOException;
public void readFromConsole() throws IOException;
public void writeLegibly() throws IOException;
public void readKey() throws IOException;
public void copy(DbObject[] db);
public int size();

kkhkkkhkkhkhkkhkkhkkhkhkkhhkkhkkkhhkkhkhkkkk*x | kkhkkkhkkkhkhkkkhkkhkhkkkhkkhkhkkkkkkkk*
Personal. java
import java.io.*;

public class Personal extends IOmethods implements DbObject {
protected final int nameLen = 10, cityLen = 10;
protected String SSN, name, city;
protected int year;
protected long salary;
protected final int size = 9*2 + namelLen*2 + citylLen*2 + 4 + 8;
Personal() {
}
Personal (String ssn, String n, String c, int y, long s) {
SSN = ssn; name = n; city = c; year = y; salary = s;
}
public int size() {
return size;
}
public boolean equals(Object pr) {
return SSN.equals(((Personal)pr).SSN);
}
public void writeToFile(RandomAccessFile out) throws IOException {
writeString(SSN,out);
writeString(name,out);
writeString(city,out);
out.writelnt(year);
out.writelLong(salary);
}
public void writeLegibly() {
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FIGURE 1.5 (continued)

System.out.print("SSN = " + SSN + ", name = " + name.trim()
+ ", city = " + city.trim() + ", year = " + year
+ ", salary = " + salary);

}

public void readFromFile(RandomAccessFile in) throws IOException {
SSN = readString(9,in);
readString(namelen, in);

name
city = readString(cityLen,in);
year = in.readInt();

salary = in.readLong();

}

public void readKey() throws IOException {
System.out.print("Enter SSN: ");
SSN = readLine();

}

public void readFromConsole() throws IOException {
System.out.print("Enter SSN: ");
SSN = readLine();
System.out.print("Name: ");

name = readLine();
for (int i = name.length(); i < nameLen; i++)
name += ' ';
System.out.print("City: ");
city = readLine();
for (int i = city.length(); i < cityLen; i++)
city += "' ';
System.out.print ("Birthyear: ");
year = Integer.valueOf(readLine().trim()).intValue();
System.out.print("Salary: ");
salary = Long.valueOf (readLine().trim()).longValue();
}
public void copy(DbObject[] d) {
d[0] = new Personal(SSN,name,city,year,salary);

[/ *kFFkkkkkkkkkkkkkkkkkkkkkkx  Student.java  KErrkkkkkkkkkkkkkkkkkkkkkk
import java.io.*;

public class Student extends Personal {
public int size() {

Continues
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FIGURE 1.5 (continued)

return super.size() + majorLen*2;
}
protected String major;
protected final int majorLen = 10;
Student () {
super();
}
Student (String ssn, String n, String c, int y, long s, String m) {
super(ssn,n,c,y,s);
major = m;
}
public void writeToFile(RandomAccessFile out) throws IOException {
super.writeToFile(out);
writeString(major,out);
}
public void readFromFile(RandomAccessFile in) throws IOException {
super.readFromFile(in);
major = readString(majorLen,in);
}
public void readFromConsole() throws IOException {
super.readFromConsole();
System.out.print("Enter major: ");
major = readLine();
for (int i = major.length(); i < namelLen; i++)
major += ' ';
}
public void writeLegibly() {
super.writeLegibly();
System.out.print(", major = " + major.trim());
}
public void copy(DbObject[] d) {
d[0] = new Student(SSN,name,city,year,salary,major);

//************************* Database_java kkkkhkhkhkhkhkhhhhhhhhhkikhkhkhk ik
import java.io.*;
public class Database {

private RandomAccessFile database;
private String fName = new String();;
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FIGURE 1.5 (continued)

private IOmethods io = new IOmethods();
Database() throws IOException {
System.out.print("File name: ");
fName = io.readLine();
}
private void add(DbObject d) throws IOException {
database = new RandomAccessFile(fName,"rw");
database.seek(database.length());
d.writeToFile(database);
database.close();
}
private void modify(DbObject d) throws IOException {
DbObject[] tmp = new DbObject[1l];
d.copy(tmp) ;
database = new RandomAccessFile(fName,"rw");
while (database.getFilePointer() < database.length()) {
tmp[0].readFromFile (database);
if (tmp[0].equals(d)) {
tmp[0].readFromConsole();
database.seek(database.getFilePointer()-d.size());
tmp[0].writeToFile(database);
database.close();
return;

I

database.close();

System.out.println("The record to be modified is not in the
database");

¥
private boolean find(DbObject d) throws IOException {

DbObject[] tmp = new DbObject[1l];
d.copy(tmp) ;
database = new RandomAccessFile(fName,"r");
while (database.getFilePointer() < database.length()) {
tmp[0].readFromFile(database);
if (tmp[0].equals(d)) {
database.close();
return true;

}

database.close();

Continues
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FIGURE 1.5 (continued)

return false;
}
private void printDb(DbObject d) throws IOException {
database = new RandomAccessFile(fName,"r");
while (database.getFilePointer() < database.length()) {
d.readFromFile(database);
d.writeLegibly();
System.out.println();
}
database.close();
}
public void run(DbObject rec) throws IOException {
String option;
System.out.println("1l. Add 2. Find 3. Modify a record; 4. Exit");
System.out.print("Enter an option: ");
option = io.readLine();
while (true) {
if (option.charAt(0) == '1') {
rec.readFromConsole();
add(rec);

}

else if (option.charAt(0) == '2') {
rec.readKey();
System.out.print("The record is ");
if (find(rec) == false)

System.out.print("not ");

System.out.println("in the database");

}

else if (option.charAt(0) == '3') {
rec.readKey();
modify(rec);

}

else if (option.charAt(0) != '4"'")

System.out.println("Wrong option");
else return;
printDb(rec);
System.out.print("Enter an option: ");
option = io.readLine();
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FIGURE 1.5 (continued)

[/ xxEE KKK KKKk Kk kK xkkxkkk*k%  UgseDatabase.java  KrrFEEkEkkkkkkkkkkkkkkk ko k
import java.io.*;

public class UseDatabase {
static public void main(String[]) throws IOException {
// (new Database()).run(new Personal());
(new Database()).run(new Student());

The method modify () updates information stored in a particular record. The
record is first retrieved from the file, also using sequential search, and the new in-
formation is read from the user using the method readFromFile () defined for a
particular class. To store the updated record tmp[0] in the file, modify () forces
the file pointer database to go back to the beginning of the record tmp[ 0] that
has just been read; otherwise, the record following tmp[0] in the file would be
overwritten. The starting position of tmp can be determined immediately because
each record occupies the same number of bytes; therefore, it is enough to jump back
the number of bytes occupied by one record. This is accomplished by calling
database.seek(database.getFilePointer()-d.size()), where size()
must be defined for the particular class.

The generic Database class includes two more methods. Method add () places a
record at the end of file. Method printDb () prints the contents of the file.

To see the class Database in action, we have to define a specific class that speci-
fies the format of one record in a random access file. As an example, we define the
class Personal with five fields, SSN, name, city, year, and salary. The first three
fields are strings, but only SSN is always of the same size. To have slightly more flexi-
bility with the other two strings, two constants, nameLen and cityLen, are defined.

Storing data from one object requires particular care, which is the task of the
method writeToFile (). The sSN field is the simplest to handle. A social security num-
ber always includes nine digits; therefore, the output operator << can be used. However,
the lengths of names and cities vary from record to record, and yet the sections of a
record in the data file designated for these two fields should always have the same length.
To guarantee this, the method readFromConsole () adds trailing blanks to the strings.

Another problem is posed by the numerical fields, year and salary, particu-
larly the latter field. If salary is written to the file with the method printLong(),
then the salary 50,000 is written as a 5-byte-long string '50000"', and the salary
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100,000 as a 6-byte-long string '100000"', which violates the condition that each
record in the random access file should be of the same length. To avoid the problem,
the numbers are stored in binary form. For example, 50,000 is represented in the field
salary as a string of 32 bits, 00000000000000001100001101010000. We can now
treat this sequence of bits as representing not a long number, but a string of four char-
acters, 00000000, 00000000, 11000011, 01010000; that is, the characters whose ASCII
codes are, in decimal, numbers 0, 0, 195, and 80. In this way, regardless of the value of
salary, the value is always stored in 4 bytes. This is accomplished in Java with the
method writeLong().

This method of storing records in a data file poses a readability problem, par-
ticularly in the case of numbers. For example, 50,000 is stored as 4 bytes: two null
characters, a special character, and a capital P. For a human reader, it is far from obvi-
ous that these characters represent 50,000. Therefore, a special routine is needed
to output records in readable form. This is accomplished by using the method
writeLegibly (), which explains why this program uses two methods for reading
records and two for writing records: one is for maintaining data in a random access
file, and the other is for reading and writing data in readable form.

To test the flexibility of the Database class, another user class is defined, class
Student. This class is also used to show one more example of inheritance.

Class Student uses the same data fields as class Personal by being defined as a
class derived from Personal plus one more field, a string field major. Processing
input and output on objects of class type Student is very similar to that for class
Personal, but the additional field has to be accounted for. This is done by redefin-
ing methods from the base class and at the same time reusing them. Consider the
method writeToFile() for writing student records in a data file in fixed-length
format:

public void writeToFile(RandomAccessFile out) throws IOException{
super.writeToFile(out);
writeString(major,out);

The method uses the base class’s writeTofile() to initialize the five fields, SSN,
name, city, year, and salary, and initializes the field major. Note that a special
variable super must be used to indicate clearly that writeToFile () being defined
for class Student calls writeToFile() already defined in base class Personal.
However, class Student inherits without the modification method readkey () and
the method equals(), because the same key is used in both Personal and
Student objects to uniquely identify any record, namely, SSN.
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m EXERCISES

1. What should be the type of constructors defined in classes?

2. Assume that classA includes a private variable k, a variable m with no modifier, a
private protected variable n, a protected variable p, and a public variable g
Moreover, classB is derived from classA, classcC is not derived from classa,
and all three classes are in the same package. In addition, classD is derived from
classA, classE is not derived from classA, and classA is in a different package
than classD and classE. Which of the five variables defined in c1assA can be used
by any of the four other classes?

3. What happens if the declaration of C:

class C {
void processl(char ch) {
System.out.println("Inside processl in C " + ch);
}
void process2(char ch) {
System.out.println("Inside process2 in C " + ch);
}
void process3(char ch) {
System.out.println("Inside process3 in C " + ch);
process2(ch);

is followed by the following declaration of its extension:

class ExtC extends C {
void processl(int n) {
System.out.println("Inside processl in ExtC " + n);
}
void process2(char ch) {
System.out.println("Inside process2 in ExtC " + ch);
}
void process4(int n) {
System.out.println("Inside process4 in Ext C " + n);

Which methods are invoked if the declaration of three objects

ExtC objectl = new ExtC();
C object2 = new ExtC(), object3 = new ExXtC();
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is followed by these statements; indicate any problems that these statements
may cause:

objectl.processl(1000);
objectl.process4(2000);
object2.process1(3000);
object2.process4(4000);
object3.processl('P');
object3.process2('Q');
object3.process3('R");

4. For the declaration of I1:

interface Il {
int I1£1();
void Il1f2(int i);

identify the errors.

a. inthe declaration of the interface 12:

interface I2 extends Il {
double I2f1();
void I2f2(int i);
int T1£1();
double I2fl1() { return 10; }
private int AC1f4();
private int n = 10;

}

b. in the declaration of class CI1:

class CI1 implements Il {
int T1f1() { . . . . . }
void Il1f2(int i) { . . . . . }
int CI1£3() { . . . . . }

c. and in the declaration of object c6:

I1 c6 = new I1();

5. Identify the errors:

a. abstract class ACl {
int AC1£f1() { . . . . }
void AC1f2(int i) { . . . . }
int ACL£3();
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b. interface C6 extends CACl { . . . }
where CAC1 is a class.

C. class CAClAC2 extends ACl, AC2 { . . . }
where AC1 and AC2 are two abstract classes.

d. AC1 c7 = new AC1();
where AC1 is an abstract class.

6. What happens if the class SomeInfo instead of the definition of equals () from
Section 1.2.4 uses the following definition of this method:

public boolean equals(SomeInfo si) {
return n == si.n;

m PROGRAMMING ASSIGNMENTS

1. Write a Fraction class that defines adding, subtracting, multiplying, and dividing
fractions. Then write a method for reducing factors and methods for inputting and
outputting fractions.

2. Write a class Quaternion that defines the four basic operations of quaternions and
the two I/O operations. Quaternions, as defined in 1843 by William Hamilton and
published in his Lectures on Quaternions in 1853, are an extension of complex num-
bers. Quaternions are quadruples of real numbers, (a,b,¢,d) = a + bi + ¢j + dk, where
1 =(1,0,0,0), 1= (0,1,0,0),7 = (0,0,1,0), and k = (0,0,0,1) and the following equations
hold:

P=f=k=-1
ij =k, jk =1, ki =, ji=—k, kj =—i, ik =—j
(a+bi+cj+dk)+ (p+qi+rj+sk)
=(a+p)+(b+qli+(c+r)j+(d+s)k
(a+bi+cj+dk)-(p+qi+rj+sk)
= (ap—bq—cr—ds) + (aq+ bp + cs—dr)i
+ (ar + cp + dq — bs)j + (as + dp + br— cq)k.

Use these equations in implementing a quaternion class.

3. Write a program to reconstruct a text from a concordance of words. This was a real
problem of reconstructing some unpublished texts of the Dead Sea Scrolls using
concordances. For example, here is William Wordsworth’s poem, Nature and the Poet,
and a concordance of words corresponding with the poem.

So pure the sky, so quiet was the air!

So like, so very like, was day to day!
Whene’er I look’d, thy image still was there;
It trembled, but it never pass’d away.
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The 33-word concordance is as follows:

1:1 so quiet was the *air!

1:4 but it never pass’d *away.
1:4 It trembled, *but it never
1:2 was *day to day!

1:2 was day to *day!

1:3 thy *image still was there;

1:2 so very like, *was day
1:3 thy image still *was there;
1:3 *Whene’er I look’d,

In this concordance, each word is shown in context of up to five words, and the word
referred to on each line is preceded with an asterisk. For larger concordances, two
numbers have to be included, a number corresponding with a poem and a number of
the line where the words can be found. For example, assuming that 1 is the number of
Nature and the Poet, line “1:4 but it never pass’'d *away.” means that the word “away” is
found in this poem in line 4. Note that punctuation marks are included in the context.

Write a program that loads a concordance from a file and creates a vector where each
cell is associated with one line of the concordance. Then, using a binary search, recon-
struct the text.

4. Modify the program from the case study by maintaining an order during insertion of
new records into the data file. This requires defining the method compareTo () in
Personal and in Student to be used in a modified method add () in Database.
The method finds a proper position for a record d, moves all the records in the file to
make room for d, and writes d into the file. With the new organization of the data file,
find () and modify () can also be modified. For example, £ind () stops sequential
search when it encounters a record greater than the record looked for (or reaches the
end of file). A more efficient strategy can use binary search, discussed in Section 2.7.

5. Write a program that maintains an order in the data file indirectly. Use a vector of file
position pointers (obtained through getFilePointer ()) and keep the vector in
sorted order without changing the order of records in the file.

6. Modify the program from the case study to remove records from the data file. Define
method isNull () in classes Personal and Student to determine that a record is
null. Define also method writeNullToFile( ) in the two classes to overwrite a
record to be deleted by a null record. A null record can be defined as having a non-
numeric character (a tombstone) in the first position of the SSN field. Then define
method remove () in Database (very similar to modify () ), which locates the
position of a record to be deleted and overwrites it with the null record. After a ses-
sion is finished, a Database method purge () destructor should be invoked which
copies nonnull records to a new data file, deletes the old data file, and renames the
new data file with the name of the old data file.
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Complexity
Analysis

m COMPUTATIONAL AND ASYMPTOTIC COMPLEXITY

The same problem can frequently be solved with algorithms that differ in efficiency.
The differences between the algorithms may be immaterial for processing a small
number of data items, but these differences grow with the amount of data. To com-
pare the efficiency of algorithms, a measure of the degree of difficulty of an algorithm
called computational complexity was developed by Juris Hartmanis and Richard E.
Stearns.

Computational complexity indicates how much effort is needed to apply an algo-
rithm or how costly it is. This cost can be measured in a variety of ways, and the par-
ticular context determines its meaning. This book concerns itself with the two
efficiency criteria: time and space. The factor of time is usually more important than
that of space, so efficiency considerations usually focus on the amount of time elapsed
when processing data. However, the most inefficient algorithm run on a Cray com-
puter can execute much faster than the most efficient algorithm run on a PC, so run
time is always system-dependent. For example, to compare 100 algorithms, all of
them would have to be run on the same machine. Furthermore, the results of run-
time tests depend on the language in which a given algorithm is written, even if the
tests are performed on the same machine. If programs are compiled, they execute
much faster than when they are interpreted. A program written in C or Ada may be 20
times faster than the same program encoded in BASIC or LISP.

To evaluate an algorithm’s efficiency, real-time units such as microseconds and
nanoseconds should not be used. Rather, logical units that express a relationship be-
tween the size n of a file or an array and the amount of time ¢ required to process the
data should be used. If there is a linear relationship between the size n and time +—that
is, t, = cn,—then an increase of data by a factor of 5 results in the increase of the execu-
tion time by the same factor; if n, = 5n,, then ¢, = 5¢,. Similarly, if ¢, = log,n, then dou-
bling # increases ¢ by only one unit of time. Therefore, if t, = log,(2n), then t, = ¢, + 1.

A function expressing the relationship between n and ¢ is usually much more
complex, and calculating such a function is important only in regard to large bodies
of data; any terms that do not substantially change the function’s magnitude should

56
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be eliminated from the function. The resulting function gives only an approximate
measure of efficiency of the original function. However, this approximation is suffi-
ciently close to the original, especially for a function that processes large quantities of
data. This measure of efficiency is called asymptotic complexity, and is used when dis-
regarding certain terms of a function to express the efficiency of an algorithm or
when calculating a function is difficult or impossible and only approximations can be
found. To illustrate the first case, consider the following example:

f(n) = n*+100n + log, 1 + 1,000 (2.1)

For small values of #, the last term, 1,000, is the largest. When # equals 10, the second
(1007) and last (1,000) terms are on equal footing with the other terms, making the
same contribution to the function value. When n reaches the value of 100, the first
and the second terms make the same contribution to the result. But when 7 becomes
larger than 100, the contribution of the second term becomes less significant. Hence,
for large values of 1, due to the quadratic growth of the first term (#?), the value of the
function f depends mainly on the value of this first term, as Figure 2.1 demonstrates.
Other terms can be disregarded for large n.

FIGURE 2.1 The growth rate of all terms of function f(n) = n? + 100n + log,,n + 1,000.

n f(n) n? 100n log,,n 1,000
Value Value % Value % Value % Value %
1 1,101 1 01 100 9.1 0 0.0 1,000 90.83
10 2,101 100 4.76 1,000 47.6 1 0.05 1,000 47.60
100 21,002 10,000 47.6 10,000 47.6 2 0.001 1,000 4.76
1,000 1,101,003 1,000,000 90.8 100,000 9.1 3 0.0003 1,000 0.09
10,000 101,001,004 100,000,000 99.0 1,000,000 099 4 0.0 1,000  0.001

100,000 10,010,001,005 10,000,000,000 99.9 10,000,000 0.099 5 0.0 1,000 0.00

m BiG-O NOTATION

The most commonly used notation for specifying asymptotic complexity—that is, for
estimating the rate of function growth—is the big-O notation introduced in 1894 by
Paul Bachmann. Given two positive-valued functions f and g, consider the following
definition:

Definition 1: f(n) is O(g(n)) if there exist positive numbers ¢ and N such that f(n) <
cg(n) foralln = N.

This definition reads: f is big-O of g if there is a positive number ¢ such that f is
not larger than cg for sufficiently large ns; that is, for all ns larger than some number
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N. The relationship between f and g can be expressed by stating either that g(n) is
an upper bound on the value of f(n) or that, in the long run, f grows at most as fast
asg.

The problem with this definition is that, first, it states only that there must exist
certain ¢ and N, but it does not give any hint of how to calculate these constants. Sec-
ond, it does not put any restrictions on these values and gives little guidance in situa-
tions when there are many candidates. In fact, there are usually infinitely many pairs
of ¢s and Ns that can be given for the same pair of functions fand g For example, for

f(n)=2n*+3n+1=0(n?) (2.2)

where g(n) = n? candidate values for ¢ and N are shown in Figure 2.2.

FIGURE 2.2 Different values of ¢ and N for function f(n) = 2n? + 3n+ 1 = O(n) calculated
according to the definition of big-O.

¢ >6 >33 >3L > 5516 - 2
4 9 16 25

N 1 2 3 4 5 = o

We obtain these values by solving the inequality:
2n2 +3n+ 1< cn?
or equivalently

2+ 3 + —12 <c
non

for different ns. The first inequality results in substituting the quadratic function from
Equation 2.2 for f(n) in the definition of the big-O notation and n? for g(n). Because
it is one inequality with two unknowns, different pairs of constants ¢ and N for the
same function g(= n?) can be determined. To choose the best c and N, it should be de-
termined for which N a certain term in f becomes the largest and stays the largest. In
Equation 2.2, the only candidates for the largest term are 2n* and 3n; these terms can
be compared using the inequality 2% > 3n that holds for n > 1. Thus, N=2 and ¢ > 3%,
as Figure 2.2 indicates.

What is the practical significance of the pairs of constants just listed? All of them
are related to the same function g(n) = n? and to the same f(n). For a fixed g an infinite
number of pairs of ¢s and Ns can be identified. The point is that f and g grow at the
same rate. The definition states, however, that g is almost always greater than or equal
to fif it is multiplied by a constant ¢. “Almost always” means for all ns not less than a
constant N. The crux of the matter is that the value of ¢ depends on which N is chosen,
and vice versa. For example, if 1 is chosen as the value of N—that is, if ¢ is multiplied by
¢ so that cg(n) will not be less than fright away—then ¢ has to be equal to 6 or greater. If
cg(n)is greater than or equal to f(n) starting from n = 2, then it is enough that c is equal
to 3.75. The constant ¢ has to be at least 3% if cg(n) is not less than f(n) starting from
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n = 3. Figure 2.3 shows the graphs of the functions fand g The function g is plotted
with different coefficients c. Also, N is always a point where the functions cg(n) and f
intersect each other.

FIGURE 2.3 Comparison of functions for different values of ¢ and N from Figure 2.2.

f(n)=2n%*+3n+1
70

60
50
40
30
20

10

The inherent imprecision of the big-O notation goes even further, because there
can be infinitely many functions g for a given function f. For example, the f from
Equation 2.2 is big-O not only of #?, but also of n*, n*, ..., nk, ... for any k > 2. To
avoid this embarrassment of riches, the smallest function g is chosen, n? in this case.

The approximation of function f can be refined using big-O notation only for the
part of the equation suppressing irrelevant information. For example, in Equation
2.1, the contribution of the third and last terms to the value of the function can be
omitted (see Equation 2.3).

f(n) =n*+100n + O(log, 1) (2.3)
Similarly, the function fin Equation 2.2 can be approximated as

f(n) =2n>+ O(n) (2.4)

m PROPERTIES OF BiG-O NOTATION

Big-O notation has some helpful properties that can be used when estimating the effi-
ciency of algorithms.

Fact1. (transitivity) If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) if O(h(n)).
(This can be rephrased as O(O(g(n))) is O(g(n)).)
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Proof: According to the definition, f(n) is O(g(n)) if there exist positive numbers c,
and N, such that f(n) < c,g(n) for all n 2 N, and g(n) is O(h(n)) if there exist positive
numbers ¢, and N, such that g(n) < ¢,h(n) for all n > N,. Hence, c,g(n) < c,c,h(n) for
n = N where N is the larger of N, and N,. If we take ¢ = ¢c,, then f(n) < ch(n) for

n 2 N, which means that fis O(h(n)).

Fact2. If f(n) is O(h(n)) and g(n) is O(h(n)), then f(n) + g(n) is O(h(n)).
Proof: After setting c equal to ¢, + c,, f(n) + g(n) < ch(n).

Fact 3. The function an* is O(n¥).

Proof: For the inequality an* < cn to hold, ¢ > a is necessary.

Fact4. The function ¥ is O(n**) for any positive .

Proof: The statement holdsif c=N=1.

It follows from all these facts that every polynomial is big-O of # raised to the
largest power, or

_ ok k-1 : k
f(m)=an"+a_n'+---+an+a;is O(n")

It is also obvious that in the case of polynomials, f (1) is O(n**/) for any positive j.

One of the most important functions in the evaluation of the efficiency of algo-
rithms is the logarithmic function. In fact, if it can be stated that the complexity of an
algorithm is on the order of the logarithmic function, the algorithm can be regarded
as very good. There are an infinite number of functions that can be considered better
than the logarithmic function, among which only a few, such as O(lg Ig n) or O(1),
have practical bearing. Before we show an important fact about logarithmic func-
tions, let us state without proof:

Fact5. If f(n) = cg(n), then f(n) is O(g(n)).
Fact 6. The function log, nis O(log, 1) for any positive numbers a and b # 1.

This correspondence holds between logarithmic functions. Fact 6 states that regard-
less of their bases, logarithmic functions are big-O of each other; that is, all these
functions have the same rate of growth.

Proof: Lettinglog, n = xand log, n = y, we have, by the definition of logarithm,
a*=nand ¥ =n.
Taking In of both sides results in

xlna=Inn and ylnb=Inn

Thus
xlna=ylnb,

Inalog, n=Inblog, n,

Inb -
loganzli—alogbn— clog, n
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which proves that log 7 and log, n are multiples of each other. By Fact 5,log_ 7 is
O(log, n).

Because the base of the logarithm is irrelevant in the context of big-O notation,
we can always use just one base and Fact 6 can be written as

Fact7. log, nis O(lg n) for any positive a # 1, where Ig n = log, n.

m (2 AND © NOTATIONS

Big-O notation refers to the upper bounds of functions. There is a symmetrical defi-
nition for a lower bound in the definition of big-Q:

Definition 2: The function f(#n) is Q(g(n)) if there exist positive numbers c and N
such that f(n) = cg(n) forall n > N.

This definition reads: fis € (big-omega) of g if there is a positive number ¢ such that f
is at least equal to cg for almost all ns. In other words, cg(n) is a lower bound on the
size of f(n), or, in the long run, f grows at least at the rate of g.

The only difference between this definition and the definition of big-O notation
is the direction of the inequality; one definition can be turned into the other by re-
placing “>” with “<.” There is an interconnection between these two notations ex-
pressed by the equivalence

f(n)is Q(g(n)) iff g(n) is O(f (n))

Q notation suffers from the same profusion problem as does big-O notation:
There is an unlimited number of choices for the constants ¢ and N. For Equation 2.2,
we are looking for such a ¢, for which 2n? + 31 + 1 > cn?, which is true for any n> 0, if
¢ <2, where 2 is the limit for c in Figure 2.2. Also, if fis an Q of gand h < g, then fis an
Q of h; that is, if for fwe can find one g such that fis an Q of g then we can find infi-
nitely many. For example, the function 2.2 is an Q of #? but also of n, n'/2, n'3, n'/4, . . |
and also of Ig n, 1glg n, . . ., and of many other functions. For practical purposes, only
the closest Qs are the most interesting, (i.e., the largest lower bounds). This restriction
is made implicitly each time we choose an Q of a function f.

There are an infinite number of possible lower bounds for the function f; that is,
there is an infinite set of gs such that f(n) is (g(n)) as well as an unbounded num-
ber of possible upper bounds of f. This may be somewhat disquieting, so we restrict
our attention to the smallest upper bounds and the largest lower bounds. Note that
there is a common ground for big-O and Q notations indicated by the equalities in
the definitions of these notations: Big-O is defined in terms of “<” and Q in terms of
“>7; “=”1s included in both inequalities. This suggests a way of restricting the sets of
possible lower and upper bounds. This restriction can be accomplished by the fol-
lowing definition of © (theta) notation:

Definition 3: f(n) is ©(g(n)) if there exist positive numbers ¢, ¢,, and N such that
c,g(n) <f(n)<c,g(n) foralln > N.
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This definition reads: f has an order of magnitude g fis on the order of g or both
functions grow at the same rate in the long run. We see that f(n) is ©(g(n)) if f(n) is
O(g(n)) and f(n) is Q(g(n)).

The only function just listed that is both big-O and Q of the function 2.2 is n?.
However, it is not the only choice, and there are still an infinite number of choices, be-
cause the functions 2n?, 312, 4n?, . . . are also O of function 2.2. But it is rather obvious
that the simplest, n?, will be chosen.

When applying any of these notations (big-O, £, and ©), do not forget that they are
approximations that hide some detail that in many cases may be considered important.

m POSSIBLE PROBLEMS

All the notations serve the purpose of comparing the efficiency of various algorithms
designed for solving the same problem. However, if only big-Os are used to represent
the efficiency of algorithms, then some of them may be rejected prematurely. The
problem is that in the definition of big-O notation, fis considered O(g(n)) if the in-
equality f(n) < cg(n) holds in the long run for all natural numbers with a few excep-
tions. The number of #s violating this inequality is always finite. It is enough to meet
the condition of the definition. As Figure 2.2 indicates, this number of exceptions can
be reduced by choosing a sufficiently large c. However, this may be of little practical
significance if the constant c in f(n) < cg(n) is prohibitively large, say 108, although the
function g taken by itself seems to be promising.

Consider that there are two algorithms to solve a certain problem and suppose
that the number of operations required by these algorithms is 1087 and 10n2. The first
function is O(n) and the second is O(n?). Using just the big-O information, the sec-
ond algorithm is rejected because the number of steps grows too fast. It is true but,
again, in the long run, because for n < 107, which is 10 million, the second algorithm
performs fewer operations than the first. Although 10 million is not an unheard-of
number of elements to be processed by an algorithm, in many cases the number is
much lower, and in these cases the second algorithm is preferable.

For these reasons, it may be desirable to use one more notation that includes con-
stants which are very large for practical reasons. Udi Manber proposes a double-O
(OO0) notation to indicate such functions: fis OO(g(n)) if it is O(g(n)) and the con-
stant ¢ is too large to have practical significance. Thus, 1081 is OO(n). However, the
definition of “too large” depends on the particular application.

m EXAMPLES OF COMPLEXITIES

Algorithms can be classified by their time or space complexities, and in this respect,
several classes of such algorithms can be distinguished, as Figure 2.4 illustrates. Their
growth is also displayed in Figure 2.5. For example, an algorithm is called constant if
its execution time remains the same for any number of elements; it is called quadratic
if its execution time is O(n?). For each of these classes, a number of operations is
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FIGURE 2.4 Classes of algorithms and their execution times on a computer executing 1 million
operations per second (1 sec = 10 psec = 103 msec).

Class Complexity Number of Operations and Execution Time (1 instr/psec)

n 10 102 103
constant O(1) 1 1 psec 1 1 psec 1 1 psec
logarithimic O(lg n) 3.32 3 psec 6.64 7 psec 9.97 10 psec
linear O(n) 10 10 psec 10? 100 psec 10° 1 msec
O(nlgn) O(nlgn) 33.2 33 psec 664 664 usec 9970 10 msec
quadratic ~ O(n?) 10? 100 psec 10* 10 msec 106 1 sec
cubic o(n?) 10° 1 msec 10° 1 sec 10° 16.7 min
exponential O(2") 1024 10 msec 10%° 3.17* 107 yrs 1030

n 10 10° 108
constant O(1) 1 1 psec 1 1 psec 1 1 psec
logarithmic  O(Ig n) 13.3 13 psec 16.6 7 psec 19.93 20 psec
linear O(n) 10* 10 msec 10° 0.1 sec 10° 1 sec
O(nlgn) O(nlgn) 133 X 103 133 msec 166 X 10* 1.6 sec 199.3 X 10° 20 sec
quadratic ~ O(n?) 108 1.7 min 1OR 16.7 min @™ 11.6 days
cubic on?) 1012 11.6 days 10 31.7 yr 108 31,709 yr
exponential  O(2") 103010 1030103 10301030

FIGURE 2.5 Typical functions applied in big-O estimates.

20

10
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shown along with the real time needed for executing them on a machine able to per-
form 1 million operations per second, or one operation per microsecond (psec). The
table in Figure 2.4 indicates that some ill-designed algorithms, or algorithms whose
complexity cannot be improved, have no practical application on available comput-
ers. To process 1 million items with a quadratic algorithm, over 11 days are needed,
and for a cubic algorithm, thousands of years. Even if a computer can perform one
operation per nanosecond (1 billion operations per second), the quadratic algorithm
finishes in only 16.7 seconds, but the cubic algorithm requires over 31 years. Even a
1,000-fold improvement in execution speed has very little practical bearing for this al-
gorithm. Analyzing the complexity of algorithms is of extreme importance and can-
not be abandoned on account of the argument that we have entered an era when, at
relatively little cost, a computer on our desktop can execute millions of operations per
second. The importance of analyzing the complexity of algorithms, in any context but
in the context of data structures in particular, cannot be overstressed. The impressive
speed of computers is of limited use if the programs that run on them use inefficient
algorithms.

FINDING AsYMPTOTIC COMPLEXITY: EXAMPLES

Asymptotic bounds are used to estimate the efficiency of algorithms by assessing the
amount of time and memory needed to accomplish the task for which the algorithms
were designed. This section illustrates how this complexity can be determined.

In most cases, we are interested in time complexity, which usually measures the
number of assignments and comparisons performed during the execution of a pro-
gram. Chapter 9, which deals with sorting algorithms, considers both types of opera-
tions; this chapter considers only the number of assignment statements.

Begin with a simple loop to calculate the sum of numbers in an array:

for (i = sum = 0; i < n; it++)
sum += a[i];

First, two variables are initialized, then the for loop iterates n times, and during each
iteration, it executes two assignments, one of which updates sum and the other of
which updates i. Thus, there are 2 + 2n assignments for the complete run of this for
loops; its asymptotic complexity is O(n).

Complexity usually grows if nested loops are used, as in the following code,
which outputs the sums of all the subarrays that begin with position 0:

for (i = 0; 1 < n; i++) {
for (j =1, sum = a[0]; j <= i; j++)
sum += a[jl;
System.out.println ("sum for subarray 0 through "+i+" is" + sum);

Before the loops start, i is initialized. The outer loop is performed # times, exe-
cuting in each iteration an inner for loop, print statement, and assignment state-
ments for i, j, and sum. The inner loop is executed i times for eachie {1,...,n—1}
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with two assignments in each iteration: one for sum and one for j. Therefore, there
are 1 +3n+ Y 2i=1+3n+2(1+2+---+n-1)=1+3n+nn-1)=0(n) +
O(n?) = O(n?) assignments executed before the program is completed.

Algorithms with nested loops usually have a larger complexity than algorithms
with one loop, but it does not have to grow at all. For example, we may request print-
ing sums of numbers in the last five cells of the subarrays starting in position 0. We
adopt the foregoing code and transform it to

for (i = 4; 1 < n; i++) {
for (j = i-3, sum = a[i-4]; J <= i; j++)
sum += a[j];
System.out.println ("sum for subarray "+(i - 4)+" through "+i+" is"+ sum);

The outer loop is executed 1 — 4 times. For each i, the inner loop is executed only
four times: For each iteration of the outer loop, there are eight assignments in the
inner loop, and this number does not depend on the size of the array. With initializa-
tion of i, n — 4 autoincrements of i, and » — 4 initializations of j and sum, the pro-
gram makes 1 + 8« (n—4) = O(n) assignments.

Analysis of these two examples is relatively uncomplicated because the number of
times the loops executed did not depend on the ordering of the arrays. Computation
of asymptotic complexity is more involved if the number of iterations is not always
the same. This point can be illustrated with a loop used to determine the length of the
longest subarray with the numbers in increasing order. For example,in [18 1250 11
12], it is three, the length of subarray [1 2 5]. The code is

for (i = 0, length = 1; i < n-1; i++) {
for (il = i2 = k = i; k < n-1 && a[k] < a[k+1l]; kt++, i2++);
if (length < i2 - il + 1)
length = i2 - il + 1;
System.out.println ("the length of the longest ordered subarray is" + length);

Notice that if all numbers in the array are in decreasing order, the outer loop is exe-
cuted 72 — 1 times, but in each iteration, the inner loop executes just one time. Thus, the
algorithm is O(n). The algorithm is least efficient if the numbers are in increasing order.
In this case, the outer for loop is executed n — 1 times, and the inner loop is executed
n—1—itimes for eachi€ {0,...,n—2}. Thus, the algorithm is O(#?). In most cases, the
arrangement of data is less orderly, and measuring the efficiency in these cases is of great
importance. However, it is far from trivial to determine the efficiency in the average cases.

A last example used to determine the computational complexity is the binary
search algorithm, which is used to locate an element in an ordered array. If it is an
array of numbers and we try to locate number k, then the algorithm accesses the
middle element of the array first. If that element is equal to k, then the algorithm re-
turns its position; if not, the algorithm continues. In the second trial, only half of the
original array is considered: the first half if k is smaller than the middle element, and
the second otherwise. Now, the middle element of the chosen subarray is accessed and
compared to k. If it is the same, the algorithm completes successfully. Otherwise, the

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



66 M Chapter 2 Complexity Analysis

subarray is divided into two halves, and if k is larger than this middle element, the first
half is discarded; otherwise, the first half is retained. This process of halving and com-
paring continues until k is found or the array can no longer be divided into two sub-
arrays. This relatively simple algorithm can be coded as follows:

int binarySearch(int[] arr, int key) {
int lo = 0, mid, hi = arr.length-1;
while (lo <= hi) {
mid = (lo + hi)/2;
if (key < arr[mid])
hi = mid - 1;
else if (arr[mid] < key)
lo = mid + 1;
else return mid; // success: return the index of
} //  the cell occupied by key;
return -1; // failure: key is not in the array;

If key is in the middle of the array, the loop executes only one time. How many
times does the loop execute in the case where key is not in the array? First the algo-
rithm looks at the entire array of size n, then at one of its halves of size £, then at one
of the halves of this half, of size %, and so on, until the array is of size 1. Hence, we
have the sequence n, g, 2—2’, R 2—", and we want to know the value of m. But the last term
of this sequence - equals 1, from which we have m = Ig n. So the fact that k is not in
the array can be determined after lg n iterations of the loop.

m THE BEST, AVERAGE, AND WORST CASES

The last two examples in the preceding section indicate the need for distinguishing at
least three cases for which the efficiency of algorithms has to be determined. The worst
case is when an algorithm requires a maximum number of steps, and the best case
is when the number of steps is the smallest. The average case falls between these ex-
tremes. In simple cases, the average complexity is established by considering possible
inputs to an algorithm, determining the number of steps performed by the algorithm
for each input, adding the number of steps for all the inputs, and dividing by the
number of inputs. This definition, however, assumes that the probability of occur-
rence of each input is the same, which is not always the case. To consider the probabil-
ity explicitly, the average complexity is defined as the average over the number of steps
executed when processing each input weighted by the probability of occurrence of
this input, or,

C = Zip(input)steps(input)

This is the definition of expected value, which assumes that all the possibilities can be
determined and that the probability distribution is known, which simply determines
a probability of occurrence of each input, p(input,). The probability function p satis-
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fies two conditions: It is never negative, p(input,) = 0, and all probabilities add up to 1,
2. plinput) = 1.

As an example, consider searching sequentially an unordered array to find a
number. The best case is when the number is found in the first cell. The worst case is
when the number is in the last cell or is not in the array at all. In this case, all the cells
are checked to determine this fact. And the average case? We may make the assump-
tion that there is an equal chance for the number to be found in any cell of the array;
that is, the probability distribution is uniform. In this case, there is a probability equal
to % that the number is in the first cell, a probability equal to % that it is in the second
cell, ..., and finally, a probability equal to % that it is in the last, nth cell. This means
that the probability of finding the number after one try equals %, the probability of
having two tries equals %, ..., and the probability of having n tries also equals %
Therefore, we can average all these possible numbers of tries over the number of pos-
sibilities and conclude that it takes on the average

1+2+...+n n+1l
n 2

steps to find a number. But if the probabilities differ, then the average case gives a dif-
ferent outcome. For example, if the probability of finding a number in the first cell
equals %, the probability of finding it in the second cell equals %, and the probability of
locating it in any of the remaining cells is the same and equal to

11
17573 _ 1
n-2 4(n—2)
then, on the average, it takes
i+£+ 3+..n s n(n+1)—6_1+n+3
2 4 4Amn-—-2) 8(n—2) 8

steps to find a number, which is approximately four times better than ”*1 found pre-
viously for the uniform distribution. Note that the probabilities of accessing a partic-
ular cell have no impact on the best and worst cases.

The complexity for the three cases was relatively easy to determine for sequential
search, but usually it is not that straightforward. Particularly, the complexity of the aver-
age case can pose difficult computational problems. If the computation is very complex,
approximations are used, and that is where we find the big-O, €2, and © notations most
useful.

As an example, consider the average case for binary search. Assume that the size
of the array is a power of 2 and that a number to be searched has an equal chance to be
in any of the cells of the array. Binary search can locate it either after one try in the
middle of the array, or after two tries in the middle of the first half of the array, or after
two tries in the middle of the second half, or after three tries in the middle of the first
quarter of the array, or . . . or after three tries in the middle of the fourth quarter, or
after four tries in the middle of the first eighth of the array, or . . . or after four tries in

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



68 M Chapter 2 Complexity Analysis

the middle of the eighth eighth of the array, or ... or after try Ig  in the first cell, or
after try Ig n in the third cell, or . . . or, finally, after try Ig n in the last cell. That is, the
number of all possible tries equals

Ign—1
1142:24+4-348-4+ ... +— lgn— Y 2i+1)
i=0

which has to be divided by% to determine the average case complexity. What is this sum
equal to? We know that it is between 1 (the best case result) and Ig # (the worst case) de-
termined in the preceding section. But is it closer to the best case—say, Ig Ig n—or to the
worst case—for instance, lgzﬁ, orlg g? The sum does not lend itself to a simple conver-
sion into a closed form; therefore, its estimation should be used. Our conjecture is that
the sum is not less than the sum of powers of 2 in the specified range multiplied by a half

of Ig n, that is,

lgn—1 lgn —1

5 = ZZi(i+1)> 22’ =s,
i=0

The reason for this choice is that s, is a power series multiplied by a constant fac-
tor, and thus, it can be presented in closed form very easily, namely,

Ign—1 Ign—-1 _
lgl’l 221 [ —2 71 1J=1g7n(1’l—1)

which is Q(n 1g n). Because s, is the lower bound for the sum s, under scrutiny—that
is, s, is Q(s,)—then so is 2 the lower bound of the sought average case complexity
—that is, % Q(2), Because  is Q(lg 1), so must be . Because Ig # is an as-
sessment of the comp’iexny of the worst case, the average case’s complexity equals
O(gn).
There is still one unresolved problem: Is s, > 5,? To determine this, we conjecture
that the sum of each pair of terms positioned symmetrically with respect to the cen-

ter of the sum s, is not less than the sum of the corresponding terms of s,. That is,

. 1 L1
2014287 gy > 20 81 4 Hlen-1 81
2 2
2" 2429 2 (1gn—1) 22" Ign | Jen-2lgn
2 2

Ign—1-j lg n

2j(j+1)+21g”_1_j(lgn—j)22j1ng+2 3

wherej = L% — 1. The last inequality, which represents every other inequality, is trans-
formed into
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_—i lgn | lgn
Pl I U SV L |

oy .
olgn-1-2j 5 Zlgn —=1- o (2.5)
- 7 - 7
2 2

and then into

All of these transformations are allowed because all the terms that moved from
one side of the conjectured inequality to another are nonnegative and thus do not
change the direction of inequality. Is the inequality true? Because j= %ﬁ -1,
2lsn=172/ > 2 and the right-hand side of the inequality (2.5) is always less than 1, the
conjectured inequality is true.

This concludes our investigation of the average case for binary search. The algo-
rithm is relatively straightforward, but the process of finding the complexity for the
average case is rather grueling, even for uniform probability distributions. For more
complex algorithms, such calculations are significantly more challenging.

m AMORTIZED COMPLEXITY

In many situations, data structures are subject to a sequence of operations rather
than one operation. In this sequence, one operation possibly performs certain modi-
fications that have an impact on the run time of the next operation in the sequence.
One way of assessing the worst case run time of the entire sequence is to add worst
case efficiencies for each operation. But this may result in an excessively large and
unrealistic bound on the actual run time. To be more realistic, amortized analysis
can be used to find the average complexity of a worst case sequence of operations. By
analyzing sequences of operations rather than isolated operations, amortized analy-
sis takes into account interdependence between operations and their results. For ex-
ample, if an array is sorted and only a very few new elements are added, then
re-sorting this array should be much faster than sorting it for the first time because,
after the new additions, the array is nearly sorted. Thus, it should be quicker to put
all elements in perfect order than in a completely disorganized array. Without taking
this correlation into account, the run time of the two sorting operations can be con-
sidered twice the worst case efficiency. Amortized analysis, on the other hand, de-
cides that the second sorting is hardly applied in the worst case situation so that the
combined complexity of the two sorting operations is much less than double the
worst case complexity. Consequently, the average for the worst case sequence of sort-
ing, a few insertions, and sorting again is lower according to amortized analysis than
according to worst case analysis, which disregards the fact that the second sorting is
applied to an array operated on already by a previous sorting.

It is important to stress that amortized analysis is analyzing sequences of opera-
tions, or if single operations are analyzed, it is done in view of their being part of the se-
quence. The cost of operations in the sequence may vary considerably, but how
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frequently particular operations occur in the sequence is important. For example, for
the sequence of operations op,, 0p,, 0p;, . .. , the worst case analysis renders the compu-
tational complexity for the entire sequence equal to

C(Opl’ 0p2’ 0p3’ v ) = Cworst(opl) + Cworst(OPZ) + Cworst(OPS) LERE

whereas the average complexity determines it to be

Clop, 0p,, 0p5,...) = Cavg(opl) + Cavg(opz) + Cavg(op3) +...

Although specifying complexities for a sequence of operations, neither worst case
analysis nor average case analysis was looking at the position of a particular operation
in the sequence. These two analyses considered the operations as executed in isolation
and the sequence as a collection of isolated and independent operations. Amortized
analysis changes the perspective by looking at what happened up until a particular
point in the sequence of operations and then determines the complexity of a particu-
lar operation,

C(op,, 0p,, 0ps, ...) = Clop,) + C(op,) + Clop,) + ...

where C can be the worst, the average, the best case complexity, or very likely, a com-
plexity other than the three depending on what happened before. To find amortized
complexity in this way may be, however, too complicated. Therefore, another ap-
proach is used. The knowledge of the nature of particular processes and possible
changes of a data structure is used to determine the function C, which can be applied
to each operation of the sequence. The function is chosen in such a manner that it
considers quick operations as slower than they really are and time-consuming opera-
tions as quicker than they actually are. It is as though the cheap (quick) operations are
charged more time units to generate credit to be used for covering the cost of expen-
sive operations that are charged below their real cost. It is like letting the government
charge us more for income taxes than necessary so that at the end of the fiscal year the
overpayment can be received back and used to cover the expenses of something else.
The art of amortized analysis lies in finding an appropriate function C so that it over-
charges cheap operations sufficiently to cover expenses of undercharged operations.
The overall balance must be nonnegative. If a debt occurs, there must be a prospect of
paying it.

Consider the operation of adding a new element to the vector implemented as a
flexible array. The best case is when the size of the vector is less than its capacity be-
cause adding a new element amounts to putting it in the first available cell. The cost of
adding a new element is thus O(1). The worst case is when size equals capacity, in
which case there is no room for new elements. In this case, new space must be allo-
cated, the existing elements are copied to the new space, and only then can the new el-
ement be added to the vector. The cost of adding a new element is O(size(vector)). It is
clear that the latter situation is less frequent than the former, but this depends on an-
other parameter, capacity increment, which refers to how much the vector is increased
when overflow occurs. In the extreme case, it can be incremented by just one cell, so in
the sequence of m consecutive insertions, each insertion causes overflow and requires
O(size(vector)) time to finish. Clearly, this situation should be delayed. One solution is
to allocate, say, 1 million cells for the vector, which in most cases does not cause an
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overflow, but the amount of space is excessively large and only a small percentage of
space allocated for the vector may be expected to be in actual use. Another solution to
the problem is to double the space allocated for the vector if overflow occurs. In this
case, the pessimistic O(size(vector)) performance of the insertion operation may be
expected to occur only infrequently. By using this estimate, it may be claimed that, in
the best case, the cost of inserting m items is O(m), but it is impossible to claim that,
in the worst case, it is O(m - size(vector)). Therefore, to see better what impact this per-
formance has on the sequence of operations, the amortized analysis should be used.

In amortized analysis, the question is asked: What is the expected efficiency of a
sequence of insertions? We know that the best case is O(1) and the worst case is
O(size(vector)), but also we know that the latter case occurs only occasionally and
leads to doubling the size of the vector. In this case, what is the expected efficiency of
one insertion in the series of insertions? Note that we are interested only in sequences
of insertions, excluding deletions and modifications, to have the worst case scenario.
The outcome of amortized analysis depends on the assumed amortized cost of one in-
sertion. It is clear that if

amCost(push(x)) =1

where 1 represents the cost of one insertion, then we are not gaining anything from
this analysis because easy insertions are paying for themselves right away, and the in-
sertions causing overflow and thus copying have no credit to use to make up for their
high cost. Is

amCost(push(x)) =2

a reasonable choice? Consider the table in Figure 2.6a. It shows the change in vector ca-
pacity and the cost of insertion when size grows from 0 to 18; that is, the table indicates
the changes in the vector during the sequence of 18 insertions into an initially empty
vector. For example, if there are four elements in the vector (size = 4), then before in-
serting the fifth element, the four elements are copied at the cost of four units and then
the new fifth element is inserted in the newly allocated space for the vector. Hence, the
cost of the fifth insertion is 4 + 1. But to execute this insertion, two units allocated for
the fifth insertion are available plus one unit left from the previous fourth insertion.
This means that this operation is two units short to pay for itself. Thus, in the Units
Left column, -2 is entered to indicate the debt of two units. The table indicates that the
debt decreases and becomes zero, one cheap insertion away from the next expensive
insertion. This means that the operations are almost constantly executed in the red,
and more important, if a sequence of operations finishes before the debt is paid off,
then the balance indicated by amortized analysis is negative, which is inadmissible in
the case of algorithm analysis. Therefore, the next best solution is to assume that

amCost(push(x)) =3

The table in Figure 2.6b indicates that we are never in debt and that the choice of three
units for amortized cost is not excessive because right after an expensive insertion, the
accumulated units are almost depleted.

In this example, the choice of a constant function for amortized cost is ade-
quate, but usually it is not. Define as potential a function that assigns a number to a
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FIGURE 2.6 Estimating the amortized cost.

(a) Amortized Units (b) Amortized Units
Size  Capacity  Cost Cost Left Size  Capacity  Cost Cost Left
0 0 0 0
1 1 2 0+1 1 1 1 3 0+1 2
2 2 2 1+1 1 2 2 3 1+1 3
3 4 2 2+1 0 3 4 3 2+1 3
4 4 2 1 1 4 4 3 1 5
5 8 2 4+1 -2 5 8 3 4+1 3
6 8 2 1 -1 6 8 3 1 5
7 8 2 1 0 7 8 3 1 7
8 8 2 1 1 8 8 3 1 9
9 16 2 8+1 -6 9 16 3 8+1 3
10 16 2 1 =5 10 16 3 1 5
16 16 2 1 1 16 16 3 1 17
17 32 2 16 +1 -14 17 32 3 16 +1 3
18 32 2 1 -13 18 32 3 1 5

particular state of a data structure ds that is a subject of a sequence of operations.
The amortized cost is defined as a function

amCost(op,) = cost(op,) + potential(ds,)) — potential(ds, ,)

which is the real cost of executing the operation op, plus the change in potential in the
data structure ds as a result of execution of op,. This definition holds for one single op-
eration of a sequence of m operations. If amortized costs for all the operations are
added, then the amortized cost for the sequence
amCost(op,,...,0p,) = Z (cost(op,)+ potential(ds,) — potential(ds, ,))
i=1
= Z (cost(op,)+ potential(ds, ) — potential(ds)

i=1
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In most cases, the potential function is initially zero and is always nonnegative so
that amortized time is an upper bound of real time. This form of amortized cost is
used later in the book.

Amortized cost of including new elements in a vector can now be phrased in
terms of the potential function defined as

if size, = capacity, (vector is full)
potential(vector) =4 ) .
2size, — capacity, otherwise

To see that the function works as intended, consider three cases. The first case is
when a cheap pushing follows cheap pushing (vector is not extended right before the
current push and is not extended as a consequence of the current push) and

amCost(push()) = 1 + 2size, | + 2 — capacity, | — 2size, | + capacity,= 3

because the capacity does not change, size, = size, , + 1, and the actual cost equals 1.
For expensive pushing following cheap pushing,

amCost(push()) = size, | + 2+ 0— 2size, | + capacity, | =3

because size, | + 1 = capacity, | and the actual cost equals size;, + 1 = size, | + 2, which
is the cost of copying the vector elements plus adding the new element. For cheap
pushing following expensive pushing,

amCost(push()) = 1 + 2size, — capacity,— 0 =3

because 2(size, — 1) = capacity, and actual cost equals 1. Note that the fourth case, ex-
pensive pushing following expensive pushing, occurs only twice, when capacity
changes from zero to one and from one to zero. In both cases, amortized cost equals 3.

m NP-COMPLETENESS

A deterministic algorithm is a uniquely defined (determined) sequence of steps for a
particular input; that is, given an input and a step during execution of the algorithm,
there is only one way to determine the next step that the algorithm can make. A non-
deterministic algorithm is an algorithm that can use a special operation that makes a
guess when a decision is to be made. Consider the nondeterministic version of binary
search.

If we try to locate number k in an unordered array of numbers, then the algo-
rithm first accesses the middle element m of the array. If m = k, then the algorithm re-
turns m’s position; if not, the algorithm makes a guess concerning which way to go to
continue: to the left of m or to its right. A similar decision is made at each stage: If
number k is not located, continue in one of the two halves of the currently scrutinized
subarray. It is easy to see that such a guessing very easily may lead us astray, so we need
to endow the machine with the power of making correct guesses. However, an imple-
mentation of this nondeterministic algorithm would have to try, in the worst case, all
the possibilities. One way to accomplish it is by requiring that the decision in each it-
eration is in reality this: if m # k, then go both to the right and to the left of m. In this
way, a tree is created that represents the decisions made by the algorithm (Johnson &
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Papadimitriou p. 53). The algorithm solves the problem, if any of the branches allows
us to locate k in the array that includes k and if no branch leads to such a solution
when k is not in the array.

A decision problem has two answers, call them “yes” and “no.” A decision problem
is given by the set of all instances of the problem and the set of instances for which the
answer is “yes.” Many optimization problems do not belong to that category (“find the
minimum x for which . . .”) but in most cases they can be converted to decision prob-
lems (“is x, for which . . ., less than k?”).

Generally, a nondeterministic algorithm solves a decision problem if it answers it
in the affirmative and there is a path in the tree that leads to a yes answer, and it an-
swers it in the negative if there is no such path. A nondeterministic algorithm is con-
sidered polynomial if a number of steps leading to an affirmative answer in a decision
tree is O(n*), where n is the size of the problem instance.

Most of the algorithms analyzed in this book are polynomial-time algorithms; that
is, their running time in the worst case is O(n*) for some k. Problems that can be solved
with such algorithms are called tractable and the algorithms are considered efficient.

A problem belongs to the class of P problems if it can be solved in polynomial
time with a deterministic algorithm. A problem belongs to the class of NP problems if
it can be solved in polynomial time with a nondeterministic algorithm. P problems
are obviously tractable. NP problems are also tractable, but only when nondetermin-
istic algorithms are used.

Clearly, P C NP, because deterministic algorithms are those nondeterministic algo-
rithms that do not use nondeterministic decisions. It is also believed that P # NP; that
is, there exist problems with nondeterministic polynomial algorithms that cannot
be solved with deterministic polynomial algorithms. This means that on determin-
istic Turing machines they are executed in nonpolynomial time and thus they are
intractable. The strongest argument in favor of this conviction is the existence of NP-
complete problems. But first we need to define the concept of reducibility of algorithms.

A problem P, is reducible to another problem P, if there is a way of encoding in-
stances x of P, as instances y = r(x) of P, using a reduction function r executed with a
reduction algorithm; that is, for each x, x is an instance of P, iff y = r(x) is an instance
of P,. Note that reducibility is not a symmetric relation: P, can be reducible to P, but
not necessarily vice versa; that is, each instance x of P, should have a counterpart y of
P, but there may be instances y of P, onto which no instances x of P, are mapped with
the function r. Therefore, P, can be considered a harder problem than P,.

The reason for the reduction is that if the value r(x) for any x can be found effi-
ciently (in polynomial time), then an efficient solution for y can be efficiently trans-
formed into an efficient solution of x. Also, if there is no efficient algorithm for x, then
there is no efficient solution for y.

A problem is called NP-complete if it is NP (it can be solved efficiently by a nonde-
terministic polynomial algorithm) and every NP problem can be polynomially re-
duced to this problem. Because reducibility is a transitive relation, we can also say that
an NP problem P, is NP-complete if there is an NP-complete problem P, that is poly-
nomially reducible to P,. In this way, all NP-complete problems are computationally
equivalent; that is, if an NP-complete problem can be solved with a deterministic poly-
nomial algorithm, then so can be all NP-complete problems, and thus P = NP. Also, if
any problem in NP is intractable, then all NP-complete problems are intractable.
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The reduction process uses an NP-complete problem to show that another problem is
also NP-complete. There must be, however, at least one problem directly proven to be NP-
complete by other means than reduction to make the reduction process possible. A prob-
lem that was shown by Stephen Cook to be in that category is the satisfiability problem.

The satisfiability problem concerns Boolean expressions in conjunctive normal
form (CNF). An expression is in CNF if it is a conjunction of alternatives where each
alternative involves Boolean variables and their negations, and each variable is either
true or false. For example,

N/ yNVaONWwNx\/y\2) N\ (Ew\ y)

is in CNE A Boolean expression is satisfiable if there exists an assignment of values
true and false that renders the entire expression true. For example, our expression is
satisfiable for x = false, y = false, and z = true. The satisfiability problem consists of de-
termining whether a Boolean expression is satisfiable (the value assignments do not
have to be given). The problem is NP, because assignments can be guessed and then
the expression tested for satisfiability in polynomial time.

Cook proves that the satisfiability problem is NP-complete by using a theoretical
concept of the Turing machine that can perform nondeterministic decisions (make
good guesses). Operations of that machine are then described in terms of Boolean ex-
pressions, and it is shown that the expression is satisfiable iff the Turing machine ter-
minates for a particular input (for the proof, see Appendix B).

To illustrate the reduction process, consider the three-satisfiability problem, which is
the satisfiability problem in the case when each alternative in a Boolean expression in
CNF includes only three different variables. We claim that the problem is NP-complete.
The problem is NP, because a guessed assignment of truth values to variables in a Boolean
expression can be verified in polynomial time. We show that the three-satisfiability prob-
lem is NP-complete by reducing it to the satisfiability problem. The reduction process in-
volves showing that an alternative with any number of Boolean variables can be
converted into a conjunction of alternatives, each alternative with three Boolean variables
only. This is done by introducing new variables. Consider an alternative

A=, VP,V -\ DY)
for k > 4 where JAS {xi, ﬁxi}. With new variables Voo osVpp WE transform A into
A=,V P, V) NP Ty ) NN T N ) N
(Pk,z  Wia \/)’k,3) A\ (Pk,l \VE Vi j)’k,g)

If the alternative A is satisfiable, then at least one term p; is true, so the values of yj’s
can be so chosen that A" is true: if p, is true, then we set y,, .. . , ¥, , to true and the re-
maining y, , . .., y, , to false. Conversely, if A' is satisfiable, then at least one p, must
be true, because if all p/’s are false, then the expression

A' = (false \/ false \/ y,) /\ (false \/ =y, \/ y,) /\ (false \/ =y, \/ y,) /\. ..
/\ (false \/ false \/ =1y, ,)

has the same truth value as the expression

VA G AVS A VAN GIAVE'S FAVVAN G b AN

which cannot be true for any choice of values for y’s, thus is not satisfiable.
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EXE] EXERCISES

1. Explain the meaning of the following expressions:
a. f(n)is O(1).
b. f(n)is O(1).
c. f(n)isnOW,
2. Assuming that f (n) is O(g,(n)) and f,(n) is O(g,(n)), prove the following statements:
a. f,(n) +f,(n) is O(max(g,(n),g,(n))).
b. Ifa number k can be determined such that for all n > k, g,(n) < g,(n), then
O(g,(n)) + O(g,(n)) is O(g,(n)).
c. fi(n)*f,(n)is O(g,(n) * g,(n)) (rule of product).
d. Olcg(n)) is O(g(m)).
e. cisO(1).
3. Prove the following statements:
a. X"_ i*is O(n’) and more generally, 3" _ *is O(n**!).

an*/lg n is O(n*) but an*/lg n is not O(nk).

=3

c. ntl+nlgnis@(n'l).
d. 2"is O(n!) and n! is not O(2").
e. 2"ais O(2").
f. 22"taisnot O(2").
g. 2Vign g O(n9).
4. Make the same assumptions as in Exercise 2 and, by finding counterexamples, refute
the following statements:

a. fi(n)—f,(n)is O(g,(n) — g,(n)).
b. fi(n)/f,(n) is O(g,(n)/g,(n)).

5. Find functions f, and f, such that both f,(n) and f,(n) are O(g(n)), but f,(n) is not
O(f,).

6. Isit true that
a. if f(n)is O(g(n)), then 2/ is @ (28)?

b. f(n)+ g(n)is ®(min(f(n),g(n)))?
c. 2™is O(2")?

7. The algorithm presented in this chapter for finding the length of the longest subarray
with the numbers in increasing order is inefficient, because there is no need to con-
tinue to search for another array if the length already found is greater than the length
of the subarray to be analyzed. Thus, if the entire array is already in order, we can

discontinue the search right away, converting the worst case into the best. The change
needed is in the outer loop, which now has one more test:
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for (i = 0, length = 1; i < n-1 && length < n==i; i++)

What is the worst case now? Is the efficiency of the worst case still O(n?)?

8. Find the complexity of the function used to find the kth smallest integer in an un-

ordered array of integers

int selectkth(int a[], int k, int n) {
int i, j, mini, tmp;
for (i = 0; 1 < k; i++) {
mini = i;
for (j = i+l; j < n; j++)
if (a[jl<a[mini])
mini = j;
tmp = a[i];
a[i] = a[mini];
a[mini] = tmp;
}

return a[k-1];

}

9. Determine the complexity of the following implementations of the algorithms for
adding, multiplying, and transposing n X n matrices:

for (i = 0; i < n; i++)
for (j = 0; J < n; Jj++)
afilfjl = brillj1 + clill3l:
for (i = 0; i < n; i++)
for (j = 0; J < n; Jj++)
for (k = a[i][]j] = 0; k < n; k++)
afilfjl += bril[k] * c[k1[]];

for (i1 = 0; i <n - 1; i++)
for (j = i+l; j < n; j++) {
tmp = a[i][]j];
afilril afjirins
afjlril tmp;

}

10. Find the computational complexity for the following four loops:

a. for (cntl =0, i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
cntl++;
b. for (cnt2 = 0, i = 1; i <= n; i++)
for (j = 1; j <= i; j++)
cnt2++;
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C. for (cnt3 =0, i = 1; i <= n; i *= 2)
for (j = 1; j <= n; jt+)
cnt3++;
d. for (cnt4 =0, i = 1; i <= n; i *= 2)
for (j = 1; j <= i; j++)
cntéd++;

11. Find the average case complexity of sequential search in an array if the probability of
accessing the last cell equals %, the probability of the next to last cell equals i, and the
probability of locating a number in any of the remaining cells is the same and equal

g =

12. Consider a process of incrementing a binary n-bit counter. An increment causes some
bits to be flipped: Some 0s are changed to 1s, and some 1s to 0Os. In the best case,
counting involves only one bit switch; for example, when 000 is changed to 001,
sometimes all the bits are changed, as when incrementing 011 to 100.

Number Flipped Bits

000

001 1
010 2
011 1
100 3
101 1
110 2
111 1

Using worst case assessment, we may conclude that the cost of executing m = 2" — 1
increments is O(mn). Use amortized analysis to show that the cost of executing m
increments is O(m).

13. How can you convert a satisfiability problem into a three-satisfiability problem for an
instance when an alternative in a Boolean expression has two variables? One variable?
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However, it has at least two limitations: (1) changing the size of the array re-

quires creating a new array and then copying all data from the array with the
old size to the array with the new size and (2) the data in the array are next to each
other sequentially in memory, which means that inserting an item inside the array re-
quires shifting some other data in this array. This limitation can be overcome by using
linked structures. A linked structure is a collection of nodes storing data and links to
other nodes. In this way, nodes can be located anywhere in memory, and passing from
one node of the linked structure to another is accomplished by storing the
reference(s) to other node(s) in the structure. Although linked structures can be im-
plemented in a variety of ways, the most flexible implementation is by using a sepa-
rate object for each node.

0 n array is a very useful data structure provided in programming languages.

m SINGLY LINKED LISTS

If a node contains a data field that is a reference to another node, then many nodes
can be strung together using only one variable to access the entire sequence of nodes.
Such a sequence of nodes is the most frequently used implementation of a linked list,
which is a data structure composed of nodes, each node holding some information
and a reference to another node in the list. If a node has a link only to its successor in
this sequence, the list is called a singly linked list. An example of such a list is shown in
Figure 3.1. Note that only one variable p is used to access any node in the list. The last
node on the list can be recognized by the null reference field.

80
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FIGURE 3.1
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A singly linked list.
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Each node in the list in Figure 3.1 is an instance of the following class definition:

public class IntSLLNode {

public int info;

public IntSLLNode next;
public IntSLLNode(int 1)

this(i,null)
¥

.
’

{

public IntSLLNode(int i, IntSLLNode n) {
info = i; next

n;
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A node includes two data fields: info and next. The info field is used to store
information, and this field is important to the user. The next field is used to link to-
gether nodes to form a linked list. It is an auxiliary field used to maintain the linked
list. It is indispensable for implementation of the linked list, but less important (if at
all) from the user’s perspective. Note that IntSLLNode is defined in terms of itself
because one data field, next, is a reference to a node of the same type that is just being
defined. Objects that include such a data field are called self-referential objects.

The definition of a node also includes two constructors. The second constructor
takes two arguments, one to initialize the info field and another to initialize the next
field. The first constructor takes one argument and is defined in terms of the second
constructor. The reserved word this is used to refer to the current object, and this
word can appear anywhere this object can be used. Therefore, this (i,null) means
the same as IntSLLNode (i,null); that is, the first constructor invokes the second
constructor by having null as the value of the second argument. As the result of exe-
cuting the first constructor, the info field is initialized to i and the next field to null.

Now, let us create the linked list in Figure 3.11. One way to create this three-node
linked list is to first generate the node containing number 10, then the node contain-
ing 8, and finally the node containing 50. Each node has to be initialized properly and
incorporated into the list. To see it, each step is illustrated in Figure 3.1 separately.

First, we execute the declaration and assignment

IntSLLNode p = new IntSLLNode(10);

which creates the first node on the list and makes the variable p a reference to this
node. This is done in four steps. In the first step, a new IntSLLNode is created (Figure
3.1a), in the second step, the info field of this node is set to 10 (Figure 3.1b), and in
the third step, the node’s next field is set to null (Figure 3.1c). The null reference is
marked with a slash in the reference field. Note that the slash in the next field is not
a slash character. The second and third steps—initialization of fields of the new
IntSLLNode—are performed by invoking the constructor IntSLLNode (10 ), which
in turn invokes the constructor IntSLLNode (10,null). The fourth step is making
p a reference to the newly created node (Figure 3.1d). This reference is the address of
the node, and it is shown as an arrow from the variable p to the new node.
The second node is created with the assignment

p.next = new IntSLLNode(8);

where p.next is the next field of the node pointed to by p (Figure 3.1d). As before,
four steps are executed:

A new node is created (Figure 3.1e).

The constructor assigns the number 8 to the info field of this node (Figure 3.1f).

The constructor assigns null to its next field (Figure 3.1g).

BN =

The new node is included in the list by making the next field of the first node a refer-
ence to the new node (Figure 3.1h).

The linked list is now extended by adding a third node with the assignment

p.next.next = new IntSLLNode(50);
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where p.next.next is the next field of the second node. This cumbersome nota-
tion has to be used because the list is accessible only through the variable p.

In processing the third node, four steps are also executed: creating the node (Fig-
ure 3.1i), initializing its two fields (Figure 3.1j—k), and then incorporating the node in
the list (Figure 3.11).

Our linked list example illustrates a certain inconvenience in using references:
The longer the linked list, the longer the chain of nexts to access the nodes at the end
of the list. In this example, p.next.next.next allows us to access the next field of
the 3rd node on the list. But what if it were the 103rd or, worse, the 1,003rd node on
the list? Typing 1,003 nexts, as in p.next ... next, would be daunting. If we missed
one next in this chain, then a wrong assignment is made. Also, the flexibility of using
linked lists is diminished. Therefore, other ways of accessing nodes in linked lists are
needed. One way is always to keep two references to the linked list: one to the first
node and one to the last, as shown in Figure 3.2.

FIGURE 3.2 An implementation of a singly linked list of integers.
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// a node in an integer singly linked list class

public class IntSLLNode {

public int info;

public IntSLLNode next;

public IntSLLNode(int i) {
this(i,null);

¥

public IntSLLNode(int i, IntSLLNode n) {
info = i; next = n;

//************************ IntsLList.java R S R R R o S o S R

// singly linked list class to store integers

public class IntSLList {
protected IntSLLNode head, tail;
public IntSLList() {
head = tail = null;

}

public boolean isEmpty () {
return head == null;

}

Continues
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FIGURE 3.2 (continued)

public void addToHead(int el) {
head = new IntSLLNode(el,head);
if (tail == null)
tail = head;
}
public void addToTail(int el) {
if (!isEmpty()) {
tail.next = new IntSLLNode(el);
tail = tail.next;
}
else head = tail = new IntSLLNode(el);
}
public int deleteFromHead() { // delete the head and return its info;
int el = head.info;
if (head == tail) // if only one node on the list;
head = tail = null;
else head = head.next;
return el;

}
public int deleteFromTail() { // delete the tail and return its info;

int el = tail.info;

if (head == tail) // if only one node on the list;
head = tail = null;
else { // if more than one node on the list,
IntSLLNode tmp; // find the predecessor of tail;
for (tmp = head; tmp.next != tail; tmp = tmp.next);
tail = tmp; // the predecessor of tail becomes tail;
tail.next = null;
}
return el;
}
public void printAll() {
for (IntSLLNode tmp = head; tmp != null; tmp = tmp.next)
System.out.print(tmp.info + " ");
}

public boolean isInList(int el) {

IntSLLNode tmp;
for (tmp = head; tmp != null && tmp.info != el; tmp = tmp.next);

return tmp != null;
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FIGURE 3.2 (continued)

public void delete(int el) { // delete the node with an element el;
if (!isEmpty())

if (head == tail && el == head.info) // if only one
head = tail = null; // node on the list;
else if (el == head.info) // if more than one node on the
head = head.next; // list; and el is in the head node;
else { // if more than one node in the list

IntSLLNode pred, tmp;// and el is in a non-head node;
for (pred = head, tmp = head.next;
tmp != null && tmp.info != el;
pred = pred.next, tmp = tmp.next);
if (tmp != null) { // if el was found;
pred.next = tmp.next;
if (tmp == tail) // if el is in the last node;
tail = pred;

The singly linked list implementation in Figure 3.2 uses two classes: one class,
IntSLLNode, for nodes of the list, and another, IntSLList, for access to the list. The
class IntSLList defines two data fields, head and tail, which are references to the
first and the last nodes of a list. An example of a list is shown in Figure 3.3. The list is
declared with the statement

IntSLList list = new IntSLList();

FIGURE 3.3 A singly linked list of integers.
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The first object in Figure 3.3a is not part of the list; it allows for having access to the
list. For simplicity, in subsequent figures, only nodes belonging to the list are shown,
the access node is omitted, and the head and tail fields are marked as in Figure 3.3b.

Besides the head and tail fields, the class IntSLList also defines methods
that allow us to manipulate the lists. We now look more closely at some basic opera-
tions on linked lists presented in Figure 3.2.

3.1.1 Insertion
Adding a node at the beginning of a linked list is performed in four steps.
1. Anempty node is created. It is empty in the sense that the program performing inser-
tion does not assign any values to the fields of the node (Figure 3.4a).
The node’s info field is initialized to a particular integer (Figure 3.4b).

3. Because the node is being included at the front of the list, the next field becomes a
reference to the first node on the list; that is, the current value of head (Figure 3.4c).

4. The new node precedes all the nodes on the list, but this fact has to be reflected in the
value of head; otherwise, the new node is not accessible. Therefore, head is updated
to become the reference to the new node (Figure 3.4d).

FIGURE 3.4 Inserting a new node at the beginning of a singly linked list.
he@i> ta&>
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The four steps are executed by the method addToHead () (Figure 3.2). The
method executes the first three steps indirectly by calling the constructor
Node (el,head). The last step is executed directly in the method by assigning the ad-
dress (reference) of the newly created node to head.
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The method addToHead () singles out one special case, namely, inserting a new
node in an empty linked list. In an empty linked list, both head and tail are null;
therefore, both become references to the only node of the new list. When inserting in a
nonempty list, only head needs to be updated.

The process of adding a new node to the end of the list has five steps.

An empty node is created (Figure 3.5a).

The node’s info field is initialized to an integer el (Figure 3.5b).

Because the node is being included at the end of the list, the next field is set to null
(Figure 3.5¢).

4. The node is now included in the list by making the next field of the last node of the
list a reference to the newly created node (Figure 3.5d).

5. The new node follows all the nodes of the list, but this fact has to be reflected in the
value of tail, which now becomes the reference to the new node (Figure 3.5¢).

FIGURE 3.5 Inserting a new node at the end of a singly linked list.
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All these steps are executed in the if clause of the addToTail () method (Figure
3.2). The else clause of this method is executed only if the linked list is empty. If this
case were not included, the program would crash because in the if clause we make an
assignment to the next field of the node referred by tail. In the case of an empty
linked list, it is a reference to a nonexisting field of a nonexisting node, which leads to
raising the Nul1lPointerException.
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The process of inserting a new node at the beginning of the list is very similar to
the process of inserting a node at the end of the list. This is because the implementa-
tion of IntSLList uses two reference fields: head and tail. For this reason, both
addToHead () and addToTail () can be executed in constant time O(1); that is, re-
gardless of the number of nodes in the list, the number of operations performed by
these two methods does not exceed some constant number ¢. Note that because the
head reference allows us to have access to a linked list, the tail reference is not indis-
pensable; its only role is to have immediate access to the last node of the list. With this
access, a new node can be added easily at the end of the list. But as illustrated by a
linked list implementation of SLList in Figure 3.9 later in the chapter, the tail ref-
erence does not have to be used. In this case, adding a node at the end of the list is
more complicated because we first have to reach the last node in order to attach a new
node to it. This requires scanning the list and requires O(n) steps to finish; that is, it is
linearly proportional to the length of the list. The process of scanning lists is illus-
trated when discussing deletion of the last node.

3.1.2 Deletion

One deletion operation consists of deleting a node at the beginning of the list and re-
turning the value stored in it. This operation is implemented by the method delete-
FromHead (). In this operation the information from the first node is temporarily
stored in a local variable el, and then head is reset so what was the second node be-
comes the first node. In this way, the former first node is abandoned to be processed
later by the garbage collector (Figure 3.6). Note that the former first node still accesses
the linked list, but the node itself is inaccessible. Thus, it is considered nonexistent.
Because the head node is immediately accessible, deleteFromHead () takes constant
time O(1) to perform its task.

FIGURE 3.6 Deleting a node from the beginning of a singly linked list.

he&cl ta&>

(a) 6 . /> 5 - /’ 8 . /> i
head tail
N\ S

(b) 6 - /> 5 | /> 8 | /> i

Unlike before, there are now two special cases to consider. One case is when we
attempt to remove a node from an empty linked list. If such an attempt is made, the
program crashes because of the NullPointerException, which we don’t want to
happen. The caller should also know that such an attempt was made to perform a cer-
tain action. After all, if the caller expects a number to be returned from the call to
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deleteFromHead () and no number can be returned, then the caller may be unable
to accomplish some other operations.

There are at least two ways of solving the problem. One solution is to use the
throws clause, as in

public int deleteFromHead() throws NullPointerException {

}

The throws clause is expected to have a matching try-catch clause in the caller (or
caller’s caller, etc.), which catches the exception, as in:

void f() {
try {
n = list.deleteFromHead();

} catch (NullPointerException npe) {
System.out.println("Empty list");

}

This solution gives the caller a control over the abnormal situation without mak-
ing it lethal to the program. The user is responsible for providing an exception han-
dler in the form of the try-catch clause, with the solution appropriate to the
particular case. If the clause is not provided, then the program crashes when the ex-
ception is thrown. The method £ () may only print a message that a list is empty
when an attempt is made to delete a number from an empty list, another method g ()
may assign a certain value for n in such a case, and yet another method h () may find
such a situation detrimental to the program and abort the program altogether.

The idea that the user is responsible for providing an action in the case of an ex-
ception is also presumed in the implementation given in Figure 3.2. The method as-
sumes that the list is not empty. To prevent the program from crashing, the method
isEmpty () is added to the IntSLList class, and the user should use it, as in:

if (!list.isEmpty())
n = list.deleteFromHead();
else do not remove;

Note that including a similar if statement in deleteFromHead() does not
solve the problem. Consider this code:

public int deleteFromHead() {
if (!isEmpty()) { // if nonempty list;
int el = head.info;

return el;

}

else return 0;
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If an if statement is added, then the else clause must also be added; otherwise, the
program does not compile because of “missing return statement.” But now, if 0 is re-
turned, the caller does not know whether the returned 0 is the sign of failure or if it is
a literal 0 retrieved from the list. To avoid any confusion, the caller must use an if
statement to test whether the list is empty before calling deleteFromHead (). In this
way, the test inside the method becomes redundant.

The second special case in deleteFromHead () is when the list has only one
node to be removed. In this case, the list becomes empty, which requires setting head
and tail tonull.

The second deletion operation consists of deleting a node from the end of the
list, and it is implemented as a method deleteFromTail (). The problem is that
after removing a node, tail should refer to the new tail of the list; that is, tail has
to be moved backward by one node. But moving backward is impossible because
there is no direct link from the last node to its predecessor. Hence, this predecessor
has to be found by searching from the beginning of the list and stopping right before
tail. This is accomplished with a temporary variable tmp that scans the list within
the for loop. The variable tmp is initialized to the head of the list, and then in each
iteration of the loop, it is advanced to the next node. If the list is as in Figure 3.7a,

FIGURE 3.7 Deleting a node from the end of a singly linked list.
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then tmp first refers to the head node holding number 6; after executing the assign-
ment tmp = tmp.next, tmp refers to the second node (Figure 3.7b). After the sec-
ond iteration and executing the same assignment, tmp refers to the third node
(Figure 3.7¢). Because this node is also the next to last node, the loop is exited, after
which tail becomes the reference to the next to last node (Figure 3.7d), and then
the next field of this node is set to null (Figure 3.7¢). After the last assignment, what
was the last node is now detached from the list and inaccessible from it. In due
course, this node is claimed by the garbage collector.

Note that in the for loop, a temporary variable was used to scan the list. If the
loop were simplified to

for ( ; head.next != tail; head = head.next);

then the list is scanned only once, and the access to the beginning of the list is lost be-
cause head was permanently updated to the next to last node, which is about to be-
come the last node. It is absolutely critical that, in cases such as this, a temporary
variable is used so that the access to the beginning of the list is kept intact.

In removing the last node, the two special cases are the same as in deleteFrom-
Head (). If the list is empty, then nothing can be removed, but what should be done in
this case is decided in the user program just as in the case of deleteFromHead ().
The second case is when a single-node list becomes empty after removing its only
node, which also requires setting head and tail to null.

The most time-consuming part of deleteFromTail() is finding the next to
last node performed by the for loop. It is clear that the loop performs n — 1 iterations
in a list of n nodes, which is the main reason this method takes O(n) time to delete the
last node.

The two discussed deletion operations remove a node from the head or from the
tail (that is, always from the same position) and return the integer that happens to be
in the node being removed. A different approach is when we want to delete a node
that holds a particular integer regardless of the position of this node in the list. It may
be right at the beginning, at the end, or anywhere inside the list. Briefly, a node has to
be located first and then detached from the list by linking the predecessor of this node
directly to its successor. Because we do not know where the node may be, the process
of finding and deleting a node with a certain integer is much more complex than the
deletion operations discussed so far. The method delete () (Figure 3.2) is an imple-
mentation of this process.

A node is removed from inside a list by linking its predecessor to its successor. But
because the list has only forward links, the predecessor of a node is not reachable from
the node. One way to accomplish the task is to find the node to be removed, by first
scanning the list and then scanning it again to find its predecessor. Another way is pre-
sented in delete( ), as shown in Figure 3.8. Assume that we want to delete a node
that holds the number 8. The method uses two reference variables, pred and tmp,
which are initialized in the for loop so that they point to the first and second nodes of
the list, respectively (Figure 3.8a). Because the node tmp has the number 5, the first it-
eration is executed in which both pred and tmp are advanced to the next nodes (Fig-
ure 3.8b). Because the condition of the for loop is now true (tmp points to the node
with 8), the loop is exited and an assignment pred.next = tmp.next is executed
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FIGURE 3.8 Deleting a node from a singly linked list.
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(Figure 3.8¢). This assignment effectively excludes the node with 8 from the list. Al-
though the node is still accessible from variable tmp, it will not be accessible after the
method delete() is exited because tmp is local to the method. Hence, it ceases to
exist after exiting this method. As before, the now inaccessible node with number 8
will be processed by the garbage collector.

The preceding paragraph discussed only one case. Here are the remaining cases:

1. An attempt to remove a node from an empty list, in which case the method is imme-
diately exited.

2. Deleting the only node from a one-node linked list: Both head and tail are set to
null.

3. Removing the first node of the list with at least two nodes, which requires updating
head.

4. Removing the last node of the list with at least two nodes, leading to the update of
tail.

5. Anattempt to delete a node with a number that is not in the list: Do nothing.

It is clear that the best case for delete () is when the head node is to be deleted,
which takes O(1) time to accomplish. The worst case is when the last node needs to be
deleted, which reduces delete() to deleteFromTail() and to its O(n) perfor-
mance. What is the average case? It depends on how many iterations the for loop exe-
cutes. Assuming that any node on the list has an equal chance to be deleted, the loop
performs no iteration if it is the first node, one iteration if it is the second node, . . .,
and finally n — 1 iterations if it is the last node. For a long sequence of deletions, one
deletion requires on the average

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Section 3.1 Singly Linked Lists W 93

—1
0+1+..+m-1) ("z)n n—1

n n 2

That is, on the average, delete() executes O(n) steps to finish, just like in the
worst case.

3.1.3 Search

The insertion and deletion operations modify linked lists. The searching operation
scans an existing list to learn whether a number is in it. We implement this operation
with the Boolean method isInList (). The method uses a temporary variable tmp
to go through the list starting from the head node. The number stored in each node is
compared to the number being sought, and if the two numbers are equal, the loop is
exited; otherwise, tmp is updated to tmp.next so that the next node can be investi-
gated. After reaching the last node and executing the assignment tmp = tmp.next,
tmp becomes null, which is used as an indication that the number el is not in the list.
That is, if tmp is not null, the search was discontinued somewhere inside the list be-
cause el was found. That is why isInList () returns the result of comparison tmp
1= 0:If tmp is not null, el was found and true is returned. If tmp is null, the search
was unsuccessful and false is returned.

With reasoning very similar to that used to determine the efficiency of
delete(), isInList () takes O(1) time in the best case and O(n) in the worst and
average cases.

In the foregoing discussion, the operations on nodes have been stressed. How-
ever, a linked list is built for the sake of storing and processing information, not for
the sake of itself. Therefore, the approach used in this section is limited in that
the list can only store integers. If we wanted a linked list for float numbers or for
arrays of numbers, then a new class has to be declared with a new set of methods, all
of them resembling the ones discussed here. However, it is more advantageous to
declare such a class only once without deciding in advance what type of data will
be stored in it. One solution is to declare the info field as Object. This is an ade-
quate solution if the linked list is used for the type of storage and retrieval opera-
tions that are position oriented: insert at the beginning or retrieve from the end. But
for the method delete (), which first relies on finding a node with specific infor-
mation or for such operations as retrieving the largest element, inserting the infor-
mation in ascending order, or just finding a particular piece of information in the
list, the type Object does not allow us to do it for the reasons indicated in Section
1.4: Comparison amounts to comparing references to data, not the data themselves.
Hence, the desired comparison methods have to be defined each time a linked list
is accommodated to storing a particular data type. This way of defining generic
linked lists is shown in Figure 3.9. For the rest of the chapter, linked lists of integers
are used to simplify coding and to show clearly the linked list’s operations.
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FIGURE 3.9 Implementation of a generic singly linked list.
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public class SLLNode {

public Object info;

public SLLNode next;

public SLLNode() {
next = null;

}

public SLLNode(Object el) {
info = el; next = null;

}

public SLLNode(Object el, SLLNode ptr) {
info = el; next = ptr;

}
}
/*********************** sLList.java kkhhkkkhhkkkhhkkhhkkhhkkhhkkhhxkhhx**x
* generic singly linked list class with head only
*/

public class SLList {
protected SLLNode head = null;
public SLList() {

}

public boolean isEmpty() {
return head == null;

}

public Object first() {
return head.info;
}
public void printAll(java.io.PrintStream out) {
for (SLLNode tmp = head; tmp != null; tmp = tmp.next)
out.print(tmp.info);
}
public void add(Object el) {
head = new SLLNode(el,head);
}
public Object find(Object el) {
SLLNode tmp = head;
for ( ; tmp != null && !el.equals(tmp.info); tmp = tmp.next);
if (tmp == null)
return null;
else return tmp.info;

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Section 3.2 Doubly Linked Lists W 95

FIGURE 3.9 (continued)

public Object deleteHead() { // remove the head and return its info;
Object el = head.info;
head = head.next;
return el;

}
public void delete(Object el) { // find and remove el;
if (head != null) // if nonempty list;
if (el.equals(head.info)) // if head needs to be removed;
head = head.next;
else {
SLLNode pred = head, tmp = head.next;
for ( ; tmp != null && ! (tmp.info.equals(el));
pred = pred.next, tmp = tmp.next);
if (tmp != null) // if found
pred.next = tmp.next;
}
}

m DouBLy LINKED LiISTS

The method deleteFromTail () indicates a problem inherent to singly linked lists.
The nodes in such lists contain only references to the successors; therefore, there is no
immediate access to the predecessors. For this reason, deleteFromTail () was im-
plemented with a loop that allowed us to find the predecessor of tail. Although this
predecessor is, so to speak, within sight, it is out of reach. We have to scan the entire
list to stop right in front of tail to delete it. For long lists and for frequent executions
of deleteFromTail (), this may be an impediment to swift list processing. To avoid
this problem, the linked list is redefined so that each node in the list has two reference
fields, one to the successor and one to the predecessor. A list of this type is called a
doubly linked list, and is illustrated in Figure 3.10. An implementation of a doubly
linked list of integers is shown in Figure 3.11.

FIGURE 3.10 A doubly linked list.
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FIGURE 3.11  An implementation of a doubly linked list.
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public class IntDLLNode {

public int info;

public IntDLLNode next, prev;

public IntDLLNode(int el) {
this(el,null,null);

}

public IntDLLNode(int el, IntDLLNode n, IntDLLNode p) {
info = el; next = n; prev = p;

[REFKF KKK KKk Kk k kKK kkkxkkk%  IntDLLISt.java **x**kxkkkkrkrkkkhhkrkrkkkrrxx/

public class IntDLList {
private IntDLLNode head, tail;
public IntDLList() {
head = tail = null;

}

public boolean isEmpty() {
return head == null;

}

public void addToTail(int el) {
if (!isEmpty()) {
tail = new IntDLLNode(el,null,tail);
tail.prev.next = tail;
}
else head = tail = new IntDLLNode(el);
}
public int removeFromTail() {
int el = tail.info;
if (head == tail) // if only one node in the list;
head = tail = null;
else { // if more than one node in the list;
tail = tail.prev;
tail.next = null;
}

return el;
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Methods for processing doubly linked lists are slightly more complicated than
their singly linked counterparts because there is one more reference field to be main-
tained. Only two methods are discussed: a method to insert a node at the end of a
doubly linked list and a method to remove a node from the end (Figure 3.11).

To add a node to a list, the node has to be created, its fields properly initialized,
and then the node needs to be incorporated into the list. Inserting a node at the end of
a doubly linked list is illustrated in Figure 3.12. The process is performed in six steps:

A new node is created (Figure 3.12a), and then its three fields are initialized:
the info field to the number el being inserted (Figure 3.12b),
3. the next field to null (Figure 3.12¢),

FIGURE 3.12  Adding a new node at the end of a doubly linked list.
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4. and the prev field to the value of tail so that this field points to the last node in the
list (Figure 3.12d). But now, the new node should become the last node; therefore,

5. tailis setto reference the new node (Figure 3.12e). But the new node is not yet
accessible from its predecessor; to rectify this,

6. the next field of the predecessor is set to reference the new node (Figure 3.12f).

A special case concerns the last step. It is assumed in this step that the newly cre-
ated node has a predecessor, so it accesses its prev field. It should be obvious that for
an empty linked list, the new node is the only node in the list and it has no predeces-
sor. In this case, both head and tail refer to this node, and the sixth step is now set-
ting head to refer to this node. Note that step four—setting the prev field to the
value of tail—is executed properly because for an initially empty list, tail is null.
Thus, null becomes the value of the prev field of the new node.

Deleting the last node from the doubly linked list is straightforward because there
is direct access from the last node to its predecessor, and no loop is needed to remove
the last node. When deleting a node from the list in Figure 3.13a, the temporary vari-
able el is set to the value in the last node, then tail is set to its predecessor (Figure
3.13b), and the last node is cut off from the list by setting the next field of the next to
last node to null. In this way, the next to last node becomes the last node, and the for-
merly last node is abandoned (Figure 3.13¢). Although this node accesses the list, the
node is inaccessible from the list; hence, it will be claimed by the garbage collector.
The last step is returning the value stored in the removed node.

FIGURE 3.13  Deleting a node from the end of a doubly linked list.
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An attempt to delete a node from an empty list may result in a program crash.
Therefore, the user has to check whether the list is not empty before attempting to
delete the last node. As with the singly linked list’s deleteFromHead (), the caller
should have an if statement

if (!list.isEmpty())
n = list.deleteFromTail();
else do not remove;

The second special case is the deletion of the only node from a single-node linked
list. In this case, both head and tail are set to null.

Because of the immediate accessibility of the last node, both addToTail() and
deleteFromTail () execute in constant time O(1).

Methods for operating at the beginning of the doubly linked list are easily ob-
tained from the two methods just discussed by changing head to tail and vice versa,
changing next to prev and vice versa, and exchanging the order of parameters when
executing new.

m CIRCULAR LISTS

In some situations, a circular list is needed in which nodes form a ring: The list is finite
and each node has a successor. An example of such a situation is when several
processes are using the same resource for the same amount of time, and we have to as-
sure that each process has a fair share of the resource. Therefore, all processes—let
their numbers be 6, 5, 8, and 10, as in Figure 3.14—are put on a circular list accessible
through current. After one node in the list is accessed and the process number is re-
trieved from the node to activate this process, current moves to the next node so
that the next process can be activated the next time.

FIGURE 3.14

A circular singly linked list.

current

N

6/»5/»8/>10

In an implementation of a circular singly linked list, we can use only one perma-
nent reference, tail, to the list even though operations on the list require access to
the tail and its successor, the head. To that end, a linear singly linked list as discussed
in Section 3.1 uses two permanent references, head and tail.
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Figure 3.15a shows a sequence of insertions at the front of the circular list, and
Figure 3.15b illustrates insertions at the end of the list. As an example of a method
operating on such a list, we present a method to insert a node at the tail of a circular
singly linked list:

public void addToTail(int el) {

if (isEmpty()) {
tail = new IntSLLNode(el);
tail.next = tail;

}

else {
tail.next = new IntSLLNode(el,tail.next);
tail = tail.next;

FIGURE 3.15 Inserting nodes at the front of a circular singly linked list (a) and at its end (b).

tail tail
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tail tail
tail tail
tail tail
4 3 2 \\> 1 1 2 3 4
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The implementation just presented is not without its problems. A method for
deletion of the tail node requires a loop so that tail can be set to its predecessor
after deleting the node. This makes this method delete the tail node in O(n) time.
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Moreover, processing data in the reverse order (printing, searching, etc.) is not very
efficient. To avoid the problem and still be able to insert and delete nodes at the
front and at the end of the list without using a loop, a doubly linked circular list can
be used. The list forms two rings: one going forward through next fields and one
going backward through prev fields. Figure 3.16 illustrates such a list accessible
through the last node. Deleting the node from the end of the list can be done easily
because there is direct access to the next to last node that needs to be updated in the
case of such a deletion. In this list, both insertion and deletion of the tail node can
be done in O(1) time.

FIGURE 3.16 A circular doubly linked list.

m SKip LisTs

Linked lists have one serious drawback: They require sequential scanning to locate a
searched-for element. The search starts from the beginning of the list and stops
when either a searched-for element is found or the end of the list is reached without
finding this element. Ordering elements on the list can speed up searching, but a se-
quential search is still required. Therefore, we may think about lists that allow for
skipping certain nodes to avoid sequential processing. A skip list is an interesting
variant of the ordered linked list that makes such a nonsequential search possible
(Pugh 1990).

In a skip list of # nodes, for each k and i such that 1 <k <|lgn]and 1 <i<
| n/2%1] - 1, the node in position 25! - i points to the node in position 25! - (i + 1).
This means that every second node points to the node two positions ahead, every
fourth node points to the node four positions ahead, and so on, as shown in Figure
3.17a. This is accomplished by having different numbers of reference fields in nodes
on the list: Half of the nodes have just one reference field, one-fourth of the nodes
have two reference fields, one-eighth of the nodes have three reference fields, and so
on. The number of reference fields indicates the level of each node, and the number of
levels is maxLevel =| Ig n] + 1.
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FIGURE 3.17 A skip list with (a) evenly and (b) unevenly spaced nodes of different levels;
(c) the skip list with reference nodes clearly shown.

—_
o
)
3

(@)

N
INEE

[
!

1B

e e N DEN el E e

(b)

—135( \

gogol e

(©)

Searching for an element el consists of following the references on the highest
level until an element is found that finishes the search successfully. In the case of
reaching the end of the list or encountering an element key that is greater than el,
the search is restarted from the node preceding the one containing key, but this time
starting from a reference on a lower level than before. The search continues until el is
found, or the first-level references are followed to reach the end of the list or to find an
element greater than el. Here is a pseudocode for this algorithm:

find (element el)
p = the nonnull list on the highest level 1i;
while el notfoundand i 2 0
if p.key < el
p = asublist that begins in the predecessor of p onlevel --i;
else if p.key > el
if p isthe last node on level i
p = anonnull sublist that begins in p on the highest level < 1i;
i = the number of the new level;
else p = p.next;
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For example, if we look for number 16 in the list in Figure 3.17b, then level four is
tried first, which is unsuccessful because the first node on this level has 28. Next, we
try the third-level sublist starting from the root: It first leads to 8 and then to 17.
Hence, we try the second-level sublist that originates in the node holding 8: It leads to
10 and then again to 17. The last try is by starting the first-level sublist, which begins
in node 10; this sublist’s first node has 12, the next number is 17, and because there is
no lower level, the search is pronounced unsuccessful. The path through which the list
passed during this searching process is indicated in Figure 3.17¢ with a dashed line.
Code for the searching method is given in Figure 3.18.

FIGURE 3.18  An implementation of a skip list.

[rkkkkkkkkkkkkkxkxkkkkkkxx  IntSkipListNode.java rr*kxxkkkkkkxkkkkkkkx/

public class IntSkipListNode {

public int key;

public IntSkipListNode[] next;

IntSkipListNode(int i, int n) {
key = i;
next = new IntSkipListNode[n];
for (int j = 0; j < n; j++)

next[j] = null;

[REFIFK KKK KKK KKK KKk Kk kxkx*x  IntSKkipList.java FrxxEkskkkkkkkkkkkkkkrkx k% /
import java.util.Random;

public class IntSkipList {
private int maxLevel;
private IntSkipListNode[] root;
private int[] powers;
private Random rd = new Random();
IntSkipList() {
this(4);
}
IntSkipList (int i) {
maxLevel = i;
root = new IntSkipListNode[maxLevel];
powers = new int[maxLevel];
for (int j = 0; j < maxLevel; j++)
root[j] = null;
choosePowers () ;

Continues
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FIGURE 3.18 (continued)

public boolean isEmpty () {

return root[0] == null;
}
public void choosePowers() {
powers[maxLevel-1] = (2 << (maxLevel-1)) - 1; // 2"maxLevel - 1
for (int i = maxLevel - 2, j = 0; i >= 0; i--, j++)
powers[i] = powers[i+l] - (2 << j); // 27 (j+1)
}

public int chooseLevel() {

int i, r = Math.abs(rd.nextInt()) % powers[maxLevel-1] + 1;

for (i = 1; i < maxLevel; i++)

if (r < powers[i])
return i-1; // return a level < the highest level;

return i-1; // return the highest level;
}
// make sure (with isEmpty()) that skipListSearch() is called for a
// nonempty list;
public int skipListSearch (int key) {

int 1lvl;
IntSkipListNode prev, curr; // find the highest non-null
for (lvl = maxLevel-1; lvl >= 0 && root[lvl] == null; lvl--); // level;

prev = curr = root[lvl];
while (true) {

if (key == curr.key) // success if equal;
return curr.key;
else if (key < curr.key) { // if smaller, go down,
if (lvl == 0) // if possible,
return 0;
else if (curr == root[lvl]) // by one level
curr = root[--1lvl]; // starting from the
else curr = prev.next[--1lvl]; // predecessor which
} // can be the root;
else { // if greater,
prev = curr; // go to the next
if (curr.next[lvl] != null) // non-null node
curr = curr.next[lvl]; // on the same level
else { // or to a list on a lower level;
for (1lvl--; 1lvl >= 0 && curr.next[lvl] == null; 1lvl--);

if (1vl >= 0)
curr = curr.next[lvl];
else return 0;
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FIGURE 3.18 (continued)

public void skipListInsert (int key) {

IntSkipListNode[] curr = new IntSkipListNode[maxLevel];

IntSkipListNode[] prev = new IntSkipListNode[maxLevel];

IntSkipListNode newNode;

int 1vl, i;

curr[maxLevel-1] = root[maxLevel-1];

prev[maxLevel-1] = null;

for (1lvl = maxLevel - 1; 1lvl >= 0; 1lvl--) {

while (curr[lvl] != null && curr[lvl].key < key) { // go to the next

prev[lvl] = curr[lvl]; // if smaller;
curr[lvl] = curr[lvl].next[1lvl];

}
if (curr[lvl] != null && curr[lvl].key == key) // don't include
return; // duplicates;
if (lvl > 0) // go one level down
if (prev[lvl] == null) { // if not the lowest
curr[lvl-1] = root[lvl-1]; // level, using a link
prev[lvl-1] = null; // either from the root
}
else { // or from the predecessor;
curr[lvl-1] = prev[lvl].next[1lvl-1];
prev[lvl-1] = prev[1lvl];
}
}
lvl = chooseLevel(); // generate randomly level

// for newNode;
newNode = new IntSkipListNode(key,lvl+l);

for (i = 0; i <= 1lvl; i++) { // initialize next fields of
newNode.next[i] = curr[i]; // newNode and reset to newNode
if (prev[i] == null) // either fields of the root
root[i] = newNode; // or next fields of newNode's

else prev[i].next[i] = newNode; // predecessors;

Searching appears to be efficient; however, the design of skip lists can lead to
very inefficient insertion and deletion procedures. To insert a new element, all
nodes following the node just inserted have to be restructured; the number of ref-
erence fields and the value of references have to be changed. In order to retain
some of the advantages that skip lists offer with respect to searching and to avoid
problems with restructuring the lists when inserting and deleting nodes, the re-
quirement on the positions of nodes of different levels is now abandoned and only
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the requirement on the number of nodes of different levels is kept. For example,
the list in Figure 3.17a becomes the list in Figure 3.17b: Both lists have six nodes in
level one (with one reference field), three nodes in level two, two nodes in level
three, and one node in level four. The new list is searched exactly the same way as
the original list. Inserting does not require list restructuring, and nodes are gener-
ated so that the distribution of the nodes on different levels is kept adequate. How
can this be accomplished?

Assume that maxLevel = 4. For 15 elements, the required number of nodes on
level one is eight, on level two is four, on level three is two, and in level one is one. Each
time a node is inserted, a random number r between 1 and 15 is generated, and if r <
9, then a node of level one is inserted. If < 13, a second-level node is inserted, if r <
15, it is a third-level node, and if r = 15, the node of level four is generated and in-
serted. If maxLevel = 5, then for 31 elements the correspondence between the value of
rand the level of node is as follows:

r Level of Node to Be Inserted
31 5
29-30 4
25-28 3
17-24 2
1-16 1

To determine such a correspondence between r and the level of node for any
maxLevel, the method choosePowers () initializes the array powers|[ ] by putting
lower bounds on each range. For example, for maxLevel = 4, the array is [1 9 13 15];
for maxLevel = 5, it is [1 17 25 29 31]. chooseLevel () uses powers|[ ] to deter-
mine the level of the node about to be inserted. Figure 3.18 contains the code for
choosePowers () and chooseLevel (). Note that the levels range between 0 and
maxLevel-1 (and not between 1 and maxLevel) so that the array indexes can be used
as levels. For example, the first level is level zero.

But we also have to address the question of implementing a node. The easiest
way is to make each node have maxLevel reference fields, but this is wasteful. We need
only as many reference fields per node as the level of the node requires. To accom-
plish this, the next field of each node is not a reference to the next node, but to an
array of reference(s) to the next node(s). The size of this array is determined by the
level of the node. The IntSkipListNode and SkipList classes are declared as in
Figure 3.18. In this way, the list in Figure 3.17b is really a list whose first four nodes
are shown in Figure 3.17c. Only now can an inserting procedure be implemented, as
in Figure 3.18.

How efficient are skip lists? In the ideal situation, which is exemplified by the list
in Figure 3.17a, the search time is O(lg #). In the worst situation, when all lists are
on the same level, the skip list turns into a regular singly linked list, and the search
time is O(n). However, the latter situation is unlikely to occur; in the random skip
list, the search time is of the same order as the best case; that is, O(lg n). This is
an improvement over the efficiency of searching regular linked lists. It also turns
out that skip lists fare extremely well in comparison with more sophisticated data
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structures, such as self-adjusting trees or AVL trees (see Sections 6.7.2 and 6.8), and
therefore they are a viable alternative to these data structures (see also the table in
Figure 3.21).

m SELF-ORGANIZING LISTS

The introduction of skip lists was motivated by the need to speed up the searching
process. Although singly and doubly linked lists require sequential search to locate an
element or to see that it is not in the list, we can improve the efficiency of the search by
dynamically organizing the list in a certain manner. This organization depends on the
configuration of data; thus, the stream of data requires reorganizing the nodes already
on the list. There are many different ways to organize the lists, and this section de-
scribes four of them:

1. Move-to-front method. After the desired element is located, put it at the beginning of
the list (Figure 3.19a).

2. Transpose method. After the desired element is located, swap it with its predecessor
unless it is at the head of the list (Figure 3.19b).

3. Count method. Order the list by the number of times elements are being accessed
(Figure 3.19¢).

4. Ordering method. Order the list using certain criteria natural for the information
under scrutiny (Figure 3.19d).

In the first three methods, new information is stored in a node added to the end
of the list (Figure 3.19¢); in the fourth method, new information is stored in a node
inserted somewhere in the list to maintain the order of the list (Figure 3.19f). An ex-
ample of searching for elements in a list organized by these different methods is
shown in Figure 3.20.

With the first three methods, we try to locate the elements most likely to be looked
for near the beginning of the list, most explicitly with the move-to-front method and
most cautiously with the transpose method. The ordering method already uses some
properties inherent to the information stored in the list. For example, if we are storing
nodes pertaining to people, then the list can be organized alphabetically by the name of
the person or the city or in ascending or descending order using, say, birthday or salary.
This is particularly advantageous when searching for information that is not in the list,
because the search can terminate without scanning the entire list. Searching all the
nodes of the list, however, is necessary in such cases using the other three methods. The
count method can be subsumed in the category of the ordering methods if frequency is
part of the information. In many cases, however, the count itself is an additional piece
of information required solely to maintain the list; hence, it may not be considered
“natural” to the information at hand.

Analyses of the efficiency of these methods customarily compare their efficiency to
that of optimal static ordering. With this ordering, all the data are already ordered by the
frequency of their occurrence in the body of data so that the list is used only for search-
ing, not for inserting new items. Therefore, this approach requires two passes through
the body of data, one to build the list and another to use the list for search alone.
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FIGURE 3.19  Accessing an element on a linked list and changes on the list depending on the
self-organization technique applied: (a) move-to-front method, (b) transpose method,
(c) count method, and (d) ordering method, in particular, alphabetical ordering,
which leads to no change. In the case when the desired element is not in the list,
(e) the first three methods add a new node with this element at the end of the list
and (f) the ordering method maintains an order on the list.
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To experimentally measure the efficiency of these methods, the number of all ac-
tual comparisons was compared to the maximum number of possible comparisons.
The latter number is calculated by adding the lengths of the list at the moment of pro-
cessing each element. For example, in the table in Figure 3.20, the body of data contains
14 letters, 5 of them being different, which means that 14 letters were processed. The
length of the list before processing each letter is recorded, and the result, 0 + 1 + 2 + 3 +
3+44+4+4+4+4+4+4+4+5=46,isused to compare the number of all compar-
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FIGURE 3.20 Processing the stream of data, ACBCDADACACC E E, by different methods of
organizing linked lists. Linked lists are presented in an abbreviated form; for example,
the transformation shown in Figure 3.19a is abbreviated as transforming list AB C D

into list DA B C.
Element Move-to-
Searched For Plain Front Transpose Count Ordering

A: A A A A A

C: AC AC AC AC AC

B: ACB ACB ACB ACB ABC
C: ACB CAB CAB CAB ABC
D: ACBD CABD CABD CABD ABCD
A: ACBD ACBD ACBD CABD ABCD
D: ACBD DACB ACDB DCAB ABCD
A: ACBD ADCB ACDB ADCB ABCD
C: ACBD CADB CADB CADB ABCD
A: ACBD ACDB ACDB ACDB ABCD
C: ACBD CADB CADB ACDB ABCD
C: ACBD CADB CADB CADB ABCD
12 ACBDE CADBE CADBE CADBE ABCDE
18 ACBDE ECADB CADEB CAEDB ABCDE

isons made to this combined length. In this way, we know what percentage of the list
was scanned during the entire process. For all the list organizing methods except opti-
mal ordering, this combined length is the same; only the number of comparisons can
change. For example, when using the move-to-front technique for the data in the table
in Figure 3.20, 33 comparisons were made, which is 71.7% when compared to 46. The
latter number gives the worst possible case, the combined length of intermediate lists
every time all the nodes in the list are looked at. Plain search, with no reorganization,
required only 30 comparisons, which is 65.2%.

These samples are in agreement with theoretical analyses that indicate that
count and move-to-front methods are, in the long run, at most twice as costly as
the optimal static ordering; the transpose method approaches, in the long run, the
cost of the move-to-front method. In particular, with amortized analysis, it can be
established that the cost of accessing a list element with the move-to-front method is
at most twice the cost of accessing this element on the list that uses optimal static
ordering.

In a proof of this statement, the concept of inversion is used. For two lists con-
taining the same elements, an inversion is defined to be a pair of elements (x, y) such
that on one list x precedes y and on the other list y precedes x. For example, the list
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(G, B, D, A) has four inversions with respect to list (A, B, C, D): (C, A), (B, A), (D, A),
and (C, B). Define the amortized cost to be the sum of actual cost and the difference
between the number of inversions before accessing an element and after accessing it,

amCost(x) = cost(x) + (inversionsBeforeAccess(x) — inversionsAfterAccess(x))

To assess this number, consider an optimal list OL = (A, B, C, D) and a move-to-
front list MTF = (C, B, D, A). The access of elements usually changes the balance of in-
versions. Let displaced(x) be the number of elements preceding x in MTF but following
x in OL. For example, displaced(A) = 3, displaced(B) = 1, displaced(C) = 0, and dis-
placed(D) = 0.1f pos, ,,..(x) is the current position of x in MTE then pos, ,.(x) — 1 — dis-
placed(x) is the number of elements preceding x in both lists. It is easy to see that for D
this number equals 2, and for the remaining elements it is 0. Now, accessing an element
x and moving it to the front of MTF creates pos, ,..(x) — 1 — displaced(x) new inversions
and removes displaced(x) other inversions so that the amortized time to access x is

amCost(x) = pos, . (x) + pos, 1.(x) — 1 — displaced(x) — displaced(x) = 2(pos, ;,(x) — displaced(x)) — 1
where cost(x) = pos, ;;,(x). Accessing A transforms MTF = (C, B, D, A) into (A, C, B, D)
and amCost(A) =2(4-3) — 1 = 1. For B, the new list is (B, C, D, A) and amCost(B) =2(2
—1)—1=1.For C, the list does not change and amCost(C) = 2(1 —0) — 1 = 1. Finally, for
D, the new list is (D, C, B, A) and amCost(D) = 2(3 —0) — 1 = 5. However, the number of
common elements preceding x on the two lists cannot exceed the number of all the ele-

ments preceding x on OL; therefore, pos, ,,..(x) — 1 — displaced(x) < pos ,; (x) — 1, so that

amCost(x) < 2pos, (x) — 1

The amortized cost of accessing an element x in MTF is in excess of pos,, (x) — 1 units
to its actual cost of access on OL. This excess is used to cover an additional cost of ac-
cessing elements in MTF for which pos, ,.(x) > pos, (x); that is, elements that re-
quire more accesses on MTF than on OL.

It is important to stress that the amortized costs of single operations are mean-
ingful in the context of sequences of operations. A cost of an isolated operation may
seldom equal its amortized cost; however, in a sufficiently long sequence of accesses,
each access on the average takes at most 2pos, (x) — 1 time.

Figure 3.21 contains sample runs of the self-organizing lists. The second and the
fourth columns of numbers refer to files containing programs, and the remaining
columns refer to files containing English text. There is a general tendency for all meth-
ods to improve their efficiency with the size of the file. The move-to-front and count
methods are almost the same in their efficiency, and both outperform the transpose,
plain, and ordering methods. The poor performance for smaller files is due to the fact
that all of the methods are busy including new words in the lists, which requires an ex-
haustive search of the lists. Later, the methods concentrate on organizing the lists to
reduce the number of searches. The table in Figure 3.21 also includes data for a skip
list. There is an overwhelming difference between the skip list’s efficiency compared to
the other methods. However, keep in mind that in the table in Figure 3.21, only com-
parisons of data are included, with no indication of the other operations needed for
execution of the analyzed methods. In particular, there is no indication of how many
references are used and relinked, which, when included, may make the difference be-
tween various methods less dramatic.
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FIGURE 3.21  Measuring the efficiency of different methods using formula (number of data
comparisons)/(combined length) expressed in percentages.

Different Words/
All Words 156/347 149/423 609/1510 550/2847 1163/5866 2013/23065
Optimal 28.5 26.4 24.5 17.6 16.2 10.0
Plain 70.3 71.2 67.1 56.3 51.7 35.4
Move-to-Front 61.3 49.5 54.5 31.3 30.5 18.4
Transpose 68.8 69.5 66.1 53.3 49.4 32.9
Count 61.2 51.6 54.7 34.0 32.0 19.8
Alphabetical Order 50.9 45.6 48.0 55.7 50.4 50.0
Skip List 15.1 12.3 6.6 5.5 4.8 3.8

These sample runs show that for lists of modest size, the linked list suffices. With
the increase in the amount of data and in the frequency with which they have to be ac-
cessed, more sophisticated methods and data structures need to be used.

m SPARSE TABLES

In many applications, the choice of a table seems to be the most natural one, but space
considerations may preclude this choice. This is particularly true if only a small frac-
tion of the table is actually used. A table of this type is called a sparse table because the
table is populated sparsely by data and most of its cells are empty. In this case, the
table can be replaced by a system of linked lists.

As an example, consider the problem of storing grades for all students in a univer-
sity for a certain semester. Assume that there are 8,000 students and 300 classes. A nat-
ural implementation is a two-dimensional array grades where student numbers are
indexes of the columns and class numbers are indexes of the rows (see Figure 3.22). An
association of student names and numbers is represented by the one-dimensional array
students and an association of class names and numbers by the array classes. The
names do not have to be ordered. If order is required, then another array can be used
where each array element is occupied by an object with two fields, name and number,!
or the original array can be sorted each time an order is required. This, however, leads to
the constant reorganization of grades, and is not recommended.

Each cell of grades stores a grade obtained by each student after finishing a class.
If signed grades such as A—, B+, or C+ are used, then two characters (that is, four bytes)
are required to store each grade. To reduce the table size by one-half, the array grade-
Codes in Figure 3.22c¢ associates each grade with a codeword that requires only one byte
of storage.

'This is called an index-inverted table.
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FIGURE 3.22  Arrays and sparse table used for storing student grades.

students classes gradeCodes
0| Sheaver Geo 0 | Anatomy/Physiology 0 A
Weaver Henry 1 | Introduction to Microbiology 1| A-
2 | Shelton Mary o 2| B+
5 30 | Advanced Writing 3|1B
404 | Crawford William 31 | Chaucer 4| B-
405 | Lawson Earl o 5| C+
. 115 | Data Structures 6| C
5206 | Fulton Jenny 116 | Cryptology 71 C-
5207 | Craft Donald 117 | Computer Ethics 8| D
5208 | Oates Key : 9| F
(a) (b) (©
grades student
0 1 2 .-+ 404 405 --- 5206 5207 5208 --- 7999
0 3
1| 1 4 7 1
30 5 3
w 31| O 5
g
it
O 115 0 4 5
116 3
117
299
(d)

The entire table (Figure 3.22d) occupies 8,000 students - 300 classes - 1 byte = 2.4
million bytes. This table is very large but is sparsely populated by grades. Assuming
that, on the average, students take four classes a semester, each column of the table has
only four cells occupied by grades, and the rest of the cells, 296 cells or 98.7%, are un-
occupied and wasted.

A better solution is to use two pairs of parallel two-dimensional arrays: In one,
classesTakenl and classesTaken2 represent all the classes taken by every stu-
dent; in the other, studentsInClassesl and studentsInClasses2 represent
all students participating in each class (Figure 3.23). Moreover, classesTakenl
contains class numbers, studentsInClassesl contains student numbers, and
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FIGURE 3.23  Two-dimensional arrays for storing student grades.

classesTakenl
0 1 2 ce 404 405 ce 5206 5207 5208 ...7999
0 1 30 1 1 31 1 115 0
1 31 115 115 64 33 121 30
2| 124 116 218 120 86 146 208
3| 136 221 121 156 211
4 285 203 234
5 292
6
7
classesTaken2
0 1 2 404 405 ce. 5206 5207 5208 ...7999
0 1 5 4 7 1 5 3
1 0 0 4 1 5 3
2 0 3 6 0 3 2
3 2 5 2 0 3
4 3 2 1
5 3
6
7
(@)
studentsInClassl
0 1 30 31 115 116 ... 299

0 | 5208 0 1 0 2 2

1 2 5208 | 405 404

2 404 5207

3 5206

249
studentsInClass?2
0 1 30 31 115 116 ... 299

0 0 5 0 0 3

1 0 3 5 4

2 7 5

3 1

249
(b)

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



114 W Chapter 3 Linked Lists

classesTaken2 and studentsInClasses2 contain grades. We assume that a
student can take at most 8 classes and that there can be at most 250 students signed
up for a class. We need two pairs of arrays, because with one array only it is very
time-consuming to produce lists. For example, if only classesTakenl and
classesTaken2 were used, then printing a list of all students taking a particular
class would very much require an exhaustive search of these two arrays.

Assume that short integers are used to store student and class numbers, which
occupy 2 bytes to store an integer. With this new structure, 3 bytes are needed for each
cell. Therefore, the tables classesTakenl and classesTaken2 occupy 8,000 stu-
dents - 8 classes - 3 bytes = 192,000 bytes, and tables studentsInClassesl and
studentsInClasses2 occupy 300 classes - 250 students - 3 bytes = 225,000 bytes,
and all the tables require a total of 417,000 bytes, less than one-fifth the number of
bytes required for the sparse table in Figure 3.22.

Although this is a much better implementation than before, it still suffers from a
wasteful use of space; seldom, if ever, will both arrays be full because most classes have
fewer than 250 students, and most students take fewer than 8 classes. This structure is
also inflexible: If a class can be taken by more than 250 students, a problem occurs that
has to be circumvented in an artificial way. One way is to create a nonexistent class that
holds students from the overflowing class. Another way is to recompile the program
with a new table size, which may not be practical at a future time. Another more flexi-
ble solution is needed.

Two one-dimensional arrays of linked lists can be used as in Figure 3.24. Each cell
of the array class is a reference to a linked list of students taking a class, and each cell
of the array student indicates a linked list of classes taken by a student. The linked
lists contain nodes of five fields: student number, class number, grade, a reference to
the next student, and a reference to the next class. Assuming that each reference re-
quires only 4 bytes and one node occupies 13 bytes, the entire structure can be stored
in 8,000 students - 4 classes (on the average) - 13 bytes = 416,000 bytes, which is ap-
proximately 17% of the space required for the first implementation and roughly the
same amount of space of the second. But now, no space is used unnecessarily, there is
no restriction imposed on the number of students per class, and the lists of students
taking a class can be printed immediately, even faster than in the first approach.

LISTS IN java.util

3.7.1 LinkedList

The LinkedList class in the java.util package is an implementation of various
operations on the nodes of a linked list. The LinkedList class implements a list as a
generic doubly linked list with references to the head and to the tail. An instance of
such a list that stores integers is presented in Figure 3.10.

The class hierarchy in the package java.util is as follows:

Object = AbstractCollection = AbstractList
= AbstractSequentialList = LinkedList
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FIGURE 3.24  Student grades implemented using linked lists.

student

0 2 2 404 405 5206 5207 5208
T [T [ I T T I T |

B . +——]5208

—

0

0//// 3
—

\
\

2 404 5206
1 1 / 1
4 7 1

class
~—
~——
]

PR T
P E 30
30 | 3 / 3

| —

0 l 405 l
/ 31 31
31| 0 4
1 —

The methods included in the LinkedList class are represented in Figure 3.25,
but the methods finalize(), getClass(), notify(), notifyAll(), and
wait () inherited from class Object are not included.

The workings of most of the methods have already been illustrated in the case

of the class Vector (Figure 1.4 and the discussion of these methods in Section 1.5).
A demonstration of some of the linked list methods is presented in Figure 3.26.

New elements can be added at the beginning of the list with addFirst (), at the end
of the list with addLast ( ), and anywhere inside the list with add (). Elements can be re-
trieved from the list, without removing them from it, with getFirst(), getLast(),
and get (). Elements can also be removed permanently from the list with several removal
methods. An important issue is, however, to perform user-defined operations on individ-
ual elements of the list. For example, list elements can be printed with the method
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FIGURE 3.25

methods.

Method
boolean add(Object ob)

void add(int pos, Object ob)

boolean addAll(Collection c)

boolean addAll(int pos,
Collection)

void addFirst(Object ob)
void addLast (Object ob)
void clear()

Object clone()

boolean contains(Object ob)
boolean containsAll
(Collection c)

boolean equals(Object ob)
Object get(int pos)

Object getFirst()

Object getLast()

int hashCode()

int indexOf (Object ob)

boolean isEmpty()

Iterator iterator()
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An alphabetical list of methods in the class LinkedList including some inherited

Operation
Insert object ob at the end of the linked list.

Insert object ob at position pos after shifting elements
at positions following pos by one position; throw
IndexOutOfBoundsException if pos is out of range.

Add all the elements from the collection ¢ to the end of the
linked list; return true if the linked list was modified; throw
NullPointerException if ¢ is null.

Add all the elements from the collection c at the position pos of
the linked list after shifting the objects following position pos;
throw IndexOutOfBoundsException if pos is out of
range, and Nul1lPointerException if ¢ is null.

Insert object ob at the beginning of the linked list.

Insert object ob at the end of the linked list; same as add (ob).
Remove all the objects from the linked list.

Return the copy of the linked list without cloning its elements.
Return true if the linked list contains the object ob.

Return true if the linked list contains all of the objects in the
collection c; throw NullPointerException if ¢ is null
(inherited).

Return true if the current linked list and object ob are equal
(inherited).

Return the object at position pos; throw
IndexOutOfBoundsException if pos is out of range.

Return the first object in the linked list; throw
NoSuchElementException if the linked list is empty.

Return the first object in the linked list; throw
NoSuchElementException if the linked list is empty.

Return the hash code for the linked list (inherited).

Return the position of the first occurrence of object ob in the
linked list; return —1 if ob is not found.

Return true if the linked list contains no elements, false
otherwise (inherited).

Generate and return an iterator for the linked list (inherited).
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17

FIGURE 3.25

(continued)

int lastIndexOf (Object ob)

LinkedList()

LinkedList(Collection c)

ListIterator listIterator()

ListIterator
listIterator(int n)

boolean remove (Object ob)

Object remove(int pos)

boolean
removeAll (Collection c)

Object removeFirst()

Object removeLast()

void removeRange(int first,
int last)

boolean

retainAll(Collection c)

Object set(int pos,
Object ob)

int size()

List subList(int first,
int last)

Object[] toArray()

Return the position of the last occurrence of object ob in the
linked list; return —1 if ob is not found.

Create an empty linked list.

Create a linked list with copies of elements from collection c;
throw NullPointerException if ¢ is null.

Generate and return a list iterator for the linked list initialized to
position 0 (inherited).

Generate and return a list iterator for the linked list initialized to

position n; throw IndexOutOfBoundsException if n is out

of range.

Remove the first occurrence of ob in the linked list and return
true if ob was in the linked list.

Remove the object at position pos; throw
IndexOutOfBoundsException if pos is out of range.

Remove from the linked list all the objects contained in
collection col; return true if any element was removed;
throw NullPointerException if ¢ is null (inherited).

Remove and return the first object on the linked list; throw
NoSuchElementException if the linked list is empty.

Remove and return the last object on the linked list; throw
NoSuchElementException if the linked list is empty.

Remove from the linked list all the objects from position first
to position last—1 (inherited).

Remove from the linked list all objects that are not in the
collection c; return true if any object was removed; throw
NullPointerException if ¢ is null (inherited).

Assign object ob to position pos and return the object that
occupied this position before the assignment; throw
IndexOutOfBoundsException if pos is out of range.

Return the number of objects in the linked list.

Return the sublist of the linked list (not its copy)
containing elements from first to last-1; throw
IndexOutOfBoundsException if either first or
lastand IllegalArgumentExceptionif last <
first (inherited).

Copy all objects from the linked list to a newly created array and
return the array.

Continues
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FIGURE 3.25 (continued)

Object[] toArray(Object Copy all objects from the linked list to the array a if a is large
all) enough or to a newly created array and return the array; throw
ArrayStoreException if type of a is not a supertype
of the type of every element in the linked list and
NullPointerException if a is null

String toString() Return a string representation of the linked list that contains the
string representation of all the objects.

FIGURE 3.26 A program demonstrating the operation of LinkedList methods.

import java.io.*;

import java.util.LinkedList;

class TestLinkedLists {
public static void main(String[] ar) {

LinkedList 1lstl = new LinkedList(); // 1lstl = []
lstl.addFirst(new Integer(4)); // lstl = [4]
lstl.addFirst(new Integer(5)); // lstl = [5, 4]
lstl.addLast(new Integer(6)); // lstl = [5, 4, 6]
lstl.addLast(new Integer(5)); // lstl = [5, 4, 6, 5]
System.out.println("1lstl: " + 1lstl); // 1lstl = [5, 4, 6, 5]
System.out.println(lstl.lastIndexOf (new Integer(5)));// 3
System.out.println(lstl.indexOf (new Integer(5))); // 0
System.out.println(lstl.indexOf (new Integer(7))); // -1
lstl.remove(new Integer(5)); // 1lstl = [4, 6, 5]
LinkedList 1st2 = new LinkedList(1lstl); // 1lst2 = [4, 6, 5]
1st2.add(2,new Integer(8)); // 1lst2 = [4, 6, 8, 5]
lst2.remove(new Integer(5)); // 1lst2 = [4, 6, 8]
1st2.remove(l); // lst2 = [4, 8]
System.out.println(lst2.getFirst() + " " + lst2.getLast()); // 4 8
System.out.println(lst2.set(1l,new Integer(7))); // 8, 1lst2 = [4, 7]

Integer[] al, b = {new Integer(l), new Integer(2)}; // b =[1, 2]
for (int i = 0; i < b.length; i++)
System.out.print(b[i] + " ");
System.out.println();
al = (Integer[]) lst2.toArray(b); // al = b = [4, 7]
for (int i = 0; i < b.length; i++)
System.out.print(b[i] + " ");
System.out.println();

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Section 3.7 Lists in java.util H 119

FIGURE 3.26 (continued)

al = (Integer[]) lstl.toArray(b); // al = [4, 6, 5], b = [4, 7]
for (int i = 0; i < b.length; i++)
System.out.print(b[i] + " ");

System.out.println();

for (int i = 0; i < al.length; i++)
System.out.print(al[i] + " ");

System.out.println();

Object[] a2 = lstl.toArray();

for (int i = 0; i < a2.length; i++) // a2 = [4, 6, 5]
System.out.print(a2[i] + " "); // 4 65

System.out.println();

for (int i = 0; i < lstl.size(); i++)
System.out.print(lstl.get(i) + " "); // 4 6 5

System.out.println();

for (java.util.Iterator it = lstl.iterator(); it.hasNext(); )
System.out.print(it.next() + " "); // 4 65

System.out.println();

toString( ), which prints the list by starting with the left bracket, prints elements of the
list in sequence in the way specified by their own version of toString() (whether a
built-in version or redefined by the user), separates all elements by commas, and ends
printing with the right bracket. For example, the list consisting of numbers 1, 2, and 3 is
printed as [1, 2, 3]. How can the output format be changed? One way is to redefine the
method toString(). But this approach works just for printing. How can we find the
largest element on the list? Or how can elements meeting certain conditions be counted?
Or how can they be updated? These problems can be solved by processing the first element
of the list and putting it at the end until all elements are processed.

Such a situation in the case of vectors uses the subscript operation: To access the
element at position 5 of vector v, we simply use the expression v[5]. A similar role for
linked lists is played by the method get (). But if we have two accesses in the row, say,
lst.get(5), lst.get(6), then the search for position 5 begins from the beginning
of the list for the first statement and again from the beginning of the list for the second
statement. Instead, a temporary array can be created with the method toArray (). But
this approach incurs unnecessary overhead in terms of space needed for the array and
time needed to create it. A better approach is to use an iterator.

Iterators are objects that allow for access of elements of particular collections.
The class Tterator defines three methods: next () to retrieve the next element of
the collection for which the iterator is defined, hasNext () to check whether any
elements are left for processing, and an optional remove () to remove from the
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collection the most recently accessed element. An example of application of an it-
erator is given in Figures 3.26 and 3.31.

3.7.2 ArrayList

The ArrayList class is an array implementation of a list. For all practical purposes it is

an equavalent of the class Vector except that the methods in the Vector class are syn-

chronized, whereas methods in the ArrayList class are not. Like a vector, an array list

is a flexible array that is automatically extended when required by insertion operations.
The class hierarchy in the package java.util is as follows:

Object = AbstractCollection = AbstractList = LinkedList

A list of methods of the ArrayList class is given in Figure 3.27 and an example of
application of some methods is given in Figure 3.28.

FIGURE 3.27  An alphabetical list of methods in the class ArrayList.

Method Operation
boolean add(Object ob) Insert object ob at the end of the array list.

void add(int pos, Object ob) Insertobject ob at position pos after shifting elements at
positions following pos by one position; throw
IndexOutOfBoundsException if pos is out of range.

boolean addAll(Collection c) Add all the elements from the collection c to the end of the
array list; return true if the array list was modified; throw
NullPointerException if cisnull

boolean addAll(int pos, Add all the elements from the collection c at the position pos of

Collection) the array list after shifting the objects following position pos;
throw IndexOutOfBoundsException if pos is out of
range and NullPointerException if ¢ is null.

ArrayList() Create an empty array list.

ArrayList(Collection c) Create an array list with copies of elements from collection c;
throw NullPointerException if ¢ is null.

ArrayList(int initCap) Create an empty array list with capacity initCap; throw
IllegalArgumentExceptionif initCap <0.

void clear() Remove all the objects from the array list.

Object clone() Return the copy of the array list without cloning its elements.

boolean contains(Object ob) Return true if the array list contains the object ob.

boolean containsAll Return true if the array list contains all of the objects in the
(Collection c) collection c; throw NullPointerException if ¢ is null
(inherited).
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FIGURE 3.27

(continued)

void ensureCapacity(int cap) If necessary, increase the capacity of the array list to accommodate

boolean equals(Object ob)

Object get(int pos)

int hashCode()

int indexOf (Object ob)

boolean isEmpty()

Iterator iterator()

int lastIndexOf (Object ob)

ListIterator listIterator()

ListIterator
listIterator(int n)

boolean remove (Object ob)

Object remove(int pos)

boolean
removeAll (Collection c)

void removeRange(int first,
int last)

boolean
retainAll(Collection c)

Object set(int pos,
Object ob)

int size()

at least cap elements.

Return true if the current array list and object ob are equal
(inherited).

Return the object at position pos; throw
IndexOutOfBoundsException if pos is out of range.

Return the hash code for the array list (inherited).

Return the position of the first occurrence of object ob in the
array list; return —1 if ob is not found.

Return true if the array list contains no elements, false
otherwise.

Generate and return an iterator for the array list (inherited).

Return the position of the last occurrence of object ob in the
array list; return —1 if ob is not found.

Generate and return a list iterator for the array list initialized to
position 0 (inherited).

Generate and return a list iterator for the array list initialized to
position n; throw IndexOutOfBoundsExceptionifnis
out of range (inherited).

Remove the first occurrence of ob in the array list and return
true if ob was in the array list (inherited).

Remove the object at position pos; throw
IndexOutOfBoundsException if pos is out of range.

Remove from the array list all the objects contained in collection
col; return true if any element was removed; throw
NullPointerException if ¢ is null (inherited).

Remove from the array list all the objects from position £irst to
position last —1.

Remove from the array list all objects that are not in the
collection c; return true if any object was removed; throw
NullPointerException if ¢ is null (inherited).

Assign object ob to position pos and return the object that
occupied this position before the assignment; throw
IndexOutOfBoundsException if pos is out of range.

Return the number of objects in the array list.

Continues
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FIGURE 3.27 (continued)

List subList(int first, Return the sublist of the array list (not its copy) containing

int last) elements from first to last —1; throw
IndexOutOfBoundsException if either first or last
and IllegalArgumentExceptionif last < first
(inherited).

Object[] toArray() Copy all objects from the array list to a newly created array and
return the array.

Object[] toArray(Object a[]) Copy all objects from the array list to the array a if a is large
enough or to a newly created array and return the array;
throw ArrayStoreException if type of a is nota
supertype of the type of every element in the array list and
NullPointerException if a is null.

void trimToSize() Trim the capacity of this array list to the list’s current size.

String toString() Return a string representation of the array list that contains
the string representation of all the objects.

FIGURE 3.28 A program demonstrating the operation of ArrayList methods.

import java.io.*;
import java.util.*;

class TestArrayList {

public static void main(String[] ar) {
ArrayList 1lstl = new ArrayList();
lstl.add(new Integer(4));
lstl.add(new Integer(5));
lstl.add(new Integer(6));
lstl.add(new Integer(4));
ArrayList 1st2 = new ArrayList(4);
lst2.add(new Integer(3));
lst2.add(new Integer(4));
lst2.add(new Character('a'));
l1st2.add(new Double(1l.1));
System.out.println(1lstl);
System.out.println(1lst2);
lIstl.removeAll(1lst2);
// difference: [4, 5, 6, 4] and [3, 4, a, 1.1] ==> [5, 6]
System.out.println(1lstl);
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FIGURE 3.28 (continued)

1stl.add(0,new Integer(4));

1stl.add(new Integer(4));

lstl.retainAll(1lst2);

// intersection: [4, 5, 6, 4] and [3, 4, a, 1.1] ==> [4, 4]
System.out.println(lstl);

1stl.add(1l,new Integer(5));

1stl.add(2,new Integer(6));

1stl.addAll(1st2);

// union:

// [4, 5, 6, 4] and [3, 4, a, 1.1] ==> [4, 5, 6, 4, 3, 4, a, 1.1]
System.out.println(lstl);

List 1st3 = lstl.subList(2,5);

System.out.println(lst3); // [6, 4, 3]

lstl.set(3,new Integer(10)); // update lstl and 1lst3
System.out.println(lstl); // [4, 5, 6, 10, 3, 4, a, 1.1]
System.out.println(lst3); // [6, 10, 3]

1st3.clear();

System.out.println(lstl); // [4, 5, 4, a, 1.1]
System.out.println(lst3); // 11

m CONCLUDING REMARKS

Linked lists have been introduced to overcome limitations of arrays by allowing dy-
namic allocation of necessary amounts of memory. Also, linked lists allow easy inser-
tion and deletion of information because such operations have a local impact on the
list. To insert a new element at the beginning of an array, all elements in the array have
to be shifted to make room for the new item; hence, insertion has a global impact on
the array. Deletion is the same. So should we always use linked lists instead of arrays?
Arrays have some advantages over linked lists, namely that they allow random ac-
cessing. To access the tenth node in a linked list, all nine preceding nodes have to be
passed. In the array, we can go to the tenth cell immediately. Therefore, if an immediate
access of any element is necessary, then an array is a better choice. This was the case with
binary search, and it will be the case with most sorting algorithms (see Chapter 9). But if
we are constantly accessing only some elements—the first, the second, the last, and the
like—and if changing the structure is the core of an algorithm, then using a linked list is
a better option. A good example is a queue, which is discussed in the next chapter.
Another advantage in the use of arrays is space. To hold items in arrays, the cells
have to be of the size of the items. In linked lists, we store one item per node, and the
node also includes at least one reference field; in doubly linked lists, the node contains
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two reference fields. For large linked lists, a significant amount of memory is needed
to store the references. Therefore, if a problem does not require many shifts of data,
then having an oversized array may not be wasteful at all if its size is compared to the
amount of space needed for the linked structure storing the same data as the array.

STuDY: A LIBRARY

This case study is a program that can be used in a small library to include new books
in the library, to check out books to people, and to return them.

As this program is a practice in the use of linked lists, almost everything is imple-
mented in terms of such lists. But to make the program more interesting, it uses
linked lists of linked lists that also contain cross-references (see Figure 3.29).

First, there could be a list including all authors of all books in the library. How-
ever, searching through such a list can be time-consuming, so the search can be sped
up by choosing at least one of the two following strategies:

B The list can be ordered alphabetically, and the search can be interrupted if we
find the name, if we encounter an author’s name greater than the one we are
searching for, or if we reach the end of list.

B We can use an array of references to the author structures indexed with letters;
each slot of the array points to the linked list of authors whose names start with
the same letter.

The best strategy is to combine both approaches. However, in this case study, only
the second approach is used, and the reader is urged to amplify the program by
adding the first approach. Note that the articles g, an, and the at the beginning of the
titles should be disregarded during the sorting operation.

The program uses an array catalog of all the authors of the books included in the
library and an array people of all the people who have used the library at least once.
Both arrays are indexed with letters so that, for instance, position catalog[ 'F' ] refers
to a linked list of all the authors whose names start with E

Because we can have several books by the same author, one of the fields of the au-
thor node refers to the list of books by this author that can be found in the library.
Similarly, because each patron can check out several books, the patron node contains
a reference to the list of books currently checked out by this patron. This fact is indi-
cated by setting the patron field of the checked-out book to the node pertaining to
the patron who is taking the book out.

Books can be returned, and that fact should be reflected by removing the appro-
priate CheckedOutBook nodes from the list of the checked-out books of the patron
who returns them. The Patron field in the node related to the book that is being re-
turned has to be reset to null.

The program defines four classes: Author, Book, Patron, and CheckedOut-
Book. Java’s LinkedList class is used to define three more classes: AuthorList,
BookList, and PatronList. To use the LinkedList class to generate and process a
specific linked list, the generic methods need to be accommodated to a specific class. In
particular, because the way of comparing instances of the first four library classes and
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FIGURE 3.29 Linked lists indicating library status.
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the way of displaying them vary from one class to another, each of the four classes in-
cludes a definition of the method equals () to override the generic definition used in
class object. To display data, two classes override the generic method isString().
However, this allows us to print information extracted from one node of a linked list.
For two classes, however, a method is needed to print linked lists L, of linked lists L,
(e.g., a list of patrons, each node of which refers to a linked list of checked-out books).
It is possible to convert for each node of L, to string not only information contained di-
rectly in the node, but also all the information on the linked list accessed from the
node. This is a way of overriding the method toString() defined for LinkedList.
For some variety, the three classes derived from LinkedList define their own ver-
sions of the display () method. AuthorList displays the list of authors by first con-
verting the list into an array and then processing the array with the subscripting
operator. BookList uses the get () method to access the elements of the list of books.
Finally, PatronList uses an iterator to perform the same task. Note that BookList is
used generically to create two types of lists: a linked list of books in Author objects and
checked-out books in Patron objects.

The program allows the user to choose one of the five operations: adding a book
to the library, checking a book out, returning it, showing the current status of the li-
brary, and exiting the program. The operation is chosen after a menu is displayed and
a proper number is entered. The cycle of displaying the menu and executing an
elected operation ends with choosing the exit option. Here is an example of the status
for a situation shown in Figure 3.29.

Library has the following books:

Fielding Henry
* Pasquin - checked out to Chapman Carl
* The History of Tom Jones
Fitzgerald Edward
* Selected Works
* Euphranor - checked out to Brown Jim
Murdoch Iris
* The Red and the Green - checked out to Brown Jim
* Sartre
* The Bell

The following people are using the library:

Brown Jim has the following books

* Fitzgerald Edward, Euphranor

* Murdoch Iris, The Red and the Green
Chapman Carl has the following books

* Fielding Henry, Pasquin
Kowalski Stanislaus has no books

Note that the diagram in Figure 3.29 reflects only the logic of the use of the linked
lists and thus is significantly simplified. In a more realistic diagram, we need to take
into account the fact that object data fields do not hold objects but only references to
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them. Also, each object that is an instance of the generic LinkedList class refers to a
linked list in which each node refers to an object. A fragment of Figure 3.29 is shown

in Figure 3.30 with implementation details shown more explicitly. The listing for the
library program is shown in Figure 3.31.

FIGURE 3.30  Fragment of structure from Figure 3.29 with all the objects used in the implementation.
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FIGURE 3.31  The library program.

[/ FxERAET KKK KKK kKK Rk kK kkkkkxxkx  Library.java  KEkrxEkkkkkkkkkkkkkkkkkkkxkok
import java.io.*;
import java.util.LinkedList;

class Author {

public String name;

public BookList books = new BookList();

public Author() {

}

public boolean equals(Object node) {
return name.equals(((Author) node).name);

}

public void display() {
System.out.println(name);
books.display();

class Book {
public String title;
public Patron patron = null;
public Book() {
}
public boolean equals(Object node) ({
return title.equals(((Book) node).title);

}
public String toString() {
return " * " + title +
(patron != null ? " - checked out to " + patron.name : "") +
"\n";
}

class CheckedOutBook {
public Author author = null;
public Book book = null;
public CheckedOutBook() {
}
public boolean equals(Object node) ({
return book.title.equals( ((CheckedOutBook) node).book.title) &&
author.name.equals( ( (CheckedOutBook) node).author.name);
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FIGURE 3.31 (continued)

public String toString() {
return " * " + author.name + ", " + book.title + "\n";

class Patron {
public String name;
public BookList books = new BookList();
public Patron() {
}
public boolean equals(Object node) {
return name.equals(((Patron) node).name);
}
public void display() {
if (!books.isEmpty()) {
System.out.println(name + " has the following books:");
books.display();
}

else System.out.print(name + " has no books");

class AuthorList extends LinkedList {

public AuthorList() {
super();

}

public void display() {
Object[] authors = toArray();
for (int i = 0; i < authors.length; i++)

((Author)authors([i]).display();

class BookList extends LinkedList {
public BookList() {
super();
¥
public void display() {
for (int i = 0; i < size(); it+)
System.out.print(get(i));

Continues
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FIGURE 3.31  (continued)

class PatronList extends LinkedList {
public PatronList() {
super();
}
public void display() {
for (java.util.Iterator it = iterator(); it.hasNext(); )
((Patron)it.next()).display();

class Library {
private AuthorList[] catalog = new AuthorList[ (int)('Z'+1)];
private PatronList[] people = new PatronList[(int)('Z'+1l)];
private String input;
private BufferedReader buffer = new BufferedReader (
new InputStreamReader (System.in));
public Library() {
for (int i = 0; i <= (int) 'Z2'; i++) {
catalog[i] = new AuthorList();
people[i] = new PatronList();

}
private String getString(String msg) {
System.out.print(msg + " ");
System.out.flush();
try {
input = buffer.readLine();
} catch(IOException io) {
¥
return input.substring(0,1).toUpperCase() + input.substring(l);
¥
private void status() {
System.out.println("Library has the following books:\n ");
for (int i = (int) 'A'; i <= (int) 'Z'; i++)
if (!catalog[i].isEmpty())
catalog[i].display();
System.out.println("\nThe following people are using the
"library:\n ");
for (int i = (int) 'A'; i <= (int) 'Z'; i++)
if (!people[i].isEmpty())
people[i].display();
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FIGURE 3.31 (continued)

private void includeBook() {
Author newAuthor = new Author();
int oldAuthor;
Book newBook = new Book();
newAuthor.name = getString("Enter author’s name:");
newBook.title = getString("Enter the title of the book:");
oldAuthor = catalog[ (int)

newAuthor.name.charAt(0)].indexOf (newAuthor) ;
if (oldAuthor == -1) {
newAuthor.books.add (newBook) ;
catalog[ (int) newAuthor.name.charAt(0)].add(newAuthor);
}
else ((Author)catalog[(int)
newAuthor.name.charAt(0)].get(oldAuthor)).
books.add (newBook) ;

}

private void checkOutBook() {
Patron patron = new Patron(), patronRef; // = new Patron();
Author author new Author(), authorRef = new Author();
Book book = new Book();

int patronIndex, bookIndex = -1, authorIndex = -1;
patron.name = getString("Enter patron’s name:");
while (authorIndex == -1) {
author.name = getString("Enter author’s name:");
authorIndex = catalog[ (int)
author.name.charAt(0)].indexOf (author);
if (authorIndex == -1)
System.out.println("Misspelled author’s name");

}
while (bookIndex == -1) {
book.title = getString("Enter the title of the book:");
authorRef = (Author) catalog[ (int)
author.name.charAt(0) ].get(authorIndex);
bookIndex = authorRef.books.indexOf (book) ;
if (bookIndex == -1)
System.out.println("Misspelled title");
S
Book bookRef = (Book) authorRef.books.get (bookIndex);

CheckedOutBook bookToCheckOut = new CheckedOutBook();
bookToCheckOut.author = authorRef;
bookToCheckOut .book = bookRef;

Continues
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FIGURE 3.31  (continued)

patronIndex = people[ (int)
patron.name.charAt(0)].indexOf (patron);
if (patronIndex == -1) { // a new patron in the library;
patron.books.add(bookToCheckOut) ;
people[ (int) patron.name.charAt(0)].add(patron);
bookRef.patron = (Patron) people[ (int)
patron.name.charAt(0)].getFirst();

}
else {
patronRef = (Patron) people[ (int)
patron.name.charAt(0)].get(patronIndex);
patronRef .books.add(bookToCheckOut) ;
bookRef.patron = patronRef;
}

}

private void returnBook() {
Patron patron = new Patron();
Book book = new Book();
Author author = new Author(), authorRef = new Author();
int patronIndex = -1, bookIndex = -1, authorIndex = -1;
while (patronIndex == -1) {
patron.name = getString("Enter patron’s name:");
patronIndex = people[ (int)
patron.name.charAt(0)].indexOf (patron);
if (patronIndex == -1)
System.out.println("Patron’s name misspelled");

}
while (authorIndex == -1) {
author.name = getString("Enter author’s name:");
authorIndex = catalog[ (int)
author.name.charAt(0)].indexOf (author);
if (authorIndex == -1)
System.out.println("Misspelled author’s name");
}
while (bookIndex == -1) {
book.title = getString("Enter the title of the book:");
authorRef = (Author) catalog[ (int)
author.name.charAt(0) ].get(authorIndex);
bookIndex = authorRef.books.indexOf (book) ;
if (bookIndex == -1)
System.out.println("Misspelled title");
S
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FIGURE 3.31 (continued)

CheckedOutBook checkedOutBook = new CheckedOutBook();
checkedOutBook.author = authorRef;
checkedOutBook.book = (Book) authorRef.books.get (bookIndex);
( (Book)authorRef.books.get (bookIndex)).patron = null;
((Patron)people[ (int) patron.name.charAt(0)].get(patronIndex)).
books.remove (checkedOutBook) ;
}
public void run() {
while (true) {
char option = getString("\nEnter one of the following" +
"options:\n" +
"l. Include a book in the catalog\n" +
"2. Check out a book\n" +
"3. Return a book\n4. Status\n5." +
"Exit\n" +
"Your option:").charAt(0);
switch (option) ({
case 'l': includeBook(); break;
case '2': checkOutBook(); break;
case '3': returnBook(); break;
case '4': status(); break;
case '5': return;
default: System.out.println("Wrong option, try again.");

¥
public static void main(String args[]) {
(new Library()).run();
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EB]  EXERCISES

1. Assume that a circular doubly linked list has been created, as in Figure 3.32. After
each of the following assignments, indicate changes made in the list by showing
which links have been modified. Process these assignments in sequence; that is, the
second assignment should make changes in the list modified by the first assignment,
and so on.

list.next.next.next = list.prev;
list.prev.prev.prev = list.next.next.next.prev;
list.next.next.next.prev = list.prev.prev.prev;
list.next = list.next.next;

list.next.prev.next = list.next.next.next;

FIGURE 3.32 A circular doubly linked list.

lii}lf
1\

—

2. How many nodes does the shortest linked list have? The longest linked list?

3. The linked list in Figure 3.11 was created in Section 3.2 with three assignments. Create
this list with only one assignment.

4. Merge two ordered singly linked lists of integers into one ordered list.
5. Delete an ith node on a linked list. Be sure that such a node exists.

6. Delete from list L, nodes whose positions are to be found in an ordered list L,. For
instance, if L, = (AB C D E) and L, = (2 4 8), then the second and the fourth nodes
are to be deleted from list L (the eighth node does not exist), and after deletion,

L =(ACE).

7. Delete from list L, nodes occupying positions indicated in ordered lists L, and L. For
instance, ile =(ABCDE), L,=(24 8),and L= (2 5), then after deletion, L,=(ACQ).

8. Delete from an ordered list L nodes occupying positions indicated in list L itself.
For instance, if L = (1 3 5 7 8), then after deletion, L = (1 7).

9. Suggest an array implementation of linked lists.
10. Write a method to check whether two singly linked lists have the same contents.

11. Write a method to reverse a singly linked list using only one pass through the list.
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Write a method to insert a new node into a singly linked list (a) before and (b) after a
node referred by p in this list (possibly the first or the last). Do not use a loop in either
operation.

Attach a singly linked list to the end of another singly linked list.

Put numbers in a singly linked list in ascending order. Use this operation to find the
median in the list of numbers.

How can a singly linked list be implemented so that insertion requires no test for
whether head is null?

Insert a node exactly in the middle of a doubly linked list.

Write code for class IntCircularSLList for a circular singly linked list that in-
cludes equivalents of the methods listed in Figure 3.2.

Write code for class IntCircularDLList for a circular doubly linked list that in-
cludes equivalents of the methods listed in Figure 3.2.

How likely is the worst case for searching a skip list to occur?

Consider the move-to-front, transpose, count, and ordering methods.
a. Inwhat case is a list maintained by these methods not changed?

b. In what case do these methods require an exhaustive search of lists for each
search, assuming that only elements in the list are searched for?

In the discussion of self-organizing lists, only the number of comparisons was con-
sidered as the measure of different methods’ efficiency. This measure can, however, be
greatly affected by a particular implementation of the list. Discuss how the efficiency
of the move-to-front, transpose, count, and ordering methods are affected in the case
when the list is implemented as

a. anarray
b. asingly linked list
c. adoubly linked list

For doubly linked lists, there are two variants of the move-to-front and transpose
methods (Matthews, Rotem, & Bretholz 1980). A move-to-end method moves an
element being accessed to the end from which the search started. For instance, if the
doubly linked list is a list of items A B C D and the search starts from the right end
to access node C, then the reorganized listis A B D C. If the search for C started from
the left end, the resulting listis CA B D.

The swapping technique transposes a node with its predecessor also with respect to
the end from which the search started (Ng & Oommen 1989). Assuming that only
elements of the list are in the data, what is the worst case for a move-to-end doubly
linked list when the search is made alternately from the left and from the right? For
a swapping list?

What is the maximum number of comparisons for optimal search for the 14 letters
shown in Figure 3.20?
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24. Adapt the binary search to linked lists. How efficient can this search be?

25. In the second implementation of storing student grades, two pairs of two-dimensional
arrays are used: classesTakenl and classesTaken2, and studentsInClassesl
and studentsInClasses2 (Figure 3.23). Why not use just two arrays,
classesTaken and studentsInClasses, of objects with two data fields?

EXE] PROGRAMMING ASSIGNMENTS

g 0 1 c g
1. Farey fractions of level one are defined as sequence (-, 7). This sequence is ex-

0o 1 1 2 1

),sequence(T,?, 230 T)at

1

. 0 1
tended in level two to form a sequence ( T3]

o 1 1 1 2 3 1

level three, sequence ( T 20323401 ) at level four, so that at each level n,

0 H o o g : b :
anew fraction Z?i is inserted between two neighbor fractions % and — onlyif
¢+ d < n. Write a program which for a number 7 entered by the user creates—by
constantly extending it—a linked list of fractions at level n and then displays them.

2. Write a simple airline ticket reservation program. The program should display a menu
with the following options: reserve a ticket, cancel a reservation, check whether a ticket
is reserved for a particular person, and display the passengers. The information is
maintained on an alphabetized linked list of names. In a simpler version of the pro-
gram, assume that tickets are reserved for only one flight. In a fuller version, place no
limit on the number of flights. Create a linked list of flights with each node including
a reference to a linked list of passengers.

3. Read Section 12.1 about sequential-fit methods. Implement the discussed methods
with linked lists and compare their efficiency.

4. Write a program to simulate managing files on disk. Define the disk as a one-
dimensional array disk of size numOfSectors*sizeOfSector, where
sizeOfSector indicates the number of characters stored in one sector. (For the
sake of debugging, make it a very small number.) A pool of available sectors is kept
in a linked list sectors of three field structures: two fields to indicate ranges of
available sectors and one next field. Files are kept in a linked list £i1les of four
field structures: file name, the number of characters in the file, a reference to a
linked list of sectors where the contents of the file can be found, and the next field.

a. In the first part, implement methods to save and delete files. Saving files requires
claiming a sufficient number of sectors from pool, if available. The sectors may not
be contiguous, so the linked list assigned to the file may contain several nodes. Then
the contents of the file have to be written to the sectors assigned to the file. Deletion
of a file only requires removing the nodes corresponding with this file (one from
files and the rest from its own linked list of sectors) and transferring the sectors
assigned to this file back to pool. No changes are made in disk.
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b. File fragmentation slows down file retrieval. In the ideal situation, one cluster
of sectors is assigned to one file. However, after many operations with files, it may
not be possible. Extend the program to include a method together () to transfer
files to contiguous sectors; that is, to create a situation illustrated in Figure 3.33.
Fragmented files f£ilel and £ile2 occupy only one cluster of sectors after
together () is finished. However, particular care should be taken not to overwrite
sectors occupied by other files. For example, £ilel requires eight sectors; five sec-
tors are free at the beginning of pool, but sectors 5 and 6 are occupied by £ile2.
Therefore, a file f occupying such sectors has to be located first by scanning files.
The contents of these sectors must be transferred to unoccupied positions, which
requires updating the sectors belonging to fin the linked list; only then can the re-
leased sectors be utilized. One way of accomplishing this is by copying from the area
into which one file is copied chunks of sectors of another file into an area of the disk
large enough to accommodate these chunks. In the example in Figure 3.33, contents
of £ilel first are copied to sectors 0 through 4, and then copying is temporarily
suspended because sector 5 is occupied. Thus, contents of sectors 5 and 6 are moved
to sectors 12 and 14, and the copying of £ilel is resumed.

5. Write a simple line editor. Keep the entire text on a linked list, one line in a separate
node. Start the program with entering EDIT file, after which a prompt appears
along with the line number. If the letter I is entered with a number # following it,
then insert the text to be followed before line #. If T is not followed by a number, then
insert the text before the current line. If D is entered with two numbers 7 and m, one
n, or no number following it, then delete lines 7 through m, line n, or the current line.
Do the same with the command L, which stands for listing lines. If A is entered, then
append the text to the existing lines. Entry E signifies exit and saving the text in a file.
Here is an example:

EDIT testfile

1> The first line

2>

3> And another line

4> 1 3

3> The second line

4> One more line

5> L

1> The first line

2>

3> The second line

4> One more line

5> And another line // This is now line 5, not 3;

5> D 2 // line 5, since L was issued from line 5;
4> I, // line 4, since one line was deleted;
1> The first line

2> The second line // this and the following lines

3> One more line // now have new numbers;

4> And another line

4> E
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FIGURE 3.33 Linked lists used to allocate disk sectors for files: (a) a pool of available sectors; two
files (b) before and (c) after putting them in contiguous sectors; the situation in sec-
tors of the disk (d) before and (e) after this operation.
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6. Extend the case study program in this chapter to have it store all the information in
the file Library.dat at exit and initialize all the linked lists using this information
at the invocation of the program. Also, extend it by adding more error checking, such
as not allowing the same book to be checked out at the same time to more than one
patron or not including the same patron more than once in the library.

7. Test the efficiency of skip lists. In addition to the methods given in this chapter, im-
plement skipListDelete () and then compare the number of node accesses in
searching, deleting, and inserting for large numbers of elements. Compare this effi-
ciency with the efficiency of linked lists and ordered linked lists. Test your program
on a randomly generated order of operations to be executed on the elements. These
elements should be processed in random order. Then try your program on nonran-
dom samples.

. BIBLIOGRAPHY

Bentley, Jon L., and McGeoch, Catherine C., “Amortized Analyses of Self-Organizing Sequential
Search Heuristics,” Communications of the ACM 28 (1985), 404—411.

Foster, John M., List Processing, London: MacDonald, 1967.

Hansen, Wilfred J., “A Predecessor Algorithm for Ordered Lists,” Information Processing Letters
7 (1978), 137-138.

Hester, James H., and Hirschberg, Daniel S., “Self-Organizing Linear Search,” Computing Sur-
veys 17 (1985),295-311.

Matthews, D., Rotem, D., and Bretholz, E., “Self-Organizing Doubly Linked Lists,” International
Journal of Computer Mathematics 8 (1980), 99-106.

Ng, D. T. H., and Oommen, B. J., “Generalizing Singly-Linked List Reorganizing Heuristics for
Doubly-Linked Lists,” in Kreczmar, A., and Mirkowska, G. (eds.), Mathematical Foundations of
Computer Science 1989, Berlin: Springer, 1989, 380-389.

Pugh, William, “Skip Lists: A Probabilistic Alternative to Balanced Trees,” Communications of
the ACM 33 (1990), 668—676.

Rivest, Ronald, “On Self-Organizing Sequential Search Heuristics,” Communications of the
ACM 19 (1976), No. 2, 63—67.

Sleator, Daniel D., and Tarjan, Robert E., “Amortized Efficiency of List Update and Paging
Rules,” Communications of the ACM 28 (1985), 202—208.

Wilkes, Maurice V., “Lists and Why They Are Useful,” Computer Journal 7 (1965), 278-281.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Stacks and
Queues

implementation of a data type until it is well understood what operations are

required to operate on the data. In fact, these operations determine which
implementation of the data type is most efficient in a particular situation. This situa-
tion is illustrated by two data types, stacks and queues, which are described by a list of
operations. Only after the list of the required operations is determined do we present
some possible implementations and compare them.

EX] Stacks

A stack is a linear data structure that can be accessed only at one of its ends for storing
and retrieving data. Such a stack resembles a stack of trays in a cafeteria: New trays are
put on the top of the stack and taken off the top. The last tray put on the stack is the
first tray removed from the stack. For this reason, a stack is called an LIFO structure:
last in/first out.

A tray can be taken only if there are trays on the stack, and a tray can be added to
the stack only if there is enough room; that is, if the stack is not too high. Therefore, a
stack is defined in terms of operations that change its status and operations that check
this status. The operations are as follows:

0 s the first chapter explained, abstract data types allow us to delay the specific

B clear()—Clear the stack.
B isEmpty()—Check to see if the stack is empty.

B push(el)—Put the element el on the top of the stack.

B pop()—Take the topmost element from the stack.

B topEl()—Return the topmost element in the stack without removing it.

A series of push and pop operations is shown in Figure 4.1. After pushing num-
ber 10 onto an empty stack, the stack contains only this number. After pushing 5 on
the stack, the number is placed on top of 10 so that, when the popping operation is
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FIGURE 4.1 A series of operations executed on a stack.

push 10  push 5 pop push 15  push7 pop

(0 0 (0
|_||£|13|£||£|\£‘|£|

executed, 5 is removed from the stack, because it arrived after 10, and 10 is left on the
stack. After pushing 15 and then 7, the topmost element is 7, and this number is re-
moved when executing the popping operation, after which the stack contains 10 at the
bottom and 15 above it.

Generally, the stack is very useful in situations when data have to be stored and
then retrieved in reverse order. One application of the stack is in matching delimiters
in a program. This is an important example because delimiter matching is part of any
compiler: No program is considered correct if the delimiters are mismatched.

In Java programs, we have the following delimiters: parentheses “(” and ),
square brackets “[” and “]”, curly brackets “{” and “}”, and comment delimiters “/*”
and “*/”. Here are examples of Java statements that use delimiters properly:

a=b+ (c—-—d) * (e —-f);

g[10] = h[i[9]] + (J + k) * 1;
while (m < (n[8] + 0)) { p = 7; /* initialize p */ r

]
(o))

~e
-~

These examples are statements in which mismatching occurs:

a=b+ (c—-d) * (e —f));
g[10] = h[i[9]] + J + k) * 1;
while (m < (n[8] + o]) { p = 7; /* initialize p */ r = 6; }

A particular delimiter can be separated from its match by other delimiters; that is,
delimiters can be nested. Therefore, a particular delimiter is matched up only after all
the delimiters following it and preceding its match have been matched. For example,
in the condition of the loop

while (m < (n[8] + 0))

the first opening parenthesis must be matched with the last closing parenthesis, but
this is done only after the second opening parenthesis is matched with the next to last
closing parenthesis; this, in turn, is done after the opening square bracket is matched
with the closing bracket.

The delimiter matching algorithm reads a character from a Java program and
stores it on a stack if it is an opening delimiter. If a closing delimiter is found, the
delimiter is compared to a delimiter popped off the stack. If they match, processing
continues; if not, processing discontinues by signaling an error. The processing of
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the Java program ends successfully after the end of the program is reached and the
stack is empty. Here is the algorithm:

delimiterMaching(file)
read character ch from file;
while notendof file
if ch is‘C, [ or{
push(ch);
else if ch is '/’
read the next character;
if this characteris '*'
skip all characters until “*/” is found and report an error
if the end of file is reached before “*/” is encountered;
else ch = thecharacter read in;
continue; // go to the beginning of the loop;
else if ch is), [ or )
if ch and popped off delimiter do not match
failure;
// else ignore other characters;
read next character ch from file;
if stack is empty
success;
else failure;

Figure 4.2 shows the processing that occurs when applying this algorithm to the
statement

S=t[5]1+u/(v*(wty));

The first column in Figure 4.2 shows the contents of the stack at the end of the
loop before the next character is input from the program file. The first line shows the
initial situation in the file and on the stack. Variable ch is initialized to the first charac-
ter of the file, letter s, and in the first iteration of the loop, the character is simply ig-
nored. This situation is shown in the second row in Figure 4.2. Then the next character,
equal sign, is read. It is also ignored and so is the letter t. After reading the left bracket,
the bracket is pushed onto the stack so that the stack now has one element, the left
bracket. Reading digit 5 does not change the stack, but after the right bracket becomes
the value of ch, the topmost element is popped off the stack and compared with ch.
Because the popped off element (left bracket) matches ch (right bracket), the process-
ing of input continues. After reading and discarding the letter u, a slash is read and the
algorithm checks whether it is part of the comment delimiter by reading the next char-
acter, a left parenthesis. Because the character read in is not an asterisk, the slash is not a
beginning of a comment, so ch is set to left parenthesis. In the next iteration, this
parenthesis is pushed onto the stack and processing continues, as shown in Figure 4.2.
After reading the last character, a semicolon, the loop is exited and the stack is checked.
Because it is empty (no unmatched delimiters are left), success is pronounced.

As another example of stack application, consider adding very large num-
bers. The largest magnitude of integers is limited, so we are not able to add
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FIGURE 4.2

delimiterMatching().

Stack

empty
empty
empty
empty
empty
empty
empty
empty

—~

empty

empty

Nonblank Character Read

Processing the statement s=t[5]+u/ (v* (w+y) ) ; with the algorithm

Input Left
s=t[5] +u/(v*(w+7y));

=t[5] +u/(v*(w+y))
t[5] +u/ (v (Ww+y));
[5l+u/(v*(w+y));
5]+u/(v*(w+y))s
I+u/ (v (w+y);
+u/ (v (wty))
u/ (v (w+y))

I (v (w+y))s

(v (w+y);
vi(w+y))s
“(wty))s

(W+y));

w+y));

+y))s

¥)s

))s
)s

>

18,274,364,583,929,273,748,459,595,684,373 and 8,129,498,165,026,350,236, because
integer variables cannot hold such large values, let alone their sum. The problem can
be solved if we treat these numbers as strings of numerals, store the numbers corre-
sponding to these numerals on two stacks, and then perform addition by popping
numbers from the stacks. The pseudocode for this algorithm is as follows:
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addingLargeNumbers ()
read the numerals of the first number and store the numbers corresponding to
them on one stack;
read the numerals of the second number and store the numbers corresponding
to them on another stack;
result = 0;
while at least one stack is not empty
pop a number from each nonempty stack and add them to result;
push the unit part on the result stack;
store carry in result;
push carry on the result stack if it is not zero;
pop numbers from the result stack and display them ;
Figure 4.3 shows an example of the application of this algorithm. In this example,
numbers 592 and 3,784 are added.

1. First, numbers corresponding to digits composing the first number are pushed onto
operandStackl and numbers corresponding to the digits of 3,784 are pushed onto
operandStack2. Note the order of digits on the stacks.

2. Numbers 2 and 4 are popped from the stacks, and the result, 6, is pushed onto
resultStack.

3. Numbers 9 and 8 are popped from the stacks, and the unit part of their sum, 7, is
pushed onto resultStack; the tens part of the result, 1, is retained as a carry in the
variable result for subsequent addition.

4. Numbers 5 and 7 are popped from the stacks, added to the carry, and the unit part of
the result, 3, is pushed onto resultStack, and the carry, 1, becomes a value of the
variable result.

5. One stack is empty, so a number is popped from the nonempty stack, added to carry,
and the result is stored on resultStack.

6. Both operand stacks are empty, so the numbers from resultstack are popped and
printed as the final result.

Another important example is a stack used by the Java Virtual Machine (JVM). Java’s
popularity and power lie in the portability of its programs. This is ensured by compiling
Java programs into bytecodes that are executable on a specific machine, the Java Virtual
Machine. JVM is distinct in that it has no hardware realization; there is no palpable JVM
with a JVM chip. It is an abstract construct; therefore, to execute a Java program, byte-
codes have to be interpreted on a particular platform. Thus, in this process, the command

javac MyJavaProgram.java

transforms each class and interface C included in MyJavaProgram into bytecodes
that are stored in C.class file, and then the command

java MyClass

transforms MyClass (that includes main () ) into machine code executable on a par-
ticular computer. In this way, a particular system needs to have an interpreter to exe-
cute a stream of bytecodes received through the Internet.
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FIGURE 4.3 An example of adding numbers 592 and 3,784 using stacks.

1
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What is interesting in the context of this chapter is that the JVM is stack based.
Each JVM thread has a private Java stack that contains frames for all currently active
methods (only one method in a thread can be currently active; other active methods
are suspended). A new frame is pushed every time a new method is invoked, and a
frame is popped every time a method completes its execution. Each frame includes an
array containing all local variables and an execution environment that includes, among
other things, a link to the frame of the caller and information for catching exceptions.
Interestingly, each frame also includes an operand stack, which is used by JVM in-
structions as a source of arguments and a repository of results. For instance, if bytecode
96, which is the instruction iload, is followed by a bytecode index, which is an index
into the array that in the current frame holds local variables, then iload loads, or
pushes, an integer value from the local variable in position index in the array onto the
operand stack. Another example is the instruction imul, whose bytecode equals 104. If
imul is encountered, then the two topmost elements, which must be integers, are
popped off the operand stack, multiplied, and the integer result is pushed onto the
stack. The interpreter is also responsible for passing the final value generated by the
current method to the operand stack of its caller.
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Consider now implementation of our abstract stack data structure. We used push
and pop operations as though they were readily available, but they also have to be im-
plemented as methods operating on the stack.

A natural implementation for a stack is a flexible array. Figure 4.4 contains a
generic stack class definition that can be used to store any type of object. Also, a linked
list can be used for implementation of a stack (Figure 4.5).

Figure 4.6 shows the same sequence of push and pop operations as Figure 4.1
with the changes that take place in the stack implemented as an array list (Figure 4.6b)
and as a linked list (Figure 4.6¢). The linked list implementation more closely matches
the abstract stack in that it includes only the elements that are on the stack because the

FIGURE 4.4 Array list implementation of a stack.

public class Stack {
private java.util.ArrayList pool = new java.util.ArrayList();
public Stack() {
¥
public Stack(int n) {
pool.ensureCapacity(n);
}
public void clear() {
pool.clear();
¥
public boolean isEmpty() {
return pool.isEmpty();
}
public Object topEl() {
if (isEmpty())
throw new java.util.EmptyStackException();
return pool.lastElement();
¥
public Object pop() {
if (isEmpty())
throw new java.util.EmptyStackException();
return pool.remove(pool.size()-1);
¥
public void push(Object el) ({
pool.add(el);
¥
public String toString() {
return pool.toString();
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FIGURE 4.5 Implementing a stack as a linked list.

public class LLStack {
private java.util.LinkedList list = new java.util.LinkedList();
public LLStack() {
}
public void clear() {
list.clear();
}
public boolean isEmpty() {
return list.isEmpty();
}
public Object topEl() {
if (isEmpty())
throw new java.util.EmptyStackException();
return list.getLast();
}
public Object pop() {
if (isEmpty())
throw new java.util.EmptyStackException();
return list.removeLast();
}
public void push(Object el) {
list.addLast(el);
}
public String toString() {
return list.toString();

number of nodes in the list is the same as the number of stack elements. In the array
list implementation, the capacity of the stack can often surpass its size.

The array list implementation, like the linked list implementation, does not force
the programmer to make a commitment at the beginning of the program concerning
the size of the stack. If the size can be reasonably assessed in advance, then the pre-
dicted size can be used as a parameter for the stack constructor to create in advance an
array list of the specified capacity. In this way, an overhead is avoided to copy the array
list elements to a new larger location when pushing a new element to the stack for
which size equals capacity.

It is easy to see that in the array list and linked list implementations, popping and
pushing are executed in constant time O(1). However, in the array list implementa-
tion, pushing an element onto a full stack requires allocating more memory and
copies the elements from the existing array list to a new array list. Therefore, in the
worst case, pushing takes O(n) time to finish.
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FIGURE 4.6 A series of operations executed on an abstract stack (a) and the stack implemented
with an array (b) and with a linked list (c).
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4.1.1 Stacksin java.util

A generic stack class implemented in the java.util package is an extension of class
Vector to which one constructor and five methods are added (Figure 4.7). A stack
can be created with this declaration and initialization:

java.util.Stack stack = new java.util.Stack();

Note that the return type of push () is not void, but Object: The object being
pushed is the return value of the method. To check the topmost element without re-
moving it from the stack, the method peek() has to be used. Both push() and
peek () return the original topmost element, not its copy, so that the update of the
topmost elements is possible using these methods. Having defined the class ¢ with a
public double field d, the topmost object can be updated as follows:

((C)stack.push(new C())).d = 12.3;
((C)stack.peek()).d = 45.6;

The Java implementation of the stack is potentially fatal because this is really not a
stack, but a structure with stack-related methods. Class Stack is simply an extension
of class Vector; therefore, it inherits all vector-related methods. With the declaration
just given, it is possible to have such statements as:

stack.setElementAt (new Integer(5),1);
stack.removeElementAt(3);

which violate the integrity of the stack. A stack is a structure in which elements are
accessed at one end only, which is not true for the Stack class. For this reason, class
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FIGURE 4.7 A list of methods in java.util.Stack; all methods from Vector are inherited.

Method
boolean empty()

Object peek()

Object pop()

Object push(Object el)

int search(Object el)

Stack()

Operation

Return true if the stack includes no element and false otherwise.

Return the top element on the stack; throw EmptyStackException
for empty stack.

Remove the top element of the stack and return it; throw
EmptyStackException for empty stack.

Insert el at the top of the stack and return it.

Return the position of el on the stack (the first position is at the top; —1
in case of failure).

Create an empty stack.

java.util.Stack is not used in this book. The integrity of the stack could be re-
tained and advantages of vectors utilized if a stack is implemented not as an exten-
sion of class Vector, but when it uses a vector as a data field, as suggested for an
array list field in Figure 4.4.

m QUEUES

A queue is simply a waiting line that grows by adding elements to its end and shrinks
by taking elements from its front. Unlike a stack, a queue is a structure in which both
ends are used: one for adding new elements and one for removing them. Therefore,
the last element has to wait until all elements preceding it on the queue are removed.
A queue is an FIFO structure: first in/first out.

Queue operations are similar to stack operations. The following operations are
needed to properly manage a queue:
B clear()—Clear the queue.
B isEmpty()—Check to see if the queue is empty.
B enqueue(el)—Put the element el at the end of the queue.
B dequeue()—Take the first element from the queue.
B firstEl()—Return the first element in the queue without removing it.
A series of enqueue and dequeue operations is shown in Figure 4.8. This time—
unlike for stacks—the changes have to be monitored both at the beginning of the
queue and at the end. The elements are enqueued on one end and dequeued from the
other. For example, after enqueuing 10 and then 5, the dequeue operation removes 10
from the queue (Figure 4.8).
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FIGURE 4.8 A series of operations executed on a queue.
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For an application of a queue, consider the following poem written by Lewis
Carroll:

Round the wondrous globe I wander wild,
Up and down-hill—Age succeeds to youth—
Toiling all in vain to find a child

Half so loving, half so dear as Ruth.

The poem is dedicated to Ruth Dymes, which is indicated not only by the last
word of the poem, but also by reading in sequence the first letter of each line, which
also spells Ruth. This type of poem is called an acrostic, and it is characterized by ini-
tial letters that form a word or phrase when taken in order. To see whether a poem is
an acrostic, we devise a simple algorithm that reads a poem, echoprints it, retrieves
and stores the first letter from each line on a queue, and after the poem is processed,
all the stored first letters are printed in order. Here is an algorithm:

acrosticIndicator()
while not finished
read a line of poem;
enqueue the first letter of the line;
output the line;
while queue is not empty
dequeue and print a letter;

There is a more significant example to follow, but first consider the problem of
implementation.

One possible queue implementation is an array, although this may not be the
best choice. Elements are added to the end of the queue, but they may be removed
from its beginning, thereby releasing array cells. These cells should not be wasted.
Therefore, they are utilized to enqueue new elements, whereby the end of the queue
may occur at the beginning of the array. This situation is better pictured as a circular
array as Figure 4.9c illustrates. The queue is full if the first element immediately pre-
cedes in the counterclockwise direction the last element. However, because a circular
array is implemented with a “normal” array, the queue is full if either the first ele-
ment is in the first cell and the last element is in the last cell (Figure 4.9a) or if the
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FIGURE 4.9 (a-b) Two possible configurations in an array implementation of a queue when the
queue is full. (c) The same queue viewed as a circular array. (f) Enqueuing number 6
to a queue storing 2, 4, and 8. (d—e) The same queue seen as a one-dimensional array
with the last element (d) at the end of the array and (e) in the middle.
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first element is right after the last (Figure 4.9b). Similarly, enqueue() and dequeue()
have to consider the possibility of wrapping around the array when adding or re-
moving elements. For example, enqueue() can be viewed as operating on a circular
array (Figure 4.9¢), but in reality, it is operating on a one-dimensional array. There-
fore, if the last element is in the last cell and if any cells are available at the beginning
of the array, a new element is placed there (Figure 4.9d). If the last element is in any
other position, then the new element is put after the last, space permitting (Figure
4.9¢). These two situations must be distinguished when implementing a queue
viewed as a circular array (Figure 4.9f).

Figure 4.10 contains possible implementations of methods that operate on
queues. A more natural queue implementation is a doubly linked list (Figure 4.11).
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FIGURE 4.10  Array implementation of a queue.

public class ArrayQueue {

private int first, last, size;

private Object[] storage;

public ArrayQueue() {
this(100);

}

public ArrayQueue(int n) {
size = n;
storage = new Object[size];

first = last = -1;
}
public boolean isFull() {
return first == 0 && last == size-1 || first == last + 1;
}
public boolean isEmpty() {
return first == -1;
}
public void enqueue(Object el) {
if (last == size-1 || last == -1) {
storage[0] = el;
last = 0;
if (first == -1)
first = 0;
}
else storage[++last] = el;
}

public Object dequeue() {
Object tmp = storage[first];

if (first == last)
last = first = -1;
else if (first == size-1)
first = 0;

else first++;
return tmp;

¥
public void printAll() {
for (int i = 0; i < size; i++)
System.out.print(storage[i] + " ");
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FIGURE 4.11  Linked list implementation of a queue.

public class Queue {

private java.util.LinkedList list = new java.util.LinkedList();

public Queue() {

}

public void clear() {
list.clear();

}

public boolean isEmpty() {
return list.isEmpty();

}

public Object firstEl() {
return list.getFirst();

}

public Object dequeue() {
return list.removeFirst();

}

public void enqueue(Object el) {
list.addLast(el);

}

public String toString() {
return list.toString();

In both suggested implementations, enqueuing and dequeuing can be executed in
constant time O(1). In the doubly linked list implementation, it can be done in O(1) time.

Figure 4.12 shows the same sequence of enqueue and dequeue operations as Fig-
ure 4.8 and indicates the changes in the queue implemented as an array (Figure 4.12b)
and as a linked list (Figure 4.12c). The linked list keeps only the numbers that the logic
of the queue operations indicated by Figure 4.12a requires. The array includes all the
numbers until it fills up, after which new numbers are included starting from the be-
ginning of the array.

Queues are frequently used on simulations to the extent that a well-developed and
mathematically sophisticated theory of queues exists, called queuing theory, in which
various scenarios are analyzed and models are built that use queues. In queuing
processes, there are a number of customers coming to servers to receive service. The
throughput of the server may be limited. Therefore, customers have to wait in queues
before they are served and spend some amount of time while they are being served. By
customers, we mean not only people, but also objects. For example, parts on an assem-
bly line in the process of being assembled into a machine, trucks waiting for service at a
weighing station on an interstate, or barges waiting for a sluice to be opened so they can
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FIGURE 4.12 A series of operations executed on an abstract queue (a) and the stack implemented
with an array (b) and with a linked list (c).
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pass through a channel also wait in queues. The most familiar examples are lines in
stores, post offices, or banks. The types of problems posed in simulations are: How
many servers are needed to avoid long queues? How large must the waiting space be to
put the entire queue in it? Is it cheaper to increase this space or to open one more server?

As an example, consider Bank One which, over a period of three months,
recorded the number of customers coming to the bank and the amount of time
needed to serve them. The table in Figure 4.13a shows the number of customers who
arrived during one-minute intervals throughout the day. For 15% of such intervals,
no customer arrived, for 20%, only one arrived, and so on. Six clerks were employed,
no lines were ever observed, and the bank management wanted to know whether six
clerks were too many. Would five suffice? Four? Maybe even three? Can lines be ex-
pected at any time? To answer these questions, a simulation program was written that
applied the recorded data and checked different scenarios.

The number of customers depends on the value of a randomly generated number
between 1 and 100. The table in Figure 4.13a identifies five ranges of numbers from 1
to 100, based on the percentages of one-minute intervals that had 0, 1, 2, 3, or 4 cus-
tomers. If the random number is 21, then the number of customers is 1; if the random
number is 90, then the number of customers is 4. This method simulates the rate of
customers arriving at Bank One.

In addition, analysis of the recorded observations indicates that no customer re-
quired 10-second or 20-second transactions, 10% required 30 seconds, and so on, as
indicated in Figure 4.13b. The table in 4.13b includes ranges for random numbers to
generate the length of a transaction in seconds.
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FIGURE 4.13
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Bank One example: (a) data for number of arrived customers per one-minute interval
and (b) transaction time in seconds per customer.

Amount of
Percentage Time Needed
of One-Minute for Service Percentage of
Intervals Range in Seconds Customers Range
15 1-15 0 0 —
20 16-35 10 0 —
25 36-60 20 0 —
10 61-70 30 10 1-10
30 71-100 40 5 11-15
(a) 50 10 16-25
60 10 26-35
70 0 —
80 15 36-50
90 25 51-75
100 10 76-85
110 15 86-100

(b)

Figure 4.14 contains the code simulating customer arrival and transaction time at
Bank One. The program uses three arrays. arrivals[ ] records the percentages of
one-minute intervals depending on the number of the arrived customers. The array
service[ ] is used to store the distribution of time needed for service. The amount
of time is obtained by multiplying the index of a given array cell by 10. For example,
service[3] is equal to 10, which means that 10% of the time a customer required
3 - 10 seconds for service. The array clerks| ] records the length of transaction time
in seconds.

For each minute (represented by the variable t), the number of arriving cus-
tomers is randomly chosen, and for each customer, the transaction time is also ran-
domly determined. The method option() generates a random number, finds the
range into which it falls, and then outputs the position, which is either the number of
customers or a tenth the number of seconds.

Executions of this program indicate that six and five clerks are too many. With
four clerks, service is performed smoothly; 20% of the time there is a short line of
waiting customers. However, three clerks are always busy and there is always a long
line of customers waiting. Bank management would certainly decide to employ four
clerks.
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FIGURE 4.14  Bank One example: implementation code.

import java.util.Random;

class BankSimulation {

static Random rd = new Random();

static int Option(int percents[]) {
int i = 0, perc, choice = Math.abs(rd.nextInt()) % 100 + 1;
for (perc = percents[0]; perc < choice; perc += percents[i+l], i++);
return i;

}

public static void main(String args[]) {
int[] arrivals = {15,20,25,10,30};
int[] service = {0,0,0,10,5,10,10,0,15,25,10,15};
int[] clerks = {0,0,0,0};
int clerksSize = clerks.length;
int customers, t, i, numOfMinutes = 100, x;
double maxWait = 0.0, thereIsLine = 0.0, currWait = 0.0;
Queue simulQ = new Queue();
for (t = 1; t <= numOfMinutes; t++) {

System.out.print(" t = " + t);
for (i = 0; i < clerksSize; i++)// after each minute subtract
if (clerks[i] < 60) // at most 60 seconds from time
clerks[i] = 0; // left to service the current
else clerks[i] -= 60; // customer by clerk i;

customers = Option(arrivals);
for (i = 0; i1 < customers; i++) { // enqueue all new customers
x = Option(service)*10; // (or rather service time
simulQ.enqueue(new Integer(x)); // they require);
currWait += x;
}
// dequeue customers when clerks are available:
for (i = 0; i < clerksSize && !simulQ.isEmpty(); )
if (clerks[i] < 60) {
X = ((Integer) simulQ.dequeue()).intValue();
// assign more than one customer
clerks[i] += x; // to a clerk if service time
currWait -= x; // is still below 60 sec;
}
else i++;
if (!simulQ.isEmpty()) {
thereIsLine++;
System.out.print(" wait = " + ((long)(currWait/6.0)) / 10.0);
if (maxWait < currWait)
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FIGURE 4.14  (continued)

maxWait = currWait;
}
else System.out.print(" wait = 0;");
}
System.out.println("\nFor " + clerksSize + " clerks, there was a line "
+ thereIsLine/numOfMinutes*100.0 + "% of the time;\n"
+ "maximum wait time was " + maxWait/60.0 + " min.");

EX] PrioriTY QUEUES

In many situations, simple queues are inadequate, as when first in/first out scheduling
has to be overruled using some priority criteria. In a post office example, a handi-
capped person may have priority over others. Therefore, when a clerk is available, a
handicapped person is served instead of someone from the front of the queue. On
roads with tollbooths, some vehicles may be put through immediately, even without
paying (police cars, ambulances, fire engines, and the like). In a sequence of processes,
process P, may need to be executed before process P, for the proper functioning of a
system, even though P, was put on the queue of waiting processes before P,. In situa-
tions like these, a modified queue, or priority queue, is needed. In priority queues, ele-
ments are dequeued according to their priority and their current queue position.

The problem with a priority queue is in finding an efficient implementation
that allows relatively fast enqueuing and dequeuing. Because elements may arrive
randomly to the queue, there is no guarantee that the front elements will be the
most likely to be dequeued and that the elements put at the end will be the last can-
didates for dequeuing. The situation is complicated because a wide spectrum of
possible priority criteria can be used in different cases such as frequency of use,
birthday, salary, position, status, and others. It can also be the time of scheduled ex-
ecution on the queue of processes, which explains the convention used in priority
queue discussions in which higher priorities are associated with lower numbers in-
dicating priority.

Priority queues can be represented by two variations of linked lists. In one type of
linked list, all elements are entry ordered, and in another, order is maintained by
putting a new element in its proper position according to its priority. In both cases, the
total operational times are O(n) because, for an unordered list, adding an element is
immediate but searching is O(n), and in a sorted list, taking an element is immediate
but adding an element is O(n).

Another queue representation uses a short ordered list and an unordered list, and
a threshold priority is determined (Blackstone et al., 1981). The number of elements in
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the sorted list depends on a threshold priority. This means that in some cases this list
can be empty and the threshold may change dynamically to have some elements in
this list. Another way is always having the same number of elements in the sorted list;
the number \/n is a good candidate. Enqueuing takes on the average O(\/n) time and
dequeuing is immediate.

Another implementation of queues was proposed by J. O. Hendriksen (1977,
1983). It uses a simple linked list with an additional array of references to this list
to find a range of elements in the list in which a newly arrived element should be
included.

Experiments by Douglas W. Jones (1986) indicate that a linked list implementa-
tion, in spite of its O(n) efficiency, is best for 10 elements or less. The efficiency of the
two-list version depends greatly on the distribution of priorities, and it may be excel-
lent or as poor as that of the simple list implementation for large numbers of elements.
Hendriksen’s implementation, with its O(\/n) complexity, operates consistently well
with queues of any size.

STuDY: EXITING A MAZE

Consider the problem of a trapped mouse that tries to find its way to an exit in a
maze (Figure 4.15a). The mouse hopes to escape from the maze by systematically
trying all the routes. If it reaches a dead end, it retraces its steps to the last position
and begins at least one more untried path. For each position, the mouse can go in
one of four directions: right, left, down, up. Regardless of how close it is to the exit, it
always tries the open paths in this order, which may lead to some unnecessary de-
tours. By retaining information that allows for resuming the search after a dead end
is reached, the mouse uses a method called backtracking. This method is discussed
further in the next chapter.

The maze is implemented as a two-dimensional character array in which pas-
sages are marked with 0s, walls by 1s, exit position by the letter e, and the initial posi-

FIGURE 4.15
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(a) A mouse in a maze; (b) two-dimensional character array representing this situation.

11111111111
| 10000010001
10100010101

0100000101
— 10111110101
10101000101
10001010001
11111010001
101m1010001
10000010001
11111111111

(@) (b)
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tion of the mouse by the letter m (Figure 4.15b). In this program, the maze problem
is slightly generalized by allowing the exit to be in any position of the maze (picture
the exit position as having an elevator that takes the mouse out of the trap) and al-
lowing passages to be on the borderline. To protect itself from falling off the array by
trying to continue its path when an open cell is reached on one of the borderlines,
the mouse also has to constantly check whether it is in such a borderline position or
not. To avoid it, the program automatically puts a frame of 1s around the maze en-
tered by the user.

The program uses two stacks: one to initialize the maze and another to imple-
ment backtracking.

The user enters a maze one line at a time. The maze entered by the user can have
any number of rows and any number of columns. The only assumption the program
makes is that all rows are of the same lengths and that it uses only these characters:
any number of 1s, any number of 0s, one e, and one m. The rows are pushed on the
stack mazeRows in the order they are entered after attaching one 1 at the beginning
and one 1 at the end. After all rows are entered, the size of the array store can be deter-
mined, and then the rows from the stack are transferred to the array.

A second stack, mazeStack, is used in the process of escaping the maze. To re-
member untried paths for subsequent tries, the positions of the untried neighbors of
the current position (if any) are stored on a stack and always in the same order, first
upper neighbor, then lower, then left, and finally right. After stacking the open av-
enues on the stack, the mouse takes the topmost position and tries to follow it by first
storing untried neighbors and then trying the topmost position and so forth, until it
reaches the exit or exhausts all possibilities and finds itself trapped. To avoid falling
into an infinite loop of trying paths that have already been investigated, each visited
position of the maze is marked with a period.

Here is a pseudocode of an algorithm for escaping a maze:

exitMaze()
initialize stack, exitCell, entryCell, currentCell = entryCell;
while currentCell isnot exitCell
mark currentCell as visited;
push onto the stack the unvisited neighbors of currentCell;
if stack is empty
failure;
else pop off a cell from the stack and make it currentCell;
success;

The stack stores coordinates of positions of cells. This could be done, for in-
stance, by using two integer stacks for x and y coordinates. Another possibility is to
use one integer stack with both coordinates stored in one integer variable with the
help of the shifting operation. In the program in Figure 4.17, a class MazeCel1l is used
with two data fields, x and y, so that one mazeStack is used for storing MazeCell
objects.

Consider an example shown in Figure 4.16. The program actually prints out the
maze after each step made by the mouse.
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FIGURE 4.16  An example of processing a maze.

24
31 21 2 2) 2 3) (1 3) (1 3)
stack: (32 (2 2) 2 2) 22 (2 2) 2 2) 2 2)

23) 23] 123 23| 123 23 23)

currentCell: (3 3) 32 31 @210 2 2 2 3) 2 4

111111 111111 111111 111111 111111 111111 111111
111001 111001 111001 111001 111001 111001 111001
maze: 1000el 1000el 1000el 1.00el 1..0el 1...el 1...el
100mli1 10.mI1 1..mI1 1..ml1 1..mll1 1..mIll 1..mll
111111 111111 111111 111111 111111 111111 111111

(a) (b) (c) (d) (e) (f) (2)

0. After the user enters the maze

1100
000e
00ml

the maze is immediately surrounded with a frame of 1s

111111
111001
1000el
100ml11l
111111

entryCell and currentCell are initialized to (3 3) and exitCell to (2 4)
(Figure 4.16a).

1. Because currentCell is not equal to exitCell, all four neighbors of the current
cell (3 3) are tested, and only two of them are candidates for processing, namely,
(3 2) and (2 3);therefore, they are pushed onto the stack. The stack is checked to
see whether it contains any position, and because it is not empty, the topmost posi-
tion (3 2) becomes current (Figure 4.16b).

2. currentCell isstill to equal to exitCell; therefore, the two viable options accessible
from (3 2) are pushed onto the stack, namely, positions (2 2) and (3 1). Note that
the position holding the mouse is not included in the stack. After the current position is
marked as visited, the situation in the maze is as in Figure 4.16c. Now, the topmost posi-
tion, (3 1), is popped off the stack, and it becomes the value of currentCell. The
process continues until the exit is reached, as shown step by step in Figure 4.16d—f.
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Note that in step four (Figure 4.16d), the position (2 2) is pushed onto the
stack, although it is already there. However, this poses no danger, because when the
second instance of this position is popped from the stack, all the paths leading from
this position have already been investigated using the first instance of this position on
the stack. Note also that the mouse makes a detour, although there is a shorter path
from its initial position to the exit.

Figure 4.17 contains code implementing the maze exiting algorithm. The pro-
gram uses the stack defined in this chapter. If the user wants to use the stack from
java.util, theline

FIGURE 4.17 Listing of the program for maze processing.

[/ kKKK KKk kKRR Kk kkkkkkkkkkkkkx  Maze.,jaAva Kk rkkkkkkkkkkkkkkkkkkkkkkkkkokokk

import java.io.*;

class MazeCell {

public int x, y;

public MazeCell() {

¥

public MazeCell(int i, int j) {
X =1i; vy = 3J;

¥

public boolean equals(MazeCell cell) {
return x == cell.x && y == cell.y;

class Maze {
private int rows = 0, cols = 0;
private char[][] store;
private MazeCell currentCell, exitCell = new MazeCell(), entryCell = new
MazeCell();
private final char exitMarker = 'e', entryMarker = 'm', visited = '.';
private final char passage = '0', wall = '1';
private Stack mazeStack = new Stack();
public Maze() {
int row = 0, col = 0;
Stack mazeRows = new Stack();
InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader buffer = new BufferedReader(isr);
System.out.println("Enter a rectangular maze using the following "
+ "characters:\nm - entry\ne - exit\nl - wall\n0 - passage\n"
+ "Enter one line at at time; end with Ctrl-z:");

Continues
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FIGURE 4.17  (continued)

try {
String str = buffer.readLine();

while (str != null) {
row++;
cols = str.length();
str = "1" + str + "1"; // put 1ls in the borderline cells;
mazeRows.push(str);
if (str.indexOf (exitMarker) != -1) {
exitCell.x = row;

exitCell.y = str.indexOf (exitMarker);

}
if (str.indexOf (entryMarker) != -1) {
entryCell.x = row;
entryCell.y = str.indexOf (entryMarker);
}
str = buffer.readLine();
}
} catch(IOException eof) {
}
rows = row;
store = new char[rows+2][]; // create a 1D array of char arrays;
store[0] = new char[cols+2]; // a borderline row;

for ( ; !mazeRows.isEmpty(); row--)

store[row] = ((String) mazeRows.pop()).toCharArray();
store[rows+1] = new char[cols+2]; // another borderline row;
for (col = 0; col <= cols+l; col++) {

store[0][col] = wall; // £ill the borderline rows with 1ls;

store[rows+1l][col] = wall;

}
private void display(PrintStream out) {

for (int row = 0; row <= rows+l; row++)
out.println(store[row]);
out.println();
}
private void pushUnvisited(int row, int col) {
if (store[row][col] == passage || store[row][col] == exitMarker)
mazeStack.push(new MazeCell(row,col));
}
public void exitMaze(PrintStream out) {
currentCell = entryCell;

out.println();
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FIGURE 4.17  (continued)

while (!currentCell.equals(exitCell)) {
int row = currentCell.x;
int col = currentCell.y;
display(System.out); // print a snapshot;
if (!currentCell.equals(entryCell))
store[row][col] = visited;
pushUnvisited(row-1,col);
pushUnvisited(row+1l,col);
pushUnvisited(row,col-1);
pushUnvisited(row,col+1l);
if (mazeStack.isEmpty()) {
display(out);
out.println("Failure");
return;
}
else currentCell = (MazeCell) mazeStack.pop();
}
display(out);
out.println("Success");
}
static public void main (String args[]) {
(new Maze()).exitMaze(System.out);

Stack stack = new Stack();
should be replaced by
java.util.Stack stack = new java.util.Stack();

No other changes need to be made, although according to Figure 4.7,
java.util.Stack() uses method empty (), but the program in Figure 4.17 uses
method isEmpty (). This occurs because the method isEmpty () is inherited by
java.util.Stack() from java.util.Vector ().
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EX]  EXERCISES

1. Reverse the order of elements on stack S
a. using two additional stacks
b. using one additional queue
c. using one additional stack and some additional non-array variables

2. Putthe elements on the stack S in ascending order using one additional stack and
some additional non-array variables.

3. Transfer elements from stack S, to stack S, so that the elements from S, are in the
same order as on S,
a. using one additional stack

b. using no additional stack but only some additional non-array variables
4. A possible definition of a linked list—based stack can be given as follows:

public class LLStack2 extends LinkedList {
public Object pop() {
return removeLast();

¥

public void push(Object el) {
add(el);

¥

¥

It appears to be simpler than the definition of LLStack in Figure 4.5. What is the
problem with the definition of LLStack2?

5. Using additional non-array variables, order all elements on a queue using also
a. two additional queues

b. one additional queue

6. In this chapter, two different implementations were developed for a stack: class
Stack and class LLStack. The names of methods in both classes suggest that the
same data structure is meant; however, a tighter connection between these two classes
can be established. Define an abstract base class for a stack and derive from it both
class stack and class LLStack.
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7. Define a stack in terms of a queue; that is, create a class
class StackQ {
Queue pool = new Queue();
public void push(Object el) {
pool.enqueue(el);

8. Define a queue in terms of a stack.
9. A generic queue class defined in terms of an array list:

public class QueueV
private java.util.ArrayList list = new java.util.ArrayList();
public Object dequeue() {

Is this a viable solution?

10. Modify the program from the case study to print out the path without dead ends and,
possibly, with detours. For example, for an input maze

1111111
1e00001
1110111
1000001
100m001
1111111

the program from the case study outputs the processed maze

1111111
1@coooll
111.111

l1..m..1
1111111
Success

The modified program should, in addition, generate the path from the exit to the
mouse:

[1 1] [1 2] [1 3] [2 3] [3 3] [3 41 [3 5] [4 5] [4 4] [4 3]

which leaves out two dead ends, [1 4] [1 51and [3 2] [3 1] [4 1] [4 2],
but retains a detour, [3 4] [3 5] [4 5] [4 4].
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11.

Modify the program from the previous exercise so that it prints the maze with the
path without dead ends; the path is indicated by dashes and vertical bars to show the
changes of direction of the path; for the input maze from the previous exercise, the
modified program should output

1111111
le--..1
111|111
il o ||l
l1..m-|1
1111111

EX] PROGRAMMING ASSIGNMENTS

1.

Write a program that determines whether an input string is a palindrome; that is, whether
it can be read the same way forward and backward. At each point, you can read only one
character of the input string; do not use an array to first store this string and then analyze
it (except, possibly, in a stack implementation). Consider using multiple stacks.

Write a program to convert a number from decimal notation to a number expressed
in a number system whose base (or radix) is a number between 2 and 9. The conver-
sion is performed by repetitious division by the base to which a number is being
converted and then taking the remainders of division in the reverse order. For exam-
ple, in converting to binary, number 6 requires three such divisions: 6/2 = 3 remain-
der 0, 3/2 = 1 remainder 1, and finally, 1/2 = 0 remainder 1. The remainders 0, 1, and
1 are put in the reverse order so that the binary equivalent of 6 is equal to 110.

Modify your program so that it can perform a conversion in the case when the base
is a number between 11 and 27. Number systems with bases greater than 10 require
more symbols. Therefore, use capital letters. For example, a hexadecimal system
requires 16 digits: 0, 1,. . ., 9, A, B, C, D, E, E In this system, decimal number 26 is
equal to 1A in hexadecimal notation, because 26/16 = 1 remainder 10 (that is, A),
and 1/16 = 0 remainder 1.

Write a program that implements the algorithm delimiterMatching() from
Section 4.1.

Write a program that implements the algorithm addingLargeNumbers () from
Section 4.1.

Write a program to add any number of large integers. The problem can be approached
in at least two ways.

a. First, add two numbers and then repeatedly add the next number with the result
of the previous addition.

b. Create a vector of stacks and then use a generalized version of
addingLargeNumbers () to all stackes at the same time.
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6. Write a program to perform the four basic arithmetic operations, +,—, -, and /, on very
large integers; the result of division should also be an integer. Apply these operations to
compute 123%, or the hundredth number in the sequence 1 ¥2 +3,2* 3% + 4,3 * 4% +
5, . ... Also apply them to compute the Godel numbers of arithmetic expressions.

The Godel numbering function GN first establishes a correspondence between
basic elements of language and numbers:

Symbol Godel Number 6N
= 1
+ 2
* 3
— 4
/ 5
( 6
) 7
A 8
0 9
S 10
x, 11+2%;
X, 12+2%i

where S is the successor function. Then, for any formula F=s.s, . . .s :
GN('s;s,...s, ) =20NG) x 3ON(s) x - - - ¢ pGNGs,)
where p_is the nth prime. For example,
GN(1) = GN(S0) = 210* 3°
and
GN('x, + X, = x,) = 21142 % 32 5LI+6 % 71 ¢ | ] 1148

In this way, every arithmetic expression can be assigned a unique number. This
method has been used by Godel to prove theorems, known as Godel’s theorems,
which are of extreme importance for the foundations of mathematics.

7. Write a program for adding very large floating-point numbers. Extend this program
to other arithmetic operations.
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m RECURSIVE DEFINITIONS

One of the basic rules for defining new objects or concepts is that the definition
should contain only such terms that have already been defined or that are obvious.
Therefore, an object that is defined in terms of itself is a serious violation of this
rule—a vicious circle. On the other hand, there are many programming concepts that
define themselves. As it turns out, formal restrictions imposed on definitions such as
existence and uniqueness are satisfied and no violation of the rules takes place. Such
definitions are called recursive definitions, and are used primarily to define infinite
sets. When defining such a set, giving a complete list of elements is impossible, and for
large finite sets, it is inefficient. Thus, a more efficient way has to be devised to deter-
mine if an object belongs to a set.

A recursive definition consists of two parts. In the first part, called the anchor or
the ground case, the basic elements that are the building blocks of all other elements of
the set are listed. In the second part, rules are given that allow for the construction of
new objects out of basic elements or objects that have already been constructed. These
rules are applied again and again to generate new objects. For example, to construct
the set of natural numbers, one basic element, 0, is singled out, and the operation of
incrementing by 1 is given as:

1. 0e N;
2. ifne N,then(n+1)€ N;

3. there are no other objects in the set N.

(More axioms are needed to ensure that only the set that we know as the natural num-
bers can be constructed by these rules.)

According to these rules, the set of natural numbers N consists of the following
items: 0,0+ 1,0+ 1+ 1,0 + 1 + 1 + 1, and so on. Although the set N contains objects
(and only such objects) that we call natural numbers, the definition results in a some-
what unwieldy list of elements. Can you imagine doing arithmetic on large numbers
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using such a specification? Therefore, it is more convenient to use the following defi-
nition, which encompasses the whole range of Arabic numeric heritage:

1. 0,1,2,3,4,5,6,7,8,9€ N;
if n e N, then 70, nl, n2, n3, n4, n5, n6, n7, n8, n9 € N;

3. these are the only natural numbers.

Then the set N includes all possible combinations of the basic building blocks 0
through 9.

Recursive definitions serve two purposes: generating new elements, as already in-
dicated, and testing whether an element belongs to a set. In the case of testing, the
problem is solved by reducing it to a simpler problem, and if the simpler problem is
still too complex it is reduced to an even simpler problem, and so on, until it is re-
duced to a problem indicated in the anchor. For instance, is 123 a natural number?
According to the second condition of the definition introducing the set N, 123 € N if
12 € N and the first condition already says that 3 € N;but 12€ Nif 1€ Nand2 € N,
and they both belong to N.

The ability to decompose a problem into simpler subproblems of the same kind
is sometimes a real blessing, as we shall see in the discussion of quicksort in Section
9.3.3, or a curse, as we shall see shortly in this chapter.

Recursive definitions are frequently used to define functions and sequences of
numbers. For instance, the factorial function, !, can be defined in the following
manner:

nl=

1 if n =0 (anchor)
n-(n—1)! if n> 0 (inductive step)

Using this definition, we can generate the sequence of numbers
1,1,2,6,24,120, 720, 5040, 40320, 362880, 3628800, . . .

which includes the factorials of the numbers 0,1,2,...,10,...
Another example is the definition

1 ifn=0

flm)= Fln-1)+

ifn>0

1
fn=1)

which generates the sequence of rational numbers

| 25 29 941 969581
27107290 272890

Recursive definitions of sequences have one undesirable feature: To determine the
value of an element s_of a sequence, we first have to compute the values of some or all
of the previous elements, s, . . ., s, ;. For example, calculating the value of 3! requires
us to first compute the values of 0!, 1!, and 2!. Computationally, this is undesirable be-
cause it forces us to make calculations in a roundabout way. Therefore, we want to
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find an equivalent definition or formula that makes no references to other elements
of the sequence. Generally, finding such a formula is a difficult problem that cannot
always be solved. But the formula is preferable to a recursive definition because it
simplifies the computational process and allows us to find the answer for an integer n
without computing the values for integers 0, 1, . . ., n — 1. For example, a definition

of the sequence g,
1 ifn=0
gn)=

2-g(n-1) ifn>0

can be converted into the simple formula
g(n)=2"

In the foregoing discussion, recursive definitions have been dealt with only theo-
retically, as a definition used in mathematics. Naturally, our interest is in computer
science. One area where recursive definitions are used extensively is in the specifica-
tion of the grammars of programming languages. Every programming language
manual contains—either as an appendix or throughout the text—a specification of
all valid language elements. Grammar is specified either in terms of block diagrams
or in terms of the Backus-Naur form (BNF). For example, the syntactic definition of
a statement in the Java language can be presented in the block diagram form:

statement—— while — (— expression —) — statement

if —— (— expression —) — statement —|— else — statement

or in BNF:

<statement> ::= while (<expression>) <statement> |
if (<expression>) <statement> |
if (<expression>) <statement>else<statement> |

The language element <statement> is defined recursively, in terms of itself. Such defi-
nitions naturally express the possibility of creating such syntactic constructs as nested
statements or expressions.

Recursive definitions are also used in programming. The good news is that virtu-
ally no effort is needed to make the transition from a recursive definition of a func-
tion to its implementation in Java. We simply make a translation from the formal
definition into Java syntax. Hence, for example, a Java equivalent of factorial is the
method

int factorial (int n) {
if (n == 0)
return 1;
else return n * factorial (n — 1);
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The problem now seems to be more critical because it is far from clear how a
method calling itself can possibly work, let alone return the correct result. This chap-
ter shows that it is possible for such a method to work properly. Recursive definitions
on most computers are eventually implemented using a run-time stack, although the
whole work of implementing recursion is done by the operating system, and the
source code includes no indication of how it is performed. E. W. Dijkstra intro-
duced the idea of using a stack to implement recursion. To better understand recur-
sion and to see how it works, it is necessary to discuss the processing of method calls
and to look at operations carried out by the system at method invocation and
method exit.

m METHOD CALLS AND RECURSION IMPLEMENTATION

What happens when a method is called? If the method has formal parameters, they
have to be initialized to the values passed as actual parameters. In addition, the system
has to know where to resume execution of the program after the method has finished.
The method can be called by other methods or by the main program (the method
main()). The information indicating where it has been called from has to be remem-
bered by the system. This could be done by storing the return address in main mem-
ory in a place set aside for return addresses, but we do not know in advance how much
space might be needed, and allocating too much space for that purpose alone is not
efficient.

For a method call, more information has to be stored than just a return address.
Therefore, dynamic allocation using the run-time stack is a much better solution.
It needs to be stressed that the run-time stack is maintained by a particular operat-
ing system. At the end of Section 4.1, a Java stack used by the Java Virtual Machine
was briefly described. Java stack and run-time stack are two different entities. They
are similar in that their role in processing method calls is basically the same; there-
fore, they store similar information that enables this processing, although they
store this information differently. The role of the interpreter java is to convert
information bytecodes in .class files so that the run-time stack takes over the
function of the Java stack, which is only an abstract construct. The subsequent
discussion is presented in terms of the run-time stack rather than the Java stack,
which in no way changes the logic of processing method calls, in particular, recur-
sive calls.

What information should be preserved when a method is called? First, auto-
matic (local) variables must be stored. If method £1 (), which contains a declara-
tion of an automatic variable x, calls method £2 (), which locally declares the
variable x, the system has to make a distinction between these two variables x. If
£2 () uses a variable x, then its own x is meant; if £2 () assigns a value to x, then x
belonging to £1( ) should be left unchanged. When £2 () is finished, £1 () can use
the value assigned to its private x before £2 () was called. This is especially impor-
tant in the context of the present chapter, when £1 () is the same as £2 (), when a
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method calls itself recursively. How does the system make a distinction between
these two variables x?

The state of each method, including main (), is characterized by the contents of
all automatic variables, by the values of the method’s parameters, and by the return
address indicating where to restart its caller. The data area containing all this infor-
mation is called an activation record or a stack frame and is allocated on the run-time
stack. An activation record exists for as long as a method owning it is executing. This
record is a private pool of information for the method, a repository that stores all in-
formation necessary for its proper execution and how to return to where it was called
from. Activation records usually have a short lifespan because they are dynamically
allocated at method entry and deallocated upon exiting. Only the activation record
of main () outlives every other activation record.

An activation record usually contains the following information:

B Values for all parameters to the method, location of the first cell if an array is
passed or a variable is passed by reference, and copies of all other data items.

B Local (automatic) variables that can be stored elsewhere, in which case, the acti-
vation record contains only their descriptors and pointers to the locations where
they are stored.

B The return address to resume control by the caller, the address of the caller’s
instruction immediately following the call.

B A dynamic link, which is a pointer to the caller’s activation record.

The returned value for a method not declared as void. Because the size of the
activation record may vary from one call to another, the returned value is placed
right above the activation record of the caller.

As mentioned, if a method is called either by main () or by another method, then
its activation record is created on the run-time stack. The run-time stack always re-
flects the current state of the method. For example, suppose that main () calls method
£1(),£1() calls £2(),and £2() in turn calls £3 (). If £3() is being executed, then
the state of the run-time stack is as shown in Figure 5.1. By the nature of the stack,
if the activation record for £3() is popped by moving the stack pointer right below
the return value of £3 (), then £2 () resumes execution and now has free access to the
private pool of information necessary for reactivation of its execution. On the other
hand, if £3 () happens to call another method £4 (), then the run-time stack in-
creases its height because the activation record for £4 () is created on the stack and
the activity of £3 () is suspended.

Creating an activation record whenever a method is called allows the system to
handle recursion properly. Recursion is calling a method that happens to have the
same name as the caller. Therefore, a recursive call is not literally a method calling it-
self, but rather an instantiation of a method calling another instantiation of the same
original. These invocations are represented internally by different activation records
and are thus differentiated by the system.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



174 MW Chapter 5 Recursion

FIGURE 5.1 Contents of the run-time stack when main () calls method £1(), £1() calls £2(),
and £2() calls £3().

Parameters and
AP local variables
record Dynamic link
of £3() Return address
Return value
Parameters and
Ao local variables
record Dynamic link
of £2() Return address
Return value
Parameters and
Activation local variables
record Dynamic link
of £1() Return address
Return value
Activation
record
ofmain ()

m ANATOMY OF A RECURSIVE CALL

The function that defines raising any number x to a nonnegative integer power # is a
good example of a recursive function. The most natural definition of this function is

given by:
1 ifn=0
x" =
x-x" ifn>0

A Java method for computing x” can be written directly from the definition of a
power:

/* 102 */ double power (double x, int n) {

/* 103 */ if (n == 0)
/* 104 */ return 1.0;
// else
/* 105 =/ return x * power(x,n-1);
}
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What if we called the method with a negative n? To avoid this problem, we can add
another test in the method, suchas if (n < 0),and return a special value, say, -1, or
print an error message, or we can make sure before power () is called that n > 0.

Using this definition, the value of x* can be computed in the following way:

X=x-P=x-(x-x?)=x-(x-(x-x"))=x-(x-(x-(x-x°)))
=x-(x-(x-(x- 1)) =x-(x-(x-(x))) =x (x- (x-x))
=x-(x-xxX)=x-Xx-X*X

The repetitive application of the inductive step eventually leads to the anchor,
which is the last step in the chain of recursive calls. The anchor produces 1 as a result
of raising x to the power of zero; the result is passed back to the previous recursive
call. Now, that call, whose execution has been pending, returns its result, x - 1 = x. The
third call, which has been waiting for this result, computes its own result, namely, x - x,
and returns it. Next, this number x - x is received by the second call, which multiplies it
by x and returns the result, x - x - x, to the first invocation of power (). This call
receives x - x - x, multiplies it by x, and returns the final result. In this way, each new
call increases the level of recursion, as follows:

call 1 xt=x-x3 =X XXX
call 2 X x? =xX-X'X
call 3 x-x' =x-x

call 4 x-

X =x-1=x
call 5 1

or alternatively, as

call 1 power (x,4)

call 2 power (x,3)

call 3 power (x,2)

call 4 power (x,1)

call 5 power (x,0)
call 5 1

call 4 x

call 3 XX

call 2 XXX

call 1 X XXX

What does the system do as the method is being executed? As we already know,
the system keeps track of all calls on its run-time stack. Each line of code is assigned a
number by the system,! and if a line is a method call, then its number is a return ad-
dress. The address is used by the system to remember where to resume execution after
the method has completed. For this example, assume that the lines in the method

IThis is not quite precise because the system uses machine code rather than source code to
execute programs. This means that one line of source program is usually implemented by
several machine instructions.
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power () are assigned the numbers 102 through 105 and that it is called inmain()
from the statement

static public void main(String args[]) {
{ ...
/* 136 */ y = power(5.6,2);

}

A trace of the recursive calls is relatively simple, as indicated by this diagram

call 1 power (5.6,2)

call 2 power(5.6,1)

call 3 power (5.6,0)
call 3 1

call 2 5.6

call 1 31.36

because most of the operations are performed on the run-time stack.

When the method is invoked for the first time, four items are pushed onto the
run-time stack: the return address 136, the actual parameters 5.6 and 2, and one loca-
tion reserved for the value returned by power ( ). Figure 5.2a represents this situation.
(In this and subsequent diagrams, SP is a stack pointer, AR is an activation record, and
question marks stand for locations reserved for the returned values. To distinguish
values from addresses, the latter are parenthesized, although addresses are numbers
exactly like method arguments.)

Now the method power () is executed. First, the value of the second argument, 2,
is checked, and power () tries to return the value of 5.6 - power(5.6,1) because
that argument is not 0. This cannot be done immediately because the system does not
know the value of power (5.6, 1); it must be computed first. Therefore, power () is
called again with the arguments 5.6 and 1. But before this call is executed, the run-
time stack receives new items, and its contents are shown in Figure 5.2b.

Again, the second argument is checked to see if it is 0. Because it is equal to 1,
power () is called for the third time, this time with the arguments 5.6 and 0. Before
the method is executed, the system remembers the arguments and the return address
by putting them on the stack, not forgetting to allocate one cell for the result. Figure
5.2¢ contains the new contents of the stack.

Again, the question arises: Is the second argument equal to zero? Because it fi-
nally is, a concrete value—namely, 1.0—can be returned and placed on the stack, and
the method is finished without making any additional calls. At this point, there are
two pending calls on the run-time stack—the calls to power ( )—that have to be com-
pleted. How is this done? The system first eliminates the activation record of
power () that has just finished. This is performed logically by popping all its fields
(the result, two arguments, and the return address) off the stack. We say “logically”
because physically all these fields remain on the stack and only the SP is decremented
appropriately. This is important because we do not want the result to be destroyed
since it has not been used yet. Before and after completion of the last call of power (),
the stack looks the same, but the SP’s value is changed (see Figures 5.2d and 5.2e¢).
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FIGURE 5.2 Changes to the run-time stack during execution of power (5.6,2).

0« SP 0« SP 0

Third call to 5.6 5.6 5.6
power () (105) (105) (105)
1.0 1.0
1 « SP 1 1< SP 1< SP 1
Second call to 5.6 5.6 5.6 5.6
power () (105) (105) (105) (105) (105) (105)
? ? 5.6 5.6
2« SP 2 2 2 2« SP 2« SP
Firstcallto ) 5.6 5.6 5.6 5.6 5.6 5.6
power () | (136) (136) (136) (136) (136) (136) (136) (136)
? ? ? ? 31.36
AR for y : : : :
ain ) | A LA LA LA A
(2) (€) () (9] (h)

Key: Sp Stack pointer
AR Activation record
? Location reserved
for returned value

Now the second call to power () can complete because it waited for the result of
the call power(5.6,0). This result, 1.0, is multiplied by 5.6 and stored in the field
allocated for the result. After that, the system can pop the current activation record off
the stack by decrementing the SP, and it can finish the execution of the first call to
power () that needed the result for the second call. Figure 5.2f shows the contents of
the stack before changing the SP’s value, and Figure 5.2g shows the contents of the
stack after this change. At this moment, power () can finish its first call by multiplying
the result of its second call, 5.6, by its first argument, also 5.6. The system now returns
to the method that invoked power ( ), and the final value, 31.36, is assigned to y. Right
before the assignment is executed, the content of the stack looks like Figure 5.2h.

The method power () can be implemented differently, without using any recur-
sion, by using a loop:

double nonRecPower (double x, int n) {
double result = 1;
if (n > 0)
for (result = x; n > 1; --n)
result *= x;
return result;
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Do we gain anything by using recursion instead of a loop? The recursive version
seems to be more intuitive because it is similar to the original definition of the power
function. The definition is simply expressed in Java without losing the original struc-
ture of the definition. The recursive version increases program readability, improves
self-documentation, and simplifies coding. In our example, the code of the non-
recursive version is not substantially larger than in the recursive version, but for
most recursive implementations, the code is shorter than it is in the nonrecursive
implementations.

m TAIL RECURSION

All recursive definitions contain a reference to a set or function being defined. There
are, however, a variety of ways such a reference can be implemented. This reference
can be done in a straightforward manner or in an intricate fashion, just once or many
times. There may be many possible levels of recursion or different levels of complex-
ity. In the following sections, some of these types are discussed, starting with the sim-
plest case, tail recursion.

Tail recursion is characterized by the use of only one recursive call at the very end
of a method implementation. In other words, when the call is made, there are no
statements left to be executed by the method; the recursive call is not only the last
statement but there are no earlier recursive calls, direct or indirect. For example, the
method tail () defined as

void tail (int i) {
if (i > 0) {
System.out.print (i + "");
tail(i-1);

}

is an example of a method with tail recursion, whereas the method nonTail() de-
fined as

void nonTail (int i) {
if (i > 0) {
nonTail(i-1);
System.out.print (i + "");
nonTail(i-1);

}

is not. Tail recursion is simply a glorified loop and can be easily replaced by one. In
this example, it is replaced by substituting a loop for the if statement and increment-
ing or decrementing the variable i in accordance with the level of recursion. In this
way, tail () can be expressed by an iterative method:
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void iterativeEquivalentOfTail (int i) {
for ( ; 1 > 0; i--)
System.out.print(i+ "");

}

Is there any advantage in using tail recursion over iteration? For languages such as
Java, there may be no compelling advantage, but in a language such as Prolog, which
has no explicit loop construct (loops are simulated by recursion), tail recursion ac-
quires a much greater weight. In languages endowed with a loop or its equivalents,
such as an if statement combined with a goto statement or labeled statement, tail
recursion should not be used.

m NONTAIL RECURSION

Another problem that can be implemented in recursion is printing an input line in re-
verse order. Here is a simple recursive implementation:

/* 200 */ void reverse() {

/* 201 */ char ch = getChar();
/* 202 */ if (ch != '\n') {
/* 203 */ reverse();
/* 204 */ System.out.print(ch);
}
}

Where is the trick? It does not seem possible that the method does anything. But
it turns out that, by the power of recursion, it does exactly what it was designed for.
main() calls reverse() and the input is the string: “ABC.” First, an activation
record is created with cells for the variable ch and the return address. There is no need
to reserve a cell for a result, because no value is returned, which is indicated by using
void in front of the method’s name. A user-defined method getChar () reads in the
first character, “A.” Figure 5.3a shows the contents of the run-time stack right before
reverse () calls itself recursively for the first time.

The second character is read in and checked to see if it is the end-of-line character,
and if not, reverse () is called again. But in either case, the value of ch is pushed onto the
run-time stack along with the return address. Before reverse () is called for a third time
(the second time recursively), there are two more items on the stack (see Figure 5.3b).

Note that the method is called as many times as the number of characters contained
in the input string, including the end-of-line character. In our example, reverse() is
called four times, and the run-time stack during the last call is shown in Figure 5.3d.

On the fourth call, getChar () finds the end-of-line character and reverse ()
executes no other statement. The system retrieves the return address from the activa-
tion record and discards this record by decrementing SP by the proper number of
bytes. Execution resumes from line 204, which is a print statement. Because the acti-

»

vation record of the third call is now active, the value of ch, the letter “C,” is output as
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FIGURE 5.3 Changes on the run-time stack during the execution of reverse().

\n' |« SP

(204)

'C' «— SP 'C

(204) (204)

'B' < SP ‘B’ 'B'

(204) (204) (204)

‘A «— SP ‘A’ ‘A ‘A

(to main) (to main) (to main) (to main)

(@) (b) (© (d)

the first character. Next, the activation record of the third call to reverse() is dis-
carded and now SP points to where “B” is stored. The second call is about to be fin-
ished, but first, “B” is assigned to ch and then the statement on line 204 is executed,
which results in printing “B” on the screen right after “C.” Finally, the activation
record of the first call to reverse () is reached. Then “A” is printed, and what can be
seen on the screen is the string “CBA.” The first call is finally finished and the program
continues execution inmain ().

Compare the recursive implementation with a nonrecursive version of the same
method:

void simpleIterativeReverse() {
String stack = new String();
int top = 0;
try { stack = buffer.readLine();
} catch (IOException io) {
}
for (top = stack.length() - 1; top >= 0; top--)
System.out.print(stack.charAt(top));
}

The method is quite short and, perhaps, a bit more cryptic than its recursive
counterpart. What is the difference then? Keep in mind that the brevity and rela-
tive simplicity of the second version are due mainly to the fact that we want to re-
verse a string or array of characters. This means that methods like length () and
readLine() from the standard Java library can be used. If we are not supplied
with such methods, then our iterative method has to be implemented differently:

void iterativeReverse() {
char[] stack = new char[80];
int top = 0;
stack[top] = getChar();
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while (stack[top] != '\n')
stack[++top] = getChar();
for (top -= 1; top >= 0; top--)
System.out.print(stack[top]);
}

The while loop replaces getLine () and the autoincrement of variable top re-
places length (). The for loop is about the same as before. This discussion is not
purely theoretical because reversing an input line consisting of integers uses the same
implementation as iterativeReverse() after changing the data type of stack
from char to int and modifying the while loop.

Note that the variable name stack used for the array is not accidental. We are just
making explicit what is done implicitly by the system. Our stack takes over the run-
time stack’s duty. Its use is necessary here because one simple loop does not suffice, as
in the case of tail recursion. In addition, the statement System.out.print () from
the recursive version has to be accounted for. Note also that the variable stack is local
to the method iterativeReverse(). However, if it were a requirement to have a
stack object st, then this implementation can be written as

void nonRecursiveReverse() {

Stack st = new Stack();

char ch = getChar();

while (ch != '\n"') {
st.push(new Character(ch));
ch = getChar();

}

while (!st.isEmpty())
System.out.print((Character) st.pop());

}

After comparing iterativeReverse() to nonRecursiveReverse(), we
can conclude that the first version is better because it is faster, no method calls are
made, and the method is self-sufficient, whereas nonRecursiveReverse () calls at
least one method during each loop iteration, slowing down execution.

One way or the other, the transformation of nontail recursion into iteration
usually involves the explicit handling of a stack. Furthermore, when converting a
method from a recursive into an iterative version, program clarity can be dimin-
ished and the brevity of program formulation lost. Iterative versions of recursive
Java methods are not as verbose as in other programming languages, so program
brevity may not be an issue.

To conclude this section, consider a construction of the von Koch snowflake.
The curve was constructed in 1904 by Swedish mathematician Helge von Koch as
an example of a continuous and nondifferentiable curve with an infinite length and
yet encompassing a finite area. Such a curve is a limit of an infinite sequence of
snowflakes, of which the first three are presented in Figure 5.4. As in real snowflakes,
two of these curves have six petals, but to facilitate the algorithm, it is treated as a
combination of three identical curves drawn in different angles and joined together.
One such curve is drawn in the following fashion:
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FIGURE 5.4 Examples of von Koch snowflakes.

Divide an interval side into three even parts.

Move one-third of side in the direction specified by angle.

Turn to the right 60° (i.e., turn —60°) and go forward one-third of side.
Turn to the left 120° and proceed forward one-third of side.

M

Turn right 60° and again draw a line one-third of side long.

The result of these five steps is summarized in Figure 5.5. This line, however, be-
comes more jagged if every one of the four intervals became a miniature of the whole
curve; that is, if the process of drawing four lines were made for each of these side/3
long intervals. As a result, 16 intervals side/9 long would be drawn. The process may
be continued indefinitely—at least in theory. Computer graphics resolution prevents
us from going too far because if lines are smaller than the diameter of a pixel, we just
see one dot on the screen.

The five steps that instead of drawing one line of length side, draw four lines each
of length one-third of side form one cycle only. Each of these four lines can also be
compound lines drawn by the use of the described cycle. This is a situation in which
recursion is well suited, which is reflected by the following pseudocode:

FIGURE 5.5 The process of drawing four sides of one segment of the von Koch snowflake.

k—side/3—*l \(4609

‘ side \
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drawFourLines (side, level)

if (level = 0)
draw a line;

else
drawFourLines(side/3, level-1);
turn left 60°%
drawFourLines(side/3, level-1);
turn right 120%
drawFourLines(side/3, level-1);
turn left 60°%
drawFourLines(side/3, level-1);

This pseudocode can be rendered almost without change into Java code. How-
ever, remember that a line drawn must not be of deliberate length, because the
snowflake drawn will not be a closed line. Therefore, the original line is divided into
three parts, each of which is divided into three parts also, Level-1 times. Figure 5.6
contains the Java code for this example.

FIGURE 5.6 Recursive implementation of the von Koch snowflake.

import java.awt.*;
import java.awt.event.*;

public class vonKoch extends Frame implements ActionListener {

private TextField 1lvl, len;

vonKoch () {
super (“von Koch snowflake”);
Label 1lvlLbl = new Label(“level”);
lvl = new TextField(“4”,3);
Label lenLbl = new Label(“side”);
len = new TextField(“200”,3);
Button draw = new Button(“draw”);
lvl.addActionListener (this);
len.addActionListener (this);
draw.addActionListener(this);
setLayout (new FlowLayout());
add(lvlLbl);
add(1lvl);
add(lenlLbl);
add(len);
add(draw) ;
setSize(600,400);
setForeground(Color.white);

Continues
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FIGURE 5.6 (continued)

setBackground(Color.red) ;
show();
addwWwindowListener (new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);

)i
}

private double angle;
private Point currPt, pt = new Point();
private void right(double x) {
angle += x;
}
private void left (double x) {
angle -= x;
}
private void drawFourLines(double side, int level, Graphics g) {
if (level == 0) {
// arguments to sin() and cos() must be angles given in

radians,

// thus, the angles given in degrees must be multiplied by
PI/180;

pt.x = ((int)(Math.cos(angle*Math.PI/180)*side)) + currPt.x;

pt.y ((int) (Math.sin(angle*Math.PI/180)*side)) + currPt.y;
g.drawLine(currPt.x, currPt.y, pt.x, pt.y);
currPt.x = pt.x;
currPt.y = pt.y;
}

else {
drawFourLines(side/3.0,level-1,qg);
left (60);
drawFourLines(side/3.0,level-1,q9);
right(120);
drawFourLines(side/3.0,level-1,q9);
left (60);
drawFourLines(side/3.0,level-1,q);

}

public void actionPerformed(ActionEvent e) { // ActionListener
repaint();
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FIGURE 5.6 (continued)

public void paint(Graphics g) {
int level = Integer.parseInt(lvl.getText().trim());
double side = Double.parseDouble(len.getText().trim());
currPt = new Point(200,150);
angle = 0;
for (int i = 1; i <= 3; i++) {
drawFourLines (side, level,qg);
right(120);
}
}

static public void main(String[] a) {
new vonKoch();

m INDIRECT RECURSION

The preceding sections discussed only direct recursion, where a method £ () called it-
self. However, £ () can call itself indirectly via a chain of other calls. For example, £ ()
can call g(),and g() can call £ (). This is the simplest case of indirect recursion.

The chain of intermediate calls can be of an arbitrary length, as in:

£() => £1() => £2() -> +++ => £n() -> £()

There is also the situation when £ () can call itself indirectly through different
chains. Thus, in addition to the chain just given, another chain might also be possible.
For instance

£() => gl() -> g2() => -+ =>gm() -> £()

This situation can be exemplified by three methods used for decoding informa-
tion. receive () stores the incoming information in a buffer, decode () converts it
into legible form, and store () stores it in a file. receive () fills the buffer and calls
decode (), which in turn, after finishing its job, submits the buffer with decoded in-
formation to store( ). After store () accomplishes its tasks, it calls receive() to
intercept more encoded information using the same buffer. Therefore, we have the
chain of calls

receive() -> decode() -> store() -> receive() -> decode() -> +--
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which is finished when no new information arrives. These three methods work in the
following manner:

receive(buffer)
while buffer isnot filled up
if information is still incoming
get a character and store it in buffer;
else exit();
decode (buffer);

decode (buffer)
decode information in buffer;
store(buffer);

store(buffer)
transfer information from buffer to file;
receive(buffer);

A more mathematically oriented example concerns formulas calculating the
trigonometric functions sine, cosine, and tangent:

sin(x) = sin (%)%

sin(x)

w

tan(x)= cos(x)

. x
cos(x)=1-sin [EJ

As usual in the case of recursion, there has to be an anchor in order to avoid falling
into an infinite loop of recursive calls. In the case of sine, we can use the following ap-

proximation: ) x3
sin(x)= x——
6

where small values of x give a better approximation. To compute the sine of a number x
such that its absolute value is greater than an assumed tolerance, we have to compute
sin (g) directly, sin (%) indirectly through tangent, and also indirectly, sin (%) through
tangent and cosine. If the absolute value ofg is sufficiently small, which does not re-
quire other recursive calls, we can represent all the calls as a tree, as in Figure 5.7.
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FIGURE 5.7 A tree of recursive calls for sin (x).

sin x

/tarllx\

sin g 3 tan %‘
siré \cos g sin/g \cos 3
\ \
sin 5 sin 6

NESTED RECURSION

A more complicated case of recursion is found in definitions in which a function is
not only defined in terms of itself, but also is used as one of the parameters. The fol-
lowing definition is an example of such a nesting:

0 ifn=0
h(n)=4n ifn>4
h(2+h(2n)) ifn<4

Function % has a solution for all n> 0. This fact is obvious for all n > 4 and n = 0, but it
has to be proven for n=1, 2, 3,and 4. Thus, h(2) = h(2 + h(4)) = h(2 + h(2 + h(8))) = 12.
(What are the values of h(n) for n=1, 3,and 4?)

Another example of nested recursion is a very important function originally sug-
gested by Wilhelm Ackermann in 1928 and later modified by Rozsa Peter:

m+1 ifn=0
An,m)={An-11) ifn>0,m=0
A(n—-1,A(n,m—1)) otherwise

This function is interesting because of its remarkably rapid growth. It grows so
fast that it is guaranteed not to have a representation by a formula that uses arithmetic
operations such as addition, multiplication, and exponentiation. To illustrate the rate
of growth of the Ackermann function, we need only show that

A(3,m)=2"3 -3
16
A(4,m)=2> -3

with a stack of m 2s in the exponent; A(4,1) = 22'%_ 3 = 265536 _ 3 which exceeds even
the number of atoms in the universe (which is 103 according to current theories).

The definition translates very nicely into Java, but the task of expressing it in a
nonrecursive form is truly troublesome.
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m EXCESSIVE RECURSION

Logical simplicity and readability are used as an argument supporting the use of re-
cursion. The price for using recursion is slowing down execution time and storing
on the run-time stack more things than required in a nonrecursive approach. If re-
cursion is too deep (for example, computing 5.6'°%0°) then we can run out of space
on the stack and our program terminates abnormally by raising an unrecoverable
StackOverflowError. But usually, the number of recursive calls is much smaller
than 100,000, so the danger of overflowing the stack may not be imminent.>? How-
ever, if some recursive function repeats the computations for some parameters, the
run time can be prohibitively long even for very simple cases.

Consider Fibonacci numbers. A sequence of Fibonacci numbers is defined as follows:

Fib(n)={n ifn<2

Fib(n —2) + Fib(n —1) otherwise

The definition states that if the first two numbers are 0 and 1, then any number in the
sequence is the sum of its two predecessors. But these predecessors are in turn sums of
their predecessors, and so on, to the beginning of the sequence. The sequence pro-
duced by the definition is

0,1,1,2,3,5,8,13,21, 34,55, 89, . ...

How can this definition be implemented in Java? It takes almost term-by-term
translation to have a recursive version, which is

int Fib (int n) {
if (n < 2)
return n;
else return Fib(n-2) + Fib(n-1);
}
The method is simple and easy to understand but extremely inefficient. To see it,

compute Fib (6), the seventh number of the sequence, which is 8. Based on the defi-
nition, the computation runs as follows:

Fib(6) = Fib(4) + Fib(5)
= Fib(2) + Fib(3) + Fib(5)
= Fib(0)+Fib(1)  + Fib(3) + Fib(5)
= 0 + 1 + Fib(3) + Fib(5)
= 1 + Fib(l)+ Fib(2) + Fib(5)
= 1 + Fib(1)+Fib(0)+Fib(1l) + Fib(5)

etc.

2Even if we try to compute the value of 5.61°%%0 using an iterative algorithm, we are not com-
pletely free from a troublesome situation because the number is much too large to fit even a
variable of double length. Thus, although the program would not crash, the computed value
would be incorrect, which may be even more dangerous than a program crash.
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This is just the beginning of our calculation process, and even here there are cer-
tain shortcuts. All these calculations can be expressed more concisely in the form of the
tree shown in Figure 5.8. Tremendous inefficiency results because Fib () is called 25
times to determine the seventh element of the Fibonacci sequence. The source of this
inefficiency is the repetition of the same calculations because the system forgets what
has already been calculated. For example, Fib () is called eight times with parameter
n = 1 to decide that 1 can be returned. For each number of the sequence, the method
computes all its predecessors without taking into account that it suffices to do this only
once. To find Fib(6) = 8, it computes Fib(5), Fib(4), Fib(3),Fib(2),Fib(1),

and Fib(0) first. To determine these values, Fib(4), ..., Fib(0) have to be com-
puted to know the value of Fib(5). Independently of this, the chain of computations
Fib(3),...,Fib(0) is executed to find Fib(4).

FIGURE 5.8 The tree of calls for Fib(6).

/ e \

F(4) F(5)
F(2) F(@3) F@3) F(4)

F@O) F1) F@) F(2) F(1) F(Q2) F(2) FQ3)

/N

0 1 1 FO) F1) 1 F@O) FQ) F@O) FQ1) F@Q) F(2)

/N

0 1 0 1 0 1 1 FO) FQ)

0 1

We can prove that the number of additions required to find Fib(n) using a re-
cursive definition is equal to Fib(n + 1) — 1. Counting two calls per one addition plus
the very first call means that Fib() is called 2 - Fib(n + 1) — 1 times to compute
Fib(n). This number can be exceedingly large for fairly small #s, as the table in Fig-
ure 5.9 indicates.

It takes almost a quarter of a million calls to find the twenty-sixth Fibonacci num-
ber, and nearly 3 million calls to determine the thirty-first! This is too heavy a price for
the simplicity of the recursive algorithm. As the number of calls and the run time grow
exponentially with 7, the algorithm has to be abandoned except for very small numbers.

An iterative algorithm may be produced rather easily as follows:

int iterativeFib (int n) {
if (n < 2)
return n;
else {
int i = 2, tmp, current = 1, last = 0;
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FIGURE 5.9 Number of addition operations and number of recursive calls to calculate Fibonacci
numbers.
n Fib(n+1) Number of Additions Number of Calls
6 13 12 25
10 89 88 177
15 987 986 1,973
20 10,946 10,945 21,891
25 121,393 121,392 242,785
30 1,346,269 1,346,268 2,692,537

for ( ; i <= n; ++1i) {
tmp = current;
current += last;
last = tmp;

}

return current;

}

Foreachn > 1, the method loopsn — 1 times making three assignments per it-
eration and only one addition, disregarding the autoincrement of i (see Figure 5.10).

However, there is another, numerical method for computing Fib(n), using a for-
mula discovered by A. de Moivre:

Fib(n) = "¢’

5

where p=1(1+1/5)and p=1-p=1(1-1/5)=-0.618034. Because —1 < ¢ < 0, "
2 2 . .
becomes very small when n grows. Therefore, it can be omitted from the formula and

Fib(n) = ¢

75

approximated to the nearest integer. This leads us to the third implementation for
computing a Fibonacci number:

long deMoivreFib (int n) {
return Math.round(Math.exp(n*Math.log(1.6180339897) - Math.log(2.2360679775)));
}

Try to justify this implementation using the definition of logarithm.
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FIGURE 5.10  Comparison of iterative and recursive algorithms for calculating Fibonacci numbers.

Assignments
n Number of Additions Iterative Algorithm Recursive Algorithm
5 15 25
10 9 27 177
15 14 42 1,973
20 19 57 21,891
25 24 72 242,785
30 29 87 2,692,537

m BACKTRACKING

In solving some problems, a situation arises where there are different ways leading
from a given position, none of them known to lead to a solution. After trying one
path unsuccessfully, we return to this crossroads and try to find a solution using an-
other path. However, we must ensure that such a return is possible and that all paths
can be tried. This technique is called backtracking, and it allows us to systematically
try all available avenues from a certain point after some of them lead to nowhere.
Using backtracking, we can always return to a position that offers other possibilities
for successfully solving the problem. This technique is used in artificial intelligence,
and one of the problems in which backtracking is very useful is the eight queens
problem.

The eight queens problem attempts to place eight queens on a chessboard in
such a way that no queen is attacking any other. The rules of chess say that a queen
can take another piece if it lies on the same row, on the same column, or on the
same diagonal as the queen (see Figure 5.11). To solve this problem, we try to put
the first queen on the board, then the second so that it cannot take the first, then the
third so that it is not in conflict with the two already placed, and so on, until all of
the queens are placed. What happens if, for instance, the sixth queen cannot be
placed in a nonconflicting position? We choose another position for the fifth queen
and try again with the sixth. If this does not work the fifth queen is moved again. If
all the possible positions for the fifth queen have been tried, the fourth queen is
moved and then the process restarts. This process requires a great deal of effort,
most of which is spent backtracking to the first crossroads offering some untried
avenues. In terms of code, however, the process is rather simple due to the power of
recursion, which is a natural implementation of backtracking. Pseudocode for this
backtracking algorithm is as follows (the last line pertains to backtracking):
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FIGURE 5.11  The eight queens problem.

(@) (b)

putQueen (row)
for every position col on the same row
if position col isavailable
place the next queen in position colj;
if (row < 8)
putQueen(row+l);
else success;
remove the queen from position col;

This algorithm finds all possible solutions without regard to the fact that some of
them are symmetrical.

The most natural approach for implementing this algorithm is to declare an
8 x 8 array board of 1s and Os representing a chessboard. The array is initialized to
1s, and each time a queen is put in a position (7, ¢), board[r][c] is set to 0. Also, a
method must set to 0, as not available, all positions on row 7, in column ¢, and on
both diagonals that cross each other in position (1, ¢). When backtracking, the same
positions (that is, positions on corresponding row, column, and diagonals) have to
be set back to 1, as again available. Because we can expect hundreds of attempts to
find available positions for queens, the setting and resetting process is the most
time-consuming part of the implementation; for each queen, between 22 and 28
positions have to be set and then reset, 15 for row and column, and between 7 and
13 for diagonals.

In this approach, the board is viewed from the perspective of the player who sees
the entire board along with all the pieces at the same time. However, if we focus solely
on the queens, we can consider the chessboard from their perspective. For the queens,
the board is not divided into squares, but into rows, columns, and diagonals. If a
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queen is placed on a single square, it resides not only on this square, but on the entire
row, column, and diagonal, treating them as its own temporary property. A different
data structure can be utilized to represent this.

To simplify the problem for the first solution, we use a 4 X 4 chessboard instead of
the regular 8 x 8 board. Later, we can make the rather obvious changes in the program
to accommodate a regular board.

Figure 5.12 contains the 4 x 4 chessboard. Notice that indexes in all fields in the
indicated left diagonal all add up to two, r + ¢ = 2; this number is associated with this
diagonal. There are seven left diagonals, 0 through 6. Indexes in the fields of the indi-
cated right diagonal all have the same difference, r — ¢ = —1, and this number is unique
among all right diagonals. Therefore, right diagonals are assigned numbers -3
through 3. The data structure used for all left diagonals is simply an array indexed by
numbers 0 through 6. For right diagonals, it is also an array, but it cannot be indexed
by negative numbers. Therefore, it is an array of seven cells, but to account for nega-
tive values obtained from the formula r — ¢, the same number is always added to it so
as not to cross the bounds of this array.

FIGURE 5.12 A 4 x 4 chessboard.

0,010,1{0,2]0,3

1,001,1|1,2|1,3

2,0012,1(2,2(2,3

™N o
Left™ 13,0(3,1(3,2(3,3| Right

An analogous array is also needed for columns, but not for rows, because a queen
i is moved along row i and all queens < i have already been placed in rows < i. Figure
5.13 contains the code to implement these arrays. The program is short due to recur-
sion, which hides some of the goings-on from the user’s sight.

Figures 5.14 through 5.17 document the steps taken by putQueen() to place
four queens on the chessboard. Figure 5.14 contains the move number, queen num-
ber, and row and column number for each attempt to place a queen. Figure 5.15
contains the changes to the arrays positionInRow, column, leftDiagonal, and
rightDiagonal. Figure 5.16 shows the changes to the run-time stack during the
eight steps. All changes to the run-time stack are depicted by an activation record
for each iteration of the for loop, which mostly lead to a new invocation of
putQueen (). Each activation record stores a return address and the values of row
and col. Figure 5.17 illustrates the changes to the chessboard. A detailed description
of each step follows.
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FIGURE 5.13  Eight queens problem implementation.

import java.io.*;

class Queens {
final boolean available = true;
final int squares = 4, norm = squares - 1;
int[] positionInRow = new int[squares];
boolean[] column = new boolean[squares];
boolean[] leftDiagonal = new boolean[squares*2 - 1];
boolean[] rightDiagonal = new boolean[squares*2 - 1];
int howMany = 0;
Queens () {
for (int i = 0; i < squares; i++) {
positionInRow[i] = -1;
column[i] = available;
}
for (int i = 0; i < squares*2 - 1; i++)
leftDiagonal[i] = rightDiagonal[i] = available;
}

void PrintBoard(PrintStream out) {

}

void PutQueen(int row) {
for (int col = 0; col < squares; col+t)

if (column[col] == available &&
leftDiagonal [row+col] == available &&
rightDiagonal[row-col+norm] == available) {
positionInRow[row] = col;
column[col] = !available;
leftDiagonal[row+col] = l!available;
rightDiagonal[row-col+norm] = l!available;

if (row < squares-1)

PutQueen(row+l);
else PrintBoard(System.out);
column[col] = available;
leftDiagonal[row+col] = available;
rightDiagonal[row-col+norm] = available;

}
static public void main(String args[]) {
Queens queens = new Queens();
queens.PutQueen(0);
System.out.println(queens.howMany + " solutions found.");
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FIGURE 5.14  Steps leading to the first successful configuration of four queens as found by the
method putQueen().
Move Queen row col
{1} 1 0 0
{2} 1 2 failure
{3} 2 1 3
{4} 3 2 1 failure
{5} 1 0 1
{6} 2 1 3
{7} 3 2 0
{8} 4 3 2
FIGURE 5.15  Changes in the four arrays used by method putQueen().
positionInRow column leftDiagonal rightDiagonal row
(0,2, ,) (la,a,la,a) (la,a,a,la,a,a,a) (a,a,la,la,a,a,a) 0,1
{1}{2} {1} {2} {1} {2} {2}1{1} {1}{2}
(0,3,1,) (la,la,a,la) (la,a,a,la,la,a,a) (a,'a,a,la,la,a,a) 1,2
{1}{3}{4} {1} {4} {3} {1} {4}{3} {31 {1} {4} {314}
(1,3,0,2) (la,'a,la,la) (a,la,la,a,la,la,a) (a,'a,la,a,la,la,a) 0,1,2,3
{5} {6} {7} {8} {7} {5} {8} {6} {51{7} {6} {8} {6} {5} {8} {7} {5Ho6}{7}{8}

{1} We start by trying to put the first queen in the upper left corner (0, 0). Because it is
the very first move, the condition in the i £ statement is met, and the queen is placed
in this square. After the queen is placed, the column 0, the main right diagonal, and
the leftmost diagonal are marked as unavailable. In Figure 5.15, {1} is put underneath
cells reset to 'available in this step.

{2} Since row<3, putQueen () calls itself with row+1, but before its execution, an activa-

tion record is created on the run-time stack (see Figure 5.16a). Now we check the
availability of a field on the second row (i.e., row==1). For col1==0, column 0 is
guarded, for col==1, the main right diagonal is checked, and for col==2, all three
parts of the if statement condition are true. Therefore, the second queen is placed in
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FIGURE 5.16  Changes on the run-time stack for the first successful completion of putQueen().
col=2
row =3 {8}
()
col=1 col=0
row =2 {4} row =2 {7}
() ()
col=2 col=3 col=3
row=1 {2} row=1 {3} row=1 {6}
() () ()
col=0 col=0 col=1
row =10 {1} row =10 {1} row =10 {5}
(%) (%) (%)
(2) (b) (©)

Key: .4 Address in first activation record
allowing return to first caller of
putQueen ()

* Address inside putQueen ()
FIGURE 5.17  Changes to the chessboard leading to the first successful configuration.
{1} {1} {5}
20?2 [{2} {3} ? ? ? {6}
21?212 ? ? | {4} {7}
BEIERE 2 [ 2 8
(a) (b) (©)

position (1, 2), and this fact is immediately reflected in the proper cells of all four
arrays. Again, row<3. putQueen () is called trying to locate the third queen in row 2.
After all the positions in this row, 0 through 3, are tested, no available position is
found, the for loop is exited without executing the body of the i £ statement, and this
call to putQueen () is complete. But this call was executed by putQueen () dealing
with the second row, to which control is now returned.
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{3} Values of col and row are restored and the execution of the second call of
putQueen () continues by resetting some fields in three arrays back to available,
and since col==2, the for loop can continue iteration. The test in the i f statement
allows the second queen to be placed on the board, this time in position (1, 3).

{4} Afterward, putQueen() is called again with row==2, the third queen is putin (2, 1),
and after the next call to putQueen (), an attempt to place the fourth queen is
unsuccessful (see Figure 5.17b). No calls are made, the call from step {3} is resumed,
and the third queen is once again moved, but no position can be found for it. At the
same time, col becomes 3, and the for loop is finished.

{5} Asaresult, the first call of putQueen () resumes execution by placing the first queen
in position (0, 1).

{6-8} This time execution continues smoothly and we obtain a complete solution.

Figure 5.18 contains a trace of all calls leading to the first successful placement of
four queens on a 4 X 4 chessboard.

FIGURE 5.18  Trace of calls to putQueen () to place four queens.

putQueen(0);

col = 0;
putQueen(1l);
col = 0;
col = 1;
col = 2;
putQueen(2)
col = 0;
col = 1;
col = 2;
col = 3;
col = 3;
putQueen(2);
col = 0;
col = 1;
putQueen(3);
col = 0;
col = 1;
col = 2;
col = 3;
col = 2;
col = 3;
col = 1;

Continues
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FIGURE 5.18 (continued)

putQueen(1l);

col = 0;
col = 1;
col = 2;
col = 3;
putQueen(2)
col = 0;
putQueen(3)
col = 0;
col = 1;
col = 2;
success;

m CONCLUDING REMARKS

After looking at all these examples (and one more to follow), what can be said about
recursion as a programming tool? Like any other topic in data structures, it should be
used with good judgment. There are no general rules for when to use it and when not
to use it. Each particular problem decides. Recursion is usually less efficient than its it-
erative equivalent. But if a recursive program takes 100 milliseconds (ms) for execu-
tion, for example, and the iterative version only 10 ms, then although the latter is 10
times faster, the difference is hardly perceivable. If there is an advantage in the clarity,
readability, and simplicity of the code, the difference in the execution time between
these two versions can be disregarded. Recursion is often simpler than the iterative so-
lution and more consistent with the logic of the original algorithm. The factorial and
power methods are such examples, and we will see more interesting cases in chapters
to follow.

Although every recursive method can be converted into an iterative version, the
conversion is not always a trivial task. In particular, it may involve explicitly manipu-
lating a stack. That is where the time—space trade-off comes into play: Using iteration
often necessitates the introduction of a new data structure to implement a stack,
whereas recursion relieves the programmer of this task by handing it over to the sys-
tem. One way or the other, if nontail recursion is involved, very often a stack has to be
maintained by the programmer or by the system. But the programmer decides who
carries the load.

Two situations can be presented in which a nonrecursive implementation is
preferable even if recursion is a more natural solution. First, iteration should be used
in the so-called real-time systems where an immediate response is vital for proper
functioning of the program. For example, in military environments, in the space shut-
tle, or in certain types of scientific experiments, it may matter whether the response
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time is 10 ms or 100 ms. Second, the programmer is encouraged to avoid recursion in
programs that are executed hundreds of times. The best example of this kind of pro-
gram is a compiler.

But these remarks should not be treated too stringently, because sometimes a re-
cursive version is faster than a nonrecursive implementation. Hardware may have
built-in stack operations that considerably speed up methods operating on the run-
time stack, such as recursive methods. Running a simple routine implemented recur-
sively and iteratively and comparing the two run times can help to decide if recursion
is advisable—in fact, recursion can execute faster than iteration. Such a test is espe-
cially important if tail recursion comes into play. However, when a stack cannot be
eliminated from the iterative version, the use of recursion is usually recommended,
because the execution time for both versions does not differ substantially—certainly
not by a factor of 10.

Recursion should be eliminated if some part of the work is unnecessarily re-
peated to compute the answer. The Fibonacci series computation is a good example
of such a situation. It shows that the ease of using recursion can sometimes be
deceptive, and this is where iteration can grapple effectively with run-time limita-
tions and inefficiencies. Whether a recursive implementation leads to unnecessary
repetitions may not be immediately apparent; therefore, drawing a tree of calls sim-
ilar to Figure 5.8 can be very helpful. This tree shows that Fib(n) is called many
times with the same argument n. A tree drawn for power or factorial methods is re-
duced to a linked list with no repetitions in it. If such a tree is very deep (that is, it
has many levels), then the program can endanger the run-time stack with an over-
flow. If the tree is shallow and bushy, with many nodes on the same level, then re-
cursion seems to be a good approach—but only if the number of repetitions is very
moderate.

m CASE STUDY: A RECURSIVE DESCENT INTERPRETER

All programs written in any programming language have to be translated into a rep-
resentation that the computer system can execute. However, this is not a simple
process. Depending on the system and programming language, the process may con-
sist of translating one executable statement at a time and immediately executing it,
which is called interpretation, or translating the entire program first and then execut-
ing it, which is called compilation. Whichever strategy is used, the program should
not contain sentences or formulas that violate the formal specification of the pro-
gramming language in which the program is written. For example, if we want to as-
sign a value to a variable, we must put the variable first, then the equal sign, and then
a value after it.

Writing an interpreter is by no means a trivial task. As an example, this case study
is a sample interpreter for a limited programming language. Our language consists
only of assignment statements; it contains no declarations, if-else statements,
loops, methods, or the like. For this limited language, we would like to write a pro-
gram that accepts any input and
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B determines if it contains valid assignment statements (this process is known as
parsing); and simultaneously,

B evaluates all expressions.
Our program is an interpreter in that it not only checks whether the assignment

statements are syntactically correct, but also executes the assignments.
The program is to work in the following way. If we enter the assignment statements

varl = 5;
var2 = 3 + varl;
var3 = 44/2.5 * (var2 + varl);

then the system can be prompted for the value of each variable separately. For in-
stance, after entering

print var3

the system should respond by printing
var3 = 228.8

Evaluation of all variables stored so far may be requested by entering
status

and the following values should be printed in our example:

varl = 5.0;
var2 = 8.0;
var3 = 228.8;

All current values are to be stored on idList and updated if necessary. Thus, if
var2 = var2 * 5;

is entered, then
print var2

should return
var2 = 40.0

The interpreter prints a message if any undefined identifier is used and if state-
ments and expressions do not conform to common grammatical rules such as un-
matched parentheses, two identifiers in a row, and so on.

The program can be written in a variety of ways, but to illustrate recursion, we
chose a method known as recursive descent. This consists of several mutually recursive
methods according to the diagrams in Figure 5.19.

These diagrams serve to define a statement and its parts. For example, a term is a
factor or a factor followed by either the multiplication symbol “*” or the division sym-
bol “/” and then another factor. A factor, in turn, is either an identifier, a number, an
expression enclosed in a pair of matching parentheses, or a negated factor. In this
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FIGURE 5.19  Diagrams of methods used by the recursive descent interpreter.
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method, a statement is looked at in more and more detail. It is broken down into its
components, and if the components are compound, they are separated into their con-
stituent parts until the simplest language elements or tokens are found: numbers,
variable names, operators, and parentheses. Thus, the program recursively descends
from a global overview of the statement to more detailed elements.

The diagrams in Figure 5.19 indicate that recursive descent is a combination of
direct and indirect recursion. For example, a factor can be a factor preceded by a
minus, an expression can be a term, a term can be a factor, a factor can be an expres-
sion that, in turn, can be a term, until the level of identifiers or numbers is found.
Thus, an expression can be composed of expressions, a term of terms, and a factor of
factors.

How can the recursive descent interpreter be implemented? The simplest ap-
proach is to treat every word in the diagrams as a method name. For instance, term( )
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is a method returning a double number. This method always calls factor()
first, and if the current token is either “*” or “/”, then term() calls factor () again.
Each time, the value already accumulated by term() is either multiplied or divided
by the value returned by the subsequent call of term() to factor(). Every call of
term() can invoke another call to term() indirectly through the chain term() ->
factor() -> expression() -> term().Pseudocode for the method term()
looks like the following:

term()
f1 = factor();
while current token is either / or *
f2 = factor();
f1 f1 * £2 or £1 / £2;
return f1;

The method expression () has exactly the same structure, and the pseudocode
for factor () is:

factor ()
process all +s and — s preceding a factor;
if current token is an identifier
return value assigned to the identifier;
else if current token is a number
return the number;
else if current tokenis (
e = expression();
if current tokenis )
return e;

However, in the pseudocode, we assumed that only valid statements are entered
for evaluation. What happens if a mistake is made, such as entering two equal signs,
mistyping a variable name, or forgetting an operator? In the interpreter, parsing is
simply discontinued after printing an error message.

In the implementation, a stream tokenizer is used to divide input statements into
tokens: identifiers, numbers, operators, parentheses, and semicolons. However, in the
stream tokenizer, a word is a letter followed by zero or more letters or number con-
stituents. Because number constituents are digits, a period, and a minus, a string to-
kenizer would accept “x-12.34” as a word. To prevent that from happening, a period and
a minus are stripped of their numeric character with the method ordinaryChar ().
Also, a dollar sign and an underscore are included with wordChars () among the
characters that can constitute a Java identifier. Because a period and a minus are de-
moted to the level of ordinary characters, the stream tokenizer recognizes as numbers
only sequences of digits. To deal with floating-point numbers, one number has to be
put together by the interpreter from two such sequences and a period between them,
which is done in factor().

Figure 5.20 contains the complete code for our interpreter.
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FIGURE 5.20 Implementation of a simple language interpreter.

import java.io.*;

class Id {

private String id;

public double value;

public Id(String s, double d) {
id = s; value = d;

}

public boolean equals(Object node) {
return id.equals(((Id)node).id);

}

public String toString() {
return id + " = " + value + "; ";

public class Interpreter {
private StreamTokenizer fIn = new StreamTokenizer (
new BufferedReader (
new InputStreamReader (System.in)));
private java.util.LinkedList idList = new java.util.LinkedList();
public Interpreter() {
fIn.wordChars('$','S$');// include underscores and dollar signs as
fIn.wordChars('_','_ ');// word constituents; examples of identifiers:
// varl, x, _pqrl23xyz, $aName;
fIn.ordinaryChar('/'); // by default, '/' is a comment character;
fIn.ordinaryChar('.'); // otherwise "n-123.45"
fIn.ordinaryChar('-'); // is considered a token;
}
private void issueError(String s) {
System.out.println(s);
Runtime.getRuntime().exit(-1);
}
private void addOrModify(String id, double e) {
Id tmp = new Id(new String(id),e);
int pos;
if ((pos = idList.indexOf(tmp)) != -1)
((Id)idList.get(pos)).value = e;
else idList.add(tmp);

Continues
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FIGURE 5.20 (continued)

private double findValue(String id) {

int pos;

if ((pos = idList.indexOf (new Id(id,0.0))) != -1)

return ((Id)idList.get(pos)).value;

else issueError("Unknown variable " + id);

return 0.0; // this statement is never reached;
}
private double factor() throws IOException {

double val, minus = 1.0;

fIn.nextToken();

while (fIn.ttype == '+' || fIn.ttype == '=') { // take all '+'s
if (fIn.ttype == '-"') // and '-'s;
minus *= -1.0;
fIn.nextToken();
}
if (fIn.ttype == fIn.TT NUMBER || fIn.ttype == '.') {
if (fIn.ttype == fIn.TT NUMBER) { // factor can be a number:
val = fIn.nval; // 123, .123, 123., 12.3;
fIn.nextToken();
}
else val = 0;
if (fIn.ttype == '.') {
fIn.nextToken();
if (fIn.ttype == fIn.TT_NUMBER) {
String s = fIn.nval + "";
s = "." + s.substring(0,s.indexOf('."'));
val += Double.valueOf(s).doubleValue();
}
else fIn.pushBack();
}
else fIn.pushBack();
}
else if (fIn.ttype == '(') { // or a parenthesized
val = expression(); // expression,
if (fIn.ttype == '")'")
fIn.nextToken();
else issueError("Right parenthesis is left out.");
}
else {
val = findvValue(fIn.sval); // or an identifier;
}
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FIGURE 5.20 (continued)

return minus*val;
}
private double term() throws IOException {
double f = factor();
while (true) {
fIn.nextToken();
switch (fIn.ttype) {
case '*' : f *= factor(); break;
case '/' : £ /= factor(); break;
default : fIn.pushBack(); return f;

}
private double expression() throws IOException {
double t = term();
while (true) {
fIn.nextToken();
switch (fIn.ttype) {
case '+' : t += term(); break;

case '-' : t -= term(); break;
default : fIn.pushBack(); return t;
}
}
}
public void run() {
try {

System.out.println("The program processes statements in the "
+ "following format:\n"
+ "\t<id> = <expr>;\n\tprint <id>\n\tstatus\n\tend");
while (true) {
System.out.print("Enter a statement: ");
fIn.nextToken();
String str = fIn.sval;
if (str.toUpperCase().equals("STATUS")) {
java.util.Iterator it = idList.iterator();
while (it.hasNext())
System.out.println(it.next());
}
else if (str.toUpperCase().equals("PRINT")) {
fIn.nextToken();

Continues
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FIGURE 5.20 (continued)

str = fIn.sval;

System.out.println(str + " = " + findValue(str));
}
else if (str.toUpperCase().equals("END"))

return;
else {

fIn.nextToken();
if (fIn.ttype == '=') {
double e = expression();
fIn.nextToken();
if (fIn.ttype != ';"'")
issueError ("There are some extras in the
statement.");
else addOrModify(str,e);
}

else issueError("'=' is missing.");

}
} catch (IOException e) {
e.printStackTrace();

}

public static void main(String args[]) {
(new Interpreter()).run();
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EXE] EXERCISES

1.

10.

The set of natural numbers N defined at the beginning of this chapter includes the
numbers 10, 11,. . ., 20, 21,. . ., and also the numbers 00, 000, 01, 001, . . . . Modify
this definition to allow only numbers with no leading zeros.

Write a recursive method that calculates and returns the length of a linked list.
What is the output for the following version of reverse ():

void reverse() {
int ch = getChar();
if (ch != '\n")
reverse();
System.out.print(ch);
}

Write a recursive method that for a positive integer #n prints odd numbers
a. between 1 and n

b. between nand 1

Write a recursive method that for a positive integer returns a string with commas in
the appropriate places, for example, putCommas (1234567 ) returns the string
“1,234,567.

Write a recursive method to print a Syracuse sequence that begins with a number 7,
and each element 7, of the sequence is n, /2 if n, is even and 3n + 1 otherwise. The
sequence ends with 1.

Write a recursive method that uses only addition, subtraction, and comparison to
multiply two numbers.

Write a recursive method to compute the binomial coefficient according to the definition

1 ifk=0ork=n
[H)= n—1 n—1 .
k + otherwise

k-1 k

Write a recursive method to add the first # terms of the series

Write a recursive method GCD (n,m) that returns the greatest common divisor of two
integers n and m according to the following definition:

m ifm<nand nmodm=0
GCD(n,m) =4 GCD(m,n) ifn<m

GCD(m,n mod m) otherwise
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11.

12.

13.

14.

15.

16.

17.

Give a recursive version of the following method:

void cubes (int n) {
for (int i = 1; i <=n; i++)
System.out.print (i * i * i + "");

}

An early application of recursion can be found in the seventeenth century in John
Napier’s method of finding logarithms. The method was as follows:

start with two numbers n, m and their logarithms logn, logm if they are
known;
while notdone
for a geometric mean of two earlier numbers find a logarithm which is
an arithmetic mean of two earlier logarithms, that is, logk =
(logn+logm)/2 for k = Vnm;
proceed recursively for pairs (n,Vnm) and (Vnm,m) ;

For example, the 10-based logarithms of 100 and 1,000 are numbers 2 and 3, the
geometric mean of 100 and 1,000 is 316.23, and the arithmetic mean of their loga-
rithms, 2 and 3, is 2.5. Thus, the logarithm of 316.23 equals 2.5. The process can be
continued: The geometric mean of 100 and 316.23 is 177.83, whose logarithm is equal
to (2 +2.5)/2 = 2.25.

a. Write a recursive method logarithm() that outputs logarithms until the differ-

ence between adjacent logarithms is smaller than a certain small number.

b. Modify this method so that a new method logarithmoOf () finds a logarithm of
a specific number x between 100 and 1,000. Stop processing if you reach a number
ysuch that y — x < € for some .

c. Addamethod that calls logarithmOf () after determining between what powers
of 10 a number x falls so that it does not have to be a number between 100 and 1,000.

The algorithms for both versions of the power function given in this chapter are
rather simpleminded. Is it really necessary to make eight multiplications to compute
%82 It can be observed that x® = (x*)2, x* = (x?)2, and x> = x - x; that is, only three multi-
plications are needed to find the value of x®. Using this observation, improve both
algorithms for computing x". Hint: A special case is needed for odd exponents.

Execute by hand the methods tail () and nonTail() for the parameter values of 0,

2, and 4. Definitions of these methods are given in Section 5.4.

Check recursively if the following objects are palindromes:

a. aword

b. asentence (ignoring blanks, lower- and uppercase differences, and punctuation
marks so that “Madam, 'm Adam” is accepted as a palindrome)

For a given character recursively,

a. Checkifitisin a string.

b. Count all of its occurrences in a string.

c. Remove all of its occurrences from a string.

Write equivalents of the last three methods for substrings.
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What changes would have to be made in the method presented in Figure 5.6 to draw
aline as in Figure 5.21? Try it, and experiment with other possibilities to generate
other curves.

FIGURE 5.21

19.

20.

21.

22.

23.
24.

25.

Lines to be drawn with modified program in Figure 5.6.

Create a tree of calls for sin(x) assuming that only X (and smaller values) do not
trigger other calls. =

Write recursive and nonrecursive methods to print out a nonnegative integer in bi-
nary. The methods should not use bitwise operations.

The nonrecursive version of the method for computing Fibonacci numbers uses
information accumulated during computation, whereas the recursive version does
not. However, it does not mean that no recursive implementation can be given that
can collect the same information as the nonrecursive counterpart. In fact, such an
implementation can be obtained directly from the nonrecursive version. What would
it be? Consider using two methods instead of one; one would do all the work, and the
other would only invoke it with the proper parameters.

The method putQueen () does not recognize that certain configurations are sym-
metric. Adapt method putQueen () for a full 8 X 8 chessboard, write the method
printBoard( ), and run a program for solving the eight queens problem so that it
does not print symmetric solutions.

Finish the trace of execution of putQueen () shown in Figure 5.18.

Execute the following program by hand from the case study, using these two entries:
a. VvV =X + y*w - 2z

b. v=x* (y -w) --2

Indicate clearly which methods are called at which stage of parsing these sentences.
Extend our interpreter so that it can also process exponentiation, A. Remember that
exponentiation has precedence over all other operations so that 2 — 374 * 5 isthe
sameas2 — ((374) * 5).Notice also that exponentiation is a right-associative

operator (unlike addition and subtraction); thatis, 23”4 is the same as 2~ (3"4)
and not (2°3) "4.
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26. InJava, the division operator, /, returns an integer result when it is applied to two
integers; for instance, 11/5 equals 2. However, in our interpreter, the resultis 2. 2.
Modify this interpreter so that division works the same way as in Java.

27. Our interpreter is unforgiving when a mistake is made by the user, because it finishes
execution if a problem is detected. For example, when the name of a variable is mistyped
when requesting its value, the program notifies the user and exits and destroys the list of
identifiers. Modify the program so that it continues execution after finding an error.

28. Write the shortest program you can that uses recursion.

EBE] PROGRAMMING ASSIGNMENTS

1. Compute the standard deviation o for 1 values x, stored in an array data and for the
equal probabilities 1 associated with them. The standard deviation is defined as
n

o=V

where the variance, V, is defined by
1
V=—-3(x,—%)
n—1

and the mean, X, by

Write recursive and iterative versions of both V and X and compute the standard devi-
ation using both versions of the mean and variance. Run your program for n = 500,
1,000, 1,500, and 2,000 and compare the run times.

2. Write a program to do symbolic differentiation. Use the following formulas:
Rule 1: (fg) =f¢’ + f'g
Rule2: (f+¢)'=f"+¢

Rule 3: (—Ji>' ~fg-f
g
Rule 4: (ax")” = nax"!

An example of application of these rules is given below with differentiation with re-
spect to x:

(5x3 + % _q0x2y + 100)’

= (5) + (6y_x) + (~10x%)’ + (100)’ by Rule 2
=15x% + (%)' + (-10x%y)’ by Rule 4
=15x2 + (6x)y = (6x)y” ;2(6x)y ' + (—=10x%y)’ by Rule 3
= 15x% + % + (-10x%y)’ by Rule 4
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=15x% + % + (=10x2)y" + (=10x%)"y by Rule 1
=152 +8 20xy by Rule 4
Y

First, run your program for polynomials only, and then add formulas for derivatives
for trigonometric functions, logarithms, and so on, that extend the range of functions
handled by your program.

3. Ann X nsquare consists of black and white cells arranged in a certain way. The prob-
lem is to determine the number of white areas and the number of white cells in each
area. For example, a regular 8 x 8 chessboard has 32 one-cell white areas; the square
in Figure 5.22a consists of 10 areas, 2 of them of 10 cells, and 8 of 2 cells; the square in
Figure 5.22b has 5 white areas of 1, 3,21, 10, and 2 cells.

FIGURE 5.22 (a-b) Two n x n squares of black and white cells and (c) an (n + 2) x (n + 2) array
implementing square (b).

bbbbbbbbbb
bwbbwwbwwb
bbbbbwbwwb
bwwwbbwwwb
bwbwbwwbbb
bwbwwwbwbb
bwbbbbwwwb
bwbwbbwwwb
bwbwbbwwwb
bbbbbbbbbb
(2) (b) (©)

Write a program that, for a given n X n square, outputs the number of white areas
and their sizes. Use an (1 + 2) X (n + 2) array with properly marked cells. Two addi-
tional rows and columns constitute a frame of black cells surrounding the entered
square to simplify your implementation. For instance, the square in Figure 5.22b is
stored as the square in Figure 5.22c.

Traverse the square row by row and, for the first unvisited cell encountered, in-
voke a method that processes one area. The secret is in using four recursive calls in this
method for each unvisited white cell and marking it with a special symbol as visited
(counted).

4. Write a program for pretty printing Java programs; that is, for printing programs
with consistent use of indentation, the number of spaces between tokens such as key
words, parentheses, brackets, operators, the number of blank lines between blocks
of code (classes, methods, etc.), aligning braces with key words, aligning else state-
ments with the corresponding if statements, and so on. The program takes as input
a Java file and prints code in this file according to the rules incorporated in the pretty
printing program. For example, the code
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if (n==1) {n =2 * m;
if (m < 10)
objectA.methodA (n,m-1); else objectA.methodA (n,m-2); } else n = 3 * m;

should be transformed into

if (n == 1) {
n =2 *m;
if (m < 10)
objectA.methodA (n,m-1);
else objectA.methodA (n,m-2);
}

else n = 3 * m;

5. An excellent example of a program that can be greatly simplified by the use of recur-
sion is the Chapter 4 case study, escaping a maze. As already explained, in each maze
cell the mouse stores on the maze stack up to four cells neighboring the cell in which
it is currently located. The cells put on the stack are the ones that should be investi-
gated after reaching a dead end. It does the same for each visited cell. Write a program
that uses recursion to solve the maze problem. Use the following pseudocode:

exitCell (currentCell)
if currentCell is the exit
success;
else exitCell (the passage above currentCell);
exitCell (the passage below currentCell);
exitCell (the passage left to currentCell);
exitCell (the passage right to currentCell);
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m TREES, BINARY TREES, AND BINARY SEARCH TREES

Linked lists usually provide greater flexibility than arrays, but they are linear struc-
tures and it is difficult to use them to organize a hierarchical representation of ob-
jects. Although stacks and queues reflect some hierarchy, they are limited to only one
dimension. To overcome this limitation, we create a new data type called a tree that
consists of nodes and arcs. Unlike natural trees, these trees are depicted upside down
with the root at the top and the leaves (terminal nodes) at the bottom. The root is a
node that has no parent; it can have only child nodes. Leaves, on the other hand, have
no children, or rather, their children are null. A tree can be defined recursively as the
following:

1. Anempty structure is an empty tree.

2. Ift,...,t aredisjointed trees, then the structure whose root has as its children the
rootsof t,,. . ., t, is also a tree.

3. Only structures generated by rules 1 and 2 are trees.

Figure 6.1 contains examples of trees. Each node has to be reachable from the
root through a unique sequence of arcs, called a path. The number of arcs in a path is
called the length of the path. The level of a node is the length of the path from the root
to the node plus 1, which is the number of nodes in the path. The height of a non-
empty tree is the maximum level of a node in the tree. The empty tree is a legitimate
tree of height 0 (by definition), and a single node is a tree of height 1. This is the only
case in which a node is both the root and a leaf. The level of a node must be between 1
(the level of the root) and the height of the tree, which in the extreme case is the level
of the only leaf in a degenerate tree resembling a linked list.

Figure 6.2 contains an example of a tree that reflects the hierarchy of a university.
Other examples are genealogical trees, trees reflecting the grammatical structure of
sentences, and trees showing the taxonomic structure of organisms, plants, or charac-
ters. Virtually all areas of science make use of trees to represent hierarchical structures.

214
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FIGURE 6.1 Examples of trees.

(0]
(a) (b) (©
(a) is an empty tree
(d) (e) ) (2
FIGURE 6.2 Hierarchical structure of a university shown as a tree.

/ UniverSity \

Campus A Campus B

e N

Detl Dept2 - - - Dept N Dept 1 Dept2 --- DeptM

I /N /N /N /N

Professors Majoring Minoring
students students

The definition of a tree does not impose any condition on the number of children
of a given node. This number can vary from 0 to any integer. In hierarchical trees, this
is a welcome property. For example, the university has only two branches, but each
campus can have a different number of departments. Such trees are used in database
management systems, especially in the hierarchical model. But representing hierarchies
is not the only reason for using trees. In fact, in the discussion to follow, that aspect of
trees is treated rather lightly, mainly in the discussion of expression trees. This chapter
focuses on tree operations that allow us to accelerate the search process.
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Consider a linked list of 7 elements. To locate an element, the search has to start
from the beginning of the list, and the list must be scanned until the element is found
or the end of the list is reached. Even if the list is ordered, the search of the list always
has to start from the first node. Thus, if the list has 10,000 nodes and the information
in the last node is to be accessed, then all 9,999 of its predecessors have to be traversed,
an obvious inconvenience. If all the elements are stored in an orderly tree, a tree where
all elements are stored according to some predetermined criterion of ordering, the
number of tests can be reduced substantially even when the element to be located is
the one furthest away. For example, the linked list in Figure 6.3a can be transformed
into the tree in Figure 6.3b.

FIGURE 6.3 Transforming (a) a linked list into (b) a tree.

(2)

2
10 12 13
SN
20 25 29

31

(b)

Was a reasonable criterion of ordering applied to construct this tree? To test
whether 31 is in the linked list, eight tests have to be performed. Can this number be
reduced further if the same elements are ordered from top to bottom and from left to
right in the tree? What would an algorithm be like that forces us to make three tests
only: one for the root, 2; one for its middle child, 12; and one for the only child of this
child, 312 The number 31 could be located on the same level as 12, or it could be a
child of 10. With this ordering of the tree, nothing really interesting is achieved in the
context of searching. (The heap discussed later in this chapter uses this approach.)
Consequently, a better criterion must be chosen.

Again, note that each node can have any number of children. In fact, there are algo-
rithms developed for trees with a deliberate number of children (see the next chapter),
but this chapter discusses only binary trees. A binary tree is a tree whose nodes have two
children (possibly empty), and each child is designated as either a left child or a right
child. For example, the trees in Figure 6.4 are binary trees, whereas the university tree in
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FIGURE 6.4 Examples of binary trees.

/ N\

Figure 6.2 is not. An important characteristic of binary trees, which is used later in as-
sessing an expected efficiency of sorting algorithms, is the number of leaves.

As already defined, the level of a node is the number of arcs traversed from the
root to the node plus one. According to this definition, the root is at level 1, its imme-
diate children are at level 2, and so on. If all the nodes at all levels except the last had
two nonnull children, then there would be 1 = 2° node at level 1, 2 = 2! nodes at level
2,4 =2%nodes at level 3, and generally, 2/ nodes at level i + 1. A tree satisfying this con-
dition is referred to as a complete binary tree. In this tree, all nonterminal nodes have
both their children, and all leaves are at the same level. Consequently, in all binary
trees, there are at most 2/ nodes at level i + 1. In Chapter 9, we calculate the number of
leaves in a decision tree, which is a binary tree in which all nodes have either zero or
two nonempty children. Because leaves can be interspersed throughout a decision tree
and appear at each level except level 1, no generally applicable formula can be given to
calculate the number of nodes because it may vary from tree to tree. But the formula
can be approximated by noting first that

For all the nonempty binary trees whose nonterminal nodes have exactly
two nonempty children, the number of leaves m is greater than the number
of nonterminal nodes kand m =k + 1.

If a tree has only a root, this observation holds trivially. If it holds for a certain
tree, then after attaching two leaves to one of the already existing leaves, this leaf turns
into a nonterminal node, whereby m is decremented by 1 and k is incremented by 1.
However, because two new leaves have been grafted onto the tree, m is incremented by
2. After these two increments and one decrement, the equation (m—1) +2=(k+1) +
1 is obtained and m = k + 1, which is exactly the result aimed at (see Figure 6.5). It im-
plies that an i + 1-level complete decision tree has 27 leaves, and due to the preceding
observation, it also has 27 — 1 nonterminal nodes, which makes 2/ + 2/ — 1 = 2/*1 — 1
nodes in total (see also Figure 6.35).

In this chapter, the binary search trees, also called ordered binary trees, are of par-
ticular interest. A binary search tree has the following property: For each node n of the
tree, all values stored in its left subtree (the tree whose root is the left child) are less
than value v stored in n, and all values stored in the right subtree are greater than v.
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For reasons to be discussed later, storing multiple copies of the same value in the same
tree is avoided. An attempt to do so can be treated as an error. The meanings of “less
than” or “greater than” depend on the type of values stored in the tree: It is “<” and
“>” for numerical values and alphabetical order in the case of strings. The trees in Fig-
ure 6.6 are binary search trees. Note that Figure 6.6¢ contains a tree with the same data
as the linked list in Figure 6.3a whose searching was to be optimized.

FIGURE 6.5 Adding a leaf to tree (a), preserving the relation of the number of leaves to the number
of nonterminal nodes (b).

k nonterminal nodes k + 1 nonterminal nodes
m leaves (m— 1)+ 2leaves
(a) (b)

FIGURE 6.6 Examples of binary search trees.

K collar 13
A P caller color 10 25
/\ \ / \ /\ /\
N R choler collier colour 2 1 0 3
/
29

2 2 1

(a) (b) (©)
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m IMPLEMENTING BINARY TREES

Binary trees can be implemented in at least two ways: as arrays and as linked struc-
tures. To implement a tree as an array, a node is declared as an object with an informa-
tion field and two “reference” fields. These reference fields contain the indexes of the
array cells in which the left and right children are stored, if there are any. For example,
the tree from Figure 6.6¢ can be represented as the array in Figure 6.7. The root is al-
ways located in the first cell, cell 0, and —1 indicates a null child. In this representation,
the two children of node 13 are located in positions 4 and 2, and the right child of
node 31 is null.

FIGURE 6.7 Array representation of the tree in Figure 6.6c.

Index Info Left Right
0 13 4 2
1 31 6 -1
2 25 7 1
3 12 -1 -1
4 10 5 3
5 2 -1 -1
6 29 -1 -1
7 20 -1 -1

However, this implementation may be inconvenient, even if the array is flexible—
that is, a vector or an array list. Locations of children must be known to insert a new
node, and these locations may need to be located sequentially. After deleting a node
form the tree, a hole in the array would have to be eliminated. This can be done either
by using a special marker for an unused cell, which may lead to populating the array
with many unused cells, or by moving elements by one position, which also requires
updating references to the elements that have been moved. Sometimes an array imple-
mentataion is convenient and desirable, and it will be used when discussing the heap
sort. But usually, another approach needs to be used.

In the new implementation, only trees of integers are discussed. The use of a
generic tree (that is, a tree for storing any type of data) is illustrated in the case study
at the end of this chapter.

In the new implementation, a node is an instance of a class composed of an infor-
mation field and two reference fields. This node is used and operated on by methods in
another class that pertains to the tree as a whole (see Figure 6.8).
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FIGURE 6.8 Implementation of a generic binary search tree.

[REE KKKk kkkkkkkkKkKkKkkkkkx  IntBSTNode.java Fr*kkkxkkkkkkkkhhhkkkkkkkkk

* binary search tree of integers

e/

public class IntBSTNode {

protected int key;

protected IntBSTNode left, right;

public IntBSTNode() {
left = right = null;

}

public IntBSTNode(int el) {
this(el,null,null);

}

public IntBSTNode(int el, IntBSTNode 1lt, IntBSTNode rt) {
key = el; left = 1lt; right = rt;

/************************ IntBsT.java kkhkhkhhkkkhkhkhhhkkkhkhkhhhkkkhkhkhhkkk*

* binary search tree of integers

=/

public class IntBST {
protected IntBSTNode root;
public IntBST() {
root = null;

}

protected void visit(IntBSTNode p) {
System.out.print(p.key + " ");

}

public IntBSTNode search(IntBSTNode p, int el) {
return search(p, root);

}
public IntBSTNode search(IntBSTNode p, int el) { . . . } // Figure 6.9
public void breadthFirst() { . . . } // Figure 6.10

public void preorder() {
preorder (root);
}
protected void preorder (IntBSTNode p) { . . . } // Figure 6.11
public void inorder() {
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FIGURE 6.8 (continued)

inorder(root);
}
protected void inorder(IntBSTNode p) { . . . } // TFigure 6.11
public void postorder() {

postorder (root);
}
protected void postorder (IntBSTNode p) { . . . } // Figure 6.11
public void iterativePreorder() { . . . } // Figure 6.15
public void iterativeInorder() { . . . } // Figure 6.17
public void iterativePostorder() { . . . } // Figure 6.16
public void MorrisInorder() { . . . } // Figure 6.20
public void insert(int el) { . . . } // TFigure 6.23
public void deleteByMerging(int el) { . . . } // Figure 6.29
public void deleteByCopying(int el) { . . . } // Figure 6.32
public void balance (int date[], int first, int last) // Section 6.7

m SEARCHING A BINARY SEARCH TREE

An algorithm for locating an element in this tree is quite straightforward, as indicated by
its implementation in Figure 6.9. For every node, compare the key to be located with the
value stored in the node currently referred. If the key is less than the value, go to the left
subtree and try again. If it is greater than that value, try the right subtree. If it is the same,
obviously the search can be discontinued. The search is also aborted if there is no way to
go, indicating that the key is not in the tree. For example, to locate the number 31 in the
tree in Figure 6.6¢, only three tests are performed. First, the tree is checked to see if the
number is in the root node. Next, because 31 is greater than 13, the root’s right child
containing the value 25 is tried. Finally, because 31 is again greater than the value of the
currently tested node, the right child is tried again, and the value 31 is found.

The worst case for this binary tree is when it is searched for the numbers 26, 27,
28, 29, or 30 because those searches each require four tests (why?). In the case of all
other integers, the number of tests is fewer than four. It can now be seen why an ele-
ment should only occur in a tree once. If it occurs more than once, then two ap-
proaches are possible. One approach locates the first occurrence of an element and
disregards the others. In this case, the tree contains redundant nodes that are never
used for their own sake; they are accessed only for testing. In the second approach, all
occurrences of an element may have to be located. Such a search always has to finish
with a leaf. For example, to locate all instances of 13 in the tree, the root node 13 has
to be tested, then its right child 25, and finally the node 20. The search proceeds along
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FIGURE 6.9 A function for searching a binary search tree.

public IntBSTNode search(IntBSTNode p, int el) {
while (p != null)
if (el == p.key)
return p;
else if (el < p.key)
p = p.left;
else p = p.right;
return null;

the worst-case scenario: when the leaf level has to be reached in expectation that some
more occurrences of the desired element can be encountered.

The complexity of searching is measured by the number of comparisons per-
formed during the searching process. This number depends on the number of nodes
encountered on the unique path leading from the root to the node being searched for.
Therefore, the complexity is the length of the path leading to this node plus 1. Com-
plexity depends on the shape of the tree and the position of the node in the tree.

The internal path length (IPL) is the sum of all path lengths of all nodes, which
is calculated by summing X.(i — 1)1, over all levels i, where [, is the number of nodes
on level i. A depth of a node in the tree is determined by the path length. An average
depth, called an average path length, is given by the formula IPL/#n, which depends
on the shape of the tree. In the worst case, when the tree turns into a linked list,
path, .= —;—Z?:l(i -1)= 1;—1 = 0O(n), and a search can takes n time units.

The best case occurs when all leaves in the tree of height 4 are in at most two lev-
els, and only nodes in the next to last level can have one child. To simplify the compu-
tation, we approximate the average path length for such a tree, path, _, by the average
path of a complete binary tree of the same height.

By looking at simple examples, we can determine that for the complete binary tree
of height h, IPL = X~ 1i2'. From this and from the fact that ¥/~12 = 2" — 2, we have

i=1

best

h-1
IPL = 2IPL—IPL = (h—1)2"— > 2/ = (h-2)2"+2

i=1
As has already been established, the number of nodes in the complete binary tree n =
2h_1,s0

pathy, =TPL/n = ((h=2)2"+2)/(2" = 1) = h -2

best

which is in accordance with the fact that, in this tree, one-half of the nodes are in the
leaf level with path length /i — 1. Also, in this tree, the height & =1g(n + 1), so pathbest =
lg(n + 1) — 2; the average path length in a perfectly balanced tree is [Ig(n + 1)] -2 =
O(lg n) where [x] is the closest integer greater than x.
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The average case in an average tree is somewhere between =L and Ig(n + 1) = 2.Is
a search for a node in an average position in a tree of average shape closer to O(n) or
O(lg n)? First, the average shape of the tree has to be represented computationally.

The root of a binary tree can have an empty left subtree and a right subtree with
all n — 1 nodes. It also can have one node in the left subtree and n — 2 nodes in the
right, and so on. Finally, it can have an empty right subtree with all remaining nodes
in the left. The same reasoning can be applied to both subtrees of the root, to the sub-
trees of these subtrees, down to the leaves. The average internal path length is the aver-
age over all these differently shaped trees.

Assume that the tree contains nodes 1 through n. If 7 is the root, then its left sub-
tree has i — 1 nodes, and its right subtree has n —i nodes. If path. | and path__ are aver-
age paths in these subtrees, then the average path of this tree is

path (i) = ((i—1)(path,_ + 1) + (n—i)(path .+ 1))/n

Assuming that elements are coming randomly to the tree, the root of the tree can
be any number i, 1 < i < n. Therefore, the average path of an average tree is obtained
by averaging all values of path (i) over all values of i. This gives the formula

path, =L path (i) =L (1= 1)(path,_, + 1) + (n-i)(path, , + 1))
ni—y ne =y

2 n—l»
== th.+1
n2 i;l(pa ! )

from which, and from path, = 0, we obtain 2 In #n=21n 2 Ig n = 1.386 1g n as an approxi-
mation for path  (see Section A.4 in Appendix A). This is an approximation for the aver-
age number of comparisons in an average tree. This number is O(lg 1), which is closer to
the best case than to the worst case. This number also indicates that there is little room
for improvement, because path,, /path =~ .7215, and the average path length in the best
case is different by only 27.85% from the expected path length in the average case.
Searching in a binary tree is, therefore, very efficient in most cases, even without balanc-
ing the tree. However, this is true only for randomly created trees because, in highly un-
balanced and elongated trees whose shapes resemble linked lists, search time is O(n),
which is unacceptable considering that O(Ig n) efficiency can be achieved.

m TREE TRAVERSAL

Tree traversal is the process of visiting each node in the tree exactly one time. Traversal
may be interpreted as putting all nodes on one line or linearizing a tree.

The definition of traversal specifies only one condition—uvisiting each node only
one time—but it does not specify the order in which the nodes are visited. Hence, there
are as many tree traversals as there are permutations of nodes; for a tree with # nodes,
there are n! different traversals. Most of them, however, are rather chaotic and do not
indicate much regularity so that implementing such traversals lacks generality: For
each n, a separate set of traversal procedures must be implemented, and only a few of
them can be used for a different number of data. For example, two possible traversals
of the tree in Figure 6.6¢ that may be of some use are the sequence 2, 10, 12, 20, 13, 25,
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29, 31 and the sequence 29, 31, 20, 12, 2, 25, 10, 13. The first sequence lists even num-
bers and then odd numbers in ascending order. The second sequence lists all nodes
from level to level right to left, starting from the lowest level up to the root. The se-
quence 13,31, 12,2, 10, 29, 20, 25 does not indicate any regularity in the order of num-
bers or in the order of the traversed nodes. It is just a random jumping from node to
node that in all likelihood is of no use. Nevertheless, all these sequences are the results
of three legitimate traversals out of 8! = 40,320. In the face of such an abundance of
traversals and the apparent uselessness of most of them, we would like to restrict our
attention to two classes only, namely, breadth-first and depth-first traversals.

6.4.1 Breadth-First Traversal

Breadth-first traversal is visiting each node starting from the lowest (or highest) level
and moving down (or up) level by level, visiting nodes on each level from left to right
(or from right to left). There are thus four possibilities, and one such possibility—a
top-down, left-to-right, breadth-first traversal of the tree in Figure 6.6c—results in
the sequence 13, 10, 25, 2, 12, 20, 31, 29.

Implementation of this kind of traversal is straightforward when a queue is used.
Consider a top-down, left-to-right, breadth-first traversal. After a node is visited, its
children, if any, are placed at the end of the queue, and the node at the beginning of
the queue is visited. Considering that for a node on level #, its children are on level n +
1, by placing these children at the end of the queue, they are visited after all nodes
from level n are visited. Thus, the restriction that all nodes on level n must be visited
before visiting any nodes on level n + 1 is accomplished.

An implementation of the corresponding method is shown in Figure 6.10.

FIGURE 6.10  Top-down, left-to-right, breadth-first traversal implementation.

public void breadthFirst() {
IntBSTNode p = root;
Queue queue = new Queue;
if (p != null) {
queue.enqueue(p);
while (!queue.isempty()) {
p = (IntBSTNode) queue.dequeue();
visit(p);
if (p.left != null)
queue.enqueue(p.left);
if (p.right != null)
queue.enqueue(p.right);
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6.4.2 Depth-First Traversal

Depth-first traversal proceeds as far as possible to the left (or right), then backs up until

the first crossroad, goes one step to the right (or left), and again as far as possible to the

left (or right). We repeat this process until all nodes are visited. This definition, how-

ever, does not clearly specify exactly when nodes are visited: before proceeding down

the tree or after backing up? There are some variations of the depth-first traversal.
There are three tasks of interest in this type of traversal:

V—Visiting a node
L—Traversing the left subtree
R—Traversing the right subtree

An orderly traversal takes place if these tasks are performed in the same order for each
node. The three tasks can themselves be ordered in 3! = 6 ways, so there are six possi-
ble ordered depth-first traversals:

VLR VRL
LVR RVL
LRV RLV

If the number of different orders still seems like a lot, it can be reduced to three
traversals where the move is always from left to right and attention is focused on the
first column. The three traversals are given these standard names:

VLR—Preorder tree traversal
LVR—Inorder tree traversal

LRV—Postorder tree traversal

Short and elegant methods can be implemented directly from the symbolic de-
scriptions of these three traversals, as shown in Figure 6.11.

These methods may seem too simplistic, but their real power lies in recursion, in
fact, double recursion. The real job is done by the system on the run-time stack. This
simplifies coding but lays a heavy burden upon the system. To better understand this
process, inorder tree traversal is discussed in some detail.

In inorder traversal, the left subtree of the current node is visited first, then the
node itself, and finally, the right subtree. All of this, obviously, holds if the tree is not
empty. Before analyzing the run-time stack, the output given by the inorder traversal
is determined by referring to Figure 6.12. The following steps correspond to the letters
in that figure:

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



226 M Chapter 6 Binary Trees

FIGURE 6.11  Depth-first traversal implementation.

protected void preorder (IntBSTNode p) {
if (p != null) {
visit(p);
preorder (p.left);
preorder (p.right);

}
protected void inorder (IntBSTNode p) {

if (p != null) {
inorder(p.left);
visit(p);
inorder(p.right);

}
protected void postorder (IntBSTNode p) {

if (p != null) {
postorder(p.left);
postorder (p.right);
visit(p);

(@) Node 15 is the root on which inorder () is called for the first time. The method calls
itself for node 15’s left child, node 4.

(b) Node 4 is not null, so inorder () is called on node 1. Because node 1 is a leaf (that is,
both its subtrees are empty), invocations of inorder () on the subtrees do not result
in other recursive calls of inorder (), as the condition in the if statement is not
met. Thus, after immediate return from inorder () called for the empty left subtree,
node 1 is visited; afterwards a quick call to inorder () is executed for the null right
subtree of node 1. After resuming the call for node 4, node 4 is visited. Node 4 has a
null right subtree; hence, inorder () is called only to check that, and right after
resuming the call for node 15, node 15 is visited.

(c) Node 15 has a right subtree, so inorder () is called for node 20.

(d) inorder () is called for node 16, the node is visited, and then on its null left subtree,
which is followed by visiting node 16. After a quick call to inorder () on the null
right subtree of node 16 and return to the call on node 20, node 20 is also visited.
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FIGURE 6.12  Inorder tree traversal.
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1 25 1 16
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(e) inorder() iscalled on node 25, then on its empty left subtree, then node 25 is vis-
ited, and finally inorder () is called on node 25’s empty right subtree.

If the visit includes printing the value stored in a node, then the output is:
1 4 15 16 20 25

The key to the traversal is that the three tasks, L, V, and R, are performed for each
node separately. This means that the traversal of the right subtree of a node is held
pending until the first two tasks, L and V, are accomplished. If the latter two are fin-
ished, they can be crossed out as in Figure 6.13.

To present the way inorder () works, the behavior of the run-time stack is ob-
served. The numbers in comments in Figure 6.14 indicate return addresses shown on
the left-hand side of the code for inorder ().

void inorder (IntBSTNode node) {
if (node != null) {

/* 1 %/ inorder (node.left);
/* 2 %/ visit(node);
/* 3 %/ inorder(node.right);
/* 4 */ }

}

A rectangle with an up arrow and a number indicates the current value of node
pushed onto the stack. For example, T4 means that node refers to the node of the tree
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FIGURE 6.13  Details of several of the first steps of inorder traversal.
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whose value is the number 4. Figure 6.14 shows the changes of the run-time stack
when inorder () is executed for the tree in Figure 6.12.

(a) Initially, the run-time stack is empty (or rather it is assumed that the stack is empty
by disregarding what has been stored on it before the first call to inorder()).

(b) Upon the first call, the return address of inorder () and the value of node, T15, are
pushed onto the run-time stack. The tree, referred to by node, is not empty, the con-
dition in the if statement is satisfied, and inorder () is called again with node 4.

(c) Before it is executed, the return address, (2), and current value of node, T4, are

pushed onto the stack. Because node is not null, inorder () is about to be invoked
for node’s left child, T1.

(d) First, the return address, (2), and the node’s value are stored on the stack.

(e) inorder () is called with node 1’s left child. The address (2) and the current value
of parameter node, null, are stored on the stack. Because node is null, inorder ()
is exited immediately; upon exit, the activation record is removed from the stack.
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Changes in the run-time stack during inorder traversal.

FIGURE 6.14
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(f) The system goes now to its run-time stack, restores the value of the node, T1, executes
Y g
the statement under (2), and prints the number 1. Because node is not completely
processed, the value of node and address (2) are still on the stack.

(g) With the right child of node T1, the statement under (3) is executed, which is the
next call to inorder (). First, however, the address (4) and node’s current value,
null, are pushed onto the stack. Because node is null, inorder () is exited; upon exit,
the stack is updated.

(h) The system now restores the old value of the node, T1, and executes statement (4).

(i) Because thisis inorder ()’s exit, the system removes the current activation record
and refers again to the stack; restores the node’s value, T4; and resumes execution
from statement (2). This prints the number 4 and then calls inorder () for the
right child of node, which is null.

These steps are just the beginning. All of the steps are shown in Figure 6.14.

At this point, consider the problem of a nonrecursive implementation of the
three traversal algorithms. As indicated in Chapter 5, a recursive implementation has
a tendency to be less efficient than a nonrecursive counterpart. If two recursive calls
are used in a method, then the problem of possible inefficiency doubles. Can recur-
sion be eliminated from the implementation? The answer has to be positive because if
it is not eliminated in the source code, the system does it for us anyway. So the ques-
tion should be rephrased: Is it expedient to do so?

Look first at a nonrecursive version of the preorder tree traversal shown in Figure
6.15. The method iterativePreorder () is twice as large as preorder (), but it is

FIGURE 6.15 A nonrecursive implementation of preorder tree traversal.

public void iterativePreorder() {
IntBSTNode p = root;
Stack travStack = new Stack();
if (p != null) {
travStack.push(p);
while (!travStack.isEmpty()) {
p = (IntBSTNode) travStack.pop();
visit(p);
if (p.right != null)
travStack.push(p.right);

if (p.left != null) // left child pushed after right
travStack.push(p.left);// to be on the top of the
// stack;
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still short and legible. However, it uses a stack heavily. Therefore, supporting methods
are necessary to process the stack, and the overall implementation is not so short. Al-
though two recursive calls are omitted, there are now up to four calls per iteration of
the while loop: up to two calls of push(), one call of pop(), and one call of
visit (). This can hardly be considered an improvement in efficiency.

In the recursive implementations of the three traversals, note that the only differ-
ence is in the order of the lines of code. For example, in preorder (), first a node is
visited, and then there are calls for the left and right subtrees. On the other hand, in
postorder (), visiting a node succeeds both calls. Can we so easily transform the
nonrecursive version of a left-to-right preorder traversal into a nonrecursive left-to-
right postorder traversal? Unfortunately, no. In iterativePreorder(), visiting
occurs before both children are pushed onto the stack. But this order does not
really matter. If the children are pushed first and then the node is visited—that is, if
visit(p) is placed after both calls to push ( )—the resulting implementation is still
a preorder traversal. What matters here is that visit () has to follow pop (), and the
latter has to precede both calls of push (). Therefore, nonrecursive implementations
of inorder and postorder traversals have to be developed independently.

A nonrecursive version of postorder traversal can be obtained rather easily if we
observe that the sequence generated by a left-to-right postorder traversal (an LRV
order) is the same as the reversed sequence generated by a right-to-left preorder tra-
versal (a VRL order). In this case, the implementation of iterativePreorder /()
can be adopted to create iterativePostorder (). This means that two stacks have
to be used, one to visit each node in the reverse order after a right-to-left preorder tra-
versal is finished. It is, however, possible to develop a function for postorder traversal
that pushes onto the stack a node that has two descendants, once before traversing its
left subtree and once before traversing its right subtree. An auxiliary reference q is
used to distinguish between these two cases. Nodes with one descendant are pushed
only once, and leaves do not need to be pushed at all (Figure 6.16).

A nonrecursive inorder tree traversal is also a complicated matter. One possible
implementation is given in Figure 6.17. In this case, we can clearly see the power of
recursion: iterativeInorder () is almost unreadable, and without thorough ex-
planation, it is not easy to determine the purpose of this method. On the other hand,
recursive inorder () immediately demonstrates a purpose and logic. Therefore,
iterativeInorder () can be defended in one case only: if it is shown that there is a
substantial gain in execution time and that the method is called often in a program.
Otherwise, inorder () is preferable to its iterative counterpart.

6.4.3 Stackless Depth-First Traversal

Threaded Trees

The traversal methods analyzed in the preceding section were either recursive or non-
recursive, but both kinds used a stack either implicitly or explicitly to store information
about nodes whose processing has not been finished. In the case of recursive methods,
the run-time stack was utilized. In the case of nonrecursive variants, an explicitly
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FIGURE 6.16 A nonrecursive implementation of postorder tree traversal.

public void iterativePostorder() {
BSTNode p = root, g = root;
Stack travStack = new Stack();
while (p != null) {
for ( ; p.left != null; p = p.left)
travStack.push(p);
while (p != null && (p.right == null || p.right == q)) {
visit(p);

q = p;
if (travStack.isEmpty())
return;

p = (BSTNode) travStack.pop();
}
travStack.push(p);
p = p.-right;

FIGURE 6.17 A nonrecursive implementation of inorder tree traversal.

public void iterativeInorder() {

IntBSTNode p = root;

Stack travStack = new Stack();

while (p != null) {

while(p != null) { // stack the right child (if any)
if (p.right != null) // and the node itself when going
travStack.push(p.right); // to the left;

travStack.push(p);

p = p.left;
}

p = (IntBSTNode) travStack.pop();// pop a node with no left child
while (!travStack.isEmpty() && p.right == null) {// visit it and all
visit(p); // nodes with no right child;

P = (IntBSTNode) travStack.pop();
}
visit(p); // visit also the first node with
if (!travStack.isEmpty()) // a right child (if any);

P = (IntBSTNode) travStack.pop();
else p = null;
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defined and user-maintained stack was used. The concern is that some additional time
has to be spent to maintain the stack, and some more space has to be set aside for the
stack itself. In the worst case, when the tree is unfavorably skewed, the stack may hold
information about almost every node of the tree, a serious concern for very large trees.

It is more efficient to incorporate the stack as part of the tree. This is done by in-
corporating threads in a given node. Threads are references to the predecessor and
successor of the node according to an inorder traversal, and trees whose nodes use
threads are called threaded trees. Four reference fields are needed for each node in the
tree, which again takes up valuable space.

The problem can be solved by overloading existing reference fields. In trees, left or right
references are references to children, but they can also be used as references to predecessors
and successors, thereby being overloaded with meaning. To distinguish these meanings, a
new data member has to be used to indicate the current meaning of the references.

Because a reference can refer to one node at a time, the left reference is either a
reference to the left child or to the predecessor. Analogously, the right reference refers
either to the right subtree or to the successor (Figure 6.18a).

FIGURE 6.18 (a) A threaded tree and (b) an inorder traversal’s path in a threaded tree with right
successors only.

(a)

Figure 6.18a suggests that references to both predecessors and successors have to
be maintained, which is not always the case. It may be sufficient to use only one
thread, as shown in the implementation of the inorder traversal of a threaded tree,
which requires only references to successors (Figure 6.18b).

The method is relatively simple. The dashed line in Figure 6.18b indicates the
order in which p accesses nodes in the tree. Note that only one variable, p, is needed to
traverse the tree. No stack is needed; therefore, space is saved. But is it really? As indi-
cated, nodes require a field indicating how the right reference is being used. In the im-
plementation of threadedInorder (), the Boolean field successor plays this role
as shown in Figure 6.19. Hence, successor requires only one bit of computer mem-
ory, insignificant in comparison to other fields. However, the Java Virtual Machine
does not use type Boolean, and Boolean variables are fields and represented as inte-
gers, which is 4 bytes (Boolean arrays are a slightly different matter). If so, the

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



234 M Chapter 6 Binary Trees

FIGURE 6.19  Implementation of the threaded tree and the inorder traversal of a threaded tree.

[FFxx kI KRk kK kkkkkxx*x%%  IntThreadedTreeNode.java **x&kkkkkkkkkkkkkhhx sk
* binary search threaded tree of integers

@)

class IntThreadedTreeNode {
protected int key;
protected boolean sucessor;
protected IntThreadedTreeNode left, right;
public IntThreadedTreeNode() {
left = right = null; sucessor = false;
}
public IntThreadedTreeNode(int el) {
this(el,null,null);
}
public IntThreadedTreeNode(int el, IntThreadedTreeNode 1t,
IntThreadedTreeNode rt) {
key = el; left = 1lt; right = rt; sucessor = false;

[*EFFF KKK K KKKk xkkkk*kxkx*k%%  IntThreadedTree.java ***xkrkxksxkkrkxrkkkrrxs*

* binary search threaded tree of integers
*/

public class IntThreadedTree {
private IntThreadedNode root;
public IntThreadedTree() {
root = null;

}

protected void visit(intThreadedTreeNode p) {
System.out.print(p.key + " ");

}

protected void threadedInorder() {
IntThreadedNode prev, p = root;

if (p != null) { // process only nonempty trees;
while (p.left != null) // go to the leftmost node;
p = p.left;
while (p != null) {
visit(p);

prev = p;
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FIGURE 6.19  (continued)

p = p.right; // go to the right node and only
if (p != null && !prev.sucessor)// if it is a descendant
while (p.left != null)// go to the leftmost node,

p = p.left; // otherwise visit the

// successor;

}
public void threadedInsert(int el) {
// Figure 6.24

successor field needs at least 4 bytes, which defeats the argument about saving
space by using threaded trees.

Threaded trees can also be used for preorder and postorder traversals. In pre-
order traversal, the current node is visited first and then traversal continues with its
left descendant, if any, or right descendant, if any. If the current node is a leaf, threads
are used to go through the chain of its already visited inorder successors to restart tra-
versal with the right descendant of the last successor.

Postorder traversal is only slightly more complicated. First,a dummy node is cre-
ated that has the root as its left descendant. In the traversal process, a variable can be
used to check the type of the current action. If the action is left traversal and the cur-
rent node has a left descendant, then the descendant is traversed; otherwise, the action
is changed to right traversal. If the action is right traversal and the current node has a
right nonthread descendant, then the descendant is traversed and the action is
changed to left traversal; otherwise, the action changes to visiting a node. If the action
is visiting a node, then the current node is visited, and afterward, its postorder succes-
sor has to be found. If the current node’s parent is accessible through a thread (that is,
current node is parent’s left child), then traversal is set to continue with the right de-
scendant of the parent. If the current node has no right descendant, then it is the end
of the right-extended chain of nodes. First, the beginning of the chain is reached
through the thread of the current node, then the right references of nodes in the chain
are reversed, and finally, the chain is scanned backward, each node is visited, and then
right references are restored to their previous setting.

Traversal through Tree Transformation

The first set of traversal algorithms analyzed earlier in this chapter needed a stack to
retain some information necessary for successful processing. Threaded trees incor-
porated a stack as part of the tree at the cost of extending the nodes by one field to
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make a distinction between the interpretation of the right reference as a reference to
the child or to the successor. Two such tag fields are needed if both successor and
predecessor are considered. However, it is possible to traverse a tree without using
any stack or threads. There are many such algorithms, all of them made possible by
making temporary changes in the tree during traversal. These changes consist of re-
assigning new values to some reference fields. However, the tree may temporarily
lose its tree structure, which needs to be restored before traversal is finished. The
technique is illustrated by an elegant algorithm devised by Joseph M. Morris ap-
plied to inorder traversal.

First, it is easy to notice that inorder traversal is very simple for degenerate trees,
in which no node has a left child (see Figure 6.1¢). No left subtree has to be considered
for any node. Therefore, the usual three steps, LVR (visit left subtree, visit node, visit
right subtree), for each node in inorder traversal turn into two steps, VR. No informa-
tion needs to be retained about the current status of the node being processed before
traversing its left child, simply because there is no left child. Morris’s algorithm takes
into account this observation by temporarily transforming the tree so that the node
being processed has no left child; hence, this node can be visited and its right subtree
processed. The algorithm can be summarized as follows:

MorrisInorder ()
while not finished
if node has no left descendant
Visit it;
g0 to the right;
else make this node the right child of the rightmost node in its left descendant;
go to this left descendant;

This algorithm successfully traverses the tree, but only once, because it destroys
its original structure. Therefore, some information has to be retained to allow the tree
to restore its original form. This is achieved by retaining the left reference of the node
moved down its right subtree, as in the case of nodes 10 and 5 in Figure 6.21.

An implementation of the algorithm is shown in Figure 6.20, and the details of
the execution are illustrated in Figure 6.21. The following description is divided into
actions performed in consecutive iterations of the outer while loop:

1. [Initially, p refers to the root, which has a left child. As a result, the inner while loop
takes tmp to node 7, which is the rightmost node of the left child of node 10, referred
by p (Figure 6.21a). Because no transformation has been done, tmp has no right child,
and in the inner if statement, the root, node 10, is made the right child of tmp. Node
10 retains its left reference to node 5, its original left child. Now, the tree is not a tree
anymore, because it contains a cycle (Figure 6.21b). This completes the first iteration.

2. Reference p refers to node 5, which also has a left child. First, tmp reaches the largest
node in this subtree, which is 3 (Figure 6.21c¢), and then the current root, node 5,
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FIGURE 6.20 Implementation of the Morris algorithm for inorder traversal.

public void MorrisInorder() {
IntBSTNode p = root, tmp;
while (p != null)
if (p.left == null) {
visit(p);
p = p.right;

}
else {
tmp = p.left;
while (tmp.right != null && // go to the rightmost node of
tmp.right != p) // the left subtree or
tmp = tmp.right; // to the temporary parent of p;
if (tmp.right == null) {// if 'true' rightmost node was
tmp.right = p; // reached, make it a temporary
p = p.left; // parent of the current root,
}
else { // else a temporary parent has been
visit(p); // found; visit node p and then cut
tmp.right = null; // the right pointer of the current
p = p.right; // parent, whereby it ceases to be
} // a parent;
}

becomes the right child of node 3 while retaining contact with node 3 through its left
reference (Figure 6.21d).

3. Because node 3, referred by p, has no left child, in the third iteration, this node is
visited, and p is reassigned to its right child, node 5 (Figure 6.21e).

4. Node 5 has a nonnull left reference, so tmp finds a temporary parent of node 5, which
is the same node currently referred to by tmp (Figure 6.21f). Next, node 5 is visited,
and configuration of the tree in Figure 6.21b is reestablished by setting the right refer-
ence of node 3 to null (Figure 6.21g).

5. Node 7, referred to now by p, is visited, and p moves down to its right child (6.21h).

6. tmp is updated to refer to the temporary parent of node 10 (Figure 6.21i). Next, node
10 is visited and then reestablished to its status of root by nullifying the right refer-
ence of node 7 (Figure 6.21j).
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FIGURE 6.21  Tree traversal with the Morris method.
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7. Finally, node 20 is visited without further ado, because it has no left child, nor has its
position been altered.

This completes the execution of Morris’s algorithm. Notice that there are seven
iterations of the outer while loop for only five nodes in the tree in Figure 6.21. This is
due to the fact that there are two left children in the tree, so the number of extra itera-
tions depends on the number of left children in the entire tree. The algorithm per-
forms worse for trees with a large number of such children.

Preorder traversal is easily obtainable from inorder traversal by moving visit ()
from the inner else clause to the inner if clause. In this way, a node is visited before
a tree transformation.

Postorder traversal can also be obtained from inorder traversal by first creating a
dummy node whose left descendant is the tree being processed and whose right descen-
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dant is null. Then this temporarily extended tree is the subject of traversal as in inorder
traversal except that in the inner else clause, after finding a temporary parent, nodes
between p.left (included) and p (excluded) extended to the right in a modified tree
are processed in the reverse order. To process them in constant time, the chain of nodes
is scanned down and right references are reversed to refer to parents of nodes. Then the
same chain is scanned upward, each node is visited, and the right references are restored
to their original setting.

How efficient are the traversal procedures discussed in this section? All of them
run in ©(n) time, threaded implementation requires ®(n) more space for threads
than nonthreaded binary search trees, and both recursive and iterative traversals re-
quire O(n) additional space (on the run-time stack or user-defined stack). Several
dozen runs on randomly generated trees of 5,000 nodes indicate that for preorder and
inorder traversal routines (recursive, iterative, Morris, and threaded), the difference in
the execution time is only on the order of 5-10%. Morris traversals have one undeni-
able advantage over other types of traversals: They do not require additional space.
Recursive traversals rely on the run-time stack, which can be overflowed when tra-
versing trees of large height. Iterative traversals also use a stack, and although the stack
can be overflowed as well, the problem is not as imminent as in the case of the run-
time stack. Threaded trees use nodes that are larger than the nodes used by non-
threaded trees, which usually should not pose a problem. But both iterative and
threaded implementations are much less intuitive than their recursive counterparts;
therefore, the clarity of implementation and comparable run time clearly favors, in
most situations, recursive implementations over other implementations.

m INSERTION

Searching a binary tree does not modify the tree. It scans the tree in a predetermined
way to access some or all of the keys in the tree, but the tree itself remains undisturbed
after such an operation. Tree traversals can change the tree but they may also leave it
in the same condition. Whether or not the tree is modified depends on the actions
prescribed by visit (). There are certain operations that always make some system-
atic changes in the tree, such as adding nodes, deleting them, modifying elements,
merging trees, and balancing trees to reduce their height. This section deals only with
inserting a node into a binary search tree.

To insert a new node with key el, a tree node with a dead end has to be reached,
and the new node has to be attached to it. Such a tree node is found using the same
technique that tree searching used: The key el is compared to the key of a node cur-
rently being examined during a tree scan. If el is less than that key, the left child (if
any) of p is tried; otherwise, the right child (if any) is tested. If the child of p to be
tested is empty, the scanning is discontinued and the new node becomes this child.
The procedure is illustrated in Figure 6.22. Figure 6.23 contains an implementation of
the algorithm to insert a node.

In analyzing the problem of traversing binary trees, three approaches have been
presented: traversing with the help of a stack, traversing with the aid of threads, and
traversing through tree transformation. The first approach does not change the tree
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FIGURE 6.22 Inserting nodes into binary search trees.
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FIGURE 6.23  Implementation of the insertion algorithm.

public void insert(int el) {
IntBSTNode p = root, prev = null;
while (p != null) { // find a place for inserting new node;
prev = p;
if (p.key < el)
p = p.right;
else p = p.left;
}
if (root == null) // tree is empty;
root = new IntBSTNode(el);
else if (prev.key < el)
prev.right = new IntBSTNode(el);
else prev.left = new IntBSTNode(el);

during the process. The third approach changes it, but restores it to the same condi-
tion as before it started. Only the second approach needs some preparatory opera-
tions on the tree to become feasible: It requires threads. These threads may be created
each time before the traversal procedure starts its task and removed each time it is fin-
ished. If the traversal is performed infrequently, this becomes a viable option. Another
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approach is to maintain the threads in all operations on the tree when inserting a new
element in the binary search tree.

The method for inserting a node in a threaded tree is a simple extension of
insert () for regular binary search trees to adjust threads whenever applicable. This
method is for inorder tree traversal and it only takes care of successors, not predecessors.

A node with a right child has a successor some place in its right subtree. There-
fore, it does not need a successor thread. Such threads are needed to allow climbing
the tree, not going down it. A node with no right child has its successor somewhere
above it. Except for one node, all nodes with no right children will have threads to
their successors. If a node becomes the right child of another node, it inherits the suc-
cessor from its new parent. If a node becomes a left child of another node, this parent
becomes its successor. Figure 6.24 contains the implementation of this algorithm,
threadedInsert (). The first few insertions are shown in Figure 6.25.

FIGURE 6.24

Implementation of the algorithm to insert nodes into a threaded tree.

public void threadedInsert(int el) {
IntThreadedNode newNode = new IntThreadedNode(el);
if (root == null) { // tree is empty
root = newNode;
return;
¥
IntThreadedNode p = root, prev =
while (p != null) {
prev = p;
if (el < p.key)
p = p.left;

null;
// find a place to insert newNode;

else if (!p.hasSuccessor) // go to the right only if it is
p = p.right; // a descendant, not a successor;

else break; // don't follow successor link;

¥

if (el < prev.key) { // if newNode is left child of
prev.left = newNode; // its parent, the parent
newNode.hasSuccessor = true;// also becomes its successor;
newNode.right = prev;

h

else if (prev.hasSuccessor) { // if parent of the newNode
newNode.hasSuccessor = true;// is not the rightmost node,
prev.hasSuccessor = false; // make parent's successor
newNode.right = prev.right; // newNode's successor,
prev.right = newNode;

¥

else prev.right = newNode; // otherwise it has no successor;
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FIGURE 6.25
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Deleting a node is another operation necessary to maintain a binary search tree. The
level of complexity in performing the operation depends on the position of the node
to be deleted in the tree. It is by far more difficult to delete a node having two subtrees
than to delete a leaf; the complexity of the deletion algorithm is proportional to the
number of children the node has. There are three cases of deleting a node from the bi-

nary search tree:

1. The node is a leaf; it has no children. This is the easiest case to deal with. The appro-
priate reference of its parent is set to null and the space occupied by the deleted node
is later claimed by the garbage collector as in Figure 6.26.

FIGURE 6.26 Deleting a leaf.
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2. The node has one child. This case is not complicated. The parent’s reference to the
node is reset to refer to the node’s child. In this way, the node’s children are lifted up
by one level and all great-great-. . . grandchildren lose one “great” from their kinship
designations. For example, the node containing 20 (see Figure 6.27) is deleted by
setting the right reference of its parent containing 15 to refer to 20’s only child,
which is 16.

FIGURE 6.27  Deleting a node with one child.

/15 Delete node ®
—

4 20 <—node 4 \ 20 | Free the space

/ /
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3. The node has two children. In this case, no one-step operation can be performed
because the parent’s right or left reference cannot refer to both the node’s children
at the same time. This section discusses two different solutions to this problem.

6.6.1 Deletion by Merging

This solution makes one tree out of the two subtrees of the node and then attaches it
to the node’s parent. This technique is called deleting by merging. But how can we
merge these subtrees? By the nature of binary search trees, every key of the right sub-
tree is greater than every key of the left subtree, so the best thing to do is to find in the
left subtree the node with the greatest key and make it a parent of the right subtree.
Symmetrically, the node with the lowest key can be found in the right subtree and
made a parent of the left subtree.

The desired node is the rightmost node of the left subtree. It can be located by
moving along this subtree and taking right references until null is encountered. This
means that this node will not have a right child, and there is no danger of violating the
property of binary search trees in the original tree by setting that rightmost node’s
right reference to the right subtree. (The same could be done by setting the left refer-
ence of the leftmost node of the right subtree to the left subtree.) Figure 6.28 depicts
this operation. Figure 6.29 contains the implementation of the algorithm.
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FIGURE 6.28  Summary of deleting by merging.

~— Root ~— Root

Delete node

<~—node ~—node.left
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N Rightmost node
of the left subtree

FIGURE 6.29  Implementation of algorithm for deleting by merging.

public void deleteByMerging(int el) {
IntBSTNode tmp, node, p = root, prev = null;
while (p != null && p.key != el) { // f£find the node p

prev = p; // with element el;
if (p.key < el)
p = p.right;
else p = p.left;
}
node = p;

if (p != null && p.key == el) {
if (node.right == null) // node has no right child: its left
node = node.left; // child (if any) is attached to its

// parent;
else if (node.left == null) // node has no left child: its right
node = node.right; // child is attached to its parent;
else { // be ready for merging subtrees;

tmp = node.left; // 1. move left
while (tmp.right != null) // 2. and then right as far as

tmp = tmp.right; // possible;
tmp.right = // 3. establish the link between
node.right; // the rightmost node of the left
// subtree and the right subtree;

node = node.left; // 4.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Section 6.6 Deletion W 245

FIGURE 6.29 (continued)

}
if (p == root)
root = node;
else if (prev.left == p)
prev.left = node;
else prev.right = node; // 5.
}
else if (root != null)
System.out.println("key " + el + " is not in the tree");
else System.out.println("the tree is empty");

Figure 6.30 shows each step of this operation. It shows what changes are made
when deleteByMerging() is executed. The numbers in this figure correspond to
numbers put in comments in the code in Figure 6.29.

The algorithm for deletion by merging may result in increasing the height of the
tree. In some cases, the new tree may be highly unbalanced, as Figure 6.31a illustrates.

FIGURE 6.30  Details of deleting by merging.
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FIGURE 6.31  The height of a tree can be (a) extended or (b) reduced after deleting by merging.
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Sometimes the height may be reduced (see Figure 6.31b). This algorithm is not neces-
sarily inefficient, but it is certainly far from perfect. There is a need for an algorithm that
does not give the tree the chance to increase its height when deleting one of its nodes.

6.6.2 Deletion by Copying

Another solution, called deletion by copying, was proposed by Thomas Hibbard and
Donald Knuth. If the node has two children, the problem can be reduced to one of two
simple cases: The node is a leaf or the node has only one nonempty child. This can be
done by replacing the key being deleted with its immediate predecessor (or successor).
As already indicated in the discussion of deletion by merging, a key’s predecessor is the
key in the rightmost node in the left subtree (and analogically, its immediate successor
is the key in the leftmost node in the right subtree). First, the predecessor has to be lo-
cated. This is done, again, by moving one step to the left by first reaching the root of the
node’s left subtree and then moving as far to the right as possible. Next, the key of the
located node replaces the key to be deleted. And that is where one of two simple cases
comes into play. If the rightmost node is a leaf, the first case applies; however, if it has
one child, the second case is relevant. In this way, deletion by copying removes a key k,
by overwriting it by another key k, and then removing the node that holds k,, whereas
deletion by merging consisted of removing a key k, along with the node that holds it.
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An implementation of this algorithm is in Figure 6.32. A step-by-step trace is
shown in Figure 6.33, and the numbers under the diagrams refer to the numbers indi-
cated in comments included in the implementation of deleteByCopying().

This algorithm does not increase the height of the tree, but it still causes a prob-
lem if it is applied many times along with insertion. The algorithm is asymmetric; it

FIGURE 6.32 Implementation of an algorithm for deleting by copying.

public void deleteByCopying(int el) {
IntBSTNode node, p = root, prev = null;
while (p != null && p.key != el) {// find the node p
prev = p; // with element el;
if (p.key < el)
p = p.right;
else p = p.left;

}
node = p;
if (p != null && p == el) {
if (node.right == null) // node has no right child;
node = node.left;
else if (node.left == null) // no left child for node;
node = node.right;
else {
IntBSTNode tmp = node.left; // node has both children;
IntBSTNode previous = node; // 1.
while (tmp.right != null) { // 2. find the rightmost
previous = tmp; // position in the
tmp = tmp.right; // left subtree of node;
}
node.key = tmp.key; // 3. overwrite the reference
// of the key being deleted;
if (previous == node) // if node's left child's
previous.left = tmp.left; // right subtree is null;
else previous.right = tmp.left; // 4.
}
if (p == root)
root = node;
else if (prev.left == p)
prev.left = node;
else prev.right = node;
}

else if (root != null)
System.out.println("key " + el + " is not in the tree");
else System.out.println("the tree is empty");

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



248 M Chapter 6 Binary Trees

FIGURE 6.33  Deleting by copying.
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always deletes the node of the immediate predecessor of the key in node, possibly re-
ducing the height of the left subtree and leaving the right subtree unaffected. There-
fore, the right subtree of node can grow after later insertions, and if the key in node is
again deleted, the height of the right tree remains the same. After many insertions and
deletions, the entire tree becomes right unbalanced, with the right tree bushier and
larger than the left subtree.

To circumvent this problem, a simple improvement can make the algorithm sym-
metrical. The algorithm can alternately delete the predecessor of the key in node from
the left subtree and delete its successor from the right subtree. The improvement is sig-
nificant. Simulations performed by Jeffrey Eppinger show that an expected internal path
length (IPL) for many insertions and asymmetric deletions is ©(# Ig* n) for n nodes, and
when symmetric deletions are used, the expected IPL becomes ©(n Ig ). Theoretical re-
sults obtained by J. Culberson confirm these conclusions. According to Culberson, in-
sertions and asymmetric deletions give @(n\/n) for the expected IPL and ©(\/n) for the
average search time (average path length), whereas symmetric deletions lead to ©(lg n)
for the average search time, and as before, ©(n 1g 1) for the average IPL.

These results may be of moderate importance for practical applications. Experi-
ments show that for a 2,048-node binary tree, only after 1.5 million insertions and
asymmetric deletions does the IPL become worse than in a randomly generated tree.

Theoretical results are only fragmentary because of the extraordinary complexity
of the problem. Arne Jonassen and Donald Knuth analyzed the problem of random
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insertions and deletions for a tree of only three nodes, which required using Bessel
functions and bivariate integral equations, and the analysis turned out to rank among
“the more difficult of all exact analyses of algorithms that have been carried out to
date.” Therefore, the reliance on experimental results is not surprising.

BALANCING A TREE

At the beginning of this chapter, two arguments were presented in favor of trees: They
are well suited to represent the hierarchical structure of a certain domain, and the
search process is much faster using trees instead of linked lists. The second argument,
however, does not always hold. It all depends on what the tree looks like. Figure 6.34
shows three binary search trees. All of them store the same data, but obviously, the
tree in Figure 6.34a is the best and Figure 6.34c is the worst. In the worst case, three
tests are needed in the former and six tests are needed in the latter to locate an object.
The problem with the trees in Figures 6.34b and 6.34c is that they are somewhat un-
symmetrical, or lopsided; that is, objects in the tree are not distributed evenly to the
extent that the tree in Figure 6.34c practically turned into a linked list, although, for-
mally, it is still a tree. Such a situation does not arise in balanced trees.

FIGURE 6.34  Different binary search trees with the same information.
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A binary tree is height-balanced or simply balanced if the difference in height of
both subtrees of any node in the tree is either zero or one. For example, for node K in
Figure 6.34b, the difference between the heights of its subtrees being equal to one is
acceptable. But for node B this difference is three, which means that the entire tree is
unbalanced. For the same node B in 6.34c, the difference is the worst possible, namely,
five. Also, a tree is considered perfectly balanced if it is balanced and all leaves are to be
found on one level or two levels.
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FIGURE 6.35  Maximum number of nodes in binary trees of different heights.

Height Nodes at One Level Nodes at All Levels

1 20=1 1=21-1
2 21=2 3=22-1
3 22=4 7=23-1
4 23=8 15=24-1
11 210= 1,024 2,047 =211-1
14 213=8,192 16,383 =24~ 1
h 201 n=21-1

Figure 6.35 shows how many nodes can be stored in binary trees of different
heights. Because each node can have two children, the number of nodes on a certain
level is double the number of parents residing on the previous level (except, of course,
the root). For example, if 10,000 elements are stored in a perfectly balanced tree, then
the tree is of height [1g(10,001)]=[13.289] = 14. In practical terms, this means that if
10,000 elements are stored in a perfectly balanced tree, then at most 14 nodes have to
be checked to locate a particular element. This is a substantial difference compared to
the 10,000 tests needed in a linked list (in the worst case). Therefore, it is worth the ef-
fort to build a balanced tree or modify an existing tree so that it is balanced.

There are a number of techniques to properly balance a binary tree. Some of
them consist of constantly restructuring the tree when elements arrive and lead to an
unbalanced tree. Some of them consist of reordering the data themselves and then
building a tree, if an ordering of the data guarantees that the resulting tree is balanced.
This section presents a simple technique of this kind.

The linked listlike tree of Figure 6.34c is the result of a particular stream of data.
Thus, if the data arrive in ascending or descending order, then the tree resembles a
linked list. The tree in Figure 6.34b is lopsided because the first element that arrived was
the letter B, which precedes almost all other letters, except A; the left subtree of B is guar-
anteed to have just one node. The tree in Figure 6.34a looks very good, because the root
contains an element near the middle of all the possible elements, and P is more or less in
the middle of K and Z. This leads us to an algorithm based on binary search technique.

When data arrive, store all of them in an array. After all the data arrive, sort the
array using one of the efficient algorithms discussed in Chapter 9. Now, designate for
the root the middle element in the array. The array now consists of two subarrays: one
between the beginning of the array and the element just chosen for the root and one
between the root and the end of the array. The left child of the root is taken from the
middle of the first subarray, its right child an element in the middle of the second sub-
array. In this way, building the level of the children of the root is finished. The next
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level, with children of children of the root, is constructed in the same fashion using
four subarrays and the middle elements from each of them.

In this description, first the root is inserted into an initially empty tree, then its
left child, then its right child, and so on level by level. An implementation of this algo-
rithm is greatly simplified if the order of insertion is changed: First insert the root,
then its left child, then the left child of this left child, and so on. This allows for using
the following simple recursive implementation:

void balance(int data[], int first, int last) {
if (first <= last) {
int middle = (first + last)/2;
insert(data[middle]);
balance(data,first,middle-1);
balance(data,middle+1,last);

}

An example of the application of balance() is shown in Figure 6.36. First,
number 4 is inserted (Figure 6.36a), then 1 (Figure 6.36b), then 0 and 2 (Figure
6.36¢), and finally, 3, 6, 5, 7, 8, and 9 (Figure 6.36d).

FIGURE 6.36  Creating a binary search tree from an ordered array.

Stream of data: 5198702346
Array of sorteddata: 0 1 234567 89
@ 0 1 2 3[4 5 6 7 8 9 4
® o [1] 2 3 [4] 5 6 7 8 9 4
1
@ [o] [1][2] 3 [4] 5 6 7 8 9 4
1
/ \
0o 2

@ [o] [1] [2] [3] [4] [5] [6] [7] [8] [9] /4
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This algorithm has one serious drawback: All data must be put in an array before
the tree can be created. They can be stored in the array directly from the input. In this
case, the algorithm may be unsuitable when the tree has to be used while the data to be
included in the tree are still coming. But the data can be transferred from an unbalanced
tree to the array using inorder traversal. The tree can now be deleted and re-created
using balance (). This, at least, does not require using any sorting algorithm to put
data in order.

6.7.1 The DSW Algorithm

The algorithm discussed in the previous section was somewhat inefficient in that it re-
quired an additional array that needed to be sorted before the construction of a per-
fectly balanced tree began. To avoid sorting, it required deconstructing the tree after
placing elements in the array using the inorder traversal, and then reconstructing the
tree, which is inefficient except for relatively small trees. There are, however, algo-
rithms that require little additional storage for intermediate variables and use no sort-
ing procedure. The very elegant DSW algorithm was devised by Colin Day and later
improved by Quentin E Stout and Bette L. Warren.

The building block for tree transformations in this algorithm is the rotation.
There are two types of rotation, left and right, which are symmetrical to one another.
The right rotation of the node Ch about its parent Par is performed according to the
following algorithm:

rotateRight (Gr, Par, Ch)
if Par isnottheroot of the tree // i.e.,if Gr is not null
grandparent Gr of child Ch becomes Ch’s parent;
right subtree of Ch becomes left subtree of Ch’s parent Par;
node Ch acquires Par as its right child;

The steps involved in this compound operation are shown in Figure 6.37. The
third step is the core of the rotation, when Par, the parent node of child Ch, becomes

FIGURE 6.37 Right rotation of child ch about parent Par.
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the child of ch, when the roles of a parent and its child change. However, this ex-
change of roles cannot affect the principal property of the tree, namely, that it is a
search tree. The first and the second steps of rotateRight () are needed to ensure
that, after the rotation, the tree remains a search tree.

Basically, the DSW algorithm transfigures an arbitrary binary search tree into a
linked listlike tree called a backbone or vine. Then this elongated tree is transformed in
a series of passes into a perfectly balanced tree by repeatedly rotating every second
node of the backbone about its parent.

In the first phase, a backbone is created using the following routine:

createBackbone(root, n)
tmp = root;
while (tmp != null)
if tmp has a left child
rotate this child about tmp; // hence the left child
// becomes parent of tmp;
set tmp to the child that just became parent;
else set tmp fo its right child;

This algorithm is illustrated in Figure 6.38. Note that a rotation requires knowl-
edge about the parent of tmp, so another reference has to be maintained when imple-
menting the algorithm.

FIGURE 6.38
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In the best case, when the tree is already a backbone, the while loop is executed n
times and no rotation is performed. In the worst case, when the root does not have a
right child, the while loop executed 21 — 1 times with # — 1 rotations performed,
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where 7 is the number of nodes in the tree; that is, the run time of the first phase is
O(n). In this case, for each node except the one with the smallest value, the left child of
tmp is rotated about tmp. After all rotations are finished, tmp refers to the root, and
after » iterations, it descends down the backbone to become null.

In the worst case, the while loop is executed 27 — 1 times with 7 — I rotations per-
formed where # is the number of nodes in the tree; the run time of the first phase is O(n).

In the second phase, the backbone is transformed into a tree, but this time, the
tree is perfectly balanced by having leaves only on two adjacent levels. In each pass
down the backbone, every second node down to a certain point is rotated about its
parent. The first pass may not reach the end of the backbone: It is used to account for
the difference between the number #n of nodes in the current tree and the number
2lg+D]_ 1 of nodes in the closest complete binary tree where| x| is the closest integer
less than x. That is, the overflowing nodes are treated separately.

createPerfectTree(n)
m = 2ng(n+1)J_1;
make n-m rotations starting from the top of backbone;
while (m > 1)
m=m/2;
make m rotations starting from the top of backbone;

Figure 6.39 contains an example. The backbone in Figure 6.38e has nine nodes
and is preprocessed by one pass outside the loop to be transformed into the backbone
shown in Figure 6.39b. Now, two passes are executed. In each backbone, the nodes to

FIGURE 6.39  Transforming a backbone into a perfectly balanced tree.
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be promoted by one level by left rotations are shown as squares; their parents, about
which they are rotated, are circles.
To compute the complexity of the tree building phase, observe that the number
of iterations performed by the while loop equals
Ig(m+1)-1

(DT 1) 4 4154743+ 1= > (2-1)=m-lgm+1)

i=1
The number of rotations can now be given by the formula
n—m+(m-lgim+1))=n-lglm+1)=n-llgn+1)]

that is, the number of rotations is O(n). Because creating a backbone also required at
most O(n) rotations, the cost of global rebalancing with the DSW algorithm is opti-
mal in terms of time because it grows linearly with # and requires a very small and
fixed amount of additional storage.

6.7.2 AVL Trees

The previous two sections discussed algorithms that rebalanced the tree globally; each
and every node could have been involved in rebalancing either by moving data from
nodes or by reassigning new values to reference fields. Tree rebalancing, however, can
be performed locally if only a portion of the tree is affected when changes are required
after an element is inserted into or deleted from the tree. One classical method has
been proposed by Adel’son-Vel’skii and Landis, which is commemorated in the name
of the tree modified with this method: the AVL tree.

An AVL tree (originally called an admissible tree) is one in which the height of the
left and right subtrees of every node differ by at most one. For example, all the trees in
Figure 6.40 are AVL trees. Numbers in the nodes indicate the balance factors that are
the differences between the heights of the left and right subtrees. A balance factor is
the height of the right subtree minus the height of the left subtree. For an AVL tree, all

FIGURE 6.40  Examples of AVL trees.
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balance factors should be +1, 0, or —1. Notice that the definition of the AVL tree is the
same as the definition of the balanced tree. However, the concept of the AVL tree
always implicitly includes the techniques for balancing the tree. Moreover, unlike the
two methods previously discussed, the technique for balancing AVL trees does not
guarantee that the resulting tree is perfectly balanced.

The definition of an AVL tree indicates that the minimum number of nodes in a
tree is determined by the recurrence equation

AVL,=AVL, | +AVL, ,+1

where AVL =0 and AVL, = 1 are the initial conditions.! This formula leads to the fol-
lowing bounds on the height / of an AVL tree depending on the number of nodes n
(see Appendix A.5):

lg(n+1)<h<1.44lg(n+2)-0.328

Therefore, h is bounded by O(lg #); the worst case search requires O(lg 1) com-
parisons. For a perfectly balanced binary tree of the same height, h = [lg(n + 1)1.
Therefore, the search time in the worst case in an AVL tree is 44% worse (it requires
44% more comparisons) than in the best case tree configuration. Empirical studies
indicate that the average number of searches is much closer to the best case than to the
worst and is equal to Ign + 0.25 for large n (Knuth 1998). Therefore, AVL trees are def-
initely worth studying.

If the balance factor of any node in an AVL tree becomes less than —1 or greater
than 1, the tree has to be balanced. An AVL tree can become out of balance in four situa-
tions, but only two of them need to be analyzed; the remaining two are symmetrical.
The first case, the result of inserting a node in the right subtree of the right child, is illus-
trated in Figure 6.41. The heights of the participating subtrees are indicated within these
subtrees. In the AVL tree in Figure 6.41a, a node is inserted somewhere in the right sub-
tree of Q (Figure 6.41b), which disturbs the balance of the tree P. In this case, the prob-

FIGURE 6.41  Balancing a tree after insertion of a node in the right subtree of node Q.

P
+1 +2 0

0 g A\HQ
AA h+1 /<
h+2

(a) (b) (©)

"Numbers generated by this referrence formula are called Leonardo numbers.
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lem can be easily rectified by rotating node Q about its parent P (Figure 6.41c) so that
the balance factor of both P and Q becomes zero, which is even better than at the outset.

The second case, the result of inserting a node in the left subtree of the right
child, is more complex. A node is inserted into the tree in Figure 6.42a; the resulting
tree is shown in Figure 6.42b and in more detail in Figure 6.42¢. Note that R’s balance
factor can also be —1. To bring the tree back into balance, a double rotation is per-
formed. The balance of the tree P is restored by rotating R about node Q (Figure
6.42d) and then by rotating R again, this time about node P (Figure 6.42¢).

FIGURE 6.42 Balancing a tree after insertion of a node in the left subtree of node Q.
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In these two cases, the tree P is considered a stand-alone tree. However, P can be
part of a larger AVL tree; it can be a child of some other node in the tree. If a node is
entered into the tree and the balance of P is disturbed and then restored, does extra
work need to be done to the predecessor(s) of P? Fortunately not. Note that the
heights of the trees in Figures 6.41c and 6.42e resulting from the rotations are the
same as the heights of the trees before insertion (Figures 6.41a and 6.42a) and are
equal to h + 2. This means that the balance factor of the parent of the new root (Q in
Figure 6.41c and R in Figure 6.42¢) remains the same as it was before the insertion,
and the changes made to the subtree P are sufficient to restore the balance of the en-
tire AVL tree. The problem is in finding a node P for which the balance factor becomes
unacceptable after a node has been inserted into the tree.

This node can be detected by moving up toward the root of the tree from the po-
sition in which the new node has been inserted and by updating the balance factors of
the nodes encountered. Then, if a node with a +1 balance factor is encountered, the
balance factor may be changed to £2, and the first node whose balance factor is
changed in this way becomes the root P of a subtree for which the balance has to be
restored. Note that the balance factors do not have to be updated above this node be-
cause they remain the same.

In Figure 6.43a, a path is marked with one balance factor equal to +1. Insertion of
a new node at the end of this path results in an unbalanced tree (Figure 6.43b), and
the balance is restored by one left rotation (Figure 6.43c).
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FIGURE 6.43  Anexample of inserting a new node (b) in an AVL tree (a), which requires one rotation
(c) to restore the height balance.
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However, if the balance factors on the path from the newly inserted node to the
root of the tree are all zero, all of them have to be updated, but no rotation is needed
for any of the encountered nodes. In Figure 6.44a, the AVL tree has a path of all zero
balance factors. After a node has been appended to the end of this path (Figure 6.44b),
no changes are made in the tree except for updating the balance factors of all nodes
along this path.

Deletion may be more time-consuming than insertion. First, we can apply
deleteByCopying() to delete a node. This technique allows us to reduce the prob-
lem of deleting a node with two descendants to deleting a node with at most one de-
scendant.

After a node has been deleted from the tree, balance factors are updated from the
parent of the deleted node up to the root. For each node in this path whose balance fac-
tor becomes £2, a single or double rotation has to be performed to restore the balance
of the tree. Importantly, the rebalancing does not stop after the first node P is found for

FIGURE 6.44  In an AVL tree (a) a new node is inserted (b) requiring no height adjustments.
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which the balance factor would become +2, as is the case with insertion. This also
means that deletion leads to at most O(lg n) rotations, because in the worst case, every
node on the path from the deleted node to the root may require rebalancing.

Deletion of a node does not have to necessitate an immediate rotation because it may
improve the balance factor of its parent (by changing it from *1 to 0), but it may also
worsen the balance factor for the grandparent (by changing it from *1 to +2). We illustrate
only those cases that require immediate rotation. There are four such cases (plus four sym-
metric cases). In each of these cases, we assume that the left child of node P is deleted.

In the first case, the tree in Figure 6.45a turns, after deleting a node, into the tree
in Figure 6.45b. The tree is rebalanced by rotating Q about P (Figure 6.45c). In the

FIGURE 6.45 Rebalancing an AVL tree after deleting a node.
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second case, P has a balance factor equal to +1, and its right subtree Q has a balance
factor equal to 0 (Figure 6.45d). After deleting a node in the left subtree of P (Figure
6.45e), the tree is rebalanced by the same rotation as in the first case (Figure 6.45f). In
this way, cases one and two can be processed together in an implementation after
checking that the balance factor of Q is +1 or 0. If Q is —1, we have two other cases,
which are more complex. In the third case, the left subtree R of Q has a balance factor
equal to —1 (Figure 6.45g). To rebalance the tree, first R is rotated about Q and then
about P (Figures 6.45h—i). The fourth case differs from the third in that R’s balance
factor equals +1 (Figure 6.45j), in which case the same two rotations are needed to
restore the balance factor of P (Figures 6.45k-1). Cases three and four can be proc-
essed together in a program processing AVL trees.

The previous analyses indicate that insertions and deletions require at most 1.44
lg(n + 2) searches. Also, insertion can require one single or one double rotation, and
deletion can require 1.44 Ig(n + 2) rotations in the worst case. But as also indicated,
the average case requires 1g(n) + .25 searches, which reduces the number of rotations
in case of deletion to this number. To be sure, insertion in the average case may lead to
one single/double rotation. Experiments also indicate that deletions in 78% of cases
require no rebalancing at all. On the other hand, only 53% of insertions do not bring
the tree out of balance (Karlton et al. 1976). Therefore, the more time-consuming
deletion occurs less frequently than the insertion operation, not markedly endanger-
ing the efficiency of rebalancing AVL trees.

AVL trees can be extended by allowing the difference in height A > 1 (Foster,
1973). Not unexpectedly, the worst-case height increases with A and

_J1.811g(n)-0.71 ifA=2
- [2.151g(n)-1.13 ifA=3

As experiments indicate, the average number of visited nodes increases by one-half in
comparison to pure AVL trees (A = 1), but the amount of restructuring can be de-
creased by a factor of 10.

m SELF-ADJUSTING TREES

The main concern in balancing trees is to keep them from becoming lopsided and, ide-
ally, to allow leaves to occur only at one or two levels. Therefore, if a newly arriving ele-
ment endangers the tree balance, the problem is immediately rectified by restructuring
the tree locally (the AVL method) or by re-creating the tree (the DSW method). How-
ever, we may question whether such a restructuring is always necessary. Binary search
trees are used to insert, retrieve, and delete elements quickly, and the speed of perform-
ing these operations is the issue, not the shape of the tree. Performance can be im-
proved by balancing the tree, but this is not the only method that can be used.

Another approach begins with the observation that not all elements are used with
the same frequency. For example, if an element on the tenth level of the tree is used only
infrequently, then the execution of the entire program is not greatly impaired by access-
ing this level. However, if the same element is constantly being accessed, then it makes a
big difference whether it is on the tenth level or close to the root. Therefore, the strategy in
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self-adjusting trees is to restructure trees by moving up the tree only those elements that
are used more often, creating a kind of “priority tree.” The frequency of accessing nodes
can be determined in a variety of ways. Each node can have a counter field that records
the number of times the element has been used for any operation. Then the tree can be
scanned to move the most frequently accessed elements toward the root. In a less sophis-
ticated approach, it is assumed that an element being accessed has a good chance of being
accessed again soon. Therefore, it is moved up the tree. No restructuring is performed for
new elements. This assumption may lead to promoting elements that are occasionally ac-
cessed, but the overall tendency is to move up elements with a high frequency of access,
and for the most part, these elements will populate the first few levels of the tree.

6.8.1 Self-Restructuring Trees
A strategy proposed by Brian Allen and Ian Munro and by James Bitner consists of
two possibilities:

1. Single rotation. Rotate a child about its parent if an element in a child is accessed,
unless it is the root (Figure 6.46a).

2. Moving to the root. Repeat the child—parent rotation until the element being accessed
is in the root (Figure 6.46b).

FIGURE 6.46  Restructuring a tree by using (a) a single rotation or (b) moving to the root when
accessing node R.

P P P R
/\ /\ /\ /\
Q D R D Q D A P
/\ /\ /\ /\
R C A Q R C Q D
/\ /\ /\ /\
A B B C A B B C
() (b)

Using the single rotation strategy, frequently accessed elements are eventually
moved up close to the root so that later accesses are faster than previous ones. In the
move-to-the-root strategy, it is assumed that the element being accessed has a high
probability to be accessed again, so it percolates right away up to the root. Even if it is
not used in the next access, the element remains close to the root. These strategies,
however, do not work very well in unfavorable situations, when the binary tree is
elongated as in Figure 6.47. In this case, the shape of the tree improves slowly. Never-
theless, it has been determined that the cost of moving a node to the root converges
to the cost of accessing the node in an optimal tree times 2 In 2; that is, it converges to
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FIGURE 6.47 (a—e) Moving element T to the root and then (e—i) moving element S to the root.
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(2 In 2)lg n. The result holds for any probability distribution (that is, independently

of the probability that a particular request is issued). However, the average search

time when all requests are equally likely is, for the single rotation technique, equal to
.

6.8.2 Splaying

A modification of the move-to-the-root strategy is called splaying, which applies sin-
gle rotations in pairs in an order depending on the links between the child, parent,
and grandparent (Sleator and Tarjan 1985). First, three cases are distinguished de-
pending on the relationship between a node R being accessed and its parent Q and
grandparent P (if any) nodes:

Case 1: Node R’s parent is the root.

Case 2: Homogeneous configuration. Node R is the left child of its parent Q, and
Qs the left child of its parent B, or R and Q are both right children.
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Case 3: Heterogeneous configuration. Node R is the right child of its parent Q,
and Q is the left child of its parent B, or R is the left child of Q, and Q

is the right child of P.

The algorithm to move a node R being accessed to the root of the tree is as follows:

splaying(P,Q,R)
while R isnot the root

if R’s parent is the root
perform a singular splay, rotate R about its parent (Figure 6.48a) ;

else if Risina homogeneous configuration with its predecessors
perform a homogeneous splay, first rotate Q about P
and then R about Q (Figure 6.48b);
else // if Risin a heterogeneous configuration
// with its predecessors
perform a heterogeneous splay, first rotate R about Q
and then about P (Figure 6.48¢c);

FIGURE 6.48  Examples of splaying.

Q R
/\ /\
R C A Q
/\ /\

A B B C

(a)
Case 1: Node R's parent is the root.

P Q R
7 N 4
N\ Semisplay /\ /\ Full splay A\

R C A B C D B P
/\ /\
A B (b) C D
Case 2: Homogeneous configuration.

P P R
/N (7 /N
Q- D R D Q P

/\ —_— /\ e AN A
A R Q C A B C D
/\ /'\
B C A B
(c)

Case 3: Heterogeneous configuration.
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FIGURE 6.49  Restructuring a tree with splaying (a—c) after accessing T and (c-d) then R.
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The difference in restructuring a tree is illustrated in Figure 6.49, where the tree
from Figure 6.47a is used to access node T located at the fifth level. The shape of the
tree is immediately improved. Then, node R is accessed (Figure 6.49¢) and the shape
of the tree becomes even better (Figure 6.49d).

Although splaying is a combination of two rotations except when next to the
root, these rotations are not always used in the bottom-up fashion, as in self-adjusting
trees. For the homogeneous case (left-left or right-right), first the parent and the
grandparent of the node being accessed are rotated, and only afterward are the node
and its parent rotated. This has the effect of moving an element to the root and flat-
tening the tree, which has a positive impact on the accesses to be made.

The number of rotations may seem excessive, and it certainly would be if an ac-
cessed element happened to be in a leaf every time. In the case of a leaf, the access time
is usually O(lg n), except for some initial accesses when the tree is not balanced. But
accessing elements close to the root may make the tree unbalanced. For example, in
the tree in Figure 6.49a, if the left child of the root is always accessed, then eventually,
the tree would also be elongated, this time extending to the right.

To establish the efficiency of accessing a node in a binary search tree that utilizes
the splaying technique, an amortized analysis will be used.

Consider a binary search tree t. Let nodes(x) be the number of nodes in the sub-
tree whose root is x, rank(x) = lg(nodes(x)), so that rank(root(t)) = lg(n), and po-
tential(t) = 2. . 4 of Tank(x). It is clear that nodes(x) + 1 < nodes(parent(x));
therefore, rank(x) < rank(parent(x)). Let the amortized cost of accessing node x be de-
fined as the function

amCost(x) = cost(x) + potential (t) — potential (t)

where potential (t) and potential (t) are the potentials of the tree before access takes
place and after it is finished. It is very important to see that one rotation changes ranks
of only the node x being accessed, its parent, and its grandparent. This is the reason
for basing the definition of the amortized cost of accessing node x on the change in
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the potential of the tree, which amounts to the change of ranks of the nodes involved
in splaying operations that promote x to the root. We can state now a lemma specify-
ing the amortized cost of one access.

Access lemma (Sleator and Tarjan 1985). For the amortized time to splay the tree ¢ at
anode x,

amCost(x) < 3(lg(n) — rank(x)) + 1

The proof of this conjecture is divided into three parts, each dealing with the dif-
ferent case indicated in Figure 6.48. Let par(x) be a parent of x and gpar(x) a grand-
parent of x (in Figure 6.48, x = R, par(x) = Q, and gpar(x) = P).

Case 1: One rotation is performed. This can be only the last splaying step in the se-
quence of such steps that move node x to the root of the tree ¢, and if there are a total
of s splaying steps in the sequence, then the amortized cost of the last splaying step s is

amCost (x) = cost (x) + potential (t) — potential _ (t)
=1+ (rank (x) —rank_,(x)) + (rank (par(x)) — rank_, (par(x)))

where cost (x) = 1 represents the actual cost, the cost of the one splaying step (which in
this step is limited to one rotation); potential_ (t) = rank_ (x) + rank_,(par(x)) + C
and potential (t) = rank (x) + rank (par(x)) + C, because x and par(x) are the only
nodes whose ranks are modified. Now because rank (x) = rank_ (par(x))

amCost (x) = 1 —rank_,(x) + rank (par(x))
and because rank (par(x)) < rank (x)
amCost (x) < 1—rank_,(x) + rank (x).
Case 2: Two rotations are performed during a homogeneous splay. As before, number
1 represents the actual cost of one splaying step.

amCost(x) = 1+ (rank(x) — rank,_,(x)) + (rank(par(x)) — rank,_ (par(x))) +
(rank(gpar(x)) — rank,_,(gpar(x)))

Because rank,(x) = rank,_ (gpar(x))
amCost(x) = 1 —rank_,(x) + rank(par(x)) — rank_,(par(x)) + rank,(gpar(x))
Because rank,(gpar(x)) < rank(par(x)) < rank,(x)
amCost(x) <1—rank,_,(x) —rank_,(par(x)) + 2rankx)
and because rank, | (x) < rank,_ (par(x)), that is, —rank, ,(par(x)) < —rank,_ (x)
amCost(x) <1- 2mnki_1 (x) + Zmnki(x).

To eliminate number 1, consider the inequality rank,  (x) < rank,  (gpar(x)); that is,
1 <rank,_ (gpar(x)) —rank,_(x). From this, we obtain

amCost(x) < rank,_(gpar(x)) — rank,_, (x) — 2rank,_ (x) + 2rankx)

amCost(x) < rank,_ (gpar(x)) — 3rank_,(x) + 2rank(x)
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and because rank(x) = rank,_,(gpar(x))

amCost,(x) < —3rank_,(x) + 3rank,(x)

Case 3: Two rotations are performed during a heterogeneous splay. The only differ-
ence in this proof is making the assumption that rank,(gpar(x)) < rank(x) and
rank(par(x)) < rank,(x) instead of rank.(gpar(x)) < rank(par(x)) < rankx), which
renders the same result.

The total amortized cost of accessing a node x equals the sum of amortized costs
of all the splaying steps executed during this access. If the number of steps equals s,
then at most one (the last) step requires only one rotation (case 1) and thus

s s—1
amCost(x) = ZamCosti (x)= ZamCosti (x)+amCost ,(x)

i=1 i=1

s—1
< z 3(rank;(x)—rank,_;(x))+rank (x)—rank,_; (x)+1
i=1

Because rank (x) > rank_(x),

s—1
amCost(x) < z 3(rank;(x)—rank;_,(x))+3(rank (x)—rank,_(x))+1

i=1

=3(rank(x)—rank,(x))+1=3(1gn—rank,(x))+1=0(gn)

This indicates that the amortized cost of an access to a node in a tree that is restruc-
tured with the splaying technique equals O(lg 1), which is the same as the worst case
in balanced trees. However, to make the comparison more adequate, we should com-
pare a sequence of m accesses to nodes rather than one access because, with the amor-
tize cost, one isolated access can still be on the order of O(n). The efficiency of a tree
that applies splaying is thus comparable to that of a balanced tree for a sequence of
accesses and equals O(m Ig n). (]

Splaying is a strategy focusing upon the elements rather than the shape of the
tree. It may perform well in situations in which some elements are used much more
frequently than others. If elements near the root are accessed with about the same fre-
quency as elements on the lowest levels, then splaying may not be the best choice. In
this case, a strategy that stresses balancing the tree rather than frequency is better; a
modification of the splaying method is a more viable option.

Semisplaying is a modification that requires only one rotation for a homogeneous
splay and continues splaying with the parent of the accessed node, not with the node
itself. It is illustrated in Figure 6.48b. After R is accessed, its parent Q is rotated about P
and splaying continues with Q, not with R. A rotation of R about Q is not performed,
as would be the case for splaying.

Figure 6.50 illustrates the advantages of semisplaying. The elongated tree from
Figure 6.49a becomes more balanced with semisplaying after accessing T (Figures
6.50a—c), and after T is accessed again, the tree in Figure 6.50d has basically the same
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FIGURE 6.50 (a—) Accessing T and restructuring the tree with semisplaying; (c-d) accessing T again.
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number of levels as the tree in Figure 6.50c. (It may have one more level if E or F was a
subtree higher than any of subtrees A, B, C, or D.) For implementation of this tree
strategy, see the case study at the end of this chapter.

It is interesting that although the theoretical bounds obtained from self-organizing
trees compare favorably with the bounds for AVL trees and random binary search
trees—that is, with no balancing technique applied to it—experimental runs for trees of
various sizes and different ratios of accessing keys indicate that almost always the AVL
tree outperforms self-adjusting trees, and many times even a regular binary search tree
performs better than a self-organizing tree (Bell, Gupta 1993). At best, this result indi-
cates that computational complexity and amortized performance should not always be
considered as the only measures of algorithm performance.

m HEAPS

A particular kind of binary tree, called a heap, has the following two properties:

1. The value of each node is greater than or equal to the values stored in each of its
children.

2. The tree is perfectly balanced, and the leaves in the last level are all in the leftmost
positions.

To be exact, these two properties define a max heap. If “greater” in the first prop-
erty is replaced with “less,” then the definition specifies a min heap. This means that
the root of a max heap contains the largest element, whereas the root of a min heap
contains the smallest. A tree has the heap property if each nonleaf has the first prop-
erty. Due to the second condition, the number of levels in the tree is O(lg n).

The trees in Figure 6.51a are all heaps; the trees in Figure 6.51b violate the first
property, and the trees in Figure 6.51c¢ violate the second.

Interestingly, heaps can be implemented by arrays. For example, the array data =
[286110153 12 11] can represent the nonheap tree in Figure 6.52. The elements are
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FIGURE 6.51  Examples of (a) heaps and (b—c) nonheaps.
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FIGURE 6.52 Thearray[2861 10153 12 11]seen as a tree.
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placed at sequential locations representing the nodes from top to bottom and in each
level from left to right. The second property reflects the fact that the array is packed,
with no gaps. Now, a heap can be defined as an array heap of length n in which

heap[i] = heap[2 -+ i + 1],f0r0£i<n_1

and

heap[i] = heap[2 -+ i + 2],f0r0£i<n_2

Elements in a heap are not perfectly ordered. We know only that the largest element
is in the root node and that, for each node, all its descendants are less than or equal to that

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Section 6.9 Heaps W 269

FIGURE 6.53  Different heaps constructed with the same elements.

10 10 10

2 9 9 8 7 9
/ \ / \ /' \ / \ / \ / \
1 o (8 (7 70 (20 (o (1 0o (1 (2 I3

() (b) (©)

node. But the relation between sibling nodes or, to continue the kinship terminology,
between uncle and nephew nodes is not determined. The order of the elements obeys
a linear line of descent, disregarding lateral lines. For this reason, all the trees in Figure
6.53 are legitimate heaps, although the heap in Figure 6.53b is ordered best.

6.9.1 Heaps as Priority Queues

A heap is an excellent way to implement a priority queue. Section 4.3 used linked lists
to implement priority queues, structures for which the complexity was expressed in
terms of O(n) or O(\/Z). For large n, this may be too ineffective. On the other hand, a
heap is a perfectly balanced tree; hence, reaching a leaf requires O(lg n) searches. This
efficiency is very promising. Therefore, heaps can be used to implement priority
queues. To this end, however, two procedures have to be implemented to enqueue and
dequeue elements on a priority queue.

To enqueue an element, the element is added at the end of the heap as the last
leaf. Restoring the heap property in the case of enqueuing is achieved by moving from
the last leaf toward the root.

The algorithm for enqueuing is as follows:

heapEnqueue(el)
put el atthe end of heap;
while el isnotintherootand el > parent(el)
swap el with its parent;

For example, the number 15 is added to the heap in Figure 6.54a as the next leaf
(Figure 6.54b), which destroys the heap property of the tree. To restore this property,
15 has to be moved up the tree until it either ends up in the root or finds a parent that
is not less than 15. In this example, the latter case occurs, and 15 has to be moved only
twice without reaching the root.

Dequeuing an element from the heap consists of removing the root element from
the heap, because by the heap property it is the element with the greatest priority.
Then the last leaf is put in its place, and the heap property almost certainly has to be
restored, this time by moving from the root down the tree.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



270 MW Chapter 6 Binary Trees

FIGURE 6.54 Enqueuing an element to a heap.
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The algorithm for dequeuing is as follows:

heapDequeue ()

extract the element from the root;

put the element from the last leaf in its place;

remove the last leaf;

// both subtrees of the root are heaps;

p = theroot;

while p isnotaleafand p < any of its children
swap p with the larger child;

For example, 20 is dequeued from the heap in Figure 6.55a and 6 is put in its place
(Figure 6.55b). To restore the heap property, 6 is swapped first with its larger child,
number 15 (Figure 6.55¢), and once again with the larger child, 14 (Figure 6.55d).

The last three lines of the dequeuing algorithm can be treated as a separate algo-
rithm that restores the heap property only if it has been violated by the root of the
tree. In this case, the root element is moved down the tree until it finds a proper posi-
tion. This algorithm, which is the key to the heap sort, is presented in one possible im-
plementation in Figure 6.56.
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FIGURE 6.55

Dequeuing an element from a heap.

dequeue
20 — 6
10/ \15 10/ i\15
/N 7\ 7N\ /" \
8 7 13 14 8 7 13 14
/ \ / /\
2 5 (§ 2 5
(@) (b)
15

(c) (d)

FIGURE 6.56

Implementation of an algorithm to move the root element down a tree.

void moveDown (Object[] data, int first, int last) {
int largest = 2*first + 1;
while (largest <= last) {

if (largest < last && // first has two children (at 2*first+1 and

// 2*first+2)
((Comparable)data[largest]).compareTo(data[largest+1l]) < 0)
largest++;
if (((Comparable)data[first]).compareTo(data[largest]) < 0) {
swap(data,first,largest);
first = largest;
largest = 2*first + 1;

// if necessary, swap values
// and move down;

}

else largest = last + 1;// to exit the loop: the heap property

// isn't violated by data[first]
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6.9.2 Organizing Arrays as Heaps

Heaps can be implemented as arrays, and in that sense, each heap is an array, but all ar-
rays are not heaps. In some situations, however, most notably in heap sort (see Section
9.3.2), we need to convert an array into a heap (that is, reorganize the data in the array so
that the resulting organization represents a heap). There are several ways to do this, but
in light of the preceding section the simplest way is to start with an empty heap and se-
quentially include elements into a growing heap. This is a top-down method and it was
proposed by John Williams; it extends the heap by enqueuing new elements in the heap.

Figure 6.57 contains a complete example of the top-down method. First, the
number 2 is enqueued in the initially empty heap (6.57a). Next, 8 is enqueued by
putting it at the end of the current heap (6.57b) and then swapping with its parent
(6.57¢). Enqueuing the third and fourth elements, 6 (6.57d) and then 1 (6.57¢), neces-
sitates no swaps. Enqueuing the fifth element, 10, amounts to putting it at the end of
the heap (6.57f), then swapping it with its parent, 2 (6.57g), and then with its new
parent, 8 (6.57h) so that eventually 10 percolates up to the root of the heap. All re-
maining steps can be traced by the reader in Figure 6.57.

To check the complexity of the algorithm, observe that in the worst case, when a
newly added element has to be moved up to the root of the tree, |Ig k] exchanges are
made in a heap of k nodes. Therefore, if 1 elements are enqueued, then in the worst case

Slgkl<Digk=1g1+---+lgn=1lg(1-2----- n) =lg(n!) = O(nlg n)
k=1 k=1

exchanges are made during execution of the algorithm and the same number of com-
parisons. (For the fact that Ig(n!) is O(n 1g n), see Section A.2 in Appendix A.) It turns
out, however, that we can do better than that.

In another algorithm, developed by Robert Floyd, a heap is built bottom-up. In
this approach, small heaps are formed and repetitively merged into larger heaps in the
following way:

FloydAlgorithm(datal])
for i = index of the last nonleaf down to 0
restore the heap property for the tree whose root is data[i] by calling
moveDown (data,i,n-1);

Figure 6.58 contains an example of transforming the array data[]=[2861 10
15312 11] into a heap.

We start from the last nonleaf node, which is data[n/2-17, n being the array
size. If data[n/2-1] is less than one of its children, it is swapped with the larger
child. In the tree in Figure 6.58a, this is the case for data[3] = l and data[7] = 12.
After exchanging the elements, a new tree is created, shown in Figure 6.58b. Next the
element data[n/2-2] = data[2] = 6 is considered. Because it is smaller than its
child data[5] = 15, it is swapped with that child and the tree is transformed to that
in Figure 6.58c. Now data[n/2-3] = data[l] = 8 is considered. Because it is
smaller than one of its children, which is data[ 3] = 12, an interchange occurs, lead-
ing to the tree in Figure 6.58d. But now it can be noticed that the order established in
the subtree whose root was 12 (Figure 6.58¢) has been somewhat disturbed because 8
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Organizing an array as a heap with a top-down method.

FIGURE 6.57
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FIGURE 6.58 Transforming the array [2 86 1 10 15 3 12 11] into a heap with a bottom-up method.
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is smaller than its new child 11. This simply means that it does not suffice to compare
a node’s value with its children’s, but a similar comparison needs to be done with
grandchildren’s, great-grandchildren’s, and so on until the node finds its proper posi-
tion. Taking this into consideration, the next swap is made, after which the tree in
Figure 6.58¢ is created. Only now is the element data[n/2-4] =data[0] =2 com-
pared with its children, which leads to two swaps (Figure 6.58f).
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Assume that the heap being created is a complete binary tree; that is, it includes n =
2% — 1 nodes for some k. To create the heap, moveDown () is called ”*1 times, once for
each nonleaf. In the worst case, moveDown ( ) moves data from the next to last level, con-
sisting of ”T“ nodes, down by one level to the level of leaves by performing #*1 swaps.
Therefore, all nodes from this level make 1 - ”_’:11 moves. Data from the second to last
level, which has "L nodes, are moved two levels down to reach the level of the leaves.
Thus, nodes from this level perform 2 - 1 moves and so on up to the root. The root of
the tree as the tree becomes a heap is moved, again in the worst case, lg(n + 1) — 1 =1g 2L
levels down the tree to end up in one of the leaves. Because there is only one root, this
contributes g ”T“ - 1 moves. The total number of movements can be given by this sum
lg(n+1)

lg(
Y =@+
21

n+
i=2 i=2

Vio1
3

which is O(n) because the series Z;Zzll converges to 1.5 and 2{2271, converges to 0.5.
For an array that is not a complete binary tree, the complexity is all the more bounded
by O(n). The worst case for comparisons is twice this value, which is also O(#n), be-
cause for each node in moveDown ( ), both children of the node are compared to each
other to choose the larger. That, in turn, is compared to the node. Therefore, for the

worst case, Williams’s method performs better than Floyd’s.

The performance for the average case is much more difficult to establish. It has
been found that Floyd’s heap construction algorithm requires, on average, 1.88n com-
parisons (Doberkat 1984; Knuth 1998), and the number of comparisons required by
Williams’s algorithm in this case is between 1.751 and 2.76n and the number of swaps
is 1.3n (Hayward and McDiarmid 1991; McDiarmid and Reed 1989). Thus, in the av-
erage case, the two algorithms perform at the same level.

m PoLisH NOTATION AND EXPRESSION TREES

One of the applications of binary trees is an unambiguous representation of arith-
metical, relational, or logical expressions. In the early 1920s, a Polish logician, Jan
Fukasiewicz (pronounced: wook-a-sie-vich), invented a special notation for proposi-
tional logic that allows us to eliminate all parentheses from formulas. However,
Yukasiewicz’s notation, called Polish notation, results in less readable formulas than
the parenthesized originals and it was not widely used. It proved useful after the emer-
gence of computers, however, especially for writing compilers and interpreters.

To maintain readability and prevent the ambiguity of formulas, extra symbols
such as parentheses have to be used. However, if avoiding ambiguity is the only goal,
then these symbols can be omitted at the cost of changing the order of symbols used
in the formulas. This is exactly what the compiler does. It rejects everything that is
not essential to retrieve the proper meaning of formulas, rejecting it as “syntactic
sugar.
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How does this notation work? Look first at the following example. What is the
value of this algebraic expression?

2-3-4+5

The result depends on the order in which the operations are performed. If we multi-
ply first and then subtract and add, the result is -5 as expected. If subtraction is done
first, then addition and multiplication, as in

(2-3)-(4+5)
the result is —9. But if we subtract after we multiply and add, as in
2-(3-4+45)

then the result of evaluation is —15. If we see the first expression, then we know in
what order to evaluate it. But the computer does not know that, in such a case, multi-
plication has precedence over addition and subtraction. If we want to override the
precedence, then parentheses are needed.

Compilers need to generate assembly code in which one operation is executed at
a time and the result is retained for other operations. Therefore, all expressions have
to be broken down unambiguously into separate operations and put into their proper
order. That is where Polish notation is useful. It allows us to create an expression tree,
which imposes an order on the execution of operations. For example, the first expres-
sion, 2 — 3 - 4 + 5, which is the same as 2 — (3 - 4) + 5, is represented by the tree in
Figure 6.59a. The second and the third expressions correspond to the trees in Figures
6.59b and 6.59c¢. It is obvious now that in both Figure 6.59a and Figure 6.59¢ we have
to first multiply 3 by 4 to obtain 12. But 12 is subtracted from 2, according to the tree
in Figure 6.59a, and added to 5, according to Figure 6.59¢c. There is no ambiguity in-
volved in this tree representation. The final result can be computed only if intermedi-
ate results are calculated first.

FIGURE 6.59  Examples of three expression trees and results of their traversals.
+ * -
- 5 - + 2 +

/\ / \ /\ /\
2) (« 2 (30 (40 (s < (s
/\ /\
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Notice also that trees do not use parentheses and yet no ambiguity arises. We can
maintain this parentheses-free situation if the expression tree is linearized (that is, if
the tree is transformed into an expression using a tree traversal method). The three
traversal methods relevant in this context are preorder, inorder, and postorder tree
traversals. Using these traversals, nine outputs are generated, as shown in Figure 6.59.
Interestingly, inorder traversal of all three trees results in the same output, which is the
initial expression that caused all the trouble. What it means is that inorder tree traver-
sal is not suitable for generating unambiguous output. But the other two traversals
are. They are different for different trees and are therefore useful for the purpose of
creating unambiguous expressions and sentences.

Because of the importance of these different conventions, special terminology
is used. Preorder traversal generates prefix notation, inorder traversal generates infix
notation, and postorder traversal generates postfix notation. Note that we are accus-
tomed to infix notation. In infix notation, an operator is surrounded by its two
operands. In prefix notation, the operator precedes the operands, and in postfix
notation, the operator follows the operands. Some programming languages are using
Polish notation. For example, Forth and PostScript use postfix notation. LISP and, to
alarge degree, LOGO use prefix notation.

6.10.1 Operations on Expression Trees

Binary trees can be created in two different ways: top-down or bottom-up. In the im-
plementation of insertion, the first approach was used. This section applies the second
approach by creating expression trees bottom-up while scanning infix expressions
from left to right.

The most important part of this construction process is retaining the same prece-
dence of operations as in the expression being scanned, as exemplified in Figure 6.59.
If parentheses are not allowed, the task is simple, as parentheses allow for many levels
of nesting. Therefore, an algorithm should be powerful enough to process any num-
ber of nesting levels in an expression. A natural approach is a recursive implementa-
tion. We modify the recursive descent interpreter discussed in Chapter 5’s case study
and outline a recursive descent expression tree constructor.

As Figure 6.59 indicates, a node contains either an operator or an operand, the
latter being either an identifier or a number. To simplify the task, all of them can be
represented as strings in an instance of the class defined as

class ExprTreeNode {

String key;

ExprTreeNode left, right;

ExprTreeNode(String k) {
this(k,null,null);

}

ExprTreeNode(String k, ExprTreeNode ptl, ExprTreeNode pt2) {
key = new String(k); left = ptl; right = pt2;
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Expressions that are converted to trees use the same syntax as expressions in the
case study in Chapter 5. Therefore, the same syntax diagrams can be used. Using these
diagrams, a class ExprTree can be created in which methods for processing a factor
and term have the following pseudocode (a method for processing an expression has
the same structure as the method processing a term):

class ExprTree {
protected ExprTreeNode root;
ExprTreeNode factor() {
if (token isa number, id or operator)
return new ExprTreeNode(token);
else if (token is '(') {
ExprTreeNode p = expr();
if (token is ')')
return p;
else error;

}
ExprTreeNode term() {

String oper;
ExprTreeNode pl, p2;
pl = factor();
while (token is '*' or '/') {
oper = token;
p2 factor();
pl new ExprTreeNode(oper,pl,p2);

return pl;

}

The tree structure of expressions is very suitable for generating assembly code or
intermediate code in compilers, as shown in this pseudocode of a function from
ExprTree class:

void generateCode() {
generateCode(root) ;
}
String generateCode (ExprTreeNode p) {
if (p.key isanumberorid)
return p.key;
else if (p.key.charAt(0) == '+') {
String result = newTemporaryvVar();
output "+\t" + generateCode(p.left) +
"\t" + generateCode(p.right) + "\t" + result;

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Section 6.10 Polish Notation and Expression Trees W 279

return result;

With these methods, an expression
(var2 + n) * (var2 + varl)/5

is transformed into an expression tree shown in Figure 6.60, and from this tree,
generateCode () generates the following intermediate code:

add var?2 n _tmp 3
add var2 varl _tmp 4
mul _tmp 3 _tmp 4 _tmp 2
div _tmp 2 5 _tmp 1

FIGURE 6.60  An expression tree.

N,
YN

var2 n var2 varl

Expression trees are also very convenient for performing other symbolic opera-
tions, such as differentiation. Rules for differentiation (given in the programming as-
signments in Chapter 5) are shown in the form of tree transformations in Figure 6.61
and in the following pseudocode:

differentiate(p,x) {
if (p == 0)
return 0;
if (p.key istheid x)
return new ExprTreeNode("1");
if (p.key isanotherid or a number)
return new ExprTreeNode("0");
if (p.key is'+'or ')
return new ExprTreeNode(p.key,differentiate(p.left,x),
differentiate(p.right,x));
if (p.key is 'x')
ExprTreeNode *gq = new ExprTreeNode("+");
g.left = new ExprTreeNode("*",p.left,new ExprTreeNode(*p.right));
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FIGURE 6.61  Tree transformations for differentiation of multiplication and division.
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g.left.right = differentiate(qg.left.right,x);

g.right = new ExprTreeNode("*",new ExprTreeNode(*p.left),p.right);
g.right.left = differentiate(g.right.left,x);

return q;

Here p is a reference to the expression to be differentiated with respect to x.
The rule for division is left as an exercise.

m CASE STuDY: COMPUTING WORD FREQUENCIES

One tool in establishing authorship of text in cases when the text is not signed, or it
is attributed to someone else, is using word frequencies. If it is known that an author
A wrote text T, and the distribution of word frequencies in a text T, under scrutiny
is very close to the frequencies in T, then it is likely that T, was written by author A.
Regardless of how reliable this method is for literary studies, our interest lies in
writing a program that scans a text file and computes the frequency of the occurrence
of words in this file. For the sake of simplification, punctuation marks are disregarded
and case sensitivity is disabled. Therefore, the word man’s is counted as two words,
man and s, although in fact it may be one word (for possessive) and not two words
(contraction for man is or man has). But contractions are counted separately; for ex-
ample, s from man’s is considered a separate word. Similarly, separators in the middle
of words such as hyphens cause portions of the same words to be considered separate
words. For example, pre-existence is split into pre and existence. Also, by disabling case
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sensitivity, Good in the phrase Mr. Good is considered as another occurrence of the
word good. On the other hand, Good used in its normal sense at the beginning of a
sentence is properly included as another occurrence of good.

This program focuses not so much on linguistics as on building a self-adjusting
binary search tree using the semisplaying technique. If a word is encountered in the
file for the first time, it is inserted in the tree; otherwise, the semisplaying is started
from the node corresponding to this word.

Another concern is storing all predecessors when scanning the tree. It is achieved
by using a reference to the parent. In this way, from each node we can access any
predecessor of this node up to the root of the tree.

Figure 6.62 shows the structure of the tree using the content of a short file, and
Figure 6.63 contains the complete code. The program reads a word, which is any se-
quence of alphanumeric characters that starts with a letter (spaces, punctuation
marks, and the like are discarded) and checks whether the word is in the tree. If so, the
semisplaying technique is used to reorganize the tree and then the word’s frequency
count is incremented. Note that this movement toward the root is accomplished by
changing links of the nodes involved, not by physically transferring information from
one node to its parent and then to its grandparent and so on. If a word is not found in
the tree, it is inserted in the tree by creating a new leaf for it. After all words are
processed, an inorder tree traversal goes through the tree to count all the nodes and
add all frequency counts to print as the final result the number of words in the tree
and the number of words in the file.

FIGURE 6.62  Semisplay tree used for computing word frequencies.

word —— — —> YE
freq —> 2

JORE\ *» YET

_/LAURELS\:’
1 2

_Z> H@ The text processed to produce

1 1 this tree is the beginning of
\ / John Milton's poem, Lycidas:
1

BROWN MYRTLES Yet once more, o ye laurels,
1

and once more
ye myrtles brown, ...
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FIGURE 6.63 Implementation of word frequency computation.

[REFE KKK KKKk Kk Kk kkkkkk%k%k%  BSTNode.java *r*x*kkkkkkkkhkxkkkhkhkhkkkkkkk

* node of a generic binary search tree

@)

public class BSTNode {

protected Comparable el;

protected BSTNode left, right;

public BSTNode() {
left = right = null;

}

public BSTNode(Comparable el) {
this(el,null,null);

}

public BSTNode(Comparable el, BSTNode 1lt, BSTNode rt) {
this.el = el; left = 1lt; right = rt;

/************************ BST_java kkhkhkkkhhkkkhhkkhhkkhhxkkhhkxkhhxkkx*x

* generic binary search tree

*/

public class BST {
protected BSTNode root = null;
public BST() {
}
public Comparable search(Comparable el) {
return search(root,el);
}
protected Comparable search(BSTNode p, Comparable el) {
while (p != null)
if (el.equals(p.el))
return p.el;
else if (el.compareTo(p.el) < 0)
p = p.left;
else p = p.right;
return null;
}
public void insert(Comparable el) {
BSTNode p = root, prev = null;
while (p != null) { // find a place for inserting new node;
prev = p;
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FIGURE 6.63 (continued)

if (p.el.compareTo(el) < 0)
p = p.right;
else p = p.left;
¥
if (root == null) // tree is empty;
root = new BSTNode(el);
else if (prev.el.compareTo(el) < 0)
prev.right = new BSTNode(el);

else prev.left = new BSTNode(el);
}
protected void visit(BSTNode p) {
System.out.print(p.el + " ");
}

public void inorder() {
inorder (root);
}
protected void inorder (BSTNode p) {
if (p != null) {
inorder(p.left);
visit(p);
inorder(p.right);

.........................................

[*EFKkkkkkkkkkkkkkkkkkkkkk**x SplayTreeNode.java ***kkkkkkkkkkkkkkkkx**

* node for generic splaying tree class

@)

public class SplayTreeNode extends BSTNode {

protected BSTNode parent;

public SplayTreeNode() {
left = right = parent = null;

}

public SplayTreeNode (Comparable el) {
this(el,null,null,null);

}

public SplayTreeNode (Comparable ob, SplayTreeNode lt,

SplayTreeNode rt, SplayTreeNode pr) {

el = ob; left = 1lt; right = rt; parent = pr;

Continues
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FIGURE 6.63 (continued)

[REFFK KKK KKKk kK kkkkkkkkKkkkkx*x  SplayTree.java *rxxxkkkxkkkkkkkkkkkkx k% *

* generic splaying tree class

*/

public class SplayTree extends BST {
public SplayTree() {
super();
}
private void continueRotation(BSTNode gr, BSTNode par,
BSTNode ch, BSTNode desc) {
if (gr != null) { // if par has a grandparent;
if (gr.right == ((SplayTreeNode)ch).parent)
gr.right = ch;
else gr.left = ch;
}
else root = ch;
if (desc != null)
((SplayTreeNode)desc) .parent = par;
((SplayTreeNode)par) .parent = ch;
((SplayTreeNode)ch) .parent = gr;
S
private void rotateR(SplayTreeNode p) {
p.parent.left = p.right;
p.right = p.parent;
continueRotation( ( (SplayTreeNode)p.parent) .parent,
p.right,p,p.right.left);
}
private void rotateL(SplayTreeNode p) {
p.parent.right = p.left;
p.left = p.parent;
continueRotation( ( (SplayTreeNode)p.parent).parent,
p.left,p,p.left.right);
}
private void semisplay(SplayTreeNode p) {
while (p != root) {
if (((SplayTreeNode)p.parent).parent == null) // if p's
parent is
if (p.parent.left == p) // the root;
rotateR(p);
else rotateL(p);
else if (p.parent.left == p) // if p is a left child;
if (((SplayTreeNode)p.parent).parent.left == p.parent) {
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FIGURE 6.63 (continued)

rotateR( (SplayTreeNode)p.parent);
p = (SplayTreeNode)p.parent;

}

else {
rotateR( (SplayTreeNode)p); // rotate p and its
parent;
rotateL( (SplayTreeNode)p); // rotate p and its new
parent;

}

else // if p is a right child;

if (((SplayTreeNode)p.parent).parent.right == p.parent) {
rotatel( (SplayTreeNode)p.parent);
p = (SplayTreeNode)p.parent;

}

else {
rotateL(p); // rotate p and its parent;
rotateR(p); // rotate p and its new

} // parent;

if (root == null) // update the root;

root = p;

[REFEF KKK KKK KKKk kk**kx k%% WJordSplaying.java  KrkxEkEkkkkkkkkkkkkkkkkkxx/
import java.io.*;

class Word implements Comparable {

private String word = "";

public int freq = 1;

public Word() {

¥

public Word(String s) {
word = s;

¥

public boolean equals(Object el) ({
return word.equals(((Word)el).word);

¥

public int compareTo(Object el) {
return word.compareTo( ((Word)el).word);

Continues
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FIGURE 6.63 (continued)

}
public String toString() {

return word + ": " + freq + " ";
¥

class WordSplay extends SplayTree {
private int differentWords, // counter of different words in text
// file;
wordCnt; // counter of all words in the same file;
public WordSplay() {
differentWords = wordCnt = 0;

}
protected void visit(BSTNode p) {
differentWords++;
wordCnt += ((Word)p.el).freq;
}

public void run(InputStream fIn, String fileName) {
int ch = 1;
Word p;
try {
while (ch > -1) {
while (true)
if (ch > -1 && !Character.isLetter((char)ch)) // skip

ch = fIn.read(); // nonletters;
else break;
if (ch == -1)
break;
String s = "";

while (ch > -1 && Character.isLetter((char)ch)) {
s += Character.toUpperCase( (char)ch);
ch = fIn.read();
}
if ((p = (Word)search(new Word(s))) == null)
insert (new Word(s));
else ((Word)p).freqg+t+;
}
} catch (IOException io) {
System.err.println("A problem with input");
}
inorder();
System.out.println("\n\nFile " + fileName
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FIGURE 6.63 (continued)

+ " contains " + wordCnt + " words among which "
+ differentWords + " are different\n");

class WordSplaying {
static public void main(String args[]) {

String fileName = "";

InputStream fIn;

BufferedReader buffer = new BufferedReader (

new InputStreamReader (System.in));
try {
if (args.length == 0) {

System.out.print("Enter a file name: ");
fileName = buffer.readLine();
fIn = new FileInputStream(fileName);

}

else {
fIn = new FileInputStream(args[0]);
fileName = args[0];

}

(new WordSplay()).run(fIn,fileName);
fIn.close();

} catch(IOException io) {
System.err.println("Cannot open " + fileName);

This program also illustrates the use of a generic binary search tree. Because scan-
ning this tree requires using comparison and the meaning of comparison varies from
one data type to another, when defining a tree, the comparison has to be used in a
generic way, and only when creating a specific tree is the generic comparison overrid-
den by a definition pertaining to the data type for which the tree was created. This
is accomplished by declaring the element inserted in a generic tree to be of type
Compatible; therefore, a generic tree node BSTNode is defined in terms of
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Comparable, and only then a generic binary search tree class BST is defined using
BSTNode. Only now are the methods in the BST class defined with a generic
compareTo() method from Comparable. Figure 6.63 shows search() and
insert () methods, both using compareTo (). Next, a generic SplayTree class is
defined as an extension of BST, and then a specific splaying tree, WordTree, is defined
in terms of the Word class that holds information relevant to the problem of finding
word frequencies. Because Comparable is an interface, the Word class for objects to be
inserted into a splay tree must be defined as a class implementing Comparable, and
the definition of the class must include a definition of the compareTo () method. The
Word class also includes definitions of methods that override generic definitions pro-
vided in the Object class, namely the equals () and toString() methods.
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m EXERCISES

1. The method search () given in Section 6.3 is well suited for searching binary search
trees. Try to adopt all four traversal algorithms so that they become search procedures
for any binary tree.

2. Write functions
a. to count the number of nodes in a binary tree
b. to count the number of leaves
c. to count the number of right children
d. to find the height of the tree
e. to delete all leaves from a binary tree

3. Write a method that checks whether a binary tree is perfectly balanced.

4. Design an algorithm to test whether a binary tree is a binary search tree.

5. Apply preorder(), inorder (), and postorder () to the tree in Figure 6.64 if
visit(p) in IntBSTNode is defined as:

a. if (p.left != null && p.key - p.left.key < 2)
p.left.key += 2;
b. if (p.left == null)
p.right = null;
c. if (p.left == null)
p.left = new IntBSTNode(p.key-1);
d. { 1IntBSTNode tmp = p.right;
p.right = p.left;
p.left = tmp;
S
6. For which trees do the preorder and inorder traversals generate the same sequence?
FIGURE 6.64 An example of a binary search tree.

10

5/ \20
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4 6 15 30
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0 7 13
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7. Figure 6.59 indicates that the inorder traversal for different trees can result in the
same sequence. Is this possible for the preorder or postorder traversals? If it is, show
an example.

8. Draw all possible binary search trees for the three elements A, B, and C.

9. What are the minimum and maximum numbers of leaves in a balanced tree of height h?

10. Write a method to create a mirror image of a binary tree.

11. Consider an operation R that for a given traversal method ¢ processes nodes in the
opposite order than t, and an operation C that processes nodes of the mirror image
of a given tree using traversal method #. For the tree traversal methods—preorder,
inorder, and postorder—determine which of the following nine equalities are true:

R(preorder) = C(preorder)
R(preorder) = C(inorder)
R(preorder) = C(postorder)
R(inorder) = C(preorder)
R(inorder) = C(inorder)
R(inorder) = C(postorder)
R(postorder) = C(preorder)
R(postorder) = C(inorder)
R(postorder) = C(postorder)

12. Using inorder, preorder, and postorder tree traversal, visit only leaves of a tree. What
can you observe? How can you explain this phenomenon?

13. (a) Write a method that prints each binary tree rotated to the left with proper inden-
tation, as in Figure 6.65a. (b) Adopt this method to print a threaded tree sideways; if
appropriate, print the key in the successor node, as in Figure 6.65b.

FIGURE 6.65  Printing a binary search tree (a) and a threaded tree (b) growing from left to right.
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Outline methods for inserting and deleting a node in a threaded tree in which threads
are put only in the leaves in the way illustrated by Figure 6.66.

FIGURE 6.66

15.

16.

17.

18.

19.

20.
21.

22,

23.

Examples of threaded trees.

(a) (b)

The tree in Figure 6.66b includes threads linking predecessors and successors accord-
ing to the postorder traversal. Are these threads adequate to perform threaded pre-
order, inorder, and postorder traversals?

Apply the method balance () to the English alphabet to create a balanced tree.

A sentence Dpq that uses a Sheffer’s alternative is false only if both p and g are
true. In 1925, J. Lukasiewicz simplified Nicod’s axiom from which all theses of
propositional logic can be derived. Transform the Nicod-Lukasiewicz axiom into
an infix parenthesized sentence and build a binary tree for it. The axiom is
DDpDqrDDsDssDDsqDDpsDps.

Write an algorithm for printing a parenthesized infix expression from an expression
tree. Do not include redundant parentheses.

Hibbard’s (1962) algorithm to delete a key from a binary search tree requires that if
the node containing the key has a right child, then the key is replaced by the smallest
key in the right subtree; otherwise, the node with the key is removed. In what respect
is Knuth’s algorithm (deleteByCopying()) an improvement?

Define a binary search tree in terms of the inorder traversal.

A Fibonacci tree can be considered the worst case AVL tree in that it has the smallest
number of nodes among AVL trees of height 4. Draw Fibonacci trees for h = 1,2,3,4
and justify the name of the tree.

One-sided height-balanced trees are AVL trees in which only two balance factors are
allowed: —1 and 0 or 0 and +1 (Zweben and McDonald, 1978). What is the rationale
for introducing this type of tree?

In lazy deletion, nodes to be deleted are retained in the tree and only marked as
deleted. What are the advantages and disadvantages of this approach?
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24. What is the number of comparisons and swaps in the best case for creating a heap
using
a. Williams’s method?
b. Floyd’s method?

25. A crossover between Floyd’s and Williams’s methods for constructing a heap is a method
in which an empty position occupied by an element is moved down to the bottom of
the tree and then the element is moved up the tree, as in Williams’s method, from the
position that was just moved down. A pseudocode of this function is as follows:

i = n/2-1; // position of the last parent in the array of n elements;

while (i >= 0)

// Floyd’s phase:

tmp = data[i];

consider element data[i] empty and move it down to the bottom
swapping it every time with larger child;

put tmp in the leaf at which this process ended;

// Williams’s phase: data[i] of the current tree

while tmp isnotthe rootdata [1] of the current tree and it is larger
than its parent swap tmp with its parent;

i-—; // go to the preceding parent;

It has been shown that this algorithm requires 1.657 comparisons in the average case
(McDiarmid and Reed, 1989). Show changes in the array [28 6 1 10 153 12 11] during
execution of the algorithm. What is the worst case?

[XE] PROGRAMMING ASSIGNMENTS

1. Write a program that accepts an arithmetic expression written in prefix (Polish) nota-
tion, builds an expression tree, and then traverses the tree to evaluate the expression.
The evaluation should start after a complete expression has been entered.

2. Abinary tree can be used to sort # elements of an array data. First, create a complete
binary tree, a tree with all leaves at one level, whose height 4 = [Ig n] + 1, and store all
elements of the array in the first n leaves. In each empty leaf, store an element E greater
than any element in the array. Figure 6.67a shows an example for data = {8, 20,41, 7,
2}, h=lg(5)1+ 1 =4, and E = 42. Then, starting from the bottom of the tree, assign to
each node the minimum of its two children values, as in Figure 6.67b, so that the
smallest element e . in the tree is assigned to the root. Next, until the element E is
assigned to the root, execute a loop that in each iteration stores E in the leaf, with the
value of e_. , and that, also starting from the bottom, assigns to each node the mini-
mum of its two children. Figure 6.67c displays this tree after one iteration of the loop.

3. Implement a menu-driven program for managing a software store. All information
about the available software is stored in a file sof tware. This information includes
the name, version, quantity, and price of each package. When it is invoked, the pro-
gram automatically creates a binary search tree with one node corresponding to one
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FIGURE 6.67  Binary tree used for sorting.
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software package and includes as its key the name of the package and its version.
Another field in this node should include the position of the record in the file
software. The only access to the information stored in software should be
through this tree.

The program should allow the file and tree to be updated when new software
packages arrive at the store and when some packages are sold. The tree is updated in
the usual way. All packages are entry ordered in the file software; if a new package
arrives, then it is put at the end of the file. If the package already has an entry in the
tree (and the file), then only the quantity field is updated. If a package is sold out, the
corresponding node is deleted from the tree, and the quantity field in the file is
changed to 0. For example, if the file has these entries:
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Adobe Photoshop 7.0 21 580
Norton Utilities 10 30
Norton SystemWorks 2003 6 50
Visual J++ Professional 6.0 19 100
Visual J++ Standard 6.0 27 40

then after selling all six copies of Norton SystemWorks 2003, the file is

Adobe Photoshop 7.0 21 580
Norton Utilities 10 30
Norton SystemWorks 2003 0 50
Visual J++ Professional 6.0 19 100
Visual J++ Standard 6.0 27 40

If an exit option is chosen from the menu, the program cleans up the file by moving
entries from the end of the file to the positions marked with 0 quantities. For exam-
ple, the previous file becomes

Adobe Photoshop 7.0 21 580
Norton Utilities 10 45
Visual J++ Standard 6.0 19 40
Visual J++ Professional 6.0 27 100

4. Implement algorithms for constructing expression trees and for differentiating the
expressions they represent. Extend the program to simplify expression trees. For
example, two nodes can be eliminated from the subtrees representing a £ 0,a - 1, or %

5. Write a cross-reference program that constructs a binary search tree with all words in-
cluded from a text file and records the line numbers on which these words were used.
These line numbers should be stored on linked lists associated with the nodes of the tree.
After the input file has been processed, print in alphabetical order all words of the text
file along with the corresponding list of numbers of the lines in which the words occur.

6. Perform an experiment with alternately applying insertion and deletion of random
elements in a randomly created binary search tree. Apply asymmetric and symmetric
deletions (discussed in this chapter); for both these variants of the deletion
algorithm, alternate deletions strictly with insertions and alternate these operations
randomly. This gives four different combinations. Also, use two different random
number generators to ensure randomness. This leads to eight combinations. Run all
of these combinations for trees of heights 500, 1,000, 1,500, and 2,000. Plot the results
and compare them with the expected IPLs indicated in this chapter.

7. Each unit in a Latin textbook contains a Latin-English vocabulary of words that have
been used for the first time in a particular unit. Write a program that converts a set of
such vocabularies stored in file Latin into a set of English-Latin vocabularies. Make
the following assumptions:

a. Unit names are preceded by a percentage symbol.
b. There is only one entry per line.

c. A Latin word is separated by a colon from its English equivalent(s); if there is
more than one equivalent, they are separated by a comma.
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To output English words in alphabetical order, create a binary search tree for each
unit containing English words and linked lists of Latin equivalents. Make sure that
there is only one node for each English word in the tree. For example, there is only
one node for and, although and is used twice in unit 6: with words ac and atque. After
the task has been completed for a given unit (that is, the content of the tree has been
stored in an output file), delete the tree along with all linked lists from computer
memory before creating a tree for the next unit.

Here is an example of a file containing Latin-English vocabularies:

$Unit 5

ante : before, in front of, previously
antiquus : ancient

ardeo : burn, be on fire, desire

arma : arms, weapons

aurum : gold

aureus : golden, of gold

%Unit 6

animal : animal
Athenae : Athens
atque : and

ac : and

aurora : dawn

%Unit 7

amo : love
amor : love
annus : year
Asia : Asia

From these units, the program should generate the following output:

$Unit 5

ancient : antiquus
arms : arma

be on fire : ardeo
before : ante

burn : ardeo
desire : ardeo
gold: aurum
golden : aureus

in front of : ante
of gold : aureus
previously : ante
weapons : arma
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%Unit 6

Athens : Athenae
and : ac, atque
animal : animal
dawn : aurora

%Unit 7

Asia : Asia

love : amor, amo
year : annus

8. Write a program to draw a binary search tree of numbers. The distance between levels
should depend on the height of the tree (use a function from exercise 2). The distance
between nodes on one level is the same and is twice the distance between nodes on
the level above. To determine which link should be drawn, use a version of the
breadth-first traversal that for each dequeued node p that does not correspond to the
last level enqueues its left and right children if p is not null and two null nodes other-
wise. Also, if p is not null, draw a line between p and its parent (unless p is the root),
and draw no line if p is null. The total number of nodes to be processed depends on
the height of the tree and equals 2"-1 (see Figure 6.35).
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Multiway
Trees

given, but the thrust of that chapter was binary trees, in particular, binary
search trees. A tree was defined as either an empty structure or a structure
whose children are disjoint trees ¢, . . ., t . According to this definition, each node of
this kind of tree can have more than two children. This tree is called a multiway tree of
order m, or an m-way tree.
In a more useful version of a multiway tree, an order is imposed on the keys
residing in each node. A multiway search tree of order m, or an m-way search tree, is a
multiway tree in which

0 t the beginning of the preceding chapter, a general definition of a tree was

Each node has m children and m — 1 keys.

The keys in each node are in ascending order.
The keys in the first i children are smaller than the ith key.

BN

The keys in the last # — i children are larger than the ith key.

The m-way search trees play the same role among m-way trees that binary search
trees play among binary trees, and they are used for the same purpose: fast informa-
tion retrieval and update. The problems they cause are similar. The tree in Figure 7.1
is a 4-way tree in which accessing the keys can require a different number of tests for
different keys: The number 35 can be found in the second node tested, and 55 is in the
fifth node checked. The tree, therefore, suffers from a known malaise: It is unbal-
anced. This problem is of particular importance if we want to use trees to process data
on secondary storage such as disks or tapes where each access is costly. Constructing
such trees requires a more careful approach.

299
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FIGURE 7.1 A 4-way tree.
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JAl THE FAMILY OoF B-TREES

The basic unit of I/O operations associated with a disk is a block. When information
is read from a disk, the entire block containing this information is read into memory,
and when information is stored on a disk, an entire block is written to the disk. Each
time information is requested from a disk, this information has to be located on the
disk, the head has to be positioned above the part of the disk where the information
resides, and the disk has to be spun so that the entire block passes underneath the
head to be transferred to memory. This means that there are several time components
for data access:

access time = seek time + rotational delay (latency) + transfer time

This process is extremely slow compared to transferring information within
memory. The first component, seek time, is particularly slow because it depends on
the mechanical movement of the disk head to position the head at the correct track
of the disk. Latency is the time required to position the head above the correct block,
and on the average, it is equal to the time needed to make one-half of a revolution. For
example, the time needed to transfer 5KB (kilobytes) from a disk requiring 40 ms
(milliseconds) to locate a track, making 3,000 revolutions per minute and with a data
transfer rate of 1,000KB per second, is

access time = 40 ms + 10 ms + 5 ms = 55 ms

This example indicates that transferring information to and from the disk is on
the order of milliseconds. On the other hand, the CPU processes data on the order of
microseconds, 1,000 times faster, or on the order of nanoseconds, 1 million times
faster, or even faster. We can see that processing information on secondary storage can
significantly decrease the speed of a program.
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If a program constantly uses information stored in secondary storage, the charac-
teristics of this storage have to be taken into account when designing the program. For
example, a binary search tree can be spread over many different blocks on a disk, as in
Figure 7.2, so that an average of two blocks have to be accessed. When the tree is used
frequently in a program, these accesses can significantly slow down the execution time
of the program. Also, inserting and deleting keys in this tree require many block ac-
cesses. The binary search tree, which is such an efficient tool when it resides entirely in
memory, turns out to be an encumbrance. In the context of secondary storage, its oth-
erwise good performance counts very little because the constant accessing of disk
blocks that this method causes severely hampers this performance.

FIGURE 7.2 Nodes of a binary tree can be located in different blocks on a disk.
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It is also better to access a large amount of data at one time than to jump from
one position on the disk to another to transfer small portions of data. For example, if
10KB have to be transferred, then using the characteristics of the disk given earlier, we
see that

access time = 40 ms + 10 ms + 10 ms = 60 ms
However, if this information is stored in two 5KB pieces, then
access time =2 - (40 ms + 10 ms + 5ms) = 110 ms

which is nearly twice as long as in the previous case. The reason is that each disk access is
very costly; if possible, the data should be organized to minimize the number of accesses.

1.1.1 B-Trees

In database programs where most information is stored on disks or tapes, the time
penalty for accessing secondary storage can be significantly reduced by the proper
choice of data structures. B-trees (Bayer and McCreight, 1972) are one such approach.

A B-tree operates closely with secondary storage and can be tuned to reduce the
impediments imposed by this storage. One important property of B-trees is the size of
each node, which can be made as large as the size of a block. The number of keys in
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one node can vary depending on the sizes of the keys, organization of the data (are
only keys kept in the nodes or entire records?), and of course, on the size of a block.
Block size varies for each system. It can be 512 bytes, 4KB, or more; block size is the
size of each node of a B-tree. The amount of information stored in one node of the B-
tree can be rather large.

A B-tree of order m is a multiway search tree with the following properties:

1. The root has at least two subtrees unless it is a leaf.

2. FEach nonroot and each nonleaf node holds k — 1 keys and k references to subtrees
where [m/2]1< k< m.

3. Eachleaf node holds k — 1 keys where [m/2]< k< m.

All leaves are on the same level.!

According to these conditions, a B-tree is always at least half full, has few levels, and is
perfectly balanced.

A node of a B-tree is usually implemented as a class containing an array of
m— 1 cells for keys, an m-cell array of references to other nodes, and possibly other in-
formation facilitating tree maintenance, such as the number of keys in a node and a
leaf/nonleaf flag, as in

class BTreeNode {
int m = 4;
boolean leaf = true;
int keyTally = 1;
int keys[] = new int[m-1];
BTreeNode references[] = new BTreeNode[m];
BTreeNode(int key) {
keys[0] = key;
for (int i = 0; 1 < m; i++)
references[i] = null;

}

Usually, m is large (50-500) so that information stored in one page or block of
secondary storage can fit into one node. Figure 7.3a contains an example of a B-tree of
order 7 that stores codes for some items. In this B-tree, the keys appear to be the only
objects of interest. In most cases, however, such codes would only be fields of larger
structures. In these cases, the array keys is an array of objects, each having a unique
identifier field (such as the identifying code in Figure 7.3a) and an address field, the
address of the entire record on secondary storage, as in Figure 7.3b.2 If the contents of

!In this definition, the order of a B-tree specifies the maximum number of children. Some-
times nodes of a B-tree of order m are defined as having k keys and k + 1 references where
m < k < 2m, which specifies the minimum number of children.

2Figure 7.3 reflects the logic of the situation; in actual implementation, the array keys is
an array of references to objects, and each object has a key field and an address field.
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FIGURE 7.3 One node of a B-tree of order 7 (a) without and (b) with an additional indirection.

|4]AaB123] PQ12 [SFo12]sT023 [ \ |
N N
/ l I \ \

(a)

Data file

NN

4 |[aB123] 1]|[Paiz [7]|[sForz [V ]|[sto3 ]I~ MY [V

/ | \ \ \ \
] I 0 \
(b)

one such node also reside in secondary storage, each key access would require two sec-
ondary storage accesses. In the long run, this is better than keeping the entire records
in the nodes, because in this case, the nodes can hold a very small number of such
records. The resulting B-tree is much deeper, and search paths through it are much
longer than in a B-tree with the addresses of records.

From now on, B-trees will be shown in an abbreviated form without explicitly in-
dicating keyTally or the reference fields, as in Figure 7.4.

FIGURE 7.4 A B-tree of order 5 shown in an abbreviated form.

Lols| [ Jluufiz] [ [fso[is] | [[21]as[27]ao]|sa]ss| [ [[7t]zs] [ J[st]so] [ |
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Searching in a B-Tree
An algorithm for finding a key in a B-tree is simple, and is coded as follows:

public BTreeNode BTreeSearch(int key) {
return BTreeSearch(key,root);

}
protected BTreeNode BTreeSearch(int key, BTreeNode node) {

if (node != null) {
int i = 1;
for ( ; i <= node.keyTally && node.keys[i-1] < key; i++);
if (i > node.keyTally || node.keys[i-1] > key)
return BTreeSearch(key,node.references[i-1]);
else return node;

}

else return null;

The worst case of searching is when a B-tree has the smallest allowable number of ref-
erences per nonroot node, g = [m/2], and the search has to reach a leaf (for either a
successful or an unsuccessful search). In this case, in a B-tree of height &, there are

1 key in the root +

2(g—1) keys on the second level +
2q(q - 1) keys on the third level +
2¢%(q - 1) keys on the fourth level +

2¢"2(q - 1) keys in the leaves (level h) =
h=2 A
1+ ( EZq’> (q—1) keys in the B-tree
i=0
With the formula for the sum of the first # elements in a geometric progression,
LI n+1_
Yq=1 1
55 q-1
the number of keys in the worst-case B-tree can be expressed as
h-2 ; ho1
1+ﬂq—n<§)6:1+2m—n<ﬂ__%l}L4+2¢4
i=0 q-

The relation between the number # of keys in any B-tree and the height of the B-tree
is then expressed as
n>-1+2g""

Solving this inequality for the height h results in
n+1

2
This means that for a sufficiently large order m, the height is small even for a large
number of keys stored in the B-tree. For example, if 1 = 200 and #n = 2,000,000, then

+1

h< logq
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h < 4; in the worst case, finding a key in this B-tree requires four seeks. If the root can
be kept in memory at all times, this number can be reduced to only three seeks into
secondary storage.

Inserting a Key into a B-Tree

Both the insertion and deletion operations appear to be somewhat challenging if we
remember that all leaves have to be at the last level. Not even balanced binary trees re-
quire that. Implementing insertion becomes easier when the strategy of building a
tree is changed. When inserting a node into a binary search tree, the tree is always
built from top to bottom, resulting in unbalanced trees. If the first incoming key is the
smallest, then this key is put in the root, and the root does not have a left subtree un-
less special provisions are made to balance the tree.

But a tree can be built from the bottom up so that the root is an entity always in
flux, and only at the end of all insertions can we know for sure the contents of the
root. This strategy is applied to inserting keys into B-trees. In this process, given an in-
coming key, we go directly to a leaf and place it there, if there is room. When the leaf is
full, another leaf is created, the keys are divided between these leaves, and one key is
promoted to the parent. If the parent is full, the process is repeated until the root is
reached and a new root created.

To approach the problem more systematically, there are three common situations
encountered when inserting a key into a B-tree.

1. Akeyis placed in a leaf that still has some room, as in Figure 7.5. In a B-tree of order
5,anew key, 7, is placed in a leaf, preserving the order of the keys in the leaf so that
key 8 must be shifted to the right by one position.

FIGURE 7.5 A B-tree (a) before and (b) after insertion of the number 7 into a leaf that has
available cells.

[slsf | | [sfss] [ | HEDEREENE
(@) (b)

2. The leaf in which a key should be placed is full, as in Figure 7.6. In this case, the leaf is
split, creating a new leaf, and half of the keys are moved from the full leaf to the new
leaf. But the new leaf has to be incorporated into the B-tree. The middle key is moved
to the parent, and a reference to the new leaf is placed in the parent as well. The same
procedure can be repeated for each internal node of the B-tree so that each such split
adds one more node to the B-tree. Moreover, such a split guarantees that each leaf
never has less than [m/2] - 1 keys.
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FIGURE 7.6 Inserting the number 6 into a full leaf.

6
L2lslzfs] [sls] [ | [2fs] | | [7]s] [ | [ssfus] [ |
(@) (b)
6 |12
L2ls[ | ] [ols] [ | [sfss] | |
()

3. A special case arises if the root of the B-tree is full. In this case, a new root and a new
sibling of the existing root have to be created. This split results in two new nodes in
the B-tree. For example, after inserting the key 13 in the third leaf in Figure 7.7a, the
leaf is split (as in case 2), a new leaf is created, and the key 15 is about to be moved to
the parent, but the parent has no room for it (7.7b). So the parent is split (7.7¢), but
now two B-trees have to be combined into one. This is achieved by creating a new
root and moving the middle key to it (7.7d). It should be obvious that it is the only
case in which the B-tree increases in height.

An algorithm for inserting keys in B-trees follows:

BTreelInsert (K)
find a leaf node fto insert K;
while (true)
find a proper position in array keys for K;
if node isnot full
insert K and increment keyTally;
return;
else split node into nodel and node2;// nodel = node, node2 isnew;
distribute keys and references evenly between nodel and node2 and
initialize properly their keyTally’s;
K = middle key;
if node was the root
create a new root as parent of nodel and node2;
put K and references to nodel and node2 in the root, and setits keyTally to 1;
return;
else node = itsparent;// and now process the node’s parent;
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FIGURE 7.7 Inserting the number 13 into a full leaf.

6 (122030

[2]3]4]s]|[7]8]to]r]|{1a]15]18]19]]21]23]25]28][31]33]34]3s5]

(a)
Insert 13 6 112120130
15
[2]3]4]s|[7]8]w]u]{]a] | |[[]1o] [ |[21]23]25]28][31]33]34]35]
(b)
6|12 15 20130
[2]3]4]s|[7]s8]wo]u]{]a] | |[[8]1o] [ |[21]23]25]28][31]33]34]35]
(©)

B

[2]3]4]s|[7]s8]wo]u]{]a] | |[[]1o] [ |[21]23]25]28][31]33]34]35]
(@

Figure 7.8 shows the growth of a B-tree of order 5 in the course of inserting new
keys. Note that at all times the tree is perfectly balanced.

A variation of this insertion strategy uses presplitting: When a search is made
from the top down for a particular key, each visited node that is already full is split. In
this way, no split has to be propagated upward.

How often are node splits expected to occur? A split of the root node of a B-tree
creates two new nodes. All other splits add only one more node to the B-tree. During
the construction of a B-tree of p nodes, p — h splits have to be performed, where & is
the height of the B-tree. Also, in a B-tree of p nodes, there are at least
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FIGURE 7.8 Building a B-tree of order 5 with the BTreeInsert () algorithm.

Insert 8, 14, 2, 15 n
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Insert 3 n...
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©
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1+ ([m/2]1-1)(p-1)
keys. The rate of splits with respect to the number of keys in the B-tree can be given by

p—h
1+ ([m/21-1)(p-1)

After dividing the numerator and denominator by p — h and observing that Lh -0
and 1% — 1 with the increase of p, the average probability of a split is r

I S
[m/2]1-1

For example, for m = 10, this probability is equal to .25; for m = 100, it is .02; and for
m = 1,000, it is .002, and expectedly so: The larger the capacity of one node, the less
frequently splits occur.

Deleting a Key from a B-Tree

Deletion is to a great extent a reversal of insertion, although it has more special cases.
Care has to be taken to avoid allowing any node to be less than half full after a dele-
tion. This means that nodes sometimes have to be merged.

In deletion, there are two main cases: deleting a key from a leaf and deleting a
key from a nonleaf node. In the latter case, we will use a procedure similar to
deleteByCopying( ) used for binary search trees (Section 6.6).

1. Deleting a key from a leaf.

1.1 If, after deleting a key K, the leaf is at least half full and only keys greater
than K are moved to the left to fill the hole (see Figures 7.9a-b), this is the
inverse of insertion’s case 1.

1.2 If, after deleting K, the number of keys in the leaf is less than [m/2] -1,
causing an underflow:

1.2.1 If there is a left or right sibling with the number of keys exceeding
the minimal [m/2] - 1, then all keys from this leaf and this sibling
are redistributed between them by moving the separator key from
the parent to the leaf and moving the middle key from the node and
the sibling combined to the parent (see Figures 7.9b—c).

1.2.2 If the leaf underflows and the number of keys in its siblings is [#1/2] -1,
then the leaf and a sibling are merged; the keys from the leaf, from its
sibling, and the separating key from the parent are all put in the leaf,
and the sibling node is discarded. The keys in the parent are moved if
a hole appears (see Figures 7.9c—d). This can initiate a chain of opera-
tions if the parent underflows. The parent is now treated as though
it were a leaf, and either step 1.2.2 is repeated until step 1.2.1 can be
executed or the root of the tree has been reached. This is the inverse
of insertion’s case 2.
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FIGURE 7.9 Deleting keys from a B-tree.
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1.2.2.1 A particular case results in merging a leaf or nonleaf with its
sibling when its parent is the root with only one key. In this
case, the keys from the node and its sibling, along with the only
key of the root, are put in the node, which becomes a new root,
and both the sibling and the old root nodes are discarded. This
is the only case when two nodes disappear at one time. Also,
the height of the tree is decreased by one (see Figures 7.9c—e).
This is the inverse of insertion’s case 3.

2. Deleting a key from a nonleaf. This may lead to problems with tree reorganiza-
tion. Therefore, deletion from a nonleaf node is reduced to deleting a key from
aleaf. The key to be deleted is replaced by its immediate predecessor (the succes-
sor could also be used), which can only be found in a leaf. This successor key is
deleted from the leaf, which brings us to the preceding case 1 (see Figures 7.9e—f).

Here is the deletion algorithm:

BTreeDelete(K)
node = BTreeSearch(K,root);
if (node != null)
if node is not a leaf
find a leaf with the closest predecessor S of K;
copy S over K in node;
node = the leaf containing s;
delete S from node;
else delete K from node;
while (true)
if node does not underflow
return;
else if thereisasibling of node with enough keys
redistribute the keys between node and its sibling;
return;
else if node’s parent is the root
if the parent has only one key
merge node, its sibling, and the parent to form a new root;
else merge node and its sibling;
return;
else merge node and its sibling;
node = its parent;

B-trees, according to their definition, are guaranteed to be at least 50 percent full, so
it may happen that 50 percent of space is basically wasted. How often does this happen?
If it happens too often, then the definition must be reconsidered or some other restric-
tions imposed on this B-tree. Analyses and simulations, however, indicate that after a
series of numerous random insertions and deletions, the B-tree is approximately 69 per-
cent full (Yao, 1978), after which the changes in the percentage of occupied cells are very
small. But it is very unlikely that the B-tree will ever be filled to the brim, so some addi-
tional stipulations are in order.
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7.1.2 B'-Trees

Because each node of a B-tree represents a block of secondary memory, accessing one
node means one access of secondary memory, which is expensive compared to access-
ing keys in the node residing in primary memory. Therefore, the fewer nodes that are
created, the better.

A B’-tree is a variant of the B-tree, and was introduced by Donald Knuth and
named by Douglas Comer. In a B'-tree, all nodes except the root are required to be at
least two-thirds full, not just half full as in a B-tree. More precisely, the number of keys
in all nonroot nodes in a B-tree of order m is now k for [ 2= | < k < m — 1. The fre-
quency of node splitting is decreased by delaying a split, and when the time comes, by
splitting two nodes into three, not one into two. The average utilization of B*-tree is
81 percent (Leung, 1984).

A split in a B'-tree is delayed by attempting to redistribute the keys between a
node and its sibling when the node overflows. Figure 7.10 contains an example of a
B'-tree of order 9. The key 6 is to be inserted into the left node, which is already full.
Instead of splitting the node, all keys from this node and its sibling are evenly divided
and the median key, key 10, is put into the parent. Notice that this evenly divides not
only the keys, but also the free spaces so that the node which was full is now able to ac-
commodate one more key.

FIGURE 7.10  Overflow in a B*-tree is circumvented by redistributing keys between an overflowing
node and its sibling.

o] T [T [ T[]
lo1]2]s]7]9]wo|i2] [18]2s]27]28]30] | | |
()

freert© ol [T T[T ]]
lol1]2]s]e]7]0o] | [12]16]18]25]27]28]30] |
(b)

If the sibling is also full, a split occurs: One new node is created, the keys from the
node and its sibling (along with the separating key from the parent) are evenly divided
among three nodes, and two separating keys are put into the parent (see Figure 7.11).
All three nodes participating in the split are guaranteed to be two-thirds full.
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FIGURE 7.11  If a node and its sibling are both full in a B*-tree, a split occurs: A new node is
created and keys are distributed between three nodes.

o [ [ [T [T T ]
lo]1]2]5]6|7]8]09] [12]16]18]25]27]28]29[30]
(a)
fnsert 4 fefis] [ [ [T T[]
lofefafals] | | | [7]8]ofwoui] [ [ | [18[2s]27]28]29]30] | |
(b)

Note that, as may be expected, this increase of a fill factor can be done in a variety
of ways, and some database systems allow the user to choose a fill factor between .5
and 1. In particular, a B-tree whose nodes are required to be at least 75 percent full is
called a B”-tree (McCreight, 1977). The latter suggests a generalization: A B"-tree is a
B-tree whose nodes are required to be % full.

1.1.3 B*-Trees

Because one node of a B-tree represents one secondary memory page or block, the
passage from one node to another requires a time-consuming page change. Therefore,
we would like to make as few node accesses as possible. What happens if we request
that all the keys in the B-tree be printed in ascending order? An inorder tree traversal
can be used that is easy to implement, but for nonterminal nodes, only one key is dis-
played at a time and then another page has to be accessed. Therefore, we would like to
enhance B-trees to allow us to access data sequentially in a faster manner than using
inorder traversal. A B*-tree offers a solution (Wedekind, 1974).3

In a B-tree, references to data are made from any node of the tree, but in a B*-tree,
these references are made only from the leaves. The internal nodes of a B*-tree are in-
dexes for fast access of data; this part of the tree is called an index set. The leaves have a
different structure than other nodes of the B*-tree, and usually they are linked sequen-
tially to form a sequence set so that scanning this list of leaves results in data given in as-
cending order. Hence, a B*-tree is truly a B plus tree: It is an index implemented as a

3 Wedekind, who considered these trees to be only “a slight variation” of B-trees, called them
B’-trees.
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regular B-tree plus a linked list of data. Figure 7.12 contains an example of a B*-tree.
Note that internal nodes store keys, references to other nodes, and a key count. Leaves
store keys, references to records in a data file associated with the keys, and references to
the next leaf.

FIGURE 7.12  An example of a B*-tree of order 4.

[ 1]cD244 | |
[2] BF9O [BQ322] |
[3]AB203]| AS09 [ BC26 | -2 ] BF90 | BF130 | | 4+{2]BQ322|CD123] | 4—‘
[2] cFo4 [DR300] |
———[2]cD244 | CFO3 | | 4~{3] cFo4 | cFos [DP102] 4~{ 2 | DR300 | DR305 | | ]

Operations on B*-trees are not very different from operations on B-trees. Insert-
ing a key into a leaf that still has some room requires putting the keys of this leaf in
order. No changes are made in the index set. If a key is inserted into a full leaf, the leaf
is split, the new leaf node is included in the sequence set, all keys are distributed evenly
between the old and the new leaves, and the first key from the new node is copied (not
moved, as in a B-tree) to the parent. If the parent is not full, this may require local re-
organization of the keys of the parent (see Figure 7.13). If the parent is full, the split-
ting process is performed the same way as in B-trees. After all, the index set is a B-tree.
In particular, keys are moved, not copied, in the index set.

Deleting a key from a leaf leading to no underflow requires putting the remaining
keys in order. No changes are made to the index set. In particular, if a key that occurs
only in a leaf is deleted, then it is simply deleted from the leaf but can remain in the
internal node. The reason is that it still serves as a proper guide when navigating down
the B*-tree because it still properly separates keys between two adjacent children even
if the separator itself does not occur in either of the children. The deletion of key 6
from the tree in Figure 7.13b results in the tree in Figure 7.14a. Note that the number
6 is not deleted from an internal node.
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FIGURE 7.13  An attempt to insert the number 6 into the first leaf of a B*-tree.
29[ | | |
J_lT 19
Lt]2]8[rofi~{ufiis][ [4~{1o]as] | [+~

(a)

Insert 6

[tl2] [ [g-fefsfo] [q=[ufwsss] [g~[ro]2e] | [~

(b)

FIGURE 7.14  Actions after deleting the number 6 from the B*-tree in Figure 7.13b.
Delete 6 ...
J_6‘ 11|19
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Delete 2 ...
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When the deletion of a key from a leaf causes an underflow, then either the keys
from this leaf and the keys of a sibling are redistributed between this leaf and its sib-
ling or the leaf is deleted and the remaining keys are included in its sibling. Figure
7.14b illustrates the latter case. After deleting the number 2, an underflow occurs
and two leaves are combined to form one leaf. The separating key is removed from
the parent and keys in the parent are put in order. Both these operations require up-
dating the separator in the parent. Also, removing a leaf may trigger merges in the
index set.

1.1.4 Prefix B+-Trees

If a key occurred in a leaf and in an internal node of a B*-tree, then it is enough to
delete it only from the leaf because the key retained in the node is still a good guide in
subsequent searches. So it really does not matter whether a key in an internal node is
in any leaf or not. What counts is that it is an acceptable separator for keys in adjacent
children; for example, for two keys K . and K, the separator s must meet the condition
K| < s <K,. This property of the separator keys is also retained if we make keys in in-
ternal nodes as small as possible by removing all redundant contents from them and
still have a properly working B*-tree.

A simple prefix B*-tree (Bayer and Unterauer, 1977) is a B*-tree in which the cho-
sen separators are the shortest prefixes that allow us to distinguish two neighboring
index keys. For example, in Figure 7.12, the left child of the root has two keys, BF90
and BQ322. If a key is less than BF90, the first leaf is chosen; if it is less than BQ322,
the second leaf is the right pick. But observe that we also have the same results, if
instead of BF90, keys BF9 or just BF are used and instead of BQ322, one of three pre-
fixes of this key is used: BQ32, BQ3, or just BQ. After choosing the shortest prefixes
of both keys, if any key is less than BF, the search ends up in the first leaf, and if the
key is less than BQ, the second leaf is chosen; the result is the same as before. Reduc-
ing the size of the separators to the bare minimum does not change the result of the
search. It only makes separators smaller. As a result, more separators can be placed
in the same node, whereby such a node can have more children. The entire B*-tree
can have fewer levels, which reduces the branching factor and makes processing the
tree faster.

This reasoning does not stop at the level of parents of the leaves. It is carried over
to any other level so that the entire index set of a B*-tree is filled with prefixes (see
Figure 7.15).

The operations on simple prefix B*-trees are much the same as the operations on
B*-trees with certain modifications to account for prefixes used as separators. In par-
ticular, after a split, the first key from the new node is neither moved nor copied to the
parent, but the shortest prefix is found that differentiates it from the prefix of the last
key in the old node; and the shortest prefix is then placed in the parent. For deletion,
however, some separators retained in the index set may turn out to be too long, but to
make deletion faster, they do not have to be immediately shortened.
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FIGURE 7.15 A B*-tree from Figure 7.12 presented as a simple prefix B*-tree.

[feo2 | ||
[2] BF | BQ |_ |
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——[2[CD244] CFO3 | | 3] cFo4 | cFos | DP102] 4| 2 [ DR300 | DR305 | | ]

The idea of using prefixes as separators can be carried even further if we observe
that prefixes of prefixes can be omitted in lower levels of the tree, which is the idea be-
hind a prefix B*-tree. This method works particularly well if prefixes are long and rep-
etitious. Figure 7.16 contains an example. Each key in the tree has a prefix AB12XY,
and this prefix appears in all internal nodes. This is redundant; Figure 7.16b shows the
same tree with “AB12XY” stripped from prefixes in children of the root. To restore the
original prefix, the key from the parent node, except for its last character, becomes
the prefix of the key found in the current node. For example, the first cell of the child
of the root in Figure 7.16b has the key “08.” The last character of the key in the root is
discarded and the obtained prefix, “AB12XY,” is put in front of “08.” The new prefix,
“AB12XY08,” is used to determine the direction of the search.

How efficient are prefix B*-trees? Experimental runs indicate that there is almost
no difference in the time needed to execute algorithms in B*-trees and simple prefix
B*-trees, but prefix B-trees need 50-100 percent more time. In terms of disk accesses,
there is no difference between these trees in the number of times the disk is accessed
for trees of 400 nodes or less. For trees of 400-800 nodes, both simple prefix B*-trees
and prefix B*-trees require 20-25 percent fewer accesses (Bayer and Unterauer, 1977).
This indicates that simple prefix B*-trees are a viable option, but prefix B*-trees re-
main largely of theoretical interest.
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(a) A simple prefix B*-tree and (b) its abbreviated version presented as a prefix B*-tree.

FIGURE 7.16
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1.1.5 Bit-Trees

A very interesting approach is, in a sense, taking to the extreme the prefix B*-tree
method. In this method, bytes are used to specify separators. In bit-trees, the bit level
is reached (Ferguson, 1992).

The bit-tree is based on the concept of a distinction bit (D-bit). A distinction bit
D(K,L) is the number of the most significant bit that differs in two keys, K and L, and
D(K,L) = key-length-in-bits — 1 — |_lg(K xor L) . For example, the D-bit for the letters
“K” and “N”, whose ASCII codes are 01001011 and 01001110, is 5, the position at
which the first difference between these keys has been detected; D(“K”“N”) =8 -1 —
Lig5]=5.

A bit-tree uses D-bits to separate keys in the leaves only; the remaining part of the
tree is a prefix B*-tree. This means that the actual keys and entire records from which
these keys are extracted are stored in a data file so that the leaves can include much
more information than would be the case when the keys were stored in them. The leaf
entries refer to the keys indirectly by specifying distinction bits between keys corre-
sponding to neighboring locations in the leaf (see Figure 7.17).

FIGURE 7.17 A leaf of a bit-tree.
Position in leaf i—1 i i+1 i+2 i+3
D-bits 5 7 3 5
Records in data file
Key "K" "N" "o" "R" "V
Key code 01001011 01001110 01001111 01010010 01010110

Data file

Before presenting an algorithm for processing data with bit-trees, some useful
properties of D-bits need to be discussed. All keys in the leaves are kept in ascending
order. Therefore, D, = D(Kl._l,Kl.) indicates the leftmost bit that is different in these
keys; this bit is always 1 because K, | < K, for 1 <i <m (= order of the tree). For exam-
ple, D(“N”“O”) = D(01001110,01001111) = 7, and the bit in position 7 is on, all pre-
ceding bits in both keys being the same.

Let j be the first position in a leaf for which D, < D;and j > i; D; is the first D-bit
smaller than a preceding D,. In this case, for all keys between positions i and j in this
leaf, the D, bit is 1. In the example in Figure 7.17, j = i + 2, because D,,,is the first
D-bit following position i that is smaller than D,. Bit 5 in key “O” in position i + 1 is 1
asitis 1 in key “N” in position i.

The algorithm for searching a key using a bit-tree leaf is
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bitTreeSearch (K)
R = record Rg;
for i =1 to m-1
if the D, bitinK is 1
R = Ri;
else skip all following D-bits until a smaller D-bit is found;
read record R from data file;
if K == key from record R
return R;
else return -1;

Using this algorithm, we can search for “V” assuming that, in Figure 7.17,i—1=0
and i + 3 is the last entry in the leaf. R is initialized to R, andito 1.

1. In the first iteration of the for loop, bit D, = 5 in key “V”= 01010110 is checked, and
because itis 1, R is assigned R,.

2. Inthe second iteration, bit D, = 7 is tested. It is 0, but nothing is skipped, as required
by the else statement, because right away a D-bit is found that is smaller than 7.

3. The third iteration: bit D,=3is1,50R becomes R,

In the fourth iteration, bit D ,=5is checked again, and because it is 1, R is assigned R..
This is the last entry in the leaf; the algorithm is finished, and Ry is properly returned.

What happens if the desired key is not in the data file? We can try to locate “S” =
01010011 using the same assumptions on i — 1 and 7 + 3. Bit D, = 5 is 0, so the posi-
tion with D-bit 7 is skipped, and because bit D, = 3 in “S” is 1, the algorithm would
return record R,. To prevent this, bitTreeSearch() checks whether the record it
found really corresponds with the desired key. If not, a negative number is returned
to indicate failure.

71.1.6 R-Trees

Spatial data are the kind of objects that are utilized frequently in many areas. Com-
puter-assisted design, geographical data, and VLSI design are examples of domains
in which spatial data are created, searched, and deleted. This type of data requires
special data structures to be processed efficiently. For example, we may request that
all counties in an area specified by geographical coordinates be printed or that all
buildings in walking distance from city hall be identified. Many different data struc-
tures have been developed to accommodate this type of data. One example is an
R-tree (Guttman, 1984).

An R-tree of order m is a B-treelike structure containing at least m entries in one
node for some m < maximum number allowable per one node (except the root).
Hence, an R-tree is not required to be at least half full.

A leaf in an R-tree contains entries of the form (rect,id) where rect = ([cll,czl], e
[c!,c?]) is an n-dimensional rectangle, c}, and c? are coordinates along the same axis,
and id is a reference to a record in a data file. rect is the smallest rectangle containing
object id; for example, the entry in a leaf corresponding to an object X on a Cartesian
plane as in Figure 7.18 is the pair (([10,100], [5,52]), X).
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FIGURE 7.18  An area Xon the Cartesian plane enclosed tightly by the rectangle ([10,1001, [5,52]).
The rectangle parameters and the area identifier are stored in a leaf of an R-tree.

52 Leaf (110, 1001, [5, 52])
\
S /

‘ ‘ Data file X

10 100
(@) (b)

A nonleaf node cell entry has the form (rect,child) where rect is the smallest rec-
tangle encompassing all the rectangles found in child. The structure of an R-tree is not
identical to the structure of a B-tree: The former can be viewed as a series of n keys
and n references corresponding to these keys.

Inserting new rectangles in an R-tree is made in B-tree fashion, with splits and re-
distribution. A crucial operation is finding a proper leaf in which to insert a rectangle
rect. When moving down the R-tree, the subtree chosen in the current node is the one
that corresponds to the rectangle requiring the least enlargement to include rect. If a
split occurs, new encompassing rectangles have to be created. The detailed algorithm
is more involved because, among other things, it is not obvious how to divide rectan-
gles of a node being split. The algorithm should generate rectangles that enclose rec-
tangles of the two resulting nodes and are minimal in size.

Figure 7.19 contains an example of inserting four rectangles into an R-tree. After
inserting the first three rectangles, R, R,, and R, only the root is full (Figure 7.19a).
Inserting R, causes a split, resulting in the creation of two encompassing rectangles
(Figure 7.19b). Inserting R, changes nothing, and inserting R, causes rectangle R, to
be extended to accommodate R, (Figure 7.19¢c). Figure 7.19d shows another split after
entering R, in the R-tree. R, is discarded, and R, and R are created.

A rectangle R can be contained in many other encompassing rectangles, but it can
be stored only once in a leaf. Therefore, a search procedure may take a wrong path at
some level i when it sees that R is enclosed by another rectangle found in a node on
this level. For example, rectangle R, in Figure 7.19d is enclosed by both R ; and R,,.
Because R, is before R, in the root, the search accesses the middle leaf when looking
for R,. However, if R, preceded R, in the root, following the path corresponding
with R, would be unsuccessful. For large and high R-trees, this overlapping becomes
excessive.

A modification of R-trees, called an R*-tree, removes this overlap (Sellis, Rous-
sopoulos, and Faloutsos, 1987; Stonebraker, Sellis, and Hanson, 1986). The encom-
passing rectangles are no longer overlapping, and each encompassing rectangle
is associated with all the rectangles it intersects. But now the data rectangle can be
found in more than one leaf. For example, Figure 7.20 shows an R*-tree constructed
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FIGURE 7.19  Building an R-tree.
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after the data rectangle R was inserted into the R-tree in Figure 7.19c. Figure 7.20
replaces Figure 7.19d. Note that Ry can be found in two leaves, because it is inter-
sected by two encompassing rectangles, R,  and R, . Operations on an R*-tree make
it difficult to ensure without further manipulation that nodes are at least half full.
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FIGURE 7.20  An R*tree representation of the R-tree in Figure 7.19d after inserting the rectangle R,
in the tree in Figure 7.19c.
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1.1.7 2-4Trees

This section discusses a special case of B-tree, a B-tree of order 4. This B-tree was first
discussed by Rudolf Bayer, who called it a symmetric binary B-tree (Bayer, 1972), but it
is usually called a 2—-3—4 tree or just a 2—4 tree. A 2—4 tree seems to offer no new per-
spectives, but quite the opposite is true. In B-trees, the nodes are large to accommo-
date the contents of one block read from secondary storage. In 2—4 trees, on the other
hand, only one, two, or at most three elements can be stored in one node. Unless the
elements are very large, so large that three of them can fill up one block on a disk,
there seems to be no reason for even mentioning B-trees of such a small order.
Although B-trees have been introduced in the context of handling data on secondary
storage, it does not mean that they have to be used only for that purpose.

We spent an entire chapter discussing binary trees, in particular, binary search
trees, and developing algorithms that allow quick access to the information stored in
these trees. Can B-trees offer a better solution to the problem of balancing or travers-
ing binary trees? We now return to the topics of binary trees and processing data in
memory.

B-trees are well-suited to challenge the algorithms used for binary search trees,
because a B-tree by its nature has to be balanced. No special treatment is needed in
addition to building a tree: Building a B-tree balances it at the same time. Instead of
using binary search trees, we may use B-trees of small order such as 2—4 trees. How-
ever, if these trees are implemented as structures similarly to B-trees, there are three
locations per node to store up to three keys and four locations per node to store up to
four references. In the worst case, half of these cells are unused, and on the average, 69
percent are used. Because space is much more at a premium in main memory than in
secondary storage, we would like to avoid this wasted space. Therefore, 2—4 trees are
transformed into binary tree form in which each node holds only one key. Of course,
the transformation has to be done in a way that permits an unambiguous restoration
of the original B-tree form.
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To represent a 2—4 tree as a binary tree, two types of links between nodes are used:
One type indicates links between nodes representing keys belonging to the same node
of a 2—4 tree, and another represents regular parent—children links. Bayer called them
horizontal and vertical pointers or, more cryptically, p-pointers and §-pointers; Guibas
and Sedgewick in their dichromatic framework use the names red and black pointers.
Not only are the names different, but the trees are also drawn a bit differently. Figure
7.21 shows nodes with two and three keys, which are called 3-nodes and 4-nodes, and
their equivalent representations. Figure 7.22 shows a complete 2—4 tree and its binary
tree equivalents. Note that the red links are drawn with dashed lines. The red-black tree
better represents the exact form of a binary tree; the vertical-horizontal trees, or the
vh-trees, are better in retaining the shape of 2—4 trees and in having leaves shown as
though they were on the same level. Also, vh-trees lend themselves easily to represent-
ing B-trees of any order; the red-black trees do not.

FIGURE 7.21 (a) A 3-node represented (b—c) in two possible ways by red-black trees and (d—e) in
two possible ways by vh-trees. (f) A 4-node represented (g) by a red-black tree and
(h) by a vh-tree.
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Both red-black trees and vh-trees are binary trees. Each node has two references
that can be interpreted in two ways. To make a distinction between the interpretation
applied in a given context, a flag for each of the references is used.
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FIGURE 7.22 (a) A 2-4 tree represented (b) by a red-black tree and (c) by a binary tree with horizon-
tal and vertical pointers.
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Vh-trees have the following properties:

B The path from the root to any null node contains the same number of vertical
links.

B No path from the root can have two horizontal links in a row.

The operations performed on vh-trees should be the same as on binary trees, al-
though their implementation is much more involved. Only searching is the same: To
find a key in a vh-tree, no distinction is made between the different types of references.
We can use the same searching procedure as for binary search trees: If the key is found,
stop. If the key in the current node is larger than the one we are looking for, we go to
the left subtree; otherwise, we go to the right subtree.
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To find the cost of searching a key in the worst case in a vh-tree, observe that in
each such tree we would like to find a correspondence between the number of nodes
in the tree and its height. First, observe that if the shortest path to a leaf consists of
vertical links only, then the longest path to another leaf can begin and end with hori-
zontal links and have vertical and horizontal links used interchangeably. Therefore,

path =2 path +1

longest shortest

with equality if the shortest and the longest paths are as just described. Now we would
like to find the minimum number of nodes . in a vh-tree of a particular height h.
Consider first vh-trees of odd height. Figure 7.23a shows a vh-tree of height 7 and,
implicitly, of heights 1, 3, and 5. Beginning with i = 3, we can observe a geometric
progression in the number of nodes added to the tree of previous odd height

h=3579...
number of newnodes =361224...

The sum of the first m terms of a geometric sequence is expressed with the for-
mula alﬂq,;ll and thus after adding 1 representing the root,

=3 ——+1=3-27 -2
2
From this we have
n=3-27 -2
and so

n+ 2
3

2lg +1=h

For even heights, as exemplified in Figure 7.23b for a vh-tree of height 8, we obtain

h=2468...
number of newnodes =248 16 ...

Mpin = 2(2721 - l)
and consequently
n= Min = 2(2% - 1)
from which

2g(n +2) —2=h

It is simple to check that for any 7, the bound for even heights is larger, so it can be
used as an upper bound for all heights. The lower bound is given by the height of a
complete binary tree. The number of nodes in such a tree of height h was found to be
n=2"—1 (see Figure 6.35), from which

lgln+1)=h=2lg(n+2)-2

This is the worst case of search, when searching has to reach the leaf level.
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FIGURE 7.23 (a) A vh-tree of height 7; (b) a vh-tree of height 8.

(a)

(b)

Insertions restructure the tree by adding one more node and one more link to the
tree. Should it be a horizontal or vertical link? Deletions restructure the tree as well by
removing one node and one link, but this may lead to two consecutive horizontal
links. These operations are not as straightforward as for binary search trees, because
some counterparts of node splitting and node merging have to be represented in
vh-trees.

A good idea when splitting 2—4 trees, as already indicated in the discussion of
B-trees, is to split nodes when going down the tree while inserting a key. If a 4-node is
encountered, it is split before descending further down the tree. Because this splitting
is made from the top down, a 4-node can be a child of either a 2-node or a 3-node
(with the usual exception: unless it is the root). Figures 7.24a and 7.24b contain an ex-
ample. Splitting the node with keys B, C, and D requires creating a new node. The two
nodes involved in splitting (Figure 7.24a) are 4/6 full and three nodes after splitting
are 4/9 full (6/8 and 7/12, respectively, for reference fields). Splitting nodes in 2—4
trees results in poor performance. However, if the same operations are performed on
their vh-tree equivalents, the operation is remarkably efficient. In Figures 7.24c and
7.24d, the same split is performed on a vh-tree, and the operation requires changing
only two flags from horizontal to vertical and one from vertical to horizontal: Only
three bits are reset!
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FIGURE 7.24 (a-b) Split of a 4-node attached to a node with one key in a 2—4 tree. (c-d) The same
split in a vh-tree equivalent to these two nodes.
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Resetting these three flags suggests the following algorithm:

flagFlipping(node)
if node’s both links are horizontal
reset the flag corresponding to the link from node’s parent to node to horizontal;
reset flags in node to vertical;

For the second case, when 4-node is a child of a 3-node and the links are as in Figure
7.25a, the split results in the 2—4 tree as in Figure 7.25b; applying flagFlipping to a
vh-tree equivalent requires that only three bits are reset (Figures 7.25¢ and 7.25d).

Figure 7.21 indicates that the same node of a 2—4 tree can have two equivalents in
a vh-tree. Therefore, the situation in Figure 7.25a can be reflected not only by the tree
in Figure 7.25¢, but also by the tree in Figure 7.26a. If we proceed as before, by chang-
ing three flags as in Figure 7.25d, the tree in Figure 7.26b ends up with two consecu-
tive horizontal links, which has no counterpart in any 2—4 tree. In this case, the three
flag flips have to be followed by a rotation; namely, node B is rotated about node A,
two flags are flipped, and the tree in Figure 7.26¢ is the same as in Figure 7.25d.

Figure 7.27a contains another way in which a 4-node is attached to a 3-node in a
2—4 tree before splitting. Figure 7.27b shows the tree after splitting. Applying flag-
Flipping to the tree in Figure 7.27c yields the tree in Figure 7.27d with two consecutive
horizontal links. To restore the vh-tree property, two rotations and four flag flips are
needed: Node C is rotated about node E, which is followed by two flag flips (Figure
7.27e), and then node C about node A, which is also followed by two flag flips. This all
leads to the tree in Figure 7.27f.
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FIGURE 7.25 (a-b) Split of a 4-node attached to a 3-node in a 24 tree and (c—d) a similar opera-
tion performed on one possible vh-tree equivalent to these two nodes.
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FIGURE 7.26 Fixing a vh-tree that has consecutive horizontal links.
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FIGURE 7.27 A 4-node attached to a 3-node in a 2-4 tree.
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We presented four configurations leading to a split (Figures 7.24c, 7.25c¢, 7.26a,
7.27¢). This number has to be doubled if the mirror images of the situation just ana-
lyzed are added. However, in only four cases does flag flipping have to be followed by
one or two rotations to restore the vh-property. It is important to notice that the
height of the tree measured in the number of vertical links (plus 1) does not grow as
the result of rotation(s). Also, because of splitting any 4-node along the path to the
insertion position, the new node is inserted into either a 2-node or a 3-node; that is, a
new node is always attached to its parent through a horizontal link, so the height of
the tree, after inserting a node, does not change either. The only case in which the
height does grow is when the root is a 4-node. This is the ninth case for the split.

The vh-tree property can be distorted not only after a 4-node split, but also after
including a new node in the tree, which leads to one or two rotations, as indicated at
the end of the following insertion algorithm.
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VHTreelnsert (K)
create newNode and initialize it;
if VHTree isempty
root = newNode;
return;
for (p = root, prev = null; p != null;)
if bothp’sflags are horizontal
set them to vertical; //flag flipping
mark prev’s link connecting it with p as horizontal;
if links connecting parent of prev with prev and prev with p are both marked horizontal
if both these links are left or both are right //Figure 26b
rotate prev about its parent;
else rotate p about prev andthen p about its new parent; //Figure 27d
prev = p;
if (p.key > K)
p = p.left;
else p = p.right;
attach newNode fo prev;
mark prev’s flag corresponding to its link to newNode fo horizontal;
if link from prev’s parentto prev is marked horizontal
rotate prev about its parent or
first rotate newNode about prev and then newNode about its new parent;

Figure 7.28 contains an example of inserting a sequence of numbers. Note that a
double rotation has to be made in the tree in Figure 7.28h while 6 is being inserted.
First 9 is rotated about 5 and then 9 is rotated about 11.

Removing a node can be accomplished by deletion by copying, as described in
Section 6.6.2; that is, an immediate successor (or predecessor) is found in the tree,
copied over the element to be removed, and the node that holds the original suc-
cessor is removed from the tree. The successor is found by going one step to the
right from the node that holds the element to be removed and then as far as possible
to the left. The successor is on the last level of vertical links; that is, the successor
may have one left descendant accessible through a horizontal link (in Figure 7.28h,
a successor of 11, 12, has one such descendant, 13), or none (like 8, a successor of
5).In a plain binary search tree it is easy to remove such a successor. In the vh-tree,
however, it may not be so. If the successor is connected to its parent with a hori-
zontal link, it can simply be detached (like node 8 after copying 8 over 5 to remove
number 5 from the tree in Figure 7.28h), but if the connection of the successor
with no descendants with the parent is established through the vertical link, then
removing this successor may violate the vh-tree property. For example, to remove 9
in the tree in Figure 7.28j, the successor 10 is found and copied over 9 and then
node 10 is removed, but the path to the null left child of node 11 includes only one
vertical node, whereas the paths to any other null node in the tree include two such
links. One way to avoid the problem is to assure that when searching for the suc-
cessor of a particular node, tree transformations are executed that make a vh-tree a
valid vh-tree and cause the successor with no descendants to be connected to its
parent with a horizontal link. To that end, a number of cases are distinguished with
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FIGURE 7.28 Building a vh-tree by inserting numbers in this sequence: 10, 11, 12, 13, 4, 5, 8, 9,
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transformations corresponding to them. Figure 7.29 illustrates these cases and
shows an arrow next to a link to indicate the currently scrutinized node and the
next node to be checked afterwards.

B Case 1. Two 2-node siblings have a 2-node parent; the node and its descen-
dants are merged into a 4-node (Figure 7.29a), which requires only two flag
changes.

B Case 2. A 3-node with two 2-node descendants is transformed by splitting the
3-node into two 2-nodes and creating a 4-node from the three 2-nodes, as
indicated in Figure 7.29b, at the cost of three flag changes.

B Case2a. A 4-node with two 2-node descendants is split into a 2-node and a
3-node, and the three 2-nodes are merged into a 4-node (Figure 7.29¢). This
requires the same three flag changes as in Case 2.

B Case 3. When the end of a 3-node with an out-horizontal link is reached, the
direction of the link is reversed through one rotation and two flag changes
(Figure 7.29d).
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FIGURE 7.29  Deleting a node from a vh-tree.
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FIGURE 7.29 (continued)
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B Case4. A 2-node has a 3-node sibling (there can be any sized parent). Through
one rotation—C about B—and two flag changes, the 2-node is expanded into
a 3-node and the 3-node sibling is reduced to a 2-node (Figure 7.29¢).

B Case 5. Similar to Case 4, except that the 3-node sibling has a different direc-
tion. The transformation is accomplished through two rotations—first, C
about D and then C about B—and two flag changes (Figure 7.29f).

B Case5a. A 2-node has a 4-node sibling (any parent). The 2-node is changed
into a 3-node and the 4-node is turned into a 3-node with the same transfor-
mations as in Case 5 (Figure 7.29g).

Note that in all these cases we are concerned about changing the link that leads
to a 2-node from vertical to horizontal (except Case 3, where the change is inside a
3-node). Nothing is done when the destination is a 3- or 4-node.

Required transformations are performed from the root until the successor of the
node to be deleted is found. Because the node to be deleted must be found first, sym-
metrical cases to the cases already listed have to be included as well, so all in all, there
are 15 cases: 1 requires no action, and the remaining 14 cases can be served with 10
different transformations. Examples of deletions are presented in Figure 7.30.

FIGURE 7.30 Examples of node deletions from a vh-tree.
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FIGURE 7.30 (continued)
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FIGURE 7.30

(continued)
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The vh-trees also include AVL trees. An AVL tree can be transformed into a
vh-tree by converting the links connecting the roots of subtrees of even height with
children of these roots of odd height into horizontal links. Figure 7.31 illustrates this
conversion.

FIGURE 7.31

An example of converting (a) an AVL tree into (b) an equivalent vh-tree.
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1.1.8 Treesin java.util
TreeSet

A set is an object that stores unique elements. In Java, two implementations are avail-
able. The class HashSet implements the set with a hash table and a hash function (see
Section 10.6.2). Another implementation is provided in the class TreeSet, which
keeps elements of a set in a sorted order. Methods of TreesSet are listed in Figure
7.32. Most of the methods have already been encountered in classes Vector and
LinkedList. However, because of the need for constant checking during insertion to
determine whether an element being inserted is already in the set, the insertion opera-
tion has to be implemented specifically for that task. Although an array list could be a
possible implementation of a set, the insertion operation requires O(n) time to finish.
For an unordered array list, all the elements of the array list have to be tested before an
insertion takes place. For an ordered array list, checking whether an element is in the
array list takes O(lg n) time with binary search, but an insertion of a new element re-
quires shifting all greater elements so that the new element can be placed in a proper
cell of the array list, and the complexity of this operation in the worst case is O(n). To
speed up execution of insertion (and also deletion), TreeSet uses a red-black tree for
implementation of a set. This guarantees O(lg n) time for insertion and deletion.

FIGURE 7.32  Methods of the class TreeSet.
Method Operation
void add(Object el) Insert object el into the tree set if it is not already there; throw
ClassCastException if el cannot be compared with the
elements currently in the tree set.
boolean Add all the elements from the collection ¢ to the tree set;
addAll (Collection c) return true if the tree set was modified; throw

void clear()

ClassCastException if the elements in ¢ are not
comparable with elements in this tree set and
NullPointerException if ¢ is null.

Remove all the elements from the tree set.

Object clone() Return the copy of the tree set without cloning its elements.

Comparator comparator() Return the comparator used to order the tree set or null if the

compareTo () method is defined for the elements of the tree set.

boolean contains(Object el) Return true if the tree set contains the object e1; throw

boolean

ClassCastException if el cannot be compared with the
elements currently in the tree set.

Return true if the tree set contains all elements in the collection

containsAll(Collection c) c; throw ClassCastException if the class type of any

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

element of ¢ is incompatible with this tree set and
NullPointerException if ¢ is null (inherited).



Section 7.1 The Family of B-Trees W 339

FIGURE 7.32 (continued)

boolean equals(Object el) Return true if the current tree set and object el are equal
(inherited).
Object first() Return the smallest element of the tree set; throw

NoSuchElementException if this tree set is empty.
int hashCode() Return the hash code for the tree set (inherited).

SortedSet headSet(Object el) Return the subset with elements that precede el; throw
NullPointerException if el is null and this tree set uses
elements’ compareTo () method, or its comparator does not
handle null elements; throw ClassCastExceptionifel
is not comparable with the elements in this tree set; throw
IllegalArgumentException if this tree set is a subtree
set of another tree set and el is not within the specified range
of this tree set.

boolean isEmpty () Return true if the tree set contains no elements, false otherwise.
Iterator iterator() Generate and return an iterator for the tree set.
Object last() Return the largest element of the tree set; throw

NoSuchElementException if this tree set is empty.

boolean remove (Object el) Remove the object el from the tree set and return true if
el was in the tree set; throw ClassCastExceptionifel
cannot be compared with the elements currently in the tree set.

boolean Remove from the tree set all elements contained in collection c;

removeAll (Collection c) return true if any element was removed; throw
ClassCastException if the class type of any element of c is
incompatible with this tree set and Nul1PointerException
if ¢ is null (inherited).

boolean Remove from the tree set all elements that are not in the

retainAll(Collection c) collection c; return true if any element was removed; throw
ClassCastException if the class type of any element of c is
incompatible with this tree set and Nul1PointerException
if ¢ is null (inherited).

int size() Return the number of elements in the tree set.
SortedSet subSet(Object Return the subset of the tree set (not its copy) containing
first, Object last) elements between £irst and last,including first; throw

NullPointerExceptionif first or last is null and this
tree set uses keys’ compareTo ( ) method, or its comparator
does not handle null elements; throw ClassCastException
if first or last is not comparable with the elements in this
tree set; throw I1legalArgumentExceptionif first
precedes last.

Continues
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FIGURE 7.32 (continued)

SortedSet tailSet(Object el)

Object[] toArray()

Object[] toArray(Object a[])

String toString()

TreeSet ()

TreeSet (Collection c)

TreeSet (Comparator c)

TreeSet (SortedSet s)

Return the subset with elements that are equal to or exceed e1;
throw NullPointerException if el is null and this tree set
uses elements’ compareTo ( ) method, or its comparator does
not handle null elements; throw ClassCastException if
el is not comparable with the elements in this tree set; throw
IllegalArgumentException if this tree set is a subtree

set of another tree set and el is not within the specified range

of this tree set.

Copy all elements from the tree set to a newly created array and
return the array (inherited).

Copy all elements from the tree set to the array a if a is large
enough or to a newly created array and return the array; throw
ArrayStoreException if the class type of any element in the
tree set is not the same as or does not extend the class type of a;
throw NullPointerException if a is null (inherited).

Return a string representation of the tree set that contains the
string representation of all the elements (inherited).

Create an empty tree set for elements that implement
Comparable.

Create a tree set with copies of elements from collection ¢
sorted according to the method compareTo ( ); throw
ClassCastException if the elements in ¢ do not
implement Comparable or are not mutually comparable
and NullPointerException if ¢ is null.

Create an empty tree set sorted according to the comparator c.

Create a tree set with copies of elements from sorted set s using
s’s ordering; throw Nul1lPointerException if s is null.

Class hierarchy in java.util is as follows

Object = AbstractCollection = AbstractSet = TreeSet

The operation of some methods for integer sets is illustrated in Figure 7.33.

A new number is inserted into a tree set if it is not already there. For example, an
attempt to insert number 5 into st1 = (4 5 6) is unsuccessful.

A more interesting situation arises for compound objects whose order is determined
by the values of some of its fields. Consider the class Person defined in Figure 7.33.
Any attempt to add a new object of type Person raises the ClassCastException. Be-
cause TreeSet is an ordered structure, an ordering relation must be provided to deter-
mine the order of elements in the tree set. For simple objects, such as objects of type
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FIGURE 7.33  An example of application of the TreeSet methods.

import java.io.*;
import java.util.TreeSet;

class Person {

protected String name;

protected int age;

public Person(String s, int i) {
name = s; age = i;

}

public Person() {
this("",0);

}
public String toString() {

return "(" + name + ", " + age + ")";
}

class PersonByName extends Person implements Comparable {
public PersonByName(String s, int i) {
super(s,i);

}

public PersonByName() {
super();

}

public PersonByName (Person p) {
super (p.name,p.age);
}
public int compareTo(Object p) {
return name.compareTo( ((Person)p).name);

class PersonByAge extends Person implements Comparable {
public PersonByAge(String s, int i) {
super(s,i);

}

public PersonByAge() {
super () ;

}

public PersonByAge(Person p) {
super (p.name,p.age);

Continues
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FIGURE 7.33 (continued)

public int compareTo(Object p) {
return age - ((Person)p).age;

class PersonComparator implements java.util.Comparator {
public int compare(Object obl, Object ob2) {
if (obl == ob2)
return 0;

else if(obl == null)
return -1;
else if (ob2 == null)

return 1;
else return ((Person)obl).name.compareTo(((Person)ob2).name);

class TestTreeSet {
public static void main(String[] ar) {

TreeSet setl = new TreeSet(); // setl = []

setl.add(new Integer(4)); // setl = [4]
setl.add(new Integer(5)); // setl = [4, 5]
setl.add(new Integer(6)); // setl = [4, 5, 6]
setl.add(new Integer(5)); // setl = [4, 5, 6]
System.out.println("setl = " + setl);// setl = [4, 5, 6]
System.out.println(setl.contains(new Integer(5))); // true
System.out.println(setl.contains(new Integer(7))); // false
System.out.println(setl.first() + " " + setl.last()); // 4 6
System.out.println(setl.headSet(new Integer(5))); // [4]
System.out.println(setl.tailSet(new Integer(5))); // [5, 6]
TreeSet set2 = new TreeSet(setl); // set2 = [4, 5, 6]
set2.remove(new Integer(5)); // set2 = [4, 6]
setl.removeAll (set2); // setl = [5]

setl.addAll (set2); // setl = [4, 5, 6]

TreeSet pSetl = new TreeSet(), pSet2 = new TreeSet();
Person[] p = {new Person("Gregg",25), new Person("Ann",30),
new Person("Bill",20), new Person("Gregg",35),
new Person("Kay",30)};
for (int i = 0; i < p.length; i++)
pSetl.add(new PersonByName(p[i]));
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FIGURE 7.33 (continued)

// pSetl = [(Ann,30), (Bill,20), (Gregg,25), (Kay,30)]
for (int i = 0; i < p.length; i++)

pSet2.add(new PersonByAge(p[i]));
// pSet2 = [(Bill,20), (Gregg,25), (Ann,30), (Gregg,35)]
java.util.Iterator it = pSet2.iterator();
it.next();
((Person)it.next()).age = 50;
// pSet2 = [(Bill,20), (Gregg,50), (Ann,30), (Gregg,35)]
pSet2.add(new PersonByAge("Craig",40));
// pSet2 = [(Bill,20), (Craig,40), (Gregg,50), (Ann,30), (Gregg,35)]
for (int i = 0; i < p.length; it++)

System.out.println(p[i] + " "

+ pSet2.contains(new PersonByAge(p[i]l)));

// (Gregg,25) false
// (Ann,30) false
// (Bill,20) true
// (Gregg,35) false
// (Kay,30) false
TreeSet pSet3 = new TreeSet(new PersonComparator());
for (int i = 0; i < p.length; it+)

pSet3.add(p[i]);
pSet3.add(null);
pSet3.add(null);
System.out.println("pSet3 = " + pSet3);
// pSet3 = [null, (Ann,30), (Bill,20), (Gregg,25), (Kay,30)]

Integer, the relation is already provided by the system, but for user-defined classes the
relation has to be also user-defined.

For the class Person, which contains two fields—a string field name and an
integer field age—the order of objects can be determined by the first field, by the
second, or by both. For the sake of example, two classes are derived from Person—
PersonByName and PersonByAge—which inherit the same data fields from
Person but define the ordering relation differently. The definition is accomplished by
defining the method compareTo() from interface Comparable. For this reason,
both PersonByName and PersonByAge are declared as implementations of
Comparable. Now, two tree sets are created, pSetl with person objects ordered
by name and pSet2 with objects ordered by age. For this reason, each name appears
in pSetl only once so that the object (“Gregg,”’35) from the array p[] is not
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included, whereas in pSet2 each age is unique, so that object (“Kay,’30) is not
included.

It is very important that operations on the objects in the tree set do not disturb
the order of these elements in the tree set because it may adversely affect subsequent
operations. For example, after changing the age of Gregg in pSet1 to 50, the object
(“Craig,”40) is included in front of the updated object (“Gregg,’50). Moreover,
searching may result in incorrect results. For all the objects from the array p[ ], only
the one preceding the updated object is found. The remaining objects are considered
absent from pSet 1. The reason is the tree implementation of the set. For each node of
the tree, the search decides whether to continue searching for a particular key in the
left subtree or in the right subtree. After the key in the node is increased, the search is
sometimes directed to the left subtree, although before modification of the node, it
would be directed to the right subtree.

Another concern is the inclusion of a null object in the tree set. An attempt to in-
clude a null object in pSet1 or pSet2 results in the NullPointerException. The
reason is the syntax of the compareTo () method, which is obl.compareTo (ob2).
If obl is null, then the program crashes. To circumvent the problem, comparison
must be introduced not as redefinition of compareTo () from Comparable, but as
redefinition of compare () from class Comparator. The method compareTo() is
redefined inside of a class that is used to generate objects. The method compare () is
redefined outside of a class that is used to generate objects and inside a comparator
class that implements the interface Comparator. In Figure 7.33, PersonComparator
is defined to compare objects of type Person. To let the system know that compare ()
should be used instead of compareTo (), a new tree set is declared with the construc-
tor TreeSet (comp), where comp is a comparator (see the declaration of pSet3),
not with TreeSet () as in the case of pSet1 and pSet2.

TreeMap

Maps are tables that can be indexed with any type of data. Hence, they are a general-
ization of arrays because arrays can be indexed only with constants and variables of
ordinal types, such as characters and nonnegative integers, but not with strings or
double numbers.

Maps use keys that are used as indexes and elements (values) to be accessed
through the keys. Like indexes in arrays, keys in maps are unique in that one key is asso-
ciated with one value only. Thus, maps are also a generalization of sets. Like sets, maps
are implemented as red-black trees. But unlike tree sets implementing sets that store
keys only, tree maps implementing maps store pairs (key, value) called entries that can
be operated on by methods specified in the interface Map . Entry whose declaration is
nested in the body of the interface Map (Figure 7.34a). The pairs are ordered by an or-
dering relation defined for keys, not for values. Therefore, a particular value is found in
the tree map by locating a particular node using the key that is associated with this value
and extracting the value from this node. Values can be modified without disturbing the
order in the tree map, because the tree map, is ordered by keys, not values, which also
means that keys in the tree map cannot be modified.
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FIGURE 7.34

(a) Method
boolean equals(Object ob)

Object getKey()
Object getValue()

int hashCode()

Object setValue(Object val)

(b) Method

void clear()
Object clone()

Comparator comparator ()

boolean
containsKey(Object key)

boolean
containsValue(Object val)

Set entrySet()

boolean equals(Object ob)

Object firstKey()

Object get(Object key)

(a) Methods in the interface Map.Entry; (b) methods of the class TreeMap.

Operation

Return true if the map entry equals ob.
Return the key of the map entry.

Return the value of the map entry.
Return the hash code for the map entry.

Replace the value of the map entry by val and return the old
value; throw UnsupportedOperationException if the
put operation is not defined by the underlying map m; throw
ClassCastException if the class of val prevents it from
being stored in m; throw I11legalArgumentException if
some aspect of val prevents it from being stored in m; throw
NullPointerException if val is null and null values can-
not be stored in m.

Operation

Remove all the objects from the tree map.
Return the copy of the tree map without cloning its elements.

Return the comparator used to order the tree map or null if the
compareTo () method is defined for the keys of the tree map.

Return true if the tree map contains the object key; throw
NullPointerException if key is null and this tree map
uses keys’ compareTo () method or its comparator does not
handle null keys; throw ClassCastException if key is not
comparable with the keys in this tree map.

Return true if the tree map contains the object val.

Return a set containing all the pairs (key, value) in the tree map.

Return true if the current tree map and object ob are equal
(inherited).

Return the smallest key of the tree map; throw
NoSuchElementException if the tree map is empty.

Return the object associated with key; throw
NullPointerException if key is null and this tree map
uses keys’ compareTo () method, or its comparator does not
handle null keys; throw ClassCastException if key is not
comparable with the keys in this tree map.

Continues
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FIGURE 7.34

(continued)

int hashCode ()

SortedMap
headMap (Object key)

boolean isEmpty()

Set keySet()

Object lastKey()

Object put(Object key,
Object value)

void putAll (Map m)

Object remove (Object key)

int size()

SortedMap
subMap (Object first,
Object last)
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Return the hash code for the tree map (inherited).

Return the submap with objects associated with keys that precede
key; throw NullPointerException if key is null and this
tree map uses keys’ compareTo ( ) method, or its comparator
does not handle null keys; throw ClassCastException if
key is not comparable with the keys in this tree map; throw
IllegalArgumentException if this tree map is a subtree
map of another tree map and key is not within the specified
range of this tree map.

Return true if the tree map contains no elements, false
otherwise (inherited).

Return a set containing all the keys of the tree map.

Return the largest object of the tree map; throw
NoSuchElementException if the tree map is empty.

Put the pair (key, value) in the tree map; return a value
associated with key if there is any in the tree map, null
otherwise; throw NullPointerException if key is null and
this tree map uses keys’ compareTo ( ) method, or its compara-
tor does not handle null keys; throw ClassCastException
if key is not comparable with the keys in this tree map.

Add objects from the map m to the current tree map; throw
ClassCastException if class of a key or value inm

does not allow it to be stored in this tree map and
NullPointerException if mis null or a key in mis null,
but this tree map does not permit null keys.

Remove the pair (key,value) from the tree map and return the
value associated currently with key in the tree map or null
otherwise; throw Nul1lPointerException if key is null and
this tree map uses keys’ compareTo ( ) method, or its compara-
tor does not handle null keys; throw ClassCastException
if key is not comparable with the keys in this tree map.

Return the number of objects in the tree map.

Return the submap of the tree map (not its copy) containing
elements with keys between £irst and last, including
first;throwNullPointerExceptionif first or
last is null and this tree map uses keys’ compareTo ( )
method, or its comparator does not handle null keys;

throw ClassCastExceptionif first or last is not
comparable with the keys in this tree map; throw
IllegalArgumentExceptionif first precedes last.
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FIGURE 7.34

(continued)

SortedMap tailMap(Object Return the submap with objects associated with keys not smaller

key)

than key; throw Nul1PointerException if key is null and
this tree map uses keys’ compareTo () method, or its compara-
tor does not handle null keys; throw ClassCastException if
key is not comparable with the keys in this tree map; throw
IllegalArgumentException if this tree map is a subtree
map of another tree map and key is not within the specified
range of this tree map.

String toString() Return a string representation of the tree map that contains the

TreeMap ()

string representation of all the objects (inherited).

Create an empty tree map for elements with keys that implement
Comparable.

TreeMap(Map m) Create a tree map with copies of elements from map m

sorted according to keys’ compareTo ( ) method; throw
ClassCastException if the keys in m do not implement
Comparable or are not mutually comparable; throw
NullPointerException ifmis null.

TreeMap (Comparator c) Create an empty tree map sorted according to the comparator c.

TreeMap (SortedMap m) Create a tree map with copies of elements from sorted map m

using m’s ordering; throw Nul1PointerException
if mis null.

Collection values() Return a collection with all the values contained in the tree map.

Methods of the class TreeMap are listed in Figure 7.34b. Class hierarchy in
java.util is as follows

Object = AbstractMap = TreeMap

Operation of some methods is illustrated in Figure 7.35. The tree map cities is
indexed with objects of type Person. The tree map is initialized with three pairs
(Person object, string). The statement

cities.put(new PersonByName("Gregg",30), "Austin");

uses a new object as an index. Note that the object has a different value in
the age field than the existing entry for Gregg in the tree map, but both the
object PersonByName("Gregg",25) in the tree map and the object
PersonByName ("Gregg",30) are treated as equal because the definition of
compareTo () in the definition of class PersonByName takes only the name field
into account; therefore, the old value, "Pittsburgh®, is replaced by a new value,
"Austin".
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FIGURE 7.35 An example of application of the TreeMap methods. The class PersonByName is the
same as in Figure 7.33.

class TestTreeMap
public static void main(String[] a) {

TreeMap cities = new TreeMap();
cities.put(new PersonByName("Gregg",25),"Pittsburgh");
cities.put(new PersonByName("Ann",30),"Boston");
cities.put(new PersonByName("Bill",20),"Belmont");
System.out.println(cities);
// {(Ann,30)=Boston, (Bill,20)=Belmont, (Gregg,25)=Pittsburgh}
cities.put(new PersonByName("Gregg",30),"Austin");
// cities = {(Ann,30)=Boston, (Bill,20)=Belmont, (Gregg,25)=Austin}
System.out.println(cities.containsKey(new PersonByName("Ann",30)));

// true

System.out.println(cities.containsValue("Austin"));

// true

System.out.println(cities.firstKey() + " " + cities.lastKey());

// (Ann,30) (Gregg,25)

System.out.println(cities.get(new PersonByName("Ann",30)));

// Boston

System.out.println(cities.entrySet());

// [(Ann,30)=Boston, (Bill,20)=Belmont, (Gregg,25)=Austin]
System.out.println(cities.keySet());

// [(Ann,30), (Bill,20), (Gregg,25)]
System.out.println(cities.remove(new PersonByName("Bill",20)));
// Belmont

// cities = {(Ann,30)=Boston, (Gregg,25)=Austin}

Map.Entry me = (Map.Entry)cities.entrySet().iterator().next();
// first entry

System.out.println(me.getKey()); // (Ann,30)
System.out.println(me.getValue()); // Boston
System.out.println(me.setValue("Harrisburg")); // Boston
System.out.println(cities);

// cities = {(Ann,30)=Harrisburg, (Gregg,25)=Austin}
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The program in Figure 7.35 illustrates the way the methods specified in the inter-
face Map . Entry can be used. The set of entries of the underlying tree map can be cre-
ated with the entrySet () method and then the Map . Entry methods can be applied
individually to the desired entries. Note that updating the entry set returned by the
entrySet () method affects the tree map itself.

The program in Figure 7.35 is shown only to illustrate unconventional indexing.
For this particular example, it would probably be more natural to include a city as an-
other data member in each object. A more useful example concerns social security
numbers and objects of type PersonByName. If we wanted to create an array (or a
vector) so that SSNs could be used as indexes, the array would need 1 billion cells be-
cause the largest SSN equals 999999999. But with tree maps, we can have only as many
entries as the number of PersonByName objects used in the program. For example,
we can declare a map SSN

TreeMap SSN = new TreeMap();
and then execute a number of assignments

SSN.put (new Integer(123456789), new PersonByName("Gregg",25));
SSN.put (new Integer(111111111), new PersonByName("Ann",30));
SSN.put (new Integer(222222222), new PersonByName("Bill",20));

In this way, SSN has only three entries, although keys are very large numbers
SSN = {111111111= ("Ann",20), 123456789=("Gregg",25), 222222222=("Bill", 20)}

Information is now very easily accessible and modifiable by using SSNs as the access
keys.

TRIES

The preceding chapter showed that traversing a binary tree was guided by full key
comparisons; each node contained a key that was compared to another key to find a
proper path through the tree. The discussion of prefix B-trees indicated that this is
not necessary and that only a portion of a key is required to determine the path. How-
ever, finding a proper prefix became an issue, and maintaining prefixes of an accept-
able form and size made the process for insertion and deletion more complicated than
in standard B-trees. A tree that uses parts of the key to navigate the search is called a
trie. The name of the tree is appropriate, as it is a portion of the word retrieval with
convoluted pronunciation: To distinguish a tree from a trie in speech, trie is pro-
nounced “try”

Each key is a sequence of characters, and a trie is organized around these charac-
ters rather than entire keys. For simplicity, assume that all the keys are made out of
five capital letters: A, E, I, P, R. Many words can be generated out of these five letters
but our examples will use only a handful of them.

Figure 7.36 shows a trie for words that are indicated in the vertical rectangles;
this form was first used by E. Fredkin. These rectangles represent the leaves of the
trie, which are nodes with actual keys. The internal nodes can be viewed as arrays of
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FIGURE 7.36 A trie of some words composed of the five letters A, E, I, R, and P. The sharp sign, #,
indicates the end of a word, which can be a prefix of another word.
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references to subtries. At each level 7, the position of the array that corresponds to the
ith letter of the key being processed is checked. If the reference in this position is null,
the key is not in the trie, which may mean a failure or a signal for key insertion. If
not, we continue processing until a leaf containing this key is found. For example, we
check for the word “ERIE.” At the first level of the trie, the reference corresponding to
the first letter of this word, “E,” is checked. The reference is not null, so we go to the
second level of the trie, to the child of the root accessible from position “E”; now the
reference in the position indicated by the second letter, “R,” is tested. It is not null
either, so we descend down the trie one more level. At the third level, the third letter,
“I,” is used to access a reference in this node. The reference refers to a leaf containing
the word “ERIE.” Thus, we conclude that the search is successful. If the desired word
was “ERIIE,” we would fail because we would access the same leaf as before, and ob-
viously, the two words are different. If the word were “ERPIE,” we would access the
same node with a leaf that contains “ERIE,” but this time “P” would be used to check
the corresponding reference in the node. Because the reference is null, we would con-
clude that “ERPIE” is not in the trie.

There are at least two problems. First, how do we make a distinction between two
words when one is a prefix of the other? For example, “ARE” is a prefix in “AREA.”
Thus, if we are looking for “ARE” in the trie, we must not follow the path leading to
“AREA.” To that end, a special character is used in each node guaranteed not to be
used in any word, in this case, a sharp sign, “#.” Now, while searching for “ARE” and
after processing “A,” “R,” and “E,” we find ourselves in a node at the fourth level of the
trie, whose leaves are “ARE” and “AREA.” Because we processed all letters of the key
“ARE,” we check the reference corresponding to the end of words, “#,” and because it is
not empty, we conclude that the word is in the trie.

This last example points to another problem. Is it really necessary to store entire
words in the trie? After we reached the fourth level when searching for “ARE” and the
reference for “#” is not null, do we have to go to the leaf to make a comparison be-
tween the key “ARE” and the contents of the leaf, also “ARE”? Not necessarily, and the
example of prefix B-trees suggests the solution. The leaves may contain only the un-
processed suffixes of the words.

This example restricted the number of letters used to five, but in a more realistic
setting, all letters are used so that each node has 27 references (including “#”). The
height of the trie is determined by the longest prefix, and for English words, the prefix
should not be a long string. For most words, the matter is settled after several node
visits, probably 5-7. This is true for 10,000 English words in the trie, and for 100,000.
A corresponding perfectly balanced binary search tree for 10,000 words has a height
[1g 10,000] = 14. Most words are stored on the lowest levels of this tree, so on the aver-
age, the search takes 13 node visits. (The average path length in a perfectly balanced
tree of height h is [lg h] — 2.) This is double the number of visits in the trie. For
100,000 words, the average number of visits in the tree increases by 3 because
[lg 100,000] = 17; in the trie this number can increase by 1 or 2. Besides, when making
a comparison in the binary search tree, the comparison is made between the key
searched for and the key in the current node, whereas in the trie only one character is
used in each comparison except when comparing with a key in a leaf. Therefore, in
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situations where the speed of access is vital, such as in spell checkers, a trie is a very
good choice.

Due to the fact that the trie has two types of nodes, inserting a key into a trie is a
bit more complicated than inserting it into a binary search tree.

trieInsert(K)
i=0;
p = theroot;
while notinserted
if theend of word k isreached
set the end-of-word marker in p to true;
else if (p.ptrs[K[i]] == 0)
create a leaf containing K and put its address in p.ptrs[K[i]];
else if reference p.ptrs[K[i]] refersto a leaf
K L = keyinleaf p.ptrs[K[1i]]
do create a nonleaf and put its address in p.ptrs[K[1i]];
p = the new nonleaf;
while (K[i] == K _L[i++]);
create a leaf containing K and put its address in p.ptrs[K[--1]];
if theend of word k isreached
set the end-of-word marker in p to true;
else create a leaf containing K_L and put its address in p.ptrs[K_L[i]];
else p = p.ptrs[K[i++]];

The inner do loop in this algorithm is needed when a prefix in the word K and in
the word K_L is longer than the number of nodes in the path leading to the current
node p. For example, before “REP” is inserted in the trie in Figure 7.36, the word
“REAR” is stored in a leaf corresponding to the letter “R” of the root of the trie. If
“REP” is now being inserted, it is not enough to replace this leaf by a nonleaf, because
the second letters of both these words are the same letter, “E.” Hence, one more non-
leaf has to be created on the third level of the trie, and two leaves containing the words
“REAR” and “REP” are attached to this nonleaf.

If we compare tries with binary search trees, we see that for tries, the order in
which keys are inserted is irrelevant, whereas this order determines the shape of binary
search trees. However, tries can be skewed by words or, rather, by the type of prefixes in
words being inserted. The length of the longest identical prefix in two words deter-
mines the height of the trie. Therefore, the height of the trie is equal to the length of the
longest prefix common to two words plus one (for a level to discriminate between the
words with this prefix) plus one (for the level of leaves). The trie in Figure 7.36 has
height five because the longest identical prefix, “ARE,” is merely three letters long.

The main problem tries pose is the amount of space they require; a substantial
amount of this space is basically wasted. Many nodes may have only a couple of
nonnull references, and yet the remaining 25 references must reside in memory. There
is a burning need to decrease the amount of required space.

One way to reduce the size of a node is by storing only those references that are
actually in use, as in Figure 7.37 (Briandais, 1959). However, the introduced flexibility
concerning the size of each node somewhat complicates the implementation. Such
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FIGURE 7.37  The trie in Figure 7.36 with all unused reference fields removed.
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tries can be implemented in the spirit of 2—4 tree implementation. All sibling nodes
can be put on a linked list accessible from the parent node, as in Figure 7.38. One node
of the previous trie corresponds now to a linked list. This means that random access
of references stored in arrays is no longer possible, and the linked lists have to be
scanned sequentially, although not exhaustively, because alphabetical order is most
likely maintained. The space requirements are not insignificant either because each
node now contains two references.

Another way to reduce the space requirements is by changing the way words are
tested (Rotwitt and Maine, 1971). A trie a fergo can be built in which the reverses of
words are inserted. In our example, the number of nodes is about the same, but a trie
a tergo representation for such words as “logged,” “loggerhead,” “loggia,” and “logging”
has leaves on the third level, not on the seventh, as in a forward trie. Admittedly, for
some frequently used endings, such as “tion,” “ism,” and “ics,” the problem reappears.

A variety of other orders can be considered, and checking every second character
proved to be very useful (Bourne and Ford, 1961), but solving the problem of an opti-
mal order cannot be solved in its generality, because the problem turns out to be ex-
tremely complex (Comer and Sethi, 1977).
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FIGURE 7.38  The trie from Figure 7.37 implemented as a binary tree.
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Another way to save space is to compress the trie. One method creates a large
cellArray out of all the arrays in all nonleaf nodes by interleaving these arrays so
that the references remain intact. The starting positions of these arrays are recorded in
the encompassing cellArray. For example, the three nodes shown in Figure 7.39a
containing references p, through p, to other nodes of the trie (including leaves) are
put one by one into cellArray in a nonconflicting way, as in Figure 7.39b. The
problem is how to do that efficiently timewise and spacewise so that the algorithm is
fast and the resulting array occupies substantially less space than all nonleaf nodes
combined. In this example, all three nodes require 3 - 6 = 18 cells, and cellArray has
11 cells, so the compression rate is (18 — 11)/18, 39 percent. However, if the cells are
stored as in Figure 7.39¢, the compression rate is (18 — 10)/18, 44 percent.

FIGURE 7.39 A part of a trie (a) before and (b) after compression using the compressTrie()
algorithm and (c) after compressing it in an optimal way.
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It turns out that the algorithm that compresses the trie is exponential in the
number of nodes and inapplicable for large tries. Other algorithms may not render
the optimal compression rate but are faster (cf. Al-Suwaiyel and Horowitz, 1984).
One such algorithm is compressTrie().
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compressTrie()
set to null all nodeNum*cellNum cells of cellArray;
for each node
for each position j of cellArray
if after superimposing node on cellArray[j],---,cellArray[j+cellNum-1]
no cell containing a reference is superimposed on a cell with a reference

copy reference cells from node to corresponding cells starting from cellArray([j];
record j in trieNodes as the position of node in cellArray;
break;

This is the algorithm that was applied to the trie in Figure 7.39a to render the ar-
rays in Figure 7.39b. Searching such a compressed trie is similar to searching a regular
trie. However, node accesses are mediated through the array trieNodes. If node,
refers to node,, the position of node, has to be found in this array, and then node, can
be accessed in cellArray.

The problem with using a compressed trie is that the search can lead us astray.
For instance, a search for a word starting with the letter “P” is immediately discon-
tinued in the trie in Figure 7.39a, because the reference field corresponding to this
letter in the root node is null. On the other hand, in the compressed version of the
same trie (Figure 7.39b), in the field corresponding to P, reference P, can be found.
But the misguided path is detected only after later encountering a null reference
field or, after reaching a leaf, by comparing the key in this leaf with the key used in
searching.

One more way to compress tries is by creating a C-trie, which is a bit version of
the original trie (Maly, 1976). In this method, the nodes of one level of the C-trie are
stored in consecutive locations of memory, and the addresses of the first nodes of each
level are stored in a table of addresses. Information stored in particular nodes allows
us to access the children of these nodes by computing the offsets from these nodes to
their children.

Each node has four fields: a leaf/nonleaf flag, an end-of-word on/off field (which
functions as our sharp-sign field), a K-field of cellNum bits corresponding to the cells
with characters, and a C-field that gives the number of 1s in all the K-fields that are on
the same level and precede this node. The latter integer is the number of nodes in the
next level preceding the first child of this node.

The leaves store actual keys (or suffixes of keys) if they fit into the K-field+C-
field. If not, the key is stored in some table and the leaf contains a reference to its
position in this table. The end-of-word field is used to distinguish between these
two cases. A fragment of the C-trie version of the trie from Figure 7.39 is shown in
Figure 7.40. All nodes are the same size. It is assumed that the leaf can store up to
three characters.

To search a key in the C-trie, the offsets have to be computed very carefully. Here
is an outline of the algorithm:

CTrieSearch(K)
for (i = 1, p = theroot; ; i++)
if p isaleaf
if K isequal to the key(p)
success;
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FIGURE 7.40 A fragment of the C-trie representation of the trie from Figure 7.36.
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else failure;
else if theend of word k isreached
if end-of-word field is on
success;
else failure;
else if the bit corresponding to character K[i] is off
failure;
else p = address(the first node of level i+1)
+C-field(p)* size(one node) [/ to skip all children of nodes
/] in front of p on level i;
+(number of 1-bits in K-field (p) to the left of the bit // to skip
corresponding to K[1])* size(onenode) |/ some children of p;

For example, to find “EERIE” in the C-trie in Figure 7.40, we first check in the
root the bit corresponding to the first letter, “E.” Because the bit is on and the root is
not a leaf, we go to the second level. On the second level, the address of the node to be
tested is determined by adding the address of the first node on this level to the length
of one node, the first, in order to skip it. The bit of this nonleaf node corresponding to
the second letter of our word, also an “E,” is on, so we proceed to the third level. The
address of the node to be tested is determined by adding the address of the first node
of the third level to the size of one node (the first node of level three). We now access a
leaf node with the end-of-word field set to 0. The table of words is accessed to make a
comparison between the key looked for and the key in the table.

The compression is significant. One node of the original trie of 27 references of 2
bytes each occupies 54 bytes. One node of the C-trie requires 1 + 1 + 27 + 32 = 61 bits,
which can be stored in 9 bytes. But it is not without a price. This algorithm requires
putting nodes of one level tightly together, but storing one node at a time in memory
by using new does not guarantee that the nodes are put in consecutive locations, espe-
cially in a multiuser environment. Therefore, the nodes from one level have to be gen-
erated first in temporary storage, and only then can a chunk of memory be requested
that is large enough to accommodate all these nodes. This problem also indicates that
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the C-trie is ill-suited for dynamic updates. If the trie is generated only once, the C-
trie is an excellent variation to be utilized. If, however, the trie needs to be frequently
updated, this technique for trie compression should be abandoned.

CONCLUDING REMARKS

The survey of multiway trees in this chapter is by no means exhaustive. The number
of different types of multiway trees is very large. My intention is to highlight the vari-
ety of uses to which these trees can be applied and show how the same type of tree can
be applied to different areas. Of particular interest is a B-tree with all its variations.
B*-trees are commonly used in the implementation of indexes in today’s relational
databases. They allow very fast random access to the data, and they also allow fast se-
quential processing of the data.

The application of B-trees is not limited to processing information from sec-
ondary storage, although it was the original motivation in introducing these trees. A
variant of B-trees, 2—4 trees, although unsuitable for processing information in sec-
ondary storage, turns out to be very useful in processing information in memory.

Also of particular use are tries, a different type of tree. With many variations, they
have a vast scope of applications, and our case study illustrates one very useful appli-
cation of tries.

CASE STuUDY: SPELL CHECKER

An indispensable utility for any word processor is a spell checker, which allows the
user to find as many spelling mistakes as possible. Depending on the sophistication of
the spell checker, the user may even see possible corrections. Spell checkers are used
mostly in an interactive environment; the user can invoke them at any time when
using the word processor, make corrections on the fly, and exit even before processing
the entire file. This requires writing a word processing program and, in addition to it,
a spell checker module. This case study focuses on the use of tries. Therefore, the spell
checker will be a stand-alone program to be used outside a word processor. It will
process a text file in batch mode, not allowing word-by-word corrections after possi-
ble errors are detected.

The core of a spell checker is a data structure allowing efficient access to words in
a dictionary. Such a dictionary most likely has thousands of words, so access has to be
very fast to process a text file in a reasonable amount of time. Out of many possible
data structures, the trie is chosen to store the dictionary words. The trie is first created
after the spell checker is invoked using the file dictionary, and afterward, the actual
spell checking takes place.

For a large number of dictionary words, the size of the trie is very important be-
cause it should reside in main memory without recourse to virtual memory. But as we
have already observed in this chapter, tries with fixed length nodes, as in Figure 7.36,
are too wasteful. In most cases, only a fraction of the positions in each node is utilized,
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and the further away from the root, the smaller this fraction becomes (the root may be
the only node with 26 children). Creating linked lists corresponding to all utilized let-
ters for each node reduces wasted space, as in Figure 7.38. This approach has two dis-
advantages: The space required for the reference fields can be substantial, and the
linked lists force us to use sequential search. An improvement over the last solution is
to reserve only as much space as required by the letters used by each node without re-
sorting to the use of linked lists. We could use the type ArrayList as an implementa-
tion of flexible arrays (arrays automatically growable), but it incurs an additional
overhead: array lists store objects. Thus, to store a character in one, the char has to be
cast to the Character class and then stored. The same is true for extracting values
from array lists. Therefore, we will use strings as pseudoflexible arrays by substituting
larger strings for existing strings.

The key to the use of such pseudoflexible arrays is the implementation of a node.
There are three types of nodes: TrieNode with leaf/nonleaf flag and its subclasses,
TrieLeaf, and TrieNonLeaf. TrieNonLeaf node has three additional fields: an
end-of-word flag, a reference to a string, and a reference to an array of references to
nodes. These references can be references to both leaves and nonleaves, and this is a
reason why the superclass TrieNode is also used. The array is declared as an array of
TrieNode so that assigning instances of its subclasses does not cause a compilation
error. Figure 7.41 contains the trie utilizing the nodes of this structure. If a string
attached to a certain node has to be extended, a new string is created that contains the
contents of the old string with a new letter inserted into the proper position, a function
performed by addCell (). The letters in each node are kept in alphabetical order.

The method insert () is an implementation of the algorithm trieInsert()
discussed earlier in this chapter. Because the position of each letter may vary from one
node to another, this position has to be determined each time, a function performed
by position( ). Should a letter be absent in a node, position() returns —1, which
allows insert () to undertake the proper action.

Also, the discussion of tries in this chapter assumed that the leaves of the tries store
full keys. This is not necessary because the prefixes of all words are implicitly stored in
the trie and can be reconstructed by garnering all the letters on the path leading to the
leaf. For example, to access the leaf with the word “ERIE,” two nonleaves have to be
passed through references corresponding to the letters “E” and “R.” Therefore, it is
enough to store the suffix “IE” in the leaf instead of the entire word “ERIE.” By doing
this, only 13 letters of suffixes of these words have to be retained in these leaves out of
the 58 letters stored in all leaves of the trie in Figure 7.36, a substantial improvement.

We also included the method printTrie (), which prints the content of a trie
sideways. The output generated by this method when applied to the trie in Figure 7.41
is as follows:

>>REP
>REA|R

>PI|ER
>>PER
>PEE | R
>PEA|R
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FIGURE 7.41  An implementation of a trie that uses pseudoflexible arrays. The trie has the same

words as the trie in Figure 7.36.
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>IR|E
>IP|A
>ERI|E
>>ERE
>>ERA
>EI|RE
>EE |RIE
>>AREA
>>>ARE
>>ARA
>>>A

Three angle brackets indicate words for which the endofword flag has been set
in a corresponding node and two angle brackets indicate words that have an empty
leaf. The vertical bar in remaining words separates a prefix reconstructed when
scanning the trie and a suffix that was extracted from a leaf.

Spell checking works in a straightforward fashion by examining each word of a text
file and printing out all misspelled words along with the line numbers where the mis-
spelled words are found. Figure 7.42 contains the complete code of the spell checker.

FIGURE 7.42 Implementation of a spell checker using tries.

/************************ Trie_java khkkhkhkkhkdhhkhdhhhdhhhdhdkhdrrhdrrdihx

*

*/

class TrieNode {
public boolean isLeaf;

class TrieNonLeaf extends TrieNode {
public boolean endOfWord = false;
public String letters;
public TrieNode[] ptrs = new TrieNode[l];
public TrieNonLeaf() {
isLeaf = false;
}
public TrieNonLeaf (char ch) {
letters = new String();
letters += ch;
isLeaf = false;

Continues
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FIGURE 7.42 (continued)

class TrieLeaf extends TrieNode {
public String suffix;
public TrieLeaf() {
isLeaf = true;
}
public TrieLeaf(String suffix) {
this.suffix = new String(suffix);

isLeaf = true;

class Trie {
public TrieNonLeaf root;
public final int notFound = -1;
public Trie() {
}
public Trie(String word) {
root = new TrieNonLeaf (word.charAt(0)); // initialize the root
createLeaf (word.charAt(0),word.substring(l),root); // to avoid later
} // test;
public void printTrie() {
printTrie(0,root,new String()); // assumption: the root is not null;
}
protected void printTrie(int depth, TrieNode p, String prefix) {
if (p.isLeaf) {
for (int j = 1; j <= depth; j++)
System.out.print (" ");
System.out.println(" >" + prefix + "|" + ((TrieLeaf)p).suffix);
}
else {
for (int i = ((TrieNonLeaf)p).letters.length()-1; i >= 0; i--) {
if (((TrieNonLeaf)p).ptrs[i] != null) {
// add the letter corresponding to position i to prefix;
prefix = prefix.substring(0,depth) +
((TrieNonLeaf)p).letters.charAt(i);
sidevView(depth+1l, ((TrieNonLeaf)p).ptrs[i],prefix);
}
else { // if empty leaf;
for (int j = 1; j <= depth+l; j++)
System.out.print (" ");
System.out.println(" >>" + prefix.substring(0,depth) +
((TrieNonLeaf)p).letters.charAt(i));
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FIGURE 7.42 (continued)

}
if (((TrieNonLeaf)p).endOfWord) {

for (int j = 1; j <= depth+l; j++)
System.out.print (" ")
System.out.println(" >>" + prefix.substring(0,depth));

}
private int position(TrieNonLeaf p, char ch) {
int i = 0;
for ( ; i < p.letters.length() && p.letters.charAt(i) != ch; i++);
if (i < p.letters.length())
return i;
else return notFound;
}
public boolean found(String word) {
TrieNode p = root;
int pos, i = 0;
while (true)

if (p.isLeaf) { // node p is a leaf
TrieLeaf 1f = (TrieLeaf) p; // where the matching
if (word.substring(i).equals(lf.suffix)) // suffix of
return true; // word should be found;

else return false;

}
else if ((pos = position( (TrieNonLeaf)p,word.charAt(i))) != notFound
&& i+l == word.length()) // the end of word has to
if (((TrieNonLeaf)p).ptrs[pos] == null) // correspond with
return true; // an empty leaf
else if(!(((TrieNonLeaf)p).ptrs[pos]).isLeaf &&
((TrieNonLeaf) ( (TrieNonLeaf)p) .ptrs[pos]) .endOfWord)
return true; // or the endOfWord marker on;
else return false;
else if (pos != notFound && ((TrieNonLeaf)p).ptrs[pos] != null) {
p = ((TrieNonLeaf)p).ptrs[pos];// continue path,
i++; // if possible,
}
else return false; // otherwise failure;

}
private void addCell(char ch, TrieNonLeaf p, int stop) {

int i;

Continues
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FIGURE 7.42 (continued)

int len = p.letters.length();

char[] s = new char[len+l];

TrieNode[] tmp = p.ptrs;

p.ptrs = new TrieNode[len+1];

for (i = 0; 1 < len+l; i++)
p.ptrs[i] = null;

if (stop < len) // if ch does not follow all letters in p,
for (i = len; i >= stop+l; i--) { // copy from tmp letters > ch;

p.ptrs[i] = tmp[i-1];

s[i] = p.letters.charAt(i-1);
}
s[stop] = ch;
for (i = stop-1; i >= 0; i--) { // and letters < ch;

p.ptrs[i] = tmp[i];
s[i] = p.letters.charAt(i);
}
p.letters = new String(s);
}
private void createLeaf(char ch, String suffix, TrieNonLeaf p) {
int pos = position(p,ch);
TrieLeaf 1f = null;

if (suffix != null && suffix.length() > 0) // don't create any leaf
1f = new TrieLeaf (suffix); // if there is no suffix;
if (pos == notFound) {

for (pos = 0; pos < p.letters.length() &&
p.letters.charAt(pos) < ch; pos++);
addCell(ch,p,pos);
}
p.ptrs[pos] = 1f;
}
public void insert(String word) {
TrieNonLeaf p = root;
TrieLeaf 1f;
int offset, pos, i = 0;
while (true) {

if (i == word.length()) { // if the end of word reached, then
if (p.endOfWord) // set endOfWord to true;
System.out.println("duplicate entryl: " + word);
p.endOfWord = true; // set endOfWord to true;
return;
} // if position in p indicated
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FIGURE 7.42 (continued)

pos = position(p,word.charAt(i));
if (pos == notFound) { // by the first letter of word
createLeaf (word.charAt (i) ,word.substring(i+l),p);
// does not exist, create

return; // a leaf and store in it the
} // unprocessed suffix of word;
else if (pos != notFound && // empty leaf in position pos;
p.ptrs[pos] == null) {
if (i+1l == word.length()) {
System.out.println("duplicate entryl: " + word);
return;

}

p.ptrs[pos] = new TrieNonLeaf (word.charAt(i+l));
((TrieNonLeaf) (p.ptrs[pos])).endOfWord = true;

// check whether there is any suffix left:

String s = (word.length() > i+2) ? word.substring(i+2) : null;
createLeaf (word.charAt(i+l),s, (TrieNonLeaf) (p.ptrs[pos]));

return;

else if (pos != notFound && // if position pos is
p.ptrs[pos].isLeaf) { // occupied by a leaf,
1f = (TrielLeaf) p.ptrs[pos]; // hold this leaf;
if (lf.suffix.equals(word.substring(i+l))) {
System.out.println("duplicate entry2: " + word);
return;
}
offset = 0;
// create as many nonleaves as the length of identical
// prefix of word and the string in the leaf (for cell 'R',
// leaf "EP", and word "REAR", two such nodes are created);
do {
pos = position(p,word.charAt(i+offset));
// word = "ABC", leaf = "ABCDEF" => leaf = "DEF";
if (word.length() == i+offset+l) {
p.ptrs[pos] = new TrieNonLeaf (lf.suffix.charAt(offset));
p = (TrieNonLeaf) p.ptrs[pos];
p.endOfWord = true;
createLeaf (lf.suffix.charAt(offset),
1f.suffix.substring(offset+l),p);

return;

Continues
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FIGURE 7.42 (continued)

// word = "ABCDEF", leaf = "ABC" => leaf = "DEF";
else if (lf.suffix.length() == offset ) {
p.ptrs[pos] = new TrieNonLeaf (word.charAt(i+offset+1l));
p = (TrieNonLeaf) p.ptrs[pos];
p.endOfWord = true;
createlLeaf (word.charAt (i+offset+1),
word.substring(i+offset+2),p);
return;
}
p.ptrs[pos] = new TrieNonLeaf (word.charAt(itoffset+l));
p = (TrieNonLeaf) p.ptrs[pos];

offset++;
} while (word.charAt(i+offset) == lf.suffix.charAt(offset-1));
offset--;
// word = "ABCDEF", leaf = "ABCPQR" =>
// leaf('D') = "EF", leaf('P') = "QR";

// check whether there is any suffix left:
// word = "ABCD", leaf = "ABCPQR" =>

// leaf('D') = null, leaf('P') = "QR";
String s = null;

if (word.length() > i+offset+2)

s = word.substring(itoffset+2);
createLeaf (word.charAt (i+offset+1l),s,p);
// check whether there is any suffix left:
// word = "ABCDEF", leaf = "ABCP" =>
// leaf('D') = "EF", leaf('P') = null;
if (1f.suffix.length() > offset+l)

s = 1f.suffix.substring(offset+1l);
else s = null;
createLeaf (lf.suffix.charAt(offset),s,p);

return;

}

else {
p = (TrieNonLeaf) p.ptrs[pos];
it++;

}
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FIGURE 7.42 (continued)

[HHkk Ak kkkkkkkkkkkkkkxkkk  SpellCheck.java  rrkkkkkrkkkkkkkhhkkkkkrhhkkhkkkx

*

*/
import java.io.*;

public class SpellCheck {
static int lineNum = 1;
static String s;
static int ch;
static void readWord(InputStream fIn) {
try {

while (true)
if (ch > -1 && !Character.isLetter((char)ch)) { // skip

ch = fIn.read(); // nonletters;
if (ch == '\n')
lineNum++;
}
else break;
if (ch == -1)
return;
s ="";

while (ch > -1 && Character.isLetter((char)ch)) {
s += Character.toUpperCase( (char)ch);
ch = fIn.read();
}
} catch (IOException io) {
System.out.println("Problem with input.");

}

}

static public void main(String args[]) {
String fileName = "";

InputStream fIn, dictionary;

InputStreamReader isr = new InputStreamReader (System.in);
BufferedReader buffer = new BufferedReader(isr);

Trie trie = null;

try {
dictionary = new FileInputStream("dictionary");

readWord (dictionary);
trie = new Trie(s.toUpperCase()); // initialize root;

while (ch > -1) {

Continues
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FIGURE 7.42 (continued)

readWord(dictionary);
if (ch == -1)
break;
trie.insert(s);
}
dictionary.close();
} catch(IOException io) {
System.err.println("Cannot open dictionary");
}
System.out.println("\nTrie: ");
trie.printTrie();
ch="'"';
lineNum = 1;
try {
if (args.length == 0) {
System.out.print("Enter a file name: ");
fileName = buffer.readLine();

fIn = new FileInputStream(fileName);

}

else {
fIn = new FileInputStream(args[0]);
fileName = args[0];

}

System.out.println("Misspelled words:");
while (true) {
readWord(£fIn);
if (ch == -1)
break;
if (!trie.found(s))
System.out.println(s + " on line " + lineNum);
}
fIn.close();
} catch(IOException io) {
System.err.println("Cannot open " + fileName);
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1.5 EXERCISES

B W N

10.

11.
12.

13.

14.

What is the maximum number of nodes in a multiway tree of height h?
How many keys can a B-tree of order m and of height h hold?
Write a method that prints out the contents of a B-tree in ascending order.

The root of a B'-tree requires special attention because it has no sibling. A split does
not render two nodes two-thirds full plus a new root with one key. Suggest some
solutions to this problem.

Are B-trees immune to the order of the incoming data? Construct B-trees of order 3
(two keys per node) first for the sequence 1, 5, 3, 2, 4 and then for the sequence 1, 2, 3,
4, 5. Is it better to initialize B-trees with ordered data or with data in random order?

Draw all 10 different B-trees of order 3 that can store 15 keys and make a table that
for each of these trees shows the number of nodes and the average number of visited
nodes (Rosenberg and Snyder, 1981). What generalization can you make about them?
Would this table indicate that (a) the smaller the number of nodes, the smaller the
average number of visited nodes and (b) the smaller the average number of visited
nodes, the smaller the number of nodes? What characteristics of the B-tree should
we concentrate on to make them more efficient?

In all our considerations concerning B-trees, we assumed that the keys are unique.
However, this does not have to be the case because multiple occurrences of the same
key in a B-tree do not violate the B-tree property. If these keys refer to different ob-
jects in the data file (e.g., if the key is a name, and many people can have the same
name), how would you implement such data file references?

What is the maximum height of a B*-tree with n keys?

Occasionally, in a simple prefix B*-tree, a separator can be as large as a key in a leaf.
For example, if the last key in one leaf is “Herman” and the first key in the next leaf is
“Hermann,” then “Hermann” must be chosen as a separator in the parent of these
leaves. Suggest a procedure to enforce the shorter separator.

Write a method that determines the shortest separator for two keys in a simple prefix
B*-tree.

Is it a good idea to use abbreviated forms of prefixes in the leaves of prefix B*-trees?

If in two different positions, i and j, i < j, of a leaf in a bit-tree two D-bits are found
such that D.=D, what is the condition on at least one of the D-bits D, for i < k <?

If key K. is deleted from a leaf of a bit-tree, then the D-bit between K. , and K, , has
to be modified. What is the value of this D-bit if the values D, and D, , are known?
Make deletions in the leaf in Figure 7.17 to make an educated guess and then general-
ize this observation. In making a generalization, consider two cases: (a) D, < D, , and

(b)D,>D,,,.

Write an algorithm that, for an R-tree, finds all entries in the leaves whose rectangles
overlap a search rectangle R.
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15. In the discussion of B-trees, which are comparable in efficiency to binary search trees,
why are only B-trees of small order used and not B-trees of large order?

16. What is the worst case of inserting a key into a 2—4 tree?
17. What is the complexity of the compressTrie () algorithm in the worst case?

18. Can the leaves of the trie compressed with compressTrie () still have abbreviated
versions of the words, namely, parts that are not included in the nonterminal nodes?

19. In the examples of tries analyzed in this chapter, we dealt with only 26 capital letters.
A more realistic setting includes lowercase letters as well. However, some words re-
quire a capital letter at the beginning (names), and some require the entire word to be
capitalized (acronyms). How can we solve this problem without including both low-
ercase and capital letters in the nodes?

20. A variant of a trie is a digital tree, which processes information on the level of bits.
Because there are only two bits, only two outcomes are possible. Digital trees are
binary. For example, to test whether the word “BOOK?” is in the tree, we do not use
the first letter, “B,” in the root to determine to which of its children we should go, but
the first bit, 0, of the first letter (ASCII(B) = 01000010), on the second level, the sec-
ond bit, and so on before we get to the second letter. Is it a good idea to use a digital
tree for a spell checking program, as was discussed in the case study?

1.6 PROGRAMMING ASSIGNMENTS

1. Extend our spell checking program to suggest the proper spelling of a misspelled word.
Consider these types of misspellings: changing the order of letters (copmuter), omitting
aletter (computr), adding a letter (compueter), dittography, i.e., repeating a letter
(computter), and changing a letter (compurer). For example, if the letter i is exchanged
with the letter i + 1, then the level 7 of the trie should be processed before level 7 + 1.

2. A point quadtree is a 4-way tree used to represent points on a plane (Samet, 1989). A
node contains a pair of coordinates (latitude,longitude) and references to four chil-
dren that represent four quadrants, NW, NE, SW, and SE. These quadrants are gener-
ated by the intersection of the vertical and horizontal lines passing through point
(lat,lon) of the plane. Write a program that accepts the names of cities and their geo-
graphical locations (lat,lon) and inserts them into the quadtree. Then, the program
should give the names of all cities located within distance r from a location (lat,lon)
or, alternatively, within distance r from a city C.

Figure 7.43 contains an example. Locations on the map in Figure 7.43a are in-
serted into the quadtree in Figure 7.43b in the order indicated by the encircled num-
bers shown next to the city names. For instance, when inserting Pittsburgh into the
quadtree, we check in which direction it is with respect to the root. The root stores
the coordinates of Louisville, and Pittsburgh is NE from it; that is, it belongs to the
second child of the root. But this child already stores a city, Washington. Therefore,
we ask the same question concerning Pittsburgh with respect to the current node,
the second child of the root: In which direction with respect to this city is Pittsburgh?
This time the answer is NW. Therefore, we go to the first child of the current node.
The child is a null node, and therefore, the Pittsburgh node can be inserted here.
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FIGURE 7
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The problem is to not do an exhaustive search of the quadtree. So, if we are after
cities within a radius r from a city C, then, for a particular node nd you find the dis-
tance between C and the city represented by nd. If the distance is within 7, you have to
continue to all four descendants of nd. If not, you continue to the descendants indi-
cated by the relative positions. To measure a distance between cities with coordinates
(lat,,lon,) and (lat,, lon, ), the great circle distance formula can be used:

d = R arccos(sin(lat,) - sin(lat,) + cos(lat,) - cos(lat,) - cos(lon,— lon,))

assuming that the earth radius R = 3,956 miles and latitudes and longitudes are ex-
pressed in radians (to convert decimal degrees to radians, multiply the number of
degrees by /180 = 0.017453293 radians/degree). Also, for the directions west and
south, negative angles should be used.

For example, to find cities within the distance of 200 miles from Pittsburgh,
begin with the root and d((38,85),(40,79)) = 350, so Louisville does not qualify, but
now you need to continue only in the SE and NE descendants of Louisville after com-
paring the coordinates of Louisville and Pittsburgh. Then you try Washington, which
qualifies (d = 175), so, from Washington you go to Pittsburgh and then to both Pitts-
burgh’s descendants. But when you get to the NE node from Washington, you see that
New York does not qualify (d = 264), and from New York you would have to continue
in SW and NW descendants, but they are null, so you stop right there. Also, Atlanta
needs to be checked.

3. Figure 7.36 indicates one source of inefficiency for tries: The path to “REAR” and
“REP” leads through a node that has just one child. For longer identical prefixes, the
number of such nodes can be even longer. Implement a spell checker with a variation
of the trie, called the multiway Patricia tree (Morrison, 1968),* which curtails the
paths in the trie by avoiding nodes with only one child. It does this by indicating for
each branch how many characters should be skipped to make a test. For example, a
trie from Figure 7.44a is transformed into a Patricia tree in Figure 7.44b. The paths
leading to the four words with prefix “LOGG” are shortened at the cost of recording
in each node the number of characters to be omitted starting from the current posi-
tion in a string. Now, because certain characters are not tested along the way, the final
test should be between a key searched for and the entire key found in a specific leaf.

4. The definition of a B-tree stipulates that the nodes have to be half full, and the defini-
tion of a B*-tree increases this requirement to two-thirds. The reason for these re-
quirements is to achieve reasonably good disk space utilization. However, it may be
claimed that B-trees can perform very well requiring only that they include no empty
nodes. To distinguish between these two cases, the B-trees discussed in this chapter
are called merge-at-half B-trees, and the other type, when nodes must have at least
one element, are called free-at-empty B-trees. It turns out, for example, that after a
free-at-empty B-tree is built and then each insertion is followed by deletion, the space
utilization is about 39 percent (Johnson and Shasha, 1993), which is not bad consid-
ering the fact that this type of tree can have very small space utilization (- * 100% for
a tree of order m), whereas a merge-at-half B-tree has at least 50 percent utilization.

4The original Patricia tree was a binary tree, and the tests were made on the level of bits.
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FIGURE 7.44 (a) A trie with words having long identical prefixes and (b) a Patricia tree with the

same words.
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Therefore, it may be expected that if the number of insertions outweighs the number
of deletions, the gap between merge-at-half and free-at-empty B-trees will be bridged.
Write a simulation program to check this contention. First build a large B-tree, and
then run a simulation for this tree treating it as a merge-at-half B-tree and then as a
free-at-empty B-tree for different ratios of number i of insertions to number d of
deletions, so that & = 1; that is, the number of insertions is not less than the number
of deletions (the case when deletions outweigh insertions is not interesting, because
eventually the tree would disappear). Compare the space utilization for these differ-
ent cases. For what ratio 4 is the space utilization between these two types of B-trees
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sufficiently close (say, within 5-10 percent difference)? After how many deletions and
insertions is this similar utilization accomplished? Does the order of the tree have an
impact on the difference of space utilization? One advantage of using free-at-empty
trees would be to decrease the probability of tree restructuring. In all cases, compare
the tree restructuring rate for both types of B-trees.
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Graphs

their nature, have one limitation, namely, they can only represent relations of a hi-

erarchical type, such as relations between parent and child. Other relations are
only represented indirectly, such as the relation of being a sibling. A generalization of
a tree, a graph, is a data structure in which this limitation is lifted. Intuitively, a graph
is a collection of vertices (or nodes) and the connections between them. Generally, no
restriction is imposed on the number of vertices in the graph or on the number of
connections one vertex can have to other vertices. Figure 8.1 contains examples of
graphs. Graphs are versatile data structures that can represent a large number of dif-
ferent situations and events from diverse domains. Graph theory has grown into a so-
phisticated area of mathematics and computer science in the last 200 years since it was
first studied. Many results are of theoretical interest, but in this chapter, some selected
results of interest to computer scientists are presented. Before discussing different al-
gorithms and their applications, several definitions need to be introduced.

A simple graph G = (V, E) consists of a nonempty set V of vertices and a possibly
empty set E of edges, each edge being a set of two vertices from V. The number of ver-
tices and edges is denoted by |V| and |E|, respectively. A directed graph, or a digraph,
G = (V; E) consists of a nonempty set V of vertices and a set E of edges (also called
arcs), where each edge is a pair of vertices from V. The difference is that one edge of a
simple graph is of the form {vi, v}, and for such an edge, {vi,v]_} = {Vj,Vi}. In a digraph,
each edge is of the form (vi,v.), and in this case, (vl.,v.) # (v].,vl.). Unless necessary, this
distinction in notation will be disregarded, and an e(fge between vertices v, and v, will
be referred to as edge(v,.vj).

These definitions are restrictive in that they do not allow for two vertices to have
more than one edge. A multigraph is a graph in which two vertices can be joined by
multiple edges. Geometric interpretation is very simple (see Figure 8.1e). Formally,
the definition is as follows: A multigraph G = (VE,f) is composed of a set of vertices
V; aset of edges E, and a function f: E— {{v,v} : v,v,€ Vandv,#v}. A pseudograph is
a multigraph with the condition v; # v, removed, which allows for loops to occur; in a
pseudograph, a vertex can be joined with itself by an edge (Figure 8.1f).

A path from v, to v, is a sequence of edges edge(v,v,), edge(v,v,), . . ., edge(v _v,)
and is denoted as path Vi Vp Vi sV, 5V, If v, =v, and no edge is repeated, then the

:[ n spite of the flexibility of trees and the many different tree applications, trees, by
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FIGURE 8.1 Examples of graphs: (a—d) simple graphs; (c) a complete graph K; (e) a multigraph;
(f) a pseudograph; (g) a circuit in a digraph; (h) a cycle in the digraph.
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path is called a circuit (Figure 8.1g). If all vertices in a circuit are different, then it is
called a cycle (Figure 8.1h).

A graph is called a weighted graph if each edge has an assigned number. Depend-
ing on the context in which such graphs are used, the number assigned to an edge is
called its weight, cost, distance, length, or some other name.

A graph with n vertices is called complete and is denoted K if for each pair of dis-
tinct vertices there is exactly one edge connecting them; that is, each vertex can be con-
nected to any other vertex (Figure 8.1c). The number of edges in such a graph |E| =

(IVI): V]! :|V|(|V|_1):O(|V|2)_
2 21(|v]-2)! 2

A subgraph G’ of graph G = (V,E) isa graph (V’,E”) such that V' 'c Vand E’'CE. A
subgraph induced by vertices V' is a graph (V’,E’) such that an edge e€ Eifee E’.

Two vertices v, and v; are called adjacent if the edge(v,v) is in E. Such an edge is
called incident with the vertices v, and v.. The degree of a vertex v, deg(v), is the number
of edges incident with v. If deg(v) = 0, then v is called an isolated vertex. Part of the
definition of a graph indicating that the set of edges E can be empty allows for a graph
consisting only of isolated vertices.

(h)

EBl Graru RepresenTaTION

There are various ways to represent a graph. A simple representation is given by an ad-
jacency list which specifies all vertices adjacent to each vertex of the graph. This list
can be implemented as a table, in which case it is called a star representation, which
can be forward or reverse, as illustrated in Figure 8.2b, or as a linked list (Figure 8.2¢).
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FIGURE 8.2 Graph representations. (a) A graph represented as (b—c) an adjacency list, (d) an adja-
cency matrix, and (e) an incidence matrix.
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Another representation is a matrix, which comes in two forms: an adjacency
matrix and an incidence matrix. An adjacency matrix of graph G = (V,E) is a binary
|V| x |V | matrix such that each entry of this matrix
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_ |1 ifthereexists an edge(vivj)
Y 10 otherwise

An example is shown in Figure 8.2d. Note that the order of vertices v, . . ., Y| used
for generating this matrix is arbitrary; therefore, there are n! possible adjacency matrices
for the same graph G. Generalization of this definition to also cover multigraphs can be
easily accomplished by transforming the definition into the following form:

a;= number of edges between v, and v,

Another matrix representation of a graph is based on the incidence of vertices
and edges and is called an incidence matrix. An incidence matrix of graph G = (V,E) is
a |V| X |E| matrix such that

_ |1 ifedge e is incident with vertex v,
7 10 otherwise

Figure 8.2e contains an example of an incidence matrix. In an incidence matrix for
a multigraph, some columns are the same, and a column with only one 1 indicates a
loop.

Which representation is best? It depends on the problem at hand. If our task is to
process vertices adjacent to a vertex v, then the adjacency list requires only deg(v)
steps, whereas the adjacency matrix requires |V| steps. On the other hand, inserting or
deleting a vertex adjacent to v requires linked list maintenance for an adjacency list (if
such an implementation is used); for a matrix, it requires only changing 0 to 1 for in-
sertion, or 1 to 0 for deletion, in one cell of the matrix.

m GRAPH TRAVERSALS

As in trees, traversing a graph consists of visiting each vertex only one time. The sim-
ple traversal algorithms used for trees cannot be applied here because graphs may in-
clude cycles; hence, the tree traversal algorithms would result in infinite loops. To
prevent that from happening, each visited vertex can be marked to avoid revisiting it.
However, graphs can have isolated vertices, which means that some parts of the graph
are left out if unmodified tree traversal methods are applied.

An algorithm for traversing a graph, known as the depth-first search algorithm,
was developed by John Hopcroft and Robert Tarjan. In this algorithm, each vertex
v is visited and then each unvisited vertex adjacent to v is visited. If a vertex v has
no adjacent vertices or all of its adjacent vertices have been visited, we backtrack to the
predecessor of v. The traversal is finished if this visiting and backtracking process leads
to the first vertex where the traversal started. If there are still some unvisited vertices in
the graph, the traversal continues restarting for one of the unvisited vertices.

Although it is not necessary for the proper outcome of this method, the algo-
rithm assigns a unique number to each accessed vertex so that vertices are now
renumbered. This will prove useful in later applications of this algorithm.

DFS (V)
num(v)= i++;
for allvertices u adjacentto v

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



380 M Chapter 8 Graphs

if num(u) is 0
attach edge(uv) to edges;
DFS(u);

depthFirstSearch()
for allvertices v
num(v) = 0;
edges = null;

i=1;
while thereisavertex v such that num(v) is 0
DFS (V) ;

output edges;

Figure 8.3 contains an example with the numbers num(v) assigned to each
vertex v shown in parentheses. Having made all necessary initializations,
depthFirstSearch () calls DFS(a). DFS() is first invoked for vertex a; num(a) is
assigned number 1. a has four adjacent vertices, and vertex e is chosen for the next in-
vocation, DFS (e ), which assigns number 2 to this vertex, that is, num(e) = 2, and puts
the edge(ae) in edges. Vertex e has two unvisited adjacent vertices, and DFS () is called
for the first of them, the vertex f. The call DFs (£) leads to the assignment num(f ) =3
and puts the edge(ef ) in edges. Vertex fhas only one unvisited adjacent vertex, 7 thus,
the fourth call, DFS (1), leads to the assignment num(i) = 4 and to the attaching of
edge(fi) to edges. Vertex i has only visited adjacent vertices; hence, we return to call
DFS (£) and then to DFS(e) in which vertex i is accessed only to learn that num(i) is
not 0, whereby the edge(ei) is not included in edges. The rest of the execution can be
seen easily in Figure 8.3b. Solid lines indicate edges included in the set edges.

FIGURE 8.3 An example of application of the depthFirstSearch() algorithm to a graph.

a b c d al) b)) dO)
/ //'
e \ a7 N |
f g h A © g5  he)
i i(4)
(@) )

Note that this algorithm guarantees generating a tree (or a forest, a set of trees)
that includes or spans over all vertices of the original graph. A tree that meets this
condition is called a spanning tree. The fact that a tree is generated is ascertained by
the fact that the algorithm does not include in the resulting tree any edge that leads
from the currently analyzed vertex to a vertex already analyzed. An edge is added to
edges only if the condition in “if num(u) is 0” is true; that is, if vertex u reachable

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Section 8.2 Graph Traversals W 381

from vertex v has not been processed. As a result, certain edges in the original graph
do not appear in the resulting tree. The edges included in this tree are called forward
edges (or tree edges), and the edges not included in this tree are called back edges and
are shown as dashed lines.

Figure 8.4 illustrates the execution of this algorithm for a digraph. Notice that the
original graph results in three spanning trees, although we started with only two iso-
lated subgraphs.

FIGURE 8.4 The depthFirstSearch() algorithm applied to a digraph.
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The complexity of depthFirstSearch() is O(|V| + |E|) because (a) initializ-
ing num(v) for each vertex v requires |V| steps; (b) DFS (v) is called deg(v) times for
each v—that is, once for each edge of v (to spawn into more calls or to finish the chain
of recursive calls)—hence, the total number of calls is 2|E |; (c) searching for vertices
as required by the statement

while thereisavertex v suchthatnum(v) is 0

can be assumed to require |V| steps. For a graph with no isolated parts, the loop
makes only one iteration, and an initial vertex can be found in one step, although it
may take | V| steps. For a graph with all isolated vertices, the loop iterates |V| times,
and each time a vertex can also be chosen in one step, although in an unfavorable im-
plementation, the ith iteration may require i steps, whereby the loop would require
O(|V|?) steps in total. For example, if an adjacency list is used, then for each v, the
condition in the loop,

for allvertices u adjacentto v

is checked deg(v) times. However, if an adjacency matrix is used, then the same con-
dition is used | V| times, whereby the algorithm’s complexity becomes O(|V|2).

As we shall see, many different algorithms are based on DFS ( ) ; however, some algo-
rithms are more efficient if the underlying graph traversal is not depth first but breadth
first. We have already encountered these two types of traversals in Chapter 6; recall that
the depth-first algorithms rely on the use of a stack (explicitly, or implicitly, in recursion),
and breadth-first traversal uses a queue as the basic data structure. Not surprisingly, this
idea can also be extended to graphs, as shown in the following pseudocode:
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breadthFirstSearch()
for allvertices u
num(u) = 0;
edges = null;
i=1;
while thereisavertex v such that num(v) == 0
num(v)=i++;
enqueue(v) ;
while queue is not empty
v = dequeue();
for all vertices u adjacentto v
if num(u) is 0
num(u) = i++;
enqueue(u) ;
attach edge(vu) to edges;
output edges;

Examples of processing a simple graph and a digraph are shown in Figures 8.5
and 8.6. breadthFirstSearch () first tries to mark all neighbors of a vertex v be-
fore proceeding to other vertices, whereas DFS () picks one neighbor of a v and then
proceeds to a neighbor of this neighbor before processing any other neighbors of v.

FIGURE 8.5 An example of application of the breadthFirstSearch() algorithm to a graph.
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FIGURE 8.6 The breadthFirstSearch () algorithm applied to a digraph.
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m SHORTEST PATHS

Finding the shortest path is a classical problem in graph theory, and a large number of
different solutions have been proposed. Edges are assigned certain weights represent-
ing, for example, distances between cities, times separating the execution of certain
tasks, costs of transmitting information between locations, amounts of some sub-
stance transported from one place to another, and so on. When determining the
shortest path from vertex v to vertex u, information about distances between interme-
diate vertices w has to be recorded. This information can be recorded as a label associ-
ated with these vertices, where the label is only the distance from v to w or the distance
along with the predecessor of w in this path. The methods of finding the shortest path
rely on these labels. Depending on how many times these labels are updated, the
methods solving the shortest path problem are divided in two classes: label-setting
methods and label-correcting methods.

For label-setting methods, in each pass through the vertices still to be processed,
one vertex is set to a value that remains unchanged to the end of the execution. This,
however, limits such methods to processing graphs with only positive weights. The
second category includes label-correcting methods, which allow for the changing of
any label during application of the method. The latter methods can be applied to
graphs with negative weights and with no negative cycle—a cycle composed of edges
with weights adding up to a negative number—but they guarantee that, for all ver-
tices, the current distances indicate the shortest path only after the processing of the
graph is finished. Most of the label-setting and label-correcting methods, however,
can be subsumed to the same form, which allows finding the shortest paths from one
vertex to all other vertices (Gallo and Pallottino, 1986):

genericShortestPathAlgorithm(weighted simple digraph, vertex first)
for allvertices v
currDist(v) = oo
currDist(first) = 0;
initialize toBeChecked;
while toBeChecked is notempty
v = avertexin toBeChecked;
remove v from toBeChecked;
for allvertices u adjacentto v
if currDist(u) > currDist(v) + weight(edge(vu))
currDist(u) = currDist(v) + weight(edge(vu));
predecessor (u) = v;
add u to toBeChecked ifitis not there;

In this generic algorithm, a label consists of two elements:
label(v) = (currDist(v), predecessor(v))

This algorithm leaves two things open: the organization of the set toBeChecked
and the order of assigning new values to v in the assignment statement

v = avertex in toBeChecked;
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It should be clear that the organization of toBeChecked can determine the order of
choosing new values for v, but it also determines the efficiency of the algorithm.

What distinguishes label-setting methods from label-correcting methods is the
method of choosing the value for v, which is always a vertex in toBeChecked with
the smallest current distance. One of the first label-setting algorithms was developed
by Dijkstra.

In Dijkstra’s algorithm, a number of paths p,,. . ., P, from a vertex v are tried, and
each time, the shortest path is chosen among them, which may mean that the same
path p, can be continued by adding one more edge to it. But if p, turns out to be longer
than any other path that can be tried, p; is abandoned and this other path is tried by
resuming from where it was left and by adding one more edge to it. Because paths can
lead to vertices with more than one outgoing edge, new paths for possible exploration
are added for each outgoing edge. Each vertex is tried once, all paths leading from it
are opened, and the vertex itself is put away and not used anymore. After all vertices
are visited, the algorithm is finished. Dijkstra’s algorithm is as follows:

DijkstraAlgorithm(weighted simple digraph, vertex first)
for allvertices v
currDist(v) = oo;
currDist(first) = 0;
toBeChecked = all vertices;
while toBeChecked is notempty
v = avertexin toBeChecked with minimal currDist(v);
remove v from toBeChecked;
for all vertices u adjacentto v andin toBeChecked
if currDist(u) > currDist(v)+ weight(edge(vu))
currDist(u) = currDist(v)+ weight(edge(vu));
predecessor(u) = v;

Dijkstra’s algorithm is obtained from the generic method by being more specific
about which vertex is to be taken from toBeChecked so that the line

v = avertexin toBeChecked;
is replaced by the line
v = avertexin toBeChecked with minimal currDist(v);

and by extending the condition in the if statement whereby the current distance of
vertices eliminated from toBeChecked is set permanently.! Note that the structure of
toBeChecked is not specified, and the efficiency of the algorithms depends on the
data type of toBeChecked, which determines how quickly a vertex with minimal dis-
tance can be retrieved.

Figure 8.7 contains an example. The table in this figure shows all iterations of the
while loop. There are 10 iterations because there are 10 vertices. The table indicates
the current distances determined up until the current iteration.

Dijkstra used six sets to ensure this condition, three for vertices and three for edges.
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FIGURE 8.7 An execution of DijkstraAlgorithm().
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The list toBeChecked is initialized to {a b . . . j}; the current distances of all ver-
tices are initialized to a very large value, marked here as oo; and in the first iteration,
the current distances of d’s neighbors are set to numbers equal to the weights of
the edges from d. Now, there are two candidates for the next try, a and h, because
d was excluded from toBeChecked. In the second iteration, & is chosen, because its
current distance is minimal, and then the two vertices accessible from h, namely,
e and i, acquire the current distances 6 and 10. Now, there are three candidates
in toBeChecked for the next try, a, e, and i. a has the smallest current distance, so
it is chosen in the third iteration. Eventually, in the tenth iteration, toBeChecked
becomes empty and the execution of the algorithm completes.

The complexity of Dijkstra’s algorithm is O(|V|?). The first for loop and the
while loop are executed |V| times. For each iteration of the while loop, (a) a vertex
v in toBeChecked with minimal current distance has to be found, which requires
O(| V|) steps, and (b) the for loop iterates deg(v) times, which is also O(| V|). The ef-
ficiency can be improved by using a heap to store and order vertices and adjacency
lists (Johnson 1977). Using a heap turns the complexity of this algorithm into O((|E|
+ |V|) lg |V|); each time through the while loop, the cost of restoring the heap after
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removing a vertex is proportional to O(lg|V|). Also, in each iteration, only adjacent
vertices are updated on an adjacency list so that the total updates for all vertices con-
sidered in all iterations are proportional to |E |, and each list update corresponds to
the cost of lg| V| of the heap update.

Dijkstra’s algorithm is not general enough in that it may fail when negative
weights are used in graphs. To see why, change the weight of edge(ah) from 10 to —10.
Note that the path d, a, h, e is now —1, whereas the path d, a, e as determined by the al-
gorithm is 5. The reason for overlooking this less costly path is that the vertices with the
current distance set from eo to a value are not checked anymore: First, successors of
vertex d are scrutinized and d is removed from toBeChecked, then the vertex h is re-
moved from toBeChecked, and only afterward is the vertex a considered as a candi-
date to be included in the path from d to other vertices. But now, the edge(ah) is not
taken into consideration because the condition in the for loop prevents the algorithm
from doing this. To overcome this limitation, a label-correcting method is needed.

One of the first label-correcting algorithms was devised by Lester Ford. Like Dijk-
stra’s algorithm, it uses the same method of setting current distances, but Ford’s
method does not permanently determine the shortest distance for any vertex until it
processes the entire graph. It is more powerful than Dijkstra’s method in that it can
process graphs with negative weights (but not graphs with negative cycles).

As required by the original form of the algorithm, all edges are monitored to find
a possibility for an improvement of the current distance of vertices so that the algo-
rithm can be presented in this pseudocode:

FordAlgorithm(weighted simple digraph, vertex first)
for allvertices v
currDist(v) = oo;
currDist(first) = 0;
while thereis an edge(vu) such that currDist(u) > currDist(v)+ weight(edge(vu))
currDist(u) = currDist(v)+ weight(edge(vu));

To impose a certain order on monitoring the edges, an alphabetically ordered se-
quence of edges can be used so that the algorithm can repeatedly go through the entire
sequence and adjust the current distance of any vertex, if needed. Figure 8.8 contains
an example. The graph includes edges with negative weights. The table indicates itera-
tions of the while loop and current distances updated in each iteration, where one it-
eration is defined as one pass through the edges. Note that a vertex can change its
current distance during the same iteration. However, at the end, each vertex of the
graph can be reached through the shortest path from the starting vertex (vertex c in the
example in Figure 8.8).

The computational complexity of this algorithm is O(|V||E|). There will be at
most |V| - 1 passes through the sequence of |E| edges, because | V| - 1 is the largest
number of edges in any path. In the first pass, at least all one-edge paths are deter-
mined; in the second pass, all two-edge paths are determined; and so on. However, for
graphs with irrational weights, this complexity is O(2|V|) (Gallo and Pallottino 1986).

We have seen in the case of Dijkstra’s algorithm that the efficiency of an algo-
rithm can be improved by scanning edges and vertices in a certain order, which in
turn depends on the data structure used to store them. The same holds true for label-
correcting methods. In particular, FordAlgorithm() does not specify the order of
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FIGURE 8.8 FordAlgorithm() applied to a digraph with negative weights.
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checking edges. In the example illustrated in Figure 8.8, a simple solution is used
in that all adjacency lists of all vertices were visited in each iteration. However, in this
approach, all the edges are checked every time, which is not necessary, and more judi-
cious organization of the list of vertices can limit the number of visits per vertex. Such
an improvement is based on the genericShortestPathAlgorithm() by explic-
itly referring to the toBeChecked list, which in Fordalgorithm() is used only
implicitly: It simply is the set of all vertices V and remains such for the entire run of
the algorithm. This leads us to a general form of a label-correcting algorithm as
expressed in this pseudocode:

labelCorrectingAlgorithm(weighted simple digraph, vertex first)
for allvertices v
currDist(v) = oo;
currDist(first) = 0;
toBeChecked = {first};
while toBeChecked is notempty
v = avertexin toBeChecked;
remove v from toBeChecked;
for all vertices u adjacentto v
if currDist(u) > currDist(v)+ weight(edge(vu))
currDist(u) = currDist(v)+ weight(edge(vu));
predecessor(u) = v;
add u to toBeChecked ifitis not there;

The efficiency of particular instantiations of this algorithm hinges on the data
structure used for the toBeChecked list and on operations for extracting elements
from this list and including them into it.
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One possible organization of this list is a queue: Vertex v is dequeued from
toBeChecked, and if the current distance of any of its neighbors, u, is updated, u is en-
queued onto toBeChecked. It seems like a natural choice, and in fact, it was one of the
earliest, used in 1968 by C. Witzgall (Deo and Pang, 1984). However, it is not without flaws,
as it sometimes reevaluates the same labels more times than necessary. Figure 8.9 contains
an example of an excessive reevaluation. The table in this figure shows all changes on
toBeChecked implemented as a queue when labelCorrectingAlgorithm() is ap-
plied to the graph in Figure 8.8a. The vertex d is updated three times. These updates cause
three changes to its successors, a and 7, and two changes to another successor, e. The
change of a translates into two changes to b and these into two more changes to e. To avoid
such repetitious updates, a doubly ended queue, or deque, can be used.

FIGURE 8.9 An execution of labelCorrectingAlgorithm(), which uses a queue.
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The choice of a deque as a solution to this problem is attributed to D. D’Esopo
(Pollack and Wiebenson, 1960) and was implemented by Pape. In this method, the
vertices included in toBeChecked for the first time are put at the end of the list; oth-
erwise, they are added at the front. The rationale for this procedure is that if a vertex v
is included for the first time, then there is a good chance that the vertices accessible
from v have not been processed yvet, so they will be processed after processing v. On
the other hand, if v has been processed at least once, then it is likely that the vertices
reachable from v are still on the list waiting for processing; by putting v at the end of
the list, these vertices may very likely be reprocessed due to the update of currDist(v).
Therefore, it is better to put v in front of their successors to avoid an unnecessary
round of updates. Figure 8.10 shows changes in the deque during the execution of
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FIGURE 8.10  An execution of labelCorrectingAlgorithm( ), which applies a deque.
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labelCorrectingAlgorithm() applied to the graph in Figure 8.8a. This time, the
number of iterations is dramatically reduced. Although d is again evaluated three
times, these evaluations are performed before processing its successors so that a and 1
are processed once and e twice. However, this algorithm has a problem of its own
because in the worst case its performance is an exponential function of the number of
vertices. (See Exercise 13 at the end of this chapter.) But in the average case, as Pape’s
experimental runs indicate, this implementation fares at least 60 percent better than
the previous queue solution.

Instead of using a deque, which combines two queues, the two queues can be
used separately. In this version of the algorithm, vertices stored for the first time are
enqueued on queue , and on queue, otherwise. Vertices are dequeued from queue, if
it is not empty, and from queue, otherwise (Gallo and Pallottino, 1988).

Another version of the label-correcting method is the threshold algorithm, which
also uses two lists. Vertices are taken for processing from list,. A vertex is added to the
end of list, if its label is below the current threshold level, and to list, otherwise. If list,
is empty, then the threshold level is changed to a value greater than a minimum label
among the labels of the vertices in list,, and then the vertices with the label values
below the threshold are moved to list, (Glover, Glover, and Klingman, 1984).

Still another algorithm is a small label first method. In this method, a vertex is in-
cluded at the front of a deque if its label is smaller than the label at the front of the
deque; otherwise, it is put at the end of the deque (Bertsekas, 1993). To some extent,
this method includes the main criterion of label-setting methods. The latter methods
always retrieve the minimal element from the list; the small label first method puts a
vertex with the label smaller than the label of the front vertex at the top. The approach
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can be carried to its logical conclusion by requiring each vertex to be included in the
list according to its rank so that the deque turns into a priority queue and the result-
ing method becomes a label-correcting version of Dijkstra’s algorithm.

8.3.1 All-to-All Shortest Path Problem

Although the task of finding all shortest paths from any vertex to any other vertex
seems to be more complicated than the task of dealing with one source only, a method
designed by Stephen Warshall and implemented by Robert W. Floyd and P. Z. Inger-
man does it in a surprisingly simple way, provided an adjacency matrix is given that
indicates all the edge weights of the graph (or digraph). The graph can include nega-
tive weights. The algorithm is as follows:

WFIalgorithm(matrix weight)
for i = 1 to |V]|
for j =1 to |V]|
for k = 1 to |V|
if weight[Jj][k] > weight[j]1[i] + weight[i][k]
weight[j]l[k] = weight[j][i] + weight[i]l[k];

The outermost loop refers to vertices that may be on a path between the vertex
with index j and the vertex with index k. For example, in the first iteration, when
i=1,all paths v....v ...v, are considered, and if there is currently no path from
v.to v, and v, is reachable from v, the path is established, with its weight equal to
p= Weight(path(vjvl)) + weight(path(v,v,)), or the current weight of this path,
Weight(path(vjvk)), is changed to p if p is less than weight(path(vjvk)). As an example,
consider the graph and the corresponding adjacency matrix in Figure 8.11. This fig-
ure also contains tables that show changes in the matrix for each value of 7 and the
changes in paths as established by the algorithm. After the first iteration, the matrix
and the graph remain the same, because a has no incoming edges (Figure 8.11a).
They also remain the same in the last iteration, when i = 5; no change is introduced
to the matrix because vertex e has no outgoing edges. A better path, one with a lower
combined weight, is always chosen, if possible. For example, the direct one-edge path
from b to e in Figure 8.11c is abandoned after a two-edge path from b to e is found
with a lower weight, as in Figure 8.11d.

This algorithm also allows us to detect cycles if the diagonal is initialized to e and
not to zero. If any of the diagonal values are changed, then the graph contains a cycle.
Also, if an initial value of oo between two vertices in the matrix is not changed to a fi-
nite value, it is an indication that one vertex cannot be reached from another.

The simplicity of the algorithm is reflected in the ease with which its complexity
can be computed: All three for loops are executed |V| times, so its complexity is |V|3.
This is a good efficiency for dense, nearly complete graphs, but in sparse graphs, there
is no need to check for all possible connections between vertices. For sparse graphs, it
may be more beneficial to use a one-to-all method |V| times—that is, apply it to each
vertex separately. This should be a label-setting algorithm, which as a rule has better
complexity than a label-correcting algorithm. However, a label-setting algorithm can-
not work with graphs with negative weights. To solve this problem, we have to modify
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An execution of WFIalgorithm().

FIGURE 8.11
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the graph so that it does not have negative weights and it guarantees to have the same
shortest paths as the original graph. Fortunately, such a modification is possible (Ed-
monds and Karp, 1972).

Observe first that, for any vertex v, the length of the shortest path to v is never
greater than the length of the shortest path to any of its predecessors w plus the length
of edge from w to v, or

dist(v) < dist(w) + weight(edge(wv))
for any vertices v and w. This inequality is equivalent to the inequality
0 < weight’(edge(wv)) = weight(edge(vw)) + dist(w) — dist(v)

Hence, changing weight(e) to weight'(e) for all edges e renders a graph with nonnega-
tive edge weights. Now note that the shortest path v, v,,. . ., Vv, is

iweight'(edge(vivm )) = {iweight(edge(vivm ))] + dist(v1 ) - dist(vk )

i=1 i=1

Therefore, if the length L of the path from v, to v, is found in terms of nonnegative
weights, then the length L of the same path in the same graph using the original
weights, some possibly negative, is L = L’ — dist(v,) + dist(v,).

But because the shortest paths have to be known to make such a transformation,
the graph has to be preprocessed by one application of a label-correcting method.
|On|ly afterward are the weights modified, and then a label-setting method is applied
V| times.

m CyCLE DETECTION

Many algorithms rely on detecting cycles in graphs. We have just seen that, as a side
effect, WFIalgorithm() allows for detecting cycles in graphs. However, it is a cubic
algorithm, which in many situations is too inefficient. Therefore, other cycle detection
methods have to be explored.

One such algorithm is obtained directly from depthFirstSearch( ). For undi-
rected graphs, small modifications in DFS (v) are needed to detect cycles and report
them

cycleDetectionDFS (V)
num(v) = i++;
for allvertices u adjacentto v
if num(u) is 0
attach edge(uv) to edges;
cycleDetectionDFS(u);
else if edge(vu) is notin edges
cycle detected ;

For digraphs, the situation is a bit more complicated, because there may be edges
between different spanning subtrees, called side edges (see edge(ga) in Figure 8.4b). An
edge (a back edge) indicates a cycle if it joins two vertices already included in the same
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spanning subtree. To consider only this case, a number higher than any number gener-
ated in subsequent searches is assigned to a vertex being currently visited after all its de-
scendants have also been visited. In this way, if a vertex is about to be joined by an edge
with a vertex having a lower number, we declare a cycle detection. The algorithm is now

digraphCycleDetectionDFS(v)
num(v) = it++:
for all vertices u adjacentto v
if num(u) is 0
pred(u) = v;
digraphCycleDetectionDFS(u);
else if num (u) isnot
pred(u) = v;
cycle detected ;
num(v) = oo;

8.4.1 Union-Find Problem

Let us recall from a preceding section that depth-first search guaranteed generating a
spanning tree in which no element of edges used by depthFirstSearch() ledtoa
cycle with other elements of edges. This was due to the fact that if vertices v and u be-
longed to edges, then the edge(vu) was disregarded by depthFirstSearch(). A
problem arises when depthFirstSearch() is modified so that it can detect
whether a specific edge(vu) is part of a cycle (see Exercise 20). Should such a modified
depth-first search be applied to each edge separately, then the total run would be
O(|E|(|E| + |V|)), which could turn into O(|V|4) for dense graphs. Hence, a better
method needs to be found.

The task is to determine if two vertices are in the same set. Two operations are
needed to implement this task: finding the set to which a vertex v belongs and uniting
two sets into one if vertex v belongs to one of them and w to another. This is known as
the union-find problem.

The sets used to solve the union-find problem are implemented with circular
linked lists; each list is identified by a vertex that is the root of the tree to which the
vertices in the list belong. But first, all vertices are numbered with integers 0, . . ., | V|
— 1, which are used as indexes in three arrays: root [ ] to store a vertex index identify-
ing a set of vertices, next [ ] to indicate the next vertex on a list, and length[ ] to in-
dicate the number of vertices in a list.

We use circular lists to be able to combine two lists right away, as illustrated in
Figure 8.12. Lists L1 and L2 (Figure 8.12a) are merged into one by interchanging
next references in both lists (Figure 8.12b or, the same list, Figure 8.12c). However,
the vertices in L2 have to “know” to which list they belong; therefore, their root indi-
cators have to be changed to the new root. Because it has to be done for all vertices of
list L2, then L2 should be the shorter of the two lists. To determine the length of lists,
the third array is used, length[ ], but only lengths for the identifying nodes (roots)
have to be updated. Therefore, the lengths indicated for other vertices that were roots
(and at the beginning each of them was) are disregarded.
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FIGURE 8.12 Concatenating two circular linked lists.
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The union operation performs all the necessary tasks, so the find operation be-
comes trivial. By constantly updating the array root[ 1, the set, to which a vertex j be-
longs, can be immediately identified, because it is a set whose identifying vertex is
root[ j].Now, after the necessary initializations,

initialize()

for i =0 to |V| — 1
root[i] = next[i] = 1i;
length[i] = 1;

union () can be defined as follows:

union (edge(vu))

if (root[u] == root[Vv]) // disregard this edge,
return; // since v and u are in

else if (length[root[v]] < length[root[u]]) // the same set; combine
rt = root[v]; // two sets into one;
length[root[u]] += length[rt];
root[rt] = root[u]; // update root of rt and
for (j = next[rt]; j != rt; j = next[j]) // then other vertices

root[j] = root[u]; // in circular list;

swap(next[rt],next[root[ul]); // merge two lists;

add edge(vu) to spanningTree;
else // if length[root[v]] >= length[root[u]]
// proceed as before, with v and u reversed;

An example of the application of union () to merge lists is shown in Figure 8.13.
After initialization, there are |V| unary sets or one-node linked lists, as in Figure
8.13a. After executing union() several times, smaller linked lists are merged into
larger ones, and each time, the new situation is reflected in the three arrays, as shown
in Figures 8.13b—d.

The complexity of union () depends on the number of vertices that have to be up-
dated when merging two lists, specifically, on the number of vertices on the shorter list,
because this number determines how many times the for loop in union () iterates. Be-
calise| this number can be between 1 and |V|/2, the complexity of union () is given by
o(|v)).
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FIGURE 8.13

An example of application of union () to merge lists.
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m SPANNING TREES

Consider the graph representing the airline’s connections between seven cities (Fig-
ure 8.14a). If the economic situation forces this airline to shut down as many con-
nections as possible, which of them should be retained to make sure that it is still
possible to reach any city from any other city, if only indirectly? One possibility is
the graph in Figure 8.14b. City a can be reached from city d using the path 4, ¢, g, but
it is also possible to use the path d, e, b, a. Because the number of retained connec-
tions is the issue, there is still the possibility we can reduce this number. It should be
clear that the minimum number of such connections form a tree because alternate
paths arise as a result of cycles in the graph. Hence, to create the minimum number
of connections, a spanning tree should be created, and such a spanning tree is the by-
product of depthFirstSearch(). Clearly, we can create different spanning trees
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FIGURE 8.14
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(Figures 8.14c—d)—that is, we can decide to retain different sets of connections—but
all these trees have six edges and we cannot do any better than that.

The solution to this problem is not optimal in that the distances between cities have
not been taken into account. Because there are alternative six-edge connections between
cities, the airline uses the cost of these connections to choose the best, guaranteeing the
optimum cost. This can be achieved by having maximally short distances for the six
connections. This problem can now be phrased as finding a minimum spanning tree,
which is a spanning tree in which the sum of the weights of its edges is minimal. The
previous problem of finding a spanning tree in a simple graph is a case of the minimum
spanning tree problem in that the weights for each edge are assumed to equal one.
Therefore, each spanning tree is a minimum tree in a simple graph.

The minimum spanning tree problem has many solutions, and only a handful of
them are presented here. (For a review of these methods, see Graham and Hell 1985.)

One popular algorithm was devised by Joseph Kruskal. In this method, all edges are
ordered by weight, and then each edge in this ordered sequence is checked to see
whether it can be considered part of the tree under construction. It is added to the tree if
no cycle arises after its inclusion. This simple algorithm can be summarized as follows:

KruskalAlgorithm(weighted connected undirected graph)
tree = null;
edges = sequence of all edges of graph sorted by weight;
for (i = 1; i < |E| and |tree| < |V| — 1; i++)
if e, from edges doesnot form a cycle with edges in tree
add e to tree;

Figures 8.15ba—bf contain a step-by-step example of Kruskal’s algorithm.

The complexity of this algorithm is determined by the complexity of the sorting
method applied, which for an efficient sorting is O( |E| Ig |E |). It also depends on the
complexity of the method used for cycle detection. If we use union() to implement
Kruskal’s algorithm, then the for loop of KruskalAlgorithm() becomes
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FIGURE 8.15 A spanning tree of graph (a) found, (ba-bf) with Kruskal’s algorithm, (ca—cl) and with
Dijkstra’s method.
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